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Abstract
Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOFMS) is one the 
most powerful analytical platforms for chemical investigations of complex biological samples. It produces large datasets 
that are rich in information, but highly complex, and its consistency may be affected by random systemic fluctuations and/
or changes in the experimental parameters. This study details the optimization of a data processing strategy that compen-
sates for severe 2D pattern misalignments and detector response fluctuations for saliva samples analyzed across 2 years. 
The strategy was trained on two batches: one with samples from healthy subjects who had undergone dietary intervention 
with high/low-Maillard reaction products (dataset A), and the second from healthy/unhealthy obese individuals (dataset 
B). The combined untargeted and targeted pattern recognition algorithm (i.e., UT fingerprinting) was tuned for key process 
parameters, the signal-to-noise ratio (S/N), and MS spectrum similarity thresholds, and then tested for the best transform 
function (global or local, affine or low-degree polynomial) for pattern realignment in the temporal domain. Reliable peak 
detection achieved its best performance, computed as % of false negative/positive matches, with a S/N threshold of 50 and 
spectral similarity direct match factor (DMF) of 700. Cross-alignment of bi-dimensional (2D) peaks in the temporal domain 
was fully effective with a supervised operation including multiple centroids (reference peaks) and a match-and-transform 
strategy using affine functions. Regarding the performance-derived response fluctuations, the most promising strategy for 
cross-comparative analysis and data fusion included the mass spectral total useful signal (MSTUS) approach followed by 
Z-score normalization on the resulting matrix.
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Introduction

The use of saliva in clinical diagnostics is historically 
under-explored compared to other bio-fluids such as urine 
or blood. However, emerging biotechnologies and salivary 
diagnostics have extended the range of saliva-based diag-
nostics from the oral cavity, such as for periodontal dis-
eases and caries risk, to the physiological status, due to its 
biological equilibrium with plasma [1]. It has been shown 
that saliva metabolites closely resemble metabolic changes 
that take place in blood and may therefore reflect a variety 
of pathophysiological and nutritional changes, as well as 
exposure to medications and environmental factors [2–5].

The -omic analytical strategies aim to capture the vari-
ety of encrypted information of complex samples to enable 
to the higher level information related to the phenomena 
under study. Well-established methodologies in metabo-
lomics, i.e., profiling and fingerprinting, have been devel-
oped as separate analytical techniques/approaches capa-
ble of informing about compositional differences between 
samples [6, 7]. If analytes of interest are identified upfront 
and tracked across all samples, profiling can be done spe-
cifically. However, the procedure can be extended toward 
a thorough evaluation of all detected components and 
referred to as untargeted profiling [8]. Fingerprinting, on 
the other hand, is a high-throughput approach that may 
identify compositional changes between samples [9–11]; 
however, it may not always produce precise quantitative 
data or provide analyte identification for all of the constit-
uents. The goal of fingerprinting is to extract the non-obvi-
ous chemical information present in the entire instrumental 
signal. Chemometrics and multivariate analysis allow then 
the access to higher level information and understanding. 
In the case of comprehensive two-dimensional chromatog-
raphy, fingerprinting acquires a new meaning: it is referred 
to as chromatographic fingerprinting and corresponds to a 
pattern recognition procedure where detected features are 
annotated and tracked across many samples based on their 
relative retention and spectral similarity [6].

Comprehensive two-dimensional gas chromatography 
coupled with time-of-flight mass spectrometry (GC × GC-
TOFMS) is one of the most informative analytical plat-
forms for complex sample analysis. It allows detailed pro-
filing and high-resolution chromatographic fingerprinting 
of biofluids thanks to the high separation power, chro-
matographic resolution, and sensitivity. The benefits are 
achieved by combining two separation dimensions inter-
faced by a thermal modulator, which allows for an efficient 
compression in space of the injection band before the 2D 
separation [12–14]. However, to implement the finger-
printing approach in long-term studies, pattern realign-
ment strategies and response normalization are needed; 

otherwise, data acquired with different analytical setups 
and/or with variable detection performances cannot be 
cross-compared [6, 15, 16].

This is crucial because biobanks—a term we use broadly 
to cover a range of structured collections, including biore-
positories and databases—have become central engines 
of biomedical research and there are a growing number 
of biobanks built by directly collecting data and samples 
from a population or subpopulation to assemble a large-
scale research resource. The re-evaluation and reanalysis of 
archived samples have become inevitable, as technology, 
bioinformatics pipelines, and medical knowledge evolve and 
expand over time. Both the issues, normalization of samples 
from different subpopulations or collection kinetics and the 
need for sample reanalysis, are pressing concerns, which 
deserve better elucidation.

In the challenging context of 2D pattern realignment 
between datasets, the smart template concept [13, 17] based 
on pattern recognition algorithms was demonstrated to be 
highly reliable and effective. The smart template method 
was developed to align 2D peaks and peak regions across 
many samples using a reference pattern (i.e., the template). 
It employs rule-based constraints (e.g., retention times win-
dows and multispectral matching) to increase matching 
accuracy. Each reference peak in a smart template has con-
straint rules, including the spectral similarity value (NIST 
algorithm [18]) vs. the reference peak spectral signature, as 
well as arithmetic and logical operators applied to the MS 
spectrum. Constraints could be related to the relative inten-
sity of a single or multiple m/z fragments, and to the identifi-
cation of the base peak or molecular peak [19]. If constraint 
rules are verified, peaks and peak regions from the reference 
pattern (template) are realigned to putative candidates in an 
analyzed pattern. Correspondences are established, thanks to 
the pattern transform, even in the presence of retention times 
shifts or temporal inconsistencies [6, 16, 20].

In particular, if misalignments are induced by changes 
in oven temperature programming, they can be successfully 
compensated by an affine transformation, an algorithm for 
template matching suitable for intra-batch cross-comparative 
analysis [17]. On the other hand, larger misalignments such 
as those generating non-linear changes in retention times 
across the analyses (i.e., variations in the actual pressure 
drop [16, 21, 22], adoption of different modulation princi-
ples [23, 24], changes in the modulation period PM [16, 25]) 
can be successfully treated by global, low-degree polynomial 
transforms [17, 22, 26].

However, in a scenario of random pattern misalignments, 
generated by the combination of multiple concurrent varia-
bles (i.e., pressure drop, column set-up, PM), supervision and 
manual operations may be necessary to guide the algorithm-
based realignment. The primary goal of this study was to 
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define and validate a simple, yet effective, strategy to guide 
template matching algorithms for a combined untargeted and 
targeted (UT) fingerprinting [8, 27–29] exploration on data-
sets with severe misalignments. In addition, as a secondary 
objective, different response normalization methods were 
tested to allow for effective dataset comparative analysis. 
As a challenging bench test, the saliva metabolome was 
selected. The two salivary datasets considered were acquired 
in a 2-year time frame with different analytical setups. Data-
set “A,” acquired in February 2020, relates to a proof-of-
concept diet intervention study with food rich in Maillard 
reaction products (MRPs) [30], while dataset “B,” acquired 
in November 2017, relates to a study on two different popu-
lations of subjects with severe obesity with normal or altered 
metabolic parameters [14].

Materials and methods

Reference compounds and solvents

A pure standard solution of n‐alkanes (from n‐C7 to n‐C30) 
for linear retention indices (IT) calibration and system qual-
ity control was from Merck (Milan, Italy) and prepared in 
toluene at the concentration of 100 mg  L−1.

The internal standard (IS) 1,4-dibromobenzene (from 
Merck, Milan, Italy) solution was prepared in toluene at a 
concentration of 10 g  L−1.

Pure reference standards used for identity confirmation of 
pyruvic acid, lactic acid, malonic acid, succinic acid, malic 
acid, 2-ketoglutaric acid, 3-hydroxybutyric acid, fumaric 
acid, 2-keto-3-metilvaleric acid, aspartic acid, hippuric acid, 
citric acid, uric acid, l-alanine, l-valine, l-leucine, l-proline, 
glycine, l-threonine, l-tyrosine, l-phenylalanine, l-isoleu-
cine, l-methionine, l-cysteine, l-ornithine, l-tryptophan, 
xylitol, ribitol, fructose, galactose, glucose, mannitol, myo-
inositol, glycerol, palmitic acid, stearic acid, and creatinine 
were from Merck (Milan, Italy).

Derivatizing agents O-methyl hydroxylamine hydro-
chloride (MOX), N,O-bis(trimethylsilyl)trifluoroacetamide 
(BSTFA), and LC-grade pyridine, n-hexane, dichlorometh-
ane, and toluene used as solvents were all from Merck 
(Milan, Italy).

Saliva samples

Subjects for dataset A were metabolically healthy German 
volunteers (3 females and 2 males) aged between 20 and 
30, who ate unheated food virtually free of Maillard reac-
tion products—MRPs (e.g., mainly vegetables, fruits, oils, 
and unroasted nuts) for 4 days. Sampling was performed 
from day 1 until day 5 in the morning and at 2 pm as well 
as 9 pm. The same group of subjects collected samples for 

another 5 days while eating their habitual diets and addition-
ally including MRP-rich food. Fasting saliva was collected 
before breakfast and after brushing the teeth without using 
toothpaste and rinsing the mouth with water; quality control 
(QC) samples were collected from healthy Italian volunteers 
aged between 20 and 30 without dietary indications. Saliva 
was collected using Salivettes™ (Sarstedt, Germany), but 
the protocol was adapted to avoid stimulation: the device 
was placed at the center of the tongue and the collection time 
was 3 min; samples were stored at − 18 °C until the time of 
testing. The study was approved by the Ethics Committee 
of Technische Universität Dresden, Germany (reference: AZ 
439112017). Details on the study are described in the refer-
ence paper by Manig et al. [31].

Patients from the Istituto Auxologico Italiano in Verbania, 
Italy, were recruited for dataset B [32, 33]. As part of the 
routine controls, individuals’ height, weight, and waist cir-
cumference were evaluated. For the current study, participants 
with a body mass index (BMI) of at least 40 kg  m−2 were 
enrolled. Thirty-four obese men (BMI 40 kg  m−2) were clas-
sified as either metabolically healthy (MHO, n = 10) or meta-
bolically unhealthy (MUO, n = 24), depending on whether 
certain metabolic parameters, such as high fasting triglycer-
ides (1.7 mmol  L−1 or higher, 150 mg  dL−1), decreased HDL 
cholesterol (1.03 mmol  L−1, 40 mg  dL−1), whether they were 
taking antihypertensive medication, had high blood pressure 
(130 mmHg systolic or 85 mmHg diastolic), or had fasting 
glucose levels above 5.6 mmol/L (100 mg  dL−1). QC samples 
were collected from healthy Italian volunteers aged between 
20 and 30 without dietary indications. The experimental pro-
cedure was approved by the ad hoc Ethical Research Com-
mittee of the Istituto Auxologico Italiano (Verbania, Italy). 
Written informed consent was obtained from the patients. The 
study protocol conformed to the guidelines of the European 
Convention on Human Rights and Biomedicine concerning 
biomedical research. Details on the study are described in the 
reference paper by Cialiè Rosso et al. [14].

Sample preparation

A standard derivatization protocol [34] was adjusted to 
comply with method sensitivity and metabolite coverage. 
In particular, 100 μL of saliva was gently dried with nitro-
gen before being mixed with 25 μL of MOX (20 g  L−1 in 
pyridine) and allowed to react for 2 h at 60 °C preventing 
the formation of multiple derivatives with enols during fur-
ther silylation steps. Seventy-five microliters of BSTFA was 
added and the solution was left at 60 °C for 1 h under a 
nitrogen stream. Twenty microliters of 1,4-dibromobenzene 
in dichloromethane 1 g  L−1 was added as IS, and diluted in 
80 μL of toluene to a final volume of 200 μL. Samples were 
immediately stored in − 18 °C and analyzed within 24 h after 
derivatization.
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GC × GC‑TOFMS instrument setup and conditions

GC × GC analyses were performed on an Agilent 7890 GC 
chromatograph (Agilent Technologies, Wilmington DE, 
USA) coupled to a Markes BenchTOF Select™ mass spec-
trometer featuring tandem ionization (Markes International, 
Llantrisant, UK). The system was equipped with a two-stage 
KT 2004 loop-type thermal modulator (Zoex Corporation, 
Houston, TX) cooled with liquid nitrogen controlled by 
Optimode v2.0 (SRA Intruments, Cernusco sul Naviglio, 
Milan, Italy).

Column settings and operative conditions for dataset 
A were as follows: 1D DB5 (95% polydimethylsiloxane, 
5% phenyl; 30 m, 0.25 mm dc, 0.25 μm df), 2D OV1701 
(86% polydimethylsiloxane, 7% phenyl, 7% cyanopropyl; 
1.3 m × 0.1 mm dc, 0.10 μm df) from J&W (Agilent, Little 
Falls, DE, USA). The first 0.80 m of the 2D column, con-
nected in series to the 1D column by a silTite μ-union (Tra-
jan Scientific and Medical, Ringwood, Victoria, Australia), 
was wrapped in the modulator slit and used as loop-capillary 
for cryogenic modulation. The carrier gas was helium at 
1.3 mL  min−1 in constant flow mode. PM was 3.0 s operating 
in multi-step mode: 0–15 min. The hot jet pulse time dura-
tion was 250 ms during the first 15 min, and 350 ms during 
the period 15–63 min. The cold jet flow was programmed 
for a linear decrease from 35% of the mass flow controller 
(MFC) maximum flow (i.e., 40 L  min−1) to 5% at the end of 
the run. The injector temperature was kept at 280 °C operat-
ing in split mode with a split ratio: 1:20. The oven tempera-
ture ramp was 60 °C (2′) to 120 °C at 10 °C  min−1, then to 
300 °C (10′) at 4 °C  min−1; the injection volume was 2 μL.

The TOFMS acquisition parameters were as follows: 
tandem ionization™ acquisition at 70 and 12 eV with an 
acquisition rate of 50 Hz per channel within the mass range 
35–750 m/z; the filament voltage was set at 1.7 V. The ion 
source and transfer line were set at 280 °C and 290 °C, 
respectively.

Column settings and operative conditions for dataset 
B were as follows: 1D DB5 (95% polydimethylsiloxane, 
5% phenyl; 30 m, 0.25 mm dc, 0.25 μm df), 2D OV1701 
(86% polydimethylsiloxane, 7% phenyl, 7% cyanopropyl; 
2 m × 0.1 mm dc, 0.10 μm df) from J&W (Agilent, Little 
Falls, DE, USA). The first 0.80 m of the 2D column, con-
nected in series to the 1D column by a silTite μ-union (Tra-
jan Scientific and Medical, Ringwood, Victoria, Australia), 
was wrapped in the modulator slit and used as loop-capillary 
for cryogenic modulation. The carrier gas was helium at 
1.6 mL/min—constant flow. PM was 5.0 s. The hot jet pulse 
time was 350 ms; the cold jet flow was progressively reduced 
with a linear function from 30% of MFC at initial conditions 
to 8% at the end of the run. The injector temperature was 
kept at 300 °C operating in split mode with a split ratio: 
1:20. The oven temperature ramp was as follows: 70 °C (2′) 

to 120 °C at 10 °C  min−1, then to 320 °C (1′) at 4 °C  min−1; 
the injection volume was 2 μL.

TOFMS acquisition parameters were as follows: tandem 
ionization™ at 70 and 12 eV with an acquisition rate of 
50 Hz per channel and a mass range 45–1000 m/z; the fila-
ment voltage was set at 1.6 V. The ion source and transfer 
line were both set at 290 °C respectively.

UT fingerprinting workflow principles 
and parameters

A template is a pattern of 2D peaks and/or graphic objects 
that is built over a reference image(s) (single or cumulative 
image [35]) and then used to recognize similar patterns of 
2D peaks in an analyzed image(s) [36]. Dedicated matching 
functions or transforms guide this process while effectively 
compensating for inconsistent retention times and variable 
peak detection [29]. Each template object (2D-peak/blob 
or peak region/area graphic) can carry various metadata 
including compound chemical name, retention times, mass 
spectra, informative ions (qualifier and quantifier ions) and 
their relative ratios, constraint functions to limit peak corre-
spondences above certain thresholds, and qualifier functions.

The challenging task of multi-chromatogram fingerprint-
ing in the presence of temporal inconsistencies and detector 
fluctuations was addressed successfully by introducing the 
concept of peak region features [8]. Peak regions attempt to 
define one chromatographic region around each individual 
peak thereby achieving the one-feature-to-one-analyte selec-
tivity that is the goal of peak features approaches [8, 13], but 
with an implicit matching of regional features and greater 
robustness than can be achieved with peak detection [29]. 
2D peaks and peak-regions are features adopted in the UT 
fingerprinting strategy [27, 35, 37, 38].

UT fingerprinting establishes a set of reliable peaks, posi-
tively matched across all or most of a set of chromatograms 
[39], and then uses them to align chromatograms [22] for 
their combination into a single, composite chromatogram. 
The algorithm for the determination of reliable peaks is the 
Consistent Cliques Method (CCM) [39] algorithm: it picks 
peaks that are consistently matched across several chromato-
grams, but possibly not all of them. The operator can define 
the most appropriate minimum threshold for the selection 
of reliable peaks: either peaks that are pairwise matched 
across all but one (most constrained) chromatogram or peaks 
pairwise matched in 50% + 1 (most relaxed) of the processed 
chromatograms. The first option will result in a fewer num-
ber but more reliable peaks, while the latter will result in a 
larger number but less reliable peaks. The choice of the min-
imum threshold is driven by the goal of the study: if realign-
ment is the aim, the issue of a small number of reliable peaks 
might not be a concern as long as enough reliable peaks are 
found; but if the comparative analysis is the goal, certain 
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important peaks might be lost together with the information 
they carry. The most constrained option does not work well 
for large sample sets, since even for very consistent features, 
the risk of a failed match increases exponentially as the num-
ber of chromatograms increases.

Once the composite chromatogram is built (i.e., the 
combination of the realigned responses in the 2D retention-
times plane), 2D peaks are detected and their outlines are 
recorded to define peak-region objects. The set of reliable 
2D peaks and peak-regions objects are then collected in a 
so-called feature template, or consensus template, covering 
the whole sample-set compositional diversity and capable of 
cross-aligning chemical feature patterns among samples [6].

Within all detected analytes (reliably matched or not over 
the chromatogram set), the sub-group of targeted compounds 
can be highlighted by completing their metadata fields (com-
pound name, ion ratios, IT

S) and computed together with 
untargeted features during the data processing.

Untargeted features comprehensively map the sample’s 
chemical dimensionality [40] and are automatically gener-
ated through a dedicated workflow. On the other hand, tar-
geted features require supervised processing for the reliable 
identification of analytes and the definition of specific ions 
for response isolation and/or informative ion ratios to add 
constraints to the template matching process.

Identification of targeted features was carried out by 
matching candidate EI-MS fragmentation patterns at 70 eV 
(NIST MS Search algorithm, version 2.0) with those col-
lected in commercial and in-house databases (subject to a 
DMF threshold of 900 and RMF threshold of 950). In addi-
tion, linear retention indices (IT) were adopted as a further 
constraint; experimental values were compared with NIST 
reference indices using a tolerance of ± 10 units.

Data acquisition and processing

Data were acquired by TOF-DS software (Markes Inter-
national, Llantrisant, UK) and processed using GC Image 
GC × GC Software ver. 2021r2 (GC Image, LLC, Lincoln, 
NE, USA). Data mining was performed using Matlab 
R2021a (The MathWorks, Inc., Natick, MA, USA) with the 
following packages: PCA toolbox (v1.5) [41] and Classifica-
tion toolbox (v6.0) [42], and XLSTAT 2014 by Addinsoft 
(New York, USA).

Results and discussion

This section illustrates the step-by-step procedure (i.e., 
workflow) adopted to evaluate the impact of key-processing 
parameters on template matching accuracy and template 
transformation in a context of severe misalignment. At first, 
template construction parameters are tested for their impact 

on matching accuracy (type-I and type-II errors; “Template 
construction parameters” section). Subsequently, the com-
bined untargeted targeted (UT) template is applied to data-
set A exploring saliva metabolite patterns correlated to a 
diet rich in MRPs (“Dataset A—Saliva samples from diet 
intervention with Maillard reaction products–rich food” sec-
tion). As the third step, the UT template built on dataset A 
is transformed to match on dataset B retention pattern logic 
(“Template transformation for reliable template matching 
between severely misaligned patterns” section). Realigned 
datasets are then fused after suitable response normalization 
and further mined to explore the possibility of reliable re-
investigation of data after their fusion (“Response normali-
zation for consistent cross-comparison between datasets” 
section).

Template construction parameters

The best combination of processing parameters to build a 
reliable template with consistent reference metadata (i.e., 
template object metadata) was first evaluated in light of its 
adoption as a key-tool for pattern realignment, even in a 
context of dramatic chromatographic shifts.

Signal-to-noise ratio (S/N) thresholds, which is the ratio 
of the total intensity count (TIC) of the apex spectrum to 
the standard deviation of background noise TIC [43], and 
MS similarity threshold, expressed as NIST similarity match 
factor (direct match factor, DMF) [18], were first considered 
since both contribute to the matching specificity. The S/N 
threshold allows the exclusion of 2D peaks with spectral 
information deteriorated by the noise contribution, while 
the MS similarity threshold applies additional constraints to 
retention times alignment and improves matching specificity.

To achieve the highest consistency in cross-alignment, 
a sub-group of analytes within those detected in the saliva 
samples was selected. For low-intensity and trace peaks, in 
particular, spectral quality fluctuations were hypothesized 
based on the variances in the absolute response [44]. Saliva 
2D contour plots were carefully inspected and candidate 
2D peaks with suitable characteristics were selected and 
grouped into three classes as a function of their normalized 
responses (i.e., TIC current/detector response normalized to 
that of the IS). Analytes used for performance evaluation are 
highlighted in an exemplary 2D contour plot illustrated in 
Fig. 1. The class “high” includes 2D peaks with a normal-
ized response above 0.3, for “medium” it was between 0.15 
and 0.3, and for “low” it was below 0.15.

Inconsistent MS spectral fingerprints may result in false 
negative matches (i.e., type-II errors when a peak that is pre-
sent is not matched) for 2D peaks having S/N values lower 
than 50, as shown by Stilo et al. [16] since when it comes to 
these peaks, neither the reference nor the peak spectra are 
consistent enough to convey reliable information for identity 
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confirmation. Regarding the spectral similarity threshold, 
a total of 20 combinations of processing parameters were 
tested and the number of false positive (i.e., type-I error 
when a peak that is not present is matched) and false nega-
tive (type-II error) matches were computed. The range of 
variation for S/N threshold was between 0, thus without any 
filter on the peak spectral signature, and 200, which was the 
maximum value still enabling the detection of low-intensity 
analytes. S/N was arbitrarily step-wise varied by 50 counts 
within the range. Spectral similarity, by DMF, was step-wise 
varied by 100 counts between the lowest value of 600 and 
the highest 900. The range was chosen based on previous 
studies [9, 16] which indicated that template matching accu-
racy for targeted peaks achieves its maximum with DMF 
around 750 if accompanied by S/N threshold values for 
reference template peaks above 100. In the current dataset, 
due to the different MS analyzers used (i.e., a TOFMS vs. 
qMS adopted in the Kiefl et al. [9]), the range 600–900 has 
been set to check the actual accuracy achievable by TOFMS 
detection.

Results are reported in Table 1: with DMF between 
800 and 900, a significantly higher number of false nega-
tive (FN) matches occurred; type-II error mainly affects 
medium and low-intensity analytes, as expected. All the 

combinations with DMF of 800 and 900 were therefore 
excluded. At the same time, using a DMF of 600 increased 
the number of false positive (FP) matches (type-I errors), 
thus leading to the exclusion of such combinations of 
parameters. By focusing on the five combinations adopt-
ing a DMF of 700, the ones with S/N thresholds of 100, 
150, and 200 were excluded because of the high rate of 
FN matches, of 6%, 11%, and 15%, respectively. The same 
results were achieved with “DMF 700 & S/N 0” and “DMF 
700 & S/N 50”.

Results comply with previous studies and related 
pieces of evidence on the crucial role of processing 
parameters in the construction of a reliable template [16, 
22, 43]. However, in the current investigation, spanning 
a wider dynamic range of responses, the challenge posed 
by trace and sub-trace peaks (i.e., “low” group of tested 
analytes) was effectively handled by lowering the S/N 
threshold. To note, a S/N of 0 would result in the detec-
tion of too many 2D peaks in noisy regions because of 
false detections. Based on the outcome of this explora-
tion, the combination of S/N threshold of 50 and DMF 
of 700 was chosen to further process saliva samples’ raw 
data and to build a reliable template for the effective 
realignment of datasets.

Fig. 1  Contour plot of a 
reference saliva sample with 
the peaks used for S/N and 
DMF threshold highlighted 
according to their percent 
response: orange for peaks 
with % response relative to the 
IS 1,4-dibromobenzene > 0.3 
(lactic acid 2TMS, glycolic acid 
2TM, glycerol 3TMS, proline 
2TMS, unknown with RI 1636, 
sugar with RI 1752, citric acid 
4TMS, sugar with RI 1948), red 
for peaks with % response rela-
tive to the IS > 0.15 and < 0.3 
(valine 2TMS, glycine 3TMS, 
succinic acid 2TMS, oxoproline 
2TMS, galactose 6TMS, tyros-
ine 3TMS, palmitic acid TMS, 
unknown with RI 2112, myo-
inositol 6TMS), and violet for 
peaks with % response relative 
to the IS < 0.15 (alanine 2TMS, 
oxalic acid 2TMS, glyceric acid 
3TMS, serine 3TMS, threonine 
3TMS, aspartic acid 3TMS, glu-
tamic acid 3TMS, palmitoleic 
acid TMS, oleic acid TMS, 
stearic acid TMS)
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Dataset A—Saliva samples from diet intervention 
with Maillard reaction products–rich food

Optimized data processing parameters from the “Template 
construction parameters” section were used to generate a 
reliable template, thus created with peaks present in 50% + 1 
of the chromatograms (n = 25). The list of reliable peaks 
(including both targeted and untargeted peak features) is 
reported in Table 2. The total number of reliable peaks 
observed was 68, 43 of which were putatively identified with 
the aid of IT and spectrum similarity, 7 were recognized as 
carbohydrates but their identity was not univocally assigned, 
while 18 could not be associated with confidence for any 
putative identity.

Unsupervised and supervised statistics were conducted on 
both reliable peaks and peak regions after normalization and 
scaling of the absolute response to find distinctive patterns 
of metabolites associated with diet intervention with MRPs-
rich food. The PCA on reliable peaks (25 samples × 68 vari-
ables)—score plot shown in Fig. 2A—explained the differ-
ences between the QC samples and the saliva samples from 

MRPs-rich/low diets. Even though no natural clusteriza-
tion was evident between the two conditions under study, 
a PLS-DA was conducted to maximize the differences for 
descriptive modeling as well as for discriminative variable 
selection—score plot shown in Fig. 2B. The latter objective 
was achieved by looking at the variable importance in the 
projection (VIP) scores, and by considering discriminating 
variables as those with a VIPs > 1. Glutamic acid, citric acid, 
aspartic acid, hydroxyglutaric acid, butanoic acid, oxopro-
line, stearic acid, and palmitic acid were identified as the 
most discriminant, together with five carbohydrates and 7 
unknowns (i.e., also referred to as knowns unknowns accord-
ing to Stilo et al. [45])—Table 2. The same approach was 
conducted with peak regions with comparable results.

Both stearic and palmitic acids were previously identi-
fied as possible markers of dietary lipid intake and cor-
related with obese patients affected by hepatic steatosis 
[46, 47] and showed a relative increase in diabetic patients 
and periodontal diseases [48]. However, the intake of 
the high-MRP diet was accompanied by a higher intake 
of fats. Butyric acid, a locally produced metabolite of 

Table 1  Percent of false positive (FP) and false negative (FN) 
matches for tested combinations of S/N and DMF values used in the 
reliable template construction. Results are shown as FP and FN per-
centages for each of the three analytes classes (high, medium, and 

low intensity). The total corresponds to the averaged value taking in 
consideration the number of analytes computed in each class. “High” 
includes 2D peaks with a normalized response above 0.3, “medium” 
between 0.15 and 0.3, and “low” below 0.15

Class %FN %FP %FN %FP %FN %FP %FN %FP

DMF600_S/N0 DMF700_S/N0 DMF800_S/N0 DMF900_S/N0
High 0.00 4.17 0.69 0.00 1.39 0.69 18.06 6.25
Medium 1.23 1.23 4.32 0.00 14.81 0.62 72.22 0.00
Low 0.56 10.00 2.22 0.00 30.00 0.00 92.78 0.56
Total 0.62 5.35 2.47 0.00 16.46 0.41 63.79 2.06

DMF600_S/N50 DMF700_S/N50 DMF800_S/N50 DMF900_S/N50
High 0.00 2.08 0.69 0.00 1.39 0.69 18.06 4.86
Medium 2.47 1.85 4.32 0.00 14.81 0.62 72.22 0.00
Low 1.11 8.33 2.22 0.00 30.00 0.00 92.78 0.56
Total 1.64 4.32 2.47 0.00 16.46 0.41 63.79 1.65

DMF600_S/N100 DMF700_S/N100 DMF800_S/N100 DMF900_S/N100
High 0.00 2.08 0.69 0.00 1.39 0.69 18.06 4.86
Medium 4.32 1.85 7.41 0.00 15.43 0.62 72.22 0.00
Low 7.78 8.33 10.00 0.00 30.00 0.00 92.78 0.56
Total 1.90 4.32 6.38 0.00 16.67 0.41 63.79 1.65

DMF600_S/N150 DMF700_S/N150 DMF800_S/N150 DMF900_S/N150
High 0.00 2.08 1.39 0.00 1.39 0.69 18.06 4.86
Medium 7.41 1.85 11.11 0.00 16.05 0.62 72.22 0.00
Low 12.78 8.33 18.89 0.00 30.56 0.00 92.78 0.56
Total 2.01 4.32 11.11 0.00 17.08 0.41 63.79 1.65

DMF600_S/N200 DMF700_S/N200 DMF800_S/N200 DMF900_S/N200
High 0.00 2.08 2.08 0.00 2.08 0.69 18.06 4.86
Medium 10.49 1.85 16.05 0.00 19.14 0.62 72.22 0.00
Low 18.89 8.33 25.56 0.00 31.67 0.00 92.78 0.56
Total 2.18 4.32 14.81 0.00 18.72 0.41 63.79 1.65
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Table 2  List of reliable template 
analytes of setup A with 1D 
and 2D retention time with 
their respective experimental 
IT. Discriminating analytes 
between the two diets in dataset 
A are listed with a variable 
importance in the projection 
(VIP) scores greater than 1. 
VIPs calculated by PLS-DA 
on normalized responses 
preprocessed via autoscaling

Template peak 1tR min RSD% 2tR sec RSD% Exp IT VIP

Boric acid 3TMS 9.80 0.45 0.43 2.29 714  < 1
Ethanolamine 2TMS 10.53 0.41 0.52 5.20 758  < 1
Glycolic acid 2TMS 11.35 0.24 0.67 5.15 809  < 1
Alanine 2TMS 11.93 0.36 0.67 4.37 844  < 1
Oxalic acid 2TMS 12.46 0.21 0.87 3.54 877  < 1
Unknown 1140 12.73 0.31 0.85 2.74 893  < 1
Hydracrylic acid, 2TMS derivative 12.74 0.29 0.76 2.88 894  < 1
Benzyl alcohol TMS 13.07 0.27 0.82 3.95 912  < 1
Hydroxybutyric acid 2TMS 13.11 0.28 0.73 5.38 914  < 1
Butanoic acid 2TMS (isomer) 13.27 0.27 0.74 3.44 922 1.47
Unknown 1191 13.84 0.28 0.72 4.00 951  < 1
1,4-Dibromobenzene (IS) 14.18 0.28 1.05 3.14 969  < 1
Valine 2TMS 14.45 0.24 0.80 4.58 983  < 1
Butanoic acid 2TMS 14.81 0.25 0.86 3.80 1001 1.69
Ethanolamine 3TMS 15.71 0.21 0.77 4.32 1041  < 1
Leucine 2TMS 15.84 0.92 0.86 4.07 1047  < 1
Glycerol 3TMS 15.85 0.29 0.77 4.01 1047  < 1
Proline 2TMS 16.52 0.28 0.93 3.27 1077 1.52
Succinic acid 2TMS 16.76 0.26 1.09 3.28 1088  < 1
Glycine 3TMS 16.76 0.29 0.90 3.96 1088  < 1
Glyceric acid 3TMS 17.34 0.29 0.93 3.65 1112  < 1
Serine 3TMS 18.13 0.29 0.95 3.70 1144  < 1
Butanetriol 3TMS 18.16 0.29 0.84 4.08 1145  < 1
Threonine 3TMS 18.88 0.28 0.94 3.84 1175  < 1
6-Aminocaproic acid 2TMS 18.99 0.27 1.07 2.42 1179  < 1
Butanoic acid, 3 TMS 20.02 0.29 0.98 3.11 1220  < 1
Unknown 1468 20.82 0.29 0.90 4.28 1249  < 1
Malic acid 3TMS 21.59 0.28 1.13 3.16 1278  < 1
Unknown 1520 22.26 0.65 1.04 3.76 1303  < 1
Aspartic acid 3TMS 22.46 0.30 1.18 2.67 1311 1.83
Oxoproline 2TMS 22.53 0.28 1.68 2.29 1313 1.27
Erythronic acid 4 TMS 23.29 0.29 0.99 2.78 1342  < 1
Creatinine 3TMS 23.55 0.28 1.22 3.18 1351  < 1
Unknown 1575 23.72 0.29 1.00 3.61 1357  < 1
Hydroxyglutaric acid 3TMS 23.90 0.27 1.19 3.26 1364 1.79
Glutamic acid 3TMS 25.10 0.28 1.23 2.76 1408 2.19
Unknown 1634 25.30 0.28 1.15 3.32 1415  < 1
Phenylalanine 2TMS 25.36 0.28 1.31 2.79 1417  < 1
Unknown 1636 25.37 0.28 0.94 4.29 1418  < 1
Sugar 1700 26.96 0.63 0.95 4.10 1475  < 1
Xylitol 5TMS 28.10 0.25 0.93 3.21 1516  < 1
Sugar 1752 28.31 0.39 0.98 3.82 1524 1.31
Hydrocinnamic acid 28.68 0.25 1.39 2.45 1537  < 1
Unknown 1782 29.09 0.40 1.34 2.62 1552  < 1
Unknown 1784 29.15 0.25 1.07 3.97 1555  < 1
Ribonic acid 5TMS 29.31 0.21 1.03 3.53 1561  < 1
Unknown 1808 29.69 0.26 1.00 3.02 1575  < 1
Citric acid 4TMS 30.45 0.23 1.23 3.50 1603 1.98
Sugar 1871 31.28 0.26 1.08 2.97 1634 1.27
Unknown 1881 31.49 0.28 1.21 2.87 1643  < 1
Unknown 1895 31.86 0.26 1.06 3.41 1657  < 1
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pathogenic periodontal bacteria, has been shown to cause 
caspase-dependent apoptosis in gingival fibroblasts and 
could potentially operate as a chemotaxonomic indicator 
of bacterial metabolism in the oral environment [49]. Five 
non-identified monosaccharides were typical of high-MRP 
diets, as expected. The non-identified monosaccharides 
leave space for speculations. Beside MRPs, the high-MRP 
diet contained more sugar and starch as expected from the 
food questionnaires. Structural similar sugar metabolites 

such as 3-deoxyglucosone (3-DG) or other dicarbonyl 
compounds may be taken into account. The presence of 
carbonyls, in particular the reactive dicarbonyl species, 
e.g., methylglyoxal, reacts with amino compounds of 
endogenous tissues in the body, leading to that what is 
known as “carbonyl stress,” which causes an increase in 
protein and DNA alteration that contribute to cell and tis-
sue malfunction in aging and illness [50, 51]. The role of 
dietary MRPs in this scenario is not yet clear.

Table 2  (continued) Template peak 1tR min RSD% 2tR sec RSD% Exp IT VIP

Galactose TMS 32.37 0.16 0.99 3.09 1676  < 1
Sugar 1928 32.60 0.21 1.02 4.09 1685  < 1
Sugar 1948 33.05 0.28 1.04 3.65 1702 1.09
Tyrosine 3TMS 33.18 0.25 1.35 2.37 1707  < 1
Palmitoleic acid TMS 34.66 0.24 1.26 2.72 1765  < 1
Palmitic acid TMS 35.19 0.24 1.23 3.58 1786 1.01
Unknown 2112 36.77 0.24 1.47 3.10 1851  < 1
Myo-inositol 6TMS 36.97 0.25 1.12 3.25 1859  < 1
Unknown 2123 37.02 0.25 1.35 3.54 1861  < 1
Oleic acid TMS 38.88 0.23 1.31 3.07 1940  < 1
Stearic acid TMS 39.39 0.23 1.26 4.49 1961 1.04
Unknown 2361 41.91 0.26 1.84 2.47 2073  < 1
Unknown 2384 42.37 0.24 1.17 3.26 2094  < 1
Sugar 2437 43.31 0.32 1.24 3.36 2138 1.08
Sugar 2446 43.53 0.28 1.12 2.82 2148 1.77
Unknown 2654 47.29 0.26 1.17 3.30 2334  < 1
Unknown 2680 47.71 0.29 1.42 6.80 2355  < 1

Fig. 2  A PCA score plot of dataset A reliable peaks (25 samples × 68 
variables) after mass spectral total useful signal (MSTUS) on 
included blob volume normalization and after Z-score normalization, 
displaying QC samples (green), high MRPs (blue), and low MRPs 

(red) diets. B PLS-DA score plot of dataset A reliable peaks (25 
samples × 68 variables) displaying QC samples (green), high MRPs 
(blue), and low MRPs (red) diets
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Template transformation for reliable template 
matching between severely misaligned patterns

Experimental settings between dataset A and dataset B cre-
ate large pattern differences with inconsistent misalignments 
due to the concurrent effect of several parameters: (a) PM 3 s 
vs. 5 s, (b) different column lengths/dimensions, (c) carrier 
gas nominal flow differences (1.3 mL/min vs. 1.6 mL/min) 
and variable average velocities (19.0 cm/s and 201.9 cm/s 
vs. 16.3 cm/s and 164.9 cm/s for 1D and 2D, respectively), 
(d) oven temperature programming, and (e) MS detec-
tor optimization. Figure 1A, B shows the contour plot of 
saliva metabolites from dataset A (Fig. 1A) and dataset B 
(Fig. 1B). Highlighted compounds are those considered for 
the template parameters optimization (the “Template con-
struction parameters” section).

To guide the correct strategy for template transform, e.g., 
global or local, affine or low-degree polynomial function, 
pattern discrepancies generated by the two experimental 
setups were computed. To simplify the process, the refer-
ence standard mix including selected amino acids, organic 
acids, carbohydrates, and additional salivary metabolites, 
analyzed within datasets A and B, was cross-aligned in the 
temporal domain.

Figure 3 shows the pronounced, non-linear 1D and 2D 
retention time shifts generated by the experimental condi-
tions. In particular, analytes are represented in the Cartesian 
space corresponding to the 1D and 2D retention, with relative 
position over two reference peaks. Serine 3TMS derivative, 
which elutes in the middle retention times region of the chro-
matographic plane, was assigned as a centroid, while stearic 
acid, the last-eluting analyte, was used to normalize the 1D 
relative position [38, 52]. 1D and 2D relative retention (RR) 
values were calculated by Eqs. 1 and 2:

where 1t
𝑅𝑖

  corresponds to the 1D retention time expressed 
in minutes for target peak i, 2𝑡

𝑅𝑖
 corresponds to the 2D reten-

tion time expressed in seconds for the target peak i, and 
PM is the modulation period. The two patterns showed dra-
matic misalignments mainly due to changes (a), (b), (c), (d), 
which led to opposite elution order in both 1D and 2D across 
the first and third quadrant for compounds belonging to the 
same chemical class for both amino acids and organic acids 
respectively indicated in red and blue.

To define the best strategy to solve the misalignment issue, 
QC samples from the two datasets were compared. Rules 
for template peak thresholds and reference spectra were then 
applied to build a reference targeted template for known 
analytes. By examining patterns from dataset A, a template 
of 52 2D peaks was created; reference peaks inclusion was 
restricted to analytes with an S/N of 50 or higher; reference 
spectra were taken from peak spectrum; the MS constraint 
was set at 700 DMF and 700 reverse match factor (RMF).

Different template transformation strategies, within those 
available in the software, were tested to solve the significant 
misalignment between patterns on datasets A and B. They 
are (a) local match-and-transform algorithm which applies 
the affine transform function to locally realign template 
peaks to candidate peaks in the chromatogram; (b) trans-
lation-and-scale algorithm which applies the affine trans-
form-and-rescale according to positively matched peaks; (c) 
global polynomial transform which applies  2nd order degree 
polynomial functions for template transformation; and (d) 
supervised multi-centroid transformation which includes the 

(1)1
DRR = (1t

R1−
1
t
RSerine,3TMS

)∕1t
RStearicacid,TMS

(2)2
DRR = (2t

Ri−
2
t
RSerine,3TMS

)∕1P
M

Fig. 3  Scatter plot resulting 
from the relative retention on 
both  1st and  2nd dimensions 
(1DRR and.2DRR, respectively) 
of targeted peak analytes from 
the two setups relative to serine 
3TMS (green): amino-acids 
(red), organic acids (blue), other 
metabolites (yellow)
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analyst supervision guiding template subdivision and local 
translation followed by a local affine transformation.

To obtain a genuine representation of the real-world 
application, instead of evaluating the potential reliable 
template transformations over the standard mix of amino 
acids, organic acids, carbohydrates, and selected salivary 
metabolites, QC samples from dataset B, consisting of saliva 
collected from healthy Italian volunteers, were used. This 
allows assessment of the quality of the transformation in 
a chromatographic plane where the complexity of a real-
world sample consists of a greater number of 2D peaks and 
interferents, a condition that would not be considered if a 
standard mixture was used.

The targeted template obtained from dataset A with the 
parameters evaluated in the “Template construction param-
eters” section was applied over four QC analyses from data-
set B (i.e., REF1, REF2, REF3, and REF4). A graphical 
schematization of the workflow is illustrated in Figure SF1.

Strategy 1 involved the following procedure: the template 
was linearly transformed on the 2D to realign the IS peak 
(1,4-dibromobenzene). Iterating the process of matching the 
template and transform it based on the matched locations 
allows the template to be tailored to the new pattern. This 
procedure gradually increases the number of available align-
ment points, enhancing the quality of the global template 
transformation at every stage up to a plateau. For instance, 
with sample REF1 the first matching ratio resulted in 46.15% 
of positive matches corresponding to 24/52 matched peaks. 
After reiterating the transform and match for 3 additional 
times, the total number of matched peaks resulted 28/52 cor-
responding to 53.84% positive matches. Strategy 2 is similar 
to 1, but includes exponential scaling transformations, while 
strategy 3 includes polynomial ones. The latter was effec-
tive in solving complex realignment issues like with trans-
lated methods from thermal to flow modulated platforms 
and showed positive results when realigning chromatograms 
acquired with different operative pressures [16, 22].

Strategy 4 involves the following steps: (a) split the ref-
erence template into multiple subsections, (b) identify a 

reliable peak with high intensity for each subsection as a 
centroid, (c) manually realign the centroids, and (d) reit-
erate the match-and-transform procedure until a plateau. 
To realign the two datasets, 1,4-dibromobenzene, proline 
2TMS, oxoproline 2TMS, and palmitic acid were chosen as 
local realignment points. Template matching results for the 
four approaches are summarized in Table 3. Results with a 
template consisting of only reliable peaks showed that the 
manual multi-centroid transformation (strategy 4) performed 
equally to the global polynomial transformation (strategy 3), 
both superior to the local match-and-transform (strategy 1) 
and the affine algorithms (strategy 2). The main shortcom-
ing of reiterated global polynomial transformation is the 
possible deformation of the peak regions template on the 
chromatographic plane as a result of the overfitting, thus 
making it the optimal solution with templates constituted 
by only reliable peaks.

To cross-aligning datasets A and B, strategy 4 was suc-
cessfully adopted with the following template transformation 
settings: 0–14.5 min was shifted of − 18 datapoints (dp) on 
1D and 0 dp on 2D, 14.5–21.5 min was shifted of − 13 dp on 
1D and 0 dp on 2D, 21.5–34 min was shifted of 0 dp on 1D 
and − 6 dp on 2D, and 34–66 min was shifted of + 11 dp on 
1D and − 16 dp on 2D. Afterward, strategy 2 was adopted to 
finely adapt the subregions; the transformation described as 
strategy 4 is shown on the testing template in Fig. 4A, and 
the final template applied over a test sample is illustrated in 
Fig. 4B.

Response normalization for consistent 
cross‑comparison between datasets

The reduction of features into a similar range, known as data 
normalization, is a crucial pre-processing step that prevents 
larger numeric feature responses from dominating smaller 
numeric ones. The major objective is to reduce the bias of 
those features in pattern classes that contribute numerically 
more than others, so that the variables are given equal weight 

Table 3  Template matching 
results for test template from 
dataset A applied to test dataset 
2 samples after applying 
template transformation 
algorithms

Match-and-transform Translation and scale Polynomial  2nd order Multiple centroid 
match-and-trans-
form

Peaks no % Peaks no % Peaks no % Peaks no %

Test 1 28 53.85 33 63.46 33 63.46 33 63.46
Test 2 29 55.77 32 61.54 34 65.38 34 65.38
Test 3 26 50.00 29 55.77 31 59.62 31 59.62
Test 4 26 50.00 32 61.54 33 63.46 33 63.46
Mean 27.25 52.40 31.50 60.58 32.75 62.98 32.75 62.98
SD 1.50 1.73 1.26 1.26
RSD% 5.50 5.50 3.84 3.84
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when computing statistical analysis but still avoiding the 
implication that these features are equally relevant [53, 54].

Many strategies are available to model the distribution of 
the original values into a new set of values. Within these, the 
most common mathematical ones consist of min–max nor-
malization, Z-score normalization, and logarithmic transfor-
mation. The min–max normalization rescales the data within 
a new minimum and maximum value preventing highly con-
centrated peaks from dominating the other ones in a dataset 
with a significant min–max difference [55]. With Z-score 
normalization, each variable’s mean is subtracted from the 
data values individually and followed by dividing data val-
ues by standard deviation to give the variables a variance 
of one [56]; compared to min–max normalization, Z-score 
normalization is less prone to create bias deriving from out-
liers. The latter, i.e., logarithmic transformation, consists of 
replacing each value in the dataset with its logarithm, thus 
allowing to make skewed distributions more symmetric [57].

Besides mathematical approaches, such as those listed 
above, scaling transformation strategies can be also applied 
to the raw response data. In the mass spectral total useful sig-
nal (MSTUS) [58], for example, each variable is normalized 

over a selection of ions/features (e.g., total volume of reli-
able peaks and peak regions features) to get a more accurate 
normalization by avoiding the inclusion of noise or artifact 
peaks [59, 60].

Moreover, before data mining, missing values can be 
replaced with random values of at least half of the small-
est response since they are typically caused by the signal 
intensity being below the LOD; the replacement with ran-
dom values instead of 0 or a fixed number is generally per-
formed to avoid bias-introduction for further unsupervised 
and supervised statistical approaches.

Absolute response and background noise intensity are 
directly impacted by MS detector response oscillations 
caused by MS tuning, optimization, or other causes. Dur-
ing this study, datasets A and B were acquired in a 2-year 
time frame; thus, differences in terms of MS performances 
are expected. Output signals exhibited different absolute 
TIC responses (i.e., different actual sensitivity) and back-
ground noise intensities. MS performances between the 
two datasets were evaluated by comparing two QC analy-
ses picked from those collected during the two analyti-
cal batches. Background noise was sampled in the middle 

Fig. 4  A Testing template 
resulting from standard mixture 
transformation with manual 
multi-centroid approach (strat-
egy 4). B Feature template 
from setup A transformed with 
manual multi-centroid approach 
on a reference sample from 
setup B
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of the chromatogram and reported an average intensity 
of 8484 counts (1D RSD% = 2.91%, 2D RSD% = 1.77%) 
for the dataset A and 24,522 counts (1D RSD% = 22.16%, 
2D RSD% = 8.86%) for dataset B before any background 
correction was applied. After the baseline removal, the 
noise intensity averaged 127 and 2000 counts, respec-
tively. Experimental results indicate that dataset B had a 
greater absolute noise (2.9 times) compared to dataset A 
while background noise correction greatly affected dataset 
A reducing the noise signal by 66.5 times compared to 
the 12.26 times of the dataset B. The number of detected 
peaks in dataset A with S/N > 50 was 137, compared to 
498 in dataset B, indicating a higher relative sensitivity of 
the method in the second case.

Different combinations of data pretreatment were per-
formed on the fused dataset (A + B), after which peaks and 
peak region features were mined with unsupervised statistics 
(PCA). Results are illustrated in Fig. 5. Figure 5A shows 
the combination of MSTUS normalized responses on the 
included 2D peaks volume with Z-score normalization on 
the resulting matrix. Although no differences arise between 
the healthy and unhealthy obese patients from dataset B and 
the diets high and low in MRPs foods from dataset A, the 
two datasets are considered comparable given the realign-
ment of the QC samples obtained from the two datasets. On 
the other hand, Fig. 5B shows the issue arising by omitting 
the Z-score normalization after MSTUS normalization: no 
clear clustering is achieved due to an imbalanced min–max 

Fig. 5  A PCA score plot of the merged datasets A and B after rea-
lignment and normalization on mass spectral total useful signal 
(MSTUS) on included blob volume. Score plot resulting from reliable 
peaks (45 samples × 64 variables) after Z-score normalization dis-
playing dataset A QC samples (green), high MRPs (blue), low MRPs 

(red) diets, dataset B QC samples (yellow), healthy obese (purple), 
and unhealthy obese (pink). B PCA score plot after realignment and 
MSTUS normalization without Z-score normalization. C PCA score 
plot without MSTUS normalization and with Z-score normalization. 
D PCA score plot with log scale and z-score normalization
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distribution of the data matrix. Figure 5C and D both show 
the necessity in metabolomics studies to apply MSTUS nor-
malization when comparing different datasets: despite hav-
ing different approaches (raw responses and logarithmically 
scaled responses respectively), comparison between the 
samples cannot be performed as the detector performance 
fluctuations heavily affect the quality of the data. It can be 
concluded that such issues/inconsistencies can be only over-
come with MSTUS normalization.

The hierarchical clustering (HC) of the fused dataset 
obtained on MSTUS normalized responses on the included 
blob volume is illustrated in Fig.  6 (data available on 
request—see “Data availability”). Interesting biological out-
comes can be retrieved from this comparison: saliva samples 
from QC samples were richer (higher relative distribution) 
in amino acids such as oxoproline, aspartic acid, and glu-
tamic acid, which were found to be discriminant variables 
characteristic of the low MRP diet group, as a witness of 
the different eating habits of the two populations. On the 
other end, both metabolically healthy and unhealthy obese 
patients were clustered together and characterized by higher 
levels of butyric acid and hydroxybutyric acid, which were 
previously confirmed as obesity markers detected in both 
urine and blood [61]. Further investigations on dataset 2 
were already carried out by Cialiè Rosso and coworkers [14] 
and will not be further discussed here.

Conclusions

This paper examined 2D data processing strategies based 
on pattern recognition algorithms, which are capable of 
overcoming 2D pattern severe misalignments and detector 
response fluctuations generated in analyses acquired within 
wide time frames. The strategy described in the current 
paper allows the creation of a template capable to adapt 
to different datasets without the necessity to reiterate the 
preprocessing of the additional batches and to preserve the 
information encrypted in the metadata (i.e., reliable peaks) 
to extract biological information once the data fusion is 
performed. Focusing on the chromatographic aspect, severe 
misalignments derived by the concurring effect of different 
analytical setups (different nominal flows and carrier veloci-
ties, variations in the actual pressure drop, column dimen-
sions, and PM) can be solved by a relatively simple strat-
egy consisting of a manual multi-centroid transformation. 
Regarding the response fluctuation caused by differences in 
the detector performances, the most promising strategy to 
cross compare different datasets was MSTUS normalization 
based on the included blob volume followed by a Z-score 
normalization on the resulting matrix.
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tary material available at https:// doi. org/ 10. 1007/ s00216- 023- 04516-x.
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