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En nuestras cosmovisiones somos seres surgidos de la tierra, el agua

y el máız, de los ŕıos somos custodios ancestrales el pueblo lenca.

Resguardados por los esṕıritus de las niñas que nos enseñan que dar

la vida de múltiples formas por la defensa de los ŕıos es dar la vida

por el bien de la humanidad y de este planeta

Berta Cáceres

L’attuale modo di produzione e di consumo dei paesi capitalisti

avanzati, basato su una logica di accumulazione illimitata, di spreco

di risorse, di consumo ostentato e di distruzione accelerata

dell’ambiente, risulta incompatibile con l’ambiente e non può

assolutamente essere esteso all’intero pianeta, pena una grave crisi

ecologica. Questo sistema è quindi necessariamente fondato sul

mantenimento e sull’aumento delle disuguaglianze tra Nord e Sud,

tra sfruttatori e sfruttati.

Michael Löwy
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Abstract

The intensification of the hydrological cycle associated with climate change
has resulted in a pronounced increase in extreme precipitation, particu-
larly noteworthy in mountainous regions, that are also recognized as cli-
mate change hotspots. Recent assessments reveal an elevation-dependent
stratification of long-term changes in various climate variables, such as
precipitation. This phenomenon, referred to as Elevation-Dependent Pre-
cipitation Change (EDPC), is of particular concern due to its potential
to trigger geo-hydrological hazards, making the projection of its future
changes crucial. Climate models are an indispensable tool for analysing
historical and future climate variability and change, although they are
affected by uncertainties, largely attributed to the coarse model resolu-
tion and the use of parameterizations for sub-grid processes. The aim of
this thesis was to provide new insights on extreme precipitation changes,
firstly analysing model uncertainties in their future projections, then, fo-
cusing on high-elevated areas to assess the altitudinal stratification of the
change in precipitation extremes using reanalysis data and state-of-the-
art climate models.

To reduce the inter-model spread in precipitation extremes future pro-
jections, in the first part of this thesis the Emergent Constraints (ECs)
methodology was used. An EC is a physically-explainable relationship
between model simulations of a past climate variable (predictor) and pro-
jections of a future climate variable (predictand). By constraining the
predictor through observations, it is possible to narrow future model pro-
jections of the predictand, as long as a significant correlation between
the predictor and the predictand exists. The main challenge in determin-
ing an EC is establishing if the predictor-predictand relationship found
is physically meaningful and robust to the model ensemble composition.
Four previously documented ECs, tested with CMIP3/CMIP5 and focus-
ing on extreme precipitation have been reconsidered in the thesis and their
robustness and sensitivity to the ensemble composition evaluated. Most
of the considered ECs did not survive the use of another model ensemble
(CMIP6) nor the change in its composition, highlighting the limitations
of applying this technique to precipitation extremes.

In the second part of the thesis, EDPC was investigated using ERA5 data
and CMIP6 climate models. Altitudinal patterns in mean precipitation



and a selection of extreme precipitation ETCCDI indices trends were com-
puted for the recent past, encompassing various global mountain regions:
the Tibetan Plateau, the Greater Alpine Region, the US Rocky Moun-
tains, and both the tropical and subtropical Andes. The analysis with
ERA5 revealed the presence of an EDPC signal in most of the considered
mountainous areas, showing consistency (i.e. same altitudinal stratifica-
tion) in mean precipitation, extreme precipitation - R10mm, annual count
of days when precipitation exceed the threshold of 10 mm/day - and per-
sistency of rain condition - CWD, annual maximum number of consecutive
wet days. Additionally, an enhanced wetting effect at high altitudes was
observed in all areas, except the Rockies. A validation of the historical
model experiment was performed to assess the CMIP6 model’s capability
in accurately simulating EDPC in the recent past. Good model perfor-
mances were observed in the Tibetan Plateau and the Greater Alpine
Region, while the Rockies and the tropical Andes posed significant chal-
lenges for CMIP6 models, displaying inconsistent behavior in representing
extreme precipitation and its altitudinal stratification when compared to
ERA5. The spatial resolution of CMIP6 models was found to play a cru-
cial role in simulating the phenomenon, particularly in small or narrow
areas.
In this context, further research aimed at identifying EDPC drivers and
leading mechanisms might involve the use of the EC technique, using
its capability to establish connections between various climate variables
rather than narrowing the spread between climate models.



Sommario

L’intensificazione del ciclo idrologico associato ai cambiamenti climatici
ha comportato un marcato aumento delle precipitazioni estreme, partico-
larmente accentuato nelle regioni montuose riconosciute come hotspot dei
cambiamenti climatici. Studi recenti hanno rivelato che i cambiamenti a
lungo termine di diverse variabili climatiche mostrano una stratificazione
con la quota, tra queste la precipitatione. Questo fenomeno, chiamato
Elevation-Dependent Precipitation Change (EDPC), contribuisce all’acuirsi
del rischio idro-geologico e per questo l’analisi del suo sviluppo nel futuro
deve essere di primaria importanza. I modelli climatici rappresentano uno
strumento indispensabile per analizzare la variabilità climatica nel pas-
sato e nel futuro, nonostante siano affetti da incertezze, principalmente
attribuibili alla risoluzione spaziale dei modelli e all’uso di parametriz-
zazioni per includere i processi sotto-griglia. L’obiettivo di questa tesi è
stato approfondire le variazioni della precipitazione estrema, analizzando
inizialmente le incertezze dei modelli nelle loro proiezioni future. Succes-
sivamente, lo studio si è focalizzato sulle aree montuose per valutare la
stratificazione altitudinale del cambiamento nelle precipitazioni estreme,
utilizzando dati di rianalisi e l’output di modelli climatici globali.

Nella prima parte di questa tesi, è stata analizzata una nuova tecnica
denominata Emergent Constraints (ECs), volta a ridurre la variabilità
tra i modelli nelle proiezioni future della precipitazione estrema. Un EC
è una relazione fisica tra le simulazioni del modello di una variabile cli-
matica nel passato (predictor) e le proiezioni di una variabile climatica
nel futuro (predictand). Vincolando il predictor attraverso dati osser-
vativi, è possibile limitare l’incertezza nelle proiezioni future del predic-
tand, purché tra i due sussista una correlazione significativa. La mag-
giore difficoltà nel determinare un nuovo EC è stabilire se la relazione
trovata è fisicamente supportata e significativamente robusta rispetto
alla composizione dell’ensemble dei modelli. In questa tesi, sono stati
presi in considerazione quattro EC sviluppati per la precipitazione es-
trema, documentati in letteratura e testati con i modelli dei precedenti
progetti CMIP3/CMIP5; ne è stata valutata la robustezza e la sensi-
bilità alla composizione dell’ensemble dei modelli. La maggior parte
degli EC considerati non ha superato questo test, evidenziando i lim-
iti dell’applicazione di questa tecnica alle precipitazioni estreme.



Nella seconda parte della tesi, i dati di ERA5 e dei modelli climatici
CMIP6 sono stati utilizzati per indagare l’EDPC. Sono stati calcolati i
pattern altitudinali dei trend temporali della precipitazione media e di una
selezione di indici ETCCDI per la precipitazione estrema, considerando
un periodo nel passato recente ed includendo varie regioni montuose del
globo: il Tibetan Plateau, la Greater Alpine Region, le US Rockies e le
Ande tropicali e subtropicali. L’analisi con ERA5 ha mostrato la presenza
di un segnale di EDPC nella maggior parte delle aree montuose consider-
ate, mostrando coerenza (la stessa stratificazione altitudinale) nella pre-
cipitazione media, in quella estrema (R10mm) e nella durata massima dei
periodi piovosi (CWD). Inoltre, è stato osservato un effetto di aumento
delle precipitazioni ad alta quota in tutte le aree, ad eccezione delle Rock-
ies. Le performance dell’esperimento historical dei modelli CMIP6 nel
simulare l’EDPC nel passato recente sono state valutate, effettuando un
confronto con il dataset ERA5. Buoni risultati sono stati riscontrati nel
Tibetan Plateau e nella Greater Alpine Region, mentre nelle Rockies e
nelle Ande, i modelli hanno ottenuto performances peggiori, mostrando
un segnale di EDPC opposto rispetto ad ERA5. Dalle analisi condotte,
è emerso inoltre come la risoluzione spaziale dei modelli CMIP6 sia un
elemento fondamentale nella simulazione dell’EDPC, specialmente in aree
montuose poco estese o particolarmente strette.
In questo contesto, ulteriori ricerche volte a identificare i driver e i mecca-
nismi principali responsabili dell’EDPC potrebbero coinvolgere l’uso degli
ECs, sfruttando la capacità di questa tecnica di stabilire connessioni tra
diverse variabili climatiche piuttosto che concentrarsi sulla sua capacità
di ridurre l’incertezza dei modelli climatici.



1Chapter

Introduction: the State of Art

1.1 Climate Change

Climate change is defined as the statistically significant long-term vari-
ation of averaged weather conditions and patterns. While it can oc-
cur naturally, driven by factors such as variations in the sun’s ac-
tivity or significant volcanic eruptions, since the 1800s human ac-
tivities have increasingly taken on the predominant role in driving
observed climate change. This is primarily attributed to the combus-
tion of fossil fuels like coal, oil, and gas, to produce energy. Many of
the changes in climate that have been observed are unprecedented in
hundreds of thousands of years, and some of them, such as sea-level
rise, are irreversible over hundreds to thousands of years (AR6 IPCC,
Masson-Delmotte et al., 2021). The Intergovernmental Panel on Cli-
mate Change (IPCC), the international scientific body established by
the United Nations (UN) in 1988, is tasked with assessing scientific
information related to climate change, its impacts, and potential adap-
tation and mitigation strategies, synthesizing them in periodic assess-
ment reports. The latest report (AR6, Masson-Delmotte et al., 2021)
shows unequivocally that emissions of greenhouse gases from human
activities are responsible for approximately 1.1◦C of warming since
1850-1900, and it states that, averaged over the next 20 years, global
temperatures are expected to reach or exceed 1.5◦C of warming.
Numerous other aspects of climate change are directly influenced by
global warming, including alterations in moisture levels, wind pat-
terns, snow and ice cover, ocean conditions and variation in the global
water cycle. Specifically, the interconnection between the global cli-
mate and the water cycle is profound: water plays a crucial role in
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exchanging both mass and heat among the atmosphere, the ocean,
the cryosphere, the biosphere, and the land surface and thus has an
impact on climate. Similarly, climate change can significantly affect
the water cycle: on the one hand, hydrological processes are influ-
enced by climate variables, such as precipitation and temperature, On
the other hand, the hydrological cycle affects the global energy bud-
get, altering the radiation balance through the presence of clouds and
atmospheric water vapor. In general, what has been observed over
the last decades is that the hydrological cycle is accelerating and in-
tensifying, triggered by global warming: temperature rise enhances
evapotranspiration, precipitation, and intense precipitation.
Global water cycle can be described in terms of a mathematical re-
lationship that represents the continuity equation in term of mass of
water, taking into account the main hydrological processes. Taking a
land surface water balance perspective, the cycle can be described as

P − E = Q+
dS

dT
(1.1)

where P is precipitation, E is evapotranspiration, Q is runoff, and S
is the total water storage in the basin.

Precipitation Global mean precipitation changes are related to the
Earth’s energy balance, while regional changes are dominated by the
transport of water vapor and by dynamical processes, particularly at
scales smaller than ∼4000 km. As the climate changes, the competing
constraints operating at global and local scales alter key water cycle
characteristics, such as precipitation frequency, intensity, and duration
(Allan et al., 2020). Global annual mean precipitation is projected to
increase between 2% and 10% by 2100 under a high-emissions scenario.
Moreover, along with an increase in global annual mean precipitation,
changes in both frequency and intensity in the distribution of precip-
itation are expected (Thackeray et al., 2022)

Evapotranspiration Surface evapotranspiration is a fundamental
branch of the global water and energy cycles. Climate change causes
modifications in evapotranspiration, influencing various hydrometeo-
rological factors via interactions between the surface and the atmo-
sphere. As the most evident mechanism, higher temperatures lead to
more evaporation from water bodies and transpiration from vegeta-
tion, causing an increase in evapotranspiration rates in many regions
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of the world. Moreover, shifts in the vegetation types, in the season-
ality of snow and cultivation and the increase in extended periods of
drought, will have strong impacts on evapotransipiration (Piao et al.,
2007).

Runoff Predicting changes in continental runoff with reliability is
crucial for mitigating the adverse consequences of hydroclimate vari-
ability, including droughts, floods, and the associated losses of ecosys-
tem goods and services. However, understanding how runoff responds
to increasing atmospheric CO2 levels is a complex task, influenced by
intricate land-atmosphere processes and their interactions. Over land,
the direct radiative forcing from CO2-induced atmospheric warming
can have dual effects: it may lead to increased precipitation and en-
hanced atmospheric evapotranspiration, resulting in both increased
and decreased runoff, respectively. Furthermore, changes in precip-
itation characteristics, such as rainfall intensity and the fraction of
precipitation falling as snow, can also influence runoff generation pro-
cesses (Zhou et al., 2023).

Global mean evapotranspiration and precipitation are profoundly linked
to the atmospheric and surface energy budget’s response to radiative
forcing (Deangelis et al., 2015), as described in Equation 1.2.

LvP = LWC − SWA− SH (1.2)

Latent heat flux, released through precipitation (LvP), is balanced
by the net atmospheric longwave radiative cooling (LWC) minus the
heating from shortwave absorption (SWA) and sensible heating from
the surface (SH).
Figure 1.1 shows a schematic representation of how global-mean pre-
cipitation responds to CO2 forcing on two different timescales. The
energy budget of the atmosphere (A) responds instantaneously to ra-
diative forcing (B): as the greenhouse effect is enhanced by the increase
in the CO2, LWC decreases and so does precipitation. Then, after
rapid and semi-rapid environment adjustments (C and D), involving
land surface and vegetation response, further modifications in atmo-
spheric circulation patterns and the ocean response, a long-term and
different response comes out more clearly (E). The environment set to
a new balance configuration with a higher equilibrium surface temper-
ature: LWC increases, SWA increases owing to cloud feedbacks, and,
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Figure 1.1: Schematic representation of the various responses of the atmospheric energy
balance and global precipitation to high CO2 levels. Credit: Allan et al. (2020)

as a result, global mean precipitation increases (Deangelis et al., 2015;
Allan et al., 2020).
Another key factor that links global warming to the intensification of
the hydrological cycle is the Clausius-Clapeyron equation (Equation
1.3), the quantitative relationship between atmospheric temperature
and the water vapor.

des
dT

=
Lv

T (αB − αA)
∼ Lv

T (αB)2
=

Lves
RvT 2

(1.3)

where es describes the water vapour pressure and Lv the latent heat
of vaporization. The latter two terms of the equation are derived by
considering that the specific volume of water vapor (αB) largely ex-
ceed the specific volume of liquid water (αA), and by substituting the
equation of state for water vapour.
This equation reveals that a temperature increase of 1◦C, results in
an approximate ∼7% increase in in the atmosphere’s water holding
capacity. Consequently, this leads to the enhancement of the global
hydrological cycle, driven by increased evapotranspiration and precip-
itation. Due to this intensification, the study of the hydrological cycle
and the evaluation of precipitation extremes have gained substantial
importance, also in terms of the climate agenda. This is essential
for the sustainable management of water resources and the evaluation
and prediction of risks associated to the occurrence and intensifica-
tion of water-related extreme events – such as floods and droughts –
that can lead to catastrophes (e.g. chapters 4 and 11 of the IPCC
AR6, Masson-Delmotte et al., 2021). The Special Report on Manag-



1.1. Climate Change 5

ing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation (SREX IPCC, Field et al., 2012) provided a com-
prehensive assessment on changes in meteoclimatic extremes and how
exposure and vulnerability to these events determine the impacts and
likelihood of disasters.

1.1.1 Climate change and its amplified effects in mountains

Mountains can be defined as geological structures in which cryospheric
elements, such as snow, glaciers and permafrost, play a leading role.
These elements are crucial to the planet’s hydrological cycle as they
contribute to the seasonal and long-term storage of water resources
for roughly half of global population (Beniston, 2003). Hence, moun-
tains are regarded as the planet’s “water towers” (Viviroli et al., 2011;
Pepin et al., 2022). Moreover, mountains are storehouse of biological
diversity and endangered species: they support 25% of the terrestrial
biodiversity and half of the world’s biodiversity hot-spots is concen-
trated in mountains (Viviroli et al., 2007). The influence of mountains
extends far beyond their ranges: they provide services to over half the
global population, making them not only crucial for people living in
mountains, but also for those living downstream: provisioning services
(e.g. water, food, energy, timber); regulating services (mountain water
cycle and regional feedbacks, modulation of runoff regimes, mitigation
of the risks from natural hazards, water storage) and cultural and aes-
thetic services.
Globally, from the Andes to the Himalayas, the majority of mountain
areas are experiencing serious environmental and ecological degrada-
tion, with numerous potential impacts including a decreasing in bio-
diversity (Sorte and Jetz, 2010), shrinking habitats for many species
(Parmesan, 2006), reduced snowpacks (Mote et al., 2018), and retreat-
ing glaciers (Kuhn, 1989; Huss et al., 2017; Huss and Hock, 2018). A
declining cryosphere leads to serious consequences, such as the possible
reduction of water resources for billions of individuals in downstream
regions across the globe (Viviroli et al., 2020) and the alteration of
snowmelt timing from early spring to late winter (Musselman et al.,
2017).
High-altitude regions have been identified as hot-spots of climate change:
in the mountains, climate change is being faster compared to the
globally-averaged signal, so that its consequences are anticipated or
amplified with respect to what is occurring in the adjacent low-land
areas. Evidences of the acceleration of climate change can be seen in
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all the “climatic spheres”, particularly in the cryosphere with glaciers
retreat, changes in snowpack depth and seasonality, permafrost thaw-
ing, ice and rock avalanches, formation of glacier lakes and their out-
burst floods, and in the atmosphere with weather and climate whiplash
effect, defined as abrupt shifts in precipitation regimes from wet ex-
tremes to dry extremes or vice versa.
In 2019, a Special Report on the Ocean and Cryosphere in a chang-
ing climate (SROCC, Portner et al., 2019) was released, featuring an
entire chapter dedicated to high-altitude mountain areas. This chap-
ter’s primary emphasis lies in the assessment of recent and projected
transformations in high-elevation regions, particularly pertaining to
glaciers, snow cover, permafrost, as well as lake and river ice. It also
goes into the causes of these alterations and their implications for the
various services furnished by the cryosphere, along with associated
adaptation strategies. The key message is unequivocal: there is an ur-
gent need to enhance the monitoring of mountain environments to gain
a deeper understanding of the factors driving observed changes and to
predict how mountains will respond to future climate conditions.

Elevation Dependent Warming In the last ten years, many stud-
ies have assessed that mountain warming rates are elevation-dependent.
Elevation dependent warming (EDW) - literally the stratification of
warming rates with the elevation - has been observed in different
mountain regions of the globe (Pepin et al., 2015), often with higher
rates of warming having occurred at increasingly higher altitudes over
the past decades.
To assess the existence of EDW, different steps are suggested (see
NextDataProject report): first of all, long-term temporal trend (or
rate of change) of surface temperature (mean, minimum or maxi-
mum) are calculated. The second step involves evaluating whether
the warming signal exhibits a dependence with the elevation. This
analysis entails calculating the slope obtained through a linear regres-
sion of temperature trends against the elevation. This regression can
be carried out at each grid point (for gridded observational datasets,
reanalysis products, and model data) or location (for station data), or
data can be averaged within elevational bands (Palazzi et al., 2016).
When the rate of the temperature trend is found to exhibit a statisti-
cally significant relationship with the altitude, it can be concluded that
EDW is occurring. This characterization can be applied on a global
scale, within specific regions, or even localised in a single mountain
range. In principle, the slope does not need to be strictly positive or
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negative, as in accordance with the literal definition of EDW, or neces-
sarily linear which is often not the case; however, it must demonstrate
systematic behavior (Palazzi et al., 2016).
EDW has been assessed using various datasets, including in-situ mea-
surements, satellite and reanalysis data, as well as model simulations,
each having its own strengths and weaknesses. The majority of studies
based on observations suggests that an enhanced warming is occurring
at higher elevations while some others show an opposite sign of EDW,
no elevational-dependency or even a more complex situation (e.g. no
significant elevational gradient but highest warming rates at interme-
diate elevations) (Pepin et al., 2015).

The SROCC IPCC special report (Portner et al., 2019) offers a com-
prehensive overview of mean annual surface air temperature trends in
mountain regions, summarising findings from 40 studies that used a
total of 8703 observation stations over different time periods, partly
overlapping. On average, the rate of warming in mountain areas is
recorded at 0.3◦C per decade, slightly higher than the global aver-
age of 0.2◦C per decade. Pepin et al. (2022) conducted comparisons
between individual mountain regions and their adjacent lowland areas
and in many cases, notable differences in warming rates were observed.
Particularly, in 20 cases, warming rates are found to be enhanced with
increasing altitude, while in just 5 cases, they show a negative depen-
dence. The altitudinal-dependency of warming rates is particularly
pronounced in the Tibetan Plateau, the Great Alpine Region, the An-
des, and US Rockies Mountains. In the same study, Pepin et al. (2022)
emphasized a relevant issue related to the assessment of EDW. It is
essential to consider the lack of consistency in the approaches and data
used for evaluating EDW, which includes variations in time periods,
the selection of comparison stations, temporal and spatial resolutions,
the chosen elevation ranges, and other factors. This lack of consis-
tency can complicate the comparison and review of studies, hindering
the identification of general patterns.

Precipitation in mountains Mountainous regions display distinc-
tive dynamics that exert localized impacts on large-scale climatic pat-
terns. The effect of orography results in pronounced spatial climate
variability within mountainous areas (Daly, 2006). The presence of
complex terrain can significantly influence local precipitation through
orographic lifting of air masses, a phenomenon that facilitates conden-
sation and cloud formation (Napoli et al., 2019). As a result, the to-
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tal precipitation in mountainous areas includes both the amount that
would occur without the relief and an orographic component due to the
intensified precipitation formation mechanism over mountains, driven
by the forced uplift of air masses by the terrain (Johnson and Han-
son, 1995). This combined effect leads to an increase in rainfall with
the altitude, commonly referred to as orographic enhancement of
precipitation. The amount of orographic precipitation varies across
different spatial scales and is influenced by several factors. These fac-
tors encompass synoptic-scale pressure patterns, local vertical motion
arising from terrain complexity, such as steepness and slope orienta-
tion, and microphysical processes within clouds, including the presence
of aerosols and the evaporation of falling raindrops (Barry, 1981).
The response of orographic precipitation to climate change depends
on many aspects: firstly, as many studies highlight, shifting the freez-
ing level at higher altitudes cause a increase in liquid precipitation at
the expense of solid precipitation, resulting in a strong decrease in the
snowpack and a higher risk of floods (Siler and Roe, 2014). Moreover,
changes in wind speed or direction manage to displace and modify
atmospheric moisture transport and consequently the quantity of pre-
cipitation (Shi and Durran, 2014). Analyzing severe orographic pre-
cipitation poses a significant research challenge due to the complexity
of the phenomena and the limited distribution of station data, as well
as the heterogeneity in its availability. Despite these challenges, such
analyses remain of outstanding importance as they represent a serious
threat to infrastructures, cities, and populations (Abbate et al., 2022).

1.1.2 Climate extremes

The Fifth Assessment Report (AR5, Stocker et al., 2013) and the
SREX (Field et al., 2012) of IPCC have provided compelling evidence,
based on observations, that climate extremes have undergone substan-
tial changes since the mid-20th century, primarily as a result of human
influences. Furthermore, these changes are projected to enhance in the
future. On a global scale, many of the shifts in climate extremes can be
attributed directly to the increase in the radiative forcing associated
with global warming, the expansion of atmospheric water-holding ca-
pacity, and the modifications in vertical stability and meridional tem-
perature gradients that impact climate dynamics (Chapter 11, AR6-
IPCC, Masson-Delmotte et al., 2021).
Starting from the IPCC definition, extreme weather events are de-
fined as “events that are rare at a particular place and time of year”
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and extreme climate events as a “pattern of extreme weather that
persists for some time, such as a season” (Chapter 11, AR6-IPCC,
Masson-Delmotte et al., 2021). Nevertheless, the definition of rare
is not unique, numerous criteria exist to assess the occurrence of an
extreme weather or climate event, depending on distinct geographic
regions.
From a strictly mathematical standpoint, an extreme event can be
defined as an uncommon occurrence situated at either the upper or
lower end of a particular variable’s value range. The likelihood of val-
ues falling within this range is described by a probability distribution
or density function, often exhibiting a shape resembling a normal or
Gaussian distribution (Henderson-Sellers, 1995).
Figure 1.2 illustrates the impact on temperature distribution result-
ing from variations in both the mean and variance, with particular
emphasis on their influence on extreme events. In figure 1.2a, increas-
ing only the average temperature, the range between the hottest and
coldest temperature does not change, however this could result in the
emergence of previously unrecorded, exceptionally high temperatures
in this hypothetical climate scenario. An increase in the variability
but not in the mean indicates an increase in the probability and in
the amplitude of both hot and cold extremes (Figure 1.2b). When
both the mean and variability increase (Figure 1.2c), the probability
of hot and cold extremes is affected, with more frequent hot events
and fewer cold events. This suggests that the relative alterations in
extreme events are significantly more pronounced than the relative
changes observed in the mean and standard deviation.

The probability distribution function of daily rainfall looks very dif-
ferent from the gaussian distribution curve of temperature (Chapter
10, Henderson-Sellers, 1995); consequently, changes in both mean and
variability would lead to very different results. For example, daily
precipitation follows a gamma distribution (Equation 1.4)

f(x) =

(
x
β

)α−1
e−

x
β

βΓ(α, β)
, α, β > 0 (1.4)

where x is the precipitation amount, Γ is the Gamma function and α
and β are the shape and scale parameters, respectively.
This equation can be mathematically integrated to derive the proba-
bility of exceeding a specific rainfall threshold. For instance, the 95th
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Figure 1.2: Schematic representation showing the effect on temperature extremes when
(a) the mean temperature increases, (b) the variance increases, and (c) when both the
mean and variance increase for a normal distribution of temperature. (Credits: Figure
2.32 from Watson and the Core Writing Team (AR3-IPCC, 2001))

percentile of the Gamma distribution might be selected as the thresh-
old value at which precipitation would be categorized as “intense” or
“extreme”.
When we have to deal with extreme events, we need to consider that
their outcomes occur with very low probability and this could affect
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the representation of the tail of the probability distribution: the Ex-
treme Value Theory (EVT) is a branch of statistics and probability
theory that deals with the study of extreme or rare events. In par-
ticular, this theory aims to analyse the tail ends of probability dis-
tributions, describing the minimum or maximum values (e.g. yearly
maximum one day precipitation) obtained from large sets of indepen-
dent random variables or threshold exceedances (e.g., the precipitation
amounts above a specified large value).
Nonetheless, these statistical methods were initially formulated to
handle isolated extreme events within a dataset, consequently, they
may not be universally applicable to defining extreme events charac-
terized by persistence (e.g., heatwaves or droughts), the simultane-
ous behavior of multiple variables, or events considered extreme due
to their spatial extent (Chapter 10, Henderson-Sellers, 1995). Large
international efforts have been taken to elaborate a standardize def-
inition of climate extremes; in the early 21st century, the World Me-
teorological Organization (WMO) and the World Climate Research
Program (WCRP) established the Expert Team on Climate Change
Detection and Indices (ETCCDI) and defined 27 representative cli-
mate indices to assess extremes in climate change globally and region-
ally (Karl et al., 1999b). Extremes like the annual maximum daily
precipitation (Rx1day) or the annual maximum wind speed have con-
ventionally been modeled using one of three distinct Extreme Value
Distributions in engineering applications. While a few of these in-
dices may align with the conventional definition of extreme events,
the majority do not.

Precipitation extremes under climate change

Precipitation extremes and extreme events in the context of climate
change has been subject of numerous studies, considering the conse-
quences that they may have on both human society and ecosystems
(Chapter 4, SREX-IPCC, Field et al., 2012). These events are ex-
pected to increase in both frequency and intensity, not just in the
global mean but across nearly all latitudes, differently to what has
been assessed for total precipitation (Thackeray et al., 2022). Un-
derstanding changes in precipitation extremes is a research challenge.
On the one hand, the record of precipitation might be insufficient to
detect long-term trends of rare events; on the other hand, changes in
both atmospheric dynamics, thermodynamics and microphysics need
to be considered simultaneously to assess and understand the overall
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effect.

To better understand how extreme precipitation events react to rising
temperatures, a useful approach is to begin with an approximation of
the equation that describes the surface precipitation rate during such
events:

P ∼ −ϵ{w(p)S(T, p)} (1.5)

where ϵ is the precipitation efficiency, w is the vertical velocity in pres-
sure coordinates (negative for upward motion), S(T, p) is the deriva-
tive of the saturation specific humidity qs with respect to pressure p
taken at constant saturation equivalent potential temperature (along
a moist adiabatic) and { } is a mass-weighted vertical integral over
the troposphere.
This equation can help separating all different contribution: thermo-
dynamical (S depends only on pressure and temperature), dynam-
ical (w is the vertical velocity) and microphysical (from changes in
the precipitation efficiency).

Thermodynamical Warming leads to an expansion of the atmo-
sphere’s water-holding capacity, in accordance with the Clau-
sius–Clapeyron (C-C) relationship (see Equation 1.3). This ther-
modynamic effect causes a concurrent rise in extreme precipita-
tion on a global scale. It suggests that precipitation extremes
will escalate at a similar rate, or possibly even more rapidly, if
the strength of the updrafts associated with extreme precipitation
events increases as the climate warms (Chapter 11, AR6 IPCC,
Masson-Delmotte et al., 2021).

Dynamical At the regional level, alterations in extreme precipitation
patterns are further influenced by changes in atmospheric dy-
namics. Large-scale climate phenomena, e.g. the North Atlantic
Oscillation (NAO) or El Niño–Southern Oscillation (ENSO), con-
tribute to the modulation of extreme precipitation through vari-
ations in environmental conditions or the intensity of storms. On
a more localized scale, additional dynamic factors can contribute:
the future warming trend may intensify extreme monsoonal pre-
cipitation events; moreover, shifts in both tropical and extrat-
ropical cyclogenesis (convective precipitation) can lead to mod-
ifications in extreme precipitation patterns or alterations in sea
surface temperatures can impact extreme precipitation patterns
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near coastal areas (Chapter 11, AR6 IPCC, Masson-Delmotte
et al., 2021).

Microphysical The effectiveness of transforming atmospheric mois-
ture into precipitation may be modified by cloud microphysical
changes due to warming; this could lead to shifts also in pre-
cipitation extremes. Research has shown that aerosols can in-
fluence significantly heavy precipitation: a reduction in atmo-
spheric aerosols induces warming, thereby causing an increase in
extreme precipitation, as a thermodynamic consequence (Samset
et al., 2018). Furthermore, alterations in atmospheric aerosol lev-
els also trigger dynamic transformations, as observed in tropical
cyclones (Takahashi et al., 2017).

In conclusion, the thermodynamic alterations caused by warming lead
to a pronounced increase in extreme precipitation, following a rate
close to the one described by the C-C relationship. Nevertheless, the
impacts of warming-induced shifts in dynamic drivers on extreme pre-
cipitation are more complex and challenging to quantify; they consti-
tute a source of significant uncertainties in climate future projections
and warrant further research.

1.2 Assessing mountain precipitation and extremes with

observational based datasets

The majority of mountainous environments and ecosystems around
the world are responding rapidly to ongoing climate change, therefore
it is fundamental to monitor climate and weather conditions of those
environment. Long-term climatological time series are essential for
enhancing our comprehension of the leading mechanisms and in pro-
viding more realistic projections of future impacts. According to the
widely used definition, 13–30% of the global land surface (excluding
Antarctica) can be considered mountainous, but still high elevation
regions tend to be comparatively under-represented (Thornton et al.,
2022). As assessed by the SROCC IPCC special report (Chapter 2,
Portner et al., 2019), the possibility to detect changes in various com-
ponents of the high mountain cryosphere and attribute them to specific
climate drivers is limited by the paucity of in-situ station and the re-
duced spatial density and temporal extent of observation records at
high elevations. Those gaps in observations pose serious challenges
in quantifying past trends and in simulating future evolution of the
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mountain climate.

There are many methods and datasets that can be used to assess
specifically precipitation and precipitation extremes in mountain ar-
eas: ground in-situ rain gauge station, weather radar networks, satel-
lite observations, atmospheric reanalysis, or model-based investiga-
tions. It is fundamental to acknowledge both advantages and limita-
tions associated with each of these sources.

In-situ stations In mountains, in-situ data assume a great impor-
tance in unraveling the complexity of physical processes. However,
they are affected by the limitation of data coverage, that includes the
geographical or spatial coverage - the density of station distribution -,
the temporal coverage - the length of station records - , and the eleva-
tional coverage of a given set of observations. In their work, Thornton
et al. (2022) considered spatial, temporal, and elevational coverage
for daily frequency records of global precipitation, analysing its data
coverage, geographical differences and common patterns. What they
found is that spatial and temporal data coverage varies greatly be-
tween mountain regions globally, spatial density and record length
appear partially inversely related: e.g., dense but short records in
North America, with longer but less dense records in Africa, Asia,
and Siberia. Moreover, data collected from traditional rain gauges are
susceptible to systematic measurement biases: in mountainous ar-
eas, the significant occurrence of snowfall (Goodison et al., 1998), the
substantial spatial variability of orographic precipitation, and elevated
wind speeds (Kochendorfer et al., 2017) exacerbate the challenges of
reliable data collection.

Weather radar and satellite based products Weather radar
networks offer precipitation estimates characterized by high spatial
and temporal resolutions. However, in mountainous regions, the ac-
curacy of radar-derived rainfall estimates tends to be compromised due
to various observational limitations, for example the beam blockages
and its interaction with the vertical structure of precipitation (Mei
et al., 2014). Additionally, radar observations have limited applica-
bility in cold weather conditions, as the radar beam primarily detects
snow, making the assessment of surface precipitation more challeng-
ing (Schneebeli et al., 2013). Satellite-based estimates of precipitation
can potentially provide a solution to the spatial sampling limitations of
ground-based sensors but are affected by different source of uncertain-
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ties. First of all, their temporal coverage is still limited for detecting
climate trends and their statistical significance (Palazzi et al., 2016).
Secondly, satellite-based precipitation estimates can be hindered by
cloud cover; in fact, clouds can obscure the view of the Earth’s sur-
face, making it challenging to accurately detect and measure precip-
itation. Furthermore, satellites may have difficulty in distinguishing
between snowfall and rainfall, particularly in cold mountainous areas
and this can lead to inaccuracies in estimating the type and amount
of precipitation (Levizzani and Cattani, 2019). Moreover, inconsisten-
cies among the available products raise concerns about their accuracy
when applied to mountainous areas (Krakauer et al., 2013; Cattani
et al., 2021).

Observational gridded datasets and reanalyses Gridded pre-
cipitation datasets employ various interpolation techniques to estimate
precipitation values on a regular grid, either regionally or globally; in-
stead of relying solely on point measurements from individual weather
stations, gridded datasets provide a comprehensive spatial representa-
tion of precipitation over a specific area. Recently, their development
has increased, as they find widespread applications in climate stud-
ies, model evaluation, and water resource management (Merino et al.,
2021). A significant advantage of interpolated datasets over in-situ sta-
tions is their ability to reduce biases arising from irregular station dis-
tribution, as they offer homogeneous spatial coverage of the region of
interest. However, the creation of high-quality gridded datasets neces-
sitates an adequate number of underlying weather stations within each
grid cell to account for sub-grid variations. Unfortunately, the current
distribution of available rain gauges is uneven, resulting in numerous
grid cells lacking observational data. Furthermore, precipitation is a
discontinuous variable with distinct spatial gradients, particularly in
the case of convective precipitation. These factors together introduce
substantial uncertainties (Merino et al., 2021). Gridded datasets can
be generated by combining data from various sources, as is the case
with reanalysis products. Reanalyses are constructed by assimilating a
wide range of observational data, including information from weather
stations, satellites, weather balloons, within numerical weather mod-
els. This data assimilation process yields a consistent dataset that
spans several decades, enhancing the accuracy of estimated variables
and providing a detailed representation of Earth’s atmospheric and
surface conditions.
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1.3 Global Climate Models (GCMs)

In climatology, models are essential tools to study and understand
mechanisms responsible for climate variability and they are funda-
mental to make projections for its future evolution.
In broad terms, a “mathematical” model of the climate system is for-
mally defined as a mathematical representation of the Earth system
based on physical, biological, and chemical relationships. Models have
been developed to study the response of the climate to perturbations or
forcings and, in particular, to perform projections of the future climate
evolution in response to anthropogenic emissions of greenhouse gases
and aerosols. They are based on key explicit equations, such as the
Navier-Stockes equations, that need numerical methods to be solved.
Therefore, solutions are discrete corresponding to the model spatial
and temporal resolution. Initial and boundary conditions are inter-
polated onto the numerical grid to approximate real-world conditions.
Even in models with the most refined resolution, the numerical grid
remains too coarse to fully represent all phenomena within each cell,
such as turbulence or cloud microphysics. Consequently, parameter-
izations are developed and implemented based on empirical evidence
or theoretical postulates. However, given that they only capture the
first-order effects and may not hold universally across all conditions,
they may introduce large uncertainties in climate model simulations.
A way to differentiate between different types of models is related
to the number of components they include and the detail in the de-
scription of the processes that they incorporate. The most complex
models are general circulations models or Global Climate Models
(GCMs) which attempt to account for all the important properties
of the system at the highest affordable resolution. On the other side of
the spectrum, there are the energy-balance models (EBMs) the sim-
plest models, in which variables are averaged over large areas (the
entire Earth or latitude bands) and many processes are not included
or simplified by means of parameterizations. Earth Models of Inter-
mediate Complexity (EMICs) lie in between. GCMs provide the most
precise and complex description of the climate system; presently, their
grid resolution typically ranges from 50 to 200 kilometers, with ongo-
ing advancements aimed at refining their precision. Because of the
large number of processes that are included in these models, they re-
quire a high computational power. To basically explain how do they
work, they divide the globe into a three-dimensional grid of cells and
for each of them, the set of primitive equations are numerically solved,
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Figure 1.3: A simplified representation of a GCM, delineating some fundamental com-
ponets and processes. Credits: Figure 3.6 from Goosse (2015)

together with the employed empirical formulas and the parameteriza-
tions.

In order to analyse and validate models performances, in 1995 the Cou-
pled Model Intercomparison Project (CMIP) was established by the
global Working Group on Coupled Modelling. The primarily objective
of the CMIP effort is to evaluate state-of-the-art climate models and
assess their performance. Climate model evaluation and validation
are crucial for understanding the strengths and weaknesses of climate
models and enhancing their accuracy in simulating various aspects of
the Earth’s climate system. Secondary, they are essential in better
understanding past, present and future climate changes arising from
unforced variability or natural and anthropogenic forcings account-
ing for different scenarios. The most recent phase of CMIP (CMIP6,
Eyring et al., 2016) provides the foundational data for the IPCC’s
Sixth Assessment Reports. Last but not less important goal is that
CMIP multi-model outputs are available in a standardised format.
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1.3.1 Model uncertainties

Figure 1.4 shows the three main source of model uncertainties that
can be identified: natural internal variability (shown in orange), mod-
elling uncertainties (blue) and scenario uncertainties (green).

Natural internal variability: Natural internal variability accounts

Figure 1.4: The sources of uncertainty in global decadal temperature projections, ex-
pressed as a ‘plume’ with the relative contribution to the total uncertainty coloured ap-
propriately. The shaded regions represent 90% confidence intervals. Credits: Figure 11.8a
from Stocker et al. (AR5 IPCC, 2013)

for the temporal variation of the climate system around a mean state
due to its internal processes. The climate system has many compo-
nents operating over different time scales that can affects each other.
As a consequence, the average temperature of the planet shows varia-
tions on temporal scales that are shorter than those generally induced
by external forcing, such as year-to-year or decadal variability. Reli-
able models of the climate system should be able to simulate how the
system varies as an effect of internal processes (Neelin, 2010)
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Modelling uncertainties: As already mentioned, climate models
are highly complex computer programs that incorporate a large num-
ber of variables and use equations to simulate how the climate evolves
over time. Since solutions are discrete, they can only provide outputs
representing conditions at a specific resolution. Furthermore, each
climate model is different from another, depending on how model-
ers have chosen to represent sub-grid processes through parameteri-
zations, for example, or according to its own resolution. The imple-
mentation of different parameterizations introduces uncertainties in
the models; combined with climate feedbacks, they can trigger further
variability resulting in a greater spread among models that may not be
easily discernible. Consequently, even when the models are fed with
the same inputs, the results might differ. A deeper understanding
of model uncertainties and their sources, as well as efforts to reduce
the inter-model variability, are essential steps in model development,
evaluation, and validation. These efforts aim to increase confidence in
future projections.

Scenario uncertainty: Scenario uncertainty is related to the imper-
fect knowledge about the socio-economic and technological develop-
ments of the global society in the future, resulting in different green-
house gas emissions. Scenarios can be defined as possible “stories”
about the future evolution of greenhouse gas emissions based on how
quickly human population will grow, how land will be used, what
technologies and kind of energies will be employed. Figure 1.4 clearly
shows that over long time scales, the uncertainty related to emissions
scenarios is much larger than the model uncertainty and the natural
variability.

1.3.2 Model uncertainties in precipitation and its extremes

over mountain areas

Simulating precipitation and its spatial and temporal variability is an
arduous exercise. One difficulty is related to the parameterizations of
sub-grid processes that affect precipitation such as those for radiation,
heat transfer, cloud microphysics, orographic lifting and deep convec-
tion (Palazzi et al., 2014; Arakawa, 2004; Stevens and Bony, 2013).
Orographic precipitation mechanisms, such as orographic lifting, play
an important role in determining patterns of small-scale precipitation
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in areas with complex orography (Terzago et al., 2018).
As previously described in Chapter 1.1.2, precipitation and its ex-
tremes are additionally affected by microphysical aspects, specifically
the ability of aerosol particles to alter cloud optical properties. The
study conducted by Wilcox et al. (2013) emphasizes the importance
of incorporating aerosol indirect effects into GCMs. This study sug-
gests that the variations in model outcomes may be associated with
the diverse ways aerosol load and cloud sensitivity to aerosols are rep-
resented. In particular, it is highlighted that CMIP5 models which
include a representation of the indirect effects of sulfate aerosols pro-
vide a more accurate representation of the reduction in global mean
annual-mean temperatures during the 1950s and 1960s, along with the
simultaneous decrease in precipitation.

The Earth’s hydrological cycle interconnects processes involving the
atmosphere, lithosphere, biosphere, hydrosphere, and anthroposphere,
making them all influential on precipitation, including its extremes.
However, due to the multitude of land surface processes and the com-
plexity of climate interactions between the surface and the atmosphere,
including the full spectrum of potential implications for extreme hy-
drological events represents a challenge. Moreover, these processes are
difficult to both measure and model, particularly when considering
terrestrial components of the hydrological cycle, such as groundwater,
snowmelt, and permafrost hydrology. These challenges introduce an
additional significant sources of uncertainty into model projections.
Furthermore, it is important to note that certain anthropogenic influ-
ences, such as irrigation, dams, river regulation, and agricultural land
use changes and management, are often omitted in GCMs. In essence,
a more comprehensive approach is required, involving detailed land hy-
drological simulations and land-atmosphere coupling simulations, to
unravel the intricate interplay between human water usage and the
global hydrology-climate system (Yang et al., 2021).

1.3.3 Emergent Constraints

In recent years, a methodology called “Emergent Constraints (ECs)”,
pioneered by Hall and Qu (2006), has been developed to reduce un-
certainties in climate change projections. An EC is defined as a
physically-explainable empirical relationship between intermodel vari-
ations in a quantity describing some aspects of the observed climate—the
current climate predictor—and inter-model variations in a future pre-
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diction of some climate quantity—the future climate predictand (Klein
and Hall, 2015). The figure 1.5 shows a hypothetical linear relation-
ship (the EC) between a varible A, called predictor, and a variable B,
called predictand, simulated by 20 climate models. The idea is that,
by constraining A through observations, in the plot represented by
the blue shaded area, we can identify which models are more realistic
in providing future projections of B, represented by the green shaded
area.
The most important requirement for a trustworthy EC is that a strong

Figure 1.5: Schematic representation of the most common procedure to derive an EC
between a predictor (x axis) and a predictand (y axis) simulated by climate models. The
grey dotted line represents the hypothetical EC relationship, the blue shaded area the
constraint made by the observation data and the green shaded area the result of the EC
procedure, including all more realistic models in simulating the predictand.

physical explanation exists for the predictor-predictand correlation. A
three-step definition has been proposed to establish an EC:

1. a potential EC is one in which a significant correlation exists
between the predictor and the predictand;

2. a promising EC is when a physical explanation is proposed to
support the correlation;

3. an EC is confirmed if a strong physically-based evidence that
justifies the correlation between the predictor and the predictand
(i.e., the proposed explanation at item 2) is verified (Klein and
Hall, 2015)
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Recently, Hall et al. (2019) presented a framework in which a po-
tential Emergent Constraint (EC) is elevated to a confirmed status
when accompanied by a plausible and explainable physical mechanism,
and its resilience is assessed through out-of-sample testing (Simpson
et al., 2021). Over the last few decades, as the potential of ECs as a
technique to reduce inter-model spread gained recognition (Hall and
Qu, 2006), numerous ECs have been tested and applied across var-
ious branches of climate science. These applications include studies
on Equilibrium Climate Sensitivity, cloud feedbacks, analyses of the
carbon cycle, high-latitude processes, applications to the hydrological
cycle, and others (e.g. Brient, 2020; Williamson et al., 2021).
Of particular interest is the application of this technique to the hy-
drological cycle, especially precipitation. As previously noted, uncer-
tainties surrounding the response of precipitation to global warming
are considerable and demand further reduction. Furthermore, precip-
itation proves to be one of the most challenging variables to model,
with precipitation formation mechanisms often integrated into mod-
els using parameterization (e.g., convection or orographic precipita-
tion). O’Gorman and Schneider (2009) suggest that potential obser-
vational constraints for changes in precipitation extremes may lie in
the connections between natural variability in extreme precipitation
and temperature, particularly since the underlying physical mecha-
nisms are relatively well understood. These constraints commonly
suggest a substantial increase in heavy rainfall with warming (O’ Gor-
man, 2012; Borodina et al., 2017). Nevertheless, the exploration of
emergent constraints (ECs) in the context of precipitation and pre-
cipitation extremes has been limited, particularly in the context of
the new CMIP6 phase models. This area presents a compelling and
underexplored field for investigation.

1.4 Elevation dependency of climate change key-variables

As explained in Chapter 1.1.1, high elevation areas are attracting
increasing attention by the scientific community: hot-spots, or sen-
tinels, of climate change, mountains climatic equilibrium may be more
rapidly promptly altered further showing early and enhanced signs of
change. Moreover, signals of climate change could have a dependency
with the altitude, as happens for temperature variance: Elevation
Dependent Warming (EDW). Due to the complexity and varied
nature of mountain climates, quantify the pertinent processes is a
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challenge. Consequently, the quantification of past and future climate
change patterns as a function of elevation is affected by significant un-
certainty (Pepin et al., 2022). As mountain regions are often isolated
and experience harsh weather conditions, observational networks are
either limited in their coverage or not structured to capture varia-
tions in climate with respect to elevation (Oyler et al., 2015). More-
over, measurements obtained from complex terrains typically exhibit
unique characteristics; consequently when it comes to determine differ-
ential climate trends between mountainous areas and adjacent plains,
it becomes imperative to have a high spatial data density. Further-
more, it is essential to have long-term time series data to evaluate the
relationship between temperature trends and elevation, allowing the
separation of the observed trends from any inter-decadal variability.

Gridded datasets that interpolate data from sparse networks, particu-
larly in regions with intricate orography and limited data coverage, en-
counter these challenges and necessitate the use of sophisticated inter-
polation techniques (Daly, 2006), as discussed in chapter 1.2. Climate
model simulations, either global or regional, can be used as valuable
tools for investigating the mechanisms driving mountain processes,
whether in historical simulations or future projections. Indeed, nu-
merical models provide comprehensive outputs, comprehending all the
required variables and their dynamic relationships to construct a com-
prehensive understanding of the processes governing EDW (Palazzi
et al., 2019). Nonetheless, these models typically exhibit coarse spa-
tial resolutions, meaning they do not fully capture, or only partially
represent, the scales of spatial diversity within mountainous terrain
and the pertinent meteorological phenomena. Moreover, they require
observation based datasets for the validation process, making difficult
to assess their robustness both in the past and consequently in future
projections (Palazzi et al., 2016). Furthermore, numerical models de-
pend on parameterizations to account for the sub-grid processes, and
such processes, especially over mountainous regions, are still not fully
understood (Chow et al., 2019).

1.4.1 Drivers of EDW

The EDW results from a combination of various physical processes,
and accurately quantifying their individual contributions has proven
to be a challenging task, as noted in previous studies (Minder et al.,
2018; Palazzi et al., 2019). Generally, the rate at which tempera-
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ture decreases with increasing elevation in mountainous regions is the
result of the combination of the free-tropospheric temperature lapse
rate and local effects, which are primarily governed by the surface
energy balance. These local effects, which impact the temperature
variation on a climatological scale, are influenced by various physical
mechanisms. These mechanisms have been extensively described in
previous reviews (Pepin et al., 2015; Rangwala and Miller, 2012), here
will be briefly discussed. The physical shape of their relationship with
the altitude is shown in Figure 1.6, as described by Pepin et al. (2015).

1. The snow-albedo feedback is a significant positive feedback
mechanism in high altitudes regions, characterized by snow cover.
As global and local temperature are increasing, the position of the
snowline is expected to shift to higher elevations. The relationship
between elevation and snow cover duration is nonlinear and the
rate of retreat of the snowline is likely to accelerate with respect
to the increase in temperature. This will result in a substantial
increase in the absorption of incoming solar radiation leading to a
progressively increase in temperature and an upward migration of
the snowline (Pepin and Lundquist, 2008; Scherrer et al., 2012).

2. Increase in atmospheric water vapor pressure could increase down-
ward longwave radiation, causing an enhancement in warming at
high elevations (Rangwala et al., 2009, 2016)

3. The elevated moisture content in the atmosphere can lead to a
smoother atmospheric lapse rate profile, meaning that air tem-
perature decreases less rapidly with increasing altitude. This
phenomenon is particularly significant in tropical regions (AR5
IPCC, Stocker et al., 2013)

4. The majority of atmospheric aerosol pollutants, such as atmo-
spheric brown clouds and black carbon, are primarily concen-
trated at relatively lower elevations (below 3 km). This concen-
tration is expected to reduce the influx of shortwave radiation
to the lower slopes of mountains, a phenomenon known as the
surface dimming effect. However, these pollutants typically have
limited or no impact on higher mountains situated above the pol-
luted layer (Pepin et al., 2015).

5. A specific alteration in radiative forcing triggers more pronounced
temperature adjustments in colder conditions, which are frequently
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encountered in mountainous regions. This occurs due to the
Stefan-Boltzmann effect (Ohmura, 2012)

6. Changes in land cover that are tied to elevation-dependent fac-
tors, such as the systematic migration of vegetation species and
the upward shift of treelines, have a notable impact on various
aspects of the environment. These changes, in turn, influence sur-
face albedo, energy flux distribution, and, consequently, climate
in an elevation-dependent manner (Vitasse et al., 2012; Harsch
et al., 2009)

The method developed in the literature to determine which variables
can be classified as drivers of EDW (Palazzi et al., 2016; Rangwala
et al., 2016) involves several steps. Initially, all variables that exhibit
a substantial correlation with elevation and whose dependence on ele-
vation aligns with the sign of the EDW rate are considered. Then, the
actual drivers are identified as those variables which, independently
of elevation, maintain a correlation with temperature changes at each
grid point.

1.4.2 From EDW to EDCC

Recent accumulations of data have revealed that EDW involves more
than just temperature variations. Changing in climatic forcing have
induced modifications in the atmosphere, surface energy distribution,
convection, cloud cover, precipitation, and the water cycle, along with
shifts in air pollution. Therefore, it is more accurate to label this
phenomenon as Elevation-dependent Climate Change (EDCC),
which encompasses changes in boundary layer stability, energy, water,
greenhouse gases, and aerosols exchange between the Earth and the
atmosphere (Kuhn and Olefs, 2020). Using the term EDCC implies
the concept that various climatic variables, such as temperature o
precipitation, may exhibit a dependency with altitude, with greater
impacts at higher elevations compared to adjacent lowland areas.
This new concept is strictly related to the concept of Essential Moun-
tain Climate Variable (EMCVs) (Thornton et al., 2021), a set of inter-
disciplinary variables that could provide a broad and realistic overview
of mountain environment and climate change (e.g. evapotraspiration
for hydrosphere and biosphere, glacier debris cover for cryosphere or
aerosol absorption and scattering for atmosphere). The idea of EDCC
is to investigate which of this EMCV exhibit a stratification with the
elevation.
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Figure 1.6: Schematic representation of the vertical profile of different EDW drivers.
The specific aspects of each mechanism are discussed in the main text; the x-axis (dT/dt)
denotes the warming rate (dT/dt). Credit: Figure 2 from Pepin et al. (2015)



2Chapter

Precipitation Emergent Constraints in CMIP6

models

Global warming is linked to the intensification of the hydrological cy-
cle and together with the occurrences of extreme precipitation, as
substantiated by mounting evidence from theoretical frameworks, ob-
servations, and model simulations (O’Gorman and Schneider, 2009;
O’Gorman, 2015). To address the consequences of extreme precipita-
tion events, such as floods, disruptions to ecosystems, and economic
impacts, effective mitigation and adaptation planning necessitates ac-
curate forecasts of extreme precipitation (Kotz et al., 2022). Never-
theless, contemporary state-of-the-art climate models display consid-
erable uncertainty in predicting the extent of changes in extreme pre-
cipitation, especially notable at regional levels. Recently, a methodol-
ogy called Emergent Contraints (ECs) have been developed in order
to reduce model uncertainties. We recall that an EC is defined as
a physically explainable relationship between a predictor, past cli-
mate variable, and a predictand, future projection, both simulated by
models. The application of EC technique to reduce precipitation and
precipitation extremes inter-model spread is affected by significant
challenges. Firstly, the absence of long-term, high-quality observa-
tions of extreme precipitation with extensive spatial coverage impedes
a reliable estimation of their changes (section 1.3.2). Secondly, the
observed changes in extreme precipitation in past decades are influ-
enced by both external factors and internal variability. Moreover, the
EC relationships proposed for extreme precipitation projections are
primarily applicable to large spatial averages, such as over tropical or
extratropical wet regions as a whole, whereas decision-making neces-
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sitates regional and local information (Zhang et al., 2022). Finally,
the understanding of the physical mechanisms underlying many of the
proposed ECs remains limited.
This chapter is broadly based on Ferguglia et al. (2023).

2.1 Robustness of EC in CMIP6

Recently, Caldwell et al. (2018) and Hall et al. (2019) showed that
a relevant number of hydrological cycle-related ECs analysed in the
literature lack a satisfying physical explanation: owing to the large
number of possible observables and the relatively small number of
models, spurious relationships might result by chance (Caldwell et al.,
2014). Furthermore, most of the ECs recently published use models
from only the Coupled Model Intercomparison Project phase 5 (Taylor
et al., 2012, CMIP5) to test the statistical relationship between the
predictor and the predictand. As suggested by Hall et al. (2019), to
demonstrate the robustness of an EC, other model ensembles, and in
particular then most recent CMIP6 (Eyring et al., 2016), should be
used, a validation which, so far, has been performed only in a limited
number of cases (Pendergrass, 2020; Schlund et al., 2020; Simpson
et al., 2021).

The climate science community maintains a great interest in project-
ing future changes in precipitation due to their profound implications
for both natural and human systems. Nevertheless, the complexity
of the spatio-temporal variability of precipitation presents significant
challenges in terms of both observation and prediction, as described
in Sections 1.2 and 1.3.2. These factors contribute to the large inter-
model uncertainties in future precipitation projections. It is crucial to
reduce this uncertainty, particularly for policymakers and infrastruc-
ture planners who rely on model-based forecasts. EC technique has
been applied to various aspects of the hydrological cycle across diverse
scales, as documented in studies by Borodina et al. (2017); Deange-
lis et al. (2015); Li et al. (2017a); O’ Gorman (2012); Rowell (2019);
Watanabe et al. (2018); Zhang et al. (2022) and others. However, a
recent published assessment of ECs analysed by Pendergrass (2020)
reveals that using the new model ensemble CMIP6, the EC determined
by Deangelis et al. (2015) reduces its robustness and strength while
the one assessed by Watanabe et al. (2018) no longer exists. In the
present section, we reconsider four precipitation ECs which were orig-
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inally identified using previous generations of model ensembles (Meehl
et al., 2007; Taylor et al., 2012, CMIP3 and CMIP5), and analyze to
what extent they are still verified in CMIP6—including a comparison
with CMIP5, checking both their existence in the new ensemble and
their robustness as suggested by Simpson et al. (2021).

2.2 Data and Methods

The output of 27 global climate models (GCMs) from CMIP5 and of
29 GCMs from CMIP6 was analysed. The selected models are shown
in Table 2.1 for CMIP5 and 2.2 for CMIP6. Data were downloaded
from the Earth System Grid Federation (ESGF) with the Synda tool.
We selected the models for which daily precipitation and monthly tem-
perature data were available at the time when we downloaded the data
(May 2021). The requirement of daily precipitation data is needed to
calculate precipitation extremes indices. In order to accomplish a fair
comparison among various models and between historical and future
conditions, we considered only the models for which the same ensem-
ble member was available both in the historical and in the scenario
simulations. Data were selected from the historical experiment of each
model, to define a present climatology, and from scenario simulations,
using RCP8.5 in CMIP5 (Meinshausen et al., 2011) and SSP585 in
CMIP6 (Kriegler et al., 2017), to define a future climatology. The
time period chosen to define either the past or future climatology was
not necessarily the same for each EC, as better explained in the follow-
ing section and summarized in Table 2.3 (second and third column).
The following model variables were considered: daily mean precipita-
tion flux (pr), monthly near-surface air temperature (tas) and monthly
surface temperature (ts).
The robustness for each EC was tested by assessing its sensitivity to
variations in the model ensemble set. To achieve this, a bootstrap anal-
ysis was conducted on both model ensembles. This involved randomly
selecting sub-samples, each comprising approximately two-thirds of
the complete model set (unless otherwise specified), and repeating
this procedure 10000 times to replicate the predictor-predictand rela-
tionship.
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Table 2.1: List of 27 CMIP5 models considered in this study, accompanied by a key
reference. The ensemble member r1i1p1 was considered for CMIP5.

CMIP5

Model name Institution name Reference

ACCESS1-0 CSIRO-BOM Bi et al. (2013)
ACCESS1-3 CSIRO-BOM Bi et al. (2013)
bcc-csm1-1 BCC Wu et al. (2013)
bcc-csm1-1-m BCC Wu et al. (2013)
CanESM2 CCCma Arora et al. (2011)
CCSM4 NCAR Meehl et al. (2012)
CESM1-BGC NSF-DOE-NCAR Hurrell et al. (2013)
CESM1-CAM5 NSF-DOE-NCAR Hurrell et al. (2013)
CNRM-CM5 CNRM-CERFACS Voldoire et al. (2013)
CSIRO-Mk3-6-0 CSIRO-QCCCE Rotstayn et al. (2012)
FGOALS-g2 LASG-CESS Li et al. (2013)
GFDL-ESM2G NOAA-GFDL Delworth et al. (2006)
GFDL-ESM2M NOAA-GFDL Delworth et al. (2006)
HadGEM2-CC MOHC Martin et al. (2011)
HadGEM2-ES MOHC Bellouin et al. (2011)
INM-CM4 INM Volodin et al. (2010)
IPSL-CM5A-LR IPSL Hourdin et al. (2013)
IPSL-CM5A-MR IPSL Hourdin et al. (2013)
IPSL-CM5B-LR IPSL Hourdin et al. (2013)
MIROC5 MIROC Watanabe et al. (2010)
MIROC-ESM MIROC Watanabe et al. (2011)
MIROC-ESM-CHEM MIROC Watanabe et al. (2011)
MPI-ESM-LR MPI Giorgetta et al. (2013)
MPI-ESM-MR MPI Giorgetta et al. (2013)
MRI-CGCM3 MRI Yukimoto et al. (2012)
MRI-ESM1 MRI Adachi et al. (2013)
NorESM1-M NCC Bentsen et al. (2013)

2.3 General description of the chosen ECs and of their

analysis methods

Each EC is identified with an acronym whose last letter indicates the
initial of the surname of the first author that first proposed it. Here
we provide a general overview of the four ECs considered in this study
and describe the corresponding analysis method of each EC.

ECT (from Thackeray et al., 2018)

ECT assesses a relationship between global-mean hydrological sensi-
tivity and local changes in extreme precipitation. The global-mean hy-
drological sensitivity (global-mean HS, the predictor) is defined as the
global-mean precipitation change normalized by global-mean surface
air temperature change. The predictand is calculated as the change
of the 99th percentile of precipitation, normalized by the global-mean
surface air temperature change (∆P99/∆T). Changes are evaluated
as the difference between the 2060–2099 future climatology and the
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Table 2.2: List of 29 CMIP6 models considered in this study, accompanied by a key
reference. The ensemble member r1i1p1f1 was considered for CMIP6.

CMIP6

Model name Institution name Reference

ACCESS-ESM1-5 CSIRO Ziehn et al. (2020)
ACCESS-CM2 CSIRO-ARCCSS Bi et al. (2013)
BCC-CSM2-MR BCC Wu et al. (2022)
CanESM5 CCCma Swart et al. (2019)
CESM2 NCAR Danabasoglu et al. (2020)
CESM2-WACCM NCAR Gettelman et al. (2019)
CMCC-CM2-SR5 CMCC Cherchi et al. (2019)
CMCC-ESM2 CMCC Cherchi et al. (2019)
CNRM-CM6-1 CNRM Voldoire et al. (2019)
EC-Earth3 EC-Earth-Cons Döscher et al. (2022)
EC-Earth3-CC EC-Earth Cons Döscher et al. (2022)
EC-Earth3-Veg EC-Earth Cons Döscher et al. (2022)
EC-Earth3-Veg-LR EC-Earth Cons Döscher et al. (2022)
FGOALS-g3 CAS Li et al. (2020)
GFDL-ESM4 NOAA-GFDL Dunne et al. (2020)
GFDL-CM4 NOAA-GFDL Adcroft et al. (2019)
IITM-ESM CCCR-IITM Krishnan et al. (2019)
INM-CM4-8 INM Volodin et al. (2017b)
INM-CM5-0 INM Volodin et al. (2017a)
IPSL-CM6A-LR IPSL Boucher et al. (2020)
KIOST-ESM KIOST Pak et al. (2021)
MIROC6 MIROC Tatebe et al. (2019)
MPI-ESM1-2-LR MPI Mauritsen et al. (2019)
MPI-ESM1-2-HR MPI Müller et al. (2018)
MRI-ESM2-0 MRI Yukimoto et al. (2019)
NESM3 NUIST Cao et al. (2018)
NorESM2-LM NCC Seland et al. (2020)
NorESM2-MM NCC Seland et al. (2020)
TaiESM AS-RCEC Lee et al. (2020)

1960–1999 past climatology. The predictor and the predictand have
been calculated as:
Predictor: Global-mean hydrological sensitivity, i.e., the global-mean
precipitation change normalized by global-mean surface air tempera-
ture change.
Predictand: change of the 99th percentile of precipitation, normal-
ized by the global-mean surface air temperature change. The predic-
tand was determined by 1) computing the 99th percentile at each grid
cell based on historical precipitation (excluding values lower than 0.1
mm/day); 2) calculating the total amount of precipitation above the
percentile (P99) for both past and future time periods and the change
between them (∆P99); 3) and normalizing the change by ∆T.
Before using the CMIP5 and CMIP6 model outputs for calculating the
predictor and the predictand, each model was remapped to a common
2◦x2◦ latitude-longitude grid.
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ECL (from Li et al., 2017a)

ECL establishes a relationship between western Pacific precipitation
and the change in Indian Summer Monsoon rainfall. The predictor is
the past time- and space-mean daily precipitation in a western Pacific
region (140◦–190◦W and 12◦S– 12◦N, WP precipitation) while the pre-
dictand is represented by the future change of mean daily precipitation
averaged over the region 60◦–95◦E, 10◦–30◦N during the Indian Sum-
mer Monsoon season (May to September) normalized by global-mean
SST change (ISM rainfall change). In this case the future change is
evaluated as the difference between the 2070–2099 future climatology
and the 1980–2009 past climatology.
Predictor: averaged precipitation over the region 140◦–190◦ W and
12◦S–12◦N.
Predictand: change of mean daily precipitation averaged over the re-
gion 60◦–95◦E, 10◦–30◦N during the Indian Summer Monsoon season
(May to September), normalized by SST change. SST was calculated
from the surface temperature (ts), using a land-sea mask.
The change is the difference between the 2070–2099 climatology and
the 1980–2009 climatology. Also in this case the CMIP5 and CMIP6
model outputs were remapped to a common 2◦x2◦ latitude-longitude
grid.
To calculate sea surface temperature from the surface temperature the
following land-sea mask has been applied: following Gorman (2012),
grid boxes with less than 90% ocean are excluded when considering
ocean, and grid boxes with less than 90% land are excluded when
considering land.

ECG (from O’ Gorman, 2012)

ECG defines a relationship between extreme tropical precipitation
(99.9th percentile) scaled with surface air temperature over tropical
oceans during the past reference period 1981–1999 (this quantity is
referred to as “Sensitivity for variability”, as in the original paper),
and the future change in tropical extreme precipitation divided by
temperature increase over the Tropics (called “Sensitivity for climate
change”). In this context, the scaling procedure consists in calculat-
ing the slope between monthly time series of extreme precipitation
and surface air temperature over the tropical ocean, then normalized
by time- (1981–1999) and space- (the Tropics, between 30◦S–30◦N)
averaged extreme precipitation. The future change is evaluated as the
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difference between the 2081–2099 future climatology and the 1981–
1999 past climatology.
Predictor: extreme tropical precipitation scaled with temperature
increase over tropical oceans during 1981–1999 (Sensitivity for vari-
ability).
Predictand: tropical extreme precipitation change divided by tem-
perature increase over the Tropics (Sensitivity for climate change).
The change is the difference between the 2081–2099 climatology and
the 1981–1999 climatology. In this case, the CMIP5 and CMIP6 model
outputs were remapped to a common 3◦x3◦ latitude-longitude grid.
For the calculation of the precipitation extreme timeseries, we pro-
ceeded as follows: daily precipitation data were aggregated into monthly
values over the tropical region (30◦S–30◦N) and the 99.9th percentile
was computed. Monthly surface air temperature (tas) data were spa-
tially averaged over the same tropical area. To obtain the Sensitivity
for variability, the time series of precipitation extremes and of monthly
temperature were calculated over the tropical oceans. The sensitivi-
ties for climate change were analyzed over the tropics including both
land and sea areas. Timeseries were deseasonalized, by removing the
mean seasonal cycle previously estimated, detrended and filtered with
a 6-month running mean. Then, an ordinary-least-squares regression
of precipitation extremes against surface temperature was computed.
Lastly, the sensitivity for variability was expressed as a fraction of
the time-mean precipitation extremes over the past reference period.
To determine sensitivity for climate change, the time-series were av-
eraged over the past and future reference time periods, the past value
was subtracted to the future one and then normalized by twentieth
century value and the difference in near-surface air temperature.
To calculate sea surface temperature from the surface temperature we
applied the same land-sea mask already described in ECL section.

ECB (from Borodina et al., 2017)

ECB correlates the annual maximum value of daily precipitation amounts
(Rx1day index, Karl et al., 1999a) scaled with global-land temperature
(Rx1day scaling), calculated over a past time period (1951–2014), to
the same quantity calculated over a future period (2015–2099) in dif-
ferent regions of the world characterized by high climatological rainfall
intensity. The scaling method in this case requires the calculation of
the Theil-Sen slope (von Storch and Zwiers, 1984) of the relationship
between the yearly time series of Rx1day and mean surface air tem-
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perature, then normalized by space- and time-averaged Rx1day index.
For the definition of the predictand, we chose the period 2015–2099
instead of 1951–2099 used by Borodina et al. (2017) in order not to
include the window 1951–2014 over which the predictor is defined.
Predictor: annual maximum value of daily precipitation amounts
(Rx1day) scaled with global-land temperature increase (Rx1day scal-
ing), calculated over 1951–2014.
Predictand: same as the Predictor, but calculated over the period
2015–2099 in different regions of the world characterized by climato-
logical high rainfall intensity.
The Rx1day index was calculated for each model on its native grid
and then regridded over a regular 2.5◦x2.5◦ grid, using a first order
conservative remapping. A land-sea mask was applied to precipitation
index and temperature data considering as land grid cells with at least
50% fractional land cover, as done in Borodina et al. (2017)
Climatological high-precipitation regions are identified applying a fur-
ther mask which is built as follows. For each model, 1) by calculating
the time mean Rx1day value over the period period 1951–1980 for
each grid point and 2) by taking the 40% of the grid cells (excluding
Antarctica) experiencing the highest rainfall intensity. One grid point
is then selected to build the final mask if the criterion defined in item
2) above is satisfied for more than half of the models. The Rx1day and
temperature time series are finally spatially-averaged over the regions
selected with the mask.
Rx1day scaling was obtained as the regression slope of Rx1day and
temperature, estimated with the non-parametric linear Theil-slope
method (von Storch and Zwiers, 1984). The slope was then normalized
by mean Rx1day temporally averaged over the past reference period.

2.4 Analysis

For each EC, a preliminary analysis has been performed to reproduce
the results found in the reference papers using the same (or a very
similar) set of models (from CMIP5) employed by the original authors
(Thackeray et al., 2018; Li et al., 2017a; Borodina et al., 2017). This
analysis produced successful results for each EC and will not be dis-
cussed. Table 2.3 summarizes the key characteristics of each EC that
has been taken under consideration, as well as a short recap of the
results obtained. Specifically, the first three columns detail, for each
EC, the variables used as the predictor and predictand, along with



2.4. Analysis 35

the time periods during which they were assessed. The results of the
analysis, described in the subsequent subsections, are presented in the
three rightmost columns. In the following subsections, we present in
details the results of my analysis applied to the four ECs taken into
consideration.

2.4.1 ECT

Even though the predictor contains information on the future climate
and, as such, does not satisfy the proper definition of an EC, we de-
cided to consider also this relationship in the context of Emergent
Constraints. Figures 2.1a and 2.1b show, for CMIP5 and CMIP6

Figure 2.1: Analysis of ECT. (a) Inter-model correlation between the predictor (global-
mean HS – [% K-1]) and the predictand (local change in extreme precipitation per degree of
global warming – [mm/year K-1]) for CMIP5. Dotted areas show statistically-significant
correlations (p ≤ 0.05). (b) Same as (a) but for CMIP6. (c,d) Inter-model standard
deviation of the predictand for CMIP5 (c) and CMIP6 (d).

respectively, the spatial map of the inter-model correlation between
global-mean HS [% K-1] and local changes in extreme precipitation
(∆P99/∆T [mm/year K-1]), respectively the predictor and the predic-
tand in this EC. Dotted areas indicate where the correlation exceeds
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Table 2.3: Summary of the ECs reconsidered in this study. The first four columns show,
respectively, the EC acronym, the predictor and predictand definitions along with their
reference periods, and the results discussed in the original papers in terms of correlation
coefficients (all being statistically significant). The last two columns show our results
(correlations coefficient, r, and p-value) obtained with CMIP5 and CMIP6 models.
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the 95% significance level (p ≤ 0.05). Figure 2.1a, referring to CMIP5,
shows that the areas with significant correlation are found around the
Tropics, especially in the Pacific ocean, in the western Atlantic and
coastal areas of Venezuela and Brazil, in the Indian ocean, and in
Indonesia, in agreement with the results found by Thackeray et al.
(2018). The same analysis performed with CMIP6 models is pre-
sented in panel b: in the Tropics, the correlation coefficient decreases
considerably in all regions outlined above except in a small area in
the Indian Ocean and around Indonesia, where r≥0.6. To better ex-
plore the reasons for this different behaviour in the two model ensem-
bles, the inter-model standard deviation of the predictand for CMIP5
and CMIP6 models has been evaluated and is shown in Figs. 2.1c
and 2.1d, respectively. CMIP6 models agree better with each other
(smaller standard deviation) than CMIP5 models in projecting local
extreme precipitation. On the other hand, global-mean HS does not
change between CMIP5 (ensemble mean equal to 0.047±0.008 %K−1)
and CMIP6 (0.046±0.009 %K−1).

Our interpretation is that the reduced CMIP6 inter-model spread in
the predictand prevents this relationship from still working as an EC,
since the variability associated with a possible influence of the predic-
tor can be smaller than the natural sample variability in the predic-
tand.

2.4.2 ECL

Figure 2.2 shows the scatterplot between the predictor (mean western
Pacific precipitation, [mm/day]) and the predictand (future change of
ISM precipitation, [mm/day ◦C-1]) calculated with CMIP5 (panel a)
and CMIP6 (panel b) models. Figure 2.2a shows that the two vari-
ables are positively correlated with a correlation coefficient of 0.56, not
dissimilar to the one found by Li et al. (2017a), (i.e. 0.63, in Figure
2a of their original paper). For this specific EC, in order to check the
sensitivity of the results to the ensemble composition, we performed a
bootstrap test using a 27 sub-sample of a larger set of CMIP5 models
(39 models overall, the extra ones from our set are reported in Table
S1 in Appendix A). These 39 models are those for which precipita-
tion data at monthly resolution were available – this specific EC in
fact does not require daily precipitation data for its calculation, thus
monthly precipitation data, available for a larger number of models,
can be used to increase the size of our ensemble. The probability dis-
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Figure 2.2: Analysis of ECL. (a) Scatterplot of the predictand (future change of ISM
precipitation – [mm/day ◦C-1]) against the predictor (western Pacific precipitation –
[mm/day]) for CMIP5. The dashed line shows the ordinary least-squared best fit. (b)
Same as (a) for CMIP6. Here the best-fit line is not shown as no significant correlation
was found.

tribution obtained with this bootstrap analysis is shown in Figure 2.3
and exhibit a mean correlation coefficient of 0.35±0.10, lower then the
0.56 obtained with the entire set of models. This result indicate that
the correlation that supports this EC largely depends on the model
ensemble composition; thus, this EC may not be particularly robust
whenever the goal is to use it to reduce uncertainties in model projec-
tions. The corresponding coefficient of variation (CV), the ratio of the
standard deviation to the mean, is around 29% denoting a quite high
variability of the correlation coefficient as a function of the specific
composition of the ensemble. The next step was to test the EC using
CMIP6 models, as shown in panel b: in this case we found a corre-
lation which drops dramatically to r=0.03 (p-value not significant),
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Figure 2.3: Probability distribution of the correlation coefficient for the bootstrap anal-
ysis of ECL (using monthly precipitation data from CMIP5 models).

confirming that this EC does not survive to changes in the model en-
semble and in its composition.

Several attempts have been made to comprehend the lack of corre-
lation in CMIP6 model ensemble. Among these, we conducted a more
in-depth investigation into the climatic factors that are responsible of
the EC definition. As explained by Li et al. (2017a), models that repre-
sent high present-day precipitation levels over the tropical western Pa-
cific tend to project a more substantial increase in ISM rainfall. This
is due to their excessive representation of a negative cloud-radiation
feedback on sea surface temperature (SST). Inter-model differences in
SST warming over the tropical western Pacific are a significant source
of uncertainty in projections of changes in the Asian-Australian mon-
soon circulation and rainfall, particularly they have been found to be
highly correlated (Chen and Zhou, 2015). On the other hand, warm-
ing of SST in the western Pacific is strongly attenuated by a negative
cloud-radiation feedback that depends on the local mean cloud and
precipitation levels (Lin, 2007; Meehl and Washington, 1996). An at-
tempt to find a relevant correlation between the simulated tropical
western Pacific precipitation and projected changes in SST warming
patterns in the same area using CMIP6 models was done and is shown
in Figure 2.4. No relevant and significant correlation was found (r=-
0.04 with a p-value=0.85).
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Figure 2.4: Scatterplot of SST gradient change in the western Pacific ocean [◦C] and
western Pacific present-day precipitation [mm/day]. The best-fit line is not shown as no
significant correlation was found.

2.4.3 ECG

Figure 2.5 shows the scatterplot between the predictor (sensitivity for
variability) and the predictand (sensitivity for climate change) for both
CMIP5 (panel a) and CMIP6 (panel b) models. Models in the CMIP5
ensemble with high sensitivity for variability tend to project a larger
increase in sensitivity for climate change, with an inter-model corre-
lation of 0.75 (p≤0.05, see Table 2.3). In this case, since there are no
more available models for both CMIP5 and CMIP6 than those speci-
fied in Tables 2.1 and 2.2 providing daily precipitation data required
to calculate ECG, we performed a bootstrap analysis as described in
the first part of this section, i.e., with sub-sets containing 2/3 of the
models; results are shown in Figure 2.6. This analysis produced a
distribution of the correlation coefficients with a standard deviation
of 0.08 (mean value of 0.75). Similar results are found for CMIP6
models (panel b), with a correlation coefficient of 0.73 (p≤0.05, 0.73
± 0.07 from the bootstrap analysis). In both CMIP5 and CMIP6
cases, the coefficient of variation, CV, is relatively low, 11% in CMIP5
and 9.6% in CMIP6, showing a low dispersion of the correlation coef-
ficients obtained from bootstrap analysis with respect to their mean.
This analysis suggests that this EC exists in both CMIP5 and CMIP6
and that it is characterised by a high and significant correlation coef-
ficient between the predictor and the predictand.

To further test this EC robustness we replicated the previous anal-
ysis using the SSP245 CMIP6 emission scenario (Figure 2.7). The
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Figure 2.5: Analysis of ECG. (a) Scatterplot of the predictand (sensitivity for climate
change) – [% K-1]) against the predictor (sensitivity for variability – [% K-1]) for CMIP5.
The dashed line shows the ordinary least-squared best fit. (b) Same as (a) but for CMIP6.
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Figure 2.6: Probability distribution of the correlation coefficient obtained from the boot-
strap analysis of ECG, using, respectively, CMIP5 (a) and CMIP6 (b) models.

results are consistent with those found for SSP585, resulting in a cor-
relation coefficient of 0.85 (p≤0.05; r=0.84 ± 0.07 from the bootstrap
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analysis), which provides evidence of the ECG robustness.
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Figure 2.7: Analysis of ECG using the SSP245 scenario (CMIP6 models). (a) Scatterplot
of the predictand (sensitivity for climate change) against the predictor (sensitivity for
variability), to be compared with Figure 2.5 (panel b). (b) Probability distribution of the
correlation coefficient from the bootstrap analysis, to be compared with Fig. 2.6 (panel
b).

2.4.4 ECB

Figure 2.8 shows the scatterplot between the historical Rx1day scal-
ing [%K−1] (the predictor) and future projections of the same quantity
(the predictand) with both CMIP5 (Figure 2.8a) and CMIP6 (Figure
2.8b). As can be seen in panel a, the correlation coefficient between
the predictor and the predictand is high (0.88, p≤0.05) and similar to
the one found by Borodina et al. (2017) in the original paper (r=0.82).
The bootstrap analysis performed on our CMIP5 ensemble led to an
average correlation coefficient of 0.87 ± 0.04 and a CV of 5%, whose
distribution is shown in Figure 2.9a, confirming the robustness of this
relationship using CMIP5. Figure 2.8b presents the scatterplot com-
puted with CMIP6 models: the correlation coefficient decreases as far
as 0.38, with a p-value of 0.04. The bootstrap analysis led to a corre-
lation coefficient probability distribution characterized by a standard
deviation of 0.09 (mean value 0.38) and a CV of 24%, as shown in
Figure 2.9b. In order to better understand the decrease of the cor-
relation in CMIP6, global maps of inter-model standard deviation of
the predictor and the predictand, for both CMIP5 and CMIP6, were
calculated (see panels c-f of Fig. 2.8). For both the predictor and the
predictand, the inter-model spread has clearly decreased in CMIP6
(panels d and f) with respect to CMIP5 (panels c and e). In partic-
ular, the regions showing the strongest reduction of the inter-model
spread are India (for the predictor) and Africa and Southest Asia (for



2.4. Analysis 43

0 2 4 6 8
Rx1day scaling [% K 1]

0

2

4

6

8

Rx
1d

ay
 sc

al
in

g 
[%

 K
1 ]

CMIP5 r= 0.88

(a) ECB CMIP5
ACCESS1-0
ACCESS1-3
bcc-csm1-1
bcc-csm1-1-m
CanESM2
CCSM4
CESM1-BGC
CESM1-CAM5
CNRM-CM5
CSIRO-Mk3-6-0
FGOALS-g2
GFDL-ESM2G
GFDL-ESM2M
HadGEM2-CC

HadGEM2-ES
inmcm4
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR
MIROC-ESM
MIROC-ESM-CHEM
MIROC5
MPI-ESM-LR
MPI-ESM-MR
MRI-CGCM3
MRI-ESM1
NorESM1-M

0 2 4 6 8
Rx1day scaling [% K 1]

0

2

4

6

8

Rx
1d

ay
 sc

al
in

g 
[%

 K
1 ]

CMIP6 r= 0.38

(b) ECB CMIP6
ACCESS-CM2
ACCESS-ESM1-5
BCC-CSM2-MR
CanESM5
CESM2
CESM2-WACCM
CMCC-CM2-SR5
CMCC-ESM2
CNRM-CM6-1
EC-Earth3
EC-Earth3-Veg
EC-Earth3-Veg-LR
EC-Earth3-CC
FGOALS-g3
GFDL-CM4

GFDL-ESM4
IITM-ESM
INM-CM4-8
INM-CM5-0
IPSL-CM6A-LR
KIOST-ESM
MIROC6
MPI-ESM1-2-LR
MPI-ESM1-2-HR
MRI-ESM2-0
NorESM2-LM
NorESM2-MM
NESM3
TaiESM

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

40°S 40°S

20°S 20°S

0° 0°

20°N 20°N

40°N 40°N

60°N 60°N

(c) Standard deviation of Rx1day scaling historical (predictor) CMIP5

0 2 4 6 8 10 12 14

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

40°S 40°S

20°S 20°S

0° 0°

20°N 20°N

40°N 40°N

60°N 60°N

(d) Standard deviation of Rx1day scaling historical (predictor) CMIP6

0 2 4 6 8 10 12 14

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

40°S 40°S

20°S 20°S

0° 0°

20°N 20°N

40°N 40°N

60°N 60°N

(e) Standard deviation of Rx1day scaling rcp85 (predictand) CMIP5

0 1 2 3 4 5 6 7 8

120°W

120°W

60°W

60°W

0°

0°

60°E

60°E

120°E

120°E

40°S 40°S

20°S 20°S

0° 0°

20°N 20°N

40°N 40°N

60°N 60°N

(f) Standard deviation of Rx1day scaling ssp585 (predictand) CMIP6

0 1 2 3 4 5 6 7 8

Figure 2.8: Analysis of ECB. (a) Scatterplot of the predictand (Rx1day scaling – [% K-1])
against the predictor (Rx1day scaling – [% K-1]) for CMIP5. The dashed line shows the
ordinary least-squared best fit. (b) Same as (a) but for CMIP6. (c,d) Intermodel standard
deviation of the predictor for CMIP5, CMIP6. (e,f) Intermodel standard deviation of the
predictand (Rx1day scaling – [% K-1]) for CMIP5,CMIP6.
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Figure 2.9: Probability distribution of the correlation coefficient for the bootstrap anal-
ysis of ECB, using, respectively, CMIP5 (a) and CMIP6 (b) models.



2.5. Discussion 44

the predictand).

We also provide further details computing spatial maps of the inter-
model correlation between the predictor and the predictand (Figure
2.10). They highlight the regions that most contribute to the decrease
of the correlation coefficient describing ECB, namely India, Africa and
Southest Asia, consistently with the previous finding. We hypothesize
that spatial averaging performed over such diverse regions – inherent
in the definition of this EC – may play a role in the decrease of the
correlation in CMIP6. More generally, a reduction of the model un-
certainty/spread in CMIP6 likely makes the application of this EC
unnecessary to the aim of narrowing CMIP6 model projections.
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Figure 2.10: Map of inter-model correlation between predictor (Rx1day scaling) and
predictand (Rx1day scaling) for CMIP5 (a) and CMIP6 (b) model ensemble.

2.5 Discussion

In this analysis, we have reconsidered the existence and the strength
of four precipitation ECs already proposed in the literature and we
have tested their sensitivity to the ensemble composition using differ-
ent CMIP5 and CMIP6 model ensembles. Our analyses suggests that
only one EC (ECG) is robust with both CMIP5 and CMIP6 models,
another one (ECL) is not robust with either CMIP5 or CMIP6 and
the two remaining ones (ECT and ECB) are robust with CMIP5 but
not with CMIP6.

ECG analyses the relationship between tropical extreme precipita-
tion (scaled with temperature increase over tropical oceans) during
the past (a quantity which O’ Gorman (2012) called Sensitivity for
variability) and tropical extreme precipitation (difference between a
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future and a past climatology) divided by temperature increase over
the Tropics (called Sensitivity for climate change). As also suggested
by O’ Gorman (2012), who tested this EC in the CMIP3 ensemble,
the strength of ECG arises from the fact that the predictor and the
predictand are associated with the same physical process involved in
precipitation formation (i.e. moist convection in the Tropics) which is
included in the models by means of parameterizations. In the mod-
els, the latter are associated with similar inter-model spread in the
response of tropical precipitation both in historical simulations (used
to calculate the predictor) and in future projections (used to calculate
the predictand). The sensitivity of ECG in CMIP6 was successfully
tested not only for changes in the ensemble composition but also in
different emission scenario, using both SSP245 and SSP585.

ECL establishes a relationship between western Pacific precipitation
and the change in Indian Summer Monsoon rainfall, normalized by
SST change. The physical process identified by the authors for this
EC is related to the negative cloud-radiation feedback on sea surface
temperatures: the negative feedback suppresses the local SST warm-
ing in the western Pacific area, strengthening ISM rainfall projections
via atmospheric circulation. Our analysis does not lead to the same re-
sults as found in Li et al. (2017a) since we found a very low correlation
both in CMIP5 and in CMIP6. In addition to the described ECL anal-
ysis, an attempt to find a relevant correlation between the simulated
tropical western Pacific precipitation and projected changes in SST
warming patterns in the same area was done using CMIP6 models but
no relevant correlation was found (r=-0.04 with a p-value=0.85). This
result suggests that the proposed atmospheric mechanism responsible
for the relationship between the predictor and the predictand should
be better and deeply investigated in climate models. For example, the
study by Palazzi et al. (2014), analyzing precipitation patterns and
climatologies in the Indian monsoon region in CMIP5, showed that
GCMs including the indirect effect of atmospheric aerosol reproduce
better the climatology of Indian monsoon precipitation than the mod-
els including the direct effect of aerosol particles only. The same was
found for the models incorporating a fully-interactive aerosol module
than those with prescribed aerosols. This suggests that aerosol par-
ticles and their interactions with clouds could be important factors
to be considered in the relationship found by Li et al. (2017a) and,
together with other factors, could be taken under consideration for
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further analyses trying to better understand the links between the
variables involved in this EC. As discussed in Section 2.1, several ECs
were recently found to lack a satisfying physical basis able to sustain
the correlation between the predictor and the predictand, and ECL
may partially be ascribable to this category. The variables involved in
this EC are probably too complex and a simple linear relationship that
manages to both describe the EC and be used to narrow the model
outputs can not be easily assessed.

ECT describes a relationship between global-mean precipitation change
normalized by global-mean surface air temperature change and local
changes in extreme precipitation normalised by global mean ∆T. The
physical mechanism behind this EC involves the relationship between
the intensification of global hydrological cycle induced by global warm-
ing, changes in the atmospheric energy budget and increases in precip-
itation extremes. ECB correlates the annual maximum value of daily
precipitation amounts scaled with global-land temperature increase in
a past period to the same quantity calculated over a future period
in different regions of the world characterized by high climatological
rainfall intensity. Similarly to ECG, the formulation of this EC is
based on the use of the same variable for the predictor (evaluated in
a past period) and the predictand (evaluated in the future) and thus
the relationship that underlies the EC is somewhat straightforward. In
addition, there is no difference in the ability of the models to simulate
the same variable in the past and in the future as the equations and pa-
rameterizations describing it are the same. In our analysis, both ECT
and ECB turned out to be robust with CMIP5 – thus in agreement
with the reference literature – but not with CMIP6. We hypothesize
that this could be attributed to a reduction of the model uncertainty
in the CMIP6 ensemble with respect to CMIP5, which does not make
the application of these Emergent Constraints effective. In particular,
we found that the inter-model spread in the projections of extreme
precipitation (99th percentile for ECT, Rx1day for ECB) is consider-
ably narrowed in the latest generation of climate models. For this,
an EC or, more generally, a relationship between two precipitation-
related variables found with CMIP5 models may not be robust or even
exist in CMIP6. While the inter-model spread in CMIP6 is reduced
compared to CMIP5, it is still large and still needs to be reduced in
order to produce future projections useful for climate-change adapta-
tion strategies.
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A new precipitation EC assessed by Thackeray et al. (2022) constrains
future changes in the occurrence of extreme precipitation with histor-
ical simulations of the same variable. As already noticed from our
analysis, it seems considerably more favorable to use the same vari-
able for the predictor and the predictand, or at least variables that
are regulated in the models by means of the same parameterizations
and which can be ascribed to the same physical mechanisms. This ob-
servation helps explaining why ECG is the only EC which survives in
the CMIP6 ensemble – and the new study by Thackeray et al. (2022)
corroborates this hypothesis. One might then wonder why ECB does
not behave in the same way as ECG, given that both use the same
variable in the past and in the future as the predictor and the pre-
dictand, respectively. One possible explanation was provided in Sect.
2.4.4 and we believe that it lies in the spatial aggregation inherent in
the ECB definition. In fact, ECB correlates extreme precipitation in
the past and in the future averaged in different regions of the world,
characterized by climatological high rainfall intensity. The aggregated
areas are very different to each other, since they belong to different
latitudinal zones and they are subjected to different climatological
regimes. Precipitation is then associated with diverse large-scale and
local mechanisms and all this could affect the overall model perfor-
mance in the past and in the future. In fact, we found considerable
geographical differences in the inter-model spread in both the pre-
dictor and the predictand (Fig. 2.8 panels c-f) as well as in their
correlation maps (Figure 2.10). This also suggests that current ECs
may be limited in their geographic applicability.

Another important consideration is that the Equilibrium Climate Sen-
sitivity (ECS) has been proven to exhibit substantial differences be-
tween CMIP5 and CMIP6, both in the mean value and in the inter-
model variability (Zelinka et al., 2020). We considered the possibility
that this difference, especially in the inter-model spread, may play a
role in the robustness of ECs (in particular of ECT and ECB which
show the major differences between the CMIP5 and CMIP6 ensem-
bles). We think that the higher inter-model spread in ECS (in CMIP6)
may introduce an additional source of uncertainty, thus reducing the
signal (the correlation behind the ECs) to noise ratio. Besides influ-
encing its robustness, the introduction of such an uncertainty makes
it even more difficult to effectively use the EC technique to constrain
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model uncertainties in projections.

Precipitation ECs are very powerful tools for understanding and inves-
tigating climate model response to mechanisms and dynamics linked
to precipitation formation, trends and evolution. However, the anal-
ysis shown here suggests that their practical application for reducing
uncertainties in model projections linking them to observable met-
rics should be regarded with caution, due to the large sensitivity of
the EC to the model ensemble composition, which represents a weak-
ness of the technique. In conclusion, as also suggested by Sanderson
et al. (2021), the strength and potential of the EC technique should
be mostly linked to its capability to interpret climate phenomena and
to describe and investigate the connections between different climate
variables – thus improving our knowledge of the climate system and
its mechanisms, rather than only to its power to effectively narrow
uncertainties in climate change projections. Exploring new emergent
constraints and using them in new model ensembles thus represents
a valuable way first and foremost to improve simulation of current
climate and to better understand climate dynamics.



3Chapter

Elevation dependent change in ERA5 pre-

cipitation and its extremes

High elevation areas are attracting increasing attention of the scien-
tific community: hot-spots, or sentinels, of climate change, mountains
climatic equilibrium may be more rapidly altered compared to the
globally-averaged signals. Climate change consequences can be an-
ticipated or amplified at high elevation if compared to the adjacent
low-land areas. In the last ten years, many studies have assessed
that mountain warming rates are elevation-dependent. Elevation-
dependent warming (EDW) - literally the stratification of warming
rates with the elevation - has been observed in different mountain re-
gions of the globe (Pepin et al., 2015), often with higher rates of warm-
ing at higher altitudes. Recent researches have revealed that EDW
involves more than just temperature variations. Changes in climatic
forcing have induced modifications in the atmosphere, surface energy
distribution, convection, cloud cover, precipitation, and the entire wa-
ter cycle. Therefore, it is more accurate to label this phenomenon
as Elevation-dependent climate change (EDCC), which encompasses
changes in boundary layer stability, energy, water, greenhouse gases,
and aerosols exchange between the Earth and the atmosphere (Kuhn
and Olefs, 2020). The term EDCC implies the concept that various
climatic variables may exhibit a dependence with the altitude, with
possibly greater impacts at higher elevations. Indeed, in mountainous
regions, several variables, including circulation patterns, precipitation,
and solar radiation regimes (Kittel et al., 2002), are significantly influ-
enced by orography, contributing to notable uncertainty (Pepin et al.,
2022). Understanding the precise impact of these processes on climate
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variability and temporal changes in mountainous regions remains a re-
search challenge.

Precipitation is a critical variable for mountain hydrological resources
and its study is crucial under the context of climate change. Eleva-
tion is the primary factor that influence precipitation in mountainous
regions. In fact, the complexity of the terrain can significantly in-
fluence local precipitation formation through orographic lifting of air
masses, a phenomenon that facilitates condensation and cloud forma-
tion (Napoli et al., 2019). This effect leads to an increase in rainfall
with the altitude, commonly referred to as the orographic enhance-
ment of precipitation. Consequently, the analysis of altitudinal vari-
ations in precipitation changes becomes an interesting task, aimed
at assessing whether the orographic precipitation enhancement is in-
tensifying or decreasing over time. A recent study has assessed that
when comparing mountains to low-lands, a greatly reduced orographic
gradient in precipitation temporal trend was globally found in the re-
cent past (Pepin et al., 2022). It has been highlighted a significant
decrease at tropical and mid-latitudes in both hemispheres, although
less clear results were encountered considering individual mountain re-
gions. Despite this general behaviour, a simple comparison of precipi-
tation trends at high elevation and low-lands might not well represent
the actual complexity of Elevation-Dependent Precipitation Change
(EDPC). Moreover, generalizing the EDPC by conducting a global
comparison of orographic precipitation gradients, is highly challeng-
ing due to the lack of observations at high elevations.

The analysis of precipitation extremes within the context of climate
change has been the focus of numerous studies, recognizing their po-
tential impact on both human society and ecosystems (Chapter 4,
SREX - IPCC Field et al., 2012). Understanding changes in precip-
itation extremes poses a significant research challenge. On the one
hand, the scarcity of precipitation records may complicate the detec-
tion of long-term trends, especially for rare events. On the other hand,
assessing and comprehending the overall effect requires simultaneous
consideration of alterations in atmospheric dynamics, thermodynam-
ics, and microphysics.

In mountain areas, the frequency of extreme precipitation events is
usually increased due to the orographic uplift mechanism, convert-
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ing atmospheric moisture into precipitation, and to the thermody-
namic process that intensify extreme precipitation, as assessed by
Clausius-Clapeyron relationship. Furthermore, dynamical processes
and changes must be taken into account, as they can influence atmo-
spheric circulation and other precipitation formation mechanisms, as
well as the frequency of extreme events.

The aim of this chapter is to globally compare changes in long-term
trends of mean and extreme precipitation occurrences within large
mountainous areas, encompassing the Tibetan Plateau, Rocky Moun-
tains, Greater Alpine Regions, and the Andes.

3.1 Data and Methods

We have analysed daily precipitation data provided by the fifth gen-
eration of the ECMWF reanalysis (ERA5), downloaded in october
2022 from the Copernicus Climate Change Service Climate Data Store
(CDS). ERA5 is based on four-dimensional variational (4D-Var) data
assimilation using Cycle 41r2 of the Integrated Forecasting System
(IFS) providing records of the global atmosphere, land surface, and
ocean waves. The ERA5 output is provided hourly at a 31 km horizon-
tal resolution, then it has been summed to form the 24 hours to obtain
daily precipitation totals and then interpolated on to a 0.25◦x0.25◦

latitude-longitude regular grid. More information about the ERA5
dataset can be found in Hersbach et al. (2023).

Mean precipitation (Pm) and its variance together with a selection
of indices from ETCCDI definition (Karl et al., 1999b), synthesised in
the following list, were adopted in order to describe different aspects
of rainfall.

1. R10mm Annual count of days when precipitation exceeds the
threshold of 10 mm/day [Unit of measure: days ]

2. R20mm Annual count of days when precipitation exceeds the
threshold of 20 mm/day [Unit of measure: days ]

3. Rx1day Annual maximum 1-day precipitation [Unit of measure:
mm/day ]

4. R95p Annual total precipitation exceeding the 95th percentile
threshold on wet days evaluated over the 1961–1990 reference
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period [Unite of measure: mm/year ]

5. CWD Annual maximum length of wet spell: maximum number
of consecutive rainy days [Unit of measure: days ]

6. CDD Annual mximum length of dry spell: maximum number of
consecutive dry days [Unit of measure: days ]

Wherever needed, a wet day was assumed as a day with precipitation
above 1 mm. Indices were calculated yearly for the period 1951–2020
at individual grid points.

The elevational dependency of precipitation changes was studied through
complementary methodologies applied to the selected precipitation in-
dices. At first, trends in precipitation indices over the period 1951–
2020 were calculated for individual grid points within the study area.
The existence of an EDPC was assessed using a linear regression anal-
ysis of the elevation distribution against trend values, testing its sig-
nificance at 95% level. Additionally, we computed the reduced chi-
squared analysis to determine whether a simple linear regression ade-
quately describes the distribution’s behavior. This analysis was com-
plemented by an examination of geographical maps of trends to inves-
tigate the influence of different geographic factors.
As a second approach, study areas were divided into 500 meters high
altitudinal bins, spatially averaging precipitation indices over each bin.
The maximum altitude considered for binning was set requesting at
least 10 grid points in each altitude bin. Temporal trends were evalu-
ated with a linear regression over the period 1951–2020 for timeseries
in each bin, accepting statistical significance at 95% confidence level.
Trends were then compared at various altitude to identify positive (or
negative) elevational dependency of change. For both methods, results
at low land (0-500 meters) were used for comparison but not adopted
in calculating vertical gradients.

Eventually, transects were extracted across mountain chains to discern
the effects of elevation beyond geographical variability. Transects were
considered either along the meridional or zonal direction, depending
on the direction of the mountain chain, and built averaging three ad-
jacent longitude (latitude) grid points across the transect. They were
further used to differentiate West-East or South-North variations in
the elevational dependency of the trends, due to the likely different
climatic regimes affecting the two sides of the mountain chains (Toledo
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et al., 2022).

3.2 Mountain areas

Elevational patterns of precipitation change were studied over four
main mountain areas of the world, i.e. the Tibetan Plateau (TP,
60◦–120◦E; 18◦–47◦N), the Greater Alpine Region (GAR, 4◦–19◦E,
43◦–49◦N), the Rockies Mountains (RO, 235◦–265◦E, 30◦–50◦N) and
the Andes, the latter subdivided into their tropical - Northern Andes
(ANN, 280◦–300◦E, -23◦–0◦N) and mid-latitude parts – Southern An-
des (ANS, 280◦–300◦E, -40◦– -23◦N). The study areas are identified
in Figure 3.1 in terms of their climatological precipitation in boreal
summer (panel a) and boreal winter (panel b) seasons. Besides being
among the largest mountain regions in the world, the selected ar-
eas are representative of tropical and middle latitudes, monsoon and
large-scale circulation influences, and a variety of regional influences.
TP, GAR and RO are in the Northern mid-latitudes, all exposed to
westerlies circulation, with the former largely affected by monsoon
circulation, and the latter two by cyclonic activity and local summer
convection. The Andes are in the summer tropics and mid-latitudes
only marginally affected by westerly circulation, with most precipita-
tion coming from the East. The Northern tropical part is reached by
the ITCZ and the Southern part is exposed to an alternation of local
dry winter and local wet summer. The RO and the AN share their
preferential meridional orientation along the Pacific Ocean, whereas
GAR and the Himalayas within the TP region have largely a zonal
orientation. Further regional characteristics are discussed in the fol-
lowing sections.

Tibetan Plateau

The orographical map (panel b) of the Tibetan Plateau (TP), along
with elevation profiles from the three reference transects (panel a), is
presented in Figure 3.2. Additionally, a geographical distribution map
of the R10mm index averaged over the period 1951–2020 is provided
to describe extreme precipitation patterns across the region (panel c).
The TP, often referred to as the “Third Pole”, stands as the world’s
largest and highest plateau, serving as the source of the majority of
rivers that supply vital water resources to the population of South
and East Asia (Immerzeel, 2020). In recent decades, the TP has un-
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Figure 3.1: Definition of mountain areas selected for the study in terms of their clima-
tological mean precipitation [mm/days] over the reference period 1951–2020

dergone significant warming (Bibi et al., 2018; Yao et al., 2016) and
with temperature increase rates exhibiting an elevational-dependency,
being more pronounced at higher compared to lower elevations (Liu
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Figure 3.2: Orography [m] of the Tibetan Plateau region (a) with the elevation along
three reference transects (b) and a map of the geographical distribution of extreme pre-
cipitation (R10mm index, days) evaluated over the 1951-2020 period (c)

et al., 2009). Furthermore, an increase in moisture content and pre-
cipitation across the TP has been observed (Yang et al., 2011). In this
area, precipitation is characterised by large spatial variability, vary-
ing throughout different locations on the plateau (Bibi et al., 2018).
In particular, two main sub-regions can be distinguished, depending
on their exposure to the influence of different atmospheric circulation
and patterns (Palazzi et al., 2013). The eastern Himalayan region
receives the majority of precipitation and exhibits a peak in the num-
ber of intense rainy days, as illustrated in Figure 3.2(c). This pattern
is primarily shaped by the dynamics of the monsoon: the northward
movement of moisture from the Indian Ocean, driven by the south-
west Indian monsoon causes a prevalence of rainfall occurring in the
summer (see Figure 3.1a)(Li and Yanai, 1996). On the western side,in
the Hindu-Kush Karakoram region, precipitation is observed mainly
in the winter months (Figure 3.1b), primarily due to the influence
of westerly winds that carry moisture from the Mediterranean and
Caspian Sea (Singh and Kumar, 1995). For completeness, the maps
of the seasonal climatology of R10mm are also shown in the Appendix
B (Figure B.1).

Greater Alpine Region

Figure 3.3 presents the orographical map of the Greater Alpine Re-
gion (GAR), elevation profiles along the three meridional reference
transects, and the geographical distribution of the R10mm index over
the period 1951–2020.
The GAR is a particularly interesting geographical area: one of

the highest and largest European mountain chains, it is sensitive to
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Figure 3.3: Orography [m] of the Greater Alpine region (a) with the elevation along three
reference transects (b) and a map of the geographical distribution of extreme precipitation
(R10mm index, days) evaluated over the 1951-2020 period (c)

different atmospheric synoptic regimes, mainly originating from the
Atlantic or the Mediterranean sea. Precipitation patterns are influ-
enced by several factors, including seasons and orography. These pat-
terns exhibit substantial inter-annual variability and are also subject
to the influence of larger atmospheric patterns, such as the North
Atlantic Oscillation (NAO) or El Niño Souther Oscillation (ENSO).
A comprehensive exploration of these regional climate characteristics
can be found in the detailed study by Schär et al. (1998). The GAR
is geographically positioned between two distinct climatic zones: the
mid-latitude temperate climate and the Mediterranean climate type.
Consequently, the alpine precipitation patterns exhibit notable spa-
tial variations, both in terms of long-term average precipitation and
intensity and frequency of extreme events. Nonetheless total precip-
itation generally tends to increase with increasing altitude, although
the relationship between elevation and precipitation displays signifi-
cant variability depending on location and season. Extreme precipita-
tion also displays a dependence on altitude, reaching its maximum on
the northern side of the mountain chain, as evident from Figure 3.3c.
Furthermore, mean and extreme precipitation exhibits very similar
geographical variability in the two selected seasons JJAS and DJFM,
shown respectively in Figure 3.1 and Figure B.2 in the Appendix
B. The northeast area shows a defined single peak during summer,
whereas the northwest area experiences a second one, albeit weaker,
during winter. The most intense precipitation is more prevalent during
summer months, generally associated with convective weather systems
(Schär et al., 1998).
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US Rockies Mountain

The figure 3.4 shows the orographical map of the US Rockies (RO)
(panel b), elevation profiles along the three reference transects (panel
a), and the geographical variability of R10mm within the region (panel
c). These maps illustrate the considerable spatial variability of ex-

(a) (b) (c)

1

Figure 3.4: Orography [m] of the US Rockies Mountains (a) with the elevation along three
reference transects (b) and a map of the geographical distribution of extreme precipitation
(R10mm index, days) evaluated over the 1951-2020 period (c)

treme precipitation in the area. The highest R10mm values are ob-
served in the northern coastal area, influenced by the influx of cool
and moist air from the northern Pacific Ocean. Moreover, comparing
panels (b) and (c), it becomes evident that the distribution of pre-
cipitation in the region is significantly influenced by its mountainous
terrain. The orography gives rise to a classic orographic precipitation
pattern, characterized by enhanced rainfall on the windward side and
a rain shadow on the lee side (Kittel et al., 2002). This effect is max-
imised in the winter seasons, showing very similar pattern to the one
shown by annual R10mm (compare Figures 3.4c and Figure B.3 in
Appendix B). On the eastern side of the area, precipitation is caused
by the collision of continental polar air masses and warmer maritime
tropical moist air. During summer, the northern coastal areas con-
tinue to be influenced by moist Pacific air, showing a second peak of
intense precipitation, whereas the south-west of the RO experiences
dry condition due to the impact of dry continental air and monsoonal
flows from the Gulf of Mexico and California (Kittel et al., 2002), as
observable in Figure B.3.



3.2. Mountain areas 58

Andes

Figure 3.5 presents the orography of the Andes (AN) (panel a), to-
gether with the map of the geographical distribution of R10mm (panel
b). The AN represents the predominant topographical feature of

(a) (b)

1

Figure 3.5: Orography [m] of the Andes both Tropical and Sub-tropical (a) and a map
of the geographical distribution of extreme precipitation (R10mm index, days) evaluated
over the 1951-2020 period (b)

South America, stretching 7000 kilometers, from the Tropics to mid-
latitudes. Precipitation exhibits high spatial variability; consequently,
the region has been divided into two distinct areas: the Tropical Andes
(ANN), characterized by higher precipitation, and the Subtropical An-
des (ANS), marked by drier conditions, as done in Toledo et al. (2022).
The ANN serve as a natural barrier separating the persistently humid
Amazon Basin to the east from the arid Pacific coast to the west.
This distinction can be noticed also in extreme precipitation patterns,
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as shown in Figure 3.5c. Climate in this region can be character-
ized by relatively dry conditions in austral winter season (JJAS), and
wet conditions during the austral summer (DJFM) (see Figure 3.1
for Pm, and Figure B.4 in Appendix B, for R10mm). During the
central austral winter months (June-August) in fact, the subtropical
jet stream reaches its northernmost position, creating a block for the
moisture transport from the Amazon region, leading to a dry climate
(Potter et al., 2023). During austral summer, the jet stream weak-
ens and shifts southward allowing the eastern side of the Cordillera
to serve as a convergence point for atmospheric moisture originating
from both the Intertropical Convergence Zone (ITCZ) and the South
American Monsoon System (SAMS), causing extremely wet condi-
tions, with the most intense rainfall concentrated near the summit of
the chain (Caicedo et al., 2020), as can be notice in Figure 3.5c.
The ANS exhibits a distinct seasonal geographical pattern. Specifi-
cally, during the local winter season, the ANS (below 30◦S) features
a dry east side and a wet west side of the chain. This is attributed
to a predominant atmospheric moisture source originating from the
evaporation over the Pacific Ocean (refer to Figure B.4 in Appendix
B). In contrast, during the local summer (DJFM), precipitation in the
ANS concentrates on the eastern side of the chain, while the western
side experiences minimal rainfall.

3.3 Results

3.3.1 Elevational dependency

The elevational dependency of trends in mean precipitation and ex-
treme precipitation indices has been evaluated with the two comple-
mentary methods described in section 3.1. Table 3.1 summarises the
results obtained evaluating the value of the altitudinal gradient, com-
puted as the linear regression of the distribution of elevations versus
trend values of all grid points in the study regions. In the TP, the GAR
and the ANS, a significant positive altitudinal gradient is observed in
both the mean and extreme precipitation trends. On the contrary, the
RO exhibit an opposing sign, with consistent negative vertical gradi-
ents in the trends of all indices but CDD. The ANN shows no clear
pattern. The chi-squared analysis suggests that for TP and ANS, a
simple linear regression may not be the most appropriate method to
describe the altitudinal stratification, as a more complex pattern may
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Table 3.1: Summary of the elevational dependency of ERA5 precipitation indices over the
5 target regions Tibetan Plateau (TP), Greater Alpine Region (GAR), Rockies (RO) and
Andes split in Northern part (ANN) and Southern part (ANS). Orange (blue) colour refers
to 95% significance positive (negative) altitudinal gradient. Asterisk means acceptable
reduced chi squared analysis. Empty cells indicate no clear and significant behaviour.

Pm R10mm R20mm Rx1day R95p CWD CDD
TP
GAR * * *
RO * * * * * * *
ANN
ANS *

be hidden. Remarkably, each mountain region consistently shows sim-
ilar behavior in terms of the vertical gradient of changes in all indices,
except for consecutive dry days (CDD), which switches to the opposite
gradient in both the ANS and RO. Another exception is represented
by the GAR, where only mean precipitation (Pm), extreme precipita-
tion (R10mm), and the maximum yearly duration of consecutive wet
days (CWD) exhibit the same EDPC signal.

It is important to acknowledge that the information derived from this
analytical method has limitations. In fact, a positive (or negative)
gradient can be the result of various phenomena occurring at both
high and low elevations. For example, a positive altitudinal gradient
in precipitation indices can be attributed to one of several scenar-
ios: a more pronounced increase in precipitation trends (wetting) at
higher elevations compared to lower ones, a more significant reduc-
tion in precipitation trends (drying) at lower elevation compared to
higher ones, or a contrast between wetter conditions at higher alti-
tudes and drier conditions at lower altitudes. Therefore, the adoption
of an additional methodology becomes essential. The study areas were
therefore subdivided into altitudinal bins of 500 meters, and temporal
trends computed, considering also their related errors and the statisti-
cal significance (p-value) to construct a comprehensive vertical profile.
Additional insights into the unique characteristics of each mountain
region are detailed in subsequent sections.

For completeness, Table 3.2 represents the altitudinal gradient of long-
term climatological mean and extreme precipitation indices, analogous
to Table 3.1. It is evident that all regions, except for the GAR, exhibit
a significant negative gradient with elevation, indicating a decrease in
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precipitation with increasing altitudes. The chi-squared test reveals
that these elevational gradients can not be represented by a simple
linear regression, suggesting a high spatial variability as well as the
importance of examining the binned vertical profile, as explained for
the altitudinal gradient of indices temporal trends. On the contrary,
the GAR shows an enhancement of precipitation with the elevation,
well represented by a significant linear regression for many indices. A
more detailed description of the vertical profile of climatological mean
and extreme precipitation indices is reported in Appendix B.2.

Table 3.2: Summary of the elevational dependency of the climatological mean of ERA5
precipitation indices for the reference period 1951–2020 over the 5 target regions Tibetan
Plateau (TP), Greater Alpine Region (GAR), Rockies (RO) and Andes split in Northern
part (ANN) and Southern part (ANS). Orange (blue) colour refers to 95% significance
positive (negative) altitudinal gradient. Asterisk means acceptable reduced chi squared
analysis. Empty cells indicate no clear and significant behaviour.

Pm R10mm R20mm Rx1day R95p CWD CDD
TP
GAR * * * *
RO * * * *
ANN
ANS

Tibetan Plateau

Figure 3.6 reports the details of the vertical profile of temporal trends
of spatially averaged binned data superimposed to the distribution of
trends of individual grid points over the region. Most individual trends
tend to cluster, leading to largely compact distributions, especially at
high altitude where the number of points is smaller, and the influence
of the ground is damped. Deviations from the core of the distribu-
tion occur more pronouncedly towards smaller values of the indices
below 2000 meters and towards higher values above, contributing to
increasing the steepness of the vertical gradient and a larger positive
change in extreme precipitation at higher elevation. As summarized
in Table 3.1, all indices in the Tibetan Plateau show an overall pos-
itive vertical gradient of temporal trends over the 1951–2020 period,
except for CDD. Pm (panel a), R10 (panel b), and CWD (panel c)
exhibit a consistent behavior: profiles shows a positive gradient up to
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Figure 3.6: Elevational dependence of temporal trends of precipitation indices (see la-
bels). Each panel shows the vertical profile of spatially averaged binned data (top scale)
superimposed to the distribution of trends of individual grid points (grey, bottom scale)
over the Tibetan Plateau. Vertical profiles include errors on the trend and the significance
of the trend (filled squares when ≥95%). Point distributions are accompanied by their
linear regression (dashed line). Note that the scale for vertical profiles is magnified by a
factor 10.

4000 meters, where an inversion occurs. Significantly negative trend
values at altitudes below 2000 meters indicate a drying effect that di-
minishes with the elevation. On the contrary, the significant positive
trend around 4000 meters indicates increased wetting effects at very
high altitudes. R20mm (panel d), Rx1day (panel e), and R95p (panel
f) show an overall positive gradient with altitude, with a change in
the slope around 2000 meters. As described for the other indices,
the significant negative trends below this threshold indicate a dry-
ing signal at low elevations, which decreases with altitude. CDD has
a broad distribution between 500 and 2000 meters due to the pres-
ence of microclimatic areas (e.g. the Taklamakan Desert). Above
this altitudinal threshold, CDD is characterized by an overall positive
gradient with the altitude and significant negative trends around mid-
altitudes, indicating a lower persistence of drought conditions. The
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Figure 3.7: Geographical distribution of trends in extreme precipitation (R10mm) over
the 1951-2020 period (left) and their elevational distribution (right) along the three merid-
ional transects defined in Figure 3.2 and reported on the map as colour-coded vertical lines.
Grid points were separated in Northern and Southern parts assuming the maximum alti-
tude along the transect as separator.



3.3. Results 64

impact of geographical variability was investigated by inspecting maps
of trends and the elevational dependency (see Figure 3.7) along the
three meridional transects already described in Figure 3.2. Transects
clearly reveal how geographical differences impact on the vertical dis-
tributions: the northern region demonstrates limited altitudinal strat-
ification, whereas the southern area displays a knee-shaped gradient.
Precipitation decreases progressively up to 2000 meters; at this level
an inversion occurs and negative trends increases toward zero. Fur-
thermore, the 98◦ latitude transect highlights the high-altitude wetting
effect also found in the vertical profile of binned data (Figure 3.6).
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Figure 3.8: As in Figure 3.6 but for the GAR.

Figure 3.8 describes the vertical profile of indices trend over the
GAR, in terms of both binned data and the overall grid-points dis-
tribution. Pm (panel a) R10mm (panel b) and CWD (panel c) show
distinct linear positive vertical gradients, both in the distributions and
in the vertical profiles. They indicate an enhancement of precipita-
tion trend with altitude and consequently a significant wetting signal
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at high altitudes (above 1000 meters). The other indices show no alti-
tudinal stratification. An investigation of the R10mm trend map and
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Figure 3.9: Geographical distribution of trends in extreme precipitation (R10mm) over
the 1951-2020 period (a) and their elevational distribution (b) along the three meridional
transects reported on the map as colour-coded vertical lines. Grid points were separated
in Northern and Southern parts assuming the maximum altitude along the transect as
separator.

the vertical profile of the three meridional transects was performed
(Figure 3.9). An evident discontinuity can be seen between positive
trends in the northern side and negative trends in the southern side
of the region. Even though this difference leads to a bias between the
southern and northern branches of the distribution of trends along the
transects, the altitudinal-gradient of the two distribution exhibit the
same sign. The positive elevation dependency in the GAR seems to
be therefore independent on geographical variations.

US Rockies

The RO mountains show an opposite sign of the vertical gradient,
both in the distributions and in the vertical profiles (Figure 3.10).
Once again, Pm (panel a), R10mm (panel b) and CWD (panel c)
show the most convincing elevational dependency, with increasingly
larger reductions at higher elevation, confirming the enhanced drying
at higher altitudes obtained with first method. The same pattern is
observed in the other indices, with the exception of CDD which ex-
hibits an opposing gradient, even though no significant trends can be
observed in the binned data. All indices (except CWD) are character-
ized by a broad and inhomogeneous distribution, presenting a negative
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Figure 3.10: As in Figure 3.6 but for the RO.

tail below 2000 meters. This deviation from the compact bulk of the
distributions was interpreted by inspecting the geographical variabil-
ity of the region (Figure 3.11, transect at 45◦N). In fact, the north-
ern coastal area, characterized by low altitudes, has experimented a
strong reduction in both mean and extreme precipitation, leading to
such broadness of the distribution. Figure 3.11 also shows the vertical
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Figure 3.11: As in Figure 3.9 but for the RO.
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profile of the three zonal transects described in section 3.2. They ex-
hibit two very distinct patterns up to 1500 to 2500 meters depending
on latitude, with much lower values in the western slopes. Such bi-
ases affect vertical gradients together with a large contribution to the
variance and branching in the overall distributions. The elevational
distribution shows a clearly different behavior separating the western
and the eastern side of the chain, especially at low and mid-elevation.
The two sides reconcile shifting to higher elevation.
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Figure 3.12: As in Figure 3.6 but for the Andes tropical (ANN) (above) and sub-tropical
(ANS) (below).

Figure 3.12 shows the vertical profile of the binned data analysis
over the Andes, both tropical and subtropical, for Pm (panel a,d),
R10mm (panel b,e) and CWD (panel c,f). As for the other mountain
areas, Pm, R10mm and CWD consistently exhibit similar patterns
among themselves and align with the other indices shown in Figures
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B.10 and B.11 in Appendix B. Two clearly distinct behaviors can
be observed in the Tropical and sub-tropical regions. Generally, the
ANN seem to have no altitudinal stratification while the ANS profile
shows a more complex dependency with the elevation. The latter is
characterized by two different gradients with opposite sign, showing
a knee-type curve with an inversion around 2000 meters. Below 4000
meters, the ANS profile is characterized by negative trends, revealing
a drying effect in both mean and extreme precipitation. This confirms
the first method analysis: a simple linear regression might not be suf-
ficient to describe the real altitudinal dependency. Nevertheless, the
ANN and the ANS share certain common characteristics. Primarily,
above 4000 meters, both regions exhibit a positive altitudinal gradient
with positive trends, highlighting a wetting phenomenon occurring at
very high altitudes, similarly to what has been observed in the TP and
GAR regions. Furthermore, both distributions are notably broad, par-
ticularly at mid and low altitudes, making necessary an examination
of trend geographical variability within the area. Taking into account
the driving mechanisms of rainfall, it is crucial to examine the western
and eastern sides of the mountain chain separately. In this case, per-
forming a zonal transect analysis is not convenient owing to the narrow
width of the Andes mountain chain resulting in a limited number of
grid points within a single transect. Consequently, the entire area has
been considered averaging the eastern and western side of the chain
separately.
In Figure 3.13, the vertical profile of binned data of R10mm is shown,
dividing the western and the eastern side of the chain. The broadness
of the overall distribution, shown in Figure 3.12 (panel a and e), can be
ascribed to the significant disparities in altitudinal profiles of trends
between the eastern and western side of the mountain chain. The
west side has a similar profile in both tropical and sub-tropical Andes:
trends are positive, showing significant enhanced precipitation changes
at high altitudes. The overall profiles show a positive altitudinal gra-
dient for the ANN while no significant signal can be assessed in the
ANS. On the contrary, the eastern side of the ANN has no significant
vertical gradient and above 4000 meters its behaviour become consis-
tent with the eastern side. In the ANS, the overall profile is driven by
the eastern side, which shows the peculiar knee-shape at mid-altitude
shown in Figure 3.12 (panel d, e and f).
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Figure 3.13: Elevational dependence of temporal trends of R10mm for tropical (a) and
subtropical (b) Andes dividing eastern and western side of the mountain chain. The plot
shows the vertical profile of spatially averaged binned data (top scale) of East (blue) and
West (light blue) side of the chain superimposed to the distribution of trends of individual
grid points (grey, bottom scale). Vertical profiles include errors on the trend and the
significance of the trend (filled squares when ≥95%).

3.3.2 Seasonal analysis

The objective of this section was to further investigate the Elevation-
Dependent Precipitation Change (EDPC), analysing the seasonality
of the mountainous regions considered in this study. The primary fo-
cus of this work has been on the Tibetan Plateau due to its large size,
existing research literature, and the presence of various dynamic pat-
terns. The methodology developed was subsequently applied to the
other areas as an initial investigation, further techniques still need to
be improved and refined. Indeed, the seasons that have been selected
for this analysis are crucial for understanding precipitation patterns
and extremes in the Tibetan Plateau area, but may not sufficient for
the other regions. For instance, for the GAR, autumn and spring also
play an important role in precipitation dynamics, suggesting the im-
portance analysing them in further researches.

The following analysis have been performed with all extreme precipi-
tation indices, but, for conciseness, results are presented only for the
representative R10mm index.
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Tibetan Plateau

As explained in section 3.1, precipitation in the area of Tibetan Plateau
is characterised by large spatial and seasonal variability. In fact, pre-
cipitation formation mechanisms and processes largely change depend-
ing on season: summer rainfall is due to the Indian monsoon pattern
while winter precipitation can be caused by westerlies dynamics (see
Figure B.1). In the following table (3.3), we summarize the results
obtained evaluating the altitudinal gradient for individual seasons,
computed as the linear regression of the distribution of elevations ver-
sus trend values of all grid points. No differences can be seen between
the two season, confirming the analysis performed on the whole year.
Nevertheless, considering the ineffectiveness of a simple linear regres-
sion approach among the TP region, we performed also the binned
profile analysis.

Table 3.3: Summary of the elevational dependency of ERA5 precipitation indices con-
sidering summer season (JJAS) and winter season (DJFM) in the area of the Tibetan
Plateau. Orange (blue) colour refers to 95% significance positive (negative) altitudinal
gradient. Empty cells indicate no clear and significant behaviour.

Pm R10mm R20mm Rx1day R95p CWD CDD
Year

Summer (JJAS)
Winter (DJFM)

Figure 3.14 shows the same plot as in Figure 3.6a, computing summer
and winter vertical profile separately. Although both seasons lead to
an overall positive vertical gradient, the summer profile clearly dom-
inates the annual pattern: both the features (drying at low altitude
and wetting at high altitude) highlighted in the yearly analysis are
consistently found in the summer profile and not discernible in win-
ter. Interestingly, the positive trends observed at 3500-4000 meters,
migrate to higher elevations (4000-4500m) considering period 1981-
2020 (see Figure B.14 in Appendix B). On the contrary, winter profile
shows only a weak deviation from an absent stratification, driving to
an overall weak positive vertical gradient.
A source of uncertainties derives from the selection of the TP area,
which is large and includes very climatically diverse areas. Because of
that, the TP area has been divided into four sectors, maintaining the
same number of pixels for each area: north-west (NW [75-90◦E; 32.5-
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Figure 3.14: Elevational dependence of temporal trends of R10mm for summer season
(JJAS) (a) and winter (DJFM) (b) seasons for the TP area. The plot shows the vertical
profile of spatially averaged binned data (top scale) of R10mm trend superimposed to
the distribution of trends of individual grid points (grey, bottom scale). Vertical profiles
include errors on the trend and the significance of the trend (filled squares when >95%).

40 ◦N]) where we expect a predominant influence of precipitation from
the westerlies; north-east (NE [90-105◦E; 32.5-40 ◦N]), dominated by
East Monsoon; south-west (SW [75-90◦E; 25-32.5 ◦N]), dominated by
Indian Monsoon; and south-east (SE [90-105◦E; 25-32.5 ◦N]), where
both south and east monsoons play a role. Table 3.4 presents a sum-
mary of both the drying (negative trend) and wetting (positive trend)
effects occurring across all four sectors of the TP area. The objec-
tive is to provide a more immediate visual representation to discern at
which altitudes these phenomena occur, during which seasons, and to
determine whether the shape of the overall profile depends on features
found consistently within each sub-region. The annual signal is con-
firmed to be dominated by the summer season, while notably, there is
no discernible significant EDPC signal observed in winter. To specify
further, the following observation can be made:

NW The positive EDPC signal found also in the TP general profile
can be localised in this sector and it occurs in the summer season.
The larger wetting signal can be found at 4000-4500m.

NE No significant elevation dependency can be noticed in this area,
both in yearly and seasonal analysis.
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Table 3.4: The table summarize the temporal trends of averaged binned profiles for the
four sectors and the whole new TP area, encompassing both the summer (JJAS) and
winter (DJFM) rainfall seasons. The orange (blue) color designates a positive (negative)
trend with 95% significance, while a lighter color indicates 90% significance level.

Full Year
NW NE SW SE Whole

≥5000m
4500-5000m
4000-4500m
3500-4000m
3000-3500m
2500-3000m
2000-2500m
1500-2000m
1000-1500m
500-1000m
0-500m – –

Summer JJAS
NW NE SW SE Whole

≥5000m
4500-5000m
4000-4500m
3500-4000m
3000-3500m
2500-3000m
2000-2500m
1500-2000m
1000-1500m
500-1000m
0-500m – –

Winter DJFM
NW NE SW SE Whole

≥5000m
4500-5000m
4000-4500m
3500-4000m
3000-3500m
2500-3000m
2000-2500m
1500-2000m
1000-1500m
500-1000m
0-500m – –
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SW SW sector is undergoing a strong drying signal at low and mid-
altitudes, driven by summer changes. We might relate this ev-
idence to changes in the South Asian monsoon. Further details
are given in the discussion (Section 3.4).

SE The results are consistent with the SW sub-region.

US Rockies and Greater Alpine Region

Figure 3.15 shows identical plots as in Figures 3.10a for the RO and
3.8a for the GAR, focusing on the summer season. The high-altitude
effect, leading to a drying signal in the RO and a wetting signal in
the GAR, is attributed to the summer season, whereas during win-
ter (Figure B.12, Appendix B), no distinctive altitudinal stratification
is observed. Furthermore, in both areas, the division between the
western-eastern and northern-southern sides of the chain displays no
discernible differences (see Figure B.13 in Appendix B). In the GAR,
the coherent behaviour of the two sides of the chain was also empha-
sized in the annual analysis (see Figure 3.9). For the RO, the most
prominent difference is noticeable at lower elevations due to the coastal
area described in the previous section (Figure 3.11).
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Figure 3.15: Same as Figure 3.14 for RO and GAR in summer season (JJAS).
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Andes

Figure 3.16 reports the same analysis shown in Figure 3.13, consider-
ing separately austral summer (DJFM - panels b and d) and austral
winter (JJAS - panels a and c). In the austral winter season (JJAS)
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Figure 3.16: Same as Figure 3.14 for tropical and sub-tropical Andes dividing eastern
(blue) and western (light blue) side of the chain. Panel (a) and (c) represent austral winter
season (JJAS) while panels (b) and (d) austral summer season (DJFM) of respectively
north and south Andes. Please note that the same scale has been used for binned profile
and trend distribution.
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no altitudinal stratification can be assessed, while in local summer
(DJFM) there is a positive and significant altitudinal gradient con-
sidering the overall distribution. In the tropical Andes, the binned
profile of the western side of the chain outlines a linear increasing
wetting effect with altitude with a strongly enhanced signal at very
high altitude, similarly to what happens during the summer season
in the GAR and in the north-west sector of TP area. An intriguing
aspect to note here is that the western side is the drier region of the
Andes, whereas the bulk of precipitation occurs on the eastern side,
which does not exhibit any altitudinal dependency. In the subtropical
Andes, a non-significant wetting effect is visible at very high altitudes,
while a distinct drying signal is evident at mid-altitudes, below 4000
meters. The knee-shaped pattern observed in Figure 3.13b is notably
influenced by the local summer, although it is also observable in the
local winter.

3.4 Discussion

In our study, we conducted a comparative analysis of altitudinal pat-
terns in mean precipitation and extreme precipitation indices trends
spanning from 1951 to 2020, encompassing various global mountain re-
gions: the Tibetan Plateau, the Greater Alpine Region, the US Rocky
Mountains, and both the tropical and subtropical Andes. Our primary
objective was to explore whether, analogously to temperature trends
(EDW), precipitation trends also exhibit a dependency with elevation.
We evaluated altitudinal stratification through two methods: firstly,
by assessing the linear regression of the overall distribution of tem-
poral trends against altitude calculated over each grid point in every
area. Secondly, EDPC was assessed by examining the vertical profile
of 500 meters-binned spatially averaged trends, which allow to iden-
tify which effect (drying or wetting) is causing the altitudinal gradient.

In the Tibetan Plateau, all indices indicate a positive altitudinal gra-
dient, which however was rejected by a simple chi-squared analysis.
Evaluating the binned profile, all indices consistently indicate a drying
effect occurring at low elevations, particularly below 2000 meters, and
driven by the southern part of the Tibetan Plateau during the sum-
mer season, as highlighted both by the transect, the seasonal and the
sub-regional analysis. Moreover, Pm, R10mm and CWD show a sig-
nificant wetting signal above 4000 meters, observable in both sides of
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the chain. As happens for the drying, also the wetting is due to sum-
mer rainfall, concentrated in north-west sector of the Plateau. The
study conducted by Hu et al. (2021) has performed a similar analysis
over the Tibetan Plateau, using data from 113 meteorological stations
along the period spanning from 1971 to 2017. Their investigation
focused on the elevational dependency of temporal trends of ETC-
CDI extreme precipitation indices, revealing a positive stratification
with the altitude for total precipitation, CWD, and R10mm, identify-
ing this phenomenon as Elevation Dependent Wetting (EDWE). The
concept of EDWE was previously assessed using in-situ observation
also in the central arid region of China (Yao et al., 2016) and during
the summer season over the Tibetan Plateau (Li et al., 2017b). These
studies confirm what we have highlighted with our analysis, suggest-
ing that precipitation changes are enhanced at high elevations. About
the observed drying effect at low altitudes, we suppose it might be
attributed to prevailing changes in atmospheric circulation patterns,
possibly influenced by both regional and local factors. The decrease
in rainfall could be linked to the recent weakening of the Indian sum-
mer monsoon due to the warming of the environment discussed by
Kumar et al. (2020). The IPCC’s Sixth Assessment Report (AR6,
Masson-Delmotte et al., 2021) highlights how the weakening of the
South Asian monsoon circulation has led to a decline in seasonal av-
erage rainfall over North India and Southwest China from the 1950s
to the early 2000s. This decline has been associated with the impact
of local aerosol emissions, which saw a dramatic increase due to the
rapid industrialization of the region.

In the Greater Alpine Region, only Pm, R10mm, and CWD exhibit
a positive gradient with the altitude, almost entirely confined within
the summer season as identifiable in both the overall distribution and
binned profile. This stratification highlights a wetting signal at high
altitudes, above 1500 meters. On the contrary, all other indices do not
exhibit any elevational dependency. Additionally, the transect anal-
ysis indicates a bias between the northern and southern sides of the
mountain chain, even though both show a positive gradient, suggest-
ing that the drivers might be consistent on both sides of the chain.
Elevational patterns in the GAR were examined in terms of future pro-
jections of both mean and extreme precipitation changes (Kotlarski
et al., 2012; Gobiet et al., 2014; Napoli et al., 2023). These studies
have revealed that changes in GAR summer precipitation are signifi-
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cantly influenced by elevation, showing a positive gradient primarily
due to a notable drying effect at lower elevations. Moreover, another
study (Giorgi et al., 2016) found out that high-resolution regional cli-
mate models (around 12km of spatial resolution) show an increase in
mean and extreme precipitation trends over the high-altitude Alpine
areas, a signal not seen by global and coarser simulations. This effect
has found to be associated with increased summer convective rainfall
due to enhanced potential instability by high-elevation surface heat-
ing and moistening. In the historical period considered in this study
and in the GAR, ERA5 seems to capture the convective signal asso-
ciated with the summer precipitation pattern, although other studies
analysing convective precipitation globally suggest the importance of
using higher resolution datasets to capture small-scale processes such
as summer convection (Capecchi et al., 2022; Lavers et al., 2022).
In contrast, Gobiet et al. (2014) identified a negative altitudinal gra-
dient in total winter precipitation. They attributed these alterations
to changes in convection, possibly resulting from thermodynamic pro-
cesses, and the influence of the the positive (or warm) phase of the
North Atlantic Oscillation (NAO) on winter precipitation changes.

The US Rocky Mountains exhibit an opposite behavior compared to
the other regions: all precipitation indices demonstrate a consistent
significant negative linear gradient, primarily due to a pronounced
drying effect at high altitudes, particularly above 2500 meters. As
in the other regions, this signal is concentrated within the summer,
while no stratification can be seen during winter. At lower altitudes,
the western and eastern sides of the mountain chain exhibit an op-
posite gradient. This effect can be attributed to the strong precip-
itation decrease that characterised the coastal zone localised in the
northwest of the area, as can be noticed from the transect analy-
sis. In their study, Pepin et al. (2022) computed a comparisons of
regional mountain precipitation changes considering different time pe-
riods and different datasets (CRU, GPCC, ERA5 and historical exper-
iment from CMIP5 model ensemble). They found that the US Rockies
show a decreasing orographic effect in mean precipitation, due to an
enhanced drying signal at high elevation (ERA5 1980-2020 not signif-
icant, CMIP5 1940-2018 and 1960-2018 significant).

In both the tropical and subtropical Andes, the altitudinal stratifi-
cation can not be described by a simple linear regression. Within the
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tropical zone, no discernible elevational dependency has been iden-
tified, while the subtropical zone displays a more complex pattern.
Throughout the entire Andes, the annual profile on both sides of the
chain is predominantly influenced by the local summer signal (DJFM).
Particularly, in the ANN, the western side manifests a positive linear
relationship with altitude. Notably, at high altitudes, positive and sig-
nificant trends result in a wetting effect, aligning coherently with the
TP and the GAR. No significant vertical stratification has been ob-
served on the eastern side of the ANN. In contrast, within the ANS,
the overall profile is dictated by the eastern side, exhibiting a dis-
tinctive knee-shaped profile. This characteristic is evident during the
summer but discernible even in the local winter season.

As the primarily objective of our work was to draw overarching con-
clusions by extrapolating the shared characteristics observed across all
different regions that have been considered, the following observations
can be made:

1. In all areas mean precipitation (Pm), extreme precipitation (R10mm),
and the persistency of rainy condition (CWD) show consist al-
tidudinal profiles of trends.

2. In the RO, in the GAR, and in the western side of the ANN a
simple linear regression can efficaciously describe the EDPC while
for the ANS and the TP a more complex altitudinal profile has
been found.

3. During the local summer season, in the TP, in the GAR and in the
western side of the Andes, a significant wetting signal (positive
trend) can be identified at high altitude.

4. In all regions, the altitudinal stratification predominantly arises
during the summer season.

As briefly described in the introduction, the EDPC results from a
combination of various physical processes that can be influenced by
both local factor, the general atmospherical circulation dynamics (dy-
namic drivers) or by thermodynamic relationships between different
climate variable changes involved in precipitation formation processes
(thermodynamic drivers). The drivers behind the high-altitude wet-
ting effect, which impact all mountain chains except for the RO, might
fall into the latter category. Primarily, the intensification of warming
at higher altitudes and its interconnected processes, such the snow-ice
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albedo feedback, may contribute to the increase in local atmospheric
water vapor and air humidity. According to the Clausius–Clapeyron
relationship, these alterations can lead to an enhancement of precipi-
tation and more pronounced precipitation extremes at higher altitudes
(Hu et al., 2021). Additionally, as noted by Guo et al. (2017), in the
Tibetan Plateau region, a reduction of near-surface wind speed has
been observed to be more pronounced at high altitudes. Changes in
surface wind speed, the so called “stilling” phenomenon, might impact
the local convection, potentially resulting in an increase in extreme
precipitation at high elevations.

Concerning the RO, it is plausible that dynamic drivers might su-
persede the thermodynamic effects, particularly given its complex to-
pography and the diversity of the atmospheric patterns impacting the
area. In fact, in this area precipitation is influenced by a wide range
of atmospheric phenomena, as discussed in section 3.2, notably distin-
guished between the coastal and interior side of the mountain chain.
Future research efforts should focus on examining shifts in the Jet
stream and the persistency of storms influenced by westerly winds,
similarly to what have been discussed around the Tibetan Plateau’s
drying impact resulting from modifications in the monsoon.



4Chapter

Elevation dependent precipitation change

in CMIP6 models

As the mean state of climate is undergoing rapid and severe changes,
also its extreme are subject to intensification. Globally, both the fre-
quency and the intensity of precipitation extremes are increasing, in-
fluenced by alterations in regional and local weather patterns. This
phenomenon is particularly interesting in mountainous regions, where
the interlace and overlap of several factors, such as the increase in
atmospheric amount of water vapour (Allen and Ingram, 2002), the
orographic uplift mechanism (Johnson and Hanson, 1995), and the
transition from solid to liquid-phase precipitation (O’Gorman, 2014),
contribute to a substantial increase in total and extreme precipita-
tion. Recent assessments have revealed that the long-term variabil-
ity of distinct climate variables, such as precipitation and tempera-
ture, exhibits elevational-dependency, leading to so called Elevation-
Dependent Precipitation Change (EDPC) and Elevation-Dependent
Warming (EDW) (Pepin et al., 2022).

Global climate models (GCMs) represent a fundamental tool for analysing
historical and future climate shifts, variability and trends in global cli-
mate. Recently, a new phase of the CMIP project (CMIP6, Eyring
et al., 2016) has been released, providing a new generation of models,
representing an advancement from traditional GCMs to Earth System
Models (Kim et al., 2020). As described in Chapter 1, these models
are affected by uncertainties and precipitation stands out as one of the
most challenging variables to simulate. This may be largely attributed
to the need for parameterizations, particularly in high-altitude areas
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where sub-grid scale processes play a leading role influencing precip-
itation formation mechanisms and the entire hydrological cycle (e.g.
orographic lifting of air masses or climate feedbacks). The use of cli-
mate models, both global and regional, offers notable advantages in
exploring EDPC, as already highlighted for EDW. Firstly, they can
aid in identifying the principal mechanisms underlying elevational-
dependencies by providing outputs for multiple variables (drivers) po-
tentially responsible for or linked to this phenomenon (Palazzi et al.,
2019). Secondly, long-term simulations allow for both the reproduc-
tion of the past and the exploration of future projections. A compre-
hensive evaluation of climate models’ performance is crucial for the
precise interpretation of the phenomenon and to elaborate accurate
discussions of the simulated results. Historical climate model simula-
tions can be evaluated to assess the models’ capabilities in reproducing
both average and extreme precipitation in the recent past, enabling
comparisons with other datasets (e.g., reanalyses, in-situ stations, or
satellite products) and models verification and validation. Addition-
ally, understanding the impact of distinct model characteristics, such
as the resolution, in simulating EDPC is a fundamental step that has
not been investigated in detail yet and requires further specific studies.
To our knowledge, these aspects have not been extensively explored, as
the only existing studies are focused on EDW (e.g. Im and Ahn, 2011;
Rangwala and Miller, 2012). For instance, Palazzi et al. (2019) have
highlighted the crucial role of the model spatial resolution in captur-
ing specific EDW characteristics, such as the strength and the relative
role of distinct driving mechanisms, particularly in small mountain
areas, such as the Alps, compared to wider ones, such as the Tibetan
Plateau-Himalayas.

The objective of this section is to evaluate the capability of CMIP6
model historical simulations in assessing EDPC in different mountain
regions, exploring both the model ensemble-mean and the inter-model
variability. The selected regions are the Tibetan Plateau (TP), the
Greater Alpine Region (GAR), the US Rockies (RO) and the Andes,
both tropical (ANN) and sub-tropical (ANS) and a description of their
climatological precipitation is provided in section 3.2. In addition, a
validation of these outputs has been performed through a comparison
with ERA5 reanalysis, whose results have already been discussed in
Chapter 3.
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4.1 Data and methods

Two types of precipitation data have been used in this chapter, the
ERA5 reanalysis and CMIP6 climate models outputs. ERA5 daily
precipitation data are provided by the fifth generation of the ECMWF
reanalysis, downloaded in October 2022 from the Copernicus Climate
Change Service Climate Data Store (CDS), as explained in chapter
3.1. We recall that ERA5 is characterized by high temporal frequency
(hourly records) at 31 km horizontal resolution. The dataset has been
modified to obtain daily precipitation totals and then interpolated on
to a 0.25◦x0.25◦ latitude-longitude regular grid. More information are
provided in Hersbach et al. (2023). In this study, the ERA5 reanalysis
has been used as the primary reference dataset for the evaluation of
historical CMIP6 model outputs. 29 GCMs from CMIP6, listed in
table 4.1, have been analysed. We selected the models for which daily
precipitation data were available at the time when we downloaded
the data (June 2023). A single member for each model (r1i1p1f1)
has been used for fair comparisons. Models have been used both at
their original spatial resolution (section 4.2.3) and interpolated onto a
regular grid of 1◦x1◦ lat-lon (section 4.2.1). A sub-set of twelve high-
resolution CMIP6 models has been identified, selecting the ones with
latitude resolution below 1◦.
To characterize the variability and changes in precipitation extremes,
we used a set of ETCCDI indices. We briefly list them here, with
a more detailed description available in chapter 3.1: R10mm [days ],
R20mm [days ], Rx1day [mm/day ], R95p [mm/year ], CWD [days ] and
CDD [days ].

The elevational-dependency of precipitation changes was studied us-
ing the two complementary methodologies described in chapter 3.1.
The differences with the previous analysis are that precipitation in-
dices trends have been computed over the period 1950–2014, in order
to have the largest period in common between ERA5 and CMIP6 his-
torical models. Moreover, we chose altitudinal bins of 1000 meters
width instead of 500 meters, ensuring at least 10 pixel into each bin.

The first part of the analysis presented in this chapter uses the CMIP6
model ensemble-mean (MEM). Precipitation extreme indices have been
calculated for each model at their original spatial resolution, they
have been interpolated over a regular grid of 1◦x1◦ lat-lon and then
the MEM has been computed; finally, we applied both definitions of
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Table 4.1: List of 29 CMIP6 models considered in this study, accompanied by a key
reference, their spatial resolution (latitudexlongitude) and the name of the atmospheric
module. Only one ensemble member (r1i1p1f1) of each CMIP6 model has been considered.
The sub-set of high-resolution models is highlighted in yellow.

CMIP6

Model name Institution name Spatial resolution Atmospheric module Reference

ACCESS-ESM1-5 CSIRO 1.25◦x1.88◦ MetUM-HadGEM3-GA7.1 Ziehn et al. (2020)
ACCESS-CM2 CSIRO-ARCCSS 1.25◦x1.88◦ HadGAM2 Bi et al. (2013)
BCC-CSM2-MR BCC 1.42◦x1.13◦ BCC AGCM3 MR Wu et al. (2022)
CanESM5 CCCma 3.42◦x2.81◦ CanAM5 Swart et al. (2019)
CESM2 NCAR 0.94◦x1.25◦ CAM6 Danabasoglu et al. (2020)
CESM2-WACCM NCAR 0.94◦x1.25◦ WACCM6 Gettelman et al. (2019)
CMCC-CM2-SR5 CMCC 0.94◦x1.25◦ CAM5.3 Cherchi et al. (2019)
CMCC-ESM2 CMCC 0.94◦x1.25◦ CAM5.3 Cherchi et al. (2019)
CNRM-CM6-1 CNRM 1.4◦x1.4◦ Arpege 6.3 Voldoire et al. (2019)
EC-Earth3 EC-Earth-Cons 0.9◦x0.7◦ IFS cy36r4 Döscher et al. (2022)
EC-Earth3-CC EC-Earth Cons 0.9◦x0.7◦ IFS cy36r4 Döscher et al. (2022)
EC-Earth3-Veg EC-Earth Cons 0.9◦x0.7◦ IFS cy36r4 Döscher et al. (2022)
EC-Earth3-Veg-LR EC-Earth Cons 1.4◦x1.25◦ IFS cy36r4 Döscher et al. (2022)
FGOALS-g3 CAS 2.8◦x2◦ GAMIL3 Li et al. (2020)
GFDL-ESM4 NOAA-GFDL 1◦x1.25◦ GFDL-AM4.0.1 Dunne et al. (2020)
GFDL-CM4 NOAA-GFDL 1◦x1.25◦ GFDL-AM4.1 Adcroft et al. (2019)
IITM-ESM CCCR-IITM 2.3◦x1.8◦ IITM-GFSv1 Krishnan et al. (2019)
INM-CM4-8 INM 2◦x1.5◦ INM-AM4-8 Volodin et al. (2017b)
INM-CM5-0 INM 2◦x1.5◦ INM-AM5-0 Volodin et al. (2017a)
IPSL-CM6A-LR IPSL 1.27◦x2.5◦ LMDZ Boucher et al. (2020)
KIOST-ESM KIOST 1.88◦x1.88◦ GFDL-AM2.0 Pak et al. (2021)
MIROC6 MIROC 1.72◦x1.41◦ CCSR AGCM Tatebe et al. (2019)
MPI-ESM1-2-LR MPI 1.85◦x1.88◦ ECHAM6.3 Mauritsen et al. (2019)
MPI-ESM1-2-HR MPI 0.93◦x0.94◦ ECHAM6.3 Müller et al. (2018)
MRI-ESM2-0 MRI 1.4◦x1.13◦ MRI-AGCM3.5 Yukimoto et al. (2019)
NESM3 NUIST 1.88◦x1.88◦ ECHAM v6.3 Cao et al. (2018)
NorESM2-LM NCC 0.95◦x2.5◦ CAM-OSLO Seland et al. (2020)
NorESM2-MM NCC 0.9◦x1.25◦ CAM-OSLO Seland et al. (2020)
TaiESM AS-RCEC 0.9◦x1.25◦ TaiAM1 Lee et al. (2020)

EDPC signal, as explained in section 3.1.

In the second section, we have performed a comparison between CMIP6
model simulation of EDPC with ERA5 signal, over the common refer-
ence period 1950–2014. ERA5 have been interpolated on a regular grid
of 1◦x1◦ latitude-longitude and the altitudinal bins have been enlarged
from 500 to 1000 meters, fisrtly to assess that the results obtained in
chapter 3 were still verified with a coarser resolution, then to perform
the comparison.

To gather CMIP6 models that shares similar EDPC signals, a cluster-
ing method was employed. The non-hierarchical k-means clustering
algorithm, as introduced by Hartigan and Wong (1979), was applied
to the altitudinal binned profiles of the R10mm index simulated by
twelve high-resolution CMIP6 models, dividing them into k clusters,
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minimize the total intra-cluster variance, as a measure of how spread
the data points are from the center of the cluster. The algorithm’s
outcome depends on the initially prescribed number of clusters, hence
it is typically run multiple times with varying k values. Different num-
bers of clusters were identified for each study area, introducing some
subjectivity into the final decision on the cluster number. This was
done to strike a balance between achieving good homogeneity within
elements of the same cluster and avoiding excessive partitioning of
regions, which could result in a reduced number of elements in each
cluster (Cattani et al., 2021). Furthermore, an additional test was
conducted to determine the appropriate number of clusters using the
Elbow method (Humaira and Rasyidah, 2020). This method consists
of plotting the sum of squared errors (SSE) against the number of
clusters and selecting the point where the rate of SSE decrease no-
ticeably decelerates, indicating the optimal clustering configuration
for the dataset. Unless otherwise specified, the number of clusters
selected is confirmed by this analysis.

4.2 Results

4.2.1 CMIP6 model ensemble mean (MEM)

We first conducted an analysis of the altitudinal stratification of both
mean and extreme precipitation in the reference period 1950–2014 of
the historical experiment, using the model ensemble-mean (MEM) of
CMIP6 models, as detailed in Section 4.1. The MEM serves as a repre-
sentation of shared features in the simulated climate change, surviving
the process of ensemble averaging and reflecting the consensus across
the all group of models.
EDPC can be evaluated with two complementary approaches: firstly,
as the altitudinal gradient of the overall trend distribution of individ-
ual grid points within each study area, computed as a linear regression
with the elevation. Secondly, it can be evaluated as the vertical profile
of 1000 meters-binned averaged temporal trends. Similarly to what
have been done in table 3.1 (chapter 3) with ERA5 dataset, table 4.2
summarises the results obtained with the first methodology. In the
TP, RO, and ANN areas, the majority of the selected indices exhibits
a positive altitudinal gradient. However, only in the RO the distribu-
tion appears adequately represented by a simple linear regression, as
indicated by the chi-squared analysis. In the GAR, all indices show
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Table 4.2: Summary of the elevational dependency of CMIP6 MEM precipitation indices
over the 5 target regions Tibetan Plateau (TP), Greater Alpine Region (GAR), Rockies
(RO) and Andes split in Northern part (ANN) and Southern part (ANS). Orange (blue)
colour refers to 95% significance positive (negative) altitudinal gradient. Asterisk means
acceptable reduced chi squared analysis. Empty cells indicate no clear and significant
behaviour.

Pm R10mm R20mm Rx1day R95p CWD CDD
TP
GAR *
RO * * * * *
ANN
ANS

no significant altitudinal gradient, except for a positive and significant
value in CWD, reflecting the persistence of rainy conditions. Finally,
the ANS demonstrates a significant negative elevational gradient for
the Rx1day and R95p indices.

As explained in chapter 3, it is fundamental to evaluate the EDPC
mechanism also analysing the altitudinal binned profile of the tempo-
ral trends of the chosen indices, as the overall gradient value can be
the result of various phenomena occurring at both high and low ele-
vations. Figure 4.1 shows the details of the altitudinal binned profiles
superimposed to the distribution of trends of individual grid points
over the five mountain areas considered. We decide to show here only
two indices, R10mm and Rx1day, as for the other indices similar con-
siderations can be drawn. For completeness, the indices not shown
here are reported in Appendix C. For the GAR, however, the CWD
profile has been shown instead of Rx1day as this index show a slightly
different profile compared to the others.

Tibetan Plateau R10mm (panel a) exhibits a widespread distribu-
tion below 5000 meters, with a central core where trends tend to con-
centrate around positive values. The vertical profile reveals a positive
linear dependency, showing a significant drying effect at low altitudes,
below 1000 meters, and a wetting effect at high altitudes, above 4000
meters. As for Rx1day (panel b), the trend distribution is sufficiently
compact, displaying no altitudinal dependency. The binned profile
confirms this behavior: trends are positive and significant but they
show no clear relationship with elevation.
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Figure 4.1: Elevational-dependence of temporal trends of precipitation indices (see la-
bels) for all mountain areas taken into account: TP panels (a) and (b); GAR (c) and
(d); RO (e) and (f); ANN (g) and (h); ANS (i) and (j). Each panel shows the vertical
profile of spatially averaged binned data (top scale) superimposed to the distribution of
trends of individual grid points (grey, bottom scale). Vertical profiles include errors on the
trend and the significance of the trend (filled squares when >95%). Point distributions
are accompanied by their linear regression (dashed line).
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Greater Alpine Region R10mm (panel c) and CWD (panel d) pro-
files show positive and significant binned trends, with a visible increase
with the altitude for CWD and no discernible altitudinal stratification
for R10mm. The distribution in both cases is broad and characterised
by a relatively low number of pixels, underscoring how the coarse reso-
lution of CMIP6 models, compared with the GAR extent, can strongly
impact the representation of the EDPC.

US Rockies The distribution of R10mm (panel e) is compact and
exhibits a clear positive dependency with altitude, as confirmed by the
binned profile. It also shows a significant wetting effect above 1500
meters. Rx1day (panel f) presents a broader distribution, and displays
a significant linear negative EDPC. The inspection of the binned pro-
file reveals significant and positive trends whose values diminish with
the elevation.

Andes North R10mm (panel g) shows a linear and positive EDPC
considering both methods, caused by a drying effect below 3000 me-
ters, that decreases with the elevation, and a significant wetting effect
above 4000 meters. Concerning Rx1day (panel h), significant positive
trends have been evaluated in the overall profile but no altitudinal
stratification can be observed.

Andes South R10mm (panel i) reveals no altitudinal stratification
with both methods. Rx1day (panel j) is characterised by a broad dis-
tribution, particularly below 2000 meters. Its binned profile exhibits a
more complex pattern, featuring a weak knee-shape with an inversion
in the gradient between 2000 and 3000 meters.

4.2.2 Comparison between the CMIP6 MEM and the ERA5

reanalysis

The CMIP6 MEM from historical simulations was compared to ERA5
reanalysis. ERA5 resolution has been degradated from 0.25◦ to 1◦

latitude-longitude (ERA5deg), and subsequently, the amplitude of the
altitudinal bins has been modified from 500 to 1000 meters.

Figure 4.2 shows the overall distribution and the altitudinal binned
profile of the R10mm trends computed with ERA5 at its original res-
olution with 500 meters-bins and with ERA5deg, considering 1000
meter-bins, for each study area. Comparing panels (a) to (b), (e) to
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Figure 4.2: Elevational-dependence of temporal trends of R10mm for all mountain areas
taken into account: TP panels (a) and (b); GAR (c) and (d); RO (e) and (f); ANN (g)
and (h); ANS (i) and (j). Right hand panels represent ERA5 R10mm trends for the period
1950–2014 with 0.25◦ spatial resolution and 500 meter-bins. Left hand panels 1◦ spatial
resolution and 1000 meter-bins.

(f) and (g) to (h), the difference in the resolution for the TP, the RO
and the ANN does not substantially alter the altitudinal stratifica-
tion shown by the profiles. The primary characteristics highlighted in
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chapter 3 are also discernible with coarser resolution and wider alti-
tudinal bins. Specifically, for the TP, both the drying effect at low
altitudes and the wetting effect at high elevations are clearly evident,
and an overall positive and significant EDPC emerges from the lin-
ear regression. Considering the RO, a negative EDPC caused by an
increasing drying effect with elevations is observable in both panels,
although with ERA5deg, the EDPC signal becomes non significant.
In the ANN no significant altitudinal gradient is found with both res-
olutions, however the significant positive trend shown at very high
altitudes, also highlighted in chapter 3.3.1, persists.
In contrast, in the GAR (panel (c) and (d)) and in the ANS ((i) and
(j)), the different resolution leads to substantial discrepancies in the al-
titudinal stratification of the R10mm index trend. In both regions, the
linear regression describing the EDPC signal becomes non-significant.
In the GAR, ERA5deg profile consists of only two bins above 500 me-
ters and they exhibit no distinct altitudinal stratification. In the ANS,
the wetting effect at very high altitudes becomes non-significant, and
the characteristic knee-shape of the profile, which describes a drying
effect with two distinct gradients, becomes less pronounced.

The juxtaposition of the right panels in Figure 4.2 - ERA5deg - with
the corresponding left-hand panels of Figure 4.1 - CMIP6 MEM -
describes a comprehensive comparison and validation of the MEM re-
sults. To facilitate the visualization, another plot has been created,
where the altitudinal profiles obtained with the two datasets have
been superimposed (Figure 4.3). In the TP and in the GAR, the
EDPC identified through the CMIP6 MEM analysis - positive for the
TP and non-significant for the GAR - seems to be corroborated by
ERA5deg. Concerning the GAR, trends exhibit compatibility within
the error bars, whereas in the TP, the profile shape remains consistent
but there is a positive BIAS (MEM minus ERA5deg is positive). In
the RO and the AN, MEM profiles notably deviate from those evalu-
ated with ERA5deg: in the RO, above 1000 meters, the two datasets
display opposite profiles: a negative (positive) gradient is shown by
ERA5deg (CMIP6). A similar pattern can be observed in the ANN,
where below 3000 meters ERA5deg shows a negative gradient while
the CMIP6 MEM a positive one. In general, in the overall Andes, the
ERA5deg R10mm temporal trends seems to be amplified with respect
to the CMIP6 MEM values; this is particularly evident in the ANS
where ERA5deg profile show an elevational-dependency much more
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Figure 4.3: Juxtaposition of the altitudinal binned profiles of R10mm trends obtained
with the ERA5deg (red profile) and CMIP6 MEM (blue profile).

amplified, with trends around ten times more negative then MEM
trends.

4.2.3 CMIP6 models validation

As previously discussed in section 4.2.1, the analysis of how the CMIP6
MEM represents EDPC is crucial for mitigating the impact of model
specific biases. However, the ensemble-mean can be significantly mis-
leading in representing phenomena largely affected by inter-model
spread. Therefore, each individual model outcome, as well as their
capability to represent EDPC, has been further investigated, in order
to develop a better understanding of their uncertainties.
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In this section, we evaluate whether the CMIP6 models listed in Ta-
ble 4.1 are able to capture the geographical variability of the R10mm
long-term average (mean value in the period 1950–2014). To achieve
this, the spatial distribution of extreme precipitation climatology from
ERA5 and CMIP6 models has been compared using a Taylor diagram.
A Taylor diagram is a concise way to show how well spatial patterns
of the same variable simulated by different datasets match with each
other, after identifying a reference dataset, in this case ERA5. This
kind of representation manages to investigate together the spatial cor-
relation, the root-mean-square error, and variance ratio between dif-
ferent fields (Taylor, 2001).

In the Tibetan Plateau (TP), the correlation coefficient between the
spatial distribution evaluated with CMIP6 models and ERA5 ranges
from 0.7 to 0.95, indicating a generally good correlation, with the ex-
ception of the FGOALS-g3 model, which exhibits a correlation lower
than 0.5. Additionally, the all models fall below the reference standard
deviation, implying that they generate narrower variations compared
to the observed data, underestimating the spatial variability.
In the GAR, most models exhibit correlations ranging between 0.5
and 0.8, with a fairly even distribution between higher and lower val-
ues of variability, independently in high and low resolution models.
Notably, the group of models characterised by higher correlation val-
ues (above 0.7) is predominantly composed of high-resolution models,
such as EC-Earth3 (around 0.85) and the GFDL models (around 0.8),
along with some lower resolution models, including EC-Earth3-Veg-
LR, MRI-ESM2-0, and INM models. All other high-resolution models
exhibit low correlation (between 0.4 and 0.6).
In the RO, all models show lower spatial variability compared to the
reference, except for FGOALS-g3. The correlation coefficient is gener-
ally high, with most models falling within the range of 0.8 to 0.95 (no-
tably, all high-resolution models exceed 0.9); however, certain models,
like FGOALS-g3 or IITM-ESM, significantly deviate from the others.
In the ANN, most models exhibit poor performance in simulating ex-
treme precipitation. Generally, high-resolution models perform better
in terms of the correlation coefficient, although with some exceptions.
Specifically, several models, including some high-resolution ones like
the CMCC models and TaiESM, display very low correlations (below
0.4). Another subset of models falls within the correlation range 0.6–
0.8, encompassing both high and low resolution models.
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Figure 4.4: Taylor diagrams for long-term mean R10mm index over all mountain areas
[TP (panel a), GAR (panel b), RO (panel c), ANN (panel d) and ANS (panel e)] comparing
each of the CMIP6 models with ERA5 reference dataset (red star marker) for the period
1950–2014. The high-resolution CMIP6 models are highlighted in a different color (blue).
Please note that different radial scale have been used for the different areas.
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In the ANS, models align more closely with ERA5 compared to the
ANN. The majority of models exhibits lower standard deviation val-
ues but maintains correlations above 0.7, with none of them falling
below 0.4. Notably, three high-resolution models — namely CMCC-
CM2, CMCC-ESM2, and TaiESM - display worse performance than
the other, as observed in ANN.

In general, the majority of high-resolution CMIP6 models successfully
capture the spatial distribution characteristics of long-term averaged
R10mm. However, in the Andes region, even some high-resolution
models exhibit significant deviations compared to ERA5. The perfor-
mance of low-resolution models is generally inferior, with FGOALS-g3
being the least accurate across most areas. Taking these observations
into account, we chose to focus our next analysis on the subset of
CMIP6 models characterized by the highest resolution.

4.2.4 K-mean cluster analysis

The k–mean clustering method (details in section 4.1) was applied to
the binned altitudinal profile of the R10mm temporal trends simu-
lated by the high-resolution subset of CMIP6 models, regridded over
a regular 1◦ latitude-longitude grid. The aim is to identify common
characteristics between model simulations and see if one or more clus-
ters resemble ERA5deg profile in all study areas (right-hand panels of
Figure 4.2). Figure 4.5 illustrates the four clusters’ altitudinal binned
profiles selected for the TP. Although the Elbow Method highlights
three as the optimal number of clusters for this area (see Figure C.6
in Appendix C.2), we decided to select four clusters. Even though,
one cluster consists of only one model (cluster #3), its profile diverges
significantly from the others, and treating it separately has proven to
be more effective to analyse the characteristics of altitudinal profiles.
Cluster #2 exhibits a profile that closely resembles the ERA5deg one,
albeit affected by a positive bias (model minus ERA5deg) and a dif-
ference in the 500-1000 meters bin. Cluster #1 is also noteworthy:
while its profile shape differs, it exhibits the two signals that caused
an overall positive EDPC, highlighted in Chapter 3 for this area — a
drying signal at low altitude and a wet signal at high altitude - and
the trend values are compatibles within the error bars. Lastly, cluster
#4 does not share common characteristics with the ERA5deg profile.

Figure 4.6 shows the binned vertical profiles of the three selected clus-
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Figure 4.5: Tibetan Plateau. Altitudinal binned profile of R10mm temporal trends of
each high-resolution CMIP6 models, divided into four clusters with the k-mean method.
In each panel is also shown the mean profile for each cluster (black line) and ERAdeg
profile (gray line).
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Figure 4.6: Same as Figure 4.5 but for the Greater Alpine Region.

ters for the GAR. Firstly, above 500 meters, the profile consists of
only two bins, so it should be interpreted with caution. Secondly, all



4.2. Results 95

three clusters profiles are consistent with ERAdeg within the error
bars. However, Cluster #1 (panel a) and Cluster #3 (panel c) exhibit
values of trend closer to those assessed with ERA5deg, while Cluster
#2 (panel b) shares a similar profile shape, albeit affected by a bias.
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Figure 4.7: Same as Figure 4.5 but for US Rockies.

In the RO, three clusters have been identified and shown in Figure 4.7.
Cluster #1 and #3 exhibit a positive EDPC with increasing trends
at higher altitudes, while cluster #2 shows no discernible altitudinal
stratification. None of them closely resembles the ERA5deg profile,
although trend values below 1000 meters for cluster #3 are within the
margin of error.
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Figure 4.8: Same as Figure 4.5 but for tropical Andes.

Also in the ANN, three clusters have been evaluated and their profile
presented in Figure 4.8. The first cluster (panel a) is characterized by
a positive and linear altitudinal stratification, with negative trends at
low altitudes, that diminish with elevation, and positive trends at high
altitudes. Cluster #2 (panel b) shows a similar profile with a smaller
gradient, while cluster #3 (panel c) resembles #1 but it is displaced
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toward negative values. When comparing these profiles to ERA5deg,
none of them precisely replicates the entire profile, but cluster #1
shows compatible trend values at high altitudes (above 2000 meters).
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Figure 4.9: Same as Figure 4.5 but for sub-tropical Andes.

Figure 4.9 shows the binned altitudinal profiles of the three selected
clusters for the sub-tropical Andes. Cluster #1 shows no stratification
with altitude, while clusters #2 (panel b) and #3 (panel c) display
a positive EDPC. Cluster #2 exhibits a wetting signal that almost
linearly increases with elevation, while cluster #3 shows a C-shape
profile with negative trends at low altitudes and positive trends at
high altitudes. The ERA5deg profile has a similar shape to the one
shown by cluster #3, albeit with larger values.

4.3 Discussion

Analyzing changes in extreme precipitation in high-elevation areas is
a matter of great importance as intense rainfall might represent a trig-
ger for geo-hydrological hazards. In fact, the complex topography of
these regions has the potential to amplify the consequences of extreme
precipitation events, such as landslides, flash floods, or debris flows,
resulting in significant socio-economic impacts on global population.
Consequently, it is crucial to develop an extensive investigation to dis-
cern whether the elevational-dependency of changes in precipitation
and its extremes can be assessed, locally and globally, focusing espe-
cially on future projections. Hence, the use of climate models becomes
indispensable for projecting future scenarios, facilitating the adapta-
tion and mitigation efforts and developing risk management strategies.

The assessment of a model’s capability in accurately replicating the
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recent past climate stands as a preliminary and critical step of model
validation, before using the model for future projections. The anal-
ysis conducted in chapter 3 has been replicated to assess Elevation-
Dependent Precipitation Change (EDPC) using the historical experi-
ment of CMIP6 models across five distinct key mountain regions (Ti-
betan Plateau, Greater Alpine Region, US Rockies, and Andes - both
tropical and subtropical), analyzing various ETCCDI precipitation in-
dices spanning the period from 1950 to 2014. Initially, the analysis
has been performed using the CMIP6 model ensemble-mean (MEM)
to examine the representation of shared features across all models.
Then, selecting the R10mm index as a reference, a comparison be-
tween the CMIP6 models, their ensemble-mean and ERA5 has been
performed. Finally, to assess the capability of each model in repro-
ducing the elevation-dependency of extreme precipitation changes, a
k-mean cluster analysis has been computed on the binned altitudinal
profiles of the R10mm trend, in order to identify which models better
performs compared to ERA5 reanalysis.

In the Tibetan Plateau, the CMIP6 MEM reveals a positive stratifica-
tion of extreme precipitation changes with the altitude. This overall
gradient results from a drying effect (negative trends) at low altitudes
and a wetting signal (positive trends) at high altitudes. These find-
ings are supported by the analyses conducted with ERA5 (Chapter
3), ERA5deg, as well as existing literature (Hu et al., 2021). Some
high-resolution models (CESM2, EC-Earth3, EC-Earth3-Veg) exhibit
a closely similar elevational profile of the R10mm trend with respect
to ERA5, albeit affected by a positive bias at all altitudes.

In the Greater Alpine Region, the application of CMIP6 MEM re-
vealed no significant altitudinal dependency in most indices changes
(except CWD), in contrast to the results obtained with ERA5. When
degrading ERA5 to a coarse resolution, the EDPC signal seems to dis-
appear; in fact, ERA5deg shows an altitudinal profile perfectly com-
patible with CMIP6 MEM and all CMIP6 high-resolution models, as
shown by the cluster analysis. It is important to note that the overall
trend distribution above 500 meters comprises very few grid points,
underscoring the crucial impact of spatial resolution in simulating ex-
treme precipitation in a relatively small region. Models that can better
represent values of long-term mean intense precipitation are also clus-
tered together in group #2 (EC-Earth3 and GFDL family model).
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This cluster’s shape closely resembles ERA5, albeit affected by a pos-
itive bias, as observed in the TP.

In the US Rockies, the CMIP6 models and their MEM, show a pos-
itive and significant EDPC signal, indicating a larger increase in ex-
treme precipitation at high altitudes. In contrast, ERA5deg, similarly
to what was found with ERA5, shows a linear and negative R10mm
trend elevational gradient, attributed to an intensified drying effect at
high altitudes. Further investigations are necessary to understand the
origin of this difference.

In the tropical and subtropical Andes, the CMIP6 models exhibit no-
table differences when compared to the results obtained with ERA5.
Considering the CMIP6 MEM, a positive altitudinal gradient is ob-
served for several ETCCDI indices in the tropical Andes (ANN), whereas
a non-significant EDPC signal is noted for the subtropical Andes
(ANS). On the contrary, using ERA5 at its original spatial resolu-
tion, a non-significant signal of stratification is identified for the ANN,
while a more complex pattern emerges in the ANS, featuring positive
(negative) and significant stratification above (below) 2000 meters.
Altering the spatial resolution of ERA5 reveals no substantial differ-
ences in the EDPC signal in the ANN, while a significant damping
effect is evident in the ANS. Moreover, comparing each CMIP6 model
to ERA5, many models encounter challenges in accurately represent-
ing the R10mm long-term mean, particularly in the tropical area.
High-resolution models seem to exhibit slightly better performance,
except for CMCC-ESM2, CMCC-CM2-SR5 and TaiESM, which per-
form worse than lower resolution models. Analyzing the altitudinal
profiles of clusters, it is observed that, in the ANN below 3000 me-
ters, no model closely resembles ERA5. However, models included
in cluster #1 (EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, GFDL-
ESM4) exhibit compatible values of binned trends above this thresh-
old. Similarly, when considering cluster #3 (EC-Earth3, EC-Earth3-
CC, EC-Earth3-Veg, GFDL-CM4, and GFDL-ESM4) for the ANS,
several models demonstrate a compatible altitudinal profile within the
error bars of ERA5deg, albeit affected by a positive bias, as observed
in the TP and in the GAR.
The Andes are a very narrow mountain chain, thus model resolution
can play a crucial role. The analysis performed with ERA5 at its
original resolution (0.25◦ latitude-longitude, chapter 3) has revealed
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distinct altitudinal stratification depending on the side of the moun-
tain chain, in both the tropical and subtropical regions (Figure 3.13).
Notably, separating the eastern and western sides of the Andes is cru-
cial for understanding the observed distribution patterns and binned
altitudinal profiles. The finer resolution facilitates a clear separation of
these aspects, as shown by the ERA5 R10mm trend distribution (panel
(g) and (i), Figure 4.2) that portrays two almost symmetric distribu-
tions, with positive (negative) values corresponding to the western
(eastern) side of Andes. This separation can not be clearly appreci-
ated when we degradate ERA5 at a lower resolution (panels (h) and
(j), Figure 4.2). Moreover, this analysis becomes impracticable when
using coarser resolutions, due to the limited number of pixel for each
side. Consequently, the discrepancy observed in the profiles, might be
attributed to the models’ inability to capture the different behaviors
exhibited on the western and eastern side of the Cordillera.

In general, our analysis reveals that, across the majority of the con-
sidered regions, high-resolution CMIP6 models outperform those char-
acterized by coarser spatial resolutions in accurately simulating both
long-term mean and temporal trends of extreme precipitation. Nev-
ertheless, certain regions, such as the Andes, present a significant un-
certainty across nearly all CMIP6 models. When using ERA5 as a
reference dataset, certain models demonstrate better performance in
simulating extreme precipitation and its altitudinal dependency, such
as EC-Earth3, EC-Earth3-CC and EC-Earth3-Veg, GFDL-CM4 and
GFDL-ESM4. It is noteworthy that the EC-Earth3 model family pos-
sesses the finest resolution and employs the same atmospheric module
as ERA5. The GFDL family also features high resolution. Further
investigation is required to discern the specific characteristics of these
models that differentiate them from the others and contribute to their
good performance.

The capability of models to reproduce extreme precipitation becomes
significantly lower when rainfall is associated with local mechanisms.
It has been assessed that in complex orography regions, localised con-
vection is an incredibly important element (Giorgi et al., 2016), so
that just high resolution, convection-permitting models (Hamouda
and Pasquero, 2021) are able to include their structure. Although the
CMIP6 models have shown significant improvement over the previous
generation of CMIP5 models (Lei et al., 2023), there are still large
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uncertainties in simulating regional and mountainous intense and ex-
treme precipitation that needs to be improved.



5Chapter

Conclusions and future perspectives

In this thesis, I presented my contribution to deepen current knowledge
on extreme precipitation. Firstly, by exploiting an approach that seeks
to reduce model uncertainties in future projections, with attention to
specific aspects of the hydrological cycle. Secondly, by analysing how
extreme precipitation, which indeed is a key aspect of the changing
hydrological cycle, is represented in reanalysis data and state-of-the-
art climate models in mountainous areas. The main outcome of the
previous chapters are summarised here below, with a broader view
and a look at future work.

5.1 Summary and concluding remarks

Emergent Constraints. In the first PhD year, we applied the
Emergent Constraint (EC) technique to model projections of precipi-
tation, one of the variables most affected by model uncertainties and
still insufficiently explored within the context of ECs, particularly for
the recent CMIP6 model ensemble. We tested previously documented
precipitation ECs, originally evaluated with CMIP3/CMIP5 data, by
evaluating their existence and robustness using different subsets of
CMIP5 and CMIP6 models and exploring the sensitivity to the en-
semble composition. Our results show that most precipitation ECs
considered so far do not “survive” to a change in the model ensemble
and ensemble composition. The main findings and conclusions of our
analysis are listed below:

1. When a new EC is proposed, it is fundamental to provide a robust
physical description and explanation of the relationship between
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the variables involved and associated mechanisms. Special at-
tention is required when the EC variables are related through
feedbacks or pertain to different climate regimes; in these cases,
assessing a simple linear relationship that describes the EC and
at the same time is able to effectively narrow model uncertainties
becomes a very challenging task.

2. Exploring ECs at the local scale could be a more effective ap-
proach. Aggregating or averaging different geographical areas, in
fact, may pose challenges, as these regions can differ significantly
from one another in terms of climatological regimes, large-scale
and local mechanisms. Such discrepancies may pose a limitation
in applying ECs, given that these differences have the potential
to impact the overall model performance, in both historical sim-
ulations and future projections.

3. In general, the practical application of the EC technique for re-
ducing uncertainties in model projections should be regarded with
caution. The remarkable sensitivity of the EC method to the
model ensemble composition represents a weakness of the tech-
nique. A fruitful application of the technique could lie in the
ability to describe climate phenomena, and to investigate con-
nections between different climate variables.

Considering the limitations of the EC technique that have been high-
lighted, it is important to explore what can be done to improve its
robustness for evaluating new ECs. Furthermore, it would be inter-
esting research to explore alternative methodologies to narrow these
uncertainties.

Elevation-Dependent Precipitation Change in ERA5. In this
part of the thesis, we performed a global comparison of changes in
mean precipitation and precipitation extremes between key global
mountain areas (the Tibetan Plateau, the US Rocky Mountains, the
Greater Alpine Regions, and the Andes) focusing on their dependency
on elevation, using the ERA5 global reanalysis dataset. The eleva-
tional gradient of temporal trends over the period 1951–2020 of mean
precipitation and several ETCCDI extreme precipitation indices was
investigated, both averaged on altitudinal bins and considering the
overall distribution across individual pixels. Our analysis revealed the
presence of an EDPC signal in most of the mountainous areas consid-
ered. Our main findings are summarised below:
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1. Mean precipitation, extreme precipitation (R10mm) and length
of consecutive wet days (CWD) show a consistent behavior in
every area in terms of elevational dependence of their trend

2. The overall elevation dependency (EDPC) can be described by a
simple linear regression approach in the Alps and in the Rockies
but it can be largely misleading in the Tibetan Plateau and the
Andes.

3. The Tibetan Plateau, the Greater Alpine Region and the western
side of the Andes show a wetting effect (positive trends) at high
altitudes, respectively 4000, 1500 and 3500 meters.

EDPC results from a combination of various physical processes, com-
peting phenomena and climate feedbacks and it might be influenced
by local factors, general atmospheric circulation dynamics or by ther-
modynamic drivers. The similarity of EDPC patterns across different
areas suggests that some of those drivers may be generalised, as found
for the Elevation-Dependent Warming.

CMIP6 historical EDPC evaluation In the last part of my
PhD research, we evaluated CMIP6 models’ capability to accurately
simulate the recent past Elevation-Dependent Precipitation Change
within the same five mountain regions described above, analysing
ETCCDI extreme precipitation indices spanning the period 1950 to
2014. CMIP6 models and their ensemble-mean (MEM) were compared
to ERA5 in order to identify which models exhibit better performances
in simulating R10mm trends and their altitudinal stratification and
highlighting regional differences. Below, we present the main outcome
of our analysis and we summarise our key conclusions:

1. Spatial resolution has a significant impact on model performance
in simulating extreme precipitation and its altitudinal stratifica-
tion, particularly in small or extremely narrow mountain areas
such as the Greater Alpine Region or the Andes. In general,
higher resolution CMIP6 models, such as EC-Earth3 or GDFL,
have shown the best results.

2. In the US Rockies and in the tropical Andes, models display
markedly distinct behaviors compared to ERA5. In the former
case, these differences emerge when analyzing temporal trends,
whereas in the Andes, models encounter challenges also in accu-
rately simulating the R10mm long-term climatological mean.
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3. In the Tibetan Plateau, in the Greater Alpine Region, and in the
subtropical Andes, a positive bias has been identified, indicating
that models exhibit larger trend values compared to ERA5.

If one sets the goal of conducting more extensive validation of histori-
cal model simulations for the EDPC, the results presented in this sec-
tion could be integrated with further comparisons, considering other
datasets taken as a reference, possibly high-resolution global datasets
based on observations or reanalyses. Particular attention should be
paid to the regions that, in our study, have shown the greater dis-
crepancies between ERA5 and CMIP6 models, such as the Rockies
and the Andes. Secondly, a further natural step to expand this anal-
ysis involves looking at the EDPC signal in future model projections,
analysing whether altitudinal patterns that have emerged in the recent
past, may exist or undergo changes in the future.

5.2 Future perspectives

Our work provides some insights, summarised in the previous section,
and raises some questions addressed to the scientific community. An
extensive methodology to identify which variables might be regarded
as primary drivers of the Elevation Dependent Warming has already
been assessed in the literature (e.g. Pepin et al., 2015). Future studies
should focus on adapting this methodology to the Elevation Dependent
Precipitation Change (EDPC). As previously discussed in chapters 3
and 4 and in the literature, EDPC drivers could be divided into three
categories: Thermodynamical, Dynamical, and Microphysical drivers
(Houze, 2012). Thermodynamical drivers may exhibit common
characteristics across various mountainous regions, regardless of dis-
tinct climatological or geographical features. The altitudinal gradient
of precipitation and its extremes is strongly related to changes in the
surface energy balance. As a consequence, snow-albedo feedbacks, at-
mospheric moisture, thermal emission, aerosols, and clouds and their
relationship with EDPC should be investigated in more detail. Nev-
ertheless, different influences may arise due to morphological factors,
such as slope and exposure, leading to changes influenced by local
topography. Dynamical EDPC drivers are related to the atmo-
spheric circulation across very different spatial scales. The complex
interaction between synoptic flow and orographically induced circu-
lations contributes significantly to the variability in the elevational
distribution of precipitation. In the midlatitudes, alterations in pre-
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cipitation patterns over mountainous regions may be influenced by
planetary waves and the Jet Stream, impacting e.g. the Rockies or
the northern area of the Tibetan Plateau (Pepin et al., 2022). Another
example is represented by the North Atlantic Oscillation (NAO), as
it might represent a potential factor affecting intense precipitation
changes over the Alps, influencing the availability of moisture during
winter and local convective structures during summer (Napoli et al.,
2023). Furthermore, the orography of mountainous regions can in-
duce modifications also in meso- and micro-scale circulations, driven
by slope winds and their enhanced windward ascent in a warmer cli-
mate (Pepin et al., 2022). Additionally, specific studies should focus
on investigating the role of the air column stability in affecting con-
vection patterns. Finally, a comprehensive exploration of the impact
of aerosols on extreme orographic precipitation change and its al-
titudinal stratification needs to be performed. Another interesting
aspect that still needs to be better investigated involves the impact of
land use on both precipitation extremes and their correlation with
orography, particularly through afforestation and urbanization. On
the one hand, alterations in the tree line altitude caused by warming
may represent a driver for EDPC, due to shifts in humidity exchanges
or changes in the albedo feedback. Consequently, the examination of
vegetation indices, such as the normalized difference vegetation index
(NDVI), and their correlation with elevation-dependent variations in
temperature and precipitation may represent an important research
application (Li et al., 2015). On the other hand, a more in-depth
investigation needs to focus on the role of urbanization in mountain-
ous areas, as it has been identified as a key factor contributing to the
enhancement of both frequency and intensity of extreme rainfall over
the past century (e.g. Yang et al., 2014).

In this context, the EC technique might be regarded as a valuable
approach to assess the EDPC drivers owing to its capability to con-
nect various climate variables in recent historical data and future pro-
jections. An interesting future perspective of this study could be ex-
ploring the applicability of the concept proposed by the Emergent
Constraint technique to regional climate models, possibly overcoming
the challenges associated with spatial resolution and the uncertainties
related to the parameterization of sub-grid climatic processes.
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AAppendix

Emergent Constraints

Here we discuss the additional information that have not been reported
in the main text of chapter 2. Moreover, further considerations about
the assessment of new ECs for extreme precipitation in mountain areas
have been discussed.

A.1 CMIP5 bootsrap models

As mentioned in the main text, for this specific EC a different boot-
strap analysis was performed on a larger set of 39 CMIP5 models,
using subsets with the same number of GCMs as in our initial CMIP5
ensemble (27 models, listed in Table 1 of the main text). The 12 added
models are shown in Table S1. The results of the bootstrap analysis,
in terms of probability distribution of correlation coefficient, is shown
in Figure 2.3.

A.2 Further considerations about the assessment of new

ECs for extreme precipitation in mountain areas

Given the weaknesses of the Emergent Constraints outlined in this
study, which were proposed and used in previous studies, we have
tried to evaluate a new EC, specifically devised to study extreme pre-
cipitation in high-altitude regions. As a first step, we put a focus
on a specific region, rather than perform aggregation of diverse ar-
eas, as recommended in the ECB discussion. Secondly, we decided
to employ the same variable for both the predictor and the predic-
tand, in line with the insights pointed out by the analysis of ECG. We



A.2. Further considerations about the assessment of new ECs for extreme
precipitation in mountain areas 108

Table S1: Additional CMIP5 models considered for the bootstrap analysis of ECL. The
full set (39 models) consists of the these models and the ones listed in Table 1 of the main
text.

Model name Institution name

BNU-ESM BNU
CMCC-CESM CMCC
CMCC-CM CMCC
CMCC-CMS CMCC
FIO-ESM FIO
GFDL-CM3 NOAA-GFDL
GISS-E2-H-CC NASA-GISS
GISS-E2-H NASA-GISS
GISS-E2-R-CC NASA-GISS
GISS-E2-R NASA-GISS
HadGEM2-AO MOHC
NorESM1-ME NCC

attempted to identify a robust EC linking the inter-model spread in
projected future extreme orographic precipitation changes across the
Greater Alpine Region to a current climate predictor, possibly associ-
ated with temperature increases in climate change scenarios. However,
no significant relationship emerged between the selected predictand
and the inter-model spread across various climate variables examined
for the predictor, including precipitation extremes (ETCCDI indices
- same as predictand), temperature change, temperature trend, and
hydrological sensitivity. Considering the relatively limited size of the
Alpine region, compared to the spatial resolution of CMIP6 models,
and acknowledging the challenges faced by coarse resolution models in
simulating extreme precipitation, particularly in mountain areas (see
Section 1.3.2), we broadened our investigation, beginning with an ex-
ploration of the Tibetan Plateau.

Several variables have been evaluated over the region of the Tibetan
Plateau [25-40◦E; 70-105◦N]. Here we reported as an example, one of
the relationships that has been found with CMIP6 models. In this
case, the predictor that has been identify is defined as the R99pTOT
index ([mm/year ] - annual total precipitation exceeding the 99th per-
centile threshold on wet days evaluated over the 1961–1990 reference
period) normalised by local-mean surface air temperature [◦C ], aver-
aged over the period 1960–1999. The predictand is represented by the
same variable averaged over the period 2060–2099 of ssp585 scenario.
Figure A.1 displays the scatterplot between the predictor and the pre-
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Figure A.1: Analysis of new EC over the Tibetan Plateau region. (a) Scatterplot of
the predictand (mean R99pTOT normalised by local-mean surface air temperature ) –
[mm/year ◦C−1]) against the predictor (same variable) for CMIP6 model ensemble. The
dashed line shows the ordinary least-squared best fit. (b) Probability distribution of the
correlation coefficient for the bootstrap analysis of the EC CMIP6 models.

dictand calculated using CMIP6 models, while panel (b) illustrates
the bootstrap analysis performed to assess the robustness of the rela-
tionship to variations in the model ensemble (refer to Section 2.2 for
detailed information). A correlation coefficient of 0.65 (p-value≤0.05)
was identified, and the bootstrap analysis computed a distribution
with a standard deviation of 0.08 (mean value of 0.64), affirming the
robustness of the identified EC.
This relationship connects the historical climatological long-term mean
value of extreme precipitation with its future projections. When at-
tempting to identify an EC within the same area using as predictor
and predictand the temporal trend or change of extreme precipita-
tion respectively in the past and in the future, no robust EC can be
established. While there is more consensus concerning the long-term
mean and in the sign of heavy precipitation change, the real challenge
lies in narrowing the significant uncertainties that persist in projecting
the magnitude of future changes in precipitation extremes (Thackeray
et al., 2022). Further investigation is warranted to gain a comprehen-
sive understanding of the situation.
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EDPC with ERA5

Here I reported the additional plots that have not been included in
the main text of chapter 3

B.1 Mountain areas

The following plots show the seasonal geographical distribution of
R10mm index for each of the mountain areas considered in chapter
3.
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Figure B.1: Map of the geographical distribution in the Tibetan Plateau area of extreme
precipitation (R10mm index, days) evaluated with ERA5 over the 1951-2020 period in
summer (JJAS) and winter (DJFM) seasons
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Figure B.2: Map of the geographical distribution in the Greater Alpine Region of extreme
precipitation (R10mm index, days) evaluated with ERA5 over the 1951-2020 period in
summer (JJAS) and winter (DJFM) seasons
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Figure B.3: Map of the geographical distribution in the US Rocky mountain of extreme
precipitation (R10mm index, days) evaluated with ERA5 over the 1951-2020 period in
summer (JJAS) and winter (DJFM) seasons
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Figure B.4: Map of the geographical distribution in the Andes of extreme precipitation
(R10mm index, days) evaluated with ERA5 over the 1951-2020 period in boreal winter
(JJAS) and boreal summer (DJFM) seasons.
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B.2 Altitudinal dependency of climatological mean and

extreme precipitation indices

In this section, I show the elevational dependence of climatological
mean and extreme precipitation indices in the five main areas consid-
ered in this study.
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Figure B.5: Tibetan Plateau. Elevational dependence of climatological mean of pre-
cipitation indices (see labels) for the TP. Each panel shows the vertical profile of spatially
averaged binned data (top scale) superimposed to the distribution of trends of individual
grid points (grey, bottom scale). Vertical profiles include errors on the trend and the
significance of the trend (filled squares when ≥95%). Point distributions are accompanied
by their linear regression (dashed line)
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Figure B.6: Same as B.5 but for the Greater Alpine Region
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Figure B.7: Same as B.5 but for the US Rockies
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Figure B.8: Same as B.5 but for the Tropical Andes
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Figure B.9: Same as B.5 but for the Sub-tropical Andes



B.3. Altitudinal dependency of temporal trends 116

B.3 Altitudinal dependency of temporal trends

Here I show the elevational dependence of temporal trends of extreme
precipitation indices that has not been shown in the main text for each
study area.

(a) (b)

(c) (d)

1

Figure B.10: Tropical Andes. Elevational dependence of temporal trends of precip-
itation indices (see labels) for ANN. Each panel shows the vertical profile of spatially
averaged binned data (top scale) superimposed to the distribution of trends of individual
grid points (grey, bottom scale). Vertical profiles include errors on the trend and the sig-
nificance of the trend (filled squares when ≥95%). Point distributions are accompanied by
their linear regression (dashed line). Note that the scale for vertical profiles is magnified
by a factor 10.
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Figure B.11: Same as B.10 but for subtropical Andes
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B.4 Seasonal analysis

Here I reported the additional plots that have not been included in
the main text of section 3.3.2.
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Figure B.12: Elevational dependence of temporal trends of R10mm for winter season
(DJFM) for the RO (a) and the GAR (b).
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Figure B.13: Elevational dependence of temporal trends of R10mm for summer season
(JJAS) for the RO (a) and the GAR (b). For the GAR (RO), the two sides of the mountain
chains have been separated along the meridional (zonal) direction.
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Figure B.14: Elevational dependence of temporal trends of R10mm for summer season
(JJAS) in the Tibetan Plateau considering the period 1981–2020.
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EDPC in CMIP6 models

Here I reported the additional plots that have not been included in
the main text of chapter 4

C.1 CMIP6 model ensemble mean (MEM)

Here I show the elevational dependence of temporal trends of extreme
precipitation indices that has not been shown in the main text for each
study area, computed with CMIP6 MEM.
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Figure C.1: Tibetan Plateau. Elevational-dependence of temporal trends of precipi-
tation indices (see labels) for the Tibetan Plateu (TP) area. Each panel shows the vertical
profile of spatially averaged binned data (top scale) superimposed to the distribution of
trends of individual grid points (grey, bottom scale). Vertical profiles include errors on the
trend and the significance of the trend (filled squares when ≥95%). Point distributions
are accompanied by their linear regression (dashed line).
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Figure C.2: Same as Figure C.1 but for the Greater Alpine Region (GAR).
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Figure C.3: Same as Figure C.1 but for the US Rockies (RO).
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Figure C.4: Same as Figure C.1 but for the tropical Andes (ANN).
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Figure C.5: Same as Figure C.1 but for the sub-tropical Andes (ANS).
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Figure C.6: Elbow method plot for determining optimal number of clusters for the
Tibetan Plateau area. The plot illustrates the sum of squared errors (SSE) as a function
of the number of clusters.
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Kotlarski, S., Bosshard, T., Lüthi, D., Pall, P., and Schär, C. (2012).
Elevation gradients of european climate change in the regional cli-
mate model cosmo-clm. Climatic Change, 112.

Kotz, M., Levermann, A., and Wenz, L. (2022). The effect of rainfall
changes on economic production. Nature, 601:223–227.

Krakauer, N. Y., Pradhanang, S. M., Lakhankar, T., and Jha, A. K.
(2013). Evaluating satellite products for precipitation estimation
in mountain regions: A case study for nepal. Remote Sensing,
5(8):4107–4123.

Kriegler, E., Bauer, N., Popp, A., and et al. (2017). Fossil-fueled
development (ssp5): An energy and resource intensive scenario for
the 21st century. Global Environmental Change, 42.

Krishnan, R., Swapna, P., Vellore, R., and et al. (2019). The IITM
Earth System Model (ESM): Development and Future Roadmap.

Kuhn, M. (1989). The Response of the Equilibrium Line Altitude to
Climate Fluctuations: Theory and Observations.

Kuhn, M. and Olefs, M. (2020). Elevation-Dependent Climate Change
in the European Alps.

Kumar, P. V., Naidu, c., and Prasanna, K. (2020). Recent unprece-
dented weakening of indian summer monsoon in warming environ-
ment. Theoretical and Applied Climatology, 140.

Lavers, D., Simmons, A., Vamborg, F., and Rodwell, M. (2022). An
evaluation of era5 precipitation for climate monitoring. Quarterly
Journal of the Royal Meteorological Society, 148.

Lee, W. L., Wang, Y. C., Shiu, C. J., and et al. (2020). Taiwan earth
system model version 1: Description and evaluation of mean state.



Bibliography 133

Geoscientific Model Development, 13.

Lei, X., Xu, C., Liu, F., Song, L., Cao, L., and Suo, N. (2023). Eval-
uation of cmip6 models and multi-model ensemble for extreme pre-
cipitation over arid central asia. Remote Sensing, 15:2376.

Levizzani, V. and Cattani, E. (2019). Satellite remote sensing of
precipitation and the terrestrial water cycle in a changing climate.
Remote Sensing, 11(19).

Li, C. and Yanai, M. (1996). The onset and interannual variability of
the asian summer monsoon in relation to land–sea thermal contrast.
Journal of Climate, 9(2):358 – 375.

Li, G., Xie, S. P., He, C., and Chen, Z. (2017a). Western pacific emer-
gent constraint lowers projected increase in indian summer monsoon
rainfall. Nature Climate Change, 7.

Li, H., Li, Y., Shen, W., and et al. (2015). Elevation-dependent veg-
etation greening of the yarlung zangbo river basin in the southern
tibetan plateau, 1999–2013. Remote Sensing, 7:16672–16687.

Li, L., Lin, P., Yu, Y., and et al. (2013). The flexible global ocean-
atmosphere-land system model, grid-point version 2: Fgoals-g2.
Advances in Atmospheric Sciences, 30.

Li, L., Yu, Y., Tang, Y., and et al. (2020). The flexible global ocean-
atmosphere-land system model grid-point version 3 (fgoals-g3): De-
scription and evaluation. Journal of Advances in Modeling Earth
Systems, 12.

Li, X., Wang, L., Guo, X., and Chen, D. (2017b). Does summer
precipitation trend over and around the tibetan plateau depend on
elevation? International Journal of Climatology, 37(S1):1278–1284.

Lin, J.-L. (2007). The double-itcz problem in ipcc ar4 coupled
gcms: ocean-atmosphere feedback analysis. Journal of Climate -
J CLIMATE, 20.

Liu, X., Cheng, Z., Yan, L., and Yin, Z.-Y. (2009). Elevation depen-
dency of recent and future minimum surface air temperature trends
in the tibetan plateau and its surroundings. Global and Planetary
Change, 68:164–174.

Martin, G. M., Bellouin, N., Collins, W. J., and et al. (2011). The
hadgem2 family of met office unified model climate configurations.
Geoscientific Model Development, 4.

Masson-Delmotte, V., Zhai, P., Pirani, A., and et al. (2021). IPCC
2021: The Physical Science Basis. Contribution of Working Group I



Bibliography 134

to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge University Press, Cambridge, United
Kingdom and New York.

Mauritsen, T., Bader, J., Becker, T., and et al. (2019). Developments
in the mpi-m earth system model version 1.2 (mpi-esm1.2) and its
response to increasing co2. Journal of Advances in Modeling Earth
Systems, 11.

Meehl, G. and Washington, W. (1996). El nino-like climate change
in a model with increased atmospheric co2 concentrations. Nature,
382:56–60.

Meehl, G. A., Covey, C., Delworth, T., and et al. (2007). The wcrp
cmip3 multimodel dataset: A new era in climatic change research.
Bulletin of the American Meteorological Society, 88.

Meehl, G. A., Washington, W. M., Arblaster, J. M., and et al. (2012).
Climate system response to external forcings and climate change
projections in ccsm4. Journal of Climate, 25.

Mei, Y., Anagnostou, E., Nikolopoulos, E., and Borga, M. (2014).
Error analysis of satellite rainfall products in mountainous basins.
Journal of Hydrometeorology, 15:1778 – 1793.

Meinshausen, M., Smith, S. J., Calvin, K., and et al. (2011). The
rcp greenhouse gas concentrations and their extensions from 1765
to 2300. Climatic Change, 109.
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Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner,
R. (2007). Mountains of the world, water towers for humanity: Ty-
pology, mapping, and global significance. Water Resources Research,
43.

Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., and Wada, Y.
(2020). Increasing dependence of lowland populations on mountain
water resources. Nature Sustainability, 3.

Voldoire, A., Saint-Martin, D., Sénési, S., and et al. (2019). Evaluation
of cmip6 deck experiments with cnrm-cm6-1. Journal of Advances
in Modeling Earth Systems, 11.

Voldoire, A., Sanchez-Gomez, E., y Mélia, D. S., and et al. (2013). The
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