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1 Introduction

The free energy F is a quantity of central relevance in the description of physical, chemical,
or biological systems with a very large (possibly infinite) number of degrees of freedom. For
a system in thermal equilibrium at a temperature T , its definition1 through the equality
F = −T lnZ provides a direct connection between the microscopic physics encoded in
the sum of states in the partition function Z and the equation of state describing the
macroscopic properties of the system, since in the thermodynamic limit the pressure p
equals minus the free-energy density per unit volume. In addition to its importance for
low-energy physics systems that traditionally fall into the domain of thermodynamics, the
free energy also has applications in high-energy physics, including in elementary particle
physics and cosmology. For example, the existence and the nature of phase transitions at
very high energies may have an impact on various aspects relevant for the evolution of the
early Universe [1, 2]. While the Standard Model predicts smooth cross-overs both in the
electro-weak- and in the strong-interaction sector [3–6], the existence of first-order phase
transitions in various types of extensions of the Standard Model may leave an imprint in
gravitational waves [7–9].

In quantum chromodynamics (QCD) the theoretical determination of the free energy
at temperatures of the order of the hadronic scale necessarily relies on numerical methods,
which are based on Wilson’s lattice regularization [10] and amount to estimating ratios of
Feynman path integrals by Markov-chain Monte Carlo calculations — that is, differences

1Throughout this article we work in natural units: ~ = c = kB = 1.
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in free energies. It is well known, however, that typically this involves significant com-
putational costs: commonly used methods to perform such calculations are based on the
numerical integration of a derivative with respect to some parameter [11] or on reweighting
the field configurations of a simulated ensemble to a target ensemble, specified by different
parameter values [12]. The former of these methods, however, introduces a systematic un-
certainty due to the discretization of the integration interval; the latter, on the other hand,
is often hampered by the fact that the overlap between the most typical configurations in
the simulated and in the target ensemble becomes exceedingly small in the thermodynamic
limit. The challenging nature of this problem continues to motivate a search for alterna-
tive techniques to estimate the free energies in Monte Carlo lattice QCD [13–21], or, more
generally, Feynman path integrals in high-dimensional spaces [22].

A different computational strategy to evaluate free-energy or effective-action differ-
ences has been recently pursued in a series of works [23–28] that are based on an exact
equality in non-equilibrium statistical mechanics discovered by C. Jarzynski more than 25
years ago [29, 30]. It expresses the free-energy difference between two equilibrium states of
a statistical system in terms of the exponential average of the work done on the system to
push it out of equilibrium. Jarzynski’s equality is part of a series of works that, during the
last decade of the past century, studied in depth the connection between deviations from
thermodynamic equilibrium and entropy production [31–36] (and which are reviewed in
refs. [37, 38]): it extends and generalizes earlier results [39–41] (for a discussion of the con-
nection between those previous works and Jarzynski’s equality, see refs. [42, 43]), entailing
a number of implications, in particular, for the scrambling of quantum information and
quantum chaos [44–50], while it reduces to known identities in particular limits. Among
the implications of Jarzynski’s equality we mention the fact that, simply using the math-
ematical properties of convex functions [51], it is possible to derive from it the inequality
that expresses the second law of thermodynamics. In the context of Markov Chain Monte
Carlo simulations, a closely-related implementation of the same idea is Annealed Impor-
tance Sampling (AIS) [52, 53], which has seen widespread use in several research fields;
we observe that the connection with Jarzynski’s equality was already made explicit in the
original AIS paper.

Recently, the explosive growth of machine-learning applications in virtually all fields
of human activity has triggered an avalanche of novel implementations of these techniques
also in the physical sciences [54] and in elementary particle physics [55–57], broadly ex-
tending their previous domains of usage [58–65]. This also includes applications in lattice
field theory: as examples of recent works in this area of research, we mention refs. [66–81],
but this list is likely to grow much longer in the next few years, as the lattice community is
developing approaches that are expected to make machine-learning techniques part of the
standard lattice-QCD toolbox [82]. A class of deep generative models called normalizing
flows [83–85] represents one of the most active and interesting developments in this area
of research [86–95]. Normalizing flows can be thought of as an invertible map between a
latent (easy) distribution and the target probability distribution, whose complexity is en-
coded in the trainable parameters of the neural networks that compose the flow itself. The
fact that the configurations sampled using this kind of generative models are statistically
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independent is a promising feature, as it represents a completely new way to approach a
typical problem that plagues Monte Carlo simulations close to the continuum limit, namely
the so-called critical slowing down. On the other hand, training times seem to grow very
quickly when approaching the continuum limit of the theory of interest [91] so more work
is needed to improve the scalability of training procedures. Interestingly, it is crucial to
note that normalizing flows do not simply provide a new sampling technique for lattice field
theories, but represent also a natural tool for the determination of the partition function
Z. Namely, the importance sampling technique introduced in ref. [89] allows for the direct
estimation of the free energy at certain values of the theory parameters, and not just of
its difference with respect to another point in parameter space, thus representing a con-
ceptual evolution with respect to the aforementioned Monte Carlo free-energy estimation
techniques.

Normalizing flows and non-equilibrium Monte Carlo calculations based on Jarzynski’s
equality are the two main topics that we study in the present work: despite the obvious
differences between these two computational approaches, in the following we point out
the existence of a direct connection between them, and show how this relation can be
fully exploited using a more general class of generative models called Stochastic Normal-
izing Flows [96]. Interestingly, the idea of combining deterministic mappings and out-of-
equilibrium transformations used in Jarzynski’s equality goes back to ref. [97], albeit for
fixed, non-trainable mappings.

The structure of our manuscript is the following: after reviewing the basic aspects
of Jarzynski’s equality, and discussing its practical use for Monte Carlo integration in sec-
tion 2, in section 3 we reformulate the equality in a framework suitable both for normalizing
flows and stochastic processes, starting from the formulation of ref. [89] and reprising pre-
vious work on ref. [96]. Next, in section 4 we present an example of physical application
of these flows in the evaluation of the free energy of the φ4 two-dimensional lattice field
theory, comparing the effectiveness of different types of flows. Finally, in section 5 we
recapitulate our findings and discuss possible future extensions of this work.

2 Jarzynski’s equality

Consider a statistical-mechanics system, with degrees of freedom φ, whose dynamics de-
pends on a set of parameters collectively denoted as η (which can be the couplings appearing
in the Hamiltonian H, etc.). Jarzynski’s equality [29, 30] states that the ratio of the par-
tition functions corresponding to equilibrium states of the system corresponding to two
different values of η, to be denoted as ηfin and ηin, is equal to the exponential average of the
work W , in units of the temperature T , that is done on the system, when, starting from
thermodynamic equilibrium with parameters ηin, it is driven out of equilibrium by a change
of its coupling from ηin to ηfin during a time interval [tin, tfin], according to a protocol η(t):

Zηfin
Zηin

= exp (−W/T ). (2.1)

The average (denoted by the bar) appearing on the right-hand side of eq. (2.1) is taken
over all possible trajectories in the space of configurations that the system can follow, when

– 3 –



J
H
E
P
0
7
(
2
0
2
2
)
0
1
5

its parameters are modified according to η(t). While the starting configurations of these
trajectories are equilibrium ones, this is no longer the case for all t > tin, as during each
trajectory the system is driven out of equilibrium and never allowed to relax to equilibrium
anymore. As a consequence, eq. (2.1) describes a non-trivial relation between equilibrium
quantities (on the left-hand side) and non-equilibrium ones (on the right-hand side). The
time t on which the parameters η depend can be either real time or Monte Carlo time.
Eq. (2.1) can be proven in different ways. In appendix A, we review a “constructive” proof,
that is closest to the implementation of Monte Carlo algorithms to compute free-energy
differences by evaluating the right-hand side of the equation above. In this case, the time t
is discretized and identified with the Monte Carlo time, while the work W can be written as

W =
N−1∑
n=0

{
Hηn+1 [φn]−Hηn [φn]

}
(2.2)

where ηi = η(ti).
It may be surprising that the η(t) protocol, which describes “how” the parameters of

the system are let evolve in time, is fixed and arbitrary, and is not averaged over. As
the proof in appendix A shows, the result of the exp (−W/T ) average appearing on the
right-hand side of eq. (2.1) is independent from η. From the point of view of a Monte Carlo
implementation, however, the choice of η has a strong effect on the efficiency with which
the algorithm can produce accurate and precise numerical estimates of the Zηfin/Zηin ratio
with a finite number of trajectories.

To understand the meaning of eq. (2.1), it is interesting to consider it in two particular
limits.

In the limit when the [tin, tfin] time interval becomes infinitely long, the η parameters
evolve infinitely slowly, so that the configurations remain arbitrarily close to thermody-
namic equilibrium along each trajectory. Then, the evolution of the system is dissipation-
less and the work along each trajectory is equal to the free-energy difference between the
final and the initial statistical ensembles. In that case, the right-hand side of eq. (2.1)
trivially reduces to exp(−∆F/T ).

In the opposite limit, when the switching process from ηin to ηfin becomes instanta-
neous, eq. (2.1) can be written as

exp (−W/T ) =
∑
φ0

∑
φ1

πηin [φ0] exp
(
−Hηfin [φ0]−Hηin [φ0]

T

)
Pηfin [φ0 → φ1] (2.3)

where πηin stands for the probability distribution of the system with η = ηin. The sum
over φ1 is trivial and one is left with:

exp (−W/T ) =
∑
φ0

πηin [φ0] exp
(
−Hηfin [φ0]−Hηin [φ0]

T

)
. (2.4)

The sum on the right-hand side of eq. (2.4) can be interpreted as an expression for Zηfin
(divided by Zηin) as a weighted sum over the configurations that contribute to Zηin , where
the weight of each configuration φ0 is exp (−{Hηfin [φ0]−Hηin [φ0]} /T ): this means that
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in this limit Jarzynski’s equality (2.1) simply reduces to the equation describing statistical
reweighting [12].

We also wish to point out that Jarzynski’s equality (2.1) is closely related to another
important result in non-equilibrium statistical mechanics, Crooks’ theorem [35, 36]. The
latter states that the ratio between the probability density Pf(W ) that a “forward” non-
equilibrium transformation cost work W , and the probability density Pr(−W ) that the
opposite (“reverse”) transformation cost work −W is given by

Pf(W )
Pr(−W ) = exp

(
−∆F −W

T

)
. (2.5)

The connection between eq. (2.5) and Jarzynski’s equality is obvious, as eq. (2.1) can
be obtained by multiplying eq. (2.5) by Pr(−W ) and integrating over W . Note that an
interesting implication of Crooks’ theorem is that the free-energy difference ∆F is the value
of W for which Pf(W ) and Pr(−W ) are equal.

Finally, we note that the theoretical results presented in this section for a statistical
mechanics system are immediately translatable in the language of quantum field theory by
substituting H[φ]/T with the Euclidean action S[φ] and W/T with the generalized work

w(φ0, φ1, . . . , φN ) =
N−1∑
n=0

{
Sηn+1 [φn]− Sηn [φn]

}
(2.6)

= SηN [φN ]− Sη0 [φ0]−Q(φ0, φ1, . . . , φN ) (2.7)

where in the second line we introduced the quantity

Q(φ0, φ1, . . . , φN ) =
N−1∑
n=0

{
Sηn+1 [φn+1]− Sηn+1 [φn]

}
(2.8)

that is the equivalent of the heat exchanged with the environment during the transformation
defined by the protocol η(t). At the end of the next section we will see how the definition
of eq. (2.6) can be generalized in a framework that includes also normalizing flows. Now
eq. (2.1) can be written as

Zηfin
Zηin

= 〈exp (−w(φ0, φ1, . . . , φN ))〉f

=
∫

dφ0 dφ1 . . . dφN πηin(φ0)Pf[φ0, φ1, . . . , φN ] exp (−w(φ0, φ1, . . . , φN )) , (2.9)

where the average over all possible paths ηin → ηfin has been expressed through the prob-
ability Pf of going through a given set of configurations φ0 → φ1 → · · · → φN , having
used the distribution πηin(φ0) = e−Sηin (φ0)/Zηin to sample φ0. Let us add that it is inside
Pf where it lies the dependence of the calculation on crucial details of the transformation,
such as the protocol η(t) or the Monte Carlo algorithm chosen to update the system in the
intermediate steps. In the following, we will refer to a transformation defined by a given
protocol η(t) as a “stochastic evolution”.
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We end this section by pointing out that the same equality can be used to compute
the expectation value of a generic observable O at η = ηfin:

〈O〉η=ηfin = 〈O(φN ) exp(−w(φ0, φ1, . . . , φN ))〉f
〈exp(−w(φ0, φ1, . . . , φN ))〉f

, (2.10)

whose derivation follows closely the one of eq. (2.9) in the appendix A.

3 Connection with normalizing flows

In this section, we first review the basics about normalizing flows (mostly following the
presentation in ref. [96]), before exposing the relation between normalizing flows and non-
equilibrium Monte Carlo simulations based on Jarzynski’s equality.

Normalizing flows [83–85, 98] can be interpreted as (a discrete collection of) bijective
and differentiable functions interpolating between two different statistical distributions,2

and provide a natural tool to construct scalable, arbitrarily complex approximations of
unknown posterior distributions in variational-inference problems. Starting from functions
that map a base (or “prior”) distribution, which is sufficiently simple to be mathematically
tractable, to a target distribution, the density of a statistical sample from the latter can
be obtained by constructing its counter-image, and multiplying its density by the prod-
uct of the Jacobians encoding the volume change along the transformation, i.e. the target
distribution is the push-forward of the base distribution. The function from the base distri-
bution to the target distribution can be described as a “generative” map, as it transforms
“noise” into the feature-rich, physical target distribution. Conversely, the inverse function
is a “normalizing” one, mapping the target distribution into the simpler base distribution.

Normalizing flows can be implemented as neural networks by “discretizing” the func-
tions that interpolate between the base distribution q0 and the target distribution p through
a composition of invertible layers, labeled by a natural number 0 ≤ n ≤ N . If z denotes a
variable from the base distribution and gθ is the generative map, one can write:

gθ(z) = (gN ◦ · · · ◦ g1 ◦ g0)(z). (3.1)

We denote the distributions of the intermediate variables yn+1 = gn(yn) as

qn+1(yn+1) = qn (gn(yn)) = qn(yn) |det Jn(yn)|−1 , (3.2)

where Jn denotes the Jacobian matrix associated with the change of variables between the
layers with labels n and n+ 1. The training of the network can be done by minimizing the
Kullback-Leibler (KL) divergence between the generated distribution and the target distri-
bution [99], which is a measure of the similarity between the two probability distributions
and can be written as

D̃KL(qN‖p) =
∫

dφ qN (φ) [ln qN (φ)− ln p(φ)] . (3.3)

2More precisely, the differentiability must hold at least almost everywhere in the measurable spaces on
which the distributions are defined.
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In a similar fashion with respect to ref. [89], we introduce a weight function

w̃(φ) = exp(−S[φ])
Z0qN (φ) , (3.4)

where we included the normalization constant of the q0 distribution in the denominator
for reasons that will be clear in the following. The partition function associated with the
target probability distribution p(φ) can be simply expressed as

Z = Z0

∫
dφ qN (φ)w̃(φ) = Z0〈w̃(φ)〉φ∼qN , (3.5)

where 〈. . . 〉φ∼qN denotes the average over the ensemble described by the probability density
distribution qN . Then, we are able to write the expectation value of a generic observable
O as

〈O〉 = 1
Z

∫
dφ qN (φ)O(φ)w̃(φ) = 〈O(φ)w̃(φ)〉φ∼qN

〈w̃(φ)〉φ∼qN
. (3.6)

Note that the right-hand side of eq. (3.6) expresses the expectation value of O in the target
ensemble through a reweighting from the qN ensemble, which, in turn, is obtained combin-
ing the sampling from the base distribution with a deterministic flow gθ. In particular, the
weight function can be rewritten (as a function of y0) in the form

w̃(y0) = exp (−{S[gθ(y0)] + lnZ0 + ln q0[y0]−Q})
= exp (−{S[gθ(y0)]− S0[y0]−Q}) , (3.7)

where in the second equation we inserted q0[y0] = exp (−S0[y0]) /Z0. We also defined the
quantity Q, which encodes the variation in phase-space volume accumulated along the flow:

Q =
N−1∑
n=0

ln |det Jn(yn)| . (3.8)

In practical implementations, Q depends on the network architecture: for example, it is
identically zero in frameworks like NICE [100], while it is generally non-zero for networks
based on Real NVP [101]. Let us note also that eq. (3.6) is not the only way to compute
expectation values with normalizing flows: a popular alternative consists in generating the
configurations using qN (φ) and applying an independent Metropolis-Hastings algorithm to
correct for the difference between qN (φ) and p(φ) [86, 102]. The acceptance rate of the
Metropolis step provides a measure of the quality of the flow.3

Finally, we obtain for eq. (3.5) the following form

Z

Z0
= 〈exp (−{S[gθ(y0)]− S0[y0]−Q})〉y0∼q0 . (3.9)

The reader may have noticed the strong similarities between eq. (3.9) and eq. (2.9), in
particular when Sηin is identified with S0: this symmetry is not obvious, as the flows used

3In this work we do not pursue this method, but general considerations on the effectiveness of stochas-
tic normalizing flows presented in the following are valid independently of the formula used to compute
expectation values.
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in these computations are purely deterministic in the one case and stochastic in the other.
The aim of this section is to generalize both concepts under a common framework, that
can describe both deterministic and stochastic transformations and eventually use them
together in a single flow.

Following the work of ref. [96], we start by considering a configuration y0 sampled
from the base distribution and we define a forward path as a sequence of configurations
(y0, y1, . . . , yt), with t ≤ N . The probability of going through this path can be expressed
as the product of the transition probabilities at all intermediate steps:

Pf[y0, y1, . . . , yt] =
t−1∏
n=0

P [yn → yn+1], (3.10)

so that the probability of reaching a given configuration yt at a generic step t can be ex-
pressed by integrating over the initial configuration y0 (sampled from the base distribution
q0) and over all intermediate configurations:

qt(yt) =
∫

dy0 dy1 . . . dyt−1 q0(y0)Pf[y0, y1, . . . , yt]. (3.11)

Another useful quantity is the probability of going through the reverse path (yt, yt−1, . . . , y0)

Pr[yt, yt−1, . . . , y0] =
t−1∏
n=0

P [yt−n → yt−n−1], (3.12)

that allows for the definition of the weight function

w̃(y0, y1, . . . , yN ) = Z

Z0

p(yN )Pr[yN , yN−1, . . . , y0]
q0(y0)Pf[y0, y1, . . . , yN ] (3.13)

= exp (−{S[yN ]− S0[y0]−Q}) (3.14)

with

Q(y0, y1, . . . yN ) = ln Pr[yN , yN−1, . . . , y0]
Pf[y0, y1, . . . , yN ] =

N−1∑
n=0

(lnP [yn+1 → yn]− lnP [yn → yn+1]) .

(3.15)
Note that, in our discussion above, the quantity Q defined in eq. (3.8) was a function of
y0 only — a consequence of the deterministic nature of the flow. For flows containing
stochastic steps, Q depends on all yn, for 0 ≤ n ≤ N , i.e. is a function of a particular
trajectory, not only of its starting (or of its final) point. The KL divergence can then be
interpreted as a “distance” between the forward and reverse paths that go through the
same configurations,4 i.e.

D̃KL(q0Pf‖pPr) =
∫

dy0 dy1 . . . dyN q0(y0)Pf[y0, y1, . . . , yN ] ln q0(y0)Pf[y0, y1, . . . , yN ]
p(yN )Pr[yN , yN−1, . . . , y0]

= −〈ln w̃(y0, y1, . . . , yN )〉f + ln Z

Z0
(3.16)

4Strictly speaking, eq. (3.16) does not define an actual metric; in particular, it does not necessarily
satisfy the triangle inequality.
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while the ratio of partition functions simply becomes

Z

Z0
= 〈w̃(y0, y1, . . . , yN )〉f. (3.17)

Both normalizing flows and the stochastic procedure described in section 2 emerge
naturally within this framework. Normalizing flows are easily recovered by setting

P [yn → yn+1] = δ (yn+1 − gn(yn)) (3.18)

for every n, with gn(yn) being the transformation of layer n. In that case, using the fact that

qn(yn)P [yn → yn+1] = qn+1(yn+1)P [yn+1 → yn], (3.19)

the right-hand side of eq. (3.15) reduces to

N−1∑
n=0

ln [qn(yn)/qn+1(yn+1)] =
N−1∑
n=0

ln |det Jn(yn)| , (3.20)

i.e. to eq. (3.8). Similarly, the quantity Pf[y0, y1, . . . , yN ] appearing in eq. (3.16) reduces
to a product of Dirac distributions, and after integration this definition of D̃KL(q0Pf‖pPr)
leads to eq. (3.3).

For the stochastic procedure used in Jarzynski’s equality, we first introduce the pro-
tocol η(t) to interpolate between the base distribution and the target distribution. As
we remarked above, the η(t) function (or its discretization on the layers specified by an
integer-valued label) is largely arbitrary, provided it satisfies the requirements of yielding
the parameters of the base and target distributions at the initial and final times, respec-
tively. Given a (discretized) protocol η, one can construct the sequence of Boltzmann
distributions at the n-th step:

πn[φ] = πηn [φ] = 1
Zηn

exp (−Sηn [φ]) (3.21)

and construct transition probabilities P (φ → φ′) satisfying detailed balance (a condition
analogous to eq. (3.19)):

P [φ→ φ′]
P [φ′ → φ] = πn+1[φ′]

πn+1[φ] . (3.22)

Using eq. (3.22), eq. (3.15) can be rewritten in the form

Q(y0, y1, . . . yN ) =
N−1∑
n=0

ln πn+1[yn]
πn+1[yn+1] , (3.23)

which, when combined with eq. (3.21) brings us back to eq. (2.8). Similarly, the weight w̃
defined in eq. (3.13) can be rewritten as

w̃(y0, y1, . . . , yN ) = exp
(
−
N−1∑
n=0

Sηn+1 [yn]− Sηn [yn]
)

= exp (−w(y0, y1, . . . , yN )) , (3.24)
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where in the argument of the exponential we have recognized the work w done on the
system during the (y0, y1, . . . , yN ) trajectory, as defined in eq. (2.6). Thus, eq. (3.17) is
just Jarzynski’s equality (2.1) in a form that can be easily translated both in the language
of (deterministic) normalizing flows and of Markov Chain Monte Carlo simulations.

It is clear now that nothing prevents us from creating a “stochastic” normalizing flow
that contains both deterministic coupling layers and stochastic updates. In the following
section we review some possible applications and advantages of such a choice.

4 Application in lattice φ4 field theory

We have performed a series of tests in the two-dimensional φ4 interacting field theory
defined on a lattice Λ of size Lt × Ls, with lattice spacing a. We denote with Nt = Lt/a

and Ns = Ls/a the number of sites in the temporal and spatial directions respectively and
we impose periodic boundary conditions along both of them. The Euclidean action of the
theory is defined as

S(φ) =
∑
x∈Λ
−2κ

∑
µ=0,1

φ(x)φ(x+ µ̂) + (1− 2λ)φ(x)2 + λφ(x)4 (4.1)

and the (target) probability distribution is

p(φ) = 1
Z
e−S(φ), (4.2)

where Z denotes the partition function:

Z =
∫ ∏

x∈Λ
dφ(x)e−S(φ). (4.3)

We use three different approaches to generate asymptotically correct configurations:
purely stochastic protocols (as described in section 2), standard normalizing flows and
stochastic normalizing flows (SNF), in which the affine layers that compose a typical nor-
malizing flow are combined with stochastic layers where Monte Carlo updates are per-
formed.

In each kind of flow, we sample the latent variables z from a normal distribution

q0(z) =
( 1√

2πσ2

)|Λ|
e−S0(z) (4.4)

with a Gaussian action
S0(z) =

∑
x∈Λ

z(x)2

2σ2 . (4.5)

We set σ = 0.5 so that we exactly recover eq. (4.1) with κ = 0 and λ = 0. This simplifies
the protocol that is needed for purely stochastic evolutions when interpolating between
q0(z) and p(φ).

The main observable of interest is the free-energy density of the system f = F/Ls =
F/(aNs). Since

F = −T lnZ = − 1
Nta

lnZ (4.6)
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we can look at the dimensionless quantity

a2f = − lnZ
NtNs

. (4.7)

Recalling the definition of a normalizing flow in eq. (3.1), we use as building blocks of
the flow the coupling layers gi. In order to ensure invertibility and an easy evaluation of the
Jacobian, we define the coupling layers by splitting the lattice into two different partitions.
A given layer gi leaves one partition unchanged while acting on the other one. More
precisely, we use an even-odd (or “checkerboard”) partitioning, so that each subsequent
configuration yi+1 = gi(yi) can be written as

gi :

y
i+1
A = yiA

yi+1
B = e−s(y

i
A)yiB + t(yiA)

(4.8)

so that even sites are left unchanged when A = even and B = odd, and vice versa for
odd sites. We observe that s and t are two different neural networks that take as input a
configuration and release as output an equally sized configuration. This setup is commonly
referred to as an affine layer and is part of the Real NVP architecture [101].

When building a normalizing flow, it is a desirable feature for it to be equivariant under
the symmetries of the probability distribution it is going to approximate. In this case, the
target probability distribution p(φ) is invariant under φ→ −φ transformations: to enforce
this Z2 symmetry in the flow we require the mapping gθ to be an odd function with respect
to z. We do so by choosing neural networks with a hyperbolic-tangent activation function
for both s and t in eq. (4.8), and also by taking the absolute value of the output of s. The
resulting distribution qN (φ) is then invariant under z → −z transformations.

The networks used in this work are shallow, i.e. with a single hidden layer between input
and output. We obtained results with two types of networks: fully connected networks with
Ns×Nt neurons in the hidden layer and convolutional networks with kernel size 3× 3 and
one feature map.

The stochastic evolutions described in section 2 can be thought of as a composition of
subsequent “layers” as well, whose structure can be written very similarly to that of affine
layers. In this case, the n-th layer is defined by the protocol parameters ηn = η(tn) that are
used to update the system with the action Sηn . Exploiting the locality of the action (4.1), we
perform an even-odd partitioning: a stochastic layer acts on an intermediate configuration
by updating odd (or even) sites using an algorithm that uses as input only even (or odd)
sites, which in turn are kept fixed, in a similar fashion as the affine layer of eq. (4.8). While
in this work a highly-efficient heatbath algorithm customized for the target distribution of
the φ4 action has been used, we observe that the Metropolis-Hastings algorithm can be
used in this approach as well.

Finally, a protocol η(t) has to be set in order to interpolate between the initial and the
final action, in this case eqs. (4.5) and (4.1) respectively. In practice, one has to gradually
change the values of the parameters of the theory to interpolate from the prior distribution
(κ = 0 and λ = 0) to the target distribution at the desired values of κ and λ. In this
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work we always followed a linear protocol in all parameters and for each layer we applied
only one heatbath update. We stress, however, that different protocols, such as non-linear
ones or with multiple Markov-chain Monte Carlo updates in the same layer, are possible,
as well as the possibility to let the intermediate parameters be tunable whenever the flow
undergoes a training procedure.

Having fixed the details of affine and stochastic parameters, any flow used in this
work is simply characterized by the number of stochastic and deterministic layers: using
even-odd partitioning in both cases, we have always used “blocks” of two subsequent layers
where both even and odd sites are updated once. In the following we denote the number
of affine blocks as nab and the number of stochastic blocks as nsb. In the case of stochastic
normalizing flows, where both nab 6= 0 and nsb 6= 0, stochastic blocks are always inserted
equally distanced between affine blocks so to maximize the number of deterministic layers
between them. For example, in the case nab = 2nsb, the flow is built alternating two affine
blocks and one stochastic block.

In the case of normalizing flows and SNFs, we perform the training procedure needed
to tune the parameters of the neural networks contained in the affine layers of eq. (4.8)
by minimizing the loss function −〈ln w̃〉f, which equals the KL divergence (3.16) minus
the ratio Z/Z0. In order to evaluate the convergence of the training (i.e. the ability of
the latent distribution qN (φ) to describe the target distribution p(φ)), we also monitor the
variance of the loss

Varf(L) = Varf(− ln w̃), (4.9)

and the effective sample size (ESS)

ESS = 〈w̃〉
2
f

〈w̃2〉f
(4.10)

which is always in the range [0, 1] and tends to 1 for a “perfect” training. These quantities
can be calculated for a stochastic flow as well, using the same definitions, and determine
the quality of the protocol chosen for the flow.

A few comments are in order regarding the training of SNFs and the Monte Carlo up-
date algorithm of choice. In this work, the gradients of the tunable parameters of the neural
networks, which are computed during the training procedure using the backpropagation
algorithm, are propagated also through the stochastic blocks: thus, Monte Carlo updates
are performed also during the training. In general, the question whether the graph used
for the computation of the gradients is continuous or not through the stochastic blocks can
be answered only by looking at the specific update algorithm. The accept-reject step is
a non-differentiable function, so the gradients cannot propagate through it: however the
graph will depend on the type of proposal used to generate the updated variable. In the
case of the heatbath algorithm, the computational graph of the gradients is generated in
a non-trivial manner, as every new (accepted) variable is proposed using the values of the
variables on the nearest-neighbour sites.

The training procedure for normalizing flows and SNFs was performed by applying
104 steps (5 × 104 for fully-connected architectures) of the ADAM algorithm [103] (with
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Figure 1. Effective sample size for different flows, for varying number of affine blocks nab and
stochastic blocks nsb, for 16 × 8 lattices at κ = 0.2, λ = 0.022. The nab = 0 points are purely
stochastic evolutions, where no training is required, while the nsb = 0 data represent standard nor-
malizing flows. The remaining points in the plot represent SNFs, where stochastic blocks are placed
between affine blocks. Error bars are not visible for most of the flows and stochastic evolutions
under consideration due to the very small statistical errors.

batches of 8000 configurations) to update the parameters of the neural networks; the code
used for the training is based on the PyTorch library. We used the ReduceLROnPlateau
scheduler with an initial learning rate set to 0.0005 and a patience of 500 steps. All
numerical results for the free energy density a2f defined in eq. (4.7) are obtained always
taking Nmeas = 2× 105 independent measurements for the average of eq. (3.17), for any of
the three methods used in this work (normalizing flows, SNFs and stochastic evolutions); at
the same time also the ESS is calculated using eq. (4.10). The errors on these two quantities
have been computed using a jackknife procedure. All the numerical experiments discussed
in this section (both training procedures and measurements) have been performed on a
NVIDIA Volta V100 GPU with 16GB of memory.

4.1 Results for stochastic evolutions

Let us first describe our results for the free-energy density with stochastic evolutions,
obtained by computing the average of eq. (3.24) withNmeas independent measurements. We
stress that in this case no training is strictly needed, as we already fixed all the parameters
by choosing a linear protocol.

In figure 1 we report some values obtained for the ESS (4.10) by performing measure-
ments for different flows. The only difference between the various protocols is the number
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Figure 2. Error on the free energy density a2f for various flow architectures from 2 × 105 in-
dependent measurements. Results for 16 × 8 lattices (left-hand-side panel) and 64 × 8 lattices
(right-hand-side panel) at κ = 0.2, λ = 0.022. The error on the error is calculated with a jackknife
procedure.

of intermediate steps (or, equivalently, the number of stochastic blocks nsb) between the
initial and final points. An effective strategy with this kind of out-of-equilibrium transfor-
mations is to increase the number of intermediate Monte Carlo updates performed during
the transformation while keeping the protocol η(t) and the number of measurements Nmeas
fixed. In this way, each measurement becomes more expensive from a computational point
of view, but the distribution qN (φ) is also more effective at describing the target distribu-
tion p(φ), as shown by the very high values of ESS obtained for the largest values of nsb
and by the steadily decreasing error in both panels of figure 2.

To determine the optimal number of stochastic blocks at fixed computational effort,
we combined the error on the free-energy density f and an estimate of the computational
cost of each measurement. In this case the latter is simply given by nsb, as just a single
Monte Carlo update is performed in each layer.5 The results of this comparison are shown in
figure 3: one can observe that on the smaller lattice increasing the number of intermediate
steps above 100 does not appear to be particularly cost-effective in sampling the target
distribution, while it is still slightly advantageous for the larger volume.

4.2 Including stochastic layers in normalizing flows

Let us proceed to the analysis of results for stochastic normalizing flows, where stochas-
tic blocks are inserted between “deterministic” affine blocks. Firstly, we observe that for
standard normalizing flows, a larger nab does not necessarily provide a more efficient way

5Increasing the number of updates in each layer is possible, but we found it not to be helpful in this
setup.
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Figure 3. Efficiency of various SNF architectures, determined as the error ∆f times the square
root of the number of stochastic blocks, for 16× 8 lattices (left-hand-side panel) and 64× 8 lattices
(right-hand-side panel). Training time and measurements cost for the deterministic layers in SNFs
are not taken into account.

of sampling p(φ), possibly because of a more difficult training. This occurs both for convo-
lutional and fully connected neural networks, as shown in figure 4 for the data at nsb = 0:
we also add that with the shallow representations used in this setup, the latter perform
much better than the former.

Whenever stochastic layers are inserted between affine layers, the effectiveness of the
flows at fixed number of training steps6 improves in a decisive manner for flows based
on convolutional neural networks (CNN), but only slightly for fully connected networks,
so that the latter are quickly surpassed for nab > 6 by the convolutional architectures.
Interestingly, in both cases flows with larger nab seem to perform better when also nsb
grows, until a plateau is reached. For fully connected networks this plateau is reached very
quickly, as the improvement for nab > 6 is very small. On the other hand, for CNNs the
performance keeps improving even more when nab increases, especially for larger volumes:
it is also interesting to note that flows with nab = nsb seem to be more efficient than flows
with nab 6= nsb. Looking at the two insets of figure 3, this behaviour is mostly absent
for the 16 × 8 lattice, but it can be observed for the largest one (64 × 8), at least for
0 < nab < 48.

The difference in behavior for the two types of neural networks is even more striking
when the spatial size aNs is increased, as shown in figure 5. Fully connected networks show

6We note that increasing nsb also increases the time required for each training step.
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Figure 4. Comparison of ESS for stochastic normalizing flows, with fully connected neural net-
works (empty symbols) and with CNN (full symbols), for varying number of affine blocks nab and
stochastic blocks nsb. Results obtained for 16× 8 lattices at κ = 0.2, λ = 0.022. Training duration
is 104 epochs for SNFs with CNN and 5× 104 for SNFs with fully connected networks.

little to no improvement when more stochastic blocks are inserted, while CNN-based flows
improve with increasing nsb at a similar rate even for larger volumes.

We stress that the saturation effect that we observe by increasing nab for SNFs with
fully-connected networks in figures 4 and 5 is not an artifact of training procedures cut
too short: we checked that all the combinations of nab and nsb under investigation were
well in the slowly improving regime and that the ESS had already reached a plateau,
both for fully-connected networks and CNNs. As a further check, we performed longer,
independent training procedures for the smallest and largest volumes for SNFs with fully-
connected networks with nab = 24 and nsb = 6, 12, 24, 48: for a training twice as long (i.e.
after 105 epochs) we obtained values for the ESS around 1% better than those from shorter
trainings.

The neural networks s and t of eq. (4.8) used in this work can be considered shallow,
since a single hidden layer is present. However, in this setup the overall architectures are
“deep” in the sense that the number of affine blocks is relatively large (nab ≥ 6). What
we found through careful experimentation is that flows with large nab appear to be the
easiest to integrate whenever many stochastic layers are inserted. For example, flows with
deeper neural networks or less affine blocks were generally less amenable to improvements
in training when trained with many stochastic layers.

At this point we would like to use a word of caution concerning the generality of
the results obtained in this work. A complete discussion would take into account the
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Figure 5. Comparison of effective sample size for Ns×8 lattices between SNFs with fully connected
networks (empty points) and CNNs (full points), at κ = 0.2, λ = 0.022. Training duration is the
same as in figure 4.

dependence on a wide variety of factors: the architecture of affine layers (e.g. the type of
neural networks), the characteristics of stochastic layers (e.g. their position with respect to
affine layers or the Monte Carlo algorithm of choice) and the tuning of the hyperparameters.
Hardware, too, plays a role: GPUs allow for greater parallelization but, for example,
the dependence on the batch size is not obvious when both Markov-chain updates and
forward passes on affine coupling layers are performed. For these reasons, a full quantitative
comparison between normalizing flows (or SNFs) and purely stochastic evolutions, while
extremely interesting for future practical applications, is beyond the scope of this work.
Furthermore, including the training time in the overall effort to reach a given error on f is
not completely straightforward. Only neural networks strictly need a training procedure to
work properly, while for purely stochastic evolutions a reasonably efficient protocol can be
set manually. We limit ourselves to observe that in the standard and stochastic normalizing
flows used in this work the training time was of the order of hours. This is not negligible
at all when compared with the time needed to perform Nmeas = 2 × 105 measurements,
which ranges from seconds for flows containing zero or few stochastic layers, to at most a
few minutes for flows with nsb > 100.

4.3 Scaling with the volume

It is interesting to investigate the effects of an increase in the spatial volume of the lattice:
heuristically, the target distribution becomes more sharply peaked and thus a better train-
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Figure 6. Comparison of effective sample size for Nt = 8 lattices between purely stochastic
evolutions (light colors) and SNFs with CNNs and nab = 24 (dark colors) as a function of nsb, at
κ = 0.2, λ = 0.022.

ing and/or a more expressive flow are needed in order to reach the same effectiveness in
sampling p(φ). Before looking at the results, we remind that the number of training steps
for SNFs with CNNs is equal to 104 for all the volumes investigated in this work.

For what concerns purely stochastic evolutions, a simple strategy allowing to sam-
ple larger volumes as effectively as smaller ones consists in increasing the number of
Monte Carlo updates of the protocol. Intuitively, the corresponding transformation be-
comes closer and closer to a reversible one, i.e. a transformation in which every interme-
diate point is (almost) at equilibrium. This can be seen in figure 6, where for all volumes
the effective sample size grows with nsb.

The question is whether this strategy can be implemented structurally for stochastic
normalizing flows as well. As we already pointed out, an improvement in the effectiveness
of SNFs can be obtained simply adding deterministic and stochastic blocks in an equal
manner, roughly keeping nab = nsb and alternating one block of even-odd affine layers
with one block of even-odd Monte Carlo updates. This can be easily seen for all the
volumes under study by looking at figure 6: for nsb = 0 the ESS is essentially zero except
for the smallest volume, but for nsb > 0 it grows quickly for all values of Ns (with Nt left
fixed) until reaching the point nab = nsb = 24; after that, no improvement is observed if
nsb increases. In order to further improve a flow then, nab must be increased as well: when
nab = nsb the value of the ESS for all volumes steadily increases, as shown in figure 7.

We would like to note again that these results are obtained when the training of
all architectures under consideration was already well inside the slowly-improving regime.
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Figure 7. ESS comparison for Ns×8 lattices between CNN-based SNFs with nsb = nab, at κ = 0.2,
λ = 0.022.

Even increasing the training duration by a factor 5 (i.e. to 5×104 epochs) the improvement
in the quality of the training is absent (for smaller values of nab) or very limited (around
1% increase in the ESS for nab = 48) both for the smallest and largest volumes under
study: most importantly, the general behaviour previously observed when increasing nsb
and nab still holds.

Naively, larger lattices allow for smaller errors, as averaging over bigger volumes is
akin to having increased statistics. However, as we remarked above, the target distribution
p(φ) is more difficult to sample on larger volumes, so it is interesting to investigate the
effort required to obtain the same effectiveness when changing the lattice spatial size. In
figure 8 we study the error reduction with respect to Ns = 16, when increasing nsb either
for stochastic evolutions, or for SNFs with nab = 24 affine blocks. In the first case, the
naive error reduction is reached around nsb = 300 for Ns = 32 and 48, while for Ns = 64
a protocol with nsb = 500 might not be sufficient yet. For SNFs the situation is rather
different though, as the expected gain is already reached for nsb = 24, which, as discussed
above, is the most efficient setup for nab = 24. This could indicate that for these flows
the increase in volume can be compensated more easily than by simply increasing nsb in
purely stochastic evolutions.

4.4 Exploring the parameter space

In order to consolidate the results obtained for κ = 0.2 and λ = 0.022, we explore further the
unbroken symmetry phase of the model by changing both target parameters. The trends
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Figure 8. Error ∆f of the free-energy density for Ns × 8 lattices normalized to the error for a
16× 8 lattice, for different flows at κ = 0.2, λ = 0.022 and with Nmeas = 2× 105. Horizontal lines
show the error decrease that is expected considering only the volume averaging.

that we observe in figure 9 are fully compatible with those discussed previously in this
section, namely the saturation of the ESS whenever nsb > nab and the clear improvement
in the quality of the flows if both the number of affine and stochastic blocks are increased
while being kept equal.

A word of caution is in order concerning the extrapolation of these results in any
point of the parameter space, in particular in the vicinity of the transition to the broken
symmetry phase. A different kind of SNF architectures might be needed to reproduce the
same trends observed in this section.

5 Conclusions and future prospects

In this manuscript we have made explicit the connection between normalizing flows and
non-equilibrium Monte Carlo calculations based on Jarzynski’s equality (“stochastic evo-
lutions”), which becomes apparent when both are used for the determination of the free
energy F . In general, stochastic evolutions by themselves represent an efficient method to
sample a target distribution and to directly evaluate the partition function Z: they provide
a novel framework to compute expectation values in lattice field theory from first principles
and represent a viable alternative to the traditional Monte Carlo approach. In Markov-
chain Monte Carlo simulations, measurements are performed on subsequent equilibrium
configurations that are part of the same Markov chain, thermalized according to the target
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Figure 9. ESS comparison for 16× 8 lattices between CNN-based SNFs with nsb = 24 (left panel)
and nsb = nab (right panel), for different values of the target parameters.

coupling(s). The cost of generating a new configuration is as low as the application of a
single update on a lattice. However, configurations belonging to the same Markov chain
are correlated with each other, reducing the number of effectively independent configura-
tions, and this problem can become potentially severe in the proximity of critical points;
in addition, every new set of couplings requires a new chain to be thermalized again. By
contrast, in stochastic evolutions, each measurement is independent from the others, but
involves several Monte Carlo updates that “interpolate” from the prior distribution to the
distribution defined by the target coupling(s). The computational cost of this might seem
very high at first, due to the relatively large number of Monte Carlo updates needed for
convergence. However, it is crucial to note that, as a byproduct of this procedure, all
intermediate couplings can be sampled at the same time. It is then clear that this method
is particularly suitable when a fine scan of the parameter space of a theory is required. A
typical example is the study of thermodynamics in strongly interacting quantum field the-
ories. Indeed, a full-scale numerical study using this approach has already been reported:
it is the high-precision computation of the equation of state in the SU(3) Yang-Mills theory
in 3 + 1 dimensions [27]. In that case, the only parameter changed by the protocol is the
inverse coupling β, which in turn also controls the temperature of the system. The major
difference with respect to the stochastic evolutions used in this work is that the generator
of starting configurations was not a treatable (e.g. normal) prior distribution, but a dis-
tribution obtained from a Markov chain thermalized at a certain value β0 of the inverse
coupling.

We also showed that a common framework can describe in a natural way both stochas-
tic and normalizing flows, following the work of ref. [96] and expanding it so to explic-
itly include stochastic transformations based on Jarzynski’s equality. The construction of
stochastic normalizing flows is a direct consequence of this connection: a “hybrid” flow
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combining deterministic and stochastic transformations proved to be highly efficient at
sampling the target distribution, with relatively simple and short training procedures and
a limited number of Monte Carlo updates. Our previous work on stochastic evolutions
suggested that increasing the number of intermediate steps, while expensive per se, is an
efficient way of improving the effectiveness of the flow, and this is confirmed by the numer-
ical tests performed in this work. However, it was not clear whether this strategy would
work at all for stochastic normalizing flows. Interestingly, this proved to be true also in the
latter case and with surprisingly high efficiency. We stress though, that this was observed
in a rather specific setup in which a) affine blocks based on CNNs are used, b) stochastic
and affine blocks are placed in an alternating order, and c) the number of stochastic and
affine blocks is increased roughly in the same manner.

The strong similarities between purely stochastic evolutions and SNFs suggest that
the success of the former in full-scale numerical calculations can be replicated with the
latter using similar strategies. Moreover, due to the existence of an explicit protocol deter-
mined by the stochastic updates, the role of intermediate affine layers can be interpreted
straightforwardly. As pointed out above, each stochastic layer can be used to sample the
intermediate parameters defined by the protocol η(t): the (deterministic) affine layers in-
serted between them are then trained to “glue” together the various steps of the protocol
without resorting to further (generally more expensive) intermediate Monte Carlo updates.

Before concluding, we would like to point out that the training of SNFs is not necessar-
ily more efficient in general. A standard normalizing flow is intuitively more “free” to seek
the best possible path between the prior and the target distributions. On the other hand,
stochastic normalizing flows are “constrained” by the protocol chosen for Monte Carlo up-
dates; these intermediate steps happen at fixed values in the parameter space of the theory,
which the training is “forced” to go through. Naively, one could expect that a standard nor-
malizing flow will eventually outperform a stochastic one, given the same neural-network
architecture; however, this might not happen in a reasonable training time, and a fixed
protocol might lead in some instances to a faster training. More work is needed, for exam-
ple, to understand how the training times needed by SNFs to reach a plateau in the loss
function behave when changing the volume of the system.

Among possible directions of future work, our primary interest is to study the effective-
ness of SNFs in systems close to criticality, in order to develop the most suitable strategy
for SNFs in this region of the parameter space of a theory. More generally, an analysis of
the interplay between Monte Carlo updates and different types of neural-network architec-
tures would be highly insightful and could help one understand what exactly the neural
networks are learning when “coupled” to Monte Carlo algorithms in this way. Natural
extensions of this work include the use of convolutional architectures for gauge equivariant
flows [87, 88], rational quadratic splines [91] and continuous equivariant flows [94].
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A Derivation of Jarzynski’s equality for Monte Carlo algorithms

We first set our notation. For a system in thermodynamic equilibrium at temperature T ,
the statistical distribution of the φ configurations is the Boltzmann distribution π:

π[φ] = 1
Z

exp (−H[φ]/T ) . (A.1)

The partition function Z is related to the free energy F via

Z = exp (−F/T ) . (A.2)

Let P [φ→ φ′] denote the normalized conditional probability of a transition from a configu-
ration φ to a configuration φ′ which defines the Markov-chain algorithm of the Monte Carlo
simulation under consideration. At equilibrium, the Boltzmann distribution has to be sta-
tionary: the probability that the system evolves from some configuration φ to a given
configuration φ′ must be equal to the probability that it evolves from φ′ to some other
configuration, i.e. ∑

φ

π[φ]P [φ→ φ′] =
∑
φ

π[φ′]P [φ′ → φ]. (A.3)

A sufficient (albeit not necessary) condition to enforce the validity of eq. (A.3) is to assume
that the summands, not only the sums, are equal:

π[φ]P [φ→ φ′] = π[φ′]P [φ′ → φ], (A.4)

i.e. the detailed-balance condition.
Let us consider an out-of-equilibrium evolution of the system during the time interval

from tin to tfin, denoting the tfin− tin difference as ∆t, and assuming that this time interval
is divided into N subintervals (which we take to be of equal width τ = ∆t/N , for the sake
of simplicity), setting tn = tin + nτ for integer 0 ≤ n ≤ N . We identify the discrete time
steps tn with the steps in Monte Carlo time in a Markov-chain algorithm.

Finally, let us introduce the quantity RN [φ] defined as

RN [φ] = exp
(
− 1
T

N−1∑
n=0

{
Hηn+1 [φn]−Hηn [φn]

})
, (A.5)

which represents the sum of the exponentiated work (divided by T ) done on the system
during each of the time intervals of width τ , when the couplings are switched from ηn to
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ηn+1. In the N →∞ limit, RN [φ] tends to the quantity that is averaged over on the right-
hand side of eq. (2.1). Using eq. (A.1), RN [φ] can be rewritten in terms of the Boltzmann
distribution as

RN [φ] =
N−1∏
n=0

Zηn+1πηn+1 [φn]
Zηnπηn [φn] , (A.6)

so that the average of eq. (A.6) over all possible trajectories from tin to tfin can be written as

exp (−W/T ) = lim
N→∞

∑
{φn}Nn=0

πηin [φ0]
N−1∏
n=0

{
Zηn+1

Zηn
·
πηn+1 [φn]
πηn [φn] · Pηn+1 [φn → φn+1]

}
,

(A.7)
having used the fact that the system is initially in thermal equilibrium, hence the probabil-
ity distribution for the configurations at t = tin is given by eq. (A.1), and having denoted
the N + 1 sums over configurations at tin, t1, t2, . . . , tN−1, tfin as∑

{φn}Nn=0

=
∑
φ0

∑
φ1

∑
φ2

· · ·
∑
φN−1

∑
φN

. (A.8)

The product of ratios of partition functions in eq. (A.7) simplifies to Zηfin/Zηin . Moreover,
using eq. (A.4), the sum appearing on the right-hand side of eq. (A.7) can be rewritten as

exp (−W/T ) = Zηfin
Zηin

lim
N→∞

∑
{φn}Nn=0

πηin [φ0]
N−1∏
n=0

{
πηn+1 [φn+1]
πηn [φn] · Pηn+1 [φn+1 → φn]

}
.

(A.9)
In the latter expression, the ratios of Boltzmann distributions simplify to πηfin [φN ] /πηin [φ0],
which, in turn, simplifies against the πηin [φ0] factor:

exp (−W/T ) = Zηfin
Zηin

lim
N→∞

∑
{φn}Nn=0

πηfin [φN ]
N−1∏
n=0

Pηn+1 [φn+1 → φn] . (A.10)

The sum over the initial configurations can be performed explicitly, as φ0 appears only
in the Pη1 [φ1 → φ0] term, and the result is 1, due to the normalization of the condi-
tional transition probability. Next, the same argument can be repeated to sum over the
φ1, φ2, . . . , φN−1 configurations. Finally, noting that also πηfin [φN ] is normalized to 1, one
obtains

exp (−W/T ) = Zηfin
Zηin

, (A.11)

which is eq. (2.1).
We remark that, although in this proof we used the Boltzmann distributions at all

times tin ≤ t ≤ tfin, we did this only to re-express the exp(−H/T ) terms appearing in
eq. (A.5). The configurations φn at t > tin are not in thermal equilibrium. Moreover, for
simplicity, we assumed the temperature T to be constant throughout the evolution of the
system along each trajectory, but this does not necessarily have to be the case [24].
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