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Abstract 
 
International sharing of cohort data for research is important and challenging. We explored 

the feasibility of multi-cohort federated analyses by examining associations between three 

pregnancy exposures (maternal education, exposure to green vegetation and gestational 

diabetes) with offspring BMI from infancy to 17 years. We used data from 18 cohorts 

(n=206,180 mother-child pairs) from the EU Child Cohort Network and derived BMI at ages 

0-1, 2-3, 4-7, 8-13 and 14-17 years. Associations were estimated using linear regression via 

one-stage IPD meta-analysis using DataSHIELD. Associations between lower maternal 

education and higher child BMI emerged from age 4 and increased with age (difference in 

BMI z-score comparing low with high education age 2-3 years = 0.03 [95% CI 0.00, 0.05], 4-

7 years = 0.16 [95% CI 0.14, 0.17], 8-13 years = 0.24 [95% CI 0.22, 0.26]). Gestational 

diabetes was positively associated with BMI from 8 years (BMI z-score difference = 0.18 [CI 

0.12, 0.25]) but not at younger ages; however associations attenuated towards the null when 

restricted to cohorts which measured GDM via universal screening. Exposure to green 

vegetation was weakly associated with higher BMI up to age one but not at older ages. 

Opportunities of cross-cohort federated analyses are discussed. 
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Introduction 

 

Prospective cohort studies contribute to important research questions, but they are resource 

intensive. Over recent decades, international funders and cohort data custodians have 

emphasised the importance of data sharing [1-4]. This provides economic efficiency, enables 

replication and triangulation of findings across different studies, increases the period of the 

life course that can be studied for repeated measures, and increases statistical power 

particularly for rare outcomes.  

 

To meet this challenge, the EU Child Cohort Network (EUCN) has been created to address 

key research questions about the associations of early life stressors with health from infancy 

to adulthood [5, 6]. The EUCN is an open and sustainable network of 17 birth cohorts across 

12 countries in Europe and Australia comprising more than 250,000 participants. In addition 

to increasing power and supporting replication, this network contains extensive repeated-

measured data and thus enables researchers to explore how associations might differ across 

the life course.  

 

The aim of this paper is to use the EUCN to explore the feasibility of multi-cohort federated 

analyses (‘federated’ describes the analysis of multiple datasets) by examining associations 

between different pregnancy exposures and offspring BMI from infancy to 17 years. BMI 

was chosen as a suitable outcome for this proof-of-concept study as reducing childhood 

overweight and obesity is a major global public health challenge and it is hypothesised that 

higher BMI starts to be ‘programmed’ in intrauterine and early infancy [7, 8]. Furthermore, 

as weight and height are often measured at repeated time points it provides an opportunity to 

investigate potential changes in exposure-BMI associations at different ages across the life 

course.  
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We chose three pregnancy exposures which were hypothesised to influence offspring BMI 

and that would be useful to illustrate different challenges in federated analyses (e.g. 

harmonisation and missingness): (i) maternal education, (ii) exposure to green vegetation and 

(iii) gestational diabetes (GDM). We chose maternal education as  an example of a 

categorical variable with low levels of missing data in EUCN for which there is extensive 

previous research on associations with BMI. We chose exposure to green vegetation as a 

continuous, area-based variable, with high levels of missing data because of some cohorts in 

EUCN not having geographic data. Finally, we chose GDM as a categorical variable 

harmonised from diverse sources of information (e.g. retrospective self-report, health record 

extraction and diagnosis made on the basis of results from blood samples). The exposures are 

briefly summarised below. 

 

Maternal education. Socioeconomic position (SEP) is a complex exposure encompassing 

several different domains of family resources with maternal education at birth a commonly 

used indicator. Lower maternal education birth is associated with higher child BMI in 

medium and high-income countries [9-14]. SEP likely influences childhood BMI through 

exposure to an obesogenic environment [15-17]. Whilst studies have consistently found lower 

family SEP to be associated with higher child BMI, evidence regarding the age at which these 

inequalities emerge and the course they take is not consistent. [9-13, 18, 19].  

 

Residential Proximity to green space. Maternal availability of green spaces could influence 

offspring BMI via increased physical activity during pregnancy, stress reduction or reduced 

exposure to pollution [20, 21]. Some studies have reported that higher postnatal exposure to 

green spaces is associated with lower BMI, but evidence is not conclusive [22-24]. Whilst 
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increased prenatal exposure to green spaces has been consistently associated with higher birth 

weight [25, 26], little is known about associations with BMI at older ages [27].  

 

Gestational Diabetes Mellitus (GDM, defined as hyperglycaemia in pregnancy) [28] is 

robustly associated with higher mean birth weight and large for gestational age  [29-32]. 

Higher birth weight is in turn associated with higher future offspring BMI, fat mass and lean 

mass [33, 34] thus it has been proposed that intrauterine fetal overgrowth related to higher 

maternal circulating glucose may result in lifelong higher offspring BMI [35, 36]. However, 

few studies have explored whether any association of GDM with offspring BMI changes as 

the offspring age. This is important as a lasting effect into older age and/or an increasing 

effect across both childhood and adulthood might lead to higher risk of adverse adult 

cardiometabolic outcomes than association limited only to childhood [37].  

 

The aims of this study therefore were to explore the feasibility of multi-cohort federated 

analyses by examining associations between three pregnancy exposures (maternal education, 

green spaces and GDM) and BMI measured at 5 age periods across childhood. We 

hypothesised that those whose parents had lower educational attainment, and those exposed 

in-utero to maternal gestational diabetes would have higher BMI. As evidence for the 

association of maternal gestational access to green space and offspring BMI is limited we had 

no specific hypothesis for the association.  

 

Methods 

Inclusion criteria and participating cohorts 

Pregnancy and birth cohort studies from the ECCN were eligible to participate if they (i) had 

information on at least one of the four exposures and BMI measured at a minimum of one 
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time point, (ii) the study was approved by their institutional review boards, and (iii) the 

infrastructure for federated analysis was established. Further details of each cohort can be 

found in Jaddoe et al. [5] and each cohort’s profile paper. All 17 core cohorts were invited, 

plus two additional cohorts from the wider LifeCycle network which had harmonised data 

available (The Amsterdam Born Children and their Development cohort, ABCD [38] and The 

Healthy Growth Study, HGS) [39]. Of these 19 studies, 18 were able to participate (the 

Helsinki Birth Cohort Study was unable to participate as they had not implemented the 

required infrastructure; Table 1). The analysis sample thus consisted of these 18 cohorts with 

a maximum sample size of n = 206,180 (Figure 1). All participants gave written informed 

consent and ethical approval was granted by local ethics boards (Web Appendix 2). The 

analysis plan can be viewed at https://osf.io/58vau/.  

 

Exposures 

Maternal education at birth 

A harmonised maternal education variable was created in each cohort based on the 

International Standard Classification of Education 97 (ISCED-97) and consisted of three 

categories: Low (No education to lower secondary; ISCED-97 categories 0-2), Medium 

(Upper and post-secondary; ISCED-97 categories 3-4), High (Degree and above; ISCED-97 

categories 5-6) [40]. Data was available in all cohorts. 

 

Green spaces 

Exposure to green space during pregnancy was captured using Normalized Difference 

Vegetation Index (NDVI) within a 300m buffer from the residential address using 

Geographic Information System approaches previously described [41]. NDVI (range 0-1) 

quantifies vegetation by measuring the difference between near-infrared and red-light 
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reflection based on satellite imagery. Extremely low values (0 - 0.1) indicate areas of barren 

rock, sand or snow; moderate values (0.2 - 0.5) indicate sparse vegetation such as shrubs and 

grasslands, whilst high values (0.6 - 1) indicate dense vegetation [42]. Data was available for 

nine cohorts (ALSPAC, BiB, DNBC; EDEN; GEN R; INMA; MoBa, NINFEA, Rhea). 

 

Gestational diabetes 

A binary variable indicating the presence or absence of evidence for GDM was harmonised 

for each cohort based either on extraction from clinical records or maternal self-report (Web 

Table 1). Data was available for all cohorts except HGS, NFBC66 and NFBC86. For most of 

the included cohorts at the time of pregnancy no universal diagnostic test was used, meaning 

that selective misclassification of some women with GDM being treated as ‘healthy’, 

particularly if they had no clear risk factors for GDM, is possible. To test this, we performed 

a sensitivity analysis only in those studies in which all women in the sample had a blood 

measure of hyperglycaemia, including HbA1c, fasting or random glucose, oral glucose 

challenge or tolerance test (BiB & Eden).  

 

Outcome 

The outcome was offspring BMI z-scores based on either clinic or parental reported height 

and weight measurements (Web Table 2). Sex-and-age specific z-scores were calculated per 

month for BMI using external WHO standards [43] and references [44] excluding 

observations ±5 standard deviations from the population median. Separate BMI z-scores were 

calculated for five age periods defined a priori: (i) 0 to 1 years, (ii) 2 to 3 years, (iii) 4 to 7 

years, (iv) 8 to 13 years, (v) 14 to 17 years. These represent key developmental periods of 

change (early infancy, pre-school, adiposity rebound, puberty and late adolescence). Only 

one measurement per child was included within each period; therefore if children had more 
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than one measurement within an age bracket we used the earliest. A summary of the number 

of observations provided by each child is provided in Web Table 3. 

 

Confounders 

We defined confounders as any factor that plausibly causes the exposure and offspring BMI, 

and used Directed Acyclic Graphs (DAGs) to depict these and determine whether there was 

any evidence of colliders that we should not adjust for (Web Figure 1). All confounders were 

assessed via self-report except pre-pregnancy BMI which was based on either self-report or 

clinical measurements of weight and height. For analyses of maternal education with 

offspring BMI no confounders were included as we did not identify plausible causes of 

variation in both maternal education and offspring BMI. For analyses with NDVI as exposure 

we adjusted for maternal education, area deprivation and parity. For analyses with GDM as 

the exposure we adjusted for maternal education, maternal age at birth (years), maternal pre-

pregnancy BMI (kg/m
2
), parity (nulliparous, multiparous) and maternal smoking during 

pregnancy (yes/no). In addition, all analyses were adjusted for cohort, child sex and age at 

weight and height measurements (months) to improve statistical precision. All cohorts had 

some available data on the above confounders. Maternal ethnicity also fit our definition of a 

confounder for all exposures but was only available (defined as Western vs other) in 8 of the 

17 cohorts (ABCD, ALSPAC, BiB, ELFE, GECKO, GEN-R, INMA & Raine; maximum N = 

45,601 representing 22% of the 206,180 participants). In a sensitivity analyses we repeated 

all analyses in this subset of cohorts with additional adjustment for ethnicity. 

 

Federated analyses using DataSHELD 

All analyses were performed using DataSHIELD version 6.1.0 and R version 3.5.2 [45]. 

Briefly, each participating cohort stored their harmonised data on a local server protected by 
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a firewall. Researchers granted permission to access the data use DataSHIELD to conduct 

remote analysis of individual participant data. DataSHIELD provides data security by 

preventing researchers viewing, copying or transferring any data. Instead, analysis commands 

are performed on each server and only non-disclosive summary statistics returned to the 

researcher. 

 

The functionality available within DataSHIELD is continually being developed, however at 

the time of writing mixed effects models were not available. Therefore, associations between 

each exposure and BMI at each age period were tested using linear regression and one-stage 

Individual Participant Data (IPD) meta-analysis. For each exposure we fit five separate 

regression models where the outcome was child BMI z-score calculated within each age 

period as described above. All regression models included a dummy variable for cohort and 

were adjusted for confounders as described above. To explore potential selection bias (due to 

each cohort contributing different data at different ages), we repeated all analyses restricting 

the sample to the subgroup of participants with data at the oldest age. We also repeated 

analyses using two-stage IPD random effects meta-analysis to describe estimates within each 

cohort and explore between-cohort heterogeneity. We also assessed the influence of two large 

cohorts (DNBC & MoBa) by repeating analyses with these cohorts excluded.  

 

Missing data 

The analysis sample consisted of participants with available data on at least one exposure and 

BMI in at least one outcome period. There were minimal differences between participants in 

the analysis sample and those excluded, except included participants were of slightly lower 

education and had lower rates of smoking in pregnancy (Web Table 4). Multiple imputation 

was also not available within DataSHIELD, therefore missing data were handled through 
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complete case analysis, with the percentage of participants who were complete cases ranging 

from 6% to 65% of eligible participants from all cohorts combined; the proportion with 

complete data decreased with increasing age (Web Table 5). In addition to attrition across all 

cohorts, one reason for the low percentage of complete cases in the oldest age bracket was 

that for one of the largest cohorts (DNBC) only a small percentage of children had reached 

this age at the time of analysis. Estimates from linear regression models using complete cases 

are unbiased if the chance of being missing is not associated with the outcome after adjusting 

for covariates [46]. To explore this assumption, for each exposure-outcome analysis we 

derived a variable indicating whether each participant had complete data. We then regressed 

this variable on child BMI adjusting for non-missing covariates (Web Figure 2). For all 

exposures, associations between BMI at all ages and the chance of having complete data were 

close to null.  

 

Results 

Participants’ characteristics 

The number of participants included in analyses ranged from 206,180 (maternal education 

and BMI ages 0-1) to 7,096 (NDVI & BMI at ages 14-17). There were large differences 

between cohorts in the education level of mothers, with MoBa and NINFEA containing 

mostly highly educated mothers whilst BiB, NFBC66 and Raine contained mothers with 

lowest levels of education (Figure 2a). INMA, NINFEA and Rhea had the lowest values for 

NDVI indicating exposure to lower levels of vegetation (Figure 2b). There was marked 

heterogeneity between cohorts in estimated rates of GDM (e.g.  Gen-R = 0.8%, NINFEA = 

8.1%; Figure 2c). Cohort-specific information on covariates and child BMI, height, weight 

and age at measurement are shown in Web Tables 6-10.  
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Associations between pregnancy exposures and child BMI 

Figures 3-5 show associations between each exposure and BMI z-scores within each age 

period. At ages 0-1 and 2-3 years associations between maternal education and BMI were 

close to null; however, at older ages a consistent pattern emerged with lower maternal 

education associated with higher childhood BMI (Figure 3). There was some evidence of a 

linear relationship as the magnitude of the association increased across categories of maternal 

education. Associations at earlier ages were slightly weaker when restricting analyses to the 

subgroup of participants with data at the oldest age. Results were similar using 2-stage IPD 

(Web Figures 3a & 3b), and whilst there was considerable heterogeneity between cohorts (I
2
 

range 0-92%) the direction of association was largely consistent.  

 

At ages 0-1 higher NDVI in pregnancy was associated with slightly higher BMI, however at 

older ages associations were close to null (Figure 4). Repeating analyses using 2-stage IPD 

showed considerable heterogeneity between cohorts (I
2
 range 0-66%): for example at age 2-3 

higher NDVI was associated with higher BMI in BiB but lower BMI in Rhea (Web Figure 4).  

 

Between ages 0-7 associations between GDM and childhood BMI was close to null; however 

at ages 8-13 GDM was associated with higher BMI (Figure 5). Associations at all ages, 

except 0-1, were stronger when restricting to the subgroup of participants with data at the 

oldest age. These results were replicated using 2-stage IPD with 10 out of 13 cohorts showing 

a positive association at ages 8-13 (I
2
 = 0 – 78%; Web Figure 5). At ages 14-17 associations 

attenuated towards null, however within this age period only three cohorts had available data.  

 

Sensitivity and subgroup analyses 
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To test for potential confounding by indication, we repeated analyses for GDM comparing 

cohorts where assessment was via a universal blood-based glucose test vs self-report or non-

universal test, and found estimates to be lower for the two cohorts that used a universal 

blood-based test (Web Table 11). We additionally adjusted for ethnicity in the subset of up to 

45,601 participants with available data, which attenuated associations of maternal education 

towards the null (Web Table 12). Finally we repeated analyses removing the two largest 

cohorts (DNBC and MoBa; Web Table 13), however this did not change the direction of any 

associations or markedly change their magnitude.  

 

Discussion 

In this IPD meta-analysis of 18 cohort studies with a maximum sample of 206,180 children 

we explored the feasibility and utility of multi-cohort federated analysis by examining 

associations between key pregnancy exposures and BMI across childhood. We found 

consistent evidence that lower maternal education was associated with increased childhood 

BMI. Replicating and extending previous research [10-13, 18], we found this association to 

emerge from ages 4-7 and increase in magnitude with age. Consistent with previous studies 

showing a positive association between exposure to green vegetation and birthweight [26, 27, 

48, 49], we found that higher NDVI was associated with slightly higher BMI in the first year 

of life; although associations at older ages were close to null. We also found evidence that 

GDM was associated with higher child BMI at ages 8-13 but not at younger ages.  

 

Opportunities and challenges of federated data analysis 

Data harmonisation 

In the EU Child Cohort Network[5], we were interested in average associations across studies 

that were largely from different European countries, with a small number of studies from 
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other high-income countries (e.g. Australia). As such a substantial effort was made to 

harmonise data across all contributing studies [5, 6]. Data harmonisation is also commonly 

undertaken in non-federated analyses, therefore the opportunities and challenges discussed 

herein will have relevance to other analysis attempting to estimate average associations 

across studies using consistent data.  

 

Individual participant pooling of studies (whether federated or not) provides the opportunity 

to increase statistical power and obtain more precise estimates than any single cohort, and to 

explore robustness of associations by examining consistency (replication) across independent 

populations. However, harmonisation of data assessed in different ways and to different 

levels of detail can result in between study heterogeneity that could complicate interpretation 

of results. For example, if different studies have used different methods for a binary variable, 

there may be different levels of misclassification between studies that are disguised by the 

harmonised binary variable.  

 

As noted in the methods and results above, this was a concern for the harmonised GDM 

variable. For most studies this was assessed via self-report, in populations where policy 

dictated diagnostic tests were only done in those with risk factors at the first antenatal clinic 

visit, which could introduce confounding by indication. To explore this, we undertook a 

sensitivity analysis comparing pooled results from the two studies that had diagnosed GDM 

in all women using a blood-based measure of circulating glucose to those from remaining 

studies. The finding of a weaker association in those with the universal blood test suggests 

that our concerns regarding confounding by indication may be valid. Whilst the harmonised 

binary variable can contain all data from all of the studies, we would recommend that other 
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pooled individual participant studies undertake similar subgroup analyses where different 

methods have been used to assess a harmonised variable.  

 

A further challenge with data harmonisation is the loss of information through having to 

harmonise to the study with least detail for each measure, which could increase the risk of 

residual confounding. For example, in the present study maternal education was harmonised 

into three categories from the more granular detail available within many of the cohorts, and 

similarly maternal smoking in pregnancy was harmonised to yes versus no, when several 

studies had more detailed measures on amount and timing of smoking (e.g. if a women had 

smoked periconceptually and quit before pregnancy). Thus, the associations of GMD with 

offspring BMI might be influenced by residual confounding due to this ‘lowest common 

denominator’. SEP might be expected to confound away from the null, but as smoking results 

in lower BMI [47], it might mask an association (confound towards the null). As there are 

many different measures across the studies for both maternal education and smoking, to 

explore the possible effect of this in subgroups would result in groups with small numbers for 

which robustly identifying between subgroup heterogeneity would be difficult and counter 

one of the key benefits of larger sample sizes.  

 

Available analytic methods 

A key opportunity of federated analysis is the ability to analyse data from multiple cohorts 

without the need for data transfer. This minimises the administrative burden of data transfer 

agreements and governance issues related to physical data sharing. In contrast to the 

traditional approach (where researchers from separate institutions run analyses which are then 

meta-analysed by a central group), the federated approach is more time efficient and flexible 

as one researcher can perform all analyses and combine results. However, a limitation with 
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DataSHIELD is that only a small subset of R packages are available so far, as any new 

packages need to be integrated and tested to ensure that disclosure risk is minimised. 

 

Whilst many R packages are now implemented in DataSHIELD (e.g. Metafor) [48], at the 

time of analysis two methods were not available: multiple imputation and mixed effects 

models. In the absence of multiple imputation we used complete case analysis which in some 

scenarios carries the risk of bias [47]. To explore potential selection bias due to attrition and 

cohorts differentially contributing data to different analyses, we repeated analyses restricting 

to the subgroup of participants with data at the oldest age period. For analyses with maternal 

education as the exposure we found lower estimates in this subgroup at earlier ages which 

may suggest potential selection bias with results at the older age being underestimated. By 

contrast, for analyses with gestational diabetes as the exposures we found stronger estimates 

at earlier ages suggesting that estimates at older ages may be overestimated. Where complete 

case analysis is used, we therefore suggest that at at minimum authors fully describe missing 

data, consider its likely mechanisms and explore the potential for bias where possible.  

 

The unavailability of mixed effects models meant that we were not able to explore 

associations with change in BMI as offspring aged in a way that accounted for correlation 

between repeat measures. Mixed effects models would also have enabled us to use all 

available data from participants with at least one measure of BMI, under a missing at random 

assumption [49, 50]. Notwithstanding, our results for example with maternal education are 

broadly similar to models which did use trajectory analysis, i.e. showing widening 

inequalities [12]. DataSHIELD is a continually evolving project, and the implementation of 

other new methods is underway. 
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Summary & future implications 

In this multicohort study with 18 cohorts and up to 206,180 participants we have illustrated 

potential scientific gains of collaboration and data sharing between international birth 

cohorts. We have demonstrated how federated analysis using DataShield with cohorts from 

the ECCN provides opportunities to tackle research questions with increased statistical power 

and the ability to explore consistency (replication) across independent studies without the 

need to share data. We acknowledge and demonstrate the possibility of bias and residual 

confounding resulting from harmonising data across multiple cohorts and the limitations that 

result from federated data platforms, i.e. not having more advanced data analysis methods. 

Whilst we have focused here on DataShield, we expect that other federated analysis platforms 

will similarly focus on straightforward descriptive and generalised regression models as more 

advanced methods are added to the platform.  
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Table 1: Summary of cohort characteristics 
Cohort 

name 

Country City/area Design No. of 

included 

children 

Birth year(s) Age range 

of included 

children 

(years) 

ABCD Netherlands Amsterdam Prospective 6152 2003 - 2004 0 - 12 

ALSPAC United Kingdom Greater Bristol Prospective 10499 1991 - 1992 0 - 17 

BiB United Kingdom Bradford Prospective 13400 2007 - 2011 0 - 10 

CHOP Germany, 

Belgium, Italy, 

Poland, Spain 

Munich, Nuremberg, 

Liege, Brussels, Milano, 

Warsaw, Reus, Tarragona 

Prospective 1669 2002 - 2004 

0 - 11 

DNBC Denmark Greater Copenhagen Prospective 77534 1996 - 2002 0 - 18 

EDEN France Nancy & Poitiers Prospective 1765 2003 - 2005 0 - 12 

ELFE France  Prospective 17926 2011 0 - 9 

GECKO Netherlands Drenthe Prospective 2748 2006 - 2007 0 - 11 

Gen-R Netherlands Rotterdam Prospective 8680 2002 - 2006 0 - 10 

HGS Greece Attica, Etoloakarnania, 

Thessaloniki, Iraklion 

Cross-

sectional
a
 

2570 1994 - 2000 

10 - 14 

INMA Spain Gipuzkoa, Sabadell, 

Valencia 

Prospective 1918 2003 - 2008 

0 - 11 

MoBa Norway  Prospective 85589 1999 - 2008 0 - 13 

NFBC66 Finland  Prospective 7709 1966 0 - 16 

NFBC86 Finland  Prospective 7315 1985 - 1986 0 - 16 

NINFEA Italy Florence, Rome, Turin Prospective 6532 2005 - 2016 0 - 14 

Raine Australia Perth Prospective 2548 1989 - 1992 1 - 17 

Rhea Greece Crete Prospective 1002 2007 - 2008 0 - 12 

SWS United Kingdom Southampton Prospective 3012 1998 - 2007 0 - 10 

Abbreviations: ABCD, Amsterdam Born Children and their Development; HGS, Healthy 

Growth Study. 
a
Information on early life exposures collected retrospectively. 
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Figure 1: Flow chart of cohorts and participants. Signed agreements received and 

DataSHIELD access credentials provided. Signed agreements received and DataSHIELD 

access credentials provided.  

 

 

Figure 2: Exposure descriptive statistics 

2a: Maternal education: dark blue = low education, teal = medium education, yellow = high 

education, orange = missing 

2b: Normalised Difference Vegetation Index 

2c: Gestational diabetes: dark blue = no pregnancy diabetes, teal = pregnancy diabetes, 

orange = missing 

 

No data was available on gestational diabetes for CHOP as this was an exclusion criterion for 

entry into the study. For all other studies, figures are blank where the exposure is entirely 

missing. Values for NDVI represent median and interquartile range. NDVI = Normalised 

Difference Vegetation Index.  

 

Figure 3: Associations between maternal education at birth and child BMI z-scores using 

one-stage IPD meta-analysis.  

Models adjusted for cohort, child sex and exact age at measurement in days. Solid fill = 

maximum available sample; no fill = restricted to sample with available data at ages 14-17. 

 

Figure 4: Associations between Normalised Difference Vegetation Index in pregnancy and 

child BMI z-scores using one-stage IPD meta-analysis 

Models adjusted for cohort, child sex, exact age at measurement, maternal education, parity 

and area deprivation. Normalised Difference Vegetation Index scaled by interquartile range. 

Solid fill = maximum available sample; no fill = restricted to sample with available data at 

ages 14-17. BMI = Body Mass Index. 

 

Figure 5: Associations between gestational diabetes and child BMI z-scores using one-stage 

IPD meta-analysis 

Models adjusted for cohort, child sex, exact age at measurement, maternal education, 

maternal age at birth, pre-pregnancy BMI, pregnancy smoking and parity. Solid fill = 

maximum available sample; no fill = restricted to sample with available data at ages 14-17. 

BMI = Body Mass Index. 
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