&953,%: UNIVERSITA
S v 13'”’1 DEGLI STUDI
| “ A]]Lr l O %ﬁ?ﬁﬁ% DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Mind your wallet's privacy: Identifying bitcoin wallet apps and user's actions through network
traffic analysis

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1870173 since 2022-07-20T07:54:32Z
Publisher:
Association for computing machinery
Published version:
DOI:10.1145/3297280.3297430
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use

of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

31 May 2024

ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329220825

Mind Your Wallet's Privacy: Identifying Bitcoin Wallet Apps and User's Actions
through Network Traffic Analysis.

Conference Paper - April 2019

DOI: 10.1145/3297280.3297430

CITATIONS READS
17 6,743
4 authors:
Fabio Aiolli { \ Mauro Conti
University of Padova . University of Padova
107 PUBLICATIONS 1,094 CITATIONS 475 PUBLICATIONS 12,583 CITATIONS
SEE PROFILE SEE PROFILE

@ Ankit Gangwal @ Mirko Polato
20 PUBLICATIONS 213 CITATIONS Universita degli Studi di Torino

44 PUBLICATIONS 424 CITATIONS

SEE PROFILE
SEE PROFILE
Some of the authors of this publication are also working on these related projects:
Project Safe transition towards the Internet of the future / Securing the Transition Toward the Future Internet View project

Project FIU Cyber-Physical Systems Security View project

All content following this page was uploaded by Ankit Gangwal on 07 May 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/329220825_Mind_Your_Wallet%27s_Privacy_Identifying_Bitcoin_Wallet_Apps_and_User%27s_Actions_through_Network_Traffic_Analysis?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/329220825_Mind_Your_Wallet%27s_Privacy_Identifying_Bitcoin_Wallet_Apps_and_User%27s_Actions_through_Network_Traffic_Analysis?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Safe-transition-towards-the-Internet-of-the-future-Securing-the-Transition-Toward-the-Future-Internet?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/FIU-Cyber-Physical-Systems-Security?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabio-Aiolli-2?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabio-Aiolli-2?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Padova?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabio-Aiolli-2?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauro-Conti?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauro-Conti?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Padova?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauro-Conti?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ankit-Gangwal?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ankit-Gangwal?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ankit-Gangwal?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mirko-Polato?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mirko-Polato?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Torino?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mirko-Polato?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ankit-Gangwal?enrichId=rgreq-09b125d38a19743b10ff61c9975f3009-XXX&enrichSource=Y292ZXJQYWdlOzMyOTIyMDgyNTtBUzo3NTU5MjExMjI3NTg2NTdAMTU1NzIzNzA0ODUyMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Mind Your Wallet’s Privacy: ldentifying Bitcoin Wallet Apps and
User’s Actions through Network Traffic Analysis

Fabio Aiolli
aiolli@math.unipd.it

Ankit Gangwal’
ankit.gangwal@phd.unipd.it

ABSTRACT

With the surge in popularity of cryptocurrencies, Bitcoin has em-
erged as one of the most promising means for remittance, payments,
and trading. Supplemented by the convenience offered by the smart-
phones, an increasing number of users are adopting Bitcoin wallet
apps for different purposes.

In this paper, we focus on identifying user activities on smart-
phone-based Bitcoin wallet apps that are commonly used for send-
ing, receiving, and trading Bitcoin. To accomplish our goal, we
performed network traffic analysis using machine learning tech-
niques. Since we focus on apps of the same type/functionality, it
makes our classification problem even more difficult compared to
classifying apps tailored for discrete purposes. Moreover, our goal
is to identify user activities even in the presence of encryption. In
our experiments, we considered the worldwide most downloaded
Bitcoin wallet apps on both Google Play Store and Apple’s App
Store. For collecting network traffic traces, we used only physical
hardware and omitted any emulator to build our experiment sce-
nario as close to the real environment as possible. We process the
traffic traces in several phases before extracting the features that
are utilized to train our supervised learning algorithms. We deal
with the classification problem in multiple stages in a hierarchical
fashion. We ran a thorough set of experiments to assess the per-
formance of our system and attained nearly 95% accuracy in user
activity identification.

CCS CONCEPTS

« Computing methodologies — Feature selection; « Applied
computing — Network forensics; « Security and privacy —
Web application security;

“Corresponding author

All authors are affiliated with the Department of Mathematics, University of Padua,
35121, Italy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC 19, April 8-12, 2019, Limassol, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5933-7/19/04...$15.00
https://doi.org/10.1145/3297280.3297430

1484

Mauro Conti
conti@math.unipd.it

Mirko Polato
mpolato@math.unipd.it

KEYWORDS
Android, Bitcoin, iOS, Machine learning, Traffic analysis.

ACM Reference Format:

Fabio Aiolli, Mauro Conti, Ankit Gangwal, and Mirko Polato. 2019. Mind
Your Wallet’s Privacy: Identifying Bitcoin Wallet Apps and User’s Actions
through Network Traffic Analysis. In the 34th ACM/SIGAPP Symposium on
Applied Computing (SAC ’19), April 8-12, 2019, Limassol, Cyprus. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3297280.3297430

1 INTRODUCTION

Bitcoin - the first cryptocurrency — has gained enormous attention
when its price raised from approximately $1,000 in March 2017 to
nearly $19,500 in December 2017 [5]. The market capitalization of
Bitcoin also grew dramatically and reached a level of $326 billion
in Q4 2017. This growth in the value of Bitcoin attracted masses
to trade for this cryptocurrency, and platforms such as Coinbase
enabled users to trade for it conveniently. Moreover, several online
shopping websites, supermarkets, etc. accept Bitcoin as a valid
mode of payment. Consequently, an increasing number of users
are adopting Bitcoin wallet apps for different purposes such as
payment, remittance, and trading.

On another side, network traffic analysis has been extensively
exploited by adversaries to create user profiles and deduce sensitive
information such as which airline does the user fly with, which
financial institution does the user banks with, or which company
provides insurance to the user. User profiling is also used for other
non-malicious activities such as network performance optimization
in the culture of bring-your-own-device [20]. For traffic analysis,
traditional TCP/IP traffic may be identified using port information
because applications tend to use “well-known” port numbers that
are typically reserved for standard services. Furthermore, to dis-
tinguish multiple sources of data-traffic from services that utilize
the same port number (e.g., Internet browsing), it may sometimes
adequate to inspect the HTTP headers, in particular, IP addresses
to identify the communicating peers. However, traffic analysis in
the domain of the smartphones is complex because several apps
exchange data using HTTP/HTTPS. If the developers choose to use
HTTPS, the communication is encrypted, and thus, conventional
techniques of inspecting the traffic cannot help in the task of traffic
identification. Moreover, many apps as well as ad networks use Con-
tent Distribution Network (CDN) for scalable delivery of content
and furnish APIs to their applications. Using CDNs and APIs may
cause different apps to communicate via the same IP address (or IP
range), which consequently hinders the identification techniques
that solely depend on the IP addresses.

https://doi.org/10.1145/3297280.3297430
https://doi.org/10.1145/3297280.3297430

Motivation and research scope: We motivate our work by outlining
one of the most critical situations arising in today’s cyber-space:
pseudo-anonymity offered by the Bitcoin system makes it difficult
for law-enforcing agencies to trace the masterminds behind modern
cyber-crimes, e.g., ransomware campaigns, which are increasing
day-by-day. We believe that our work can assist in the hunt of
cyber-criminals by monitoring (or at least by filtering) the potential
Bitcoin wallet users. Most importantly, our work can be extended
to other categories of smartphone apps to improve user profiling
even further.

Contributions: In this paper, we propose our approach to identify
activities of Bitcoin wallet users via network traffic analysis. In
particular, we recognize user actions within Bitcoin wallet apps.
Our approach can identify user activities even in the presence
of encryption.

Organization: The remainder of this paper is organized as follows.
Section 2 discusses the previous works on traffic analysis. Section 3
elaborates our system’s design. Section 4 covers the details of our
classifier. We present and discuss our results in Section 5. Finally,
Section 6 concludes the paper.

2 RELATED WORK

Since our work relies on network traffic analysis, we will primarily
discuss the previous works related to it. Network traffic analysis
using machine learning techniques has been an active area of re-
search. Several attempts have been made to analyze network traffic
from workstations, smartphones, etc. On the surface, smartphones’
traffic analysis may appear as a sheer translation of existing works
for workstations. However, several studies [11, 12, 17, 30] have
concluded that despite having similarities (e.g., end-to-end com-
munication using via IP addresses and ports), there are nuances in
the characteristics of the traffic generated by smartphones. Here,
we will discuss the works related only to the smartphones; the
main focus of our work. However, the interested readers may refer
to the works [3, 13, 14, 18, 21, 23] to comprehend traffic analysis
on workstations.

In the domain of the smartphones, network traffic analysis has
been effectively utilized to leak sensitive user data [10], to find de-
vice’s location [2], and to profile users based on the apps installed
on their device [26]. Dai et al. [9] propose NetworkProfiler to au-
tomate profiling and identification of Android apps. It scrutinizes
HTTP payload, and thus the approach is not adequate when the
payload is encrypted. Wang et al. [29] present an approach for in-
specting encrypted 802.11 frames to identify apps from App Store.
Qazi et al. [22] propose a framework, called Atlas, to recognize
Android apps using network flows obtained by leveraging SDN’s
data reporting. Mongkolluksamee et al. [19] use communication
patterns and packet size distribution to distinguish among distinct
Android apps. Alan and Kaur [1] use TCP/IP headers of the first
64 packets generated upon app launch to identify Android apps. Tay-
lor et al. [27] showed that a passive eavesdropper can recognize An-
droid apps by fingerprinting network traffic. Conti et al. [6] suggest
eavesdropping encrypted network traffic to classify user actions
within the scope of different Android apps. Similarly, Saltaformag-
gio et al. [24] propose NetScope, which also examines encrypted
traffic to identify user activity. The work presented in [8] focuses

1485

on iMessage and three other third-party messaging apps for iOS
to detect messaging activity. Zhou et al. [31] target a specific user
action (i.e., send a tweet) on the Twitter app installed on an An-
droid smartphone.

To summarize, existing solutions either focus on apps from dif-
ferent categories that inherently generate distinct network traffic
or consider a particular smartphone platform. Our work is different
from the state-of-the-art on two dimensions: (1) we focus on apps of
same type/functionality, which makes classification problem even
more difficult; (2) we consider both Android and iOS operating sys-
tem, which collectively covers the majority of smartphone users.

3 SYSTEM DESIGN

We elucidate our decision for selecting the smartphones, apps, and
their actions in Section 3.1. We also elaborate our equipment setup
in Section 3.2.

3.1 Smartphone, app, and action selection

According to the report! by Gartner, Android and iOS devices to-
gether accounted for 99.9% of all smartphone sales by the end of
the year 2017. Hence, in our study, we used both Android (Sam-
sung Galaxy S5 running Android 6.0.1) and iOS (iPhone 5 running
i0S 10.3.3) smartphones. Table 1 lists the worldwide most down-
loaded? Bitcoin wallet apps on both Google Play Store and Apple’s
App Store in the year 2017.

Table 1: Top 10 most downloaded Bitcoin wallet apps

N. | Google Play Store App Store
1 Coinbase Coinbase
Zebpay Blockchain
Bitcoin Wallet
3 (Bitcoin.com) Bread
4 Luno Bitcoin Wallet
(Bitcoin.com)
5 Xapo Xapo
6 Unocoin BitPay
7 Mycelium Zebpay
8 Wirex Wirex
Bitcoin Wallet
? (Bitcoin Wallet Devs) BTC.com
10 BTC.com Copay

From the apps listed in Table 1, we considered nine apps. These
apps are listed in Table 2. The apps we omitted in our experiments
are either country restricted (e.g., Unocoin requires Indian phone
number and tax code to register) or available for both the platforms
with identical features (e.g., Wirex). However, as the representative
of the later class of apps, we included Bitcoin Wallet (Bitcoin.com)
app for both the platforms. For non-Bitcoin apps, we chose the top-
10 apps along with additional 20 Internet-dependent apps from the
respective official application store of each platform. It is important

!gartner.com/newsroom/id/3859963
sensortower.com/blog/bitcoin-wallet-app-growth

0o

to mention that these numbers do not include system apps and the
apps that do not require the Internet, e.g., calculator app.

Table 2: Apps used for classification

Android iOS
BTC.com BitPay
Bitcoin Wallet
(Bitcoin.com)
Coinbase | Blockchain
Luno Bread
Mycelium Copay
Top-10 apps along
with additional 20
Internet-dependent apps.

Wallet
apps

apps

wallet

We inspected each app and identified the actions available on
it. For Bitcoin wallet apps, we found seven classes of actions rel-
evant to Bitcoin transactions: open the app, receive Bitcoin, send
Bitcoin, generate a new Bitcoin address, buy/sell (trade) Bitcoin, see
transaction history, and check available balance. We omitted other
actions available on the wallet apps because they do not necessarily
elicit network traffic, e.g., exit/close the app and share the app via
SMS/Bluetooth. Table 3 lists the actions available on the wallet apps
mentioned in Table 1.

Table 3: Actions available on Bitcoin wallet apps

Action
=]
o 23 = | .8 [
> g £ % 23 | S|~
App $a(5% §8§§%§ Eféég
- U -) —
°T|E|4E| 53| 5E 52 OF
& S
=
BTC.com v v v X H #* ES
BitPay v v v v v & #*
Bitcoin Wallet
(Bitcoin Wallet Devs) v v 4 x 4 * *
B1tF01r} Wallet v v v v . * ”
(Bitcoin.com)
Blockchain v v v X v L) E3
Bread v v v X v L) E3
Coinbase v v 4 X v L) ES
Copay v v v v v & #*
Luno v v v X v < +
Mycelium v v v X & K #*
Unocoin v v v X v K ES
Wirex v v v X v ES ES
Xapo v v v X v < ES
Zebpay v v v X v K *
v Available X Not available # On app’s home % Under individual wal-
let/currency

% Under dedicated menu for wallets’ summary % Under dedicated menu for
transaction history
¥ Redirects to an external website, leaving the app

From Table 3, it is clear that only three actions, i.e., open the app,
receive Bitcoin, and send Bitcoin are available across all the wallet
apps. Hence, we choose these three actions for classification, which
indeed are the most important actions for Bitcoin transactions. It is
also important to mention that opening the app may also be seen

1486

as the user’s intent to inquire about the available balance or to
synchronize transaction history. Given the wide-variety of distinct
apps in the non-Bitcoin app category, we collected traffic traces for
such apps while using each device normally for 8 hours. Next, we
explain our equipment setup for experiments and data collection.

3.2 Equipment setup

Figure 1 shows our equipment setup for collecting network traffic
generated from the apps. The workstation was equipped with two
Ethernet-based Network Interface Controllers (NICs); one for con-
necting it to the Internet and the other one for connecting it to the
Wi-Fi Access Point (AP). The workstation was configured to for-
ward traffic between Wi-Fi AP and the Internet. The smartphones
were provided access to the Internet over a wireless connection via
Wi-Fi AP. It is important to mention that only one smartphone was
connected to the Wi-Fi AP at a time. To simulate user actions on the
smartphones and thus evoke network traffic, scripted-commands
were sent via USB. For the Android device, we used Android De-
bug Bridge (adb?), while for iOS device, we used Alloy 2.1.1* app
that allows to automate the device without jailbreaking it. The
generated network traffic was captured on the workstation using

Wireshark 2.2.6°.
CE—@) -]

Wi-Fi AP
Scripted-com-n;ands sent via
USB to simulate user actions

<—> Ethernet Conn.
X Wireless Conn.
Figure 1: Equipment setup

The captured traces were exported to Comma Separated Value
(CSV) files; each row holding the details of one captured packet. For
each packet, we collected time, source IP address, destination IP
address, ports, packet length, protocol, and TCP/IP flags. Although
the packet’s payload was gathered, it was discarded since it may
or may not be encrypted. Finally, to make the experiment scenario
as close to the real environment as possible, we used only physical
hardware and omitted any device emulator or virtual machine.
We used Actiona 3.9.1° tool to coordinate the entire process of
data collection.

4 CLASSIFIER DESIGN

In this section, we present the design of our classification procedure.
At first, we describe the data preprocessing phase necessary to get
suitable training instances for the classification algorithm. Then,
we briefly define the machine learning methods we used and how
they have been trained and finally used for the classification.

4.1 Data preprocessing

To handle network traffic traces via machine learning models, we
need to perform a preprocessing step. In this work, we employ

3developer.android.com/studio/command-line/adb
4alloylauncher.com

Swireshark.org
®wiki.actiona.tools/doku.php?id=:en:start

a procedure inspired by the one proposed in [27]. The complete
procedure is composed of the following steps:

Network trace capture The network trace capturing process
aims to collect traffic data from a network in which simu-
lated users are using apps connected to such network. The
full equipment setup has been described previously in Sec-
tion 3.2.

Traffic burstification After the data collection phase, the net-
work traffic needs to be parsed. The parsing aims to obtain
chunks of traffic that can be directly converted into training
instances suitable for the learning models. The first part of
the parsing step is the so-called traffic burstification: the net-
work traffic is divided into macro-chunks called bursts. A
burst is defined as a sequence of traffic packets where each
packet is either received or transmitted within a threshold
of time. In our experiments, such threshold has been fixed
to one second, as previously done in [27].

Flows separation The next part of the parsing step further
divides the bursts into chuncks, called flows, corresponding
to traffic between pairs of IP addresses/port. Anytime the
port information was not available the corresponding packet
was discarded. Similarly, flows with less than three packets
has also been discarded.

4.2 Feature selection

After the data preprocessing stage, we obtain a set of flows; each
of them corresponding to a particular action of a specific app. The
final step consists of converting the flows into training instances.
It is important to notice that a single action of an application can
produce more than one flow, and hence it can produce more than
one training instance.

For each flow, the following feature selection procedure has been
performed:

e Assuming the local IP address as the target endpoint of the
flow, we convert each packet into a number corresponding to
its length in bytes. If the packet has been sent by the target,
such number is negated. At the end of this step, the flow is
converted into a sequence (time series) of integer numbers.
It is worth to note that the lengths of such sequences of num-
bers are not uniform and hence, in general, are not directly
suitable as training instances. Machine learning models usu-
ally require fixed length input instances.

The extracted sequence is finally converted into a training
instance via a statistical feature extraction procedure, which
simply compute some statistics over the time series. The used
statistics are: length of the series, minimum, maximum, mean,
median, mode, variance, skewness, kurtosis, and percentile
at 25%, 50% and 75%. These statistics are collected for the
entire sequence, for the incoming packets only, and for the
outgoing packets only. Hence, the resulting training instance
has a dimension of 36 (12 x 3). Finally, if we called x € R3¢
the vector containing the statistics, the complete training
instance is described by the pair (x, y), where y is the target
classification value.

1487

It is worth to mention that while source and destination IP ad-
dresses have been used for flows separation, they were not lever-
aged in any way during the classification. The full procedure, in-
cluding the data preprocessing steps, is depicted in Figure 2.

Bytes

A > threshold

Burst A,

(b) Traffic burstification: traces are split
into bursts.

Burst B

received

time

sent

(a) Network traces capture: different col-
ors represent different applications.

Flow A.1

Flow A.2

Flow B.1

Flow B.2

(c) Flows separation: for each burst, different flows are separated by
means of the pairs of source-destination IPs.

Al1=[3,-5,.,.1]
A2=[1,7,..-8]
B.1=[1,-6,..,.6]
B2=[-1,3,..,.2]

=

Feature Extraction

(d) Training set creation: flows are converted into vectors of
statistical features about the packets length.

Figure 2: Network traffic preprocessing

4.3 Machine learning

Given the modularity of the proposed framework, any classification
method can be plugged to perform the task. For experimental pur-
poses, we employed two of the most successful machine learning
methods for classification, namely Support Vector Machine (SVM)
and Random Forest (RF).

SVM is one of the most used kernel methods in machine learn-
ing [7, 25, 28]. Besides its good reputation in terms of clas-
sification accuracy, SVM’s popularity is also given by its
strong theoretical foundation. SVM aims to find a hyper-
plane that separates the instances with different labels. Such
hyperplane is guaranteed to maximize the minimum distance
between two points with different label. This property entail
very good generalization capabilities to unseen examples,
which is a desired feature for any machine learning model.

RF also known as random decision forests [15], are learning
algorithm of the family of ensemble learning methods. RF for
classification operate by constructing a set of decision trees at
training time, and at the prediction time, they output the class
that is the mode of the classes (classification) of the individual
decision trees. One of the strengths of RF are their efficiency
and their simplicity. Since they are based on decision trees, it
is very easy to grasp what they do under the hood. Moreover,
RF have achieved state-of-the-art performances in many
classification tasks.

4.4

The training phase consists of learning the model parameters us-
ing the training set. In our scenario, in which we want to identify
whether a Bitcoin app is being used and also which specific action
of such app is being performed, we need to tackle the problem at
different levels. We can identify the following layers of classifica-
tion:

Training

(1) Classify whether the instance represents a flow of a Bitcoin
app or not;

(2) If so, classify whether it belongs to an Android app or an
iOS app;

(3) If it has been categorized as Android (or iOS) app, classify
the specific app;

(4) Given the app from the previous step, finally, classify the
specific action.

The full stack of classification layers is depicted in Figure 3.

Classify
app

iOS wvs.
Android

Classify
action

Bitcoin vs.
non-Bitcoin

Figure 3: Classification hierarchy: (i) Bitcoin apps are iso-
lated from the non-Bitcoin ones; (ii) Bitcoin apps are classi-
fied on the basis of the operating system; (iii) For the target
operating system, the Bitcoin app is identified; (iv) given the
app, the related action is identified.

Hence, the training phase requires to learn one model for each of
the classification tasks described above. Before starting the training,
to normalize the input data, we apply to the training instances a
scaling function. In particular, we used both MinMax and Standard
scaling techniques. See Appendix A for further details on these
scaling techniques.

1488

4.5 Prediction

Given a new instance to classify, the prediction is performed using
the same steps as in the training phase. Clearly, if a wrong prediction
is made in one step, all the following steps will also be wrong except
for user action classification, which can be still correct. This is due
to the fact that same actions are shared between the applications,
and it can be correctly identified even if the app identification is
not correct.

5 EVALUATION

In this section, we show the evaluation procedure used to assess
the quality of the proposed approach. For each of the classification
step identified in Section 4.4, we first trained a classifier, and then
we tested it on an hold out set of instances. We performed two
different experiments:
(1) Single classifier assessment: in this setting, each single clas-
sifier is tested independently of the others.
(2) Full stack classification: in this setting, the classification is
performed following the full-sequence of classification as
described in Figure 3 (Section 4.4).

We also argue about the obtained results.

5.1 Evaluation settings

All the experiments have been conducted using a stratified 5-fold
cross validation. In order to increase the statistical significance of
the result, we repeated each experiment 10 times with different
90-10% training and test splits. The validation procedure is used to
do model selection and the validated hyper-parameters for SVM
and RF are shown in Table 4 and Table 5, respectively. We chose
standard range of values for the hyper-parameters [16]. We also
validated the scaling techniques shown previously.

Table 4: Hyper-parameters validated for Support Vector Ma-
chine

Effect on the model
Shape parameter of the RBF kernel which defines how
an example influence in the final classification.
Regularization parameter that controls the trade-off
between the achieving a low training error and a low
testing error that is the ability to generalize your clas-
sifier to unseen data.

Parameter | Validated values

{107°,..., 103}

Y

Table 5: Hyper-parameters validated for Random Forest

Parameter Validated values Effect on the model
of trees {10, 50, 100} Number of trees use in the ensemble.
Max depth 3, 0 Maximum depth of the trees.
Bootstrap Aggregation (a.k.a. bagging) is a technique
that reduces model variances (overfitting) and im-
Bootstrap yes / no . L
proves the outcome of learning on limited sample
or unstable datasets.
Split criterion gini, entropy Criterion used to split a node in a decision tree.

It is worth to mention that, even though the dataset has been col-
lected in a controlled setup, the full hierarchical classification well
simulate a real-world scenario in which instances are gathered in
real time. Table 6 describes the instances distribution over the apps

and over the actions for both iOS and Android. The total number
of instances for non-Bitcoin app are 4662. After the preprocessing
step, Luno app did not produce any meaningful flow. Hence, we had
to discard Luno app. One of the possible reasons for such behavior
of the app could be that the app mostly processes the data off-line.

Table 6: Dataset description: app name; operating system;
number of instances for open app, receive Bitcoin, and send
Bitcoin actions; and the total number of instances

Open | Receive Send
App 0s AI;)p Bitcoin | Bitcoin Total

BTC.com Android 149 22 20 191

Bitcoin Wallet |\ 1roid | 51 21 46 118
(Bitcoin.com)

Coinbase Android 286 20 19 325

Mycelium Android 251 20 38 309

BitPay i0S 20 54 20 94

Bitcoin Wallet | g 19 40 137 226
(Bitcoin.com)

Blockchain i0S 346 40 167 553
Bread i0S 29 208 217 454
Copay i0S 20 52 20 92

Total 1101 477 684 2362

It is worth to notice that the real proportion of Bitcoin and
non-Bitcoin apps is actually much more imbalanced. However, in
machine learning one of the standard approach to deal with highly
imbalanced datasets is to use over-sampling of the minority class [4].
Thus, in our setting, the almost balanced dataset follows the same
direction of the over-sampling technique.

All methods have been evaluated using standard classification
metrics: Accuracy, Precision, Recall, and F1 measure. See Appen-
dix A for details on these metrics.

5.2 Results

In this section, we present and discuss the results obtained by our
proposal on user activity identification task.

5.2.1 Single classifier assessment. The following battery of experi-
ments aim to assess each classification layer individually. In these
cases, every layer works with a controlled training set and indepen-
dently from the others. The goal of this preliminary assessment is
to check whether some of the classifications are harder than others.
Tables 7 - 12 present the results for single classifier for different
tasks mentioned in Section 4.4. Here, we present the classification
performances of RF and SVM over 10 runs of a stratified 5-fold
cross validation. We report the average results with their standard
deviations, and (+) indicates the best result for the metric.

For Bitcoin vs. non-Bitcoin app classification, we achieved an
accuracy of 97.7% using RF, see Table 7. Next, as shown in Table 8,
we attained an accuracy of 98.4% using RF in correctly identifying
the OS to which an app belongs to. The performance metrics for
Bitcoin app classification on Android platform are listed in Table 9.
Here, we reached an accuracy of 96.6% using RF. The accuracy in
identification of user actions in Bitcoin apps on Android platform
is listed in Table 10. The performance metrics for Bitcoin app classi-
fication on iOS platform are listed in Table 11. Here, we attained an

1489

accuracy of 96.2% using RF. The accuracy in identification of user
actions in Bitcoin apps on iOS platform is listed in Table 12.

Table 7: Bitcoin vs. non-Bitcoin app classification

Method Accuracy Precision Recall F1
RF 0.977 +0.005- | 0.977 £0.005- | 0.973 +0.005- | 0.975 + 0.005-
SVM 0.930 + 0.01 0.922 +0.01 0.923 +0.01 0.922 +0.02
Table 8: App’s OS classification
Method Accuracy Precision Recall F1
RF 0.984 +£0.01- | 0.984+0.01- | 0.983 £0.01- | 0.983 +0.01-
SVM 0.956 +0.01 0.955 + 0.02 0.955 + 0.02 0.955 + 0.02

Table 9: Bitcoin app classification on Android

Method Accuracy Precision Recall F1
RF 0.966 +0.01- | 0.968 £0.01- | 0.968 +0.01- | 0.968 +0.01-
SVM 0.945 £+ 0.02 0.948 + 0.02 0.948 +0.02 0.948 = 0.02

Table 10: Classification of user actions in Bitcoin apps on

Android
Bitcoi 11
Method lt.c om Wallet BTC.com Coinbase Mycelium
(Bitcoin.com)
RF 0.8 +£0.15 0.98 £0.03- | 0.991+0.01- | 0.971+£0.03-
SVM 0.85+0.1- 0.975 £ 0.03 0.988 +0.02 0.958 + 0.05

Table 11: Bitcoin app classification on iOS

Method Accuracy Precision Recall F1
RF 0.962 +£0.02- | 0.964 +£0.02- | 0.963 +0.02- | 0.963 + 0.02-
SVM 0.935 £+ 0.02 0.938 +0.02 0.935 £ 0.02 0.935 + 0.02

Table 12: Classification of user actions in Bitcoin apps on iOS

Bitcoin Wallet

Method (Bitcoin.com) BitPay Blockchain Bread Copay
RF 1.0 £0.0- 1.0 £0.0- | 0.920 +0.02- 0.943 £ 0.03 1.0 £0.0-
SVM 1.0 £0.0- 1.0 £0.0- 0.911 +0.03 0.958 + 0.04- 1.0 £0.0-

As discussed above, we obtained slightly better results on An-
droid for Bitcoin app identification while user action identification
was better on iOS. Moreover, RF performed better over SVM for
most of the task.

r1.0

Bitcoin. | 0.00 0.00 0.00
r0.8
- gTCc{ 0.00 0.00 0.00 los
Q
o
<1J
2
F Mycelium 0.00 0.00 0.00 ro.4
r0.2
Coinbase{ 0-00 0.04 0.00
- - - T —0.0
Bitcoin. BTC Mycelium Coinbase
Predicted label
(a) Android
710
Bitcoin. 0.00 0.07 0.00 0.00
r0.8
BitPay 0.00 0.00 0.00 0.13
(;g; F0.6
< Blockeh. 0.00 0.00 0.02 0.00
=]
= F0.4
Bread | 0:00 0.00 0.06 0.00
£0.2
Copay 0.00 0.00 0.00 0.00
- - - - . —0.0
Bitcoin. BitPay Blockch. Bread Copay

Predicted label

(b) i0S

Figure 4: Confusion matrix for Bitcoin app classification us-
ing RF for both (a) Android and (b) iOS. The confusion ma-
trices are taken from one out of ten runs performed.

5.2.2 Full stack classification. This experiment represents a sim-
ulation of a real-world scenario. Hence, the identification of both
Bitcoin app and Bitcoin-related user operations have to be done
assuming that the classifications made in the previous layers of the
classification stack are correct. A single error in one stage of the
classification stack influences all the subsequent ones.

Figure 4 depicts the confusion matrix for identification of Bitcoin
apps using RF for Android (Figure 4(a)) and iOS (Figure 4(b)). Similar
to the previous experiment setting, we got better results on Android
in Bitcoin app identification. Figure 5(a) shows the confusion matrix
for classification of user actions in Bitcoin apps using RF. Figure 5(b)
gives a comparison of accuracy achieved by RF and SVM along the
full stack classification.

It is clear from Figure 5(b) that misclassification errors in one
stage are propagated to the subsequent stages. Hence, the results
for a stage of full stack classification are limited by the performance
of the previous stage(s); except for user action classification, which
can be still correct (see Section 4.5). Nevertheless, we obtained an
accuracy of nearly 95% in user action identification using RF in the
full stack classification.

1490

Open | 0.02 0.03 to.8
5 r0.6
&
© Receive| 0-00 0.21
2 L
£ 0.4
send| ©0.05 0.04 r0-2
‘ — ; Llo.o
Open Receive Send
Predicted label
(a) Confusion Matrix
—+— RF —— SVM
100 T T n
S
<
g 90 -
&
fa
=
Q
Q
<
80 |- -
| | | |
BvsN (N App Action
Task

(b) Classification accuracy

Figure 5: (a) Confusion matrix for user action classification
in Bitcoin apps using RF. The confusion matrices are taken
from one out of ten runs performed. (b) Accuracy of both
RF and SVM along the classification stack. Performance are
reported as the average accuracy (%) over 10 runs.

6 CONCLUSIONS AND FUTURE WORK

The popularity of cryptocurrencies, especially Bitcoin, is increasing
day-by-day. Bitcoin is now recognized as a regular mode of pay-
ment. The convenience of smartphones has also driven people to
adopt and use this new currency. In this paper, we have focused on
identification of user actions within Bitcoin wallet apps. By ana-
lyzing network traffic using machine learning techniques, we have
identified the most crucial user actions related to Bitcoin transac-
tions with a very high accuracy of nearly 95%. In the future, we
will investigate the security and privacy implication of transacting
on such apps by considering a stronger adversary model. We will
also explore the possibility to de-anonymize financial transaction
placed via wallet apps.

ACKNOWLEDGMENTS

Ankit Gangwal is pursuing his Ph.D. with a fellowship for interna-
tional students funded by Fondazione Cassa di Risparmio di Padova
e Rovigo (CARIPARO). This work is partially supported by the

EU TagltSmart! Project (agreement H2020-ICT30-2015-688061), the
EU-India REACH Project (agreement ICI+/2014/342-896), the grant
n. 2017-166478 (3696) from Cisco University Research Program
Fund and Silicon Valley Community Foundation, and by the grant
“Scalable IoT Management and Key security aspects in 5G systems”
from Intel.

REFERENCES

(1]

[2

[

3

=

[10

(11

[12]

=
&

[14

[15]

[16

[17]

[18

[19]

[20]

[21

Hasan Faik Alan and Jasleen Kaur. 2016. Can Android Applications be Identified
using only TCP/IP Headers of their Launch Time Traffic?. In 9th ACM conference
on Security and Privacy in Wireless and Mobile Networks (WiSec). 61-66.
Giuseppe Ateniese, Briland Hitaj, Luigi Vincenzo Mancini, Nino Vincenzo Verde,
and Antonio Villani. 2015. No Place to Hide that Bytes won’t Reveal: Sniffing
Location-Based Encrypted Traffic to Track a User’s Position. In Springer Network
and System Security (NSS), LNCS, Vol. 9408. 46-59.

Xiang Cai, Xin Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching From a
Distance: Website Fingerprinting Attacks and Defenses. In 19th ACM Computer
and Communications Security (CCS). 605-616.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial
Intelligence Research 16, 1 (2002), 321-357.

Mauro Conti, Ankit Gangwal, and Sushmita Ruj. 2018. On the Economic Signifi-
cance of Ransomware Campaigns: A Bitcoin Transactions Perspective. Elsevier
Computers & Security 79 (2018), 162-189.

Mauro Conti, Luigi Vincenzo Mancini, Riccardo Spolaor, and Nino Vincenzo
Verde. 2016. Analyzing Android Encrypted Network Traffic to Identify User
Actions. IEEE Transactions on Information Forensics and Security 11, 1 (2016),
114-125.

Corinna Cortes and Vladimir Vapnik. 1995. Support Vector Networks. Machine
Learning 20, 3 (1995), 273-297.

Scott E Coull and Kevin P Dyer. 2014. Traffic Analysis of Encrypted Messaging
Services: Apple iMessage and Beyond. ACM SIGCOMM Computer Communication
Review 44, 5 (2014), 5-11.

Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song.
2013. NetworkProfiler: Towards Automatic Fingerprinting of Android Apps. In
32nd IEEE International Conference on Computer Communications (INFOCOM).
809-817.

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.
2014. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. ACM Transactions on Computer Systems 32, 2 (2014),
1-29.

Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth Kandula, and
Deborah Estrin. 2010. A First Look at Traffic on Smartphones. In 10th ACM
SIGCOMM Internet Measurement Conference (IMC). 281-287.

Hyo Ham and Mi Choi. 2012. Applicaion-level Traffic Analysis of Smartphone
Users using Embedded Agents. In 14th IEEE Asia-Pacific Network Operations and
Management Symposium (APNOMS). 1-4.

Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website
Fingerprinting: Attacking Popular Privacy Enhancing Technologies with the
Multinomial Naive-Bayes Classifier. In 1st ACM Cloud Computing Security Work-
shop (CCSW). 31-42.

Andrew Hintz. 2003. Fingerprinting Websites using Traffic Analysis. In Springer
Privacy Enhancing Technologies (PET), LNCS, Vol. 2482. 171-178.

Tin Kam Ho. 1995. Random Decision Forests. In 3rd International Conference on
Document Analysis and Recognition (ICDAR). 278-282.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. 2003. A Practical Guide to
Support Vector Classification. Technical Report.

Sang-Woo Lee, Jun-Sang Park, Hyun-Shin Lee, and Myung-Sup Kim. 2011. A
Study on Smartphone Traffic Analysis. In 13th IEEE Asia-Pacific Network Opera-
tions and Management Symposium (APNOMS). 1-7.

Marc Liberatore and Brian Neil Levine. 2006. Inferring the Source of Encrypted
HTTP Connections. In 13th ACM Computer and Communications Security (CCS).
255-263.

Sophon Mongkolluksamee, Vasaka Visoottiviseth, and Kensuke Fukuda. 2016.
Combining Communication Patterns & Traffic Patterns to Enhance Mobile Traffic
Identification Performance. Journal of Information Processing 24, 2 (2016), 247—
254.

Thuy TT Nguyen and Grenville Armitage. 2008. A Survey of Techniques for
Internet Traffic Classification using Machine Learning. IEEE Communications
Surveys & Tutorials 10, 4 (2008), 56-76.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011.
Website Fingerprinting in Onion Routing Based Anonymization Networks. In
10th ACM Workshop on Privacy in the Electronic Society (WPES). 103-114.

1491

[22] Zafar Ayyub Qazi, Jeongkeun Lee, Tao Jin, Gowtham Bellala, Manfred Arndt,
and Guevara Noubir. 2013. Application-awareness in SDN. In ACM SIGCOMM
conference. 487-488.

Jean-Francois Raymond. 2001. Traffic Analysis: Protocols, Attacks, Design Issues,
and Open Problems. In Springer Designing Privacy Enhancing Technologies, LNCS,
Vol. 2009. 10-29.

[24] Brendan Saltaformaggio, Hongjun Choi, Kristen Johnson, Yonghwi Kwon, Qi
Zhang, Xiangyu Zhang, Dongyan Xu, and John Qian. 2016. Eavesdropping on
Fine-Grained User Activities within Smartphone Apps over Encrypted Network
Traffic. In 10th USENIX Workshop on Offensive Technologies (WOOT). 1-10.
John Shawe-Taylor and Nello Cristianini. 2004. Kernel Methods for Pattern Analy-
sis. Cambridge University Press, New York, NY, USA.

Tim Stober, Mario Frank, Jens Schmitt, and Ivan Martinovic. 2013. Who do you
sync you are? Smartphone Fingerprinting via Application Behaviour. In 6th ACM
conference on Security and Privacy in Wireless and Mobile Networks (WiSec). 7-12.
Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2018.
Robust Smartphone App Identification via Encrypted Network Traffic Analysis.
IEEE Transactions on Information Forensics and Security 13, 1 (2018), 63-78.
Vladimir N. Vapnik. 1995. The Nature of Statistical Learning Theory. Springer-
Verlag New York, Inc., New York, NY, USA.

Qinglong Wang, Amir Yahyavi, Bettina Kemme, and Wenbo He. 2015. I Know
What You Did on Your Smartphone: Inferring App Usage over Encrypted Data
Traffic. In 3rd IEEE Communications and Network Security (CNS). 433-441.

Jie Yang, Shuo Zhang, Xinyu Zhang, Jun Liu, and Gang Cheng. 2013. Analy-
sis of Smartphone Traffic with MapReduce. In 22nd IEEE Wireless and Optical
Communication Conference (WOCC). 394-398.

Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, Carl A Gunter, and Klara Nahrstedt. 2013. Identity, location,
disease and more: Inferring your secrets from android public resources. In 20th
ACM Computer and Communications Security (CCS). 1017-1028.

[23

[25

[26

[27

™~
&,

[29

[30

[31

Appendix A STANDARD DEFINITIONS

MinMax scaler scales each feature in the range [0,1]. Specifi-
cally, given a feature x and one of its assumed value x; the
following formula is applied:

. xi — min(x)
minmax(x;) = ———————,
max(x) — min(x)
where min(x) and max(x) are the minimum and maximum
value of the feature x in the dataset.

Standard scaler each feature is transformed in such a way
that the mean becomes zero and standard deviation becomes
one. Specifically, given a feature x and one of its value x;,
the following formula is applied:

standard(x;) = x,——p(x)
o(x)
where y(x) and o(x) are the mean and standard deviation
of the variable x.

Accuracy measures how often the classifier makes the right
prediction defined as the ratio between the number of hit
and the number of predictions.

Precision quantifies the ability of a classifier to not label a
negative example as positive. It is computed as the ratio
between the number of true positives and the total number
of instances labeled as positives.

Recall defines the probability that a positive prediction made
by the classifier is actually positive. It is computed as the
fraction between the number of true positives and the total
number of positives in the set.

F1 is a single metric that combines both precision and recall
via their harmonic mean:

precision X recall

precision + recall

https://www.researchgate.net/publication/329220825

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

