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Abstract

Quantitative decision-making in drug development

by Gaelle SAINT-HILARY

The drug life cycle management is a long and continuous process, involving com-
plex and critical decisions. Examples of strategic decisions would be continuing,
terminating or expanding the development, dose(s) selection, choice of the targeted
populations etc. New data and information coming from diverse sources collected
throughout the development must be integrated with relevant previous information
to inform and support decision-making.

Drug development teams need tools for structuring and analyzing decisions, with
transparent processes that synthetize the whole available information to evaluate
the probability of success and the risks associated to different options, in order to
permit informed trade-offs between them.

A wide range of statistical methods could be used to develop optimal tools for de-
cision analyses in drug development. This report focuses on two research axes: the
drug benefit-risk assessment and the predictive probability of success.

Four methodologies are presented in this report: first, an extension of existing method-
ologies for drug benefit-risk assessment; second, a new tool for drug benefit-risk as-
sessment that addresses the issues of the existing methods; third, a method to com-
pute the predictive probability of a composite success including benefit-risk con-
siderations; and fourth, how to predict the success of a future trial from data on
surrogate endpoints.

These methodologies are valuable quantitative tools to support decision-making in
the pharmaceutical development. They have strong theoretical foundations and
were shown to have soundness in the context of healthcare decisions. They are sim-
ple, could be used in a wide range of applications throughout the drug life-cycle,
from early development to post-marketing surveillance, and their utility has already
been demonstrated in very concrete situations.
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1

Chapter 1

Introduction

1.1 Decision-making in drug development

The drug development is a long and continuous process, involving complex and
critical decisions. The Figure 1.1 presents a simplified example of decision-making
in a clinical drug development. The decisions, represented by the circles, are mainly
based on the accumulated data collected on the considered drug, the portfolio and
the resources of the company, and the competitors. Surprisingly, the pharmaceuti-
cal industry is far behind other major industries when it comes to use quantitative
methods to support decision making, and there is a need for more focus on quanti-
tative decision-making based on measurable parameters for that purpose. New data
and information coming from diverse sources throughout the drug life cycle must
be integrated with relevant previous information to inform and support decision-
making.

FIGURE 1.1: Example of decision-making in clinical drug develop-
ment

For example, a quantitative decision tool for a Go/no Go Phase III would typically
be the predictive probability of success of phase III studies based on results from
phases II. The definition of success is critical here and generally includes efficacy
considerations, but other criteria can be introduced such as the safety of the drug, its
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overall benefit-risk balance, the time expected to complete the clinical development,
the portfolio management or the budget.

The success of a submission being the market authorization granted by the health
authorities, which is not quantifiable, the decision tools used for the Go/no Go Sub-
mission will mainly be based on the overall benefit-risk assessment of the drug and
the clinical relevance of the available evidence. Quantitative methods will help in
understanding how this evidence is expected to be recognized by the health author-
ities, and later by the scientific community and the prescribing physicians.

1.2 Who are the decision-makers in drug development?

The Figure 1.2 presents the hierarchy of decision-makers in drug development.

FIGURE 1.2: Decision makers – who are they?
Source: http://protectbenefitrisk.eu/

Patients are the ultimate decision-makers in health care: they make the choice to
take or not the drug. They are diagnosed and advised by their physicians, who play
a critical role in evaluating the benefits and risks of a therapy at an individual level.

Regulators and Health Technology Assessors (payers) assess the value of a drug at
the population level, determine public policies and make recommendations to pa-
tients and physicians.

Finally, pharmaceutical companies make decisions on their pipeline and develop-
ment strategies.They focus their research on diseases or therapies according to the
medical need, their scientific experience, their ability to reach the patient population,
and thus the economic value of their compounds.

Patients involvement in healthcare decisions is increasingly encouraged [114]. Sev-
eral initiatives emerged to ’find out when and where patients want, can, and should
be involved in drug development’ [68]. Among them, we can cite the workshop on
’Advancing Use of Patient Preference Information as Scientific Evidence in Medical
Product Evaluation’ hosted in December 2017 by the Centers of Excellence in Reg-
ulatory Science and Innovation (CERSIs) and the Food and Drug Administration
(FDA) [134], or the IMI-PREFER intiative [68, 53]. They both underline the need

http://protectbenefitrisk.eu/
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to use and develop reliable methods to incorporate patients’ preferences into drug
benefit-risk assessments and decision-making processes.

1.3 Clinical development success rates

The low success rate and the high cost of developing a drug are major issues of the
pharmaceutical industry. Despite large rewards when a new molecular entity gets a
marketing authorization, an important part of the cost of developing a drug is due
to the low success rate [29].

The reasons for this low success rate have been broadly explored in the literature
[29, 32, 31, 58, 30, 144]. Apart from the benefit-risk balance of the drug itself (effi-
cacy, safety, convenience of use etc.), some factors related to higher probabilities of
drug development successes have been reported, among them: a short duration of
development, a large number of patients enrolled in early phase trials, or a large-size
company developing the compound. This illustrate the importance of reducing the
uncertainty in early decisions, stopping unprofitable drug developments as early as
possible, if the companies have the ability to focus and invest on other promising
drugs in their pipeline.

The success rate varies across therapeutic areas [32, 31] and over time. Although a
decrease has been observed before 2013, a positive trend is seen in recent years [144],
which could be explained by a better identification of failures and earlier decisions
to stop unpromising drugs. The increased use of biomarkers, and thus the devel-
opment of targeted therapies, appear to be one major reason for this improvement,
especially in the area of oncology [30, 22, 144].

Studying success rates, costs and durations of drug developments is important for
improving pharmaceutical investments, and motivates researchers and industries
to develop quantitative tools for better decision-making. Probabilities of success,
predictive algorithms and portfolio simulations are critical when making scientific
and economic decisions [22].

1.4 Three levels of decision

The decision-making process can be broken down into three levels: the “study level”,
the “development program level” and the “portfolio level”. At the study level, de-
cisions need to be made in particular regarding the population and the design of
a trial (including the sample size, the number of arms, the choice of control treat-
ments), given the information available from earlier studies and external data. For
example, the doses to be tested in a phase II study can be selected based on their pre-
dicted efficacy and safety. The anticipated cost of a trial could be balanced against its
predictive power. Statistical methods can also be used to assess whether the amount
of information brought by the single trial, not only on the primary efficacy endpoint
but on the overall benefit-risk of the drug, is sufficient to inform later decisions re-
garding the continuation of the development.

Then, at the development program level, there is a need to develop statistical meth-
ods to quantitatively assess the chances of success of an option, which could be the
decision to continue or not the development, but also to develop the drug in one
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or several indications, to target a population likely to respond to treatment etc. For
example, these methods could be used to measure the joint probability of success of
several subsequent clinical trials given the results of trials already conducted (e.g.
success of phase III studies given the results of phase II and earlier studies).

Finally, if a drug development has a satisfactory chance of success and an acceptable
risk, it would be worthwhile to extend the methods to decision-making across sev-
eral drug developments, to integrate the preferences of the decision-maker in terms
of portfolio management using a risk-based monitoring approach. New tools should
also be developed.

1.5 Subjectivity in quantitative decision-making

Guidelines and good clinical practices recommend measures to minimize subjectiv-
ity in drug development [66, 67, 37], such as the choice of objective measurements
as primary endpoints, the pre-specification of the statistical analysis and the collec-
tion of accurate, quality-checked data. However, the interpretation of these data and
the decision resulting from their analysis necessarily require value judgments and a
qualitative assessment: subjectivity is inherent to decision-making.

It is therefore important to make it transparent and consistent. Quantitative tools
and processes are crucial in formalizing decision-making, providing strong, repro-
ducible and explicit arguments to justify and communicate the decisions [22].

Being ‘too subjective’ is, however, one of the main criticisms of quantitative meth-
ods for decision-making [102, 113]. Indeed, introducing subjectivity is sometimes
perceived as a failure in the reliability of a scientific process. Lawrence D. Phillips
in [113, Chapter 5] provides a full discussion on the challenges faced by the use
of explicit quantitative methods in benefit-risk assessment, and the advantages of
overcoming these issues to enhance the decision-making process. He points out in
particular that this objection comes from the difficulty to distinguish between ob-
jective data and their subjective interpretation, and that a benefit-risk assessment of
drug cannot be performed by wholly objective means.

It may also be objected that clinical expertise cannot be reduced to numbers, and
there is some skepticism in the ability of statistical methods to quantify expert opin-
ion and value judgments [102]: human preferences ultimately incorporate some
variability and arbitrariness. However, it is important to underline that quantita-
tive tools are not intended to replace expert’s decisions, but to support them. Clearly,
both experience and judgment are required, but numbers may permit to express
them in words, facilitating the communication. In particular, they may help in re-
solving disagreements by identifying underlying differences in the preferences of
the decision-makers.

In summary, quantitative methodologies should be as transparent, robust and com-
prehensive as possible, but subjectivity cannot be avoided. It is important to ensure
that all stakeholders understand their supporting purpose, their limitations and how
they contribute to the decision-making process.
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1.6 Data sources and data aggregation

Appropriately summarizing complex information from different sources is the first
pillar of quantitative decision-making methodologies [3, 113]. The typical sources
of evidence are clinical trials, epidemiological and health economics studies, public
registries, and elicited stakeholders’ preferences. Ideally, decisions should be based
on an all relevant evidence, with an exhaustive collection of data and considering
the validity of each data source, making explicit the associated uncertainties and as-
sumptions that are part of decision-making.

The Cochrane Collaboration (http://www.cochrane.org) developed formalized pro-
cesses to perform systematice reviews, in order to find pertinent data sources related
to a particular question. Then, the quantitative analysis consists in aggregating the
data using statistically rigorous methods, such as meta-analyses, in order to summa-
rize the results [3, 142].

Some challenges arise from potential biases in the different sources of evidence and
in the data collection [142, 141]. DiSantostefano et al. (2016) [33] recommends a set
of principles on handling data from different sources to conduct benefit-risk assess-
ment, including a thorough review of their limitations, and some recommendations
on when it is appropriate or not to combine them to support decision-making . The
robustness of the decisions to the selected data sources should also be carefully as-
sessed, using for example sensitivity analyses.

1.7 Content of this report

A wide range of statistical methods could be used to develop optimal tools for de-
cision analyses in drug development. This report focuses on two research axes: the
drug benefit-risk assessment (Chapters 2 and 3) and the predictive probability of
success (Chapters 4 and 5).

Each chapter is stand-alone and corresponds to an article published in or submitted
to a statistical journal. Some background about the publication context is presented
in the respective preambles.

Chapter 2 presents a simple unification and an extension of two existing methodolo-
gies for drug benefit-risk assessment. It has demonstrated its usefulness in concrete
clinical applications, and the publication has already been cited by other authors
working on benefit-risk assessment.

In Chapter 3, we present a novel, simple and valuable tool for drug benefit-risk as-
sessment. It is based on strong theoretical principles, avoids the pitfalls of the exist-
ing methods and can lead to more meaningful conclusions. Although still quite new,
this method generates a lot of interest in the scientific community and was awarded
with the best poster prize at the PSI conference 2018 (Statisticians from the Pharma-
ceutical Industry).

The relationship between the two research axes is made in Chapter 4, where we pro-
pose a method to compute the predictive probability of a composite success which

http://www.cochrane.org
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includes benefit-risk considerations.

Finally, Chapter 5 presents a general, reliable and reproducible methodology to pre-
dict the success of a future trial from data on surrogate endpoints, in a way that
makes the best use of all the available evidence.

Concluding remarks are provided in Chapter 6.
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Chapter 2

Dirichlet Stochastic Multi-criteria
Acceptability Analysis (Dirichlet
SMAA)

Background

This chapter was published as:

Saint-Hilary G, Cadour S, Robert V and Gasparini M. A simple way to unify multi-
criteria decision analysis (MCDA) and stochastic multicriteria acceptability analysis
(SMAA) using a Dirichlet distribution in benefit-risk assessment. Biometrical Journal.
2017; 59(3):567-578. doi: 10.1002/bimj.201600113.

2.1 Introduction

Assessing the benefit-risk ratio of a treatment consists of balancing its favorable ther-
apeutic effects versus the adverse reactions it may induce [21]. Obviously, only ther-
apies with a favorable benefit-risk ratio should be considered, when the amount of
benefits outweigh the amount of risks. The benefit-risk balance is therefore a strong
predictor of the long-term viability of a therapy, and a key element for decision-
making during the drug development, the regulatory approval process, and the
post-marketing follow-up [41, 45, 136].
The assessment of the benefit risk is a complex process that requires the evaluation
of a large amount of data coming from different sources. Still nowadays, it often
consists of a qualitative description of the available evidence and of a discussion to
establish whether the profile of the drug is favorable or not [35, 62]. However, struc-
tured qualitative frameworks and quantitative methodologies have been proposed
to improve the assessment process [59, 92, 82, 133]. Even though quantitative anal-
yses are not expected to replace qualitative judgements from experts, they can be
useful for complex benefit-risk decision problems, and they can be used as tools to
communicate them [90, 91].
In particular, Multi-Criteria Decision Analysis (MCDA) has been proposed to com-
pare the benefit-risk of several drugs [93, 94, 98]. The European Medicine Agency
Benefit-Risk Methodology Project suggested that MCDA is one of the most compre-
hensive among the quantitative methodologies [35, 36, 37, 38], and it is also rec-
ommended by the IMI PROTECT Work package 5 [69]. Its principle is to compare
several treatments using utility scores calculated from multiple criteria of benefits
and risks, taking into account their relative importance according to the preferences
of the decision-makers. Although MCDA makes more explicit the drug benefit-risk
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assessment, the scoring process of the treatments is deterministic and ignores the
parameter uncertainty induced by the data sampling variation. Details are provided
in Section 2.2.1, where the acronym dMCDA is used.
Therefore, some probabilistic models, often called Probabilistic MCDA (or Stochas-
tic MCDA), were developed to take into account the uncertainty in the parameters.
In particular, Waddingham et al. [138] propose a Bayesian MCDA model to estimate
the score distributions based on the distributions of the criterion parameters, which
are themselves estimated from the treatment effects observed in previous studies.
This model is called pMCDA in Section 2.2.2.
The Stochastic Multicriteria Acceptability Analysis (SMAA in Section 2.2.3) is an
extension of Probabilistic MCDA which considers the preferences of the decision-
makers as another source of uncertainty. Instead of requiring the elicitation of exact
weights for the criteria of benefits and risks, SMAA can be used with unknown or
partially known preferences, and the distributions of the utility scores are estimated
for all the possible combinations of weights [77, 130]. It allows for a more extended
assessment of the drug benefit-risk ratios than Deterministic MCDA and Probabilis-
tic MCDA, but it is often disregarded due to its increased complexity [90] or to the
high degree of uncertainty in its results [138].
The aim of this paper is to build a simple unique model as a generalization of MCDA
and SMAA, by applying a Dirichlet distribution to the weights of the criteria and by
making its parameters vary. The Dirichlet distribution has a natural interpretation
as the best-guess set of weights together with a precision parameter, which could be
interpreted as the strength of confidence of the decision-makers in their elicitation
of preferences. This model permits to explore all the possible ranges of confidence
in the weight elicitation, from the deterministic weights in MCDA to the complete
absence of information handled by SMAA.
In Section 2.2, we will introduce the models for Deterministic MCDA, Probabilistic
MCDA and SMAA. The new model, called Dirichlet SMAA, is presented as a gen-
eralization of MCDA and SMAA in Section 2.3. It is applied in Section 2.4 on an
example proposed by Tervonen et al. [131] of a published placebo-controlled trial
in depression [96]. In this section, we will assess the impact of the precision of the
Dirichlet distribution on the results, and we will also illustrate how the results from
SMAA and Probabilistic MCDA can be retrieved from this unified model. A discus-
sion and concluding remarks are given in Section 2.5.

2.2 Current models

2.2.1 Deterministic Multi-Criteria Decision Analysis (dMCDA)

Suppose m treatments (i = 1, ..., m) are assessed on n criteria (j = 1, ..., n). The
model includes the following quantities and functions [93]:

(i) The performance of treatment i on criterion j is denoted by ξij. Here, the ξij
are deterministic: they are usually taken as the point estimates observed in
the clinical trials or from meta-analyses used to synthesize their results [3, 142,
141]. The vector of criterion measurements for treatment i is denoted by ξi =
(ξi1, ..., ξin).

(ii) The partial value functions uj() are used to normalize the criterion measure-
ments by mapping them into a 0 to 1 scale. These functions are not necessarily
linear, but should be monotonically increasing with the preference on the con-
sidered criterion. Thus, uj(ξij) > uj(ξi′ j) indicates that the performance of the
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treatment i is preferred to the performance of the treatment i′ on criterion j, the
worst value being uj(.) = 0 and the best value being uj(.) = 1. These partial
value functions should be provided by the decision-makers to indicate the im-
portance of a change on each criterion. For example, if ξ ′j and ξ ′′j are considered
respectively as the most preferable value and the least preferable value for ξij,
then the partial value functions could be defined as linear functions with (a)

uj(ξij) =
ξij−ξ ′j
ξ ′′j −ξ ′j

if an increase in ξij represents an improvement on the criterion

j and (b) uj(ξij) =
ξ ′j−ξij

ξ ′j−ξ ′′j
if an increase in ξij represents a worsening on the

criterion j.

(iii) The weights indicating the relative importance of the criteria are denoted by
wj, with the constraint that ∑n

j=1 wj = 1. Here, the wj are deterministic: they
should be provided by the decision-makers. The vector of weights used for the
analysis is denoted by w = (w1, ..., wn).

It is generally assumed that the criteria and their partial values functions are inde-
pendent, which allows us to use an additive formula to calculate the global utility
score:

u(ξi, w) = w1u1(ξi1) + ... + wnun(ξin) =
n

∑
j=1

wjuj(ξij)

The utility score is the measure of benefit-risk, it permits to discriminate treatments
according to their performances on the criteria of benefit and risk, and according to
the weights attributed to these criteria. The treatment with the highest utility score
is considered to be the treatment with the most preferable benefit-risk ratio.
The weights wj and the performances ξij being deterministic (implying that uj(ξij)
are deterministic too), the results of the utility scores u(ξi, w) for the different treat-
ments are themselves deterministic, simply real numbers. The uncertainties in the
treatment performances on the criteria and in the decision-makers’ preferences are
ignored.

2.2.2 Probabilistic Multi-Criteria Decision Analysis (pMCDA)

The probabilistic model for MCDA takes into account the data uncertainty. The no-
tations and the formula for the utility score are the same as for dMCDA, but here the
ξij are random variables. Following the approach proposed by Waddingham et al.
[138], we consider a Bayesian model and assign a probability distribution to the ξij
based on the data distributions observed in clinical trials or resulting from evidence
synthesis of these trials.
Depending on the nature of the criteria, their underlying distribution will be differ-
ent. For example, the proportion of patients achieving a clinical response will usu-
ally be distributed according to a Beta distribution ξij ∼ Beta

(
aij, bij

)
, the change

from baseline on a measurement scale can be distributed according to a Normal dis-
tribution ξij ∼ N

(
µij, σ2

ij

)
etc. The parameters of these distributions are estimated

from the data.
The utility scores u(ξi, w) are now random variables, and their distributions can be
obtained by simulating values from the distributions of the ξij.
The benefit-risk assessment of the treatments can be assessed by comparing the dis-
tributions of their utility scores, using for example descriptive statistics and graphs,
and by computing the probabilities to be the best treatment, the second best etc.
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pMCDA is a major improvement on dMCDA since its permits to avoid declaring
that a treatment has a better benefit-risk profile than another while the observed
difference is only due to sampling error. On the other hand, the preferences of the
decision-makers are still explicitly required to determine the partial value functions
and the weights of the criteria.

2.2.3 Stochastic Multicriteria Acceptability Analysis (SMAA)

The SMAA method is an extension of the probabilistic MCDA model when no in-
formation, or partial information, is provided on the weights of the criteria by the
decision-makers. The notations and the formula for the utility score are the same as
for the previous models, the ξij are random variables as for pMCDA, but here the
weights wj are also random variables. Typically, when no preference between the cri-
teria could be elicitated, the space of weights W is defined as an n− 1-dimensional
simplex in n-dimensional space [130]:

W =

{
(w1, ..., wn) : wi ≥ 0 ∀i and

n−1

∑
i=1

wi ≤ 1 and wn = 1−
n−1

∑
i=1

wi

}
(2.1)

Constraints could be applied to this space of weights to handle partial preferences
of the decision-makers, for example:

(i) Applying lower and upper bounds to the weights:
W ′ =

{
w ∈W | wmin

j ≤ wj ≤ wmax
j , j = 1, ..., n

}
(ii) Ranking the criteria according to their importance:

W ′ =
{

w ∈W | wj1 ≥ wj2 ≥ ... ≥ wjn
}

(iii) Enforce the overall benefits and the overall risks to have the same weight:
W ′ =

{
w ∈W | ∑j∈Bene f its wj = ∑j∈Risks wj = 0.5

}
Again, the utility scores u(ξi, w) are random variables, and now their distributions
can be obtained by simulating values from the distributions of the ξij and uniformly
from the space of weights W (or a restricted space of weights W ′). The distributions
of the utility scores account not only for the sampling variation in the criterion mea-
surements but also for the uncertainty in the decision-makers’ preferences regarding
the relative importance of the criteria.
It should be noted that the benefit-risk ratio of two treatments i and i′ should only be
compared when the same preferences are used for the weights. That is, we should
not compare the distributions of two utility scores u(ξi, w) and u(ξi′ , w) on the whole
weight space, but only when using the same weight vector. Therefore, the distribu-
tion of the difference between two utility scores using the same weight vector can be
computed by simulating values for w∗ in the considered weight space:

∆u(ξi, ξi′ , w∗) = u(ξi, w∗)− u(ξi′ , w∗) (2.2)

The benefit-risk ratios of the treatments can then be assessed by comparing these
distributions using descriptive statistics and graphs. The probabilities to be the best
treatment, the second best etc. can be computed. These probabilities are called rank
acceptability index in the literature. The decision-makers can also make use of the cen-
tral weight vectors (expected center of gravity of all possible weight vectors that rank
the treatment at the first place) and their confidence factors (probability for a treatment
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to obtain the first rank when the central weight vector is chosen) described for ex-
ample in Tervonen et al., 2011.
SMAA is a useful method to account for both the sampling variation and the lack of
preferences to weight the criteria. Obviously, the results will have a lower degree of
precision than with pMCDA, since the amount of uncertainty increased. The pref-
erences of the decision-makers are still explicitly required to determine the partial
value functions, but one could easily take into account their uncertainty by applying
probability distributions to the supposed minimum and maximum values ξ ′j and ξ ′′j ,
or in a more complex way to use classes of functions for the uj(ξij).

2.3 General model: Dirichlet SMAA

2.3.1 The Dirichlet distribution

The Dirichlet distribution is the reference distribution to model vectors of weights
summing to unity. It represents the maximum degree of independence components
can get subject to the constraint of unit sum. The Dirichlet density with parameters
α1, ..., αn of a random vector (w1, ..., wn) is

f (w1, ..., wn) =
Γ (∑n

i=1 αi)

∏n
i=1 Γ (αi)

n

∏
i=1

wαi−1
i ((w1, ..., wn) ∈W)

where W is the n − 1-dimensional simplex in n-dimensional space as defined in
Equation 2.1, and Γ(s) denotes the gamma function. We write in short (w1, ..., wn) ∼
Dirichlet (α1, ..., αn).

Two special cases of Dirichlet distributions are:

(i) The Beta distribution Beta (α1, α2), which is a Dirichlet distribution with n = 2
and parameters α1 and α2.

(ii) The standard Uniform distribution Uni f (0, 1), which is a Dirichlet distribution
with n = 2 and α1 = α2 = 1. More generally, generating values uniformly
over the space of weights W corresponds to generating values according to a
Dirichlet distribution with α1 = α2 = ... = αn = 1.

An interesting property of the Dirichlet distribution is that the means of all the wi
stay the same if all αi are scaled with the same multiplicative constant. The variances
will, however, get smaller as the parameters αi grow. In the following sections, we
will write the parameters of the Dirichlet distribution as c×

(
w0

1, ..., w0
n
)

with

(i) 0 ≤ w0
1, ..., w0

n ≤ 1 with ∑n
i=1 w0

i = 1,

(ii) c a scaling constant that can vary from 0 to infinity. The variances of the wi
are inversely proportional to c. They equal to infinity when c = 0 and to zero
(deterministic approach) when c = +∞.

2.3.2 The model

The same notations and formula as for the previous models are used, and we specify
that

(w1, ..., wn) ∼ Dirichlet
(
c×

(
w0

1, ..., w0
n
))

((w1, ..., wn) ∈W)

We can easily see that this model is a generalization of the models presented before:
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(i) It corresponds to the pMCDA model defined in Section 2.2.2 when c = +∞,
since in this case the weights are deterministic with wj = w0

j for j = 1, ..., n.
pMCDA is itself a generalization of dMCDA that takes into account the data
uncertainty.

(ii) It corresponds to the SMAA model defined in Section 2.2.3 without preference
information when the weight values are uniformly distributed with all Dirich-
let parameters equal to 1, i.e. with our notations when w0

1 = ... = w0
n = 1/n

and c = n.

(iii) It corresponds to the SMAA model with partial preferences of the decision-
makers when the weight values are uniformly distributed in a restricted space
of weights W ′ which reflects the constraints applied to W, as presented in Sec-
tion 2.2.3.

The benefit-risk assessment of the treatments is done in the same way as for SMAA,
by comparing the utility scores when using the same vector of parameters w0

1, ..., w0
n

for all the treatments.
The constant c can be interpreted as a sample size reflecting the strength of belief,
by considering the Dirichlet prior distribution as a posterior distribution under an
implicit sample of multinomial data. It corresponds to the confidence level of the
decision-makers in the elicitation of their preferences.

2.4 Application to a placebo-controlled trial on two antide-
pressants

2.4.1 Data and model

The treatments to be compared, the criteria and their distributions are the same as
those presented by Tervonen et al. [131] from a published study [96]. The data are
summarized in Table 2.1.
All the criteria are binary events, therefore a Bayesian model is built with binomial
likelihoods rij ∼ Bin

(
nij, πij

)
and flat conjugate priors (to be consistent with the

approach used in Tervonen et al. [131]) πij ∼ Beta (1, 1), rij, nij and πij being re-
spectively the number of events, the number of patients and the probability of event
for the treatment i and the criterion j. We therefore obtain the posterior distribution
πij ∼ Beta

(
rij + 1, nij − rij + 1

)
which takes into account the data sampling vari-

ation. The probabilities range between 0 and 1, so the partial value functions are
naturally defined as linear functions u(πij) = πij for benefits and u(πij) = 1− πij
for risks. The median and 95% credibility intervals of the posterior distributions and
the partial value functions are summarized in Table 2.2.
In order to compare Dirichlet SMAA with pMCDA and SMAA, we performed sev-
eral analyses with different weight vectors:

(i) Three analyses with deterministic weight vectors, corresponding to pMCDA.
Since no precise weight preferences were elicited in Tervonen et al. [131], we
supposed that three different decision-makers provided different preferences,
respectively (0.25, 0.25, 0.25, 0.25), (0.58, 0.11, 0.15, 0.15) and (0.18, 0.28, 0.25,
0.29) for the criteria (treatment response, nausea, insomnia, anxiety). There-
fore, the first decision-maker does not have preferences between the criteria,
the second decision-maker favors the efficacy criterion, and the third decision-
maker gives more weight to safety in general, but does not have a marked
preference for one specific criterion.
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TABLE 2.1: Number of patients and number of events for the criteria

Placebo Fluoxetine Venlafaxine
Benefit criterion
Treatment response 37/101 45/100 51/96
Risks criteria
Nausea 8/102 22/102 40/100
Insomnia 14/102 15/102 22/100
Anxiety 1/102 7/102 10/100

TABLE 2.2: Median and 95% credibility interval (CI) of the Beta pos-
terior distributions of the parameters πij and their partial value func-

tions

Posterior distributions Partial value
Median (95% CI) functions

Placebo Fluoxetine Venlafaxine
Benefits criteria
Treatment response 0.37 (0.28;0.46) 0.45 (0.36;0.55) 0.53 (0.43;0.63) u1(πi1) = πi1
Risks criteria
Nausea 0.08 (0.04;0.15) 0.22 (0.15;0.31) 0.40 (0.31;0.50) u2(πi2) = 1− πi2
Insomnia 0.14 (0.08;0.22) 0.15 (0.09;0.23) 0.22 (0.15;0.31) u3(πi3) = 1− πi3
Anxiety 0.02 (0.00;0.05) 0.07 (0.03;0.04) 0.11 (0.06;0.17) u4(πi4) = 1− πi4

(ii) Three analyses corresponding to different versions of the Dirichlet SMAA model,
with

(w1, w2, w3, w4) ∼ Dirichlet (c× (0.25, 0.25, 0.25, 0.25))

(w1, w2, w3, w4) ∼ Dirichlet (c× (0.58, 0.11, 0.15, 0.15))

(w1, w2, w3, w4) ∼ Dirichlet (c× (0.18, 0.28, 0.25, 0.29))

c ranging from 1 to 105: the same preferences as for pMCDA are used but we
make the strength of confidence of the decision-makers vary. When c = 4, the
first vector of Dirichlet parameters is equal to (1, 1, 1, 1) which corresponds to
the SMAA model without preference information.

In each case and for each treatment, the benefit-risk utility scores are calculated using
Monte Carlo simulations. We compare the models by describing the distributions of
the pairwise differences in utility scores defined in Equation 2.2 and the probability
for each treatment i′ to be the best treatment, estimated as the proportion of simula-
tions in which its utility score is greater than those from the other treatments:

Prob
(
i′ = best

)
≈ 1

K

K

∑
k=1

∑
w∗
1
[
uk(πi′ , w∗) > uk(πi, w∗) ∀i 6= i′

]
where K is the total number of iterations (a large number), 1[true] = 1 and 1[ f alse] =
0, and w∗ are simulated for each iteration using the distributions defined above.

2.4.2 Results

The analyses were conducted using R, and 20,000 Monte Carlo simulations were run
to estimate the parameters and the utility scores.
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FIGURE 2.1: Distributions of the pairwise differences in utility scores
when using the same vector of parameters, for Dirichlet SMAA with
c = 1, c = 10 and c = 105, SMAA without preference information and
pMCDA. Top: results with the preferences of the first decision-maker
with w0 = (0.25, 0.25, 0.25, 0.25). Middle: results with the preferences
of the second decision-maker with w0 = (0.58, 0.11, 0.15, 0.15). Bot-
tom: results with the preferences of the third decision-maker with
w0 = (0.18, 0.28, 0.25, 0.29). P = Placebo, F = Fluoxetine, V = Ven-

lafaxine.

The distributions of the pairwise differences in utility scores when using the same
vector of weights are presented in Figure 2.1. As expected, the precision of the differ-
ences increases with the strength of the decision-makers’ confidence c. In all cases,
the distributions for c = 105 and for pMCDA (c = +∞) are superimposed, indi-
cating that the results appropriately converge. As outlined earlier, SMAA without
elicitation of preferences actually corresponds to a Dirichlet SMAA model with the
vector of preferences of the first decision-maker, w0 = (0.25, 0.25, 0.25, 0.25), and a
confidence factor c = 4. Its precision lies between the precision of Dirichlet SMAA
for c = 1 and the precision of pMCDA. When the preferences of the second decision-
maker are used, the conclusions are not much impacted by its strength of confidence.
For example, the probability that Venlafaxine is better than Fluoxetine is 55% for
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c = 1 and 60% for c = 105 and pMCDA. In this case, all the treatments have a
similar benefit-risk ratio, the mean differences are close to zero and are not affected
by the confidence the decision-maker has in his elicitation. On the other hand, the
preferences of the first and the third decision-makers allow to discriminate between
the treatments, and decisions can be taken with more assurance when they are more
confident in their preferences. For example for the third decision-maker, the proba-
bility for the placebo to be better than Fluoxetine equals 77% when c = 1, with still
a non-negligible chance that Fluoxetine is actually better, while it equals 96% when
c = 105.

FIGURE 2.2: Probabilities to be the best treatment for the models
SMAA without preference information (symbols, left), pMCDA (sym-
bols, right) and Dirichlet SMAA (curves) with c ranging from 1 to
105. Top: results with the preferences of the first decision-maker with
w0 = (0.25, 0.25, 0.25, 0.25). Middle: results with the preferences of
the second decision-maker with w0 = (0.58, 0.11, 0.15, 0.15). Bot-
tom: results with the preferences of the third decision-maker with

w0 = (0.18, 0.28, 0.25, 0.29).

The probabilities for each treatment to be the best treatment are presented in Fig-
ure 2.2. When using the vector of preferences of the first decision-maker, we notice
that the probabilities to be the best treatment from Dirichlet SMAA with c = 1 and
from SMAA (c = 4) slightly differ: 66%, 16% and 18% for Dirichlet SMAA with c = 1
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and 72%, 17% and 11% for SMAA, respectively for the placebo, Fluoxetine and Ven-
lafaxine. This indicates that an amount of precision c = 4 is non-negligible and
actually reflects some confidence of the decision-maker that the criteria are equally
important. These results are much different from those obtained with the prefer-
ences of the second decision-maker with the strength of confidence c = 1 (29%, 20%
and 50% respectively) but are closer to those obtained with the preferences of the
third decision-maker (74%, 13% and 12% respectively). According to the second
decision-maker, the criteria clearly have different importances, favoring the efficacy
criterion, while the third decision-maker globally favors safety but without a marked
difference between the criteria. Therefore, the results are affected as soon as some
clear preferences are made between the criteria, even with a high degree of uncer-
tainty.
The probabilities to be the best treatment with Dirichlet SMAA change as the strength
of confidence increases, converging quickly toward pMCDA where deterministic
weights are used. For example, they are respectively equal to 95%, 5% and 0% for
the placebo, Fluoxetine and Venlafaxine with a Dirichlet SMAA using the prefer-
ences of the third decision-maker and a strength of confidence c = 50, very close to
those obtained with pMCDA (94%, 6% and 0% respectively).

2.5 Discussion

SMAA is a very complete decision tool to assess and compare benefit-risk ratios of
treatments, that takes into account both the sampling variation inherent in criterion
measurements and the lack of preferences of the decision-makers regarding the rela-
tive importance of the criteria. However, it is still rarely used for decision-making in
drug development, mainly due to the high degree of uncertainty in its results and its
alleged complexity resulting in some difficulty faced by the decision-makers to in-
terpret these results. Probabilistic MCDA, which can be seen as a simplified version
of SMAA, is more popular, but it requires the exact elicitation of the criteria weights
by the decision-makers, which could be difficult to achieve in practice, mainly due
to the lack of confidence the decision-makers have in their tentative elicitations.
The Dirichlet SMAA model is a simple generalization and unification of pMCDA
(which is a generalization of dMCDA) and SMAA, enabling to fit both of them but
also allowing for more flexibility by using various levels of the scaling constant c. It
permits to assess the sensitivity of the results of pMCDA when the decision-makers
are able to provide some preferences but with some uncertainty. The results can be
explained as a function of the decision-makers’ preferences and their degree of con-
fidence.
It is still not clear how the scaling constant c can actually reflect the decision-makers’
confidence in their elicitations. Ideally, c should be provided by the decision-makers
themselves, but it is unlikely they are able to quantify their degree confidence with
such precision and without guidance. In our example in depression, we have seen
that the results converge quickly, remaining stable for c greater than 50, which results
are very close to those obtained with pMCDA where c = +∞. In this particular case,
the impact of the strength of confidence on the results can therefore be explored and
discussed with the decision-makers for c < 50, rather than presenting them the re-
sults for one specific, and hypothetical, value of c.
Compared to pMCDA, both SMAA and Dirichlet SMAA permit to introduce some
uncertainty in the subjectivity inherent to decision-making analyses. Nevertheless,
two other sources of subjectivity remain present. First, the choice of the criteria used



2.5. Discussion 17

to assess the benefits and the risks can strongly affect the results. A considerable ef-
fort has been made in the past years [69, 92] to increase the transparency of the whole
benefit-risk assessment process, including the use of framework approaches such
as BRAT (PhRMA Benefit-Risk Action Team) [103, 104] and PrOACT-URL (Problem
formulation, Objectives, Alternatives, Consequences, Trade-Offs, Uncertainties, Risk
Attitude and Linked Decisions) [56]. These approaches guide and structure the dis-
cussions between the decision-makers, ensuring they have a common understand-
ing of the objectives of the assessment, and therefore helping them in identifying the
key benefits and the key risks to address these objectives [99]. The second source of
subjectivity is the definition of the partial value functions to map the criterion mea-
surements into a 0 to 1 scale, which should reflect the importance of a change on each
criterion. The definition of the partial value functions could be very simple in some
cases, as in our example where the amounts of benefits and risks are assumed to be
linearly related to the value of their respective criterion, and where the natural range
of their spread [0, 1] is taken as the reference range. Non-linear functions are more
sensible when only some values, or ranges of values, actually represent an increased
benefit or risk. When the criterion is an average over patients, the linear assump-
tion can be interpreted at the population level: for a binary event, it means that two
patients experiencing an event is twice as good (for benefits) or twice as bad (for
risks) as one patient experiencing the event. A non-linear function is more likely to
be needed at the patient level for a quantitative outcome, and one could consider to
transform the outcome before averaging across patients. In general, non-linear par-
tial value functions are certainly more difficult to define in practice and, in this case,
the uncertainty of the decision-makers could be accounted by applying probability
distributions to the parameters of the partial value functions, or by using classes of
functions.
In conclusion, we believe that the Dirichlet SMAA is a simple model to unify MCDA
and SMAA, and allows for a more extended exploration of the benefit-risk assess-
ment of treatments. All the results can be presented according to the parameters
which have a natural interpretation: treatment effects, decision-makers’ preferences
and strength of confidence.
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Chapter 3

Scale Loss Score (SLoS): a novel
measure of drug benefit-risk
assessment

Background

This chapter was published as:

Saint-Hilary G, Robert V, Gasparini M, Jaki T, Mozgunov P. A novel measure of drug
benefit–risk assessment based on Scale Loss Score. Statistical Methods in Medical Re-
search. 2018; 1-16. doi: 10.1177/0962280218786526. [111]

3.1 Introduction

A drug benefit-risk assessment consists of balancing its favourable therapeutic ef-
fects versus adverse reactions it may induce [21]. The benefit-risk balance is a strong
predictor of the therapy’s long-term viability and a key element for decision-making
during the drug’s development, the regulatory approval process, and the post mar-
keting follow-up [41, 45, 136]. For many years, a qualitative description of evidences
had been the main approach to establish a drug’s profile [62, 35]. This approach,
however, tends to lack transparency since the decision of taking (dropping) a drug is
based on a large amount of data coming from different sources and on criteria which
can vary for different experts. Structured frameworks and quantitative methodolo-
gies have been recently proposed to make a benefit-risk assessment more compre-
hensive and consistent [90, 91, 79, 92, 133, 82].

According to the European Medicine Agency Benefit-Risk Methodology Project [35,
36, 37, 38], one of the most comprehensive quantitative approaches is MultiCriteria
Decision Analysis (MCDA) [93, 94, 98, 81]. It has also been recommended by several
highly profiled expert groups, e.g. see IMI PROTECT Work package 5 [69]. The main
idea of MCDA is to calculate a single utility score using multiple criteria and taking
into account the importance of each criterion. While non-linear forms of the utility
score are recognized in various application areas of MCDA [78, 84], a linear aggrega-
tion of treatment’s effects on benefits and risks remains the most common choice for
the drug development [94, 131, 99, 80, 112]. The major advantage of the linear model
is its intuitive interpretation: a poor efficacy can be compensated by a good safety,
and vice-versa. However, the linear utility score can result in the recommendation
of highly unsafe or poorly effective drugs [87, 83] and, consequently, in a counter-
intuitive conclusion. Moreover, the linearity implies that the relative tolerance in the
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toxicity increase is constant for all levels of benefit. This leads to implicit assump-
tions on decision-makers’ preferences which might not hold for all drugs. Avoiding
these pitfalls is possible with, first, adopting good practices to ensure that the mod-
eling approach makes sense [87], and second by using non-additive and non-linear
models [82, 74]. The main objectives of this work are to explicitly illustrate the is-
sues of the additive linear MCDA model through a comprehensive simulation study,
and to provide an alternative approach, namely, Scale Loss Score, for aggregation of
treatment’s effect overcoming these issues. The proposed approach is based on re-
cent developments in the theory of estimation in restricted parameter spaces [71, 89]
and is shown to have soundness in the context of drug evaluation.

The case study of telithromycin (Ketek R©) raises questions regarding the suitability of
a linear MCDA utility score for the drug benefit-risk assessment. Telithromycin was
approved for the treatment of infections in several indications in 2001 by the EMA
[39] and in 2005 by the FDA [135]. It was (qualitatively) re-assessed in 2006-2007 by
both agencies based on updated safety data. In particular, some serious visual ad-
verse reactions, syncopes and acute liver failures have been reported. The terms of
the marketing authorizations were varied in order to better describe the drug safety
profile, and two indications were removed from the labeling by the FDA, among
them Acute Bacterial Sinusitis (ABS). More recently, the IMI PROTECT Benefit-Risk
Group [70] applied MCDA to this clinical example. Even if this assessment was per-
formed solely for the purpose of testing the methodology, the main results indicated
a fairly strong superiority of telithromycin versus the comparators in ABS, which is
not consistent with the concerns expressed by the health authorities. Consequently,
alternative methods more accurately reflecting decision-makers’ preferences are of
great interest.

In this work, we extend the assumption of non-linearity of preferences, which is well
established in other fields such as microeconomics or ecology [78, 6, 137], to the drug
development context. We advocate two properties that a desirable measure of drug
benefit-risk assessment should have:

1. Decreasing level of risk tolerance relative to benefits: an increase in risk could
be more tolerated when benefit improves from ‘very low’ to ‘moderate’, com-
pared to from ‘moderate’ to ‘very high’.

2. Non-effective or/and extremely unsafe treatments should never be recom-
mended.

Motivated by recent developments in the theory of the weighted information mea-
sures [75, 88] and in the theory of estimation in restricted parameter spaces [89], we
propose Scale Loss Score (SLoS) as a novel measure for the benefit-risk assessment
which shares both of these properties. The first property is achieved through convex
preferences between efficacy and safety and the second one by a strong penalization
of extremely low benefit and high risk values.

We perform a comprehensive simulation study investigating the performances of
SLoS and MCDA in many different scenarios. Note that this is, to our knowledge,
the first time the properties of MCDA are systematically explored by simulations
in the medical context. We also apply the new measure to the motivating clinical
context of telithromycin. The elicitation of criterion weights for linear MCDA utility
scores is widely discussed in the literature [133, 82, 54, 107, 113, 8, 61, 132, 9]. There-
fore, we provide an algorithm of mapping MCDA weights to SLoS weights so that
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the same elicitation process could be followed while preserving the weight interpre-
tation.

The rest of the paper is organized as follows. The MCDA utility score and the novel
measure are detailed in Section 3.2. Section 3.3 describes the application of both
measures in the real case study (telithromycin). We present a simulation study in
Section 3.4 and conclude with discussion in Section 3.5. Additional information may
be found in Appendix A.

3.2 Methods

3.2.1 MCDA utility score

The original proposal of MCDA [93, 94] ignores the uncertainty of parameter es-
timates. As this uncertainty can bare crucial information, an extension of MCDA
taking into account the variability of estimates was proposed by Waddingham et al.
[138]. This approach is often called Probabilistic MCDA (or Stochastic MCDA) and
is described below.

Utility score

Consider m treatments (indexed by i) which are assessed on n criteria (indexed by
j). We adopt the following notation:

(i) ξij is the performance of treatment i on criterion j, so that treatment i is charac-
terized by the vector ξ i = (ξi1, ..., ξin).

(ii) The monotonically increasing partial value functions 0 ≤ uj(·) ≤ 1 are used to
normalize the criterion performances. Let ξ ′j and ξ ′′j be the most and the least
preferable values, then uj(ξ

′′
j ) = 0 and uj(ξ

′
j) = 1. The inequality uj(ξij) >

uj(ξhj) indicates that the performance of the treatment i is preferred to the per-
formance of the treatment h on criterion j. In this work, we focus on linear
partial value functions, one of the most common choice in drug benefit-risk
assessment [133, 93, 131, 80, 138]. They can be written as

uj(ξij) =
ξij − ξ ′′j
ξ ′j − ξ ′′j

. (3.1)

(iii) The weights indicating the relative importance of the criteria are known con-
stants denoted by wj such that ∑n

j=1 wj = 1. The vector of weights used for the
analysis is denoted by w = (w1, ..., wn).

The MCDA utility score is obtained as

u(ξ i, w) :=
n

∑
j=1

wjuj(ξij). (3.2)

The higher the utility score, the more preferable the benefit-risk ratio. Then, the
comparison of treatments i and h is based on

∆u(ξ i, ξh, w) := u(ξ i, w)− u(ξh, w).
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While maximizing utility is common in economics [137], the concept of a loss func-
tion is usually preferred in statistical decision theory and Bayesian analysis for pa-
rameter estimation [6]. The complement of the MCDA utility score, ū(ξ i, w) =
1− u(ξ i, w), could be considered as a linear loss score to be minimized, and it can
be used equivalently as a measure of discrimination.

Although the term ‘MCDA’ outside of the health domain refers to the general method-
ology to summarize several characteristics in a single aggregated score, in this work
we adopt the notation ‘MCDA’ for the additive utility score with linear partial val-
ues functions corresponding to the conventional model adopted so far in the drug
benefit-risk assessment [82].

Estimation

Within a Bayesian approach, the utility score u(ξ i, w) is a random variable hav-
ing a prior distribution. Given observed outcomes xi = (xi1, . . . , xin) and xh =
(xh1, . . . , xhn) (corresponding to treatment performances ξ i and ξh, respectively) for
i and h, one can obtain the posterior distribution of ∆u(ξ i, ξh, w). The inference is
based on the complete posterior distribution and the conclusion on the benefit-risk
balance is supported by the probability of treatment i to have a greater utility score
than treatment h:

P ih
u = P(∆u(ξ i, ξh, w) > 0 | xi, xh). (3.3)

The probability (3.3) is used to guide a decision on taking/dropping a drug. A pos-
sible way to formalize the decision based on this probability is to compare it to a
threshold confidence level 0.5 ≤ ψ ≤ 1. Then, P ih

u > ψ would mean that one has
enough evidence to say that treatment i has a better benefit-risk balance than h with
a level of confidence ψ. Note that P ih

u = 0.5 corresponds to the case where the
benefit-risk profiles of i and h are equal according to MCDA.

Weight elicitation

Weighting is a structured way to capture the stakeholders’ preferences between the
criteria. It is recognized as a complex problem since it involves both clinical and
societal value judgments [113]. Methods for quantifying subjective preferences have
been widely studied in the literature [133, 82, 54, 107, 8, 61, 9], among which Discrete
Choice Experiment and Swing-Weighting appeared to be appropriate in terms of
theoretical foundations, cognitive burden, feasibility and robustness [93, 132, 73, 57].
In the MCDA framework, the weight assigned to one criterion is interpreted as a
scaling factor which relates one increment on this criterion to increments on all other
criteria.

MCDA illustration: two criteria

Let us consider an example with two criteria (one benefit indexed by 1, one risk
indexed by 2) to illustrate an insight on the linear utility score in Equation (3.2). The
utility score for treatment i at fixed parameter values θi1, θi2 takes the form

u(θi1, θi2, w) := wu1(θi1) + (1− w)u2(θi2). (3.4)
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As values u1(θi1), u2(θi2) ∈ (0, 1), one can interpret u1(θi1) as a probability of ben-
efit and 1− u2(θi2) as a probability of risk. The contours of equal linear loss score
ū(θi1, θi2, w) = 1− u(θi1, θi2, w) for all values of u1(θi1) and (1− u2(θi2)) using w =
0.5 (left panel) and w = 0.25 (right panel) are given in Figure 1.

FIGURE 3.1: Left panel: contours of equal linear loss score
ū(θi1, θi2, w = 0.5). Right panel: contours of equal linear loss score

ū(θi1, θi2, w = 0.25)
.

Lower values of ū(θi1, θi2, w) correspond to better drug benefit-risk profiles. It is
minimized (right bottom corner) when the maximum possible benefit is reached
(u1(θi1) = 1) with no risk (1− u2(θi2) = 0). The contours of (3.4) are linear, with
a constant slope w/(1− w). It implies that if one treatment has an increased proba-
bility of risk of x% compared to another, its benefit probability should be increased
by (1−w)/w× x% to have the same utility score. This holds for all values of benefit
and risk. While the linear form of the utility score makes the interpretation simple,
it might lead to some counter-intuitive conclusions. Below, we illustrate possible
paradoxes for w = 0.25, i.e. when the importance of the risk is three times higher
than the importance of the benefit.

1. The benefit-risk trade-off is the same for all values of the risk/benefit.

Consider two cases where a drug increases the benefit probability from (a) 0.15
to 0.30 and (b) from 0.80 to 0.95 compared to another therapy. In case (a) the
increase doubles the benefit probability and a higher increase in toxicity can
usually be tolerated. At the same time, the same increase in case (b) is not as
relatively large, therefore it can be argued that only a smaller increase in the
risk probability may be tolerated. However, the linear utility score implies that
the same increase in risk to match the benefit increase can be sacrificed.

2. Drugs with 0% benefit or 100% risk can be recommended.

Consider the first example in Table 3.1: drug 1 that cannot treat patients and
causes adverse events only would be preferred. At the same time, drug 2 that
adds 11% toxicity, but 30% efficacy would not be chosen. Similarly, in the
second example in Table 3.1, drug 1 that leads to an adverse event for 100%
patients would be preferred.
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TABLE 3.1: Examples of MCDA linear utility scores with two criteria
and w = 0.25.

Example 1 Example 2
Drug 1 Drug 2 Drug 1 Drug 2

Benefit: u1(θi1) 0.00 0.30 0.96 0.50
Risk: 1− u2(θi2) 0.09 0.20 1.00 0.85
Utility score 0.6825 0.6750 0.2400 0.2375u(θi1, θi2, w = 0.25)

Even if none of those drugs are likely to be taken to the market, the goal of
MCDA is to rank treatments and these examples reveal some counter-intuitive
conclusions to which MCDA can lead. Note that decreasing values of w would
help to solve the paradox in Example 1, but would worsen it in Example 2.

We advocate two properties of a benefit-risk analysis measure: (i) for a given in-
crease in benefit, one can tolerate a larger increase in risk if the amount of benefit is
small than if it is high, and (ii) one is not interested in the level of risk (benefit) if the
drug does not treat (harm all) patients. Formally, these properties correspond to (i)
the concavity of equal loss score contours (or, equivalently, the convexity of equal
utility score contours) and to (ii) a strong penalization of extreme low benefit values
and extreme high risk values. We would like to stress that the convexity of utility
(concavity of loss) is widely advocated in microeconomics and is believed to reflect
preferences in a more adequate way than linear ones in many applications [78, 137].

One can check that none of these properties are satisfied for MCDA due to its lin-
earity. There are two forms of linearity in MCDA: in the partial value functions (3.1)
and in the utility score (3.2). Note that property (i) of decreasing level of risk toler-
ance relative to benefits can be achieved by varying the shape of the partial value
functions (for instance, using concave functions for benefit and linear functions for
risk). However, the explicit elicitation of non-linear forms for the partial value func-
tions may be challenging. As the linear partial function remains a common choice
in drug benefit-risk assessment, we propose a novel measure of aggregation which
allows for both properties to be achieved even under linear partial value functions.

3.2.2 Scale Loss Score

Derivation

As an alternative to the linear MCDA utility score (3.2), we define Scale Loss Score
(SLoS) for aggregation of treatment’s performances as

l(ξ i, w̃) :=
n

∑
j=1

(
1

uj(ξij)

)w̃j

(3.5)

where w̃j is the weight indicating the average relative importance of criterion j com-
pared to the others and uj(·) is a linear partial value function (3.1). The form of SLoS
is motivated by the scale symmetric loss function [89, 85] and the precautionary loss
function [71]. These functions allow to stay away from ‘boundary’ values uj(·) = 0.
In the context of the benefit-risk assessment, they correspond to an extremely unde-
sirable performance of a drug: low benefit or high risk. SLoS can be interpreted as a
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divergence between drug i characteristics ξ i and the ‘perfect’ benefit-risk character-
istics (1, . . . , 1)n×1. As a loss score is used rather than a utility score, lower values of
l(ξ i, w̃) correspond to more desirable performances of the drug.

Clearly, l(ξ′, w̃) is minimized for ξ′ such that uj(ξ
′
j) = 1 for all j = 1, ..., n, i.e. at the

point of the ideal benefit-risk profile. Additionally, l(ξ′′(k), w̃) = +∞ for ξ′′(k) a vec-
tor of parameters containing ξ ′′k such that uk(ξ

′′
k ) = 0, for at least one k ∈ {1, ..., n},

so the loss score for a treatment with at least one extreme negative performance is
equal to infinity. The lower bounds are determined by the least preferred values ξ ′′k
used in the partial value functions, and correspond to unacceptable levels of benefit
or risk. It should be noted that SLoS is intentionally sensitive to these unaccept-
able values, therefore their choice could have a non-negligible impact on the results.
While unacceptable values of 0 (for benefit) or 1 (for risk) may be obvious choices for
probabilities of a binary outcome, the unacceptable value for a continuous outcome
may be more subjective and requires a careful investigation.

SLoS is a measure of the benefit-risk balance permitting to discriminate treatments
according to their performances and according to the weights attributed to the crite-
ria. The lower the SLoS, the more preferable the benefit-risk ratio, and the compari-
son of treatments i and h is based on

∆l(ξ i, ξh, w̃) := l(ξ i, w̃)− l(ξh, w̃).

Estimation

Similarly to MCDA, we consider a Bayesian model and assign a prior probabil-
ity distribution to ξij. Given the observed outcomes xi = (xi1, . . . , xin) and xh =
(xh1, . . . , xhn) for the treatments i and h, one can obtain a posterior distribution of
∆l(ξ i, ξh, w̃). Again, the inference is based on the complete posterior distribution
and the conclusion on the benefit-risk balance is supported by the probability of
treatment i to have a smaller SLoS than treatment h:

P ih
l = P(∆l(ξ i, ξh, w) < 0 | xi, xh).

This probability can be compared to a fixed confidence threshold ψ as in the MCDA
approach.

SLoS illustration: two criteria

To illustrate the properties of SLoS, consider the example presented in Section 3.2.1
with one benefit and one risk. The SLoS for treatment i in the point of fixed param-
eter values takes the form

l(θi1, θi2, w) :=
(

1
u1(θi1)

)w̃

+

(
1

u2(θi2)

)1−w̃

. (3.6)

The Figure 2 presents the contours of SLoS (3.6) for all pairs of u1(θi1) and 1− u2(θi2)
using w̃ = 0.5 (left panel) and w̃ = 0.25 (right panel). The tangents of the contours at
the point (0.5,0.5) are presented on the graph for the purpose of the weight mapping
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detailed in the next section.

FIGURE 3.2: Left panel: contours of l(θi1, θi2, w̃ = 0.5). Right panel:
contours of l(θi1, θi2, w̃ = 0.25). Red lines correspond to tangents at

the point (0.5, 0.5).

SLoS is minimized when the benefit-risk balance of the drug is maximized, at the
point (1,0) (right bottom corner), where the maximum possible benefit is reached
with no risk. The loss score is infinite for extreme low benefit values and extreme
high risk values, thus non-effective or extremely unsafe treatments could never be
recommended. Considering the cases presented in Table 3.1, the drug 2 had a SLoS
equal to 2.53 for the first example and of 5.34 for the second example, and it is pre-
ferred to drug 1 which SLoS is infinite in both cases.

The contour lines of equal loss are concave, which is equivalent to having convex
preferences between additional benefit and avoided risk, and have the form:

1− u2(θi2) = 1− (z− u1(θi1)
−w̃)−

1
1−w̃ , for u1(θi1) > z−1/w̃

for a fixed value l(θi1, θi2, w̃) = z. The slope of the tangent of the contour at a given
u1(θi1) for the loss score value z is

w̃
1− w̃

(
z− u1(θi1)

−w̃) w̃−2
1−w̃ . u1(θi1)

−(w̃+1). (3.7)

The slope decreases as benefit increases. It follows that the relative importance of
the benefit criterion over the risk criterion decreases with the amount of benefit it-
self. In other words, an increase in toxicity is more tolerated if, in parallel, efficacy
improves from ‘very low’ to ‘moderate’, compared to from ‘moderate’ to ‘very high’.

Weight elicitation

Since comprehensive work has been published and is currently being continued on
the weight elicitation for MCDA, we present a way to map MCDA weights wj to
SLoS weights w̃j. Note that the slope of MCDA contour tangents is constant for all
values of parameters and defined by the weights wj only, while the slope of SLoS
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contour tangents is non-constant and defined by both w̃j and values of the criteria.
To map weights, we would interpret w̃j as an average relative importance of each cri-
terion over the others. With two criteria, the weight w̃j corresponding to the MCDA
weight wj can be found from the equality of the slopes of the tangents of MCDA
and SLoS contours in the middle point u1(θi1) = u2(θi2) = 0.5 of treatment i perfor-
mances,

w̃j

1− w̃j
. 22w̃j−1 =

wj

1− wj
, (3.8)

where the slopes of SLoS and MCDA contour tangents in this point are given on the
left and right hand sides, respectively.

The weight mapping (3.8) does not have an analytical solution, but the approximate
value of w̃j can be obtained by line search. The mapping of the weights is illustrated
in Figure 3. The weights are the same when both criteria are considered equally im-
portant (w = w̃ = 0.5), while w < 0.5 corresponds to slightly greater values of w̃.
For instance, w̃ = 0.30 corresponds to w = 0.25.

FIGURE 3.3: Weight mapping.

Considering an arbitrary number of criteria, the mapping (3.8) can be applied to
each value of the MCDA weights. For instance, using four criteria with a weight
vector w = (0.30, 0.15, 0.15, 0.15, 0.25), the vector of SLoS weights is equal to
w̃ = (0.35, 0.21, 0.21, 0.21, 0.30). It should be noted that, in this case, the weights
w̃j do not necessarily sum to 1, but this does not prevent from calculating SLoS, for
which the formula (3.5) still applies.

Mapping weights to the middle point of the benefit and risk treatment performance
range relies on the assumption that MCDA weights were elicited across the entire
range, or that the trade-off between criteria was anchored on average at the middle
point. However, in practice, MCDA weights could have been elicited at any other
point and extrapolated. In this case, the mapping procedure above could be per-
formed accordingly by finding the SLoS weight satisfying the equality of the slopes
of MCDA and SLoS contour tangents in any other point of interest.
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3.3 Case study: telithromycin

We illustrate the use of SLoS and MCDA in a real clinical context on the case-study
thelithromycin (Ketek R©) reported by the IMI PROTECT Benefit-Risk Group [70].

Telithromycin was approved in 2001 for several indications as an alternative when
beta-lactam antibiotics are not appropriate, and we will focus on the indications
Community Acquired Pneumonia (CAP) and Acute Bacterial Sinusitis (ABS) as they
well illustrate similarities and differences between the two methods. A Probabilis-
tic MCDA model was considered in the IMI PROTECT report [70] (called Stochastic
Multicriteria Acceptability Analysis with fixed weights), and MCDA utility scores
presented here are derived from the original report.

Telithromycin is compared to a single alternative called ‘comparator’, which com-
prises amoxicillin-clavulanic acid, cefuroxime and clarithromycin, used as compara-
tors in clinical studies and pooled together. The probabilities of five binary criteria,
one benefit and 4 adverse events (AE), were transformed using linear partial value
functions (Equation (3.1)) with the following most and least preferred probabilities
of occurrence ξ ′j and ξ ′′j [70]:

• Benefit: cure rate (CAP: ξ ′1 = 1, ξ ′′1 = 0.4; ABS: ξ ′1 = 0.86, ξ ′′1 = 0.71),

• Risks:

– Hepatic AE (CAP: ξ ′2 = 0, ξ ′′2 = 0.1; ABS: ξ ′2 = 0, ξ ′′2 = 0.02),

– Cardiac AE (CAP: ξ ′3 = 0, ξ ′′3 = 0.1; ABS: ξ ′3 = 0, ξ ′′3 = 0.01),

– Visual AE (CAP: ξ ′4 = 0, ξ ′′4 = 0.1; ABS: ξ ′4 = 0, ξ ′′4 = 0.02),

– Syncope (CAP: ξ ′5 = 0, ξ ′′5 = 0.1; ABS: ξ ′5 = 0, ξ ′′5 = 0.01).

Using uniform priors and given the number of cures and AE (see Appendix A, Table
A.1), Beta posterior distributions for the event probabilities are approximated using
100,000 simulations in R [106], and are used to compute the corresponding distribu-
tions of the partial value functions. Means and 95% Credibility Interval (CrI) of the
probabilities and of the partial value functions, and the MCDA weights, are summa-
rized in Table 3.2.

This information was used to approximate the posterior distributions of MCDA lin-
ear utility score and SLoS. The mapped SLoS weights corresponding to the MCDA
weights are w̃ = (0.35, 0.21, 0.21, 0.21, 0.30).

For the CAP indication, MCDA and SLoS provide similar results, with probabilities
that telithromycin is better than the comparator equal to 59% and 51%, respectively.
These results indicate that telithromycin has a slightly better benefit-risk profile than
the comparator, but with large uncertainty.

For the ABS indication, the probability that the benefit-risk balance of telithromycin
is better than the comparator is equal to 71% using MCDA and 55% using SLoS.
While they both indicate results in favour of telithromycin, this advantage appears
to be much more uncertain with SLoS than with MCDA. The difference between the
methods can be mainly explained by a higher rate of Visual AE with telithromycin
(1.3% versus 0.5%), which is close to the least preferred value for this criterion in
this indication (ξ ′′4 = 2%). This leads to low values of the corresponding partial



3.3. Case study: telithromycin 29

TABLE 3.2: Mean and 95% CrI of the Beta posterior distributions of
benefit and risk parameters and of corresponding partial value func-
tions, with their MCDA weight, for Telithromycin (Teli.) and Com-

parator (Comp.)

CAP ABS MCDA
Teli. Comp. Teli. Comp. weight

Cure rate
ξi1 Mean 0.908 0.877 0.828 0.772 30%

95% CrI [0.896; 0.919] [0.855; 0.897] [0.800; 0.855] [0.715; 0.824]
u1(ξi1) Mean 0.846 0.795 0.787 0.414

95% CrI [0.827; 0.864] [0.759; 0.829] [0.601; 0.964] [0.036; 0.760]
Hepatic AE

ξi2 Mean 0.044 0.042 0.011 0.004 15%
95% CrI [0.034; 0.056] [0.031; 0.054] [0.006; 0.017] [0.001; 0.009]

u2(ξi2) Mean 0.561 0.582 0.468 0.789
95% CrI [0.444; 0.664] [0.457; 0.691] [0.158; 0.707] [0.542; 0.942]

Cardiac AE
ξi3 Mean 0.005 0.004 0.002 0.002 15%

95% CrI [0.002; 0.01] [0.001; 0.009] [0.000; 0.004] [0.000; 0.006]
u3(ξi3) Mean 0.947 0.956 0.849 0.790

95% CrI [0.902; 0.979] [0.909; 0.985] [0.579; 0.982] [0.414; 0.974]
Visual AE

ξi4 Mean 0.011 0.004 0.013 0.005 15%
95% CrI [0.006; 0.018] [0.001; 0.009] [0.008; 0.020] [0.002; 0.011]

u4(ξi4) Mean 0.887 0.956 0.357 0.736
95% CrI [0.823; 0.937] [0.909; 0.986] [0.016; 0.625] [0.461; 0.914]

Syncope
ξi5 Mean 0.002 0.004 0.001 0.002 25%

95% CrI [0.000; 0.005] [0.001; 0.008] [0.000; 0.003] [0.000; 0.006]
u5(ξi5) Mean 0.977 0.964 0.924 0.789

95% CrI [0.945; 0.995] [0.922; 0.990] [0.719; 0.998] [0.414; 0.974]

value function (mean (95% CrI) u4(ξ14): 0.36 [0.02; 0.63]), and values at the lower
end of the distribution are strongly penalized by SLoS. At the same time, the mass
of the corresponding partial value function distribution of the comparator (mean
(95% CrI) u4(ξ24): 0.74 [0.46; 0.91]) is shifted further from the bound, which results
in lower value of SLoS. A similar argument could be applied to Hepatic AE, and
the combination of these safety issues is more penalized by SLoS than by MCDA,
despite the worse cure rate of the comparator. Even if the benefit-risk assessment
by IMI PROTECT [70] was performed in order to test the methodologies and may
have been conducted differently in the actual regulatory context, it is worth noting
that the conclusion obtained using SLoS for the ABS indication is more in line with
the concerns expressed by the Committee for Medicinal Products for Human Use
(CHMP) regarding the atypical safety profile of the drug [40] and the removal of this
indication from the labeling by the FDA [135]. This could be an example of SLoS
reflecting the decision-makers’ preferences more accurately than MCDA.

A sensitivity analysis was conducted using MCDA weights to compute SLoS (omit-
ting the weight mapping) and the conclusions are globally robust, with the proba-
bility of telithromycin being better than the comparator equal to 57% for CAP and
62% for ABS.
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In the next section, we present a simulation study illustrating the properties of SLoS
and MCDA in many different scenarios.

3.4 Simulation study

3.4.1 Setting

To investigate the performances of SLoS and MCDA, we simulated randomised con-
trolled clinical trials with two treatments i = 1, 2, named T1 and T2, N = 100 patients
per group, and two uncorrelated binary criteria (j = 1 for benefit and j = 2 for risk).
We assume that benefit events are desirable (e.g. treatment response), while risk
events should be avoided (e.g. adverse event), with the performance parameters
ξij being their probability of occurrence. The partial value functions are defined
as u1(ξi1) = ξi1 and u2(ξi2) = 1 − ξi2. Equally important criteria with weights
wj = w̃j = 0.5, j = 1, 2, are considered.

The investigated scenarios are summarized in Table 3.3, where the expected prob-
abilities of event θij are presented for T1 (•) and T2 (�). Nine sets of T1 character-
istics are fixed. For each set, all possible combinations of T2 characteristics with
θ21, θ22 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are considered. This results
in 81 profiles for T2 and in 729 cases in total: we explored the grid of treatment
performances in order to identify under which conditions MCDA and SLoS lead to
different conclusions. For example, the first scenario corresponds to fixed expected
probabilities of benefit and risk for treatment T1 θ11 = θ12 = 0.5 compared to all
considered combinations of probabilities of event for T2. In this scenario, we expect
SLoS to recommend T1 more than MCDA when T2 is associated with an extreme risk
or no benefit. In the other scenario where θ11 = θ12 = 0.1, T1 has almost no benefit,
so it should not be recommended despite its good safety profile. Indeed, even if T1
does not harm the patients (it is similar to a placebo), administrating it to the patients
implies we make the assumption that it has a positive effect, while it has not in re-
ality. This interpretation is close to the usual type I error, and is not acceptable from
a regulatory and health economics perspective. Similarly, when θ11 = θ12 = 0.9, T1
should not be recommended despite its outstanding efficacy as it is associated with
an extreme risk. All intermediate cases are considered.

TABLE 3.3: Simulation scenarios with two criteria

Probability of Benefit θi1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ro
ba
bi
lit
y
of

R
is
k

θ i
2 0.9 �• � � � � � � � �•

0.8 � � � � � � � � �
0.7 � � �• � � � �• � �
0.6 � � � � � � � � �
0.5 � � � � �• � � � �
0.4 � � � � � � � � �
0.3 � � �• � � � �• � �
0.2 � � � � � � � � �
0.1 �• � � � � � � � �•

• = treatment T1 ; � = treatment T2

Let S be the total number of simulated trials and K the number of samples gen-
erated to approximate the distributions of interest. In each trial s = 1, ..., S, the
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number of events for each criterion was simulated using a Binomial likelihood xs
ij ∼

Bin(N, θij). Then, values ξsk
ij are sampled from the posterior distribution of the pa-

rameters B(xs
ij, N − xs

ij) for k = 1, ..., K, assuming implicitly an improper conjugate
prior B(0, 0). The posterior distributions of the utility score and the loss score are
approximated by the samples u(ξsk

i , w) and l(ξsk
i , w).

Assuming the threshold confidence level ψ = 0.8, MCDA and SLoS are compared
using P[P1,2

u > 0.8], P[P1,2
l > 0.8] and φ = P[P1,2

l > 0.8] − P[P1,2
u > 0.8]. As a

difference between probabilities, φ ranges in (−1, 1). A value −1 ≤ φ < 0 indicates
that SLoS recommends treatment T1 more often than MCDA and 0 < φ ≤ 1 that
SLoS recommends T1 less often than MCDA. The two approaches are in agreement
when φ = 0. A similar analysis for P[P2,1

l > 0.8] and P[P2,1
u > 0.8] is presented in

Supplemental Material (Figure S1). Simulations with other choices of ψ led to simi-
lar conclusions on the comparison between the two methods and are not presented
here.

The analyses were conducted using R, with S = 2, 500 simulated clinical trials and
K = 2, 000 simulations to estimate the parameter distributions.

3.4.2 Results

The results are presented in Figure 4. All 9 scenarios for treatment T1 are presented in
rows and numbered (1)-(9). Each graph corresponds to fixed expected probabilities
of event for treatment T1 (•), and each cell corresponds to a combination of expected
probabilities of benefit and risk for T2. The probabilities P[P1,2

l > 0.8] are presented
on the left panel, P[P1,2

u > 0.8] on the middle panel and φ on the right panel, for
which positive values are displayed in blue, negative values are in red and null val-
ues are in white.

In scenario 1, the two measures are in agreement to recommend T1, which has mod-
erate benefit and risk (θ11 = θ12 = 0.5), when T2 has less benefit and more risk.
On the diagonal, SLoS favours T1 to more effective treatments but with very high
risk (respectively, to safer treatments but with very low benefit). In contrast, MCDA
recommends more effective but highly unsafe treatments, or safer but no effective
treatments, compared to T1. For example, when θ21 = 0.8 and θ22 = 0.9 (large ben-
efit but high risk), SLoS favours T1 in 100% of the trials while MCDA recommends
it in 62% only, resulting in φ = 0.38. Also, when θ21 = 0.6 and θ22 = 0.7 (increased
benefit by 0.1 and risk by 0.2 compared to T1), SLoS favours T1 in 80% and MCDA
in 57% of the cases (φ = 0.23). This reflects the property of SLoS that increases in
risk are less tolerated when the amount of benefit is large enough. Similar patterns
are observed in scenarios 2 and 3 where treatment T1 has either a low benefit and a
large risk, or a large benefit and a low risk, but not extreme probabilities of event.

In scenario 4, T1 has almost no benefit nor risk, with θ11 = θ12 = 0.1. As expected,
it is almost never recommended by SLoS, but it could be recommended by MCDA
in scenarios where the alternative T2 has some benefit but a higher increase in risk.
For example, when θ21 = 0.2 and θ22 = 0.3 (increased benefit by 0.1 and risk by 0.2
compared to T1), MCDA recommends T1 in 70% of the cases while it is never recom-
mended by SLoS (φ = −0.70). This is consistent with the stated desirable property
that we are not interested in the level of risk if the drug does not treat the patients.
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FIGURE 3.4: Results of the simulation scenarios for two equally
important criteria (wj = w̃j = 0.5 for j = 1, 2). • = T1. Left
panel: P[P1,2

l > 0.8]. Middle panel: P[P1,2
u > 0.8]. Right panel:

φ = P[P1,2
l > 0.8] − P[P1,2

u > 0.8], for which blue cells (resp., red
cells) indicate that SLoS recommends T1 more often (resp., less often)

than MCDA.

On the other hand, when θ21 = 0.3 and θ22 = 0.2 (increased benefit by 0.2 and risk
by 0.1 compared to T1), SLoS discriminates better the treatments and recommends
T2 in 100% of the cases while MCDA recommends it in only 68% (Appendix A, Fig-
ure A.1). Similar conclusions are obtained in scenario 5, where T1 has both extreme
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efficacy and risk (θ11 = θ12 = 0.9): SLoS never recommends the unsafe treatment
T1 if alternative treatments T2 have lower risk and at least some small benefit, while
MCDA recommends T1 as compared to treatments with a larger decrease in benefit
than in risk. This is the case for instance when θ21 = 0.6 and θ22 = 0.7 (decreased
benefit by 0.3 and risk by 0.2 compared to T1), where T1 is recommended in 65%
of the cases by MCDA and never recommended by SLoS (φ = −0.65). In contrast,
when θ21 = 0.7 and θ22 = 0.6 (decreased benefit by 0.2 and risk by 0.3 compared to
T1), SLoS favours T2 in 100% and MCDA in 67% of the cases (Supplemental Material,
Figure S1).

Scenarios 6 and 7 correspond to treatment T1 with either both low benefit and risk
(θ11 = θ12 = 0.3) or large benefit and risk (θ11 = θ12 = 0.7) but where the proba-
bilities of event are not extreme. The measures are in agreement to recommend T1
when T2 is indisputably worse. On the diagonal, T1 is more often recommended by
SLoS when T2 has no benefit nor risk (θ21 = θ22 = 0.1) or very large benefit and
risk (θ21 = θ22 = 0.9). On the other hand, SLoS favours more treatments with ben-
efit and risk probabilities closer to 50%. For example, in scenario 6, when θ21 = 0.4
and θ22 = 0.5 (increased benefit by 0.1 and risk by 0.2 compared to T1), SLoS rec-
ommends T1 in only 17% of the cases, but MCDA in 59% (φ = −0.42). Similarly,
when θ21 = 0.5 and θ22 = 0.4 (increased benefit by 0.2 and risk by 0.1 compared to
T1), T1 is not favoured by any of the methods, but SLoS recommends the alternative
T2 in 88% of the cases and MCDA in only 59% (Supplemental Material, Figure S1).
Similar results are observed in scenario 7 for the same examples.

In all scenarios, both methods are in agreement to recommend T1 when it is indis-
putably better than T2, i.e. more effective and safer (or to recommend T2 when T1
is indisputably worse, i.e. less effective and more toxic, see Supplemental Material
Figure S1). This is well illustrated in scenarios 8 (θ11 = 0.1 and θ12 = 0.9) and 9
(θ11 = 0.9 and θ12 = 0.1). In scenario 8, MCDA discriminates slightly better treat-
ments with no efficacy or high risk between themselves, while SLoS penalizes them
equally, as they should not be recommended anyway.

Overall, both MCDA and SLoS have good performances to discriminate the benefit-
risk balance of the treatments. They provide similar conclusions in many situations,
and the cases where they differ highlight the two desirable properties of SLoS. Over
all possible scenarios, SLoS recommends safer treatments than MCDA in half of the
scenarios, and less safe treatments in the other half.

3.4.3 Sensitivity analyses

While the case of equally important and uncorrelated criteria is considered above,
we investigated the robustness of the results in cases of:

• Equally important criteria wj = w̃j = 0.5 for j = 1, 2 and strongly correlated
criteria: ρ = 0.8 (positive correlation) and ρ = −0.8 (negative correlation).

• More weight on the risk criterion, using MCDA weights (w1, w2)=(0.25, 0.75)
and mapped SLoS weights (w̃1, w̃2)=(0.30, 0.70), no correlation between the
criteria.

• More weight on the risk criterion, with (w1, w2) = (w̃1, w̃2)=(0.25, 0.75) (no
mapping), no correlation between the criteria. This scenario aims at evaluating
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the impact of the weight mapping on the results, by comparing its results to
those of the previous case.

The results of the sensitivity analyses are given in Supplemental Material.

Both measures are robust to positive and negative correlations between the out-
comes, with very similar results (Supplemental Material, Figures S2-S5). When an
MCDA weight of 25% is given to the benefit, both measures penalize more the risk,
but analogous differences and similarities as before could be observed between them
(Supplemental Material, Figures S6-S7). Since the mapping is not far from an iden-
tity transformation, omitting it does not have a major impact on the results (Supple-
mental Material, Figures S8-S9).

A simulation study was also conducted with four criteria (two benefits j = 1, 2 and
two risks j = 3, 4), for which the investigated scenarios are summarized in Supple-
mental Material, Table S1, under the following assumptions:

• Equally important criteria with weights wj = w̃j = 0.25 for j = 1, ..., 4, no
correlation between the criteria.

• Equally important criteria with weights wj = w̃j = 0.25 for j = 1, ..., 4, corre-
lated criteria (see correlation matrices in Supplemental Material).

• More weight on the risk criteria, with MCDA weights (w1, w2, w3, w4)=(0.10,
0.10, 0.40, 0.40) and mapped SLoS weights (w̃1, w̃2, w̃3, w̃4)=(0.15, 0.15, 0.43,
0.43), no correlation between the criteria.

• More weight on the risk criteria, with (w1, w2, w3, w4)=(w̃1, w̃2, w̃3, w̃4)=(0.10,
0.10, 0.40, 0.40) (no mapping), no correlation between the criteria.

Similar conclusions could be drawn when comparing MCDA and SLoS using four
criteria, even if the interpretation of the simulation scenarios is somewhat less straight-
forward as the amount of possible situations (low/moderate/high benefits and risks)
increases (Supplemental Material, Figures S10-S19).

Overall, the conclusions are robust to correlations, number of criteria, weighting and
weight mapping for both measures.

3.5 Discussion

In this paper, we propose SLoS as a new tool for drug benefit-risk assessment. It
offers the same advantages as MCDA to summarize the benefit-risk balance of the
treatments in a single measure, but it has additional desirable properties permitting
to avoid recommendations of non-effective or extremely unsafe treatments, and to
tolerate larger increases in risk for a given increase in benefit when the amount of
benefit is small than when it is high. In contrast, we have shown that the linear form
of the MCDA utility score involves implicit assumptions of the decision-makers,
such as a constant benefit-risk trade-off for all values of benefit or risk, and might
lead to counter-intuitive conclusions. It is worth noting that these additive and lin-
ear properties were shown to be inadequate in other application areas of MCDA [78,
84], and its limitations in the health domain have been highlighted as well [87, 83].
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The independence of the benefit and risk criteria is usually assumed for the sake of
simplicity. Correlations could be taken into account in the analyses, however our
simulation study shows that both measures are robust to correlations between out-
comes.

Importantly, SLoS penalizes drugs with no efficacy, which is sensible for compar-
isons between active treatments. Indeed, a ‘no treatment/placebo’ option, in the
absence of placebo effect, will most likely be strongly penalized by SLoS due to its
lack of efficacy, although it may be preferable to any active treatment with a small
amount of efficacy but that causes more harm overall. Therefore, MCDA’s recom-
mendations may be more reliable in such cases and this should be carefully consid-
ered before choosing the method and when interpreting the results. However, the
area of application of SLoS remains large, as many drug comparisons involve a stan-
dard of care, or a placebo with expected effects that are non-negligible [55].

The MCDA weights of the criteria should be elicited according to the preferences
of the decision-makers (regulators, experts, patients...) and methods have been pro-
posed in the literature for this purpose [133, 82, 93, 132, 73, 57, 8, 9]. We propose
a simple mapping to obtain SLoS weights from MCDA weights, so that the same
elicitation process could be followed while preserving the weight interpretation. It
should be noted that the mapping is not far from an identity transformation, and
omitting it does not strongly affect the results. We considered in this paper fixed
weights, but extended models have been proposed where the weights are treated as
random variables to account for some uncertainty in their assignment [131, 112].

As an aggregation method involving multiple criteria, SLoS could be included within
the family of non-linear MCDA models. It was shown that SLoS has the desirable
properties even under the linear partial value functions on which this work has fo-
cused only. An alternative approach between linear MCDA and SLoS could be to
handle the decreasing level of risk tolerance relative to benefits by varying the shape
of the partial value functions. For instance, one can derive linearly-weighted par-
tial value functions used in the linear utility score that exhibit the same degree of
decreasing risk tolerance as SLoS. This, however, seems to be non-trivial and re-
quires extensive attention. Furthermore, as stated above, the explicit elicitation of
non-linear forms for partial value functions may be difficult for project teams. The
weight elicitation and their interpretation appear also more challenging, in partic-
ular if the shapes of the partial value functions are different from one criterion to
another. Meanwhile, an exploration of the use of non-linear partial value functions
both in the framework of the additive utility score and SLoS is of great practical in-
terest and is to be investigated.

In many cases, SLoS and MCDA provide similar conclusions, but SLoS shows clear
advantages when treatments have no benefit or extreme risk. In general, this sit-
uation may occur in early stage drug developments, or at least before the time of
marketing authorization application, since treatments with no evidence of efficacy
or high toxicities usually do not reach this point and are stopped before. Until now,
benefit-risk assessments were mainly conducted in late stage by the sponsor and/or
regulatory agencies, but it is recommended to initiate the benefit-risk assessment
earlier in order to better support internal decisions and discussions with health au-
thorities about the development strategy [113]. Therefore, SLoS could be used in
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early development, and then updated during the following phases and the regula-
tory process until post-marketing surveillance, in order to ensure a transparent and
consistent benefit-risk assessment throughout the drug life-cycle.
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Chapter 4

Decision-making using a
composite definition of success

Background

This chapter was published as:

Saint-Hilary G, Robert V, Gasparini M. Decision-making in drug development using
a composite definition of success. Pharmaceutical Statistics; 2018;1–15. doi: 10.1002/
pst.1870. [110]

4.1 Introduction

Decision-making in pharmaceutical development aims at making an optimal choice
between several alternatives, at multiple time points during a drug life-cycle, based
on the current knowledge of the investigational product. For example, go/no-go de-
cisions are made at the end of phase I and of phase II clinical trials, according to the
evidence from the accumulated data and the market potential of the experimental
drug compared to other compounds for the same disease. However, decisions are
not limited to the continuation or the termination of the development, but are also
needed to choose the targeted indication, the patient population, the doses or the
study designs.
The success of a drug development is driven by the conjunction between a valu-
able product and a successful development strategy. A marketing authorization is
usually conditioned by the success of the pivotal clinical trials, which must reach sta-
tistical significance on their primary endpoint while showing a clinically meaningful
effect of the drug (see for example [43, 44, 42]). On the other hand, the benefit-risk
balance is a strong predictor of the long-term viability of a medicine, and a key ele-
ment for the regulatory approval process [41, 45, 136]. Indeed, only medicines with
a favorable benefit-risk ratio should be considered, i.e. when the benefits outweigh
the risks.
Moreover, even though the final decisions always involve a qualitative judgement
from the decision-makers, the project teams need tools to summarize the available
information and to assess the chances of success of the drug development. Evidence-
based quantitative methodologies have been proposed to inform decision-making,
either to develop metrics and standard processes to make go/no-go decisions [23,
49], to assess the benefit-risk balance of the treatments [59, 133, 82, 92] or to predict
the statistical significance or the futility of clinical trials [52, 72, 101, 127, 129, 128,
139, 145]. So far, predictions of success and benefit-risk assessments were both used
for decision-making, but were considered separately.
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The aim of this paper is to propose a comprehensive approach to predict the success
of a drug development strategy. We define success as a composite event based on
the statistical significance of the treatment effect on the primary endpoint, its clin-
ical relevance and a favorable benefit-risk balance versus the comparator(s) in the
next pivotal studies. Using a Bayesian framework, we account for the dependence
between the different components, and we also present their marginal predictive
probability of occurrence separately for a transparent assessment of the strategies.
The statistical methods to predict the composite success of a drug development strat-
egy and of its components are detailed in section 4.2. In Section 4.3, we present a
case-study to compare the chances of success of different development strategies in
Major Depressive Disorder. This example is fictive but inspired by a real case where
the same statistical methods were used. A discussion and concluding remarks are
given in Section 4.4. Additional information may be found in Appendix B.

4.2 Methods

In this section, we suppose that some evidence on the efficacy and safety endpoints
is available from one or several clinical non-pivotal trials, and that the future clini-
cal development strategy has been defined with one or several future pivotal trials
(Figure 4.1). The future trials are already designed and powered to show superiority
of an experimental treatment against a control on a primary endpoint. It is assumed
that this primary endpoint was one of the efficacy criteria assessed in the previous
trials. First, we will present in Sections 4.2.1 to 4.2.3 how to predict the success of
one future trial using our composite definition of success. The extension to drug
developments including several future trials is presented in Section 4.2.4.

FIGURE 4.1: Decision-making timepoint

The methods presented here can be simply extended to earlier decision-making
timepoints, when some non-pivotal clinical trials are still to be conducted, or later,
when results for some pivotal trials have been observed. In the first case, one should
expect more uncertainty, while in the second case, the variability is reduced since
the outcome of some pivotal trials is observed.
We declare the success of a drug development strategy if, in each pivotal study,
the observed treatment effect on the primary endpoint is statistically significant, if
it is also clinically relevant, and if the observed benefit-risk balance is better than
the comparator(s). If several pivotal trials are planned, we assume that the criteria
should be fulfilled in all of them and not only at the development level (using for
example meta-analyses or a full Bayesian approach), because one pivotal trial fail-
ing to satisfy these criteria is likely to cast some doubts on the replicability of the
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results [46]. It should be noted however that, when the safety of a new drug is eval-
uated for marketing authorization, the individual study safety results are important
but pooled analyses should also be provided in order to incorporate long-term, less
common and rare outcomes in the overall safety profile. These data are usually not
available at the time of the decision-making timepoint considered in this paper and
are not incorporated in our composite definition of success.
The predictive probabilities are called respectively PPoS1, PPoS2, PPoS3 and PPoS
for the statistical significance on the primary endpoint, its clinical relevance, the pos-
itive benefit-risk balance and the overall composite success.

4.2.1 Success criteria based on the primary endpoint

Suppose that the planned analysis on the primary endpoint in the next study follows
a conventional frequentist approach testing the null hypothesis H0 : δ ≤ 0 against
the alternative, H1 : δ > 0, where δ is a measure of difference between the exper-
imental treatment and the control. Suppose we have the prior distribution density
f (δ), then its posterior distribution obtained from the data Y = y observed in one
previous clinical trial or resulting from evidence synthesis of several trials [3, 141,
142] can be calculated according to Bayes theorem as:

f (δ | Y = y) =
fY (y | δ) f (δ)

f (y)
, (4.1)

where fY is the density of Y conditional on δ and f (y) =
∫

fY (y | δ) f (δ) dδ.
Let d∗ be the difference between treatments that will be observed on the primary
endpoint in the next trial, and fd∗ its density conditional on δ. The probability to
have d∗ greater than a pre-defined threshold D in the next trial conditional on δ is:

P (d∗ > D | δ) =
∫

z>D
fd∗ (z | δ) dz.

Its predictive probability after observing the data from the previous trials can there-
fore be calculated using the posterior distribution f (δ | Y = y), under the usual
assumption of conditional independence of the next trial from the previous ones
given δ:

P(d∗ > D | Y = y) =
∫ ∫

z>D
fd∗ (z | δ) f (δ | Y = y)dzdδ.

Using Equation (4.1), it can be re-written as:

P(d∗ > D | Y = y) =

∫ ∫
z>D fd∗ (z | δ) fY (y | δ) f (δ) dzdδ∫

fY (y | δ) f (δ) dδ
. (4.2)

For example, assume that the current posterior distribution of δ based on the avail-
able evidence (i.e., having seen Y = y) is normal N

(
d, s2), and the distribution of

d∗ conditional on δ is normal with d∗ | δ ∼ N
(
δ, s∗2

)
, where s∗2 is its variance in

the next trial. From the posterior distribution of δ and the distribution of d∗ | δ, we
obtain the predictive distribution:

d∗ | Y = y ∼
∫

fd∗ (z | δ) f (δ | Y = y)dδ = N
(
d, s2 + s∗2

)
.
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Therefore the predictive probability of d∗ > D is:

P
(
d∗ > D | d, s2) = 1−Φ

(
D− d√
s2 + s∗2

)
,

where Φ denotes the cumulative distribution function of the standard normal distri-
bution.

We define the predictive probabilities of two success criteria based on the primary
endpoint:

• Statistical significance. When D = c, with c > 0 the critical value at which the
null hypothesis H0 is rejected at a pre-specified significance level α, the prob-
ability in Equation (4.2) is the predictive probability of statistical significance
on the primary endpoint in the next trial, and we note it PPoS1. Its closed for-
mula has been derived in earlier work, where it is also called assurance [101] or
Bayesian predictive power [126, 109]. In the example with a normal distribution
presented above, we have c = zαs∗, where zα is the (1− α)100th percentile of
the standard normal distribution.

• Clinical relevance. While the statistical significance is a gatekeeper to declare
the success of a trial, the clinical relevance of the observed difference between
treatments on the primary endpoint is also required for success (see for exam-
ple [43, 44, 42]). We define the probability of clinical relevance on the primary
endpoint, PPoS2, as the probability in Equation (4.2) for D = dT a pre-defined
minimal clinically relevant threshold.

According to the regulatory recommendations, the study should be powered such
that the anticipated treatment effect is equal to or larger than dT [67]. Statistical sig-
nificance is easier to reach than clinical relevance (PPoS1 > PPoS2) if c < dT, when
for example the study is powered with an anticipated treatment effect that is the
minimal clinically relevant difference. Clinical relevance is easier to reach than sta-
tistical significance (PPoS1 < PPoS2) if c > dT, when for example a treatment effect
greater than dT is anticipated and c is large due to the management of multiplicity
issues. PPoS1 and PPoS2 are equal if c = dT, i.e. if c is just clinically meaningful.

4.2.2 Success criterion based on the benefit-risk balance

While the success of a pivotal clinical trial is often focused on the primary efficacy
endpoint, the decisions regarding the drug development and its licensing are taken
considering several efficacy and safety endpoints, i.e. by assessing the benefit-risk
balance of the new drug versus comparator(s). Several quantitative methodologies
have been proposed [59, 133, 82, 92, 90, 91] and provide an explicit quantitative in-
formation on benefits and risks in order to assist the decision-making process. In this
paper, we choose a Multi-Criteria Decision Analysis (MCDA) [93, 94, 98], since the
European Medicine Agency Benefit-Risk Methodology Project suggested that it is
one of the most comprehensive among the quantitative methodologies they consid-
ered [35, 36, 37, 38], and it is also recommended by the IMI PROTECT Work package
5 [69]. Other methodologies can be chosen and the methods described in this pa-
per can be adapted accordingly. In this section, we first briefly present the MCDA
model, and then show how it can be used to calculate another component of the
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predictive probability of success in a next trial.

The principle of MCDA is to compare several treatments using utility scores calcu-
lated from multiple criteria of benefit and risk, and taking into account their relative
importance according to the preferences of the decision-makers. In the initial version
of MCDA [93, 94], the scoring process of the treatments is deterministic and ignores
the parameter uncertainty induced by the data sampling variation. Instead, we use a
probabilistic model, often called Probabilistic MCDA (or Stochastic MCDA), devel-
oped by Waddingham et al. [138] which estimates the score distributions based on
the distributions of the criterion parameters, which are themselves estimated from
the treatment effects observed in previous studies.

Consider the experimental treatment and the control denoted by i = 1, 2 respec-
tively, assessed on n criteria (j = 1, ..., n), and the following quantities and functions
[93]:

(i) The performance of treatment i on criterion j is denoted by ξij. The vector of
criterion performances for the treatment i is denoted by ξ i = (ξi1, ..., ξin).

(ii) The monotonically increasing partial value functions 0 ≤ uj(·) ≤ 1 are used to
normalize the criterion performances. Let ξ ′j and ξ ′′j be the most and the least
preferable values, then uj(ξ

′′
j ) = 0 and uj(ξ

′
j) = 1. The inequality uj(ξij) >

uj(ξhj) indicates that the performance of the treatment i is preferred to the per-
formance of the treatment h on criterion j. A common choice for the function
[133, 93, 138, 80] is

uj(ξij) =
ξij − ξ ′′j
ξ ′j − ξ ′′j

.

(iii) The weights indicating the relative importance of the criteria are known con-
stants denoted by wj, with the constraint that ∑n

j=1 wj = 1. The wj should be
provided by the decision-makers. The vector of weights used for the analysis
is denoted by w = (w1, ..., wn).

It is generally assumed that the criteria are independent, which allows us to use an
additive formula to calculate the global utility score:

ui = u(ξ i, w) = w1u1(ξi1) + ... + wnun(ξin) =
n

∑
j=1

wjuj(ξij).

The utility score is a measure of benefit-risk, which permits to discriminate the treat-
ments according to their performances, and according to the weights attributed to
the criteria. The highest the utility score, the most preferable the benefit-risk ratio,
therefore a treatment has a positive benefit-risk balance compared to the control if
the difference between the two utility scores is positive:

∆u12 = ∆u(ξ1, ξ2, w) = u(ξ1, w)− u(ξ2, w) > 0.

Following the approach proposed by Waddingham et al. [138], we consider a Bayesian
model and assign a probability distribution to the ξij, which are considered as un-
known parameters. Suppose the information we have about ξij prior to the clinical
development is expressed through the prior distribution density f (ξij). Its poste-
rior distribution can be obtained from the data Xij = xij summarizing the available
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evidence, according to Bayes theorem:

f (ξij | Xij = xij) =
fXij

(
xij | ξij

)
f
(
ξij
)

f (xij)
, (4.3)

where fXij is the density of Xij conditional on ξij and f (xij) =
∫

fXij

(
xij | ξij

)
f
(
ξij
)

dξij.
It follows that the utility scores ui and their difference between two treatments ∆u12
are unobservable random variables.
At the sampling level, on the other hand, there will usually exist observable ran-
dom variables x∗ij which are estimates of the ξij in the next trial, much like in the
discussion about efficacy there exists an observable random variable d∗ which is an
estimate of δ. Let x∗i be the vectorized notation of x∗ij accross the criteria.
To fulfill our stated goal of requiring a positive benefit-risk balance at the trial level
on each pivotal study, consider then ∆∗u12 = ∆u(x∗1 , x∗2 , w) the observed difference
between the utility scores of the experimental treatment and the control in the next
trial. Let f∆∗u12 be its density conditional on unknown true values of the parameters
ξ1 and ξ2: f∆∗u12 takes into account the data sampling variation in the next study. The
probability of observing a positive benefit-risk balance of the experimental treatment
versus the control in the next trial conditional on ξ1 and ξ2 is calculated as

P(∆∗u12 > 0 | ξ1, ξ2) =
∫

v>0
f∆∗u12(v | ξ1, ξ2)dv.

Its predictive probability after observing the data from the previous trials can there-
fore be calculated using the posterior distributions f (ξ1 | X1 = x1) and f (ξ2 | X2 =
x2), given that ξ1 and ξ2 are assumed to be independent:

PPoS3 = P(∆∗u12 > 0 | X1 = x1, X2 = x2)

=
∫ ∫ ∫

v>0
f∆∗u12(v | ξ1, ξ2) f (ξ1 | X1 = x1) f (ξ2 | X2 = x2)dvdξ1dξ2.

Using Equation (4.3) and the vectorized notations, it can be re-written as:

PPoS3 =

∫ ∫ ∫
v>0 f∆∗u12(v | ξ1, ξ2) fX1 (x1 | ξ1) fX2 (x2 | ξ2) f (ξ1) f (ξ2) dvdξ1dξ2∫

fX1 (x1 | ξ1) f (ξ1) dξ1
∫

fX2 (x2 | ξ2) f (ξ2) dξ2
.

While these formula are likely to be difficult to resolve analytically, the results can
be easily obtained by simulations according to the following steps:

(i) The posterior distributions f (ξ1 | X1 = x1) and f (ξ2 | X2 = x2) of ξ1 and ξ2
are obtained using classical Bayesian methods [125], either analytically or with
Markov Chain Monte Carlo (MCMC) simulations.

(ii) Values ξ
∗(k)
1 and ξ

∗(k)
2 are sampled from f (ξ1 | X1 = x1) and f (ξ2 | X2 = x2),

for k = 1, ..., K where K is the total number of simulations (a large number).
These simulations can come from the MCMC simulations, after the chain(s)
converged.

(iii) Observed values x∗(k)1 and x∗(k)2 of the performances of the treatments in the
next trial are simulated from fX1(x1 | ξ

∗(k)
1 ) and fX2(x2 | ξ

∗(k)
2 ), according to the

study design and in particular the planned number of patients.

(iv) The difference between treatment utility scores is calculated for each simulated
trial k as ∆∗(k)u12 = u(x∗(k)1 , w)− u(x∗(k)2 , w).
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(v) The predictive probability of positive benefit-risk balance of the experimental
treatment versus the control in the next trial is approximated by

PPoS3 ≈
1
K

K

∑
k=1

1

[
∆∗(k)u12 > 0

]
,

where 1[true] = 1 and 1[ f alse] = 0.

4.2.3 Composite success

We define the success of a drug development strategy as the simultaneous fulfill-
ment of the following criteria in all the pivotal studies:

(i) The statistical significance on the primary endpoint.

(ii) A clinically meaningful effect on the primary endpoint.

(iii) A positive benefit-risk balance versus the comparator(s).

Therefore, the predictive probability of composite success of a drug development
strategy, with one future pivotal study, can be written as:

PPoS = P [(d∗ > max(c, dT)) ∩ (∆∗u12 > 0) | Y = y, X1 = x1, X2 = x2] .

It is highly unlikely that δ is independent of ξ1 and ξ2, since the primary endpoint
is almost always one of the criteria considered in the benefit-risk assessment. There-
fore, we consider the joint distribution of (δ, ξ1, ξ2) to write explicitely the formula
of the PPoS, following the same principle as in the previous sections:

PPoS =

∫ ∫
Z fd∗,∆∗u12(z, v | δ, ξ1, ξ2) fY,X1,X2 (y, x1, x2 | δ, ξ1, ξ2) f (δ, ξ1, ξ2) d(z, v)d (δ, ξ1, ξ2)∫

fY,X1,X2 (y, x1, x2 | δ, ξ1, ξ2) f (δ, ξ1, ξ2) d (δ, ξ1, ξ2)
,

where Z = {z > max(c, dT), v > 0}.

It should be noted that, for a fixed c (which usually depends on a fixed type I error α,
the estimation from previous evidence of the variability of the primary endpoint and
the number of patients or of events in the next study) and a pre-defined threshold
dT, one should know in advance the maximum between c and dT, and only one
of the two criteria is actually needed in the formula. On the other hand, these two
criteria are useful to communicate with non-statisticians on the definition of success.
Using both thresholds permits to calculate several PPoS separately and to discuss
them with the project team while the discussions regarding the sample size of the
next study or the choice of the threshold dT are still on-going, without changing
the formula itself. For transparency, the PPoS should be provided along with its
components PPoS1, PPoS2 and PPoS3, to present which ones are the most restrictive
and have the greatest impact on the predictive probability of composite success.
The predictive probabilities of achieving two components out of three can also be
calculated and discussed.

4.2.4 Development strategies with more than one future studies

Suppose now that the future development strategy consists in S future pivotal tri-
als. We assume that the development strategy will be successful if the criteria of
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statistical significance, clinical relevance and positive benefit-risk balance are ful-
filled in each of the pivotal trials. The estimates of the efficacy and safety criterion
performances in the next trials are conditionally independent, between trials, given
the posterior distribution of their parameters. The predictive probabilities can be
obtained by marginalizing over the parameters, using the posterior distributions:

PPoS1 =
∫ ( S

∏
m=1

P [d∗m > cm | δ]

)
f (δ | Y = y)dδ,

PPoS2 =
∫ ( S

∏
m=1

P [d∗m > dm
T | δ]

)
f (δ | Y = y)dδ,

PPoS3 =
∫ ∫ ( S

∏
m=1

P [∆∗mu12 > 0 | ξ1, ξ2]

)
f (ξ1 | X1 = x1) f (ξ2 | X2 = x2)dξ1dξ2,

PPoS =
∫ ( S

∏
m=1

P [(d∗m > max(cm, dm
T )) ∩ (∆∗mu12 > 0) | δ, ξ1, ξ2]

)
×

f (δ, ξ1, ξ2 | Y = y, X1 = x1, X2 = x2)d (δ, ξ1, ξ2) ,

where d∗m, cm, dm
T and ∆∗mu12 are respectively the observed difference between treat-

ments on the primary endpoint, the critical value at which the null hypothesis will be
rejected, the clinical threshold and the observed difference between treatment util-
ity scores in study m. As before, these formulas are likely to be difficult to resolve
analytically, but the results can be easily obtained by simulations.

4.3 Example in Major Depressive Disorder

In this section, we illustrate the use of the above methods to support decision-
making between different future strategies of development in Major Depressive Dis-
order. This example is fictive but inspired by a real case discussed with a project
team: the clinical context, the indication and the data have been changed for confi-
dentiality reasons, but the essence of the problem and the statistical methods are the
same.

4.3.1 Context and data

We assume that the results of one Phase II trial are available, which compared a Low
dose and a High dose of an experimental treatment versus placebo. Suppose that
only one pivotal two-arm Phase III study is planned to compare this experimental
treatment versus placebo. The dose or regimen of the experimental treatment group
needs to be chosen, according to its probability to reach statistical significance and
clinical relevance on the primary endpoint and to have a positive benefit-risk balance
versus placebo in the next trial.
The primary efficacy endpoint for both the Phase II and the Phase III trials is the total
score on the Hamilton Depression Rating Scale 17 items (HAM-D17) after 6 weeks of
treatment. The HAM-D17 total score ranges from 0 to 52, with higher values indi-
cating a higher severity of illness. The safety of the treatment is mainly assessed by
the proportion of patients experiencing emergent adverse events during the study.
Descriptive statistics of the results of the Phase II study on the HAM-D17 total score
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and on the five more frequent adverse events are presented in Table 4.1. A dose-
response relationship is observed, with the Higher dose showing a better efficacy
but also more adverse events than the Low dose. In particular, Hypokalemia are
observed in 71% of the patients at High dose: this adverse event may be a safety
concern for this dose.

TABLE 4.1: Results of the Phase II study for the primary efficacy end-
point and the five more frequent adverse events (descriptive statis-

tics)

Low dose High dose Placebo
Efficacy (Intent-To-Treat population)
N 50 48 51
HAM-D17 – Mean (SD) 14.0 (6.9) 12.6 (7.1) 16.9 (6.9)
Safety (Safety population)
N 50 49 52
Hypokalemia — n (%) 1 ( 2%) 35 (71%) 0 (0%)
Nausea — n (%) 8 (16%) 14 (29%) 2 (4%)
Diarrhea — n (%) 4 ( 8%) 8 (16%) 1 (2%)
Dizziness — n (%) 5 (10%) 9 (18%) 0 (0%)
Headache — n (%) 7 (14%) 7 (14%) 3 (6%)
HAM-D17: HAM-D17 total score at 6 weeks ; SD = Standard Deviation

The next Phase III study is designed as a two-arm trial comparing one regimen of the
experimental treatment, to be chosen, versus placebo on the HAM-D17 total score.
A sample size of 228 patients (114 per arm) is planned to reach a power of 90%,
based on an assumed difference of 3 points on the HAM-D17 total score at 6 weeks,
a standard-deviation of 7 and a one-sided α of 2.5%. Both statistical significance and
clinical relevance on this endpoint should be achieved in this trial to apply for a
marketing authorization. There is no consensus on the minimally relevant effect but
the clinical relevance would be indisputable for a threshold dT = 3 points. For the
MCDA analysis, we consider the HAM-D17 total score as the only criterion of benefit,
and the occurrence of the five more frequent adverse events as the risk criteria.

4.3.2 Bayesian model

The prior distributions, the sampling distributions (likelihoods) and the posterior
distributions of all the parameters used in the model are summarized in Table 4.2.
The HAM-D17 total score is usually and reasonably assumed to be normally dis-
tributed [16]. The mean effects in each arm for the Low dose, the High dose and the
placebo (i = 1, 2, 3 respectively) are denoted by the parameters ξi1. Their posterior
distributions are obtained from a weakly informative conjugate prior ξi1 ∼ N(0, 104)
and the sample means m1 = 14.0, m2 = 12.6 and m3 = 16.9 observed in the Phase
II study, which are realizations of the normal distributions N(ξi1, σ2

i ) with σ1 = 0.98,
σ2 = 1.02 and σ3 = 0.97.
The parameters of the treatment differences versus placebo for each dose i = 1, 2
are δi = ξ31 − ξi1. Their posterior distributions are obtained from a weakly informa-
tive prior δi ∼ N(0, 2× 104) (induced by the priors on ξi1) and from the observed
differences between treatments di = m3 − mi which are realizations of the normal
distributions N(δi = ξ31 − ξi1, s2

i ) for i = 1, 2, where s1 = 1.37 and s2 = 1.41 are the
standard errors of the differences.
The five more frequent adverse events are binary events. We note rij, nij and ξij re-
spectively the number of events, the number of patients and the probability of event
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TABLE 4.2: Distributions of the parameters

Parameter Estimate Prior Likelihood Posterior
HAM-D17 mean total score in each arm (i = 1, ..., 3)

ξi1 mi N(0, σ2
0 ) N(ξi1, σ2

i ) N
(

σ2
0

σ2
0+σ2

i
mi,

σ2
0 σ2

i
σ2

0+σ2
i

)
HAM-D17 mean total score, difference versus placebo (i = 1, 2)

δi = ξ31 − ξi1 di = m3 −mi N(0, s2
0) N(δi, s2

i ) N
(

s2
0

s2
0+s2

i
di,

s2
0s2

i
s2

0+s2
i

)
Occurrence of adverse events in each arm (i = 1, ..., 3 ; j = 2, ..., 6)

ξij rij/nij Beta(1, 1) Bin(nij, ξij)/nij Beta(rij + 1, nij − rij + 1)

σ2
0 = 104 ; s2

0 = 2× σ2
0 = 2× 104 .

for treatment i (i = 1, 2, 3) and safety criterion j (j = 2, ..., 6). We obtain the posterior
distributions of the parameters ξij from the realizations rij of the binomial densities
Bin

(
nij, ξij

)
and uniform conjugate priors ξij ∼ Beta (1, 1).

The partial value functions of all criteria are defined as linear functions as presented
in Section 4.2.2. The best and the worst values of the HAM-D17 mean total score at 6
weeks in the patient population are assumed to be 10 and 25 respectively. The range
of the probabilities of adverse event is [0, 1], so the best and the worst values for the
risk criteria are naturally defined as 0 and 1 respectively.
Benefits and risks are assumed to have an equal importance, with a weight of 50%
attributed to the HAM-D17 total score and 50% in total for the safety criteria, split
as 20% for Hypokalemia and 7.5% for each of the other adverse events. The median
and 95% credible intervals of the posterior distributions, the partial value functions
and the weights are summarized in Table 4.3.

TABLE 4.3: Median and 95% credible interval (CrI) of the posterior
distributions of the benefit and risk parameters, their partial value

functions and their weight

Posterior distribution Partial
Median (95% CrI) value function Weight

Low dose High dose Placebo
Benefit criterion
HAM-D17 14.00 (12.13;15.86) 12.59 (10.54;14.66) 16.90 (15.07;18.73) u1(ξi1) =

25−ξi1
25−10 50%

Risk criteria
Hypokalemia 0.02 (0.00;0.10) 0.71 (0.58;0.82) 0.00 (0.00;0.07) u2(ξi2) = 1− ξi2 20%
Nausea 0.16 (0.08;0.29) 0.29 (0.18;0.42) 0.04 (0.01;0.13) u3(ξi3) = 1− ξi3 7.5%
Diarrhea 0.08 (0.03;0.19) 0.16 (0.09;0.29) 0.02 (0.00;0.10) u4(ξi4) = 1− ξi4 7.5%
Dizziness 0.10 (0.04;0.21) 0.18 (0.10;0.31) 0.00 (0.00;0.07) u5(ξi5) = 1− ξi5 7.5%
Headache 0.14 (0.07;0.26) 0.14 (0.07;0.27) 0.06 (0.02;0.16) u6(ξi6) = 1− ξi6 7.5%

The results of the next Phase III study are simulated conditional on the parameters
ξij and δi, which have the posterior distributions defined in Table 4.2, and assuming
that 114 patients per arm are included:

(i) Means HAM-D17 total score: m∗i | ξi1 ∼ N
(
ξi1, σ∗2i

)
for i = 1, 2, 3, with the

standard errors in the new trial σ∗i fixed to 7/
√

114 ≈ 0.66, i.e. with a stan-
dard deviation in all arms equal to 7 according to the literature and to the data
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FIGURE 4.2: Left: predictive distributions of the differences in Hamil-
ton Depression Rating Scale 17 items (HAM-D17) mean total score of
each dose versus placebo in the next phase 3 study. Right: predictive
distributions of the differences in benefit-risk (B/R) utility scores of

each dose versus placebo in the next phase 3 study

observed in the Phase II study.

(ii) Differences in HAM-D17 mean total score versus placebo: d∗i | δi ∼ N
(
δi, s∗2i

)
for i = 1, 2, with the standard errors in the new trial s∗i =

√
2σ∗i ≈ 0.93.

(iii) Proportions of adverse events: p∗ij | ξij = r∗ij/114 with r∗ij ∼ Bin
(
114, ξij

)
for

i = 1, 2, 3 and j = 2, ..., 6.

(iv) Benefit-risk utility scores: u(m∗i , p∗i2, ..., p∗i6, w) = w1u1(m∗i ) + w2u2(p∗i2) + ... +
w6u6(p∗i6) with w = (0.5, 0.2, 0.075, 0.075, 0.075, 0.075). As before, for sim-
plicity, we note u(m∗i , p∗i2, ..., p∗i6, w) = u∗i .

(v) Differences in benefit-risk utility score versus placebo: ∆∗ui3 = u∗i − u∗3 for
i = 1, 2.

The analyses were conducted using R, and 100,000 simulations were run to estimate
the parameter distributions and the probabilities of success.

4.3.3 First results

The predictive distributions of the differences in HAM-D17 mean total score, d∗1 and
d∗2 , and the predictive distributions of the differences in benefit-risk utility score,
∆∗u13 and ∆∗u23, of each dose versus placebo in the next Phase III study are pre-
sented in Figure 4.2. The predictive probability of composite success of the devel-
opment strategies, PPoS, along with the predictive probabilities of its components,
PPoS1, PPoS2 and PPoS3 are presented in Table 4.4.
Regarding the primary efficacy endpoint, statistical significance is reached if the dif-
ference between treatments on the primary endpoint in the next study is greater
than 1.96s∗ ≈ 1.82 and the clinical relevance is indisputably achieved if it is greater
than dT = 3, therefore the statistical significance is easier to achieve than the clinical
relevance (PPoS1 > PPoS2). The predictive probabilities for the High dose to fulfill
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TABLE 4.4: Predictive probabilities of success

Dose PPoS1 PPoS2 PPoS3 PPoS
(statistical significance) (clinical relevance) (positive B/R balance) (overall)

Low dose 74% 48% 88% 48%
High dose 93% 78% 24% 24%

these criteria are high (93% and 78% respectively). The predictive probability for
the Low dose to achieve the statistical significance is also encouraging (74%), but its
capacity to reach the clinical relevance could be questionable (48%). Therefore, if the
choice between the two doses was based only on the primary efficacy endpoint, the
High dose would be preferred.
On the other hand, the Low dose has a high predictive probability of positive benefit-
risk balance versus placebo (88%). In contrast, despite its encouraging efficacy re-
sults, the High dose has a safety profile which leads to a probability of only 24% to
show a better benefit-risk balance than placebo in the next Phase III.
Overall, the predictive probabilities of composite success of the drug development
strategies are only 48% and 24% respectively for the Low dose and the High dose. It
should be noted, and emphasized during the discussions with the decision-makers,
that the probability of success of the Low dose is bounded by its probability to
achieve the clinical relevance on the primary endpoint with dT = 3 points, while
the success of the High dose is compromised by potential safety concerns.

4.3.4 Strategy refinement

Based on the previous results, the project team can consider either stopping the de-
velopment, choosing the Low dose despite its low predictive probability of compos-
ite success if the chosen clinical threshold is considered to be an ambitious target, or
changing of strategy. Indeed, the unfavorable benefit-risk balance of the High dose
prevents from choosing it for further development. However, it is observed that the
most frequent adverse event at this dose is Hypokalemia, which could be managed
for example by a supplementation in potassium co-administered with the drug. The
project team may also consider another strategy which consists in initiating all pa-
tients at the Low dose, and to increase at the High dose only those not responding
to treatment at short term. This would permit to limit, although not completely pre-
venting, the occurrence of Hypokalemia, while increasing the overall efficacy of the
regimen compared to the Low dose only. Since no data were available for these two
regimen, the clinical assumptions were incorporated in the model as follows:

(i) High dose with potassium supplements. The predictions are based on the
posterior distribution of ξ32 obtained for the placebo for Hypokalemia, and
on the posterior distributions obtained for the High dose (as in the previous
section) for all the other criteria.

(ii) Dose increase. According to the clinicians, 30% to 40% of the patients would
increase to the High dose in the Phase III study, therefore a new parameter
with a uniform prior distribution ζ ∼ U[0.3, 0.4] is used in the model as the
proportion of patients receiving the High dose. We make the assumption that
the expected efficacy and safety of the experimental treatment in the subpop-
ulation of responder patients staying at Low dose are the same as those ob-
served for all patients receiving Low dose in the Phase II study. Similarly, we
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FIGURE 4.3: Left: predictive distributions of the differences in Hamil-
ton Depression Rating Scale 17 items (HAM-D17) mean total score of
each dose versus placebo in the next phase 3 study. Right: predictive
distributions of the differences in benefit-risk (B/R) utility scores of
each regimen versus placebo in the next phase 3 study. High dose

suppl = High dose with potassium supplements

suppose that the expected efficacy and safety in the subpopulation of nonre-
sponder patients increasing to High dose are the same as those observed for
all patients receiving High dose in the Phase II study. This could be debatable,
however it is considered to be a reasonable assumption and no other objective
hypothesis could be made. As a consequence, the parameters associated to the
efficacy and safety criteria are assumed to be linear combinations of the initial
parameters: (1− ζ)× ξ1j + ζ × ξ2j for j = 1, ..., 6.

The predictive distributions of the differences in HAM-D17 mean total score and of
the differences in benefit-risk utility score of each new regimen versus placebo in the
next Phase III study are presented in Figure 4.3, and the predictive probabilities of
success are summarized in Table 4.5.

TABLE 4.5: Predictive probabilities of success

Regimen PPoS1 PPoS2 PPoS3 PPoS
(statistical significance) (clinical relevance) (positive B/R balance) (overall)

High dose suppl 93% 78% 95% 78%
Dose increase 83% 59% 69% 58%
High dose suppl = High dose with potassium supplements

The supplementation in potassium substantially improves the benefit-risk balance
of the High dose, which is now predicted to be positive versus placebo with a prob-
ability of 95%, leading to a predictive probability of composite success of 78% for
this regimen. The dose increase, as expected, improves the chances to observe a
clinically relevant difference on the primary endpoint compared to the Low dose.
However, its predictive probability of composite success is only 58%. Given these
results, the best strategy seems to choose for further development the High dose
with a co-administration of potassium supplements, if the external factors (feasibil-
ity, quality of life, price...) do not alter this conclusion.
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4.3.5 Sensitivity analyses

We investigated the robustness of the results in cases of:

• Uncertainty in the weight elicitation, by applying a Dirichlet Stochastic Multi-
criteria Acceptability Analysis (Dirichlet SMAA) model [112], where the weights
are treated as random variables, and their variance depends on the decision-
makers’ confidence in their elicitation.

• Correlated criteria, by considering correlation patterns where (i) all criteria are
positively correlated, or (ii) the benefit criterion is negatively correlated with
the risk criteria, and the risk criteria are positively correlated between them-
selves.

• Departure from the clinical assumptions for the strategy refinement, where the
priors on the corresponding parameters (probability of Hypokalemia, propor-
tion of patients receiving the High dose) are changed.

The results of the sensitivity analyses are given in Appendix B. Overall, the conclu-
sions are robust to uncertainty in weight elicitation, correlations, and departure from
clinical assumptions.

4.3.6 Alternative example

An alternative example is presented in Appendix B, with the two following changes:

• The threshold of minimal clinical relevance is fixed at dT = 2 points. This
could be relevant if, for example, the drug is an add-on therapy administered
on top of a standard therapy, so the difference versus the control group may
not need to be as large as for a monotherapy.

• Three experimental arms are to be included in the next Phase III trial, and they
should be selected among the four possible regimen (Low dose, High dose,
High dose with potassium supplements and Dose increase).

This example illustrates a case where clinical relevance is easier to reach than statis-
tical significance (PPoS1 < PPoS2). Since PPoS3 is unchanged, the results indicate
that the High dose could be excluded from the selected regimen for Phase III, as in
the initial example, due to its low probability to show a positive benefit-risk balance
versus the control.

4.4 Discussion

The approach described in the paper provides some new quantitative methods for
predicting the success of a drug development by comparing several development
strategies using a composite definition of success, including the statistical signifi-
cance of the future trial(s) on the primary efficacy endpoint, the clinical relevance of
the treatment effect and a positive benefit-risk balance of the drug. The methods are
based on the available evidence from previous trials, which could be combined with
new additional hypotheses on the future development (such as a modification of the
regimen of a drug) using priors. The resulting predictive probability of composite
success and its components have demonstrated their utility in an actual go/no-go
decision setting, which inspired us to present a fictive, but realistic, example. Other
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applications could be considered, such as a decision-making tool for the selection be-
tween several doses at the interim analysis of an adapative design trial, or a measure
of development risks to be incorporated in financial tools for portfolio management
and valuation of investments [2].

Quantitative benefit-risk assessment requires many assumptions that may appear at
first difficult to elicitate, and the important role of value judgments in this under-
taking needs to be emphasized. This actually reflects the complexity of the context
in which drugs are evaluated, and the cognitive load required for health care deci-
sions (see [113, Chapter 5] for a full discussion on the challenges faced by the use
of explicit quantitative methods in benefit-risk assessment, and the advantages of
overcoming these issues to enhance the decision-making process). Guidance and
practical recommendations on the implementation of MCDA in the medical context
[82, 93] are valuable tools to help building such models, and some support could
also be found from the general literature on MCDA [5, 47].

Sensitivity analyses should be conducted as part of the decision-making process:

• The influence of subjectivity on the conclusions from MCDA should be inves-
tigated. First, the choice of the criteria used to assess the benefits and risks
can strongly affect the results, and a considerable effort has been made in the
past years to propose framework approaches that help in identifying the key
benefits and the key risks [92, 69, 99]. The second source of subjectivity is the
definition of the partial value functions to map the criterion measurements into
a 0-1 scale, which should reflect the importance of a change on each criterion.
Partial value functions could be very simple in some cases, as in our example
where they are assumed to be linear, but nonlinear functions are more sensible
when only some values, or ranges of values, actually represent an increased
benefit or risk. Third, MCDA requires the exact elicitation of weights to quan-
tify the relative importance of the criteria according to the preferences of the
decision makers. Extended models have been proposed where the weights are
considered to be random variables [112, 131], and sensitivity analyses could
be conducted by varying the variance of weights. Finally, the independence of
the criteria for benefits and risks is usually assumed for the sake of simplicity,
but the impact of possible correlations should be assessed [138].

• The sensitivity of the results to the choice of the priors used in the Bayesian
analysis should be evaluated [109]. In particular, our example presents a sit-
uation where some of the strategies considered for future development differ
from the past ones, and are not yet experimented. The success of these strate-
gies is predicted using together previous evidence on other regimens and clin-
ical assumptions, which are translated into priors on some parameters. The
impact of these assumptions on the reliability of the conclusions was evalu-
ated.

One may prefer to use a Frequentist framework instead of a Bayesian one where
only vague priors are used, and to present the same success component criteria on
different scales such as standardized differences or conditional powers [51]. These
are common approaches when the success definition is based solely on the primary
efficacy endpoint, but some difficulty arises when trying to derive a single Frequen-
tist test statistic on multiple outcomes of benefit and risk, which often have different
distributions.
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Since the methods described here are evidence-based, they require that some clini-
cal data on the efficacy and the safety of the experimental treatment are available.
Therefore, these methods may not be appropriate in very early development, when
the knowledge about the drug comes mainly from the pre-clinical development or
pharmacokinetics trials. In this case, extrapolation models or beliefs from experts or
literature could be used and incorporated in the model using priors to substitute or
complement the clinical data. Priors could also be elicited by borrowing information
from very similar compounds, if any. The advantage of the Bayesian framework of
our approach is that the predictions of success can be updated with the accumula-
tion of knowledge from trial to trial.

Moreover, predicting the efficacy and the safety in future trials from the posterior
distribution of parameters assessed in previous trials supposes that the future and
the previous trials use the same endpoints in the same clinical context (patient pop-
ulation, assessment timepoint(s)...). While this assumption is realistic for some dis-
eases, like Major Depressive Disorders in our example, for other diseases early clini-
cal trials may use a surrogate or a predictive endpoint as primary endpoint. In such
situation, the predictive distribution of the clinical endpoint in a future trial may be
estimated from the posterior distribution of a surrogate endpoint of a previous trial,
taking into account the dependence between the two endpoints [140]. If some lim-
ited data have also been collected on the clinical endpoint in early trials, these data
may be combined with those of the surrogate data to be integrated in the decision-
making process [60, 19].

In the composite definition of success, we have seen that the two components of
statistical significance and clinical relevance may be seen as redundant. However,
both aspects are important to achieve success, and knowing which one is the most
restrictive may not be obvious in advance, in particular for non-statisticians. More-
over, the clinical relevant threshold and the sample size of the next studies could be
subject to discussions, and keeping both rules permits to perform several analyses
using different thresholds or different sample sizes without changing the definition
of composite success. In any case, presenting the marginal predictive probabilities
of all the success components can help the decision-makers in choosing between
different strategies, when some uncertainty remains on some but not all of the com-
ponents.

We defined the success components using observable statistics (observed treatment
differences in efficacy and in benefit-risk balance) in each pivotal study. One could
consider defining criteria at the development level rather than at the trial level, using
for example meta-analyses and/or hierarchical models, in a full Bayesian approach,
after completion of all the trials. However, we believe that our method addresses
a general demand for replication of the study results when medicinal products are
evaluated for marketing authorization [46]. Once the development is completed, a
synthesis of the results at the development level is usually worthwhile to comple-
ment the individual study results. In particular, the overall safety profile is estimated
considering data from multiple sources (pivotal and non-pivotal clinical trials, phar-
macovigilance...) to incorporate for example long-term, less common and rare out-
comes.

Finally, without a large experience using this composite definition of success, no
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clear threshold could be provided yet to indicate whether its predictive probabil-
ity supports a go or a no-go decision. The results depend on the precision of the
available evidence and on how promising (or non-promising) the strategy is: the
predictive probabilities are expected to be close to 50% when the amount of evi-
dence is very low, and decision-making is challenging in this case ; they are expected
to increase for promising strategies (or, respectively, to decrease for non-promising
strategies) with the time of development and the accumulation of knowledge ; and
they are expected to remain close to 50% for average strategies, whatever the amount
of available evidence. Depending on the therapeutic area and the phase of develop-
ment, some thresholds could be defined using pre-specified targeted levels of evi-
dence following for example the concepts developed by Neuenschwander et al. [97]
or Frewer et al. [49]. In any case, one should be careful in making decisions based on
a direct, intuitive, interpretation of the PPoS as a chance of success for the develop-
ment [51]. The probability of composite success presented here rather corresponds
to a ‘probability of technical success [...] defined as the probability of a compound
generating favorable data to support a filing to regulators’ [22], and supports deci-
sion in favor of one development strategy when the whole set of results (on the three
components and the composite, for the main analysis and the sensitivity analyses)
supports the belief of a positive outcome.

In conclusion, the predictive probabilities of composite success and of its compo-
nents are helpful tools to compare development strategies and to inform decision-
making in the pharmaceutical development. Since it is an evidence-based approach
to make predictions, the similarity between the previous and the future studies (e.g.
in terms of endpoints, patient population, doses) is an important condition that may
be bypassed by appropriate assumptions. Although the composite definition of suc-
cess provides a useful summary of the potential of a strategy, it is recommended to
present it along with its different components, to appropriately support the discus-
sions of the decision-makers. In particular in therapeutic areas with unmet medical
needs, the project team may be willing to take a certain amount of risk to continue
the development, even when some uncertainty remains regarding the chances to
reach some of the success criteria.
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Chapter 5

Predictive probability of success
using surrogate endpoints

Background

This chapter was submitted and is currently under review by Statistics in Medicine
(major revisions):

Saint-Hilary Gaelle, Barboux V, Pannaux M, Gasparini M, Robert V, Mastrantonio G.
Predictive probability of success using surrogate endpoints.

5.1 Introduction

The drug development is a long and continuous process involving complex and crit-
ical decisions in order to make an optimal choice between several alternatives, such
as go/no-go decisions at the end of phase I and phase II clinical trials, based on the
current knowledge on the experimental drug and its potential on the market com-
pared to other compounds for the same disease. Decision-makers need quantitative
methods to support informed decisions, with transparent processes that synthesize
the whole available information in order to evaluate the probabilities of success as-
sociated to different options.

The Predictive Probability of Success (PPoS) of a future clinical trial is a key decision-
making tool. It is commonly defined as the predictive probability of statistical sig-
nificance on the primary endpoint in the next trial. It has first been introduced by
Spiegelhalter et al. [126] in 1986 as the Bayesian predictive power, and it was detailed
later in various contexts by O’Hagan et al., 2005 [101] (where it is called assurance)
and Gasparini et al., 2013 [52]. It is usually obtained using both frequentist and
Bayesian methods, since the distribution of the treatment effect parameter is com-
puted from prior knowledge and available evidence (a Bayesian concept), and then
the power (a frequentist concept) of the next study is averaged over this distribution.
For this reason, PPoS has also been called expected power or average power [20, 22].

In the current practice, the available evidence typically comes from the accumu-
lated data on the clinical endpoint of interest in previous clinical trials [145, 139, 129,
109]. However, a surrogate endpoint could be used in early development, while no
or limited data are collected on the relevant clinical endpoint of interest, which we
call the final endpoint. The surrogate endpoint can usually be assessed more fre-
quently and/or earlier than the final endpoint, and is intended to detect the activity
of a drug in early phases before pursuing (or not) the development in confirmatory
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phases with longer, bigger and more expensive trials. For example in oncology, the
response to treatment or the progression-free survival (PFS, defined as the time from
randomization to disease progression or death due to any cause) are frequently used
as primary endpoint in phase I/II studies, while the overall survival (OS) is the true
endpoint of interest that will be used in phase III. In this paper, we call surrogate
endpoint any marker used in early phase as a measure of the treatment effect, but
which is not necessarily accepted for confirmatory phase from a regulatory perspec-
tive.

It is of interest to use the available evidence from data on the surrogate endpoint
to compute the PPoS of future trials designed with the final endpoint as primary
endpoint. This could be achieved by modeling the relationship between the two
endpoints. Hong et al., 2012 [60] present a methodology to calculate the PPoS of a
phase III trial with OS as primary endpoint from phase II data on PFS, using a bi-
variate normal model in phase II to estimate the joint distribution of the log hazard
ratios on the two endpoints. While this proposal is a major advance in the gen-
eralization of the use of the PPoS, it may be limiting since a relationship between
endpoints estimated from a single trial is insufficient to support predictions across
trials [48, 4, 13, 14, 1]. Indeed, it focuses on the patient level association, while we are
interested in the relationship between the treatment effects on the endpoints at the
trial level. To overcome this issue, meta-analytic approaches have been proposed
[26, 15, 50] where the trial level association is assessed from several groups of pa-
tients (multi-center trials or meta-analyses). A nice example of a PPoS calculation
using this approach is shortly presented in Wang et al., 2013 [140], with PFS and OS,
in metastatic breast cancer. Since the OS data from the phase II trial were sparse, the
authors used only the PFS data to make the predictions. Again in oncology, Chen
et al., 2011 [19] proposed a joint test-statistic for PFS and OS in order to support ac-
celerated approval by the regulatory agencies, focusing on hypothesis testing rather
than on predictions.

While these examples are instructive, it is worth mentioning that, to our knowledge,
the PPoS calculation based on surrogate endpoints has never been widely explored
nor formalized. For this reason, the aim of this paper is to propose a general and re-
liable approach to compute the PPoS of one future trial on the final endpoint, when
data on the surrogate endpoint, and possibly a limited amount of data on the final
endpoint, are available from previous trials (Figure 5.1). Its principle is to estimate
the joint distribution of the treatment effects on the endpoints using a meta-analytic
approach on external data, and to use this joint distribution with the past observa-
tions on the surrogate endpoint to build an informative prior distribution for the
final endpoint parameter. If data are also available on the final endpoint, they can
be combined with the prior using a classical Bayesian approach, and in this case we
propose two methods to address a potential discordance between the prior and the
data on the final endpoint parameter. Finally, the predictive distribution of the esti-
mate of the final endpoint parameter is used to calculate the PPoS of the next trial.
We extend this approach to cases where information can be borrowed from multiple
surrogate endpoints.

The rest of the paper is organized as follows. The methods are detailed in Section
5.2, where first some reminders are made on PPoS calculation based on one single
endpoint. Then the calculation of the PPoS is presented based on either one sur-
rogate endpoint only, one surrogate and the final endpoint, or multiple surrogate
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FIGURE 5.1: Proposed approach to compute the PPoS of one future
trial with the final endpoint as primary endpoint, using data on the

surrogate endpoint.

endpoints and the final endpoint. In Section 5.3, we provide the results of a compre-
hensive simulation study investigating the patterns of behavior of the PPoS accord-
ing to the precision of the estimated association between the endpoints, the validity
of the surrogate endpoint, the amount of information available in past trials on each
endpoint and the extent of a potential prior-data conflict. Section 5.4 describes the
application of this approach to a drug development in Multiple Sclerosis, where one
or two endpoints are used as surrogate. A discussion and concluding remarks are
given in Section 5.5.

5.2 Methods

5.2.1 PPoS based on the final endpoint only (reminders)

Consider a future clinical trial, with the primary objective to compare two treatments
on the final endpoint, and let θ denote the corresponding true treatment difference.



58 Chapter 5. PPoS using surrogate endpoints

Suppose that the trial success is defined as the rejection of the null hypothesis H0 :
θ ≤ 0 against the alternative, H1 : θ > 0, following a conventional frequentist
approach. In most cases, there will exist in the next trial an estimate θ̂ f (indexed by f
for future) of the treatment difference reasonably assumed to be normally distributed
with

θ̂ f | θ ∼ N(θ, σ2
f ),

with density fθ̂ f |θ(·), and where σ2
f is its sampling variance, supposed to be known.

For example, θ̂ f could be the difference between means, the log odds ratio, the log
hazard ratio or the log rate ratio if the final endpoint is a continuous variable, a bi-
nary or ordinal variable, a time-to-event variable or a count variable respectively.
Therefore, the null hypothesis H0 will be rejected if θ̂ f > zασ2

f , where zα is the
(1− α)100th percentile of the standard normal distribution.

Suppose moreover that some information on the final endpoint has been collected
already in the past, and it has been summarized with θ̂, the estimate of the treatment
difference observed in one single past trial or resulting from evidence synthesis [3,
141, 142], and σ2, its sampling variance which is assumed to be known. The sam-
pling distribution (likelihood) could be written

θ̂ | θ ∼ N(θ, σ2), (5.1)

and we note its density fθ̂|θ(·). Using a classical Bayesian approach, assuming there
is no prior knowledge on the treatment effect, we apply a normal vague prior on the
parameter

θ ∼ N(θ0, σ2
0 ) (5.2)

which density is denoted by πV
θ (·) (with the superscript V for vague), and we obtain

the posterior distribution
θ ∼ N(θp, σ2

p) (5.3)

where θp = θ̂σ2
0 /(σ2

0 + σ2) + θ0σ2/(σ2
0 + σ2) and σ2

p = σ2
0 σ2/(σ2

0 + σ2) (indexed by p
for posterior). We note its density gV

θ (·).

From this posterior distribution and the distribution of θ̂ f | θ, under the usual as-
sumption of conditional independence given θ, we obtain the predictive distribution
of θ̂ f :

θ̂ f ∼ N
(

θp, σ2
p + σ2

f

)
and we note its density hV

θ̂ f
(·). The probability of rejecting H0 based on the available

evidence can therefore be calculated as

PPoSV = P
(

θ̂ f > zασ2
f

)
=
∫

u>zασ2
f

hV
θ̂ f
(u)du = 1−Φ

 zασ2
f − θp√

σ2
p + σ2

f

 ,

where Φ denotes the cumulative distribution function of the standard normal distri-
bution.
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5.2.2 PPoS based on the surrogate endpoint only

Suppose now that some information has been collected in the past on one surrogate
endpoint but not on the final endpoint. The information on the true treatment differ-
ence γ on the surrogate endpoint can be summarized with its estimate γ̂, obtained
from the past trial(s), and δ2, its sampling variance which is assumed to be known.
As before, using a Bayesian approach with a normal prior γ ∼ N(γ0, δ2

0) and the
sampling distribution γ̂ | γ ∼ N(γ, δ2), we obtain the posterior distribution

γ ∼ N(γp, δ2
p) (5.4)

where γp = γ̂δ2
0/(δ2

0 + δ2) + γ0δ2/(δ2
0 + δ2) and δ2

p = δ2
0δ2/(δ2

0 + δ2). We wish to
use this information to calculate the PPoS of the future trial designed with the final
endpoint as primary endpoint.

The first step is to quantify the relationship between the treatment effects on the two
endpoints, using external data. We propose to apply the Bayesian meta-analytic ap-
proach for the evaluation of surrogate endpoints developed by Daniels and Hughes,
1997 [26], which uses summary data from multiple clinical trials (or centers). Al-
ternatively, the two-stage model introduced by Buyse et al., 2000 [15] can be used if
individual patient data are available.

Consider i = 1, ..., N external randomized clinical trials where the surrogate and the
final endpoints were evaluated. The relationship between the endpoints in the se-
lected trials should be thought to be comparable with what is expected in our drug
development: they should be conducted in an analogous clinical context (e.g. the
same patient population), and/or involve a similar class of treatments. For simplic-
ity, we assume here that all trials compared two treatment arms, but the extension
to multi-arm trials is presented in Appendix C, Section C.1. Following [26], let us
denote θi and γi the true unknown treatment differences on the final endpoint and
the surrogate endpoint, respectively, in the trial i. For each trial, we suppose that
their estimates θ̂i and γ̂i are available with their sampling variance σ2

i and δ2
i and

their correlation ρi. We assume the following within-trial model:(
θ̂i
γ̂i

) ∣∣∣∣ ( θi
γi

)
∼ N

((
θi
γi

)
,
(

σ2
i ρiσiδi

ρiσiδi δ2
i

))
. (5.5)

Usually, the estimated variances of θ̂i and γ̂i reported in the clinical trial publications
are treated as if they were the true variances σ2

i and δ2
i [142]. On the other hand, the

correlations ρi are rarely reported in the literature. They could be estimated from the
individual patient data if they are available, otherwise it has been suggested to use
a range of plausible values [26, 108, 105], with sensitivity analyses across the entire
correlation range.

Considering the true treatment effect on the surrogate endpoint γi as a fixed effect,
we assume that the conditional distribution of θi | γi is normal, in which θi linearly
depends on γi:

θi | γi, a, b, τ ∼ N(a + bγi, τ2). (5.6)

The generalization of this model where γi is assumed to be a normally distributed
random effect could be found in McIntosh, 1996 [86]. It follows from (5.5) and (5.6)
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that (
θ̂i
γ̂i

) ∣∣∣∣ γi, a, b, τ ∼ N
((

a + bγi
γi

)
,
(

σ2
i + τ2 ρiσiδi
ρiσiδi δ2

i

))
. (5.7)

In this model, b measures the association between the treatment effects on the two
endpoints, and is expected to be different from zero if the marker is actually a sur-
rogate endpoint. On the other hand, the parameter a represents the part of the treat-
ment effect on the final endpoint unexplained by its effect on the surrogate endpoint,
and is expected to be close to zero. In a Bayesian framework, choosing a normal-
inverse-gamma distribution as conjugate prior for the parameters (a, b, τ), their joint
posterior distribution fa,b,τ(·) given the data from the meta-analysis can be derived
analytically as a normal-inverse-gamma distribution too (Appendix C, Section C.2).

As a second step, we use these results for our drug development of interest. The dis-
tribution of the treatment effect on the final endpoint, conditional on the regression
parameters, is obtained from Equations (5.4) and (5.6) as

θ | a, b, τ ∼ N(a + bγp, τ2 + b2δ2
p),

and we note its density fθ|a,b,τ(.). Integrating over the joint distribution of the regres-
sion parameters, we obtain the following density of θ:

πS
θ (·) =

∫
fθ|a,b,τ(.) fa,b,τ(x, y, z)d(x, y, z). (5.8)

We call this distribution the surrogate prior (and use the superscript S for surrogate),
as it could be used as a prior distribution for the parameter of interest θ. In this
section, since no data are available on the final endpoint, the posterior distribution
is the same as the prior distribution. The predictive distribution of the estimate θ̂ f in
the next trial has the density:

hS
θ̂ f
(·) =

∫
fθ̂ f |θ=t(·)π

S
θ (t)dt

=
∫ ∫

fθ̂ f |θ=t(.) fθ|a,b,τ(t) fa,b,τ(x, y, z)dtd(x, y, z).

Marginalizing over θ, it could be simplified in:

hS
θ̂ f
(·) =

∫
fθ̂ f |a,b,τ(.) fa,b,τ(x, y, z)d(x, y, z),

where fθ̂ f |a,b,τ(.) is the density of the distribution N
(

a + bγp, τ2 + b2δ2
p + σ2

f

)
, since

fθ̂ f |θ=t(·) and fθ|a,b,τ(·) are both normal densities. The predictive probability of suc-
cess of the next trial can then be calculated as

PPoSS = P
(

θ̂ f > zασ2
f

)
=

∫
u>zασ2

f

hS
θ̂ f
(u)du (5.9)

=
∫ 1−Φ

 zασ2
f − (a + bγp)√

τ2 + b2δ2
p + σ2

f

 fa,b,τ(x, y, z)d(x, y, z).

It is worth noting that the prediction variance of θ̂ f depends on:

a) The variance of the joint posterior distribution fa,b,τ(·) obtained from the linear



5.2. Methods 61

regression on the meta-analysis data (small if the amount of data in the meta-
analysis is large);

b) The dependence between the treatment effects on the surrogate and the final
endpoints (τ2 is small if the surrogate is a ‘good surrogate’);

c) The precision of the available evidence on the surrogate endpoint (δ2
p is small

if the amount of data on the surrogate is large in the past trials);

d) The precision of the information that will be collected in the future trial on
the final endpoint (σ2

f is small if the planned number of patients or number of
events is large in the future trial).

Note that (d) is a component of the prediction variance that was not used in similar
findings already reported in the literature (in a frequentist approach) [13, 14, 12]. The
reason why we add it is because we perform predictions across trials, while others
focused on within-trial predictions.

5.2.3 PPoS based on the surrogate and the final endpoints

Suppose now that some information has been collected in the past on both the sur-
rogate and final endpoints. If the amount of data collected on the final endpoint is
large enough, it could be used alone to predict the success of the next trial, as pre-
sented in Section 5.2.1. However, past trials are often designed and powered with
the surrogate endpoint as primary endpoint, while some sparse or incomplete data
on the final endpoint are collected for exploratory purpose.

In order to make the most of the available data, we propose to use both sources of
information to calculate the PPoS of the next trial (assuming the quality of the data
on both endpoints is satisfactory). The general approach is presented first. It should
be noted, however, that the evidences on the surrogate endpoint and on the final
endpoint may be conflicting if the surrogacy relationship established from external
data does not hold in our drug development. While this is an unexpected result, it
should be anticipated in order to avoid wrong decisions. For example, we could be
interested to continue the development if an overwhelming efficacy is observed on
the final endpoint, even if no effect is observed on the surrogate. We propose two ap-
proaches to handle this issue, using the methods for addressing potential prior-data
conflict presented in Mutsvari et al., 2016 [95]. The principle of the first approach,
referred to as the ‘testing approach’, is to assess the level of conflict between the two
sources of evidence, and to discard the information coming from the surrogate end-
point if this level of conflict exceeds a certain predefined threshold. On the other
hand, the second approach, referred to as the ‘mixture prior approach’, always con-
sider both sources of evidence in the predictions but permits to down-weight the
information coming from the surrogate endpoint in case of conflict. This latter ap-
proach is also detailed in a different context and called the ‘robust prior’ in Schmidli
et al., 2014 [115].

General model

In a Bayesian framework, the information coming from the surrogate endpoint could
be combined with the data collected on the final endpoint, using (5.8) as surrogate
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prior on θ, and the sampling distribution (5.1). The posterior distribution is then

gS
θ (·) =

fθ̂|θ(d)π
S
θ (·)∫

fθ̂|θ=t(d)π
S
θ (t)dt

(5.10)

where d is the observed outcome of θ̂.

From this posterior distribution and the distribution of θ̂ f | θ, we obtain the predic-
tive distribution of θ̂ f

hS
θ̂ f
(·) =

∫
fθ̂ f |θ=t(·)gS

θ (t)dt,

and the predictive probability of success of the next trial is obtained as in Equation
(5.9) by integrating hS

θ̂ f
(·) over the range of values greater than zασ2

f .

Prior-data conflict: testing approach

The principle of this approach is to find how large is the probability to get a more
extreme result than the estimate θ̂ = d (obtained from the past trials), considering
its prior predictive distribution, i.e. its predictive distribution based solely on the
surrogate prior:

hS
θ̂
(·) =

∫
fθ̂|θ=t(·)π

S
θ (t)dt

=
∫ ∫

fθ̂|θ=t(·) fθ|a,b,τ(t) fa,b,τ(x, y, z)d(x, y, z)dt

=
∫

fθ̂|a,b,τ(·) fa,b,τ(x, y, z)d(x, y, z) (5.11)

where fθ̂|a,b,τ(·) is the density of N(a + bγp, τ2 + b2δ2
p + σ2).

A prior-data conflict is declared if θ̂ = d lies outside the ξ100th and (1 − ξ)100th

percentiles of this prior predictive distribution, i.e. if

min
[∫

t<d
hS

θ̂
(t)dt,

∫
t>d

hS
θ̂
(t)dt

]
< ξ,

where ξ is a predefined testing level, usually 5% or 10% [95]. It could be chosen by
computing the operational characteristics of simulated data scenarios, to ensure that
clinically pertinent prior-data conflicts are detected with this approach.

If no prior-data conflict is declared, both sources of evidence are used to calculate
the PPoS, and the general model applies. Otherwise, the established relationship
between the endpoints is likely to be non-relevant for our drug development, and
the PPoS is computed from the final endpoint only, as described in Section 5.2.1.
Indeed, in this latter case, the data collected on the final endpoint are considered to
be the only reliable information to predict the outcome of the future trial.

Prior-data conflict: mixture prior approach

The testing approach corresponds to an ‘all-or-nothing’ process, where the evidence
on the surrogate endpoint is either included as a whole if it matches with the evi-
dence on the final endpoint, or entirely discarded from the analysis in case of conflict.
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On the other hand, the mixture approach permits to down-weight the information
coming from the surrogate endpoint but not to ignore it completely.

We consider a mixture prior that is conjugate to the distribution of the data, defined
as the sum of a vague proper normal prior (Equation (5.2)) and the surrogate prior
(Equation (5.8)). The mixture prior distribution (with a superscript M for mixture) is
written

πM
θ (·) = w πV

θ (·) + (1− w) πS
θ (·)

where w is the prior probability that the assumption of surrogacy does not hold in
our drug development. Since we place us in a context where the project teams ex-
pect to detect a treatment effect on the surrogate endpoint in early phases before
pursuing the development with the final endpoint, this prior probability is usually
low, say 0.05 or 0.1. Higher w will lead to higher discounting of the surrogate infor-
mation in the posterior distribution.

It follows that the posterior distribution is also a mixture of distributions

gM
θ (·) = w̃ gV

θ (·) + (1− w̃) gS
θ (·)

where gV
θ (·) and gS

θ (·) are the posterior densities obtained in Equations (5.3) and
(5.10). The updated posterior probability w̃ is calculated as

w̃ =
w hV

θ̂
(d)

w hV
θ̂
(d) + (1− w) hS

θ̂
(d)

where hV
θ̂
(·) is the density of the prior-predictive distribution of θ̂ based on the vague

prior, N(θ0, σ2
0 + σ2), and hS

θ̂
(·) is defined in Equation (5.11).

From the mixture posterior distribution and the distribution of θ̂ f | θ, we obtain the
predictive distribution of θ̂ f :

hM
θ̂ f
(·) = w̃ hV

θ̂ f
(·) + (1− w̃) hS

θ̂ f
(·),

and the predictive probability of success of the next trial:

PPoSM = P
(

θ̂ f > zασ2
f

)
=

∫
u>zασ2

f

hM
θ̂ f
(u)du

= w̃ PPoSV + (1− w̃) PPoSS.

While the surrogate prior is data-driven, the vague prior needs to be pre-specified to
reflect some lack of knowledge about θ. For the sake of avoiding subjectivity in the
analysis, one may be tempted to choose an extremely large variance σ2

0 . However,
it should be noted that w̃ → 0 as σ2

0 → +∞, meaning that choosing a very weakly
informative distribution will result in a very low posterior probability for the vague
prior (and respectively, a very high posterior probability for the surrogate prior),
with no advantage of using this approach compared to the simple general model.
The choice of σ2

0 is therefore critical in the analysis, and could be based on opera-
tional characteristics of different simulated scenarios. Nevertheless, Mutsvari et al.
[95] point out that ‘the rationale for using a mixture prior will be strongest when
there is some justification for each of the two components’ σ2

0 and w.
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5.2.4 PPoS based on multiple surrogate endpoints and the final endpoint

Again with the purpose of making the most of the data collected in the past trials,
it may be of interest to combine the information coming from multiple surrogate
endpoints assessed in early phase. As stated before, we call surrogate any marker
assumed to be predictive of the treatment effect, but which is not necessarily ac-
cepted for regulatory purpose.

The relationship between the treatment effects on the final endpoint and M surrogate
endpoints could be established in a similar way to the one used in Section 5.2.2,
from a meta-analysis of N external clinical trials. Let γ̂1i, ..., γ̂Mi denote the estimated
treatment differences on the M surrogate endpoints in the trial i, and δ2

1i, ..., δ2
Mi their

sampling variance. The within-trial model in Equation (5.5) could be extended to
[105, 10]:

θ̂i
γ̂1i
...

γ̂Mi


∣∣∣∣∣∣∣∣∣


θi

γ1i
...

γMi

 ∼ N




θi
γ1i
...

γMi

 ,


σ2

i ρ01iσiδ1i · · · · · · ρ0MiσiδMi
ρ01iσiδ1i δ2

1i ρ12iδ1iδ2i · · · ρ1Miδ1iδMi
...

...
...

...
...

ρ0MiσiδMi · · · · · · · · · δ2
Mi


.

where, in the trial i, ρ0mi is the correlation between the surrogate endpoint m and
the final endpoint, and ρmqi is the correlation between the two surrogate endpoints
m and q. As indicated before, it is very unlikely that these values are reported in
the publications, but plausible values and range of values could be assumed [26,
108, 105]. Using vectorized notations Gi = (γ1i, ..., γMi) and B = (b1, ..., bM), and
assuming fixed effects for Gi, the linear model to describe the relationship between
the endpoints becomes

θi | Gi, a, B, τ ∼ N(a + BTGi, τ2).

The generalization where Gi are random effects is described in Bujkiewicz et al.,
2016 [10]. Some additional assumptions could also be made on the structural re-
lationships between the endpoints, for example that the treatment effect on the final
endpoint is independent from the effect on some surrogate endpoints conditionally
on some others, see Pozzi et al., 2016 [105] and Bujkiewicz et al., 2016 [10] for more
details.

Let G = (γ1, ..., γM) denote the vector of true treatment differences on the M surro-
gate endpoints in our drug development, for which the multivariate normal poste-
rior joint distribution obtained from a prior and the data collected in previous trials
is

G ∼ N(Gp, Dp),

where Gp is the vector of posterior means and Dp the posterior variance-covariance
matrix. The distribution of the treatment effect conditional on the regression param-
eters becomes

θ | a, B, D ∼ N(a + BTGp, τ2 + BTDpB).

It could be used as a surrogate prior distribution for θ, and the computation of the
PPoS follows the same principle as the methods described in the previous sections,
depending on the availability of data on the final endpoint and on the chosen ap-
proach for handling prior-data conflicts.
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5.3 Simulation study

A simulation study was carried out to explore the patterns of behavior of the PPoS,
using one surrogate endpoint, according to four components: the precision of the
association between the endpoints estimated from the meta-analysis; the validity of
the surrogate endpoint; the amount of information available in past trials on each
endpoint; the extent of a potential prior-data conflict.

5.3.1 Setting

Data were simulated using a fictive base-case scenario inspired by real clinical tri-
als, and the parameters were varied one at a time to assess their impact on the
PPoS. In this base-case scenario, we suppose that the data of one past trial com-
paring two treatments on the surrogate endpoint are available on Nγ = 86 patients
per arm, with an estimate of the treatment difference γ̂ = 4 and a standard error
δ = 7

√
2/Nγ. We also presume that the final endpoint was evaluated in the trial,

but is available for only Nθ = 30 patients per arm at the time of the analysis, with
an estimated treatment effect θ̂ = 4 and a standard error σ = 13

√
2/Nθ . We wish

to calculate the PPoS of one future confirmatory trial which primary endpoint is the
final endpoint. A sample size of 444 patients (Nθ

f = 222 per arm) is planned in this
trial to reach a power of 90%, based on an assumed true difference θ = 4 points, a
standard deviation of 13 and a one-sided α of 2.5%.

We suppose that the relationship between the surrogate endpoint and the final end-
point was estimated based on a meta-analysis of external clinical trials using the
joint model described in Equation (5.7). The regression coefficients a and b were
simulated using a bivariate normal model with means E(a) = 0 and E(b) = 1,
variances Var(a) = Var(b) = 0.52, and a correlation coefficient 0.5. The standard
error τ was simulated using an inverse-gamma distribution with shape parameter
[E(τ)2 + 2Var(τ)]/Var(τ) and scale parameter E(τ)[E(τ)2 + Var(τ)]/Var(τ), with
E(τ) = 1 and Var(τ) = 0.12.

The questions of interest and the corresponding simulation scenarios are presented
in Table 5.1. In each scenario, the PPoS is calculated as described in the above sec-
tions using either:

• The data on the final endpoint and a weakly informative prior θ ∼ N(0, 106);

• The surrogate prior and no data on the final endpoint;

• The surrogate prior and data on the final endpoint, without handling prior-
data conflict;

• The surrogate prior and data on the final endpoint, with the testing approach
and a testing level ξ = 0.05;

• The surrogate prior and data on the final endpoint, with the mixture prior ap-
proach, a prior probability w = 0.1 and a vague prior component N(0, 100σ2),
corresponding to an effective sample size 100 times lower than the sample size
of the available data on the final endpoint.
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TABLE 5.1: Simulation scenarios

Question of interest Simulation scenario

How does PPoS vary according to the precision of
the association between endpoints estimated from
the meta-analysis (Equation (5.12))?

(a) Var(a) varying from 0.12 to
82

(b) Var(b) varying from 0.12 to
82

(c) Corr(a, b) varying from−1 to
1

How does PPoS vary according to the dependence
between the endpoints?

(d) E(τ) varying from 0.1 to 8

How does PPoS vary according the amount of avail-
able information in the past trial?

(e) Nγ varying from 10 to 150
(f) Nθ varying from 10 to
Nγ = 86

How does PPoS vary according to the extent of a
prior-data conflict?

(g) θ̂ = 0 and γ̂ varying from
−10 to 20
(h) γ̂ = 0 and θ̂ varying from
−10 to 20

The sensitivity of the prior-data conflict approaches to the testing level ξ, the prior
probability w and the vague prior component was assessed in [95] and is not re-
peated here.

All the simulation scenarios above were also performed using a similar base-case
scenario but with E(a) = 1 and γ̂ = 3, hence assuming that a part of the treatment
effect on the final endpoint remains unexplained by the treatment effect on the sur-
rogate endpoint. The resulting patterns of behavior of the PPoS were very similar
and are not presented here.

5.3.2 Results

The analyses were conducted using R [106], and 100, 000 simulations were run to es-
timate the parameter distributions.

Figure 5.2 displays the predictive distributions of the estimated treatment difference
on the final endpoint in the next study, θ̂ f , in the base-case scenario. Since this sce-
nario was defined under prior-data consistency (θ̂ = E(a) + E(b)γ̂), the predictive
distributions obtained from the surrogate prior and data on the final endpoint are
superimposed, whatever the chosen approach for handling or not the prior-data
conflicts. For the same reason, all the predictive distributions are centered on the
same mean θ̂ f = 4.

The number of patients having the final endpoint assessed in the past trial gives a
low power (Nθ = 30, retrospective power of 21.1% to detect a difference θ = 4 with
a standard deviation of 13 and a one-sided α of 2.5%), so the predictive distribu-
tion obtained using this information only is the least precise, with a PPoS=67% for
the next trial. The predictive distribution obtained using the surrogate prior only,
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FIGURE 5.2: Base-case scenario. Predictive distributions of θ̂ f in the
next trial.

disregarding the data on the final endpoint, is more precise, with a PPoS=69%, be-
cause the number of patients having an evaluation of the surrogate endpoint gives
a substantial power (Nγ = 86, retrospective power of 96.3% to detect a difference
γ = 4 with a standard deviation of 7 and a one-sided α of 2.5%) and the relationship
between the endpoints is well established from the meta-analysis. Finally, the poste-
rior distributions obtained by combining the surrogate prior with the final endpoint
data are the most precise since they use all the available information, leading to a
PPoS=72% for the next trial.

The results of the simulation scenarios are presented in Figure 5.3. The scenarios (a)-
(f) are under prior-data consistency, so the methods to handle prior-data conflicts
have no effect and the PPoS obtained using the surrogate prior and data on the final
endpoint are superimposed.

Given γ̂, the variance of the association between the endpoints estimated from the
meta-analysis could be written

Var(a + bγ̂) = Var(a) + γ̂2Var(b) + 2γ̂Corr(a, b)
√

Var(b)Var(b), (5.12)

therefore it increases with Var(a), Var(b) and Corr(a, b), which corresponds to sce-
narios (a), (b) and (c). As expected, the PPoS calculated with the weakly informative
prior is not impacted by the variation. In the other cases, the precision of the sur-
rogate prior becomes smaller as Var(a + bγ̂) increases, which is reflected by PPoS
becoming closer to 50% (corresponding to the maximum uncertainty). The variation
of Corr(a, b) has a minimal impact on the results. When final endpoint data are com-
bined with the surrogate prior, the PPoS tends to the one obtained with a weakly
informative prior, since the surrogate prior tends to become weakly informative it-
self. Similar trends are observed in scenario (d), where E(τ) varies. The validity
of the surrogate endpoint, and with it the amount of information it provides on the
final endpoint, decreases as τ increases.

On the other hand, the precision of the available evidence increases with the number
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FIGURE 5.3: Results of the simulation scenarios described in Table
5.1.

of patients being evaluated in the past trials, and it slightly impacts the PPoS. When
the number of patients with final endpoint assessment remains stable but the num-
ber of patients with surrogate endpoint assessment increases (scenario (e)), only the
PPoS using the surrogate prior are impacted. In scenario (f), only the PPoS using the
final endpoint data are impacted.

Finally, the scenarios with prior-data conflict are presented in (g) and (h), where the
surrogate prior and the final endpoint data are consistent when θ̂ = γ̂ = 0, and the
prior-data conflict increases as they depart from 0.
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In scenario (g), we assume that no treatment effect was observed on the final end-
point in the past trial (θ̂ = 0), so the PPoS calculated using these data and a weakly
informative prior remains stable and low (25%), indicating a high risk of failure of
the next trial. When it is calculated from the surrogate prior only, it increases quickly
with the treatment effect observed on the surrogate endpoint, and exceeds 70% for
γ̂ > 4. Combining the surrogate prior with the data permits to obtain more realistic
PPoS, never exceeding 60%. A prior-data conflict is detected by the testing approach
with testing level 0.05 only for extreme values of γ̂ (approximately < −9 or > 11),
because the precision of the data on the final endpoint is quite low. In this case how-
ever, the surrogate prior is disregarded and the PPoS is calculated from the data and
the weakly informative prior, with a piece-wise curve illustrating the ‘all-or-nothing’
principle mentioned earlier. Using the mixture prior approach has only a slight im-
pact on the results. However, choosing a smaller prior probability for the surrogate
prior ((1− w) = 0.9 in our scenario) or a smaller variance of the vague prior com-
ponent (100σ2 in our scenario) will lead to more flat PPoS curves, closer to 25%.
In scenario (f), the PPoS calculated using the surrogate prior only remains stable and
low (12%), because we assume that no treatment effect was observed on the surro-
gate endpoint in the past trial (γ̂ = 0). The PPoS calculated from the final endpoint
data and a vague prior increases with θ̂, exceeding 70% for estimate values greater
than 4. The PPoS calculated using the surrogate prior and the data, without handling
prior-data conflict, also increases with the treatment effect estimate on the final end-
point but is influenced by the surrogate prior, and reaches 70% only for θ̂ > 15.
The mixture prior approach lies between the two, increasing until reaching 100% for
extreme values of θ̂, but with a lower slope than the PPoS based on the weakly infor-
mative prior, indicating that it takes into account that no effect was observed on the
surrogate endpoint. In a similar way, the piece-wise curve of the testing approach in-
dicates a prior-data conflict detection for large values of the treatment effect estimate
θ̂ < −6 and θ̂ > 6, approximately.

5.4 Application: Multiple Sclerosis

We illustrate the use of the above methods to support decision-making on a fictive
example in Multiple Sclerosis (MS). Consider the development of a new drug with
the objective to prevent or delay the accumulation of neurological disability in pa-
tients with MS. For regulatory approval, we suppose we need to demonstrate the
drug efficacy in reducing the risk of disability progression, defined as an increase of
the Expanded Disability Status Scale (EDSS) score sustained for at least 12 weeks,
after 2 years of treatment. This requires a clinical trial with a large sample size and
a long follow-up, unlikely to be conducted in early development. A rich literature
has been published on the surrogacy in MS [118, 122, 121, 123, 120, 119, 124, 117,
116], where the number of brain lesions seen on Magnetic Resonance Imaging (MRI)
and the annualized relapse rate have been identified as good predictors of EDSS
worsening. Thus, let us assume our development plan is designed with one phase
II trial, powered to detect a treatment difference on MRI lesion counts, followed by
one phase III trial with the disability progression as primary efficacy endpoint, both
versus active control.

The type I error is fixed at 2.5%, one-sided. The phase II trial is conducted with the
MRI lesion counts after 1 year of treatment as primary endpoint, with 100 patients
per arm to detect a relative risk reduction of 50% with a power of 80%, assuming
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a mean number of lesions in the active control arm equal to 4 and a dispersion pa-
rameter of 2 (see [105], Appendix 1). The annualized relapse rate and the disability
progression at 2 years are collected as secondary endpoints. Given the results sum-
marized in Table 5.2, we wish to calculate the PPoS of the future phase III trial,
designed with 337 patients per arm, in order to reach a power of 90% to detect a rel-
ative risk reduction of 30%, assuming a proportion of 40% of patients under active
control with a disability progression after 2 years of treatment.

TABLE 5.2: Phase II trial. Estimated log risk ratios for the MRI le-
sion counts, the annualized relapse rate and the disability progression

with their standard errors.

MRI Relapse Disability
γ̂1 (δ1) γ̂2 (δ2) θ̂ (σ)

N/arm 100 100 10
log(RR) (SE) -0.511 (0.246) -0.693 (0.387) -0.386 (0.646)
N=number of patients. RR=Relative Risk. SE=Standard Error.

We calculated the PPoS of the next trial with and without surrogate priors, which
are obtained from either the MRI lesion counts (one surrogate endpoint), the annu-
alized relapse rate (one surrogate endpoint) or both (two surrogate endpoints) to
predict the disability progression.

The relationship between the endpoints, using the meta-analytic approach described
in Section 5.2.2, has been previously published in Pozzi et al., 2016 [105], based on
the data from Sormani et al., 2010 [123]. We translated the Winbugs code from [105]
in Stan [18], in order to use the most up-to-date software for Bayesian inference, but
the data of the meta-analysis (Appendix C, Section C.3, Table C.1) are strictly identi-
cal to those of the original publication, with a between-endpoint correlation fixed at
0.05 as in their main analysis.

The meta-analytic model was fitted using R and Stan with the R package RStan.
For three chains, the first 20,000 (40,000 with a thin of 2) Markov Chain Monte Carlo
samples were discarded for burn-in, then 10,000 (20,000 with a thin of 2) further sim-
ulations were run to estimate the regression parameters. Their posterior means and
95% credible intervals are presented in Table 5.3, for the one-surrogate models and
the two-surrogate model. The results of the model using relapse as surrogate end-
point (with those of another model assuming a structural relationship between the
endpoints, not used here for simplicity) were already presented in [105], with slight
differences due to sampling only. It can be noted that the MRI lesion counts and
the annualized relapse rate, taken separately, are good predictors of the disability
progression with parameters b significantly different from 0. When both surrogates
are used jointly in the model, the mean slope parameter associated to the MRI lesion
counts becomes negative, which seems counter-intuitive. However its credibility in-
terval includes 0, and this model is the one providing the smallest error term τ, so
we chose to present its results anyway.

Figure 5.4 displays the predictive distributions of the treatment effect on disability
progression in the future phase III trial, with the respective PPoS. The prior dis-
tributions and the data are consistent, so the methods with and without handling
prior-data conflict provide identical results and are presented only once. When the
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TABLE 5.3: Posterior means and 95% credible intervals (CrI) of the
regression parameters from fitting the meta-analytic models with dis-

ability progression as final endpoint.

Model Parameter Mean [95% CrI]
MRI as surrogate Intercept a -0.091 [-0.445,0.248]

MRI b 0.398 [ 0.026,0.773]
Error τ 0.375 [ 0.210,0.641]

Relapse as surrogate Intercept a 0.078 [-0.099,0.242]
Relapse b 0.756 [ 0.471,1.017]
Error τ 0.153 [ 0.053,0.292]

MRI+Relapse as surrogates Intercept a 0.062 [-0.105,0.222]
MRI b1 -0.110 [-0.306,0.082]
Relapse b2 0.749 [ 0.479,1.011]
Error τ 0.099 [ 0.017,0.236]

PPoS is calculated using a weakly informative prior (N(0, 106)) and the data of the
20 patients (10 per arm) having a disability progression evaluated in phase II, the
predictive distribution of θ̂ f lacks of precision and the resulting PPoS is equal to
60%, leading to a relatively high uncertainty to take the decision to pursue or not the
development. All surrogate priors are more informative, with the greatest precision
when the two surrogate endpoints are used jointly in the model, as reflected by the
τ in Table 5.3. The observed relative risk on MRI lesion counts is 60%, lower than
expected, and provides a PPoS=57% when used as single surrogate, only slightly
in favor of the success. On the other hand, the observed risk reduction on relapse
(50%), assessed for all 200 patients in phase II, is large and precise enough to provide
a PPoS greater than 74%. The analysis using the surrogate prior resulting from the
two-surrogate model combined with the available data on the final endpoint gives
the greatest precision and provides a reasonable confidence in the study success,
with a PPoS for the next trial equal to 72%. In conclusion, these results are all going
in the same direction and could support a decision in favor of the continuation of
the development. This illustrates how using all the available information on all the
potential surrogate endpoints and on the final endpoints strengthen the decision-
making process.

FIGURE 5.4: Predictive distributions of the treatment effect on dis-
ability progression, θ̂ f , in the future phase III trial, with the respective

PPoS.
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5.5 Discussion

We proposed a general, reliable and reproducible methodology to predict the suc-
cess of a future trial from data on surrogate endpoints, in a way that makes the best
use of all the available evidence, in order to enhance decision-making in drug devel-
opment. The predictions are based on an informative prior, called surrogate prior,
derived from the information collected on the surrogate endpoints, combined with
the data on the clinical endpoint of interest, if available. The surrogate endpoints
considered here are markers used in early phase of development to predict a clini-
cal benefit, but are not necessarily formally accepted for confirmatory phase from a
regulatory perspective.

The surrogate prior is built using the past data on the surrogate endpoints during
the drug development of interest and the quantitative relationship between the sur-
rogate and the final endpoints, which could be obtained using published methods
for surrogacy validation. Approaches based on data from single trials are known
to be inadequate as they focus on the patient level association [13, 14, 15], therefore
we suggest to use a meta-analytic approach in which the association between the
treatment effects on the endpoints is established at the trial level. Since the individ-
ual patient data from the published clinical trials are rarely available, we focused
on a method using aggregated data [26]. However, this approach usually requires
to make assumptions regarding the between-endpoint correlations within each trial,
almost never published, and to perform sensitivity analyses accordingly [26, 108,
105]. The availability of individual patient data resolves this problem, because then
a two-stage model can be used [15] where the within-trial dependence between the
endpoints is first estimated from the patient observations. More generally, meta-
analytic approaches require a large amount of external data to estimate the relation-
ship between the endpoints with a sufficient precision. It may happen that these
data are not available, or could not be extrapolated to the development of interest.
We can argue, however, that designing a drug development using surrogate end-
points in early phases for decision-making should be supported by a certain amount
of evidence. Otherwise, we are facing a high uncertainty regarding the ability of the
surrogate endpoints to predict the treatment effect on the final endpoint, leading to
uncertainty regarding the success of the development itself.

This emphasizes the clear advantage of using both an informative prior based on
surrogate endpoints and data collected on the final endpoint. On one hand, if little
evidence can be gathered on the relationship between the endpoints, the surrogate
prior will be imprecise. On the other hand, if only sparse data on the final endpoint
are collected in the past trials, the resulting estimations will be imprecise. Combin-
ing both sources of information could increase the precision of the predictions and
strengthen the decision-making process.

This will be the case if the surrogate prior and the final endpoint data are consistent.
In case of prior-data conflict, more credit should usually be given to the data on
the final endpoint, since it will be used in the future development. We considered
two approaches addressing this issue: the testing approach and the mixture prior
approach. The first is an ‘all-or-nothing’ approach where the surrogate prior is dis-
carded if a conflict is detected at a predefined testing level. It may be appropriate
if there is some biological justification for the mismatch, e.g. that the experimental
treatment has a novel mechanism of action, different from the treatments included
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in the meta-analysis, leading to a treatment effect on one but not all endpoints. On
the other hand, if the surrogacy remains biologically plausible, one may prefer the
second approach which discounts (but does not exclude) the informative prior pro-
portionally to the extent of the prior-data conflict by adding a weakly informative
component in the prior. A similar approach, the power prior [64, 65], has also been
widely used to build informative prior from historical data and could be used in our
context. The interpretation of the power parameter, however, may be less straight-
forward than the weights of the mixture prior approach, which could be naturally
interpreted as the probability of compatibility between the data and the surrogate
prior. All these methods rely on pre-specified parameters (testing level, weights,
precision of the weakly informative component, power parameter), which choice is
critical and requires a subjective judgment. While some guidance may be found in
the literature [95, 115, 65], we wish to emphasize the importance of assessing the
operating characteristics of the approaches before conducting the analyses, and of
performing sensitivity analyses for different choices of parameters afterwards.

More generally, sensitivity analyses should be conducted as part of the decision-
making process. The robustness of the PPoS calculated using different methods
should be evaluated, as illustrated in our simulation study and in the application in
Multiple Sclerosis. The impact of the final endpoint data and of the surrogate prior
on the PPoS can be assessed by conducting separate analyses considering only one
of the two sources of evidence. Of note, one can consider including the past trial(s)
of the drug development of interest in the meta-analysis to estimate the relationship
between the endpoints, instead of using only external clinical trials. However, in this
case, we obtain a data-dependent prior which may lead to difficulties in interpret-
ing the Bayesian model [17]. Also, when several surrogate markers are available,
the PPoS may be sensible to the structural assumptions made on the relationships
between the endpoints. For example in Multiple Sclerosis, one can assume that the
treatment effect on the disability progression is independent from the effect on the
MRI lesion counts conditionally on the effect on the annualized relapse rate [105,
10]. Different conclusions obtained from sensitivity analyses can highlight some po-
tential risks associated to the decisions.

Our example in Multiple Sclerosis illustrates the use of the methods in a clinical
context, but is not intended to provide a guidance for a drug development in this
disease. First, the data used for the meta-analysis were published in 2010 [123] and
should be updated with more recent trials, involving again some clinical expertise
to select them appropriately. Also, different choices could be made regarding the
number of studies in the development, their primary endpoints, the underlying dis-
tribution of the parameters and the assumptions for sample calculation.

In most cases in clinical trials, there exists an estimate of the treatment difference
reasonably assumed to be normally distributed. Therefore, we focused on normally
distributed endpoints, but this may not correspond to the main analysis model. The
results are usually asymptotically equivalent and are not expected to have a signifi-
cant impact on the predictions, but the extension of the methods presented herein to
other distributions provides an area for future research.

In conclusion, the proposed methodology is general and can be applied in various
contexts. It is expected to be a valuable quantitative tool to support decision-making,
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since the use of predictive markers is important to accelerate drug developments and
to select promising drug candidates, better and earlier.
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Chapter 6

Conclusion and perspectives

The four methodologies presented herein are valuable quantitative tools to support
decision-making in the pharmaceutical development. They have strong theoretical
foundations and were shown to have soundness in the context of healthcare de-
cisions. They could be used in a wide range of applications throughout the drug
life-cycle and their utility has already been demonstrated in very concrete situations.

We focused in this report on two research axes: the drug benefit-risk assessment
and the predictive probability of success. The respective methodologies are mainly
intended to support decisions at the “study level” and at the “development level”.
Other topics of research within these decision levels are currently discussed in the
scientific literature and the statistical community. Among others we can cite:

• Decision-making frameworks for Go/No-Go decisions. Both frequentist and
Bayesian frameworks have been developed and used in the pharmaceutical in-
dustry to support internal decision-making [49, 76, 34, 24]. These frameworks
are based on pre-planned rules regarding some decision parameters, appropri-
ately defined using clinical considerations and operating characteristics.

• Prior elicitation. Prior expert knowledge and experience is essential to sup-
port decision-making, in particular when the amount of previous data is low
or when their mathematical aggregation is challenging. The SHeffield ELici-
tation Framework (SHELF) [100] was developed to capture expert knowledge
about one or more quantities of interest in the form of a probability distribu-
tion. This structured approach to prior elicitation has been shown to be ben-
eficial for internal decision-making [25], as it permits not only to homogenize
the collection and quantification of expert beliefs, but also to capture their un-
certainty. This framework could have a broad range of application in drug
development, from the quantification of trial-specific expected quantities (e.g.
the mean treatment effect) to more general questions about the success of a de-
velopment or a portfolio, and there will certainly be further applications and
development in the future.

• Patient preferences elicitation in benefit-risk assessment. Quantitative meth-
ods for drug benefit-risk assessment require value judgments regarding the
trade-off between the benefit and risk criteria. Methods for quantifying sub-
jective preferences have been widely studied in the literature [133, 82, 54, 107,
113, 8, 61, 132, 9], and today’s research focuses on the incorporation of patient
needs and perspectives into drug decision-making. One of the main objectives
of the IMI-PREFER consortium [28] is to identify and assess which methodolo-
gies are most suitable for eliciting patient preferences on benefits and risks at
different decision points in the product life cycle.
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More generally, subjectivity is inherent to decision-making analyses: quantitative
tools are intended to support the choice between several alternatives based not only
on the available information but also on the preferences of the decision-makers. The
usefulness of the methods and frameworks already proposed in the literature for
preference elicitation should be evaluated, along with potential options for improve-
ment.

Finally, we extended our research to decisions at the “portfolio level”, with quanti-
tative methods such as predictions of the number of marketing authorizations over
time within a company, portfolios financial risk-value profiles or time-to-milestone
analyses. Our research on this topic requires further consideration and is currently
unpublished.

In conclusion, quantitative decision-making is increasingly used in the pharmaceu-
tical industry. Given the breadth and the complexity of the context in which deci-
sions are taken, many different questions are raised, and many statistical methods
are or could be developed. Evidence-based methods avoid relying on questionable
assumptions, and their usefulness is widely recognized by the scientific community.
Subjectivity should be incorporated but should also be challenged, and structured
quantitative tools permit to guide and to homogenise the decision-making process.
Importantly, statistical methods take into account the uncertainty inherent to drug
developments and to the use of different sources of evidence. Sensitivity analyses
should be conducted as part of the decision-making process, and the confidence in
the decisions increases with the robustness of the conclusions.
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Scale Loss Score (SLoS):
supplemental material

TABLE A.1: Parameters (α, β) of the Beta posterior distributions of the
benefit and risk parameters for Telithromycin (Teli.) and Comparator

(Comp.)

CAP ABS
Teli. Comp. Teli. Comp.

Cure rate (2286, 233) (814, 114) (607, 126) (176, 52)
Hepatic AE (58, 1264) (47, 1076) (14, 1303) (4, 943)
Cardiac AE (7, 1315) (5, 1118) (2, 1315) (2, 945)
Visual AE (15, 1307) (5, 1118) (17, 1300) (5, 942)
Syncope (3, 1319) (4, 1119) (1, 1316) (2, 945)
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TABLE A.2: Simulation scenarios with four criteria

Probability of Benefit (θi1 and θi2)
0.1 0.5 0.9
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0.1 �• � � � � � � � �•
• = treatment T1 ; � = treatment T2

Correlation matrices (Figures S12-S15):

• Positive correlations between criteria

Ω =


1 0.8 0.8 0.8

0.8 1 0.8 0.8
0.8 0.8 1 0.8
0.8 0.8 0.8 1


• Positive correlations between criteria except for the benefit criterion j = 2

which is supposed to be negatively correlated with the others

Ω =


1 −0.8 0.8 0.8
−0.8 1 −0.8 −0.8
0.8 −0.8 1 0.8
0.8 −0.8 0.8 1


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FIGURE A.1: Results of MCDA and SLoS performances in all simula-
tion scenarios for two uncorrelated equally important criteria (wj =

w̃j = 0.5 for j = 1, 2). • = T1. Left panel: P[P2,1
d > 0.8]. Middle panel:

P[P2,1
u > 0.8]. Right panel: φ = P[P2,1

d > 0.8] − P[P2,1
u > 0.8], for

which blue cells (resp., red cells) indicate that SLoS recommends T2
more often (resp., less often) than MCDA.
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FIGURE A.2: Results of MCDA and SLoS performances in all simu-
lation scenarios for two correlated equally important criteria (wj =
w̃j = 0.5 for j = 1, 2) with ρ = 0.8 (positive correlation). • = T1.
Left panel: P[P1,2

d > 0.8]. Middle panel: P[P1,2
u > 0.8]. Right panel:

φ = P[P1,2
d > 0.8] − P[P1,2

u > 0.8], for which blue cells (resp., red
cells) indicate that SLoS recommends T1 more often (resp., less often)

than MCDA.
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FIGURE A.3: Results of MCDA and SLoS performances in all simu-
lation scenarios for two correlated equally important criteria (wj =
w̃j = 0.5 for j = 1, 2) with ρ = 0.8 (positive correlation). • = T1.
Left panel: P[P2,1

d > 0.8]. Middle panel: P[P2,1
u > 0.8]. Right panel:

φ = P[P2,1
d > 0.8] − P[P2,1

u > 0.8], for which blue cells (resp., red
cells) indicate that SLoS recommends T2 more often (resp., less often)

than MCDA.
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FIGURE A.4: Results of MCDA and SLoS performances in all simu-
lation scenarios for two correlated equally important criteria (wj =
w̃j = 0.5 for j = 1, 2) with ρ = −0.8 (negative correlation). • = T1.
Left panel: P[P1,2

d > 0.8]. Middle panel: P[P1,2
u > 0.8]. Right panel:

φ = P[P1,2
d > 0.8] − P[P1,2

u > 0.8], for which blue cells (resp., red
cells) indicate that SLoS recommends T1 more often (resp., less often)

than MCDA.
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FIGURE A.5: Results of MCDA and SLoS performances in all simu-
lation scenarios for two correlated equally important criteria (wj =
w̃j = 0.5 for j = 1, 2) with ρ = −0.8 (negative correlation). • = T1.
Left panel: P[P2,1

d > 0.8]. Middle panel: P[P2,1
u > 0.8]. Right panel:

φ = P[P2,1
d > 0.8] − P[P2,1

u > 0.8], for which blue cells (resp., red
cells) indicate that SLoS recommends T2 more often (resp., less often)

than MCDA.
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FIGURE A.6: Results of MCDA and SLoS performances in all
simulation scenarios for two uncorrelated criteria, MCDA weights
(w1, w2) = (0.25, 0.75) and mapped SLoS weights (w̃1, w̃2) =

(0.30, 0.70). • = T1. Left panel: P[P1,2
d > 0.8]. Middle panel:

P[P1,2
u > 0.8]. Right panel: φ = P[P1,2

d > 0.8] − P[P1,2
u > 0.8], for

which blue cells (resp., red cells) indicate that SLoS recommends T1
more often (resp., less often) than MCDA.
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FIGURE A.7: Results of MCDA and SLoS performances in all
simulation scenarios for two uncorrelated criteria, MCDA weights
(w1, w2) = (0.25, 0.75) and mapped SLoS weights (w̃1, w̃2) =

(0.30, 0.70). • = T1. Left panel: P[P2,1
d > 0.8]. Middle panel:

P[P2,1
u > 0.8]. Right panel: φ = P[P2,1

d > 0.8] − P[P2,1
u > 0.8], for

which blue cells (resp., red cells) indicate that SLoS recommends T2
more often (resp., less often) than MCDA.
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FIGURE A.8: Results of MCDA and SLoS performances in all simula-
tion scenarios for two uncorrelated criteria, MCDA and SLoS weights
(w1, w2) = (w̃1, w̃2) = (0.25, 0.75) (no mapping). • = T1. Left
panel: P[P1,2

d > 0.8]. Middle panel: P[P1,2
u > 0.8]. Right panel:

φ = P[P1,2
d > 0.8] − P[P1,2

u > 0.8], for which blue cells (resp., red
cells) indicate that SLoS recommends T1 more often (resp., less often)

than MCDA.
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FIGURE A.9: Results of MCDA and SLoS performances in all simula-
tion scenarios for two uncorrelated criteria, MCDA and SLoS weights
(w1, w2) = (w̃1, w̃2) = (0.25, 0.75) (no mapping). • = T1. Left
panel: P[P2,1

d > 0.8]. Middle panel: P[P2,1
u > 0.8]. Right panel:

φ = P[P2,1
d > 0.8] − P[P2,1

u > 0.8], for which blue cells (resp., red
cells) indicate that SLoS recommends T2 more often (resp., less often)

than MCDA.
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FIGURE A.10: Results of MCDA and SLoS performances in all simu-
lation scenarios for four uncorrelated equally important criteria with
weights wj = w̃j = 0.25 for j = 1, ..., 4. • = T1. Left panel:
P[P1,2

d > 0.8]. Middle panel: P[P1,2
u > 0.8]. Right panel: φ =

P[P1,2
d > 0.8] − P[P1,2

u > 0.8], for which blue cells (resp., red cells)
indicate that SLoS recommends T1 more often (resp., less often) than

MCDA.
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FIGURE A.11: Results of MCDA and SLoS performances in all simu-
lation scenarios for four uncorrelated equally important criteria with
weights wj = w̃j = 0.25 for j = 1, ..., 4. Left panel: P[P2,1

d > 0.8]. Mid-
dle panel: P[P2,1

u > 0.8]. Right panel: φ = P[P2,1
d > 0.8]− P[P2,1

u >
0.8], for which blue cells (resp., red cells) indicate that SLoS recom-

mends T2 more often (resp., less often) than MCDA.
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FIGURE A.12: Results of MCDA and SLoS performances in all sim-
ulation scenarios for four correlated equally important criteria with
weights wj = w̃j = 0.25 for j = 1, ..., 4, positive correlations. • = T1.
Left panel: P[P1,2

d > 0.8]. Middle panel: P[P1,2
u > 0.8]. Right panel:

φ = P[P1,2
d > 0.8] − P[P1,2

u > 0.8], for which blue cells (resp., red
cells) indicate that SLoS recommends T1 more often (resp., less often)

than MCDA.
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FIGURE A.13: Results of MCDA and SLoS performances in all sim-
ulation scenarios for four correlated equally important criteria with
weights wj = w̃j = 0.25 for j = 1, ..., 4, positive correlations. • = T1.
Left panel: P[P2,1

d > 0.8]. Middle panel: P[P2,1
u > 0.8]. Right panel:

φ = P[P2,1
d > 0.8] − P[P2,1

u > 0.8], for which blue cells (resp., red
cells) indicate that SLoS recommends T2 more often (resp., less often)

than MCDA.
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FIGURE A.14: Results of MCDA and SLoS performances in all sim-
ulation scenarios for four correlated equally important criteria with
weights wj = w̃j = 0.25 for j = 1, ..., 4, positive correlations between
criteria except for criterion j = 2, negatively correlated with the oth-
ers. • = T1. Left panel: P[P1,2

d > 0.8]. Middle panel: P[P1,2
u > 0.8].

Right panel: φ = P[P1,2
d > 0.8]− P[P1,2

u > 0.8], for which blue cells
(resp., red cells) indicate that SLoS recommends T1 more often (resp.,

less often) than MCDA.
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FIGURE A.15: Results of MCDA and SLoS performances in all sim-
ulation scenarios for four correlated equally important criteria with
weights wj = w̃j = 0.25 for j = 1, ..., 4, positive correlations between
criteria except for criterion j = 2, negatively correlated with the oth-
ers. • = T1. Left panel: P[P2,1

d > 0.8]. Middle panel: P[P2,1
u > 0.8].

Right panel: φ = P[P2,1
d > 0.8]− P[P2,1

u > 0.8], for which blue cells
(resp., red cells) indicate that SLoS recommends T2 more often (resp.,

less often) than MCDA.
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FIGURE A.16: Results of MCDA and SLoS performances in all simu-
lation scenarios for four uncorrelated criteria, with MCDA weights
(w1, w2, w3, w4) = (0.10, 0.10, 0.40, 0.40) and mapped SLoS weights
(w̃1, w̃2, w̃3, w̃4) = (0.15, 0.15, 0.43, 0.43). • = T1. Left panel: P[P1,2

d >

0.8]. Middle panel: P[P1,2
u > 0.8]. Right panel: φ = P[P1,2

d >

0.8] − P[P1,2
u > 0.8], for which blue cells (resp., red cells) indicate

that SLoS recommends T1 more often (resp., less often) than MCDA.
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FIGURE A.17: Results of MCDA and SLoS performances in all simu-
lation scenarios for four uncorrelated criteria, with MCDA weights
(w1, w2, w3, w4) = (0.10, 0.10, 0.40, 0.40) and mapped SLoS weights
(w̃1, w̃2, w̃3, w̃4) = (0.15, 0.15, 0.43, 0.43). • = T1. Left panel: P[P2,1

d >

0.8]. Middle panel: P[P2,1
u > 0.8]. Right panel: φ = P[P2,1

d >

0.8] − P[P2,1
u > 0.8], for which blue cells (resp., red cells) indicate

that SLoS recommends T2 more often (resp., less often) than MCDA.
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FIGURE A.18: Results of MCDA and SLoS performances in all simu-
lation scenarios for four uncorrelated criteria, with MCDA weights
(w1, w2, w3, w4) = (w̃1, w̃2, w̃3, w̃4) = (0.10, 0.10, 0.40, 0.40) (no map-
ping). • = T1. Left panel: P[P1,2

d > 0.8]. Middle panel: P[P1,2
u > 0.8].

Right panel: φ = P[P1,2
d > 0.8]− P[P1,2

u > 0.8], for which blue cells
(resp., red cells) indicate that SLoS recommends T1 more often (resp.,

less often) than MCDA.
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FIGURE A.19: Results of MCDA and SLoS performances in all simu-
lation scenarios for four uncorrelated criteria, with MCDA weights
(w1, w2, w3, w4) = (w̃1, w̃2, w̃3, w̃4) = (0.10, 0.10, 0.40, 0.40) (no map-
ping). • = T1. Left panel: P[P2,1

d > 0.8]. Middle panel: P[P2,1
u > 0.8].

Right panel: φ = P[P2,1
d > 0.8]− P[P2,1

u > 0.8], for which blue cells
(resp., red cells) indicate that SLoS recommends T2 more often (resp.,

less often) than MCDA.
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Appendix B

Decision-making using a
composite definition of success:
supplemental material

B.1 Example in Major Depressive Disorder: sensitivity anal-
yses

This section presents the analyses conducted to assess the robustness of the results
presented in Section 3.

B.1.1 Weight elicitation

The impact of the the weight elicitation on the benefit-risk assessment is evaluated
using a Dirichlet Stochastic Multicriteria Acceptability Analysis (Dirichlet SMAA)
model (Supplementary Material, [112]). In this model, the weights are treated as
random variables following a Dirichlet distribution:

(w1, ..., wn) ∼ Dirichlet
(
c×

(
w0

1, ..., w0
n
))

((w1, ..., wn) ∈W)

with

(i) (w0
1, ..., w0

n) = (0.5, 0.2, 0.075, 0.075, 0.075, 0.075),

(ii) c the confidence factor reflecting the decision-makers’ confidence in their elici-
tation, varying from 1 to 105. The variances of the wi are inversely proportional
to c, and the deterministic weights used in the main MCDA model correspond
to an infinite confidence factor c = +∞.

The predictive probabilities of composite success for each regimen according to the
confidence factor c are presented in Figure S1. When the decision-makers are much
uncertain in their weight elicitation (1 ≤ c ≤ 5), the predictive probabilities of com-
posite success of the Low dose, the High dose and the dose increase are very similar
(around 40%). They separate and tend to the results of the main analysis when
the decision-makers are more confident in their elicitation. On the other hand, the
predictive probability of composite success of the High dose with supplementation
ranges between 58% and 78% and always remains above those of the other regimen,
confirming that it seems to be the best strategy for further development.
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FIGURE B.1: Predictive probabilities of composite success when the
benefit-risk assessment is performed using a Dirichlet SMAA model

with c ranging from 1 to 105.

B.1.2 Correlations between criteria

While the case of uncorrelated criteria is considered in the main MCDA model for
benefit-risk assessment, we investigated the robustness of the results in case of cor-
related criteria:

• Positive correlations between all criteria, with correlation matrix:

Ω =



1 0.8 0.8 0.8 0.8 0.8
0.8 1 0.8 0.8 0.8 0.8
0.8 0.8 1 0.8 0.8 0.8
0.8 0.8 0.8 1 0.8 0.8
0.8 0.8 0.8 0.8 1 0.8
0.8 0.8 0.8 0.8 0.8 1


• Benefit criterion negatively correlated with the risk criteria, and positive cor-

relations between risk criteria, with correlation matrix:

Ω =



1 −0.8 −0.8 −0.8 −0.8 −0.8
−0.8 1 0.8 0.8 0.8 0.8
−0.8 0.8 1 0.8 0.8 0.8
−0.8 0.8 0.8 1 0.8 0.8
−0.8 0.8 0.8 0.8 1 0.8
−0.8 0.8 0.8 0.8 0.8 1


The predictive distributions are presented in Figures S2 and S3, and the correspond-
ing predictive probabilities of success in Tables B.1 and B.2.
The predictive probabilities of success PPoS1 and PPoS2 are unchanged since they
are based on the benefit criterion only. The correlations only have an impact on the
differences in benefit-risk utility scores: because the MCDA model is based on an
additive formula, the correlations do not impact the mean of their predictive dis-
tributions, but they impact their variance. They are less precise when all criteria
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FIGURE B.2: Left: predictive distributions of the differences in
HAM-D17 mean total score of each regimen versus placebo in the
next Phase III study. Right: predictive distributions of the differences
in benefit-risk utility scores of each dose versus placebo in the next

Phase III study, when all criteria are positively correlated.

FIGURE B.3: Left: predictive distributions of the differences in
HAM-D17 mean total score of each regimen versus placebo in the
next Phase III study. Right: predictive distributions of the differences
in benefit-risk utility scores of each dose versus placebo in the next
Phase III study, when the benefit criterion is negatively correlated
with the risk criteria, and the risk criteria are positively correlated

between themselves.

are positively correlated, and (here) more precise when the benefit criterion is nega-
tively correlated with the risk criteria while risk criteria are correlated between them-
selves. However, the corresponding predictive probabilities PPoS3 are only slightly
impacted and the conclusions are unchanged.

B.1.3 Clinical assumptions for the strategy refinement

Since no data were available on the strategy refinement regimen, their success is pre-
dicted using together previous evidence on other regimen and clinical assumptions,
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TABLE B.1: Predictive probabilities of success when all criteria are
positively correlated

Dose PPoS1 PPoS2 PPoS3 PPoS
(statistical (clinical (positive B/R (overall)

significance) relevance) balance)
Low dose 74% 48% 86% 48%
High dose 93% 78% 23% 23%
High dose suppl 93% 78% 94% 78%
Dose increase 83% 59% 67% 58%

TABLE B.2: Predictive probabilities of success when the benefit crite-
rion is negatively correlated with the risk criteria, and the risk criteria

are positively correlated between themselves

Dose PPoS1 PPoS2 PPoS3 PPoS
(statistical (clinical (positive B/R (overall)

significance) relevance) balance)
Low dose 74% 48% 89% 48%
High dose 93% 78% 18% 18%
High dose suppl 93% 78% 96% 78%
Dose increase 83% 59% 67% 58%

which are translated into priors on some parameters (probability of Hypokalemia,
proportion of patients receiving the High dose), based on clinical assumptions (Sec-
tion 3.4). The following sensitivity analyses were conducted:

• High dose with potassium supplements. In the main analysis, the probability
of experiencing a Hypokalemia ξ42 with the High dose with potassium supple-
ments is assumed to be the same as with the placebo. This may be optimistic
since it supposes that the patients are compliant with their supplementation in
potassium, and that this one is perfectly adapted to the patient’s diet, which
may be difficult to achieve in practice. A sensitivity analysis is conducted with
the probability of Hypokalemia ξ42 varying from 0 to 0.71 (0.71 being the pos-
terior mean for the High dose without supplementation).

• Dose increase. According to the clinicians, the proportion of patients increas-
ing to High dose in the Phase III study ζ would vary from 30% to 40%. The
reliability of this assumption was assessed in a sensitivity analysis where the
mean proportion of patients receiving the High dose z varies from 0.05 to 0.95,
with ζ ∼ U[z− 0.05, z + 0.05].

The predictive probabilities of composite success for each regimen according to the
varying parameters are presented in Figures S4 and S5.

The probability of composite success of the High dose with potassium supplements
remains stable (between 73% and 78%) for probabilities of Hypokalemia lower than
0.3, and then it decreases until reaching the PPoS of the High dose without supple-
ments. It is the regimen with the greatest PPoS for probabilities of Hypokalemia
lower than 0.43. Since the potassium supplements are initially expected to prevent
the occurrence of Hypokalemia, we conclude that the results are robust even in case
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of substantial departure from the clinical assumptions.

The probability of composite success of the dose increase regimen reaches its maxi-
mum when the mean proportion of patients receiving the High dose is equal to 38%
(close to the clinical assumption 35%), and tends to the PPoS of the High dose when
the mean proportion increases. It remains between the PPoS of the Low dose and of
the High dose with potassium supplements when the mean proportion of patients
receiving the High dose varies between 0% and 64%, and never exceeds the PPoS of
the High dose with potassium supplements.

Overall, we conclude that the results are robust to changes in the clinical assump-
tions.

FIGURE B.4: Predictive probabilities of composite success when the
probability of Hypokalemia varies from 0 to 0.71 for the High dose

with potassium supplements.

FIGURE B.5: Predictive probabilities of composite success when the
mean proportion of patients receiving the High dose varies from 0.05

to 0.95.
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B.2 Alternative example in Major Depressive Disorder

B.2.1 Context and data

Let us consider the example in Major Depressive Disorder presented in Section 3,
with the two following changes:

• The threshold of minimal clinical relevance is fixed at dT = 2 points. This could
be relevant if, for example, the drug is an add-on therapy to be administered on
top of a standard therapy, and where the control arm of the trial is the standard
therapy plus a placebo. In this case, the difference between the arms often does
not need to be as large as for a monotherapy versus placebo alone, if the overall
amount of efficacy and safety resulting from the experimental combination are
large enough to justify its approval.

• In order to better investigate the performances of the regimens, the project
team decides to include three experimental arms in the next Phase III trial, to
be selected prior to the study among the four possible regimen (Low dose,
High dose, High dose with potassium supplements and Dose increase). The
objective is to detect a difference of at least one regimen versus the control
arm on the primary endpoint, using a Bonferroni correction to maintain the
familywise type I error rate at 2.5% (one-sided).

A sample size of 114 patients per arm (4 arms, 456 patients in total) is planned in the
next Phase III to reach a power of 80%, based on an anticipated difference of 3 points
(above the threshold of minimal clinical relevance here) on the HAM-D17 total score
at 6 weeks, a standard-deviation of 7 and a one-sided α of 0.025/3.

We assume that the same data were observed in Phase II trial, and the same model
is used.

B.2.2 Results

The predictive distributions of the differences in HAM-D17 mean total score and of
the differences in benefit-risk utility score of each regimen versus control in the next
Phase III study are presented in Figure S6. The predictive probability of composite
success of the development strategies, PPoS, along with the predictive probabilities
of its components, PPoS1, PPoS2 and PPoS3 are presented in Table B.3.

In this example, for all regimen, PPoS2 is greater than PPoS1 because the clinical
relevance criterion (d∗ > dT = 2) is easier to reach than the statistical significance
criterion (d∗ > c = 2.22). The predictive probabilities of positive benefit-risk PPoS3
are unchanged compared to the initial example. It follows that the High dose could
be excluded from the selected regimen for Phase III, as in the initial example, due to
its low probability to show a positive benefit-risk balance versus the control.
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FIGURE B.6: Left: predictive distributions of the differences in
HAM-D17 mean total score of each regimen versus placebo in the
next Phase III study. Right: predictive distributions of the differences
in benefit-risk utility scores of each dose versus placebo in the next

Phase III study.
.

TABLE B.3: Predictive probabilities of success

Dose PPoS1 PPoS2 PPoS3 PPoS
(statistical (clinical (positive B/R (overall)

significance) relevance) balance)
Low dose 66% 71% 88% 66%
High dose 89% 91% 24% 24%
High dose suppl 89% 91% 95% 89%
Dose increase 76% 80% 69% 68%
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Appendix C

Predictive probability of success
using surrogate endpoints:
supplemental material

C.1 Multi-arm trials

We need to account for correlations between treatment effect estimates coming from
multi-arm trials. We provide here an example with three-arm trials, which could be
simply extended to more arms. The within-trial model becomes:


θ̂(1)i
θ̂(2)i
γ̂(1)i
γ̂(2)i


∣∣∣∣∣∣∣∣


θ(1)i
θ(2)i
γ(1)i
γ(2)i

 ∼ N




θ(1)i
θ(2)i
γ(1)i
γ(2)i

 ,


σ2
(1)i ρiθσ(1)iσ(2)i ρ(11)iσ(1)iδ(1)i ρ(12)iσ(1)iδ(2)i

ρiθσ(1)iσ(2)i σ2
(2)i ρ(21)iσ(2)iδ(1)i ρ(22)iσ(2)iδ(2)i

ρ(11)iσ(1)iδ(1)i ρ(21)iσ(2)iδ(1)i δ2
(1)i ρiγδ(1)iδ(2)i

ρ(12)iσ(1)iδ(2)i ρ(22)iσ(2)iδ(2)i ρiγδ(1)iδ(2)i δ2
(2)i


.

where the first contrast is indexed by (1) and the second contrast indexed by (2).

C.2 Bayesian linear regression with a normal-inverse-gamma
prior

The vector of regression parameters is noted β =

(
a
b

)
.

C.2.1 Priors

We use the marginal and conditional prior distribution for τ2 and β | τ2:

τ2 ∼ Γ−1
(ν0

2
,

ν0v0

2

)
β | τ2 ∼ N

(
β0 =

(
0
0

)
, τ2Λ−1

0

)
with rank(Λ0) = 2 (proper prior), leading to a normal-inverse-gamma joint prior
distribution:

β, τ2 ∼ N-Γ−1
(

β0, Λ−1
0 ,

ν0

2
,

ν0v0

2

)
.
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C.2.2 Model

The regression model is given by θ̂1
...

θ̂N

 =

 1 γ1
...

...
1 γN

( a b
)
+

 ε̂1
...

ε̂N


with matrix notations θ = Xβ + ε with ε ∼ N(0, τ2 In).

C.2.3 Likelihood

The likelihood can be written

L
(

β, τ2, θ, X
)
=

1

(2πτ2)−N/2 exp

(
− (θ − Xβ)T (θ − Xβ)

2τ2

)
.

C.2.4 Posterior

The joint posterior distribution can be expressed as

β, τ2 | θ, X ∼ N-Γ−1
(

βN , Λ−1
N ,

νN

2
,

νNvN

2

)
with ΛN = XTX + Λ0 , βN = Λ−1

N (XTθ + Λ0β0), νN = ν0 + N + 1 and

vN =
2

νN

(
βT

0 Λ0β0 + θTθ − βT
NΛN βN + ν0v0

)
.

The corresponding marginal posterior distributions are:

τ2 | θ, X ∼ Γ−1(
νN

2
,

νNv
2

)

β | τ2, θ, X ∼ N(τ2Λ−1
N )
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C.3 Application in Multiple Sclerosis: data for the meta-analysis

TABLE C.1: Estimated log risk ratios for the MRI lesion counts, the
annualized relapse rate and the disability progression with their stan-

dard errors.

Trial N Treatment Treatment MRI Relapse Disability
arm 1 arm 2 γ̂1i (δ1i) γ̂2i (δ2i) θ̂i (σi)

2,38 248 IFN-1b 1.6 MIU Pbo -0.994 (0.276) -0.083 (0.150) 0.000 (0.240)
2,38 247 IFN-1b 8 MIU Pbo -0.892 (0.274) -0.416 (0.147) -0.342 (0.263)
21 26 Methylpred Pbo (–) -0.211 (0.687) 0.122 (0.811)
22 251 GA Pbo (–) -0.342 (0.213) -0.128 (0.261)
23,39 172 IFN-1a 6 MIU Pbo -0.400 (0.208) -0.386 (0.253) -0.446 (0.301)
24 150 IVIg Pbo (–) -0.896 (0.269) -0.357 (0.376)
4 51 Mitoxantrone Pbo -0.734 (0.502) -1.080 (0.484) -1.660 (0.816)
25 40 IVIg Pbo (–) -0.994 (0.479) -0.223 (0.807)
5,40 376 IFN-1a 22µg Pbo -0.545 (0.227) -0.342 (0.369) -0.386 (0.189)
5,40 371 IFN-1a 44µg Pbo -1.050 (0.222) -0.386 (0.178) -0.315 (0.186)
26 802 IFN-1a 60µg IFN-1a 30µg -0.117 (0.125) 0.049 (0.112) 0.000 (0.116)
27 188 IFN-1b IFN-1a (–) -0.342 (0.270) -0.844 (0.342)
28 306 Hydrolytic enzymes Pbo (–) -0.163 (0.196) 0.077 (0.220)
29 942 Natalizumab Pbo -1.770 (0.124) -1.140 (0.156) -0.528 (0.141)
30 1171 Natalizumab+IFN-1a IFN-1a -1.770 (0.112) -0.799 (0.121) -0.236 (0.115)
31 223 Alemtuzumab 12mg IFN-1a (–) -1.170 (0.304) -1.140 (0.366)
31 221 Alemtuzumab 24mg IFN-1a (–) -1.510 (0.269) -1.020 (0.354)
32 764 IFN GA -0.198 (0.151) 0.030 (0.188) 0.285 (0.226)
33,34 870 Cladribine 3.5mg/kg Pbo -1.310 (0.156) -0.868 (0.164) -0.363 (0.165)
33,34 893 Cladribine 5.25mg/kg Pbo -1.470 (0.149) -0.799 (0.161) -0.308 (0.160)
35 118 IFN-1a 30µg+AZA IFN-1a 30µg (–) -0.139 (0.408) 0.207 (0.425)
35 123 IFN-1a 30µg+AZA+pred IFN-1a 30µg (–) -0.357 (0.250) 0.039 (0.431)
36 130 IFN-1a+methylpred IFN-1a+Pbo -0.261 (0.320) -0.994 (0.438) -0.446 (0.397)
37 1345 IFN-1b 250µg GA -0.328 (0.098) 0.058 (0.230) 0.255 (0.112)
37 1347 IFN-1b 500µg GA -0.328 (0.082) -0.030 (0.181) 0.049 (0.118)
N=number of patients. Trial numbers are based on the references numbers provided in [123].
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