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Chapter 1

Introduction

1.1 Motivations

Describing and modeling aeolian sand transport is very challenging because of the
presence of many contributing and influencing phenomena. Its study is not only
interesting from the pure scientific viewpoint but it is also useful in several applica-
tions. Aeolian sand transport is naturally related to desert areas made up of sand
because it modifies terrain morphology and it has a huge impact on surrounding
flora and fauna. Furthermore, climate changes contribute to the formation of new
arid area with consequent desertification. Therefore a correct understanding of this
phenomenon and its modeling becomes interesting especially for environmental sci-
ences applications. In fact, human actions over the natural environment in desert
areas show up problems related to the effect of sand over artificial infrastructures
such as buildings, agricultural fields, roads and railways. Many of these infrastruc-
tures cross very large desert areas and the interaction with sand is inescapable. The
problem of sand with artificial infrastructure is a well known issue but its definitive
solution is still far away from being found.

The development of mathematical models on aeolian sand transport and their
numerical implementations is the main purpose of this dissertation because engi-
neers need sufficiently advanced models to perform reliable numerical simulations
and hopefully to design proper mitigation solutions.

In particular, in this framework my PhD fellowship was financed by European
Commission under a project named SMaRT (Sand Mitigation Around Railway Tracks)
with the aim of identifying proper mitigation measures to protect railways in deser-
tic areas. In fact, the action of the sand over railways infrastructures in desert areas
can be catastrophic for train traffic. The same problem is shared by coastal areas
because the beach sand is moved by the wind action with a consequent interaction
with surrounding natural and artificial structures.

Besides the industrial application a proper mathematical model for aeolian trans-
port can help geomorphologists to analyze the physical mechanisms governing the
formation of sand ripples and dunes motion on earth or even on other solid planets
such as Mars. Moreover, it needs to be mentioned that the same methodology used
in this thesis can be applied, with proper modifications, to similar contexts such as
wind driven rain and snow transport, because they share several mathematical as-
pects.
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1.2 Physical Phenomenon

Aeolian sand transport is the result of the physical interaction between wind and
sand. In particular a cloud of sand particles is generated over the sand surface lead-
ing to a stream of sand in the mean wind direction. It is intrinsically a multiphysics
and multiscale phenomenon because it involves both fluid dynamics and particles
mechanics that can be treated at a continuum or discrete scale, i.e., describing the
evolution of sand concentrations or sand particles. In addition, there are phenom-
ena occurring at different time scales.

The wind driven cloud is the result of a complex chain of distinct physical events
that involve the force exchanged between fluid and sand grains by means the pres-
sure and viscous drag effect experienced by a solid immersed in a fluid in case of
relative motion. In this phenomenon spatial and temporal aerodynamic scales plays
a role at many level because it starts from the atmospheric flow, that acts on very
large scales, down to the millimeter scale where the effect of turbulent fluctuations
trigger the movement of grains (see Figure 1.1). Once that some particles are trig-
gered the wind action transfers energy to them leading to a ballistic trajectory which
can eventually trigger other particles when the grain hits the sandy surface.

Masses of sand interested by aeolian transport are composed by a relevant num-
ber of grains and each grain is microscopically different, though macroscopically
similar. This simple observation suggests that one can expect to observe a stochas-
tic behavior of occurring events. In a deterministic viewpoint each grain has its
own unique shape therefore its aerodynamic behavior during the ballistic trajectory
within the turbulent flow leads to different results in terms of trajectory. Moreover
turbulence itself introduces stochastic fluctuations in the system. Ground impact
properties are locally featured by the surrounding grains, therefore grain shapes an
their arrangement characterize the result of a possible incoming grain impact. Last
but not least, also air collisions are affected by both grain shape and flow status. Also
the ground morphology at a medium/large scales has an remarkable effect on the
physical system. Indeed it represents both the boundary for the fluid domain and a
moving boundary that introduces/subtracts mass in the system.

The description above should be sufficient to justify the "multiphase" and "mul-
tiscale" adjective attached this physical phenomenon. The explorer and geologist
Ralph Alger Bagnold was the first person to apply the scientific method to study
in the 40s the aeolian sand transport and the mechanisms of dunes formation. He
provided a robust documentation of this phenomenon at different spatial scales, em-
phasizing important aspects and remarkable physical fact. In his expeditions and
tests he observed the physics of wind blown sand classifying physical features and
measuring proper quantities. He collected all his discoveries in the monograph "The
Physics of Blown Sand and Desert Dunes" [16] that is still a reference point today. He
also proposed some models based on his measurements collected both in laboratory
and wind tunnel. In this way he put the first brick for the theory of the windblown
sand transport.
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Figure 1.1: Aeolian sand transport viewed at different scales, from
mesoscales to microscales.

1.3 Organization of the Dissertation

This dissertation is organized in six chapters. Chapter 2 contains a tailored refer-
ence to mixture theory and other mathematical modeling aspects that will be useful
for the treatment of multiphase flows. Chapter 3 is a review of the state of the art
of mathematical models applied to windblown particulate transport phenomenon.
Chapter 4 contains a proposed mathematical model for the morphodynamic treat-
ment of sand avalanches that can be integrated in the final multiphysics model.
Chapter 5 describe the mathematical definition of a first order multiphase model
by means of a data-driven approach. In the Chapter also two large scale industrial
applications are simulated. Chapter 6 describe a particle-based model whose pur-
pose is to catch fundamental physics of saltation dynamic. Its field of application is
confined to hexahedral domains for scientific applications. Finally, in Chapter 7 the
dissertation ends discussing future perspectives in this research area.
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Chapter 2

Foundational Aspects

In this section we will briefly present some well known modelling aspects that will
be useful in the following chapters.

2.1 Theory of Mixture Approach

The starting point in the model definition is the theory of biphasic mixtures ([13, 14],
[21], [37–39], [162–164], [185, 188, 216]). This is one of the main approaches used to
describe the macroscopic behavior of complex systems in which different continua
interact at a microscopic level, which is one of the crucial points in modeling sand
transport and erosion.

Using standard procedures of continuum mechanics based on balance laws, the
following system of equations can be deduced in general

∂ϕs

∂t
+∇ · (ϕsus) = 0 , (2.1)

∂ϕ f

∂t
+∇ · (ϕ f u f ) = 0 , (2.2)

ρs

[
∂

∂t
(ϕsus) +∇ · (ϕsus ⊗ us)

]
= ∇ · T̃s + ρs ϕsg + mσ

s , (2.3)

ρ f

[
∂

∂t
(ϕ f u f ) +∇ · (ϕ f u f ⊗ u f )

]
= ∇ · T̃ f + ρ f ϕ f g + mσ

f , (2.4)

where the index s stands for the solid phase (sand) and f for the fluid phase (air).
Furthermore, referring to the p-constituent

• ρp is the “true” density, i.e. the density of the material which is then used as
p-constituent of the mixture;

• ϕp is the volume fraction, i.e. the volume occupied by the p-constituent over
the total volume;

• up is the velocity;

• T̃p is the partial stress tensor;

• g is gravitational acceleration;

• mσ
p is the momentum supply , also named internal body force or interaction

force [37–39], and is related to the local interactions between the constituents
across the interface separating them.
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We refrain from writing the energy balance equation because we consider isothermal
situations and phenomena for which thermodynamics is not relevant. Equations
(2.3) and (2.4) can also be written in non-conservative form as follows

ρs ϕs

(
∂us

∂t
+ us · ∇us

)
= ∇ · T̃s + ρs ϕsg + mσ

s , (2.5)

ρ f ϕ f

(
∂u f

∂t
+ u f · ∇u f

)
= ∇ · T̃ f + ρ f ϕ f g + mσ

f . (2.6)

In addition, it is useful to write the usual balance laws for the mixture as a whole,

∂ρm

∂t
+∇ · (ρmum) = 0 , (2.7)

ρm

(
∂um

∂t
+ um · ∇um

)
= ∇ ·Tm + ρmbm , (2.8)

where
ρm = ρs ϕs + ρ f ϕ f

is the density of the mixture, and

um =
ρs ϕsus + ρ f ϕ f u f

ρm

is the so-called mass average velocity, or simply mixture velocity. If the saturation
condition

ϕs + ϕ f = 1

holds, as in our case, adding the mass balance equations (2.1) and (2.2) gives

∇ · uc = 0 ,

where
uc = ∑

p
ϕpup = ϕsus + ϕ f u f (2.9)

is the so-called composite velocity.

Instead, summing up the momentum equations (2.3) and using (2.4) gives the
momentum equation for the mixture (2.8) if one defines

Tm = T̃s + T̃ f − ρs ϕs(us − um)⊗ (us − um)− ρ f ϕ f (u f − um)⊗ (u f − um) ,

where us − um and u f − um are the so-called diffusive velocities, and, above all, if

mσ
f + mσ

s = 0 . (2.10)

Hence, the momentum supply appears in both the momentum equations with a dif-
ferent sign as should be for an interaction (action-reaction) force between the two
constituents. It, then, represent the force exchanged between the solid and the liq-
uid constituent. Its evaluation using particle-based approaches will be discussed in
Chapter 2 on the basis of a stochastic Lagrangian model.
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Remark 1 When dealing with two constituents it may be convenient to consider the mo-
mentum equation for the mixture (2.8) in place of one of the momentum equation for the
constituents. This is suggested for two reasons:

• It does not contain the interfacial term mσ
p;

• It is possible to perform experiments on the mixture as a whole in order to determine
the stress constitutive equation. In fact, one can measure neither T̃s nor T̃ f , but only
Ts, T f , and Tm, where Ts, and T f are the “true” stresses related to the constituents
taken separately.

2.2 Ensemble Average Approach

In order to understand in deeper details the origin of several terms characterizing
the mixture model presented in the previous section, we here briefly report an alter-
native way to deduce them, using ensemble averaging. In fact, by a comparison of
the different approaches, this procedure will allow to improve the understanding of
some terms appearing in the equations posed in the previous section, e.g. the partial
stresses T̃p and the interfacial force mσ

s for which we are trying to identify the best
constitutive equations. For instance, recalling Remark 1, the difference between T̃ f
and the constitutive equation for the fluid alone will be pointed out.

The ensemble average deduction is based on the following ideal procedure: con-
sider a set of identical trials done on the same or similar specimens evolving accord-
ing to the same initial and boundary conditions. At a certain time one observes if a
particular position is occupied by the solid or the liquid component and measures
there some physical quantities. Finally, distinguishing which component is found in
that position, the averaged values are obtained by averaging the quantities over the
number of trials having that component in the given position. In order to do that it
is convenient to define an indicator function

H(t, x) =

0 if at time t air is in x ,

1 if at time t a sand grain is in x .

The average quantity
< H(t, x) >= ϕs(t, x)

is the number of times we find that a sand material occupies the position x at time t
over the number of trials, i.e. the solid volime fraction. Similarly,

< 1− H(t, x) >= ϕ f (t, x)

is the fluid volume fraction.

In order to compute the average velocities, one has to use H or 1− H as weight
functions to discriminate whether at time t the position x is occupied by sand or air,
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measure the velocity of what is found there and divide by the number of measure-
ments with that particular phase in (t, x), that is

us =
< Hu >

< H >
, u f =

< (1− H)u >

< 1− H >
.

Similarly,

Ts =
< HT >

< H >
, T f =

< (1− H)T >

< 1− H >
,

and so on.

The first step to deduce the model is to observe that H(t, x) is a material variable.
In fact, assuming no phase change, as it is true in the case of our interest, following
the motion H will always assume the same constant value, 1 on the sand grain and
0 in air. This means that

∂H
∂t

+ u · ∇H = 0 .

Using the incompressibility of both constituents,∇ · u = 0, and observing that aver-
aging and differentiation are two independent operations that commute, one has

0 =<
∂H
∂t

+ u · ∇H >=
∂ < H >

∂t
+ < ∇ · (Hu) > − < H∇ · u > ,

and, therefore,
∂ϕs

∂t
+∇ · (ϕsus) = 0 .

Similarly, operating on 1− H, gives

∂ϕ f

∂t
+∇ · (ϕ f u f ) = 0 .

So, one finds again the mass balances (2.1) and (2.2). The momentum equation for
the solid component is derived by multiplying the momentum equation

ρ

(
∂u
∂t

+ u · ∇u
)
= ∇ ·T + ρg

by the indicator function and then averaging. Operating on the left hand side gives

< Hρ

(
∂u
∂t

+ u · ∇u
)
> =< ρs

[
∂

∂t
(Hu) +∇ · (Hu⊗ u)− u

(
∂H
∂t

+ u · ∇H
)]

>

= ρs

(
∂

∂t
< Hu > +∇· < Hu⊗ u >

)

= ρs

(
∂

∂t
(ϕsus) +∇· < Hu⊗ u >

)
,
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while operating on the right hand side gives

< H(∇ ·T + ρg) > = ∇· < HT > − < T∇H > +ρs < H > g

= ∇ · (ϕsTs)− < δσ(x)Tn > +ρs ϕsg ,

where Tn is the traction vector at the interface σ between the solid and the fluid
constituent (∇H = δσ(x)n), δσ(x) is the Dirac delta function across the solid-fluid
interface and n is the outward normal to the solid constituent. Hence, one has

ρs

[
∂

∂t
(ϕsus) +∇ · (ϕsus ⊗ us)

]
= ∇ · [ϕs(Ts + T<s )]− < δσ(x)Tn > +ρs ϕsg ,

(2.11)
where the following definition of Reynolds stress

T<s := −ρs
< H(u− us)⊗ (u− us) >

ϕs
= ρs

< H(us ⊗ us − u⊗ u) >
ϕs

,

has been used. Similarly, multiplying the momentum equation by 1− H and aver-
aging gives

ρ f

[
∂

∂t
(ϕ f u f ) +∇ · (ϕ f u f ⊗ u f )

]
= ∇ · [ϕ f (T f + T<f )]+ < δσ(x)Tn > +ρ f ϕ f g ,

(2.12)
where

T<f := −ρ f
< (1− H)(u− u f )⊗ (u− u f ) >

ϕ f
= ρs

< (1− H)(u f ⊗ u f − u⊗ u) >
ϕ f

.

Comparing (2.11) and (2.12) with (2.3) and (2.4), one obtains the following identifi-
cations

T̃s = ϕs(Ts + T<s ) = ϕsTs − ρs < (1− H)(u− us)⊗ (u− us) > ,

T̃ f = ϕ f (T f + T<f ) = ϕ f T f − ρ f < H(u− u f )⊗ (u− u f ) > ,

and
mσ

s = −mσ
f = − < δσ(x)Tn > . (2.13)

These relations emphasize the difference between T̃p and Tp, which is assumed to
be known from experiments on the single phase, and the meaning of the interaction
force, included its action-reaction meaning. Though the same procedure can be re-
peated for the energy equation, we will not repeat it here because we are going to
work in isothermal conditions.

2.3 Constitutive Equations

In principle, the above model holds both for the suspended sand and the packed
sand in the sand bed. The main difference lies on the fact that in the former case
there are no prolonged contact between sand grains, but possibly collisions. In the
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latter case, one has continuous contacts between grains, though they may slide rel-
ative to each other giving rise to plastic-like phenomena, and there is the possibility
to assume that the volume ratio in the sand bed is constant or at least nearly constant.

As already stated, one of the computational drawback of the First Order Model
previously used was the remeshing step. This was needed because the model was
only defined in the air and there are important deposition, erosion, and avalanching
effects. Exploiting the fact that the basic Second Order Model is the same but with a
constitutive equation that can change between the two regions we will discuss if and
how we can get rid of the need of remeshing writing the model in a fixed domain
with a well defined mesh that includes both the sand bed and air and identifying a
constitutive model that can be used in transiting from one phase to the other.

As far as the second law of thermodynamics is concerned, it must be mentioned
here that there is a basic question, well addressed in [69], [70], and [188], on whether
the entropy inequality is valid for each constituent or only for the mixture as a whole.
In mixture theory it is generally observed that entropy exchange can occur between
the constituents, so while it is certainly true that the total entropy must be nonde-
creasing, the same thing may not be true for the single constituents (see [92–94],
[162–164], [188], and reference therein). On the other hand, the ensemble average
approach generates an entropy inequality for each constituent (see [69], [70], and
references therein). Once this conceptual choice is done, classical methods of ther-
modynamics can be applied to deduce the form of the constitutive equations.

Most experiments are preformed using elastic solids in Newtonian fluids in isother-
mal conditions (see, for instance, [91]). Hence, also most models assume the fluid to
be viscous or inviscid and the solid to be elastic. We will discuss this case in isotropic
situation that are of our interest. We remark that, of course, a constitutive model for
sand should include plastic phenomena because of relative motion of grains in the
sand bed. However, this mainly occurs in the slidign layer when avalanching occurs.
So, the idea is to treat the sand bed as plastic deformation where absent working in
an elastic framework and then including avalanching as an external modulus deter-
mining the reshaping of the free surface.

Following thermodynamic arguments similar to the ones used by Crochet and
Naghdi [59], Rajagopal and coworkers [60], [84], [189], [198], [210], one can distin-
guish in T̃s, and T̃ f a static and a dynamic component and study in detail the form
of their constitutive equations for an elastic rubber-like solid constituent and a New-
tonian liquid constituent in isothermal conditions under the assumption that the
constitutive functions depend on

• the deformation gradient F of the solid,

• the volume fraction ϕs,

• the velocities of the constituents us and u f and their gradients ∇F, ∇ϕs, ∇us,
and ∇u f .

They concluded that T̃s, T̃ f and mσ
s can only depend on

• the left Cauchy-Green strain tensor B = FFT,
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• the velocity difference us − u f ,

• the rate of deformation tensors Ds and D f ,

• the difference of the vorticity tensors Ws −W f .

They suggest in the isotropic case the following expressions

T̃st
s = −ϕs pI + 2ρm

[(
∂Ψ
∂IB

+ IB
∂Ψ
∂IIB

)
B− ∂Ψ

∂IIB
B2
]

, (2.14)

T̃
dyn
s = (γ1 IDs + µ1 ID f )I + 2γ2Ds + 2µ2D f − c1(Ws −W f ) , (2.15)

T̃st
f = −ϕ f pI + ρm ϕ f

∂Ψ
∂ϕ f

I , (2.16)

T̃
dyn
f = (γ3 IDs + µ3 ID f )I + 2γ4Ds + 2µ4D f + c1(Ws −W f ) , (2.17)

mσ
s = p∇ϕs − ρs ϕs

∂Ψ
∂ϕs
∇ϕs

+ ρ f ϕ f

(
∂Ψ
∂IB
∇IB +

∂Ψ
∂IIB
∇IIB

)
− ϕ f ϕsK̃(us − u f ) ,

(2.18)

where Ψ is the Helmholtz free energy, IB stands for the trace of B (i.e. the first
invariant of B) and IIB for the second invariant of B

IIB =
1
2
(I2

B − tr B2) .

The presence of the same pressure term p in both constitutive models for the solid
and the fluid and for the interaction force as well is due to the enforcement of the
saturation constraint ϕs + ϕ f = 1, implying (2.9), that in this case is convenient to
write as

(∇ϕs)us + (∇ϕ f )u f + ϕs∇ · us + ϕ f∇ · u f = 0 .

Considering that, for instance,∇ ·us = IDs = I : Ds where : stands for the saturation
product of tensors, one can then rewrite the last equation as

∇ϕs(us − u f ) + ϕsI : Ds + ϕ f I : D f = 0 .

So, in the thermodynamic deduction involving Clausis-Duhem inequality, one need
to add a term multiplied by a Lagrangian multiplier p that takes into account of the
constraint above. So, one has

(CD) + p
[
∇ϕs(us − u f ) + ϕsI : Ds + ϕ f I : D f

]
≥ 0 ,

where CD stands for the classical formulation of Clausius-Duhem inequality. The
term p is then identified as the interstitial pressure. Procedures that are standard in
continuum mechanics then leads to Eqs.(2.14)–(2.18).

Assuming that the fluid is inviscid implies the drop of the dependency on the
rate of strain tensor in the constitutive model, so that T̃

dyn
s and T̃

dyn
f vanish. This
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means that we are left with the system

T̃st
s = −ϕs pI + 2ρm

[(
∂Ψ
∂IB

+ IB
∂Ψ
∂IIB

)
B− ∂Ψ

∂IIB
B2
]

, (2.19)

T̃st
f = −(1− ϕs)pI− ρm(1− ϕs)

∂Ψ
∂ϕs

I , (2.20)

mσ
s = p∇ϕs − ρs ϕs

∂Ψ
∂ϕs
∇ϕs+

+ ρ f (1− ϕs)

(
∂Ψ
∂IB
∇IB +

∂Ψ
∂IIB
∇IIB

)
+

− (1− ϕs)ϕsK̃(us − u f ) .

(2.21)

We observe that, in this formulation, if we neglect the dependence of the Helmholts
energy from B, from (2.19) and (2.21) the momentum equation for the solid writes

−ϕs∇p− ρs ϕs
∂Ψ
∂ϕs
∇ϕs − ϕ f ϕsK̃(us − u f ) = 0 .

This leads to

us = u f −
1

1− ϕs
K̃−1

(
∇p + ρs

∂Ψ
∂ϕs
∇ϕs

)
,

which gives the relationship for the class of models named First Order Models. So,
most of the dynamics relays on the identification of the Helmholtz free energy. We
can distinguish in it a part involving the invariants of B and another part that does
not involve it, i.e.

Ψ = ΨB + Ψϕ ,

where, however, as we shall soon see, ΨB can still depend on the volume ratio. One
easy form that is suggested in [84],[209], [210] is

Ψ = K(IB − 3) + K′
[

1− ϕs

ϕs
ln (1− ϕs) + χ(1− ϕs)

]
, (2.22)

where χ is called a mixing parameter, but, of course, this needs to be identified on
the basis of experiment on sand. In the previous deliverable we discussed how and
to what extent this can be done for the second term Ψϕ using data on sand transport.
We remark, however, that this implies that experiments are performed in a small vol-
ume ratio limit that does not hold when the sand is packed. So, when dealing with
this case extra contributions may come out. In fact, constitutive models for granular
materials are very complicated, even if one describes it as a monophasic continuum,
i.e., neglecting the presence of air, mixture, or water.

The passage from sand transport in air to sand behaviour on the ground can be
related to the dependency of the terms of the Helmholtz free energy that depend on
the Cauchy-Green strain tensor ΨB on the volume ratio, represented by the term K
in (2.22). Of course, we expect that this behaviour is highly nonlinear. It needs to
vanish for small volume ratios and needs to blow up when the volume ratio tend to
the close packing value ϕcp. In order to exploit the fact that the volume ratio of sand
is nearly constant in the sand bed, one can work in the linear elasticity regime from
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the close packing configuration, replacing B with the strain tensor E. So, a possible
idea is to work with a function K of the following type

K =


0 if ϕs ≤ ϕ0 ,

(ϕ− ϕ0)m

(ϕcp − ϕ)n if ϕs > ϕ0 ,
(2.23)

where ϕ0 < ϕcp is the volume ratio at which the mechanical effects of close packing
start being identifiable, m determines how they depart from zero and n how they
tend to infinity when the volume ratio tends to close packing. The value of ϕ0 is,
however, close to the close packing one in order to maintain the validity of linear
elasticity. In this respect we imagine that the value of m and n would have little in-
fluence on the outcome. So, as a first attempt we would have taken them equal to
one (or two, if regularity issues showed up).

2.4 The Granular Kinetic Theory

One possible closure model for the constitutive terms presented in previous equa-
tions is the granular kinetic theory. This was derived from gas kinetic theory (see
[48]) using the analogy between gas atoms/molecules with massive particles (e.g.
sand grains). We report here the two-phase model proposed by Cheng and Colan-
toni [50] which is the basis of the SedFoam solver. This solver is implemented in
the OpenFOAM framework. Therefore, it can be potentially interesting also for the
SMaRT research activity.

The model resolves the multiphase flow both in the concentrated and diluted re-
gion of sediment transport because they consider both closures of particle stresses
and fluid-particle interactions. For the turbulence modeling both k − ε and k − ω
closure are used. Authors developed and validated this model for water-sand mix-
tures. In particular they focused on the problem of momentary bed failure (or plug
flow) under sheet flow conditions. However, the modeling approach is presented for
general solid-fluid flows and the specific case of water is explicitly addresses when
necessary.

These premises make this model interesting in the SMaRT context. However,
as we shall see, some tests using SedFoam showed several issues when the solver is
applied to physical conditions analogous to aeolian transport cases. Also the com-
putational cost has proved to be too large for applications in large domains.

2.4.1 Inter-phase Momentum Transfer

We here limit ourselves to a comparison of the modelling with the terms presented
in Section 2.3, also in view of the simulations that will be discussed at the end of this
Chapter.
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The inter-phase momentum transfer used in SedFoam considers dominant com-
ponents, which are drag and buoyancy force. It can be expressed as

ms = −ϕsβ(u f − us)︸ ︷︷ ︸
(a)

+ β
ν f t

σc
∇ϕs︸ ︷︷ ︸

(b)

+ p∇ϕs︸ ︷︷ ︸
(c)

.

The terms (a) and (b) represent the drag forces by means the proportional coefficient
β. In particular (a) models the average drag force due to mean velocity difference
between fluid and particle. Instead (b) is the fluid turbulent suspension term. The
last term (c) models the averaged buoyancy force. In [50] the authors remark that
the correlation term between sediment concentration and fluid pressure is ignored
in the turbulence averaged momentum equations. However, in the closure of eddy
viscosity, the effect is included via buoyancy terms in the k − ε equations. For the
closure of β they suggest empirical formulas classically used in literature, switching
between formulas with respect to the value of ϕ (see [50]). A comparison with (2.21)
shows the following correspondence

ϕ f K̃ −→ β I ,

ρs ϕs
∂Ψ
∂ϕs

−→ β
ν f t

σc
,

in addition to the assumption that the Helmholtz free energy does not depend on
the invariants of B.

2.4.2 Fluid Turbulence Model

In order to model the stress tensor of the fluid phase the authors write it as a sum
of two components: a large-scale component R f t (i.e. Reynolds stress) and a grain-
scale component Rg, which includes the viscous stress and an additional effect due
to fluid-particle interaction at grain scale. However, they specify that this latter effect
is then neglected. The considered formulation for the stress tensor reads

T f = R f t + Rg = −ϕ f pI + ρ f ϕ f

[
2(ν f t + ν f )

(
D f −

2
3
∇ · u f I

)
− 2

3
k f I

]
that can be compared with the sum of (2.16) and (2.17).

The classical k − ε formulation is modified because two additional terms are
added to take into account the drag and buoyancy effect. It is important to remark
that equations for k and ε are specifically studied for sand particles in water. There-
fore, sand in air can eventually have completely different formulations. The k equa-
tion reads

∂k
∂t

+ u f · ∇k =
1
ρ f

R f t : ∇u f +∇ ·
[(

ν f +
ν f t

σk

)
∇k
]
− ε f︸ ︷︷ ︸

clean fluid

−2β(1− α)ϕsk
ρ f ϕ f )︸ ︷︷ ︸

drag effect

−ν f t

σc

∂ϕs

∂z
g︸ ︷︷ ︸

buoyancy

.

The transport equation for ε is made by analogy as classical turbulence modeling. It
is interesting to remark the meaning of α, which is proposed to characterize to which
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extent particles follow the fluid velocity fluctuations. This property can be quantified
by the Stokes number. However, as Cheng and Colantoni themselves remarked, this
turbulence model is tailored for water-sand flows. Therefore, its adaptation for air-
sand flows is not immediate and needs to be studied. In particular, water and sand
density are of the same order, instead sand and air differ of three order of magnitude.
As we shall see in Section 2.4.5, we tried to apply the model in a sand-air case.

2.4.3 Particles Stress Closure

The particle stresses includes two components with different physical origin. For
low to moderate sediment concentration the inter-granular interaction is assumed
to be dominated by binary collisions. Hence, a closure based on kinetic theory is
adopted. For large sediment concentrations, rather than binary collisions the inter-
granular interaction is assumed to be dominated by enduring contact/frictional forces
among particles. In particular, the authors assume that particle pressure and particle
stress both consist of a collisional-kinetic component (subscript "sc") and a frictional
component (subscript "sf"):

ps = psc + ps f ,

Ts = Tsc + Ts f .

The closure of the collisional-kinetic component is based on the kinetic theory of
granular flow where particle stress and particle pressure are quantified by the gran-
ular temperature Θ, which is defined as one-third of the kinetic energy of particle
velocity fluctuation. Analogously to the fluid turbulent kinetic energy k, balance
equation of granular temperature can be derived, but a closure model is needed.
Authors used a modified version of the original model which was derived for dry
granular flow consists of smooth, slightly inelastic, spherical particles [112, 152]. The
balance equation for granular temperature reads

3
2

[
∂

∂t
(ρs ϕ Θ) +∇ · (ρs ϕ Θ us)

]
= (−psc I + Tsc) : ∇us −∇ · q− γs + Jint ,

where q is the flux of granular temperature, γs is the dissipation rate due to inelastic
collision and Jint is the production (or dissipation) due to the interaction with the car-
rier fluid phase. By means the granular temperature, the following closure formulas
are used

psc = ρs ϕs [1 + 2(1 + e)ϕs gs0]Θ ,

ps f =


0 ϕ < 0.57 ,

F
(ϕ− 0.57)m

(0.635− ϕ)n ϕ ≥ 0.57 ,
(2.24)

Tsc = 2 µsc Ds +

(
λ− 2

3
µsc

)
(∇ · us) I ,

Ts f = −2 µs f Ds +
2
3
(∇ · us) I .

where gs0 is the radial distribution function, e is the coefficient of restitution during
collision, µsc is the particle shear viscosity and µs f is the frictional viscosity. Notice
also that the structure of (2.24) is the same as suggested in (2.23). Other terms are
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detailed in [50] and involve a lot of coefficients and additional formulas coming
from granular kinetic theory. They specifically claim that the kinetic contribution of
particle stress is included, thus the sediment stress closure can be extended to very
dilute conditions without an artificial cut-off, as discussed in [104]. Therefore, in
principle, this modeling approach could be considered also for aeolian transport.

2.4.4 Interface representations

In aeolian transport the ground-surface region represents the most important spa-
tial domain where multiphase physical interactions occur. In particular the air-side
region close to the ground-surface identifies the spatial domain where sand cloud
transport occurs. Figure 2.1 shows three schemes that emphasize spatial scales fea-
tures of aeolian sand transport. Figure 2.1(a) focuses on the fluid-dynamics at the
grain scale, Figure 2.1(b) on the smooth transition from a region with packed sand to
a region with suspended particle and Figure 2.1(c) on the mathematical idealization
of the sand as an Eulerian scalar field. Though modelling the sand-bed surface as a
sharp interface holds its validity for simulation on the large scale, when one focuses
on scales of the order of centimeters, or when the amount of flowing sand is not
small, the thickness of the transititon layer might become relevant. This suggests
that models taking care of the smooth transition from packed to dispersed phase, as
the ones discussed above, might become of interest. Depending on the descriptive
approaches for phases, numerical properties and techniques change.

Figure 2.1: Schematic representation of the aeolian sand transport phe-
nomenon: (a) flow around moving grains, (b) packed-to-dispersed
transition near the sand bed (the green band represent the spatial re-
gion where the geometrical surface is contained and where the pneu-
matic conveying occurs) and (c) mathematical description of the sandy

surface with sand transport in Eulerian models.

Explicit geometrical representation of the ground surface

One method to identify the ground-surface consists in an explicit geometric descrip-
tion of the surface using part of the boundary domain mesh. The boundary domain
is splitted in different patches and some of them represent sandy surfaces where
most of the phenomenon occurs. This approach has pros and cons, and in our re-
search activity we figured out that there is a class of problems where this is feasible
and others where this is not. Namely, this approach is convenient in scenarios where
a complete phenomenological description on a large scale is desired. In this situation
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the ground-surface is subjected to motion due to erosion-deposition effects, which
generates the need to implement a proper mesh morphing algorithm to be included
in the fully transient solver. This aspect leads to numerical problems of computa-
tional geometry: boundary mesh points need to be properly moved by the physical
process and simultaneously preserve mesh quality of the geometrical description.
Furthermore, internal mesh points have to be artificially moved as well. A descrip-
tion of practical implications due to this approach on complex real geometries is
provided in Chapter 5.6.3.

The main advantage of an explicit ground-surface geometric description is the
possibility to impose custom boundary conditions that take into account the wind-
ground interactions. In Chapter 5 ad hoc formulations for solid phase boundary
conditions are described. In general, they can be applied to First Order Models as well
as Second Order Models depending on the boundary type. However, it is important
to remember that a huge effort has been made into the fluid dynamics community
in order to develop proper turbulence models and accurate boundary conditions
over years. Things become even more difficult with the presence of a secondary
phase into the leaden fluid, therefore the development of tailored wall functions
from scratch could be very difficult and potentially inconclusive. A relevant advan-
tage of the explicit ground surface description regards the computational cost if the
remeshing step is applied occasionally. In fact, this approach completely neglects
the spatial region under the soil. Therefore, no additional degrees of freedom are
used to save in memory the computational description of steady sand.

For sake of completeness, we recall that an explicit representation of the ground
surface calls for the inclusion of a module dealing with sand avalanching based on
models developed in Chapter 4.

Implicit representation of the ground surface

The counterpart of the approach described above consists in the explicit represen-
tation of both phases over the entire range of concentration values without using
an explicit geometric surface to define the sandy soil. In particular, the solid phase
assumes the almost constant close packing value under the ground and it drops
its value in just few millimeters changing its behavior from a viscoplastic fluid-like
continuum constituent to a gas-like one. Therefore, in few computational cells the
constitutive model has to drastically change its character. In particular, the entire
wind-sand interaction that causes aeolian sand transport is controlled by the con-
stitutive model of the differential system. This is the most relevant difference with
respect to the geometric explicit representation where part of the phenomenon is
delegated to the formulation of boundary conditions.

In the explicit geometric representation approach, the large interval of the solid
phase concentration in a very small tubular region becomes a discontinuity. How-
ever, we have to account that OpenFOAM is a finite-volume-based computational
platform, therefore, due to the intrinsic properties of the finite volume method, the
sharp interface where the discontinuity occurs is naturally diffused. Mesh type and
numerical fluxes drastically influence the final numerical solution leading to condi-
tions where the distinction between numerical and modeling errors are not simply
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discernible. From the computational point of view, avoiding mesh morphing rep-
resents an important advantage. However, the presence of high gradients for the
concentration (and even fluid dynamic quantities such as k, ω and U f ) enforces to
adopt an automatic mesh refiner to be able to practically obtain numerical solutions
in a reasonable amount of time and with an acceptable numerical error where high
gradients occur.

As already mentioned in the explicit geometric representation approach, in the
extreme cases where no sand is transported in the air, the model should be able to re-
cover the classical fluid dynamics for an incompressible fluid. In particular, all wall
treatments for turbulence. A partial analogy can be found in the immerse boundary
formulation where rigid walls are modeled by a Boolean function and the adopted
constitutive model has to take into account the turbulence model (see [99]). Unfor-
tunately, a proper knowledge transfer from this approach to the aeolian two-phase
system requires a big effort in time and human resources, both for theoretical aspects
and numerical implementation.

In order to highlight some numerical issues of SedFoam we tested two fundamen-
tal cases: The column collapse and the packing of a flat bed under sedimentation in
water.

2.4.5 Sand column collapsing in water

The collapse of a sand column of granular material is a common test in the context of
numerical models for granular materials (see [125, 146, 233] for numerical tests and
[18, 148–150, 212] for experiments). Everything at the initial state is at rest and the
dynamics is simply driven by gravity. Figure 2.2 shows six snapshots of the classical
column collapse test. In order to reduce the numerical error as much as possible, the
mesh is orthogonal and high order schemes has been adopted as suggested by the
SedFoam developers. The ratio between fluid and solid density appears in the model
formulation. Therefore, in order to keep the same order of coefficient values, we
use water and sand, as done in [50] where SedFoam solver is presented. We can no-
tice that immediately after the first iteration a numerical artifact appears on the top
surface supplying a fake solid concentration. In real conditions we expect that the
frictional actions among sand grains leads the column to a sort of cone until a crit-
ical angle is reached. In the simulation the process clearly proceed with unphysical
states. We recall that the model involves multiple empirical coefficients that control
numerical and modeling aspect of the simulation. Therefore, if they are set for a
specific physical condition, they can eventually be not correct for others.

2.4.6 Sand sedimentation in air

The second test for SedFoam consists of simulating a homogeneous sedimentation
until the equilibrium is reached starting from a non-critical condition (small pertur-
bation of the equilibrium). The air density is almost a thousand time smaller than
water density. Therefore, the model parameters drastically change the response of
the model with respect to the water-sand behavior. We found only one converging
configuration for air-sand mixture. Starting from a value of sand concentration close
to the close packing value, the computation converges at each time step. However,
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Figure 2.2: Testcase of the SedFoam solver in water-sand interaction, red
is 0.4 (close packing concentration) and blue is 0. The column is 5cm
height and 2cm width. (1) t = 0, (2) t = 0.1s, (3) t = 0.5s, (4) t = 1s,

(5) t = 1.5s and (6) t = 3s.

numerical oscillations appear just below the ground surface. In addition, a thin line
of solid phase appears few centimeters above the ground similarly to the previous
case of the sand column (see Figure 2.3).

These two previous test have been mainly performed to look at the computa-
tional capabilities of a second order solver in basic conditions. Even using two-
dimensional cases and small domains the computational cost results too large for
an application in large industrial domains. An adaptive mesh refinement algorithm
appear to be necessary to reduce the overall computational cost. Furthermore, many
numerical issues makes the model very tricky to set. These are the reasons why we
proceeded with a surface morphing approach and a first order formulation. How-
ever, the SedFoam algorithm architecture is still very interesting for the second order
model because it contains a splitting algorithm to solve the two momentum equation
system. Further studies and tests have to be performed.
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Figure 2.3: Air-sand packing test with SedFoam solver. The six images
are separated in time of one tenth of second each other.
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Chapter 3

Literature Review

The following content is based on the article [145] published during the initial pe-
riod of the SMaRT research activity.

In this chapter the scientific literature which addresses mathematical models for
the wind-driven particulate transport is resumed. The physical context of the re-
viewed models is not restricted just to the windblown sand, in fact other phenom-
ena are included in the study such as rain and snow because their mathematical
formulations exhibit similarities.

3.1 Introduction

Particle transport by the wind is a phenomenon of interest for civil engineering
projects, environmental problems, and industrial applications. In fact, transport and
consequent deposition of snow and sand on streets, railways, highways, roofs, and
buildings can cause serious problems in terms of operation conditions and damages.
Similarly, heavy rainfall and hail can cause discomfort and damages as well. Look-
ing at the phenomena involved in the transport of particulate materials lying on the
ground, such as sand and snow, one can observe that a crucial mechanism is their
lift-off from the ground. Different phenomena contribute to it and their relevance
mainly depends on two factors: particle size and wind velocity profile close to the
ground.

This triggering transport mechanism, named saltation ([129]), is a phenomenon
that takes place if the wall shear stress τ on the ground surface generated by the blow-
ing wind exceeds a shear threshold value τt. This threshold value strongly depends
on particles properties such as size and on chemical interactions among them, in
conjunction with environmental conditions such as humidity, size and wetting. As
reported in [110], it is also affected by the local slope of the ground surface.

Referring to Figure 3.1, after lifting-off, the smallest particles are entrained in
the wind flow and remain in suspension for a long period. On the other hand, big-
ger particles, whose aerodynamic behavior is also strongly affected by their shape,
follow ballistic trajectories before impacting again on the ground, transferring mo-
mentum to other particles which are then ejected from the soil. In this way saltating
particles are also able to displace particles that are too heavy to lift-off, and induce
very short trajectories that trigger a transport phenomenon called reptation (mainly
occuring in sand transport). Another process involving big particles is creep, that
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consists in particle rolling and sliding on the surface made of other deposited parti-
cles.

Erosion and subsequent sedimentation of particles on the ground determine the
evolution of the ground surface. This fact makes the mathematical problem a free-
boundary value problem. In cases that are severe for snow but not so severe for sand,
the particles on the surface slide down forming avalanches, that also contribute to
the shaping of the surface of the sedimented particulate.

The quantification of such phenomena suffers from the difficulties in performing
experiments both in controlled environments and in-situ. In fact, from the experi-
mental point of view, the presence of particles in the air and the need to monitor and
measure their properties make wind tunnel experiments more difficult and onerous.
Such kinds of tests have been performed mainly for sand, snow, and rain (see for
instance [117, 118, 120, 207, 240]). However, in-situ measurements can be very ex-
pensive and time consuming as well. So, even though experiments are fundamental
to shed light on the physical phenomena involved, nowadays they are more and
more supported by computational simulations, because they are characterized by a
high flexibility and can provide affordable results. In fact, thanks to significant im-
provements in terms of computational performance obtained in the last decade and
to the continuous development of new mathematical models, computational simu-
lations have become a catchy tool for all the people interested in these processes and
in particular in testing civil and industrial applications. The interest is confirmed
by the trend of integrating the dynamics of sand, snow, and rain in Computational
Fluid Dynamics (CFD) commercial codes. Some examples of such CFD approaches
are listed in [213] for snow and [28] for rain.

As usual, in dealing with pheomena involving many different phenomena a bal-
ance between modelling accuracy and simplicity is required and the choice mainly
depends on the level of detail required by the specific application. In fact, on the
one hand using over-simplified models may lead to unsatisfactory results compared
to experimental data, though in particular situations they might show a qualita-
tive agreement with the real natural phenomenon of interest. On the other hand,
including more details leads to an increase of the complexity of the model, and con-
sequently of the computational cost. In this respect, starting from the engineering
needs of modeling the fall and transport of snow, sand, and rain, the aim of this
review is then to describe and classify the different modelling approaches that have
been proposed in the literature possibly mentioning their advantages and disadvan-
tages.

The fundamental requirement of models dealing with particulate transport is
their ability to accurately treat the wind dynamics in a very high Reynolds number
regime and in a domain characterized by the presence of bluff bodies, like obstacles
and infrastructures in general. Commonly, this is done by means of Navier-Stokes
equations with suitable turbulence closure, e.g., Reynolds Average Navier Stokes
equations (RANS), Large Eddy Simulation (LES) and Lattice Boltzamn models. An-
other key modelling aspect consists in how the interaction of the wind with the dis-
persed particles is described possibly with the modifications of the fluid dynamics
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model because of the presence of dispersed particles. Following this modelling fea-
ture one of the classifications that we will use to review the literature is based on
the coupling level [73, 74], namely, models with 1-way coupling deal only with the
influence of the flow on the particles, while models with 2-way coupling take care of
the mutual interactions. Finally, models with 4-way coupling take also into account
the effect of collisions between particles.

The difficulties in describing the dispersed phase (that can be solid in the case of
sand and snow or liquid if small droplets are considered) arise because of the large
number of particles transported, of the different shapes and sizes of each particle, of
their interactions with walls, of the microscale description of the deposit, of the con-
sequent large scale accumulation, and of the interactions between phases in terms of
momentum, mass and energy. If the trajectories of each particles is described, then
one has an approach that is here named Lagrangian. Alternatively, if the dispersed
phase is described as an immiscible constituent of the air-solid (or air-liquid) mix-
ture one has an approach that is named Eulerian. Turbulent dispersed multiphase
flow approaches are described in [17].

As explained at the beginning of Section 3.3, in the fully Eulerian case a fur-
ther classification can be done on the basis of the type of balance equations (mass
and/or momentum) used for the dispersed phase. So, the plan of the review is as
follows. In the next section we will first describe how wind, i.e. the driving flow, is
classically modeled using computational fluid dynamics approaches, because this is
shared by almost all the multiphase models presented. Then, in Section 3.3, we will
focus on the dispersed particulate, listing the physical processes involved that need
to be modeled. We will discuss separately Eulerian and Lagrangian approaches, an-
alyzing the modeling strategies presented for all the physical processes mentioned
above and, whenever possible, we will draw links between models and applications
in order to highlight analogies and common features.

Wind Long term 
suspension

Saltation

Turbulent 
eddies

≈20 [cm]Reptation/creep

Figure 3.1: Schematic representation of different wind-driven transport
modes: reptation/creep, saltation, suspension, and turbulent disper-

sion.
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3.2 Wind flow modeling

The transport process of particulates takes place in the lowest atmosphere, namely
the Atmospheric Boundary Layer (ABL), in a highly turbulent regime. Also com-
monly referred as Atmospheric Surface Layer (ASL), it just extends up to few me-
ters above the ground and its dynamical structure is mainly influenced by the upper
mixed layer, linked itself to the inversion layer reaching the geostrophic part, to fi-
nally form the planetary boundary layer. These ASLs represent only a small part of
the planetary boundary layer and its highly turbulent character is mainly dominated
by high gradients of the variables such as velocity, temperature, or moisture occur-
ring in the mixed layer. Moreover, the shape and the properties of the ground surface
affects not only the mean velocity profile, but also the level of turbulent fluxes. With
the assumption that the ASL is a constant turbulent flux layer, in [160], [42] and [72]
a similarity theory was derived, allowing to express the mean profile of different
quantities as a function of the turbulent fluxes, the aerodynamic roughness of the
ground, and a correction factor depending on a dimensional length scale describing
the thermal state (stable, neutral, or unstable).

As reviewed in [27], in the last decade there was an increasing scientific effort in
developing improved CFD models to describe the ABL in the computational wind
engineering framework with dedicated attention to the roughness treatment. How-
ever, as shown in [29] the simulation of pure air in a neutral ABL requires a particular
care.

In addition, as can be easily understood, the accurate reproduction of the driving
flow plays a crucial role to achieve a reliable simulation of the behavior of wind-
blown particulates both at a quantitative and at a qualitative level. Generally speak-
ing, for a flat ground surface and assuming that thermal stratification plays a sec-
ondary role, it is known that the equilibrium mean velocity profile takes the follow-
ing logarithmic expression

|u(z)| = u∗
κ

log
( z + z0

z0

)
, (3.1)

where κ is the Von Karman constant (κ ' 0.41), and z0 is the so-called roughness
length. The parameter u∗ in (3.1) is the friction velocity and represents the main bulk
quantity to determine the erosion status. Close to the ground the law of the wall (see
[123]) suggests that the velocity profile can be written in dimensionless form as

u+ =
1
κ

log(z+) + B , (3.2)

where u+ = u
u∗ , z+ = u∗z

ν f
, ν f is the air kinematic viscosity and B is a constant.

This expression holds true for z+ > 30, in the so-called logarithmic layer. After a
transitional regime for 5 < z+ < 30 called buffer layer, for z+ < 5 the relation

u+ = z+ (3.3)
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holds. In this region, named linear sublayer, ∂u
∂z = u2

∗
ν f

. Therefore, by definition of wall
shear stress

τ = µ f
∂u
∂z
|z=0= ρ̂ f u2

∗ ,

where µ f is the air dynamic viscosity, or

u∗ =
√

τ/ρ̂ f .

However, in the presence of obstacles, this equilibrium profile is no longer valid and
wind profile needs to be computed numerically, though some authors (for instance,
[179]) try to avoid an explicit solution of wind velocity field applying small pertur-
bation theories.

A more accurate fluid dynamics model would require to solve a set of conser-
vation equations for air, usually restricting to mass and momentum balance. If the
wind is treated as a one-constituent incompressible viscous fluid, then one has the
classical Navier-Stokes equations for incompressible flows:

∇ · u = 0 , (3.4)
∂u
∂t

+ u · ∇u = − 1
ρ̂ f
∇p +∇ · [ν f (∇u + (∇u)T)] , (3.5)

where u is the air velocity, and p is the pressure. On the right hand side, a momen-
tum exchange term could be added to include the effect of the presence of particles.
If particles laden wind is treated more realistically as a two-phase system (gas-solid
or gas-liquid), it is useful to introduce the volume ratios ϕ f and ϕs of air and of the
dispersed phase, respectively. The mass and momentum conservation equations for
the fluid flow then read

∂(ρ̂ f ϕ f )

∂t
+∇ · (ρ̂ f ϕ f u) = 0 , (3.6)

∂(ρ̂ f ϕ f u)
∂t

+∇ · (ρ̂ f ϕ f u⊗ u) = −ϕ f∇p +∇ · [µ f ϕ f (∇u + (∇u)T)]− fdrag , (3.7)

where fdrag is the interaction force between air and dispersed particles. Analogous
equations should be written for the dispersed phase, as we will see in Section 3.3.
This approach is more accurate but at the same time computationally more onerous.
For this reason it has been rarely adopted for windblown particles models (for in-
stance [34] for snow, GKT models in Section 3.3.1 for sand). Similarly, a complete
Direct Numerical Simulation (DNS) of the incompressible Navier Stokes equations
or of the mixture model is impossible for problems of engineering interest. In fact,
practical problems typically involve highly turbulent separated flows in very large
domains, requiring the use of unfeasibly small time steps and space discretization
grids. Consequently, to describe the turbulent flow two different approaches are
mainly used, either Reynolds Average Navier Stokes equations (RANS), or Large Eddy
Simulation (LES). The choice between them depends on the particular application
and on the level of detail required. For the sake of simplicity, we will briefly present
these approaches for Eqs. (3.4)–(3.5), also because most of the models presented use
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them for the fluid phase and refer to [229] for a more detailed treatment on Reynolds
Average turbulence models. We also refer to works in which turbulent quantities
equations present additional terms in order to introduce turbulence modulation due
to the presence of a dispersed phase.

3.2.1 RANS approach

One way to simulate turbulent flows is to use a statistical approach consisting in
splitting each quantity into mean (usually denoted with an overbar) and fluctuating
component (usually denoted with a prime). For instance, referring to the velocity
one has u = u + u′. Replacing them in Eqs. (3.4)-(3.5) and averaging over time one
obtains the RANS equations:

∇ · u = 0 ,

∂u
∂t

+ u · ∇u = − 1
ρ̂ f
∇p +∇ ·

[
ν f

(
∇u +∇(u)T

)]
−∇ ·R , (3.8)

where R is the so-called Reynolds stress tensor with components

Rij := u′iu
′
j .

It is the only term containing fluctuating components and consequently the one
carrying information about turbulence. Most of Reynolds stress models are based
on the Boussinesq eddy viscosity assumption, which states that turbulent momentum
transfer can be represented by a viscous tensor:

R = −2νtD = −νt

(
∇u +∇uT

)
,

where νt is the so-called turbulent viscosity and D is the mean strain rate tensor. This
assumption implies in particular that turbulence is considered isotropic. The tur-
bulent viscosity can be obtained using different modeling approaches that can be
mainly divided into two families: one-equation and two-equations turbulence models.
The most popular one equation turbulence model consists in relating νt to the nor-
mal component of the velocity gradient by means of the so-called mixing-length lm:

νt = l2
m

∣∣∣∂u
∂z

∣∣∣ ,

where lm can be expressed in terms of the turbulent kinetic energy k and the turbu-
lent dissipation ε. One-equation models, however, generally fail to predict com-
plicate flows, with flow-separation and high reversed pressure gradients. Two-
equations turbulence models recover the turbulent viscosity in terms of two other
variables (k and ε, or k and ω), whose evolution is determined by suitable transport
equations that are discussed below.

k-ε model

The standard k-ε model introduced in [116] has been widely used because of its ro-
bustness and affordability. By dimensional analysis, it is possible to define

νt = Cµ
k2

ε
,
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where k is the turbulent kinetic energy and ε is the turbulent dissipation. Conse-
quently, transport equations for k and ε are written as

∂k
∂t

+∇ · (ku) = ∇ ·
[(

νt

σk
+ ν f

)
∇k
]
+ Pk − ε , (3.9)

∂ε

∂t
+∇ · (εu) = ∇ ·

[(
νt

σε
+ ν f

)
∇ε

]
+

ε

k
Cε1Pk −

ε

k
Cε2ε , (3.10)

where Cµ, Cε1, Cε2, σk and σε are model constants. This turbulence model has been
widely used for the fluid phase transporting snow [25, 26, 34, 85, 211], sand [83,
118], and rain [133, 138, 178]. Different modifications have been proposed in order to
overcome well known drawbacks of the standard model, such as the over-estimation
of the turbulent kinetic energy. Examples are:

• RNG k-ε model [234], this model is derived normalizing the equations in order
to include the effects of smaller scales. The normalization procedure also helps
in defining the model constants;

• modification in [124], where the turbulent production term is modified in or-
der to reduce its over-prediction where the fluid is strongly accelerated or de-
celerated. The strain-rate in the turbulent production term is replaced by the
vorticity;

• realizable k-ε model [200], where the ε-transport equation is obtained from an
exact transport equation of the mean-square vorticity fluctuation, and Cµ is no
longer constant. It has been used in [240] and [107], resepctively for snow and
rain transport.

In Section 3.3.1 we will report in more details two versions of k-ε model, derived
in [165] and [171] in order to take into account the effect of the dispersed particles
on turbulence. Another modified version for including turbulence modulation by
particles has been proposed in [89].

k-ω model

In [228] it was suggested to use the specific dissipation ω instead of ε. In this case a
dimensional analysis suggests to use

νt =
k
ω

.

The transport equation for ω then reads

∂ω

∂t
+∇ · (ωu) = α

ω

κ
T f · ∇u− βω2 +∇ ·

[(
ν f + νtσω

)
∇ω

]
,

where T f = 2µ f D is the stress tensor, α = 5
9 , β = 3

40 , σω = 1
2 . As k-ε models, different

modifications of k-ω model have been proposed in order to improve its performance.
The standard model has been for instance revisited in [227] by the Author himself,
adding a closure coefficient and modifying the dependence of eddy viscosity on tur-
bulence.
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Another relevant version is the Shear-Stress Transport (SST) k-ω model presented
in [156], successively revised in [157]. Basically, it consists in applying the k-ω model
in the inner boundary layer smoothly switching to the k-ε model outside it. The
kinetic energy production term is modeled by introducing a production limiter to
prevent the build-up of turbulence in stagnation regions. Transport equations for k
and ω read

∂k
∂t

+∇ · (ku) = ∇ · [(σkνt + ν f )∇k] + P̃k − β∗kω ,

∂ω

∂t
+∇ · (ωu) = ∇ · [(σωνt + ν f )∇ω] + α

ω

k
Pk − βω2 + (1− F1)

2σω

ω
∇k · ∇ω ,

(3.11)
where the definitions of the model coefficients can be found in [157].Different au-
thors have preferred k-ω SST to k-ε models for its proven accuracy when the pres-
ence of obstacles induces flow separation and adverse pressure gradients (see for
instance [157]). This model has also been used for sand transport in [182].

3.2.2 LES approach

The semi-empirical nature of RANS models requires the identification of several pa-
rameters, based on approximations obtained for specific flow classes. In addition,
Reynolds average approaches are capable to evaluate mean wind-flow fields only.
Conversely, Large Eddy Simulations (LES) solve most of the turbulence scales get-
ting more information and accuracy, paying the cost of an increase in computational
time and storage memory required. LES is based on spatial filtering of quantities,
justified by energetic considerations done on the basis of Kolmogorov’s theory of
turbulence (see [131]). The filtering operation for a generic quantity ϕ(x, t) reads

ϕ̃(x, t) =
∫

Ω
G(x, ξ)ϕ(ξ, t)dξ ,

where G is the filter and Ω is the domain. Whence ϕ(x, t) = ϕ̃(x, t) + ϕ′(x, t), where
ϕ′(x, t) represents subgrid scales. Filtered Incompressible Navier-Stokes equations
read {

∇ · ũ = 0 ,
∂ũ
∂t + ũ · ∇ũ = − 1

ρ̂ f
∇ p̃ +∇ ·

[
ν f
(
∇ũ +∇ũT)]−∇ · τs ,

(3.12)

where ·̃ represents the filtering operation and τs is the so-called subgrid stress tensor
with components

τs
ij := ũ′iu

′
j .

Analogously to RANS, τs
ij can be modeled guessing the effects of unresolved scales

(Sub Grid Scales, shortened as SGS) and can be summarized by a viscous stress
tensor using the so-called subgrid viscosity νsgs, hence

τs = −2νsgsD̃ = −νsgs
(
∇ũ +∇ũT

)
.

The first way used to close the equation with an expression for νsgs is the Smagorinsky
SGS model ([201]). Using dimensional analysis one can write

νsgs = ε1/3(CS∆g)
4/3 ,
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where CS is the Smagorinsky constant and ∆g is the spatial filtering length. Requiring
local equilibrium of scales in inertial subranges (i.e., k production equal to dissipa-
tion):

Pk = 2νsgs‖D̃‖2 = ε ,

where
‖D̃‖2 = ∑

ij
D̃2

ij ,

whence:
νsgs =

√
2‖D̃‖(CS∆g)

2 .

LES approach has been used for windblown sand simulations, for instance in
[139, 220, 239]. A more evolute model is the dynamic SGS model, developed in [87].
In this model Cs is no longer constant, but computed dynamically, getting a model
applicable to a wider range of turbulent flow fields. This model was used in [215]
to simulate saltating particles. A recent variant of the dynamic model developed in
[108] was adopted in [106] for wind driven rain impacting building facades. Other
models have been introduce along the years to improve the accuracy of the results.
For instance Kobayashi et al. [127, 128] proposed the coherent structure Smagorinsky
model, which is more robust with respect to the classical formulation because the
Smagorinsky constant is always positive. This model has been used in [170] for La-
grangian simulation of snow transport. More details about Large Eddy Simulation
for incompressible flow problems can be found in [192]. In the following we will
omit · and ·̃ for averaged or filtered velocity.

3.3 Dispersed phase modeling

The most important distinction that can be done to classify the type of models used
to describe the dispersed phase is based on how the particulate is considered:

• In a Lagrangian approach each particle is followed along its trajectories;

• in an Eulerian approach the ensemble of particles is treated as a continuum dis-
persed in the air and its behaviour is described using mass conservation and
momentum balance.

Considering that wind flow is always described from an Eulerian point of view, in
the following the first approach is called Eulerial-Lagrangian while the second ap-
proach is called Eulerian-Eulerian or fully Eulerian.

The second distinction is relates to the type of equations solved to obtain par-
ticulate density and velocity. Accordingly, in this work we introduce the following
categorization:

• 0th-order models: No equations are solved for the dispersed phase. Fluxes are
computed using algebraic formulas based on empirical relations. This kind of
models are used in simplified conditions;

• 1st-order models or 1-fluid formulation: Mass and momentum balance equations
are solved for the fluid phase, while only mass conservation equation is solved
for the dispersed phase, which is considered as a passive scalar convected by
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1-way coupling 2-way coupling 4-way coupling

Figure 3.2: Schematic representation of different degrees of coupling
taken into account in the models. Blue arrows refer to the effect of the
flow on the particles, orange arrows to the effect of the particles on the

flow, red arrows to the effect of the interactions among particles.

air (carrying phase). Therefore, the velocity field of the dispersed phase is
given by theoretical/empirical relations. This is a reasonable approach for
highly-diluted flows, in which the dispersed phase is assumed to have the
same velocity as the carrying phase. Alternatively, other terms are added in or-
der to take into account of some differences in velocity fields (drift-velocity/slip
velocity models);

• 2nd-order models or 2-fluid formulation: Both mass and momentum balance equa-
tions for the dispersed phase are solved. Air and dispersed phase are coupled
through interaction forces. These models are more difficult to be set up, due
to the number of modeling parameters. Moreover, the computational costs are
higher. Consequently they are not commonly used for the considered class of
problems.

Furthermore, referring to Fig. 3.2, we will group the models according to the degree
of coupling between wind-flow and dispersed phase. The approach mainly depends
on the volume fraction of the dispersed phase and three different situations can be
distinguished [73, 74]:

• 1-way coupling: The wind field is used to compute the dispersed phase field
which is treated as a passive scalar without any feedback on the flow. 0th-order
and 1st-order models usually have this basic level of coupling;

• 2-way coupling: The presence of the dispersed phase is taken into account in
the computation of the wind flow. A 2-fluid formulation is always 2-way coupled
because of the presence of coupling terms in the momentum equations;

• 4-way coupling: Particle-particle interactions are considered as well as the par-
ticulate feedbacks on the wind flow.

Regarding wind-blown particulate transport, as we have previously mentioned,
different physical mechanisms are involved and need to be taken into account. Most
of the situations deal with particulate material settled on the ground which can start
moving thanks to momentum transfer from the wind-flow to the particles by means
of the wall shear stress. As we shall see in the following section, this process gen-
erates both erosion and deposition zones, as well as initializes particulate material
drift at the ground, large air entrainment and transport.
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3.3.1 Eulerian-Eulerian approach

Eulerian modeling of the dispersed phase was largely used for wind-blown snow, in
order to predict erosion and deposition maps. From a mathematical point of view,
whatever is the granular material considered, the modeling approach is the same.
The advantage of an Eulerian-Eulerian approach mainly consists in the fact that it
requires less computational resources compared to Lagrangian simulations, which
were not even affordable years ago for industrial purposes. Very early attempts
of predicting particulate mass drift were done computing physical quantities along
a constant wind direction. These models used two-dimensional domains and the
variables are computed along a vertical plane. Recently, they have been also used to
model dune migration, avoiding to compute the real sand transport in the air. Liston
et al. [141] considered a quasi-steady two-dimensional case; only saltation is consid-
ered using the empirical expression in [180] to get snow saltation flux Qsal from the
ground based on friction velocity (see Eq.(3.16) below). This idea was further de-
veloped in several other papers [7, 8, 71, 83, 175, 179, 194, 195, 239].In this work
we do not describe such models in further details, because they do not explicitly
solve for the transport of particulate in the air. The earliest attempt to obtain accu-
rate deposition maps and snowdrift fields computing dispersed particle transport
was done in the early nineties in [217]. In this model a diffusion equation for sus-
pension transport is solved including a term accounting for the particle fall terminal
velocity, while for the saltation flux a theoretical model based on friction velocity is
employed. Wind flow fields are obtained by means of RANS approach with mixing-
length turbulence closure. Erosion is computed using a heuristic expression for the
saltation flux, while particle deposition is obtained assuming it to be proportional
to the product of the density in the saltation layer and the settling velocity of par-
ticles. Erosion-deposition balance allows to compute the evolution of the ground
surface. The model is then applied to both two-dimensional and three-dimensional
cases with an assumed initial flat topography. Gauer [85] has proposed a two-layer
model applied to more complicated topographies. His idea consists in dividing the
domain in two zones: In one of them saltation is relevant, in the other one only sus-
pension is considered. In the suspension layer an Eulerian-Eulerian approach with
1-way coupling is used. Wind flow fields are obtained by means of RANS k-ε model.
In the saltation layer a 2-way coupling model is used, but the effect on turbulence
due to the presence of particles is assumed negligible. Similarly, Naaim et al. [165]
presented an Eulerian-Eulerian 1st-order model with 1-way coupling based on mass
conservation equations for fluid and dispersed phase separately, and a momentum
equation for the mixture of air and particles, solved by RANS with a modified k-ε
turbulence model, in order to considered the effect of the dispersed phase on tur-
bulence. In particular, wind-blown particle transport is modeled distinguishing be-
tween saltation and suspension layer, yielding two different equations for particle
concentrations, while a single momentum equation for the air-solid mixture. In a
slightly different way, a single transport equation is used in [2] and [3] adding a
saltation source term at the first cell centers above the ground. Bang et al. [19] and
Sundsbø [206] paved the way to the use of Volume Of Fluid (VOF) for wind-blown
particulate simulations, proposing a model of slip velocity between phases. Suc-
cessively Beyers et al. [25, 26] presented an Eulerian-Eulerian 1st-order model with
1-way coupling, in which the balance equations of mass and momentum are solved
for the mixture. Suspension and saltation are modeled separately. The former is
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described by a transport equation where the advection velocity is the sum of the
velocity of the mixture and the slip velocity obtained using the drift flux model in
[19]. More recently, Tominaga et al. [213] published a review of the CFD modeling of
snowdrift around buildings. In the same work, they propose a model of wind-blown
snow that solves suspension and saltation transport without distinguishing between
them. It is an Eulerian-Eulerian 1st-order model with 1-way coupling, that treats the
fluid-phase by means of the RANS k-ε model used in [165], but with optimized ad-
ditional terms based on experiments. After few years a modification of the same
k-ε model was proposed in [171]. Similarly to the above models, Eulerian-Eulerian
models for wind-blown sand were used in [113] and [182] using 1-way coupling
approaches, taking into account saltation by means of suitable viscosity coefficents.
The first Eulerian-Eulerian 2st-order model with 2-way coupling was presented in
[34]. Another novelty of this work is that two particle size distributions are simul-
taneously taken into account, leading to a significant improvement with respect to
wind tunnel validation tests. Furthermore, Zhou et al. [240] presented a methodol-
ogy that used the model in [213]. Based on meteorological data, the duration T of
certain snow drifts is divided into n time windows. A steady solution is computed
for each time-interval and the domain is modified and remeshed according to the
resulting particulate drift.

Modeling wind interaction with the ground and particle interaction with the wind

Eulerian approaches require suitable models describing interaction phenomena with
the ground, that is, erosion, saltation-suspension transport, and deposit, as well as
the effect of particles on turbulence. The models dealing with such phenomena will
be described in the following subsections. As already mentioned, continuum ap-
proaches have been largely used for snow drift-prediction. Therefore, most of the
Eulerian dispersed particle models refers to snow. For this reason, part of the next
subsections is done following the wind-blown-snow review [213], complementing it
with the latest development and models related to different particulate materials.

Saltation and suspension transport modeling Mathematical models developed
for mass transport of sand and snow always consider saltation, because it is respon-
sible of most of the particulate transport. Conversely, suspension has been usually
considered negligible, or has been treated separately. Just few models have a single
equation for both transport modes. In particular, Eulerian dispersed particle trans-
port was mainly modeled using one-fluid approaches, because particle velocity is not
explicitly evaluated. The passive scalar transport equation models suspension trans-
port, while saltation is often considered aside in a separated layer, or using empirical
expressions at the first cell centers above the ground. One of the earliest models was
presented in [217] where the drift density Φs ([kg/m3]) was used as a transported
scalar and it was assumed that the velocity of the dispersed phase is equal to that of
the wind plus the particle-fall settling velocity. The transport equation then reads

∂Φs

∂t
+∇ · [Φs(u− uwez)]−∇ · (Φ′su′) = 0 , (3.13)

where uw is the fall velocity considered constant and equal to the terminal settling
velocity, while the turbulent diffusion term is modeled by means of Boussinesq’s
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approximation
Φ′su′ = νt∇Φs .

This approach was chosen in [193], [161], [213], and [240], even though in the
last two articles saltation is included in the transport equation originally written for
suspension transport. In a slightly different way Gauer [85] and Naaim et al. [165]
distinguished between saltation and suspension layers applying respectively two
different transport equations there. The former used a 2-way coupling in the salta-
tion layer, while no particle feedback on the flow is considered in the suspension
layer. The latter considered a transport equation inside the saltation layer which
takes into account of particle-mass exchange between saltation and suspension lay-
ers. They also considered a term present in the transport equation for the suspension
layer as well with the opposite sign, in addition to particle-mass exchange between
flow and ground surface. The equation for the suspension layer then reads

∂Φs

∂t
+∇ · [Φs(u− uwez)]−∇ · (νt∇Φs) =

∫
Σsal

qex · dΣ , (3.14)

while that in the saltation layer is

∂Φs

∂t
+∇ · (Φsu)−∇ · (νt∇Φs) =

∫
Σground

qground · dΣ−
∫

Σsal

qex · dΣ , (3.15)

where qex is the exchange between layers (obtained by the balance between diffu-
sive and settling flux), qground is the flow-ground exchange term, which is equal to
the erosion-deposition flux, whose expression will be detailed in the next section, Σsal
is the interface between saltation and suspension layer, and Σground is the interface
between ground and saltation layer.

Other Authors (e.g., [25, 26, 193, 217]) evaluated the saltation flux Qsal at the first
cell center above the ground, using empirical formulas based on the existence of a
treshold shear velocity u∗,t above which there is a saltation flux, or solving a balance
equation. Different empirical formulations for the saltation flux Qsal in a saturated
saltation layer in equilibrium conditions have been proposed. Defining ( f )+ = ( f +
| f |)/2 the positive part of f , the most used are the following:

• [109] proposes

Qsal = C
ρ̂ f

g
uw

u∗,t
u2
∗
(

u∗ − u∗,t
)
+

,

where C is an empirical constant

• [180] proposes

Qsal = 0.68
ρ̂ f

g
u∗,t
u∗

(
u2
∗ − u2

∗,t
)
+

. (3.16)

The former was for instance used in [217], the latter in [141], [161] and [26] and
was sometimes used to evaluate an inlet particles-drift profile, [25]. Gauer [85] mod-
elled saltation with a 2nd-order model with mass and momentum equations solved
for the dispersed phase, using a scale analysis to simplify the expressions.
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In the VOF and mixture theory framework, a transport equation similar to (3.14)
has been proposed. The variable used is the dispersed volume fraction ϕs, and the
velocity used to advect it is the mixture velocity U plus the relative velocity Ur:

∂ϕs

∂t
+∇ · [ϕs(U + Ur)] +∇ · (ϕ′sU′) = 0 , (3.17)

where the turbulent diffusion term is modeled again with Boussinesq’s approxima-
tion and in [19] the relative velocity is

Ur =
d2

18ν f
(1− ϕs)ϕs

( ρ̂s − ρ̂ f

ρ̂ f

) 1
ϕsρ̂s + (1− ϕs)ρ̂ f

∇p ,

where d is the mean diameter of the particles, approximated as spheres, ρ̂s is the
dispersed phase density. This transport equation was also used in [211], [25], [26].
Instead, in [2] and in [3] Eq. (3.17) was adapted for the Fractional Area-Volume
Obstacles Representation (FAVOR) method, which defines obstacles within a fluid
computational domain, like VOF. Moreover, they added the following source term
Ssal accounting for saltation:

Ssal = βsal∇ ·
[

ϕs(1− ϕs)Ur
(u∗2 + u∗,t2)(u∗ − u∗,t)

u∗,t3

]
,

where βsal ∈ [0.15, 0.6]. The model presented in [206] also started from Eq.(3.17)
(without diffusion term) to model saltation, while for suspension the drift velocity
is assumed to be inversely proportional to air turbulence, in order to have that the
laminar regime gives the highest vertical fall velocity:

Ur =
µ f

µ f + µt
uwez ,

where uw = 0.3[m
s ]. In the same spirt, Ji et al. [113] and Preziosi et al. [182] proposed

a 1st-order model similar to (3.17), in which the convective velocity is the fluid ve-
locity u plus a vertical component due to gravity. Moreover, saltation is included
in the transport equation assuming a diffusive effect due to particles collision inside
the saltation layer. This is done using an effective viscosity νe f f inserted in the mass
conservation equation:

∂ϕs

∂t
+∇ · [ϕs(u− uwez)]−∇ ·

(
νe f f ϕk

s∇ϕs

)
= 0 . (3.18)

While the model in [182] is a 1-way coupling, the one in [113] is a 2-way coupling
model, due to the presence of momentum-extraction term in the fluid phase momen-
tum balance equation. In fact, on the basis of experimental data, the following form
for the effective viscosity was proposed in [113]:

νe f f = βδDuw ,

where β = 0.217 and

δD =
(k0u∗)2

2g



3.3. Dispersed phase modeling 35

is the length scale of the saltation layer thickness and

k0 = 1 + 1.673
(

1− d
d1

)
,

where d1 = 2.5 · 10−4[m] and d is the particle diameter ([166]).

Regarding the sedimentation velocity uw, it can be classically calculated by the
balance of drag and buoyancy forces and it strongly depends on the grain size (see,
for instance, [88] or [78]). For small particle Reynolds numbers

Rep :=
(1− ϕs)|us − u|d

ν f
.

Stokes law gives:

uw =
(ρ̂s − ρ̂ f )gd2

18ρ̂ f ν f
. (3.19)

Snow flakes certainly satisfy this regime. In case of particle Reynolds numbers in the
range [100, 1000] the sedimentation velocity is usually given in terms of the drag
coefficient CD

uw =

√
4
3
(ρ̂s − ρ̂ f )gd

CDρ̂ f
, (3.20)

where CD can be approximated according to several experimental fittings (see, for
instance, [9, 11, 20, 23, 62, 75, 78, 88, 177, 208, 224]). In particular, in [113] has been
used the relation

CD =
24

Rep
(1 + 0.15Re0.687

p ) , (3.21)

also suggested in [197]. In [182] it was observed that it is useful to plot the ex-
perimental relationship between particle Reynolds number and drag in terms of a
relationship between the grain size and the particle Reynolds number, as shown in
Fig.3.3. For sand close to the ground the particle Reynolds number is typically be-
tween 1 and 100, while, as already stated, for snow flakes it is well below 1. Hence,
while for snow it is possible to use Stokes law (3.19) for sand it is hard to find an
explicit relationship and one has to rely on the experimental curves, such as those
given in [20]. A further observation in [182] regards the effective viscosity νe f f de-
fined as the sum of molecular viscosity, turbulent viscosity and a term related to
collisions inside the saltation layer. Regarding this last term, it is observed that the
behavior of the sand particles is isotropic. Hence, objectivity implies that νcoll is a
scalar isotropic function of the rate of strain tensor D = 1

2 (∇u+∇uT). By the repre-
sentation theorem of isotropic function, νcoll can then only depend on the invariants
of D in addition to the dispersed particles. However, since the flow can be consid-
ered as a perturbation of a shear flow in the vertical plane, the leading contribution
is the second invariant I ID = 1

2 [(trD)2 − tr(D2)]. For this reason, one can assume
that νcoll = νcoll(I ID, ϕs).

Boutanios and Jasak [34] proposed a 2nd-order model (2-fluid formulation) with a
2-way coupling, where there is no need to approximate the dispersed phase-velocity.
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Figure 3.3: (a) Particle Reynolds number as a function of the sand grains
diameter of a sedimenting particles in air [182]. (b) Qualitative depen-
dence of the diffusivity coefficient νe f f on the distance from sand bed

[182].

The conservation of mass and momentum for both phases read

∂ρ̂k ϕk

∂t
+∇ · (ρ̂k ϕkuk) = 0 ,

∂

∂t
(ρ̂k ϕkuk) +∇ · (ρ̂k ϕkuk ⊗ uk) = −ϕk∇p +∇ · (ϕkTk) + ρ̂k ϕkg + (−1)km ,

where k = 0, 1 respectively for the fluid and the dispersed phase, g = −gez is the
acceleration of gravity, m is the momentum exchange term (with opposite sign in the
two equations), T f is modelled as a viscous stress tensor. Considering that the equa-
tions are written for two-dimensional cases corresponding to a vertical plane, the
viscosity νs is obtained starting from momentum balance for two-dimensional fully-
developed steady-state flow containing dispersed-phase bed particles in a control
volume, getting

νs =
d

6εs

∂p
∂x

+
τt

2ρ̂sεs
,

where εs is the rate of strain of the dispersed phase, x is the along-wind direction
and τt = ρ̂s ϕsu2

∗ is the threshold shear stress.

Saltation modeling If suspension has been neglected in some works ([141]), salta-
tion is always taken into account, because it is the main cause of transport on the
ground of snow or particles in general ([16], [129]).

Bed-surface evolution, erosion/deposit modeling Bed-surface changes due to ero-
sion and deposition of granular material should be accurately reproduced in order
to get a reliable morphodynamic evolution and mass-drift results. This aspect is rel-
evant both for its influence on the aerodynamics and for the information it carries
on the accumulation zones. Referring to Fig. 3.4, all models are based on a bal-
ance qnet between deposition qdep and erosion qero fluxes, that is written either as
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qnet = qdep + qero or as

qnet =

{
qero if erosion acts
qdep otherwise .

Considering a cell laying on the bed surface, the height change in a time interval ∆t
is

∆z = ∆t
qnet

Abedρ̂s
,

where Abed is the area of the ground-face of the cell considered. If qnet > 0 deposition
occurs, otherwise the sand-bed is eroded.

q
ero

q
dep

q
ero

q
dep imp

q q
net

snow-bed snow-bed snow-bed

(a) (b) (c)

boundary 
cell

boundary 
cell

boundary 
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Figure 3.4: Schematic representation of different 1D models for erosion-
deposition balance. (a) [217] and [182], (b) [25], (c) [165].

Several relationships have been suggested. For instance, referring to Fig. 3.4 (a),
Uematsu et al. [217] proposed

qdep = uwΦs , (3.22)

qero = −uw
Qsal

usal hsal
,

where usal and hsal are respectively wind velocity in the saltation layer and saltation
layer height. Referring to Fig. 3.4c, Naaim et al. [165] suggested

qnet =


qero = Cρ̂ f (u2

∗,r − u2
∗,t) if u∗ ≥ u∗,t

qdep = Φsuw
(u2
∗,t − u2

∗)

u2
∗,t

if u∗ < u∗,t

where u∗,r = u∗ − (u∗ − u∗,t)
Φ2

s
Φ2

s,max
and Φs,max = 0.248 [Kg/m3] for snow, recently

used also in [205]. Referring to Fig. 3.4b, Beyers snd Sundsbø [25] computed fluxes
differently and included a term taking into account of the impinging flow on the bed,
so that the net flux is

qnet = qdep + qero + qimp

with

qdep = uwΦs

(u2
∗,t − u2

∗
u2
∗,t

)
+

,

qero = −Cρ̂ f (u2
∗ − u2

∗,t)+ ,

qimp = Kun
pΦs f (α) ,
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where C is a constant which represents the solid material pack bonding strength, K
is another model constant, up is the flow velocity on the ground boundary cells, n is
related to granular surface features, f (α) is a function of the flow incident angle α.
Referring to Fig. 3.5, Beyers and Waechter [26] considered the mass balance equation

snow-bed

q
ero

q
dep

q
sal  t+susp

q
sal  t+susp

q
sal  t+susp

q
sal  t+susp

Figure 3.5: Schematic representation used in [26] to model erosion-
deposition balance.

−qnet = ∇ · (qsusp + qsalt) + qdep + qero ,

where

∇ · qsusp ≈
ϕszβ

ln z
z0

∫ z1−cell

0
z−βln

z
z0

dz∇ · u

with β = uw
κu∗ and it is stated that

∇ · qsalt =


0.68ρ̂ f

g
u∗,t

(
1 +

u2
∗,t

u2∗

)
t · ∇u∗ if u∗ > u∗,t

0 otherwise

,

where t is the direction of the flow. The quantities qdep and qero are given by

qdep = (u f ,z − uw)ϕs − uwt ϕs ,

where u f ,z is the vertical component of fluid velocity and uwt = 0.4
√

2
3 k is turbulent

diffusion velocity, given by the isotropic turbulent velocity fluctuation approxima-
tion of the k-ε model, and

qero = −ρ f C(u2
∗ − u2

∗,t) .

All the quantities are computed at the centers of the cells lying on the ground inter-
face. Tominaga et al. [213] proposed to model erosion on a flat bed as a turbulent-
diffusion process:

|qero| =

−νt

(∂Φs

∂z

)∣∣∣
snowbed

if u∗ > u∗,t
0 otherwise

.



3.3. Dispersed phase modeling 39

This formula is used as a boundary condition for Φs (z is the vertical direction nor-
mal to the flat plane), computing qero by means of the empirical formula suggested
in [4] for snow:

qero = −5 · 10−4ρ̂su∗

(
1− u2

∗,t
u2∗

)
.

On the other hand, qdep is modeled as in [217] (see Eq.(3.22)). A similar formula
for the erosion flux was used in [182] on the basis of recent experiments reported in
[102], [101] and [100], who proposed

qero =
wejαρ̂ f

gd
β̂
(
u2
∗ − u2

∗,t
)
+

,

where wej = 0.5 m/s is the sand grain ejection velocity evaluated experimentally in
[102], [101], [100] and [58], α is a dimensionless free parameter to be fitted to experi-
mental sand flux profiles, and

β̂ = AH

√
d
g

,

where AH is a model parameter depending of the physical properties of the granular
material.

Erosion and deposition fluxes are almost always used in unsteady simulations to
move the ground boundary or for domain re-meshing in order to have a boundary-
fitted computational grid. Mesh-updating can take place at every time-step (as done
in [25], [26], [213]), or when significant changes arise (as done in [165], [85]), because
wind flow and particles-deposit evolve with different time scales. Another way used
to take this difference into account is a quasi-steady procedure, that consists in com-
puting a steady solution for the wind phase, which is then used to evaluate mass
drift and modify the domain. This procedure is then repeated. In this framework,
one of the most recent developments is a multi-time step domain decomposition
method for transport problems proposed in [46].

Less recent studies adopted instead a fill-cell technique that consists in comput-
ing the amount of volume occupied by the dispersed phase in the ground boundary
cells and to exclude them from the domain when they are filled ([141], [2], [3]).

Particle effect on turbulence In the suspension layer the concentration of particles
is very low and the effect on turbulence is neglected in most of the articles. Naaim et
al. [165] were the first to consider the influence of the dispersed phase on turbulence
in a 1-way coupled model. They used a modified k-ε model ([49]) where the source
terms

Sk = −
2k
t∗

18µ f

[
1− exp

(
− t∗ε

2k

)]
Φs (3.23)

and
Sε = −

2ε

t∗
Φs (3.24)

are respectively added to Eqs.(3.9) and (3.10) in order to take into account of the dis-
sipative effect of the diluted phase. In Eqs. (3.23) and (3.24) t∗ = d2 ρ̂s

18µ f
is the dispersed
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particle relaxation time.

Tominaga et al. [213] used the same equations, but the additional terms were
modified to:

Sk = −Cks fs
k

ρ̂st∗
Φs ,

Sε = −Cεs
ε

ρ̂st∗
Φs ,

where Cks, Cεs are constants, and fs is an exponential damping function. In Figure 3.6
the effect of the modified k-ε model on turbulent kinetic energy are shown. Okaze
et al. [171] proposed a new k-ε modified model for particles dispersed in the wind.
Particles are thought as moving obstacles and modeled using vehicle canopy theory,
i.e. canopy model concept for moving obstacles (see [159]).

(a) (b)

Figure 3.6: Effects on turbulent kinetic energy by dispersed particles.
Comparison between cases (a) wthout and (b) with k-ε model modifica-

tions ([213]).

Considering that the concentration of particles is higher in the saltation layer, the
following modification (based on measured data) of standard rough wall functions
is proposed in [25] (see also [29]):

u =
u∗
κ

ln
( zu∗

ν f

)
+ B− ∆B(k+s , s+) , (3.25)

where:

• B = 5.5 is an integration constant,

• ∆B(k+s , s+) = 1
κ ln(1 + 0.3k+s + 9, 53s+) represents the intercept of the profile,

switched from the origin due to roughness height,

• k+s =
ksu∗
ν f

is the so-called dimensionless physical roughness height or roughness

Reynolds number,
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• s+ =
c1u3
∗

2gν f
is the additional parameter which models the effect of saltating

particles, where c1 is an empirical constant.

Defining:

• z+ =
z0u∗
ν f

the dimensionless wall distance,

• u+ =
u
u∗

the dimensionless velocity,

Eq. (3.25) can be written as u+ = 1
k ln(z+) + B− ∆B(k+s , s+). Figure 3.7 shows the

standard law proposed in [29] for different roughness regimes.
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Figure 3.7: Wall function for fully rough surfaces proposed in [29].

Granular Kinetic Theory

A different Eulerian approach, called Granular Kinetic Theory (GKT) in analogy with
the Gas Kinetic Theory [47], was proposed for dispersed particles multiphase simu-
lations. The main idea of GKT consists in adopting a statistical and probabilistic
approach to describe particle-particle interactions including both collision and fric-
tion, and random particles paths. In light of this approach, many quantities are
introduced to describe sand dynamics. The most important one is the granular tem-
perature that measures the energy level of the particle velocity fluctuations, which are
then related to the air field by means of a turbulence model (generally a k-ε model).
The solid pressure, that has the same meaning as pressure in gas standard models,
describes the spherical component of the stress tensor for the dispersed phase. In
this way, GKT models couple dispersed phase with carrying fluid behavior.
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Specifically, Jenkins and Hanes [111] implemented a simple GKT model for a
one-dimensional steady sheet flow focusing on a highly concentrated region of grains
close to a sand bed, obtaining a qualitative good estimate of the erosion. The previ-
ous work was extended in [176] by implementing an extra term in the fluid momen-
tum equation, following a modification suggested in [104]. They described an ad-
ditional mechanism of suspension due to turbulence and granular pressure gradient.
However, the results overestimated sand mass flux in comparison with experiments.

A further extension was proposed by Marval et al.[155] who considered slightly
anelastic particle-particle collisions and incorporated an improved two-dimensional
transient model with a frictional sub-model to describe the sustained contacts be-
tween particles. The simulation results provided a good estimate of mass flux in
sediment transport layer.

To our knowledge, at present the latest extension of the model consists in a 2nd-
order model with 2-way coupling [151]. This type of models involves many equa-
tions and thermodynamic parameters, hence here we show the main equations only.
Working under the saturation assumption ϕ f + ϕs = 1, the mass and momentum bal-
ance equations for phases are:

∂

∂t
(ρ̂s ϕs) +∇ · (ρ̂s ϕsus) = 0 ,

∂

∂t
(ρ̂ f ϕ f ) +∇ · (ρ̂ f ϕ f u f ) = 0 ,

∂

∂t
(ρ̂s ϕsus)+∇· (ρ̂s ϕsus⊗us) = −ϕs∇p−∇ps +∇·Ts + ρ̂s ϕsg+ β(u f −us)−FLi f t ,

(3.26)
∂

∂t
(ρ̂ f ϕ f u f )+∇· (ρ̂ f ϕ f u f ⊗u f ) = −ϕ f∇p+∇·T f +∇·T

′′
f + ρ̂s ϕsg− β(u f −us)+FLi f t .

(3.27)
As mass and momentum conservation equation are present for both phases, then
this model can be classified as a second order model. In the above equations

Ts = ϕs

[
µs

(
∇us + (∇us)

T
)
+

(
λs −

2
3

µs

)
(∇ · us)I

]
is the solid stress tensor,

T f = µ f ϕ f

[(
∇u f + (∇u f )

T
)
− 2

3
(∇ · u f )I

]
,

T
′′
f = ϕ f

[
µt, f

(
∇u f + (∇u f )

T
)
− 2

3
(ρ̂ f k f + µt, f∇ · u f )I

]
are the fluid stress tensors and

FLi f t = −
1
2

ρ̂ f ϕ f (u f − us)× (∇× u f )
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is the lift force. In addition, in (3.26) the pressure of the suspension phase is written
as

ps = pkin/coll + p f ric , (3.28)

where
pkin/coll = ρ̂s ϕs[1 + 2ϕs(1 + e)g0]Θ , (3.29)

p f ri =

Pf ri
(ϕs − ϕs,min)

n

(ϕs,max − ϕs)r if ϕs,min < ϕs < ϕs,max

0 if ϕs ≤ ϕs,min

and µs = µkin + µcoll + µ f ric. Formulas of these three viscosity terms are omitted for
sake of brevity.

Lun et al. [153] derived all the involved expressions considering the anelastic
nature of particle collision (instantaneous-binary collisions). Lugo et al. [151] claim
that the most important idea of this model consists in introducing, as mentioned
earlier, a quantity called granular or solid temperature Θ, which is a measure of the
energy level due to the particle velocity fluctuation. In particular, splitting the solid
velocity into a sum of mean and fluctuation components, i.e., us = 〈us〉+ u′s, the
definition of Θ is Θ := 1

3 〈||u′s||2〉. Similarly to the classical gas theory, solving the
equation

3
2

[ ∂

∂t
(ρ̂s ϕsΘ) +∇ · (ρ̂s ϕsΘus)

]
=

=

(
Ts −

3

∑
k=1

(∇ps · ek)ek ⊗ ek

)
: ∇us +∇ · (χs∇Θ)−γs − 3βΘ

(3.30)

it is possible to obtain the pressure for solid phase through the constitutive relation-
ship (3.29). Finally, the chosen equations for turbulence model are

∂

∂t
(ρ̂ f ϕ f k f ) +∇ · (ρ̂ f ϕ f k f u f ) = ∇ ·

(
ϕ f

µt, f

σk
∇k f

)
+ ϕ f Gk, f − ρ̂ f ϕ f ε f ,

∂

∂t
(ρ̂ f ϕ f ε f ) +∇ · (ρ̂ f ϕ f ε f u f ) = ∇ ·

(
ϕ f

µt, f

σε
∇ε f

)
+ ϕ f

(
C1ε

ε f

k f
Gk, f − C2ερ̂ f

ε2
f

k f

)
with

µt, f = ρ̂ f Cµ

k2
f

ε f

and
Gk, f = 2 µt, f ‖D‖2 .

For sake of brevity, we omit the others 13 equations of the model, that involve many
thermodynamics parameters that have to be chosen to characterize the sand type
and the flow regime. However, for reader’s use the "List of Main Symbols" is pro-
vided at the beginning of this article.

Many two-dimensional simulations were conducted with good qualitative re-
sults, in particular, the solid-like characteristics of the sand bed and the air free
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flow outside the saltation zone were correctly reproduced, also from the quantita-
tive point of view. On the other hand, at the large-scale erosion was overpredicted by
20% and at the small-scale the parameters of the model used in [103] (conductivity,
solid viscosity, granular temperature and mean free path) strongly affect sediment
transport layer thickness, which appears thinner than experimental measurements.
As observed in [151] GKT models can provide a relatively good description of the
saltation layer, but they require further studies on the coupling turbulence models
and on the effect that the parameters have on the solution.

3.3.2 Eulerian treatment of wind driven rain

A somewhat different approach needs to be used for wind-blown rain, because the
dispersed phase is liquid and is not entrained in the airflow from the ground apart
from extreme situations of little practical interest, e.g., in presence of very strong
winds. Moreover, the main transport process is due to convection and sedimenta-
tion. To the best of our knowledge, Eulerian-Eulerian approach for wind driven rain
(WDR) have been introduced pretty recently by Huang and Li ([107], [106]) . They
proposed a 2-fluid formulation for WDR with a 2-way coupling.

The air-phase is modeled with a 1-fluid approach (see Eqs.(3.4)-(3.5)) using both
RANS with realisable k-ε [107] and LES [106] coupled with an SGS model proposed
in [108]. The rain-phase is considered as a poly-dispersed fluid with k components,
one per raindrop size class. Both mass and momentum conservation equations are
solved:

∂ρ̂`ϕk

∂t
+∇ · (ρ̂`ϕkuk) = 0 , (3.31)

∂

∂t
(ρ̂`ϕkuk) +∇ · (ρ̂`ϕkuk ⊗ uk) = ρ̂`ϕkg + Fk,d , (3.32)

where ρ̂` is the water density, ϕk and uk are respectively the volume fraction and
the velocity of the k size range class. At variance with snow and sand-drift models,
the Authors above do not model turbulent diffusion, justifying it by the discrete
nature of rain. The motion of rain is obtained by the combined effect of gravity (the
first term on the r.h.s. of Eq.(3.32)) and wind drag (the second term on the r.h.s. of
Eq.(3.32)), that is taken to be given by Stokes law:

Fk,d = ϕk
18µ f CDRep

24d2
k

(u f − uk) .

The sum of these last terms over all k size-range class is inserted with the opposite
sign in the momentum equation for the air-phase for coupling.

In [133] a similar model is proposed, but there is no effect in the air momentum
equations due to the interactions with the rain drops. The 1-way coupling approxi-
mation is justified by the fact that the volume ratio is smaller than 10−4. The model
is then extended in [134], where the effect of turbulent dispersion is included by
means of Boussinesq eddy viscosity approximation for the Reynolds stresses model-
ing. This model has been successfully used for civil engineering application, involv-
ing different building set-ups and was validated with experimental measurements
[132, 135, 136]. A similar model was also used in [178]. Finally, Wang et al. [223]
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added the resulting drag term to the wind momentum equation so that the model
can be classified as a 2-way coupling model. However, Huang and Li [106, 107] men-
tioned that other approaches (mainly Lagrangian and heuristics) can be selected for
computational reasons. In fact, their model requires using very fine grids in order to
reduce numerical diffusion, as well as solving partial differential equations for each
class of raindrop size of the poly-disperse flow.

3.3.3 Eulerian-Lagrangian approach

While for wind-blown snow Eulerian-Eulerian approaches are always preferred, for
sand Eulerian-Lagrangian approaches have been widely used, both for the persis-
tent granular nature of sand and for the existence of previous studies on granular
matter in general.

Eulerian-Lagrangian models allow to focus on phenomena related to the behav-
ior of single grains and to get information at the grain scale that cannot be obtained
by fully Eulerian models and that are hard to be obtained experimentally. On the
other hand, in order to be statistically representative for the real ensemble of sand
grains, a sufficiently large set of particles needs to be introduced in the domain,
which makes the method computationally expensive. Basically, the method consists
in solving the equations of motion for each particle including collision dynamics, to
get individual trajectories. For these reasons, in general these methods are preferred
to study local-scale phenomena.

After an earlier attempt by Anderson and Haff [4] and later by Lakehal et al.
[138], only in the last two decades such computational approaches have taken hold
in the particular fields of application of interest in this review. In fact, starting with
[204], different discrete particles models have been proposed, specifically named as
Discrete Particle Methods (DPM) and Discrete Element Method (DEM).

Before describing the models in some details, we give an overview of their main
feaures. Kang and coauthors [117, 118, 120, 121] proposed a DPM for the granular
phase joined with RANS two-phase equations for the transporting phase (see Eqs.
(3.6) (3.7)), because of the lower computational cost of Reynolds-averaged approach.
A 2-way coupling is employed. Particle distribution, velocity and drag force were
analyzed and compared with wind-tunnel data [117, 118, 120]. The effect of Mag-
nus and Saffman forces have been included and studied in [121]. A k-ε turbulence
model was generally used, except in [117], where a simpler one equation mixing
length model was preferred.

Concerning the particle tracking model, translational and rotational equations
of motion are solved, taking into account the torque due to shear stress (except in
[118]), and applying a soft-sphere model for inter-particles collisions. The simulation
set-up used in [117] differs from the others because the domain bottom boundary
coincides with the ground, while in the others the fluid-solid interface is inside the
domain.

More sophisticated models were also proposed in order to improve the reliabil-
ity of computational simulations. For instance, concerning the fluid phase, RANS
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approaches were sometimes replaced by LES or Lattice-Boltzmann methods. Specif-
ically:

• Tong and Huang [215] combined a DEM with 2-way coupling with LES (with
dynamic SGS closure) to obtain a more realistic flow field;

• Li et al. [139] put more details and effort in the computation of the particle
trajectories using a DEM with 4-way coupling combined with LES fluid simu-
lation using Smagorinsky sub-grid model;

• Shi et al. [199] combined a 2-way Lagrangian tracking method with a Lattice-
Boltzman approach for fluid flow.

• Jiang et al. [115] used LES with Lagrangian tracking to investigate the effect
on turbulent flow structures, sand transport, and sand particle reverse motion
over two-dimensional transverse dunes.

• Okaze et al. [170] used LES with coherent structure Smagorinsky model ([127],
[128]), coupled with a snow transport model, based on the interaction between
turbulent flow structures and snow particle dispersion.

Concerning the dispersed phase, different improvements were tried:

• Xiao et al. [230] extended the model presented in [118] where mono-sized
sand was used, including different particle size distributions, both Gaussian
and uniform.

• Lopes et al. [147] tackled the presence of different time scales by means of a
quasi-steady procedure based on a RANS k-ε model with 1-way coupling.

Most of the works using Lagrangian methods studied local saltation phenomena
over a flat bed. Instead, Jiang and coauthors ([114], [115]) has been used particle
tracking over a sand dune in a two-dimensional configuration, and investigated the
effect of the presence of grains on the air-flow.

The same kind of models has been used for rain droplets, with some simplifica-
tions. The first models to evaluate the impact of wind driven rain on buildings was
presented in [53] and [52]. These models used a 1-way coupling and were based
on steady air-flow simulation using RANS k-ε models. Lift forces were always ne-
glected, as well as rebound, splash, run-off and resuspension. Similar models were
proposed by Hangan [98] and Abadie and Mendes [1], who used both k-ε and k-ω
RANS, according to the position inside the computational domain.

Finally, it is worth pointing out that Lagrangian models seem to treat all trans-
port modes implicitly. Actually, this is true only if particle-particle and particle-bed
interaction are taken into account. For instance, saltation is the result of complicate
inter-particle collisions.

Particle equations of motion

As already mentioned, almost all Eulerian-Lagrangian models refer to Discrete Par-
ticle Methods (DPM) and Discrete Element Method (DEM). These methods solve the



3.3. Dispersed phase modeling 47

equations of motion for each particle:

mp
dup

dt
= Fp , (3.33)

where mp is the mass of the particle, up its velocity, and Fp the resulting force acting
on the particle, that includes drag and gravity. In some cases the rotational degrees
of freedom are considered as well, so that also the equations of angular momentum
are solved:

Ip
dΩp

dt
= Tp , (3.34)

where Ip is the momentum of inertia of the particle (that is assumed spherical) and
Ωp its angular velocity. Almost all Lagrangian models are 2-way coupled (except
for [147]), because the effect of the presence of particles is included into the air-
phase mass and momentum balance equations (Eqs. (3.6)-(3.7)), which depend on
the air-phase volume fraction ϕ f = 1− ∑Nd

i=1 ϕs,i, where, considering poly-disperse
flows, ϕs,i is the volume fraction of the i-dispersed phase, and Nd is the number of
dispersed phases. Moreover, in Eq. (3.7) there is the solid-fluid coupling term fdrag
which is the resultant of the drag forces exerted by particles [230]:

fdrag =
1

∆v

N

∑
p=1

Fdr
p ,

where ∆v is the volume of the considered computational cell, N is the total number
of particles inside the cell and Fdr

p is the drag force acting on the p-particle, computed
by means of empirical relations, for instance

Fdr
p = −1

8
πD2CD|u f − up|(u f − up) , (3.35)

where CD is the drag coefficient [62]. As already stated after Eq. (3.21) several laws
have been proposed for CD to fit experimental data. In [204], [118], [147] and [139]
the following relations generalizing Eq. (3.20) to high particle Reynolds numbers is
used:

CD,l1 =


24

Rep
(1 + 0.15Re0.687

p ) if Rep < 1000

0.44 if Rep ≥ 1000
(3.36)

Instead, in [120], [117], [215] and [230] the following expression

CD,l2 =
(

0.63 +
4.8

Re0.5
p

)2
(3.37)

was used to express the drag coefficient laws (3.36) and (3.37) are compared in
Fig.3.8, and they notably differs only for high Rep. As observed above for sand
particles close to the ground 1 ≤ Rep ≤ 100.

Also the models proposed in [215], [114] and [199] belong to the 2-way coupling
category, because they included the effect of particles on the fluid.

In order to get 4-way coupling models like in [139] particle-particle and particle-
bed interactions Fcoll to Fp need be considered. In this case, the resulting force on
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Figure 3.8: CD coefficient according to Eqs.(3.36) and (3.37).

particle p generally reads
Fp = mpg + Fdr

p + Fcoll
p ,

where Fcoll
p can be modelled with different levels of accuracy. DEM approaches are

able to treat multi-contact interactions using mechanical elements (springs, dampers,
etc...) to describe forces by means of hard-sphere and soft-sphere models, as well de-
scribed in [61]. For instance, Kang and Guo [118] and Li et al. [139] split Fcoll

p as

Fcoll
p = ∑

q
(fc

pq + fd
pq) ,

where fc
pq is a contact force and fd

pq a viscous damping force which vanish when the
particle q does not collide with the particle p. The expressions of the normal and
tangential components of the contact and damping forces are:

• Normal contact force: f c
pq,n = −4

3
E∗
√

r∗δ3
n

• Tangential contact force: f c
pq,t = −

µs| f c
pq|
|δt|

[
1−

(
1− min{|δt|, δt,max}

δt,max

)3/2
]

δt

• Normal viscous damping force: f d
pq,n = −η

(
6mpqE∗

√
r∗δn

)1/2 vpq,n

• Tangential viscous damping force:

f d
pq,t = −η

(
6mpqµs| f c

pq|
√

1− |δt|/δt,max

δt,max

)1/2

vpq,t
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where 1
mpq

= 1
mp

+ 1
mq

and 1
r∗ =

1
rp
+ 1

rq
with rp and rq the radii of the particles p and

q. In the same way
1

E∗
=

1− ν2
p

Ep
+

1− ν2
q

Eq
,

where Ep, Eq and νp, νq are respectively the Young modulus and the Poisson ratio of
the particles p and q. In addition, µs is the friction coefficient, η is the damping coef-
ficient, δ = (δt, δn) is the displacement vector between the particles p and q splitted
in tangential and normal components and, similarly, vpq = (vpq,t, vpq,n) is the rela-
tive velocity between the consider couple of particles, again splitted into tangential
and normal components. In [120], [121], [117] the inter-particles interaction forces
are given by

Fcoll
p = ∑

q
fc

pq ,

where the summation terms are computed using a linear spring-damper model. In
particular, the components of the interaction force are:

• Normal component
f c
pq,n = −ksδn − ηvpq,n

• Tangential component

f c
pq,t =

{
ksδt − ηvpq,t if | f c

pq,t| ≤ µs| f c
pq,n|

−µs| f c
pq,t| if | f c

pq,t| > µs| f c
pq,n|

where ks is the stiffness coefficient and the other coefficients are as above. In addi-
tion, rotational degrees of freedom are also considered, adding the equation

Ip
dΩp

dt
= ∑

q
Tpq + T f , (3.38)

where Tpq is the torque due to collision forces, T f = 8πr3µ f

(
1
2∇× u f −Ωp

)
is the

torque on a spherical particle due to the fluid shear stress. In [118] and [139] Eq.
(3.38) is solved neglecting T f .

An alternative way to model particle-particle and particle-bed interactions con-
sists in using a hard-sphere model with impulsive interaction forces.With this ap-
proach, particles restore their shape after impact. However, in this approach only
instantaneous binary collisions are considered. Multiple interactions are neglected
and so it can be used for dilute suspensions only and not close to the sand-bed.
Considering two particles p and q, conservation of linear and angular momentum
read 

mp

(
up − u(0)

p

)
= J ,

mq

(
uq − u(0)

q

)
= −J ,

Ip

(
Ωp −Ω

(0)
p

)
= rp × J ,

Iq

(
Ωq −Ω

(0)
q

)
= −rq × J ,
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where the index (0) refers to the values of velocity and angular velocity before the
collision and J is the impulsive force. Such an approach was used by Sun el al. [204]
who considered binary elastic collisions between non-deformable spheres, using an-
alytical average normal and tangential impulses to compute velocity variations. In
[230] hard-spheres were used to model both particle-particle and particle-bed inter-
actions. As far as rain droplets are concerned, most of the models are based on Choi’s
work ([53], [52]). In his model only translation motion is considered and in Eq. (3.33)
the resulting force on a particle is a balance between Stokes drag and buoyancy:

Fp = mpg
(

1− ρ̂ f

ρ̂s

)
+ 6πµrp(u f − up) (3.39)

Instead Hangan [98] used

Fdr
p =

3ρ

8rp
CD|u f − up|(u f − up) (3.40)

for the drag force in the rain droplet translation equation of motion, where CD =
a1 +

a2
Re +

a3
Re2 is the drag coefficient given by Morsi-Alexander law. A similar quadratic

dependence on the relative velocity was used in [1].

Particles-bed interaction

The Lagrangian approach allows to avoid dynamical re-meshing, because the inte-
gration cell can be fixed and even be crossed by the ground surface. However, this
implies to accurately model the interaction of the dispersed particles in the saltation
and creep layer with those particles laying on the ground. One simple way to do
that is to compose the ground surface using a set of motionless particles and a resti-
tution coefficient. Two different initial particles-bed configurations, with 3000 and
5000 particles were studied in [118]. The former reaches a steady state in 3.6 seconds,
while the latter in 3.4 seconds, even if a direct comparison between the two set-ups
can not be made because the simulations differ in other parameters. Similarly, 8000
particles were used in [120]. Differently, in [117] the ground interface is outside the
domain, under its bottom boundary. Therefore, no boundary model is applied, and
the dynamics is totally simulated by means of inter-particles collision models. On
the contrary, Xiao et al. [230] focused on the effect of two different bed models:

• Flat bed model: the bed is considered as a motionless particle having an infinite
mass (also used in [139]);

• Rough bed model: the bed is considered as a set of particles having mass and
size of a settling particle; the velocity vector relative to an impacting particle
and the wall is taken to be a Gaussian distribution.

The choice of bed models affects the results, and each of them seems to represent
a particular type of sand surface (rough bed model) or desert areas (Gobi area, flat
bed model). Tong and Huang [215] and Jiang [115] modelled the impacting-ejecting
process on the basis of the splash function proposed in [225] and [220]. Specifically,
the rebound and the ejected speeds vre and vej, and the rebound and ejected angles
αre and αej are given by uniform probability densities with mean |v̄re| = 0.3|vim| and
ᾱre = 0.60, where vim is the impinging speed and αim is the impinging angle. However,
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the reported values of the standard deviation deserve more studies because they are
sometimes unphysical. The number of ejected sand particles is

Nej
p = max{0, 3.36 sin αim (5.72|vim| − 0.915)} .

On the other hand, Shi et al. [199] chose the following Gamma distribution function

f (v0) =
13.5

0.96u∗

( v0

0.96u∗

)3
exp

(
− 3v0

0.96u∗

)
for the lift-off speed v0 in order to capture the stochastic nature of the ejection process
(see also [5]), while the number of particles ejected by splashing Nej

p and the rebound
velocity and probability are following [225]:

Nej
p (vim, αim) = 3.07 sin αim

( vim

18
√

gd
− 1
)

,

vre =
1
2

vim ,

Pre = 0.95

[
1− exp

(
1− exp

vim

10
√

gd

)]
.

Different time-scale treatment

Air and particles have very different characteristic time-scales. From a computa-
tional point of view, this aspect is cumbersome and needs to be carefully considered
in order to avoid waste of computational resources. In Lagrangian simulations the
multi-time-scale issue is tackled using different time steps to integrate the equations
for particles and air, as reported in Table 3.1. In all cases there is one order of magni-
tude difference between particle and air time-step.

Table 3.1: Examples of time-steps for air and dispersed phase in
Eulerian-Lagrangian approaches.

Model Air time-step [s] Particle time-step [s]

[118] 2 · 10−5 3 · 10−6

[120] 2 · 10−5 2 · 10−6

[121] 2 · 10−5 2 · 10−6

[215] 5 · 10−4 1 · 10−4

[139] 5 · 10−5 2 · 10−5
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Chapter 4

Avalanches

The content of this chapter is based on the article [169] published during the period
of the SMaRT research activity.

The morphodynamic evolution of the shape of dunes and piles of granular mate-
rial is largely dictated by avalanching phenomena, acting when the local slope gets
steeper than a critical repose angle. A class of degenerate parabolic models are pro-
posed closing a mass balance equation with several viscoplastic constitutive laws to
describe the motion of the sliding layer. Comparison between them is carried out by
means of computational simulations putting in evidence the features that depend
on the closure constitutive assumption and the robust aspects of the models. The
versatility of the model is shown applying it to the movement of sand in presence of
walls, open ends, columns, doors, and in complicated geometries.

4.1 Introduction

Four phenomena contribute to wind-induced sand movement and eventually to the
formation and evolution of dunes: erosion from the sand bed, transport by the wind,
sedimentation due to gravity, and sand grain slides occurring when the slope of the
accumulated sand exceeds a critical repose angle [40] that depends on the specific
granular material [30].

In particular, erosion, sedimentation, and sand sliding determine the evolution
of the free-boundary over which wind blows and transports the sand. As explained
in detail in [143] and in the recent review [145], the need of coupling a multiphase
turbulent fluid-dynamics model with the morphodynamics of the sand surface re-
quires the deduction of mathematical models for such phenomena that are able to
describe the evolution of the sand bed in a way that is at the same time accurate and
computationally fast. However, applications are not restricted to sand dynamics but
can be extended to debris and other granular material in general as they present
similar behaviours.

Referring again to [145] for a more detailed review, many modeling frameworks
were developed to study the phenomena involved, both for sand and snow, and for
other granular materials in general. Savage and Hutter [196] proposed a hydrody-
namical models, based on Saint-Venant equations. They start from the incompress-
ibility condition and momentum conservation equations in the flowing layer and
then integrate them over the thickness of the rolling layer, not considering erosion
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and deposition. This gap was then filled, for instance, by Douady et al. [68], Khakhar
et al. [126] and Gray [90]. A detailed analytical study of Savage and Hutter’s model
was performed by Colombo et al. [55].

Variational approaches have been proposed as well. Firstly, Aronsson et al. [12]
introduced the p-Laplacian operator in order to model a non-homogeneous super-
ficial diffusion to determine the height of a growing pile of a noncohesive sand.
Mathematical properties were studied in a functional analysis framework by focus-
ing on the theoretical results when the parameter p tends to infinity. Prigozhin [183]
developed a variational model based on mass balance for the sand pile and assum-
ing the surface flow is directed down in the direction of steepest descent subject to a
slope constraint. Prigozhin et al. [184] allowed a leading coefficient to vanish if the
slope is below a threshold corresponding to the repose angle.

Bouchaud and coworkers [31, 32] divided the sand pile in a static zone and a
moving layer, giving rise to the so-called two-layers models. Such models are charac-
terized by two state variables, the local height of the static part and the local den-
sity (or height) of the rolling layer, linked by an exchange term which governs the
transfer of mass from one status to the other. Of course, in the static zone the ad-
vection velocity vanishes, while in the rolling layer it is usually considered constant
and strictly positive downhill. Also de Gennes and coauthors [10, 35, 36, 86] and
Prigozhin and Zaltzman [184] proposed modified versions of this type of models,
with the latter that assumed a proportionality of the drift velocity with the gradient
of the height of the sandpile. In the models proposed by Hadeler and Kuttler [95,
96, 137], velocity is again constant, though it is mentioned that it might depend on
the slope (see, for instance, [97]). An exchange term proportional to the difference
between the slope of the sand bed and the repose angle governs the transfer of sand
between the static and the rolling layer.

A detailed analytical study of two-layers models was performed by Cannarsa
and coworkers [43–45, 57] for different boundary conditions. Falcone and Finzi
Vita [79–81] instead focused on the proper numerical method to integrate two-layers
models putting in evidence some unrealistic features such as the presence of blow-
ups when the boundary of the domain changes type, e.g., from a wall to an open
end. Others are (i) the formation of artificial valleys on the top of the sand pile ob-
tained by pouring sand on its top, due to the discontinuity of downhill velocities on
the two slopes in 1D simulations, or in situations in which the maximum height of
the sand pile should be reached close to a wall; (ii) the dependence of the evolution
and of the final configuration from the non-uniquely defined initial partitioning of
the sand pile in a static and a rolling region, e.g., if all the mass is set to be initially
static, then there is no evolution even if the initial configuration exceeds the repose
angle.

Starting from the just mentioned computational needs [143, 145], in [144] we
proposed a model for the height of the sand pile that does not present the problems
mentioned above. It is based on a reduction of a mass balance equation obtained as-
suming that (i) the thickness of the sliding layer is small, (ii) the grains move along
the direction of steepest descent, (iii) the speed is given by the limit velocity of a
body sliding down a slope under the action of gravity, Coulomb friction, and a drag
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force taken to be proportional to the sliding speed.

It is proved that assumptions (i) and (ii) lead to an evolution equation for the
height h(x, t) of the sand pile with the following structure

∂h
∂t

= ν∇ ·
[

fsl(|∇h|) ∇h
|∇h|

]
+ q , (4.1)

where fsl is called the sliding term, related to the mean sliding speed w through the
relation fsl(|∇h|) = δ

ν w(|∇h|) where δ is the thickness of the sliding layer and ν is
an effective diffusion coefficient. The last term q in (4.1) takes into accout of external
volume supplies of sand per unit area. The existence of a repose angle triggering
the motion of the sand grains reflects into the fact that the sliding term vanishes
for slopes, and therefore |∇h|, below a threhsold value. This gives to the parabolic
equation (4.1) a degenerate character, that justifies calling this type of models Degen-
erate Parabolic Sliding Models (in the following shortened as DPSMs). Specifically,
in [144] assumption (iii) led to

fsl(|∇h|) = (|∇h| − tan αcr)+√
1 + |∇h|2

, (4.2)

where (g)+ = (g + |g|)/2 stands for the positive part of g, so that fsl vanishes when
|∇h| ≤ tan αcr, where αcr is the repose angle.

Of course, it is possible to model in other ways the complex fluid-like behavior of
the thin layer sliding on the top of the sand pile when the angle of steepest descent
is larger than the repose angle (a configuration that will be called supercritical in the
following), giving rise to different sliding terms fsl . In particular, still working under
the hypotheses (i) and (ii) above, we here consider several viscoplastic constitutive
models named after Bingham, Casson, and Herschel-Bulkley (see, for instance [51,
154] for more details). All these models are characterized by the presence of a yield
stress that must be overcome before the material can flow. This common feature is
related to the existence of a repose angle for the sand pile. Exploiting the fact that
for these models it is possible to determine the velocity profile of a flow down an
inclined plane, our aim is to extend DPSMs to different closures and to point out
robust features and evolutionary differences among the mathematical models.

As we shall see, regardless of the constitutive closure, in spite of their simplicity,
all the models above reply many well known features of sand slides, such as the non-
uniqueness of static configurations in subcritical conditions, i.e., with slopes always
smaller than the angle of repose and the link between critical stationary configura-
tions and the solution of the same eikonal equation. So, starting from supercritical
conditions the solution of all models tends towards an equilibrium identified by the
same equation. The difference is in the way this solution is reached, especially when
the slope gets close to the repose angle, with the model (4.1)–(4.2) being the fastest to
reach the equilibrium and the one in which the closure is achieved using a Herschel-
Bulckley constitutive equations with a small power being the slowest.
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The paper is organized as follows. In Section 4.2 we derive the viscoplastic clo-
sures of the DPSM, starting from different constitutive laws. Section 4.3 presents the
result of comparative tests between the different models obtained, in order to eval-
uate the differences between them in terms of final configuration and convergence
speed. Some examples of application of the models in practical situations are given
in Section 4.4. A final discussion section concludes the paper.

4.2 Viscoplastic Models for the Sliding Speed

Modelling the motion of granular materials can be rather complicated, expecially
when there is massive relative motion among the grains. Luckily, in many situations
involving the redistribution of the granular mass, the motion is limited to a sliding
layer that has a thickness much smaller than the characteristic dimension of the sand
pile. This suggests to work with integrated variable on the thickness of the moving
layer. Having this in mind, we will assume that the thickness of the sliding layer is
small and constant δ and that the behaviour of the ensemble of sand grains is fluid-
like with viscoplastic characteristics.

So, coming briefly to the deduction of the model and referring to [144] for more
details, we consider a control volume V with vertical lateral surface and the basis A
deep in the sand. The integral form of the mass balance equation then writes as

d
dt

∫
A

ρh dA = −
∫

∂Vair

q · n dΣ−
∫

∂V∩S
ρv · n dΣ ,

where ρ is the sand density and h(x, y, t) is the height of the sand pile. The first
integral on the rhs refers to the sand flux sedimenting through the top and the second
one to that within the thin creep layer denoted by S . We then assume that sand
grains slide along the surface h(x, y, t) in the direction of the steepest gradient

t = − ∇h + |∇h|2k
|∇h|

√
1 + |∇h|2

,

with speed w, that depends on the local slope of the surface, so that v = wt. There-
fore, one can re-write the sand flux within the thin creep layer as∫

∂V∩S
ρv · n dΣ =

∫
∂A

ρwδ
t · n
|t · n| dΓ = −

∫
A
∇ ·

(
ρwδ

∇h
|∇h|

)
dA ,

where we used the fact that we can rewrite the surface element as dΣ = δ
cos θ w(|∇h|) =

δ
|t·n| c where dΓ is the line element along ∂A and that the lateral walls are vertical.

Defining q := −q · k/ρ and ν fsl (|∇h|) := w(|∇h|)δ where ν is an effective diffu-
sion coefficient and fsl is a dimensionless term that we will call sliding term because
of its dependence from |∇h| we finally have

∂h
∂t

= ν∇ ·
[

fsl(|∇h|) ∇h
|∇h|

]
+ q . (4.3)
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The crucial point is now to evaluate the sliding speed w or equivalently fsl . How-
ever, as we shall see the existence of a minimal slope triggering the motion of the
grains implies that fsl vanishes below a certain threshold for |∇h| giving (4.3) a de-
generate character. For sake of clarity, we explicitly remark that for this reason we
extend to zero the value of the square parenthesis in (4.3) when |∇h| = 0.

In order to identify the mean sliding speed we work in the vertical plane contain-
ing the direction of steepest gradient t represented in Figure 4.1 and assume that in
the thin sliding layer the velocity profile can be approximated to that of a viscoplas-
tic fluid flowing down an inclined plane with slope α, such that tan α = |∇h|. In this
geometry, neglecting inertia, the equilibrium of forces locally reads

∂Tx′y′

∂y′
= −ρg sin α ,

where Tx′y′ is the shear stress and g is the gravitational acceleration.

The above equation joined with stress-free boundary condition at the free surface

Tx′y′
∣∣∣
y′=δ

= 0 ,

can be trivially integrated to give the shear stress

Tx′y′ = ρg(δ− y′) sin α . (4.4)

Figure 4.1: Velocity profile within a layer of moving sand behaving
like a viscoplastic fluid in the vertical section containing the direction
of steepest descent. The layer has thickness δ and ȳ distinguishes the
shear layer for y′ < ȳ (full red curve) from the plug layer for y′ > ȳ

(dashed red curve).

If we take now constitutive models characterized by the presence of a yield stress
τ, then there is flow only if an invariant measure of the stress is above it. One of the
most common yielding criteria in viscoplastic flows is based on the second invariant
of the stress tensor [51, 154], that in the two-dimensional section of our interest writes



58 Chapter 4. Avalanches

|Tx′y′ | > τ: This means that there is flow only if

sin α > sin αcr :=
τ

ρgδ
,

so that αcr represents the repose angle. We will call this case supercritical, while we
will call subcritical a configuration with α < αcr everywhere. In this case, as shown
in Fig. 4.1, the upper layer

y′ > ȳ := δ

(
1− sin αcr

sin α

)
,

is a plug layer moving rigidly with the same velocity, while the lower layer y′ <
ȳ where Tx′y′ > τ undergoes a shear flow. We observe that at y′ = ȳ the shear
stress is continuous and equal to τ. At this point, in order to proceed further and
explicit the velocity profile in the supercritical case α > αcr, we need to specify the
constitutive equation. In the following we will use, as examples, the widely used
models by Bingham, Casson, and Herschel-Bulkley because they allow to determine
the analytical expression of the velocity profile.

4.2.1 Herschel-Bulkley model

The Herschel-Bulkley constitutive model writes as

T =

[
k
√
|II2D|γ−1 +

τ√
|II2D|

]
2D , if IIT > τ2 ,

where D = 1
2 (∇v +∇vT) is the rate of strain tensor, II2D is the second invariant of

2D and IIT the one of the stress tensor (see, for instance [51, 154] for more details). If,
instead, IIT < τ2, then the shear rate vanishes. In two-dimensions it reduces to

Tx′y′ = τ + k
∣∣∣∣∂vx′

∂y′

∣∣∣∣γ ,

where Tx′y′ > τ and vx′ constant elsewhere. Then, in the shear layer y′ < ȳ Eq. (4.4)
rewrites as

∂vx′

∂y′
=
(τ

k

)1/γ
[

sin α

sin αcr

(
1− y′

δ

)
− 1
] 1

γ

, (4.5)

that need be solved with the no-slip boundary condition at y′ = 0. Because of the
action of gravity, the flow will be downhill for small y′. So, there ∂vx′

∂y′ > 0 and,
actually, the positive sign will be kept because of the stress-free boundary condition.
Therefore, overall the velocity profile is given by

vx′(y′) =


A
β

[
(β− 1)1+ 1

γ −
(

β− 1− β
y′

δ

)1+ 1
γ

]
if y′ < ȳ;

A
β
(β− 1)1+ 1

γ if y′ ≥ ȳ.

(4.6)

where
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A =
(τ

k

) 1
γ

δ
γ

γ + 1
, β =

sin α

sin αcr
,

with β > 1 when and where α > αcr. In deducing (4.6) we also used the continuity of
the shear stress in y′ = ȳ, that implies that ∂vx′/∂y′ vanishes, in addition, of course,
to the continuity of vx′ .

The mean speed across the moving layer y′ ∈ [0, δ]

w =
1
δ

{∫ ȳ

0

A
β

[
(β− 1)1+ 1

γ −
(

β− 1− β
y′

δ

)1+ 1
γ

]
dy′ +

∫ δ

ȳ

A
β
(β− 1)1+ 1

γ dy′
}

,

can then be used to close (4.3). In fact, one can specify

ν =
(τ

k

)1/γ γ

(1 + γ)(1 + 2γ)
δ2 , (4.7)

and fsl as the product of two factors: a regular term freg and a degenerate term fdeg

fsl(|∇h|) = freg(|∇h|) fdeg(|∇h|) , (4.8)

that, recalling that sin α is a function of the slope h(x, t) given by

sin α =
|∇h|√

1 + |∇h|2
,

write as

freg(|∇h|) = sin αcr

sin α

(
1 + γ + γ

sin αcr

sin α

)
, (4.9)

which is always positive, while

fdeg(|∇h|) =
[(

sin α

sin αcr
− 1
)
+

]1+ 1
γ

, (4.10)

vanishes when α ≤ αcr, i.e., when |∇h| ≤ tan αcr. In fact, if α < αcr, Tx′y′ < τ and
there is no flow. The presence of this last term is the one that gives the parabolic
equation (4.1) its degenerate character.

4.2.2 Bingham model

As well known, Bingham constitutive model is a particular case of a Herschel-Bulkley
model with γ = 1 (and k replaced by µ) [51, 154]. Hence, from (4.7, 4.9, 4.10) we
readily have

ν =
τδ2

6µ
, (4.11)

freg(|∇h|) = sin αcr

sin α

(
2 +

sin αcr

sin α

)
, (4.12)
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and

fdeg(|∇h|) =
[(

sin α

sin αcr
− 1
)
+

]2

. (4.13)

In particular, for the discussion to follow it is useful to observe that the degeneracy
is quadratic, while for a Herschel-Bulkley model it goes like 1 + 1

γ .

4.2.3 Casson model

Casson’s constitutive model can be written in three dimensions as

T =

[√
µ +

√
τ

|II2D|1/4

]2

2D if IIT > τ2

(see, for instance, [51, 154] for more details) that in the two-dimensional section of
our interest reduces to √

Tx′y′ =
√

τ +

√
µ

∣∣∣∣∂vx′

∂y′

∣∣∣∣ .

Proceeding as in Section 4.2.1, one has then to solve the differential equation

∂vx′

∂y′
=

1
µ

(√
ρg(δ− y′) sin α−

√
τ

)2

=
τ

µ

(√
β

√
1− y′

δ
− 1

)2

,

with no-slip boundary condition at y′ = 0. The velocity profile is then

vx′(y′) =


τδ2

6µβ

(√β− 1
)3 (

3
√

β + 1
)
−
(√

β

√
1− y′

δ
− 1

)3(
3
√

β

√
1− y′

δ
+ 1

) if y′ < ȳ ,

τδ2

6µβ

(√
β− 1

)3 (
3
√

β + 1
)

if y′ ≥ ȳ.

(4.14)
The mean speed across the moving layer y′ ∈ [0, δ] can again be written as w =
ν
δ freg(|∇h|) fdeg(|∇h|) with ν = τδ2

30µ ,

freg(|∇h|) = sin2 αcr

sin2 α

(
10

sin3/2 α

sin3/2 αcr
+ 6

sin α

sin αcr
+ 3

sin1/2 α

sin1/2 αcr
+ 1

)
, (4.15)

and

fdeg(|∇h|) =
[(√

sin α

sin αcr
− 1

)
+

]3

, (4.16)

where we also considered the fact that if α < αcr, Tx′y′ < τ and there is no flow.

4.3 Comparison of Slope Evolutions

From the structure of the equation it is clear that in absence of any mass input q,
every subcritical configuration with h(x) such that |∇h| ≤ tan αcr, ∀x is a stationary
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solution, because fdeg in (4.10), (4.13), (4.16), as well as in (4.2), always vanishes be-
ing the angle of steepest descent α < αcr.

On the other hand, starting from an initial condition such that |∇h| > tan αcr
everywhere, then the evolution will tend to a solution of fdeg(|∇h|) = 0. Now, re-
gardless of the closure assumption used, and therefore of the sliding model, this
configuration is a solution of the eikonal equation |∇h| = tan αcr, which then rep-
resents a robust feature of all the DPSMs proposed here and in [144]. Therefore,
in order to put in evidence the differences among the models proposed above one
should not look at the stationary configurations, but at transient behaviors. In order
to do that, we will then integrate

∂h
∂t

= ν∇ ·
[

freg(|∇h|) fdeg(|∇h|) ∇h
|∇h|

]
+ q , (4.17)

with freg(|∇h|) = 1/
√

1 + |∇h|2 and fdeg(|∇h|) = (|∇h| − tan αcr)+ in what we will
call the Coulomb case, (4.9) and (4.10) in the Herschel-Bulkley case, (4.12) and (4.13)
in the Bingham case, and (4.15) and (4.16) in the Casson case.
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Figure 4.2: Sliding term f̂sl normalized with respect to the value
achieved for a slope of 50◦ and a repose angle of αcr = 35◦ for different
DPSM closure assumptions. We recall that Bingham fluids correspond

to a Herschel-Bulkley model with γ = 1.

The main difference in the evolutions is due to the convexity of the curves repre-
senting the dependence of fsl and specifically of fdeg on α close to αcr. In fact, while
the sliding term related to Coulomb’s model goes linearly to zero, the other models
have a stationary point there. More precisely, they behave like (α− αcr)n with n = 2
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for Bingham model, n = 1 + 1
γ for Herschel-Bulkley models, and n = 3 for Casson

model. This means that when approaching the repose angle the evolution becomes
slower and slower especially for Casson fluids and Herschel-Bulkley models with
γ < 1. The smaller γ is, the slower the process of approaching the stationary config-
uration is.

In Figure 4.2 we plot the sliding velocity normalized with their maximum value
obtained for α = 50◦. From the figure it can be observed that at any angle the
response to a Casson closure and to a Herschel-Bulkley one with γ = 0.5 are very
close. So, we expect the evolutions related to them to be quite close.
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Figure 4.3: (a) Spatial evolution of the profile of an initially supercritical
conical sand pile with repose angle αcr = 35◦ at different times for a
Bingham closure. (b) Comparison of the configurations achieved using
the different DPSMs at t̂ = 0.5. (c) Differences between the heights of
the left slopes as obtained using the different viscoplastic models with
that obtained using Coulomb closure at the time for which the config-
urations have maximum height equal to 0.8. Temporal evolution of the
height ĥ (d) and of the velocity of the tip of the sand pile (e) for the

different models. Bingham model corresponds to γ = 1.

Actually, it is useful to work in dimensionless variables scaling lengths with the
reference size H of the sand pile, e.g., its height, and times with T = H2

ν fsl(α∗)
where
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α∗ is a reference slope angle, so that

∂ĥ
∂t̂

= ∇̂ ·
[

freg(α) fdeg(α)

freg(α∗) fdeg(α∗)
∇̂ĥ
|∇̂ĥ|

]
+ q̂ ,

where the hats denote dimensionless variables.

In order to provide both a qualitative and quantitative comparison, DPMSs were
implemented in the finite volumes open source code OpenFoam®. Finite-volume
methods were successfully used for degenerate parabolic problems (see for instance
[24, 76, 77]). As concerns spatial discretion, the diffusive term is evaluated by means
of Gauss Theorem and Mean Value Theorem. A generic diffusive term∇ · ( fsl∇h) is
written by means of normal boundary fluxes [172]

∇ · ( fsl∇h) =
1
V

∫
V
∇ · ( fsl∇h) dV =

1
V

∮
∂V

fsl∇h · dS =
1
V

nFaces

∑
i

f f
sl(∇h) f

i · S
f
i ,

where f f
sl is the face-interpolated value of the sliding term and S f is the face area nor-

mal vector. Cubic interpolation is used to get cell-face values from cell-center ones.
Consequently, where the diffusivity becomes zero, the parabolic equation degener-
ates to ∂h

∂t = q which can be simply integrated in time. An implicit Euler scheme is
used for time discretization.

In order to show the effect of the different constitutive closures, we simulate the
motion of a sand pile with an initially conic shape with an angle of α∗ = 50◦ while
the repose angle is 35◦.

In Fig.4.3(a) the evolution is shown in the case in which the sliding layer is de-
scribed as a Bingham fluid. The slope gradually decreases keeping an almost conical
shape to eventually achieve the stationary configuration with an angle at the basis
equal to the repose angle. In fact, as already stated, regardless of the closure assump-
tion, all DPSMs relax an initial configuration that is supercritical everywhere, to the
solution of the same eikonal equation, which in this case is a cone. In Fig.4.3(b) we
plot the configurations achieved using the different closures at t̂ = 0.5.

In order to put in evidence how much the solutions differ and where, in Fig.4.3(c)
we plot the difference between the solution obtained by the viscoplastic models con-
sidered here with respect to the one obtained using Coulomb closure as a reference.
The maximum error is about 1.5% of the pile height.

The biggest difference among the evolutions stays in how fast the tip of the cone
moves down and the basis of the cone enlarges. In fact, as shown in Fig.4.3(d) that
plots the temporal evolution of the height of the sand pile, when the angle gets closer
to the repose angle the asymptotic trend toward equilibrium differs more. In fact,
the deceleration achieved using the different models deviate from each other be-
cause of the convexity properties mentioned above (see also Fig.4.2). A difference
evidentiated in Fig. 4.3(d) is the location of the inflection points of the curves in the
semilog graph and consequently the logarithm of the durations of the phases where
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(a) (b)

Figure 4.4: Sand pile entering a room through an opening: (a) Real sit-
uation ([33], permission requested), (b) Sketch of the domain of integra-

tion close to one of the openings seen from the top.

the curve is convex and concave. As a consequence, as shown in Fig.4.3(e) the solu-
tion of the model with a Coulomb closure is the fastest and the one using a Casson
fluid is the slowest (actually, the one using a Herschel-Bulkley fluid with γ = 0.5 is
very close to it and if γ < 0.5 the asymptotic trend would be even slower).

The above discussion suggests that in order to identify the best closure, it is more
useful to look at the temporal evolution of the sand pile tip or toe (e.g., Fig.4.3(d))
and in particular to their speed as in Fig.4.3(e), rather than focusing on the spa-
tial evolution of the slopes because they are very similar as shown in Fig.4.3(a)
and Fig.4.3(b). In this respect, Casson or Herschel-Bulkley closures with γ < 1
take much longer to reach asyntotically the stationary configuration with respect to
Coulomb or Bingham closures and in this case even when the slope has an angle
that is close to the repose angle, the solution still slowly moves so that it takes a
long time to reach what can be considered a stop. On this basis we can state that
Coulomb, Bingham or Herschel-Bulkley models with γ > 1 are more realistic than
Casson or Herschel-Bulkley models with γ < 1.

On the other hand, if the main interest is in using a reliable model to get to the
proper quasi-static configuration in a numerically efficient way, then Coulomb-like
closure is certainly the best because it is the fastest to reach it without loosing accu-
racy.

4.4 Simulation in Realistic Setups

In this section we apply the model to more realistic setups, containing obstacles,
walls and openings, also in presence of external sources. The first simulation regards
the formation of a three-dimensional sand pile obtained constantly pouring sand in
a region Ωq on one side of a thick vertical wall (the shaded area in Fig.4.4(b)). The
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(a) t=50 s (b) t=130 s (c) t=260 s

(d) t=50 s (e) t=130 s (f) t=260 s

Figure 4.5: Profiles of sand poured in the space beyond the door and
exiting from it at early times. The sliding is achieved using the DPSM
with a Coulomb closure. The bottom row reports the contor plots of the

3D configurations plotted in the top row.

wall presents a 0.2 m wide and 0.05 m thick central opening Ωd leading to a region
Ω0 having all other sides open, in the sense that when sand reaches these boundaries
it can freely flow down. From the mathematical point of view, this corresponds to
Dirichlet boundary conditions, while no-flux boundary conditions need be applied
on the walls. The set-up can mimick situations like those shown in Fig.4.4(a) where
sand came from outside the room and entered it through the openings in the walls.

Before starting the discussion, we observe that, as shown by Falcone and Finzi
Vita [79–81] the change of boundary conditions may be troublesome leading to nu-
merical problems and unphysical results more related to the mathematical model
than to its numerical implementation. This is for instance the case of two-layer mod-
els. At variance with that, the DPSMs proposed here have no problem in dealing
with changes in the boundary conditions and result very reliable in managing com-
plex realistic situations and geometries. In the simulation shown in Fig.4.5 we mod-
elled sand using a Coulomb-like closure with αcr = 35◦, ν = 0.1 m2

s , and q = 10−3 m
s

in Ωq, but the results are very similar for all the other constitutive equations.

Coming to the description of the evolution, at the very beginning the profile is
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flat between the walls in Ωq, while close to the door sand flows down so that the
sand profile takes a slope equal to the critical angle (see Fig.4.5(a)). The contour line
where the surface is no longer constant is parallel to the wall in correspondence of
the door and forms two circular arcs in correspondence of its jambs (see Fig.4.5(d)).
After the sand slope with this triagular section has reached the other end of the wall,
i.e. the boundary between Ωd and Ω0, the sand tends to spread also laterally to the
right and to the left of the door. Closer to the jambs the shape is still conical (see
Fig.4.5(b) and (e)). The foot of the sand pile advances faster on the right and on the
left because more sand arrives there turning around the jambs. In the section corre-
sponding to the middle of the door the slope is flat and the sand pile takes the shape
of an inclined plane (see Fig.4.5(c) and ( f )). Hence, the shape is prism-like closer
to the center of the door and conic-like to its side. The steepest angle is always very
close to the repose angle. Also within Ωq the region in which the slope is non con-
stant enlarges. Initially (see Fig.4.5(c) and ( f )) it has more or less a prism-like shape
corresponding to the door and a conic-like one to its side. Then at about t = 400 s
the slope change in correspondence of the door hits the top boundary of Ωq opposite
to the door (see Fig.4.6(a) and (d)). After that, in Ωq the sand profile takes a more
funnel-like shape (see Fig.4.6(b) and (c)), while in Ω0 the conic shape enlarges till
just before t = 650 s the basis of the conic-like shape reaches the open end boundary.
At this point also along the wall the conical shape becomes flat with an inclination
close to the repose angle. Eventually, the stationary configuration is reached because
the mass influx in Ωq balances the mass outflux through ∂Ω0.

We remark that the entire simulation is very realistic and can be obtained with
low computational cost, so that the update of the sand free surface does not repre-
sents a bottleneck for the entire multiphase fluid dynamics simulation that need be
performed to describe sand transport in environmental problems. We notice, again,
that the same final configuration is achieved with the viscoplastic closures and with
Coulomb friction closure. Negligible differences in the evolution are present accord-
ing to the constitutive closure used. Actually, as the flow is quasi-stationary, practi-
cally the configurations are a series of solutions of the eikonal equation. Differences
increase with the ncrease of the flow rate q. However, we advise that the model
might loose its validity for extremely high flow rates that may generate slopes that
are much higher than the repose angle being closer to vertical slopes. In fact, in this
case the hypothesis of small thickness of the sliding layer no longer holds. In spite
of this, we mention that in [144] the model with a Coulomb-like closure was used to
simulate experiments focusing on the collapse of initially cylindrical piles of sand,
that of course start with a vertical wall, showing a satisfactory agreement.

As evident in Figs. 4.5–4.8, due to the degeneracy present in the model, a charac-
teristic of the proposed DPSMs is the compact support of the solution starting from
no sand and source term in a well defined area (and, of course, in other cases) and by
the presence of slope discontinuities in the solutions. A basic example is the angle
formed by the flat plane and the pile of sand or the angle between the horizontal
profile in Ωq and the sliding slope of the sand pile in Figs.4.5 and 4.6. This is a char-
acteristic of the solution of the eikonal equation as well.

A similar thing occurs when two sand piles encounter. In order to show how
the model can easily reproduce such effects and handle complicate geometries, in
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(a) t=390 s (b) t=520 s (c) t=650 s

(d) t=390 s (e) t=520 s (f) t=650 s

Figure 4.6: Profiles of sand poured in the space beyond the door and ex-
iting from it at later times. The profile shown in (f) is almost stationary.
All the sand poured between the walls falls off the open boundaries to
the right and to the left. The sliding is achieved using the DPSM with
a Coulomb closure. The bottom row reports the contor plots of the 3D

configurations plotted in the top row.
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(a) (b)

Figure 4.7: (a) Domain of integration and numerical grid. The sand is
poured in the region with a clearer grid. (b) Contour plot of the solution
of the DPSM with Coulomb closure at t = 840 s. Corners in the contour

plots correspond to slope discontinuities of the sand profile.

Fig.4.7–4.8 we focus on the interaction of sand with several columns and corridors
placed in the room with three open ends and a wall at x = 0. Sand is continuously
poured close to the wall for x ≤ 0.15 m and |y| ≤ 0.2 m at a rate of 2 mm/s, that is,
the shaded area in Fig.4.7(a).

Starting from an empty configuration, the sand continuously supplied starts ac-
cumulating in the pentagonal area sliding on its sides passing from a sort of trun-
cated pyramidal shape (notice the flat rectangle on the top of the sand pile in Fig.4.8)
to a full pyramidal-like shape with ridges, for instance, perpendicular to the sides of
the columns denoted as a and b in Fig.4.7(a). In fact, the sand slides along the walls
a and b from their centers in opposite directions turning around the corners with a
dynamics similar to the one in Fig.4.5(b) and Fig.4.5(e). The ridge is also put in evi-
dence in Fig.4.7(b) by the presence of corners in the contour plots. The sliding fronts
then moves on the sides of the columns and then re-encounter on the other side of it
forming a slope discontinuity. In fact, continuing to turn around the column, Fig.4.8
presents the configuration after the sand piles coming from the left and the right
of the same corridor c (and symmetrically d) encounter forming an angle π − 2αcr.
After that the distribution of sand in the corridor preserves the angles close to the
repose value αcr but the level rises up because of the continuously incoming mass
flux. A similar dynamics occurs in the crossing identified by g in Fig.4.7(a) when the
sand coming from the corridors e and f meets (see Fig.4.8). Again such slope discon-
tinuities correspond to corners in the contour plots in Fig.4.7(b). As stressed several
times along the paper, the evolution is very similar for all the closures considered
above. For this reason, in Fig.4.7–4.8 only the result for Coulomb closure is shown.
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Figure 4.8: Configurations of the sand pile poured in the region high-
lighted in Fig.4.7a at different times t = 150, 250, 450, 840 s, respectively

(a), (b), (c) and (d).
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Chapter 5

The First Order Model

A fully Eulerian description for a multiphase flows system involves several mathe-
matical variables. A robust validation procedure requires to have knowledge of all
physical quantities in space and time. These last have to be measured from the ex-
perimental setup and then compared with the computational simulations obtained
using the studied mathematical model. However, the possibility to measure all sys-
tem variables at each time is the best case scenario. Unfortunately, for wind tunnel
experiments - in particular in the presence of sand - this is almost impossible due to
difficulties coming from the nature of fluid dynamics and the large number of de-
grees of freedom.

In a validation or a definition of a continuum differential model, the functions
representing Eulerian quantities (and their derivatives) require a least amount of ac-
curacy - both in space and time - in order to be reconstructed from an interpolation
stage. Data reliability and quantity become even more important for boundary con-
ditions where measurements can also involve derivatives. Measurements are dis-
crete set of data, instead Eulerian fields are quantities described by functions over
a continuum like domain. Therefore, an interpolation step is necessary to transfer
the physical information from the discrete to the continuum domain. However this
step can be a potential source of error if measurements are not accurate and refined
enough, with the consequent risk to make mistakes in the model deduction.

In the context of aeolian sand transport there are two main categories of exper-
iments used to take measurements and both of them have pros and cons. The first
category is infield tests and the second is wind tunnel tests. A remarkable advantage of
infield tests consists in being able to sample measurements in a natural environment,
hence no artificial effects compromise the characteristics of the natural phenomenon
(except for the presence of measure instruments). However, infield conditions are
not under control and systematic measurements are practically unfeasible or, if pos-
sible, subjected to randomness of the atmospheric phenomena. Furthermore, in the
best case scenario data can be collected in few spatial points (for the First Order
Model’s purpose) and boundary conditions are almost impossible to determine. In
addition, measure instruments are portable and usually less accurate than the in-
struments used in a laboratory. This because of the minor ability to take into account
unpredictable events present in the natural environment.

In this chapter the purpose is to use infield tests results for macroscopic compar-
isons, i.e. once that the model is already defined its behavior is tested with plausible
boundary conditions in order to verify qualitative results or macroscopic quantities
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or trends. On the other side, wind tunnel tests are suitable for model validations
because data can be collected with a decent spatial resolution, at least over one di-
mensional domains. Controlled like conditions allow scientists to test a wide range
of physical states, hence to properly design a measurement system to perform sys-
tematic samplings. Furthermore, boundary conditions can be partially controlled.
However, we remark that also classical wind tunnel tests (without sand) show sev-
eral experimental difficulties, in particular in the cases of flows characterized by an
high Reynolds number. The presence of particulate mass in the system obliges to
adopt ad hoc wind tunnels and special equipment. In particular, due to the tempo-
ral evolution of the sandy surface the fluid domain keeps changing and eventually
shows multiple fluid dynamic behaviors in the same sampling stage. This fact to-
gether with the system non-linearities can compromise the data sampling accuracy,
and potentially leading to values that represent just a mean behavior in the entire ex-
perimental time span. This can eventually cause loss in the phenomenological and
quantitative description of the system. Next in the chapter a list of experiments are
considered and despite they share the basic experimental design, each experiment
shows some difference, e.g. dimensions, sand bed shapes, measure instruments,
sand types, data processing procedures. Therefore, comparisons or data aggrega-
tion are not possible in general.

In the following the focus will be on the interpretation of the general system
of equations (2.1), (2.2), (2.3) and (2.4) providing the simplifications used to define
the proposed First Order Model. We also propose a data driven algorithm to extract
model coefficients depending on which turbulence model is chosen for the fluid
dynamics side of the model. Furthermore, a potential generalization to multiple
dispersed phases is proposed in Section 5.5, with the aim to make the model more
general and suitable for future developments.

5.1 Mathematical Structure for the Single Dispersed Phase

The full set of equations (2.2), (2.1), (2.4) and (2.3) is in general not simple to solve
and numerical approaches are usually tailored for the physical context that might
suggests proper simplifications. As already remarked, experimental observations
show that most of the physical domain is filled by clean air. Furthermore, the region
where saltation occurs is small and confined nearby the ground surface where also
the maximum concentration value of ϕs is small. Hence

ϕ f ' 1 . (5.1)

For the fluid phase, the approximation (5.1) together with the constant fluid density
leads to Navier-Stokes equations for an incompressible Newtonian fluid

∇ · u f = 0 ,

∂u f

∂t
+ u f · ∇u f = −

1
ρ f
∇p f +∇ ·

(
ν f∇u f

)
+

1
ρ f

m f .
(5.2)

Though in the First Order Model mathematical structure the turbulence treatment
can be generic, classical industrial domains are so large to suggest the usage of RANS
models and for sake of simplicity a k − ω closure is reported here (other models
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follow the same argument). Hence, the complete set of equations for the fluid phase
reads

∇ · u f = 0 ,

∂u f

∂t
+ u f · ∇u f = −

1
ρ f
∇p f +∇ ·

[
(ν f + νt)∇u f

]
+

1
ρ f

m f ,

∂k
∂t

+∇ · (ku f ) = ∇ · [(σkν f + ν)∇k] + P̃k − β∗kω ,

∂ω

∂t
+∇ · (ωu f ) = ∇ · [(σων f + ν)∇ω] + α

ω

k
Pk − βω2 + (1− F1)

2σω

ω
∇k · ∇ω ,

(5.3)
where k is the turbulent kinetic energy, ω is the specific dissipation and νt is the turbulent
viscosity. Other parameters are defined as

k :=
1
2

(
〈ũ2

f ,x〉+ 〈ũ2
f ,y〉+ 〈ũ2

f ,z〉
)

, (5.4)

ω :=
1

0.09
ν f

k

3

∑
i=1

3

∑
j=1

〈
∂ũ f ,i

∂xj

∂ũ f ,i

∂xj

〉
, (5.5)

νt :=
k
ω

, (5.6)

where ũ is the fluctuating velocity and 〈·〉 is the mean operator (see [158] for de-
tails). The second main assumption regards the absence of the momentum equation
(2.3) for us. In fact, for cases where inertia is negligible, experimental observations
suggest that while they sediment, particles are convected by the fluid with a veloc-
ity proportional to u f (see [17]), hence the solid velocity can be decomposed in a
convective and diffusive flow as

us = αsu f + wsedez︸ ︷︷ ︸
convective flow

−νeq

ϕs
∇ϕs︸ ︷︷ ︸

diffusive flow

, (5.7)

where wsed is the particle sedimentation velocity and αs is a function of the wall dis-
tance and the horizontal component of the fluid velocity. The term νeq is a diffusivity
function named equivalent diffusion. It describes the diffusive-like behavior of the
sand cloud when the dynamic equilibrium is reached and its analytical definition is
the goal of Section 5.3 and 5.4.

The convection-diffusion formulation allow to use finite volume methods to solve
numerical simulations for large scale industrial cases. Indeed in the SMaRT project,
the computational tools have been chosen (a priori) in order to be suitable for indus-
trial applications (in particular OpenFOAM-extend-4.0 as computational package).
However, these software packages has some limitations in the categories of partial
differential equations that can be solved. We also remind that numerical analysis for
an eventual special numerical methodology would be out of the scope of the thesis.
Therefore, the development is a compromise between practical needs and theoretical
aspects. As consequence the differential equations defining the model are developed
by taking into account the available computational tools.
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Substituting (5.7) in (2.1), the conservation equation for the solid phase reads

∂ϕs

∂t
+∇ ·

((
αsu f + wsedez

)
ϕs − νeq∇ϕs

)
= 0 . (5.8)

The function νeq is a generic function of the state variables and its realization, to-
gether with boundary conditions and (5.3), completely define the First Order Model.
Section 5.4.2 introduces an algorithm to define νeq addressing the dependence from
the system variables. The particles effect on turbulence is not taken into account but
accordingly to [17, 145] the effect is negligible for small value of ϕs. Therefore, we
suppose that k and ω are not function of ϕs and m f ' 0. Instead, the turbulent effect
on the particles motion is taken into account by decomposing νeq in the sum of two
separate diffusivities

νeq = λνt + νcoll . (5.9)

The turbulent diffusivity νt appearing in (5.3) is obtained from the turbulent model.
The term λ is a tuning coefficient that allows to control the turbulence effect on the
cloud dynamics and it provides more flexibility for experimental validations. The
collisional diffusivity νcoll aims to model the dynamics of the cloud particle system
due to the action of the mean flow.

The errors of numerical and turbulence models make the particle feedback on the
turbulence very difficult to evaluate with sufficient accuracy. As mentioned above,
the effect of particles on turbulence is negligible for low concentrations. In conclu-
sion, the system of equations for the First Order Model reads



∇ · u f = 0 ,

∂u f

∂t
+ u f · ∇u f = −

1
ρ f
∇p f +∇ ·

[
(ν f + νt)∇u f

]
+

1
ρ f

m f ,

∂k
∂t

+∇ · (ku f ) = ∇ · [(σkν f + ν)∇k] + P̃k − β∗kω ,

∂ω

∂t
+∇ · (ωu f ) = ∇ · [(σων f + ν)∇ω] + α

ω

k
Pk − βω2 + (1− F1)

2σω

ω
∇k · ∇ω ,

∂ϕs

∂t
+∇ ·

((
αsu f + wsedez

)
ϕs − νeq∇ϕs

)
= 0 .

(5.10)

5.2 Auxiliary Modeling Aspects

The analytical structure of the functions presented in (5.10) modifies the physical
properties of outcoming solutions. In the following of this section some analytical
aspects are discussed in the light of physical and modeling considerations.

5.2.1 Effects of the Mean and Turbulent Flow Decomposition

In a turbulence model the fluid velocity u is decomposed as

u = u + ũ , (5.11)
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where u is the mean (respectively filtered) velocity and ũ is the fluctuating (respec-
tively sub-filtered) velocity for RANS (respectively LES) approaches. This decompo-
sition has direct consequences on the matematical quantities related to u. In classical
continuum mechanics, well known theorems concerning symmetries and constitu-
tive axioms define analytical and algebraic properties of constitutive laws. Here is
presented the second invariant of the strain tensor

D :=
1
2

(
∇u +∇uT

)
(5.12)

which is used later in the model definition. Subscripts are omitted because state-
ments are valid for every phase. Due to the linearity of the∇(·) differential operator

D = D + D̃ , (5.13)

where D and D̃ are defined using equation (5.12) respectively with u and ũ. The
second invariant for the strain tensor reads

I ID =
1
2
(
tr2D− trD2) , (5.14)

where tr(·) is the trace operator for second order tensors. Substituting equation
(5.13) in (5.14) the following relations hold

tr2D = tr2D + tr2D̃ + 2 trD trD̃ ,

trD2 = trD
2
+ trD̃2 + trDD̃ + trD̃D ,

leading to the next final relation for the second invariant

I ID = I ID + I ID̃ + trD trD̃ + trD trD̃− trDD̃ . (5.15)

This decomposition highlights the effects of the field ũ in the second invariant I ID.
Once the turbulence model is chosen only the mean field u is computed. The compo-
nents of ũ can be estimated from the turbulent kinetic energy (5.4). This fact implies
that only the term I ID can be computed and the other terms must be modeled of ne-
glected. Analogous arguments regard ID and I I ID. As a consequence, in the context
of the First Order Model, the choice of a turbulence model has a direct effect on the
transport model of a solid phase because it is directly affect I ID.

5.2.2 Sedimentation Velocity and Drag Coefficients

Equation (5.7) includes the quantity wsed which represents the sedimentation veloc-
ity. This is intended as an equilibrium settling velocity of a single solid particle in a
motionless fluid resulting from the equilibrium of gravitational (Fg = ρsVg), buoy-
ant (Fb = ρ f Vg) and drag forces (Fd = 1/2Cdρ f w2

sed A) (see Figure 5.1). According
to the particle Reynolds number (Rep = wsedd/ν f ), the drag force shows different
behaviors in different ranges of Rep. In Stokes regime (Rep < 0.1), the drag coef-
ficient decreases with the particle Reynolds number and can be approximated by
Cd = 24/Rep. For the range of particle Reynolds numbers between 0.1 and 1000 (i.e.
intermediate regime) the value of the drag coefficient continues to reduce increasing
the Reynolds number, but with a lower rate than in the Stokes regime. In Newton’s



76 Chapter 5. The First Order Model

Figure 5.1: Forces on falling sphere

regime (Rep > 1000) the drag coefficient is almost constant with a minimum value
of 0.38 and maximum value of 0.5 (see [15]). Figure 5.2 (a) shows the representation
of the explicit formula (5.16) for the drag coefficient suggested by [15] and its fitting
with the experimental data from [41]:

Cd =
24

Rep
(1 + 0.15Re0.687

p ) +
0.42

1 + 42500
Re1.16

p

. (5.16)

From the balance of forces (Fb is neglected because ρs/ρ f > 103) we obtain

CdRe2
p =

4ρsρ f g
3µ2

f
d3 (5.17)

which is an equation only of physical properties of solid and liquid phase and the
diameter of sphere. Substituting (5.16) in (5.17) we get the implicit relation (5.18)
between d and Rep. Hence

24
Rep

(1 + 0.15Re0.687
p ) +

0.42
1 + 42500

Re1.16
p

Re2
p =

4ρsρ f g
3µ2

f
d3 . (5.18)

Once the diameter is fixed, we can numerically find the value of Rep such that equa-
tion (5.18) is satisfied. The outcoming values of Rep and d allow to evaluate the
sedimentation velocity by inverting the definition of Rep, then

wsed =
ν f Rep

d
.

In Figure 5.2 (b), the sedimentation velocity for Stokes regime is plotted in red using
the expression (5.19), the sedimentation velocity for Newton regime is plotted in
green using the expression (5.20), while the blue line represents the sedimentation
velocity obtained with Bagheri’s drag coefficient formula (5.16) and the numerical
approach explained above.

wsed,Stokes =
(ρs − ρ f )g

18µ f
d2 (5.19)

wsed,Newton =

√
4(ρs − ρ f )g

3ρ f Cd
d (5.20)
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Figure 5.2: (a) Representation of the explicit formula from [15]. (b)
Dependence of sedimentation velocity on diameter in different regimes.

Even though the sedimentation velocity is a value for a single particle falling in
steady air, in the model it is used to quantify the convective vertical field in (5.7) for
the solid phase.

5.2.3 Estimate of Momentum Exchange of Drag Force m

The momentum exchange term m in equations (2.3) and (2.4) describes the interac-
tion between fluid and solid phase. Here we aim to calculate m addressing particles
in a generic control volume. If the i index identifies the i-th particle inside of a
generic control volume:

δui := u f − ui . (5.21)

δdi := di − 〈d〉 , (5.22)
∆d := max {|δdi| such that i ∈ {1, · · · , N}} , (5.23)

〈d〉 = 1
N

N

∑
i=1

di mean particle diameter , (5.24)

〈a〉 = π

4
〈d〉2 + O(∆d) + O(∆d2) mean particle frontal area , (5.25)

〈v〉 = π

6
〈d〉3 + O(∆d) + O(∆d2) + O(∆d3) mean particle volume . (5.26)

Equations (5.25) and (5.26) are derived by using definitions (5.22), (5.23) and (5.24).
Supposing that the range of particle diameters is bounded around a mean value, the
term O(∆d), O(∆d2) and O(∆d3) can be neglected. The symbol V identifies a generic
control volume where both solid and fluid phases can occupy its spatial region. The
symbol Vs identifies the volume occupied by the solid phase within V . Combining
the formulae above it is possible to estimate the total number of particles N within
the control volume. Indeed

〈v〉N ' |Vs| =: ϕs|V | ,

1
N

=
〈v〉

ϕs|V |
. (5.27)
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In the Eulerian-Eulerian approach it is necessary to express quantities in each point
of the domain. In order to do that we relate the integral in a control volume of m with
the sum of the Lagrangian force field acting on each particle. This can be viewed as
the application of the third law of dynamics, hence

Integral︷ ︸︸ ︷∫
V

m dV =

Particles︷ ︸︸ ︷
N

∑
i=1

1
2

ρ f Cdai‖δui‖δui

1
N

∫
V

m dV =
1
N

N

∑
i=1

1
2

ρ f Cdai‖δui‖δui

〈v〉
ϕs|V |

∫
V

m dV ' 1
N

N

∑
i=1

1
2

ρ f Cdai‖δui‖δui .

With this equivalence we can evaluate the mean interaction force within the control
volume

〈m〉 :=
1
|V |

∫
V

m dV =
ϕs

〈v〉
1
N

N

∑
i=1

1
2

ρ f Cdai‖δui‖δui

= ϕs
1
N

N

∑
i=1

1
2

ρ f Cd
ai

〈v〉‖δui‖δui

' ϕs
1
N

N

∑
i=1

1
2

ρ f Cd
〈a〉
〈v〉‖δui‖δui

= ϕs
1
N

N

∑
i=1

3
4

ρ f Cd
1
〈d〉‖δui‖δui

= ϕs
3
4

ρ f
Cd

〈d〉
1
N

N

∑
i=1
‖δui‖δui

= ϕs
3
4

ρ f
Cd

〈d〉 〈‖δu‖δu〉 ,

hence
〈m〉 = ϕs

3
4

ρ f
Cd

〈d〉 〈‖δu‖δu〉 .

We can therefore compute the following limit

m = lim
|V |→|V0|

〈m〉 = lim
|V |→|V0|

ϕs
3
4

ρ f
Cd

〈d〉 〈‖δu‖δu〉 ,

where V0 is the smallest control volume for which ensemble mean operations make
sense. Therefore, it is reasonable to write the interaction force as

m =
3
4

Cd

〈d〉 ϕsρ f ‖u f − us‖(u f − us) =⇒ m dV = dFdrag . (5.28)
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Figure 5.3: Qualitative representation of the flow around still particles
near the ground.

Figure 5.4: Geometrical representation of gravity and pressure forces
acting on a spherical particle of diameter d. p∞ is the constant atmo-

spheric pressure and pw is the wall pressure.

5.2.4 Density Force Acting on Ground Sand

The physical mechanism that causes the pneumatic conveying of sand grains within
the flow depends on fluid dynamic forces acting on each still grain on the ground
surface. For an incompressible Newtonian fluid the surface forces can be divided
in the static pressure force and the viscous force. For low viscosity fluids the static
pressure term is dominant with respect to the viscous term. Furthermore the fluid
velocity is null on the ground surface because of the no-slip boundary condition (see
Figure 5.3). This observation suggests that within the total force acting on the single
grain the static pressure field is much larger than the viscous contribution. We also
remark that we can not make general assumptions on the pressure field.

Starting from this assumption, a simplified formula is derived to estimate the
force that determines whether erosion is effective or not (for a grain that lays on the
ground). For sake of simplicity we consider a spherical particle of diameter d as
shown in Figure 5.4.

In Figure 5.4 the symbols are defined as follow:

• n is the unitary vector normal to the ground surface

• N is the unitary vector normal to the particle surface

• g is the gravitational field

• p is the pressure field
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• p∞ is the constant atmospheric pressure

• pw is the ground pressure

• fg is the resulting force on the grain due to the gravity field

• fp is the resulting force on the grain due to the pressure field

Assuming that the real pressure field has small variations near the spatial region
surrounding a still particle, we can approximate p with a Taylor expansion

p(P) = p(Q) + 〈∇p(Q)|(P−Q)〉R3 + o(‖P−Q‖) . (5.29)

Therefore, the resulting force due to the pressure field reads

fp = −
∫

∂V

p N dΣ =
∫
V

∇p dV
(5.29)
= |V |∇p(Q) ' πd3

6

(
p∞ − pw

d

)
n ,

where V := S3(Q, d
2 ) and N is the unitary vector orthogonal to the sphere surface,

we therefore obtain

fp '
πd3

6

(
p∞ − pw

d

)
n (5.30)

and the resulting force due to the gravity is

fg =
πd3

6
ρsg . (5.31)

The resulting force acting on a still particle is made up by the summation of fp and
fg. In order to provide a practical interpretation let consider a flat ground surface,
therefore all vectors have the same direction. The summation leads to the normal
acting force

fn =
πd3

6

(
p∞ − pw

d
− ρs‖g‖

)
. (5.32)

If fn is positive - for a large enough time span - the force magnitude is large
enough to pull the grain and erosion could occur. On the contrary, for negative
values the grain remains still. In (5.32) only pw is a system variable, the others are
known constants. Its value is strictly related to the flow surrounding the sand grain.
In particular, it is related to the time variation of the pressure due to turbulent fluc-
tuations. In case of an unsteady CFD simulation, pw corresponds to the pressure
boundary value. However, we must consider that turbulence models have relevant
effects on the signal time spectrum (because they substantially operate a filtering
process on signals). As a consequence, an ad hoc model has to be defined to over-
come this problem. DNS simulations would be suitable for the spectral analysis,
but Reynolds numbers characteristic of aeolian flows are too high for their appli-
cation. Furthermore, very intricate geometries are not suitable for spectral methods
that are typically used to speed up computational time and to increase the numerical
accuracy. Possible alternatives to numerical simulations are ad hoc experiments to
evaluate the gradient of pressure in the narrowed spatial region where the trigger-
ing mechanism occurs (see Figure 2.1(b)). For example, a series of pressure sensors
can sample data for a time span that is large enough to apply Ergodic hypothesis.



5.2. Auxiliary Modeling Aspects 81

Therefore, to come up with a statistically relevant amount of data. Another approach
can consist in the analysis of slow motion videos by mean of computer vision algo-
rithms. In conclusion, it is reasonable to chose a semi-empirical approach to face the
industrial problems in the SMaRT context, hence the importance of experimental
data quality results obvious. In this perspective, [54, 82] look interesting. However,
a wide dataset is needed in order to perform reliable statistics.

5.2.5 General Structure of Boundary Conditions

Partial differential equations require a set of proper boundary conditions in order to
be able to identify and compute a unique solution. In the context of multiphase
flows, phases are described by sufficiently regular functions. In fluid dynamics
and consequently in aeolian transport, boundary layers are created and high gradi-
ents occur for most of the quantities involved in mathematical models. They occur
nearby wall regions because of the hyperbolic character of equations and the neces-
sity to satisfy the no slip boundary condition. Wall functions are developed in the
CFD context in conjunction with turbulence models. The definition of wall functions
is based on the wall distance, which is the euclidean distance from the boundary ge-
ometric surface. Therefore a geometric surface has to be defined in order to be able to
apply them in correspondence of no-slip boundary conditions. This is the main rea-
son why in the First Order Model the interface between air-sand mixture and steady
sand is described as an explicit geometric surface. In other words, the computational
domain does not extend to the physical region under the soil. Other approaches are
used in literature, e.g. [34], where a steady mesh is defined and the interface be-
tween fluid-solid mixtures and sediment phase does not explicitly exist. The main
problem of this approach regards conditions where strong gradients occur. Without
an explicit representation of a boundary surface the physical behavior have to be
modeled by the stress tensor. Therefore, the model has to be able to replicate the
effect of wall functions. Without a proper algorithm for mesh refinement, numerical
and modeling errors risk to compromise the quality of numerical solutions.

According to [102], the final sand cloud behavior is massively affected by the
ground mechanical properties. In particular grain size and ground impact proper-
ties influence the resultant boundary status. Because of this, it is necessary to formu-
late proper boundary models in order to mimic the physical boundary conditions.
Furthermore, these must take into account morphodynamics of ground patch and
satisfy mass conservation in the global domain.

Classical boundary conditions are used for the fluid phase, in this section the
focus is on the variable ϕs because it is the most important one from the sand trans-
port perspective. The combination of surface motion and mass conservation for an
infinitesimal element dΣ leads to

− ϕcpuΣn dΣ dt = ϕs(us · n)n dΣ dt , (5.33)

where ϕcp ∼ 0.6 is the close packing volume ratio of sand, uΣ is the kinematic surface
velocity and n is the surface unitary normal vector which conventionally points into
the air domain. Equation (5.33) represents a kinematic constraint linking together
mass conservation and morphodynamics because it states that the mass introduced
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in the computational domain by means of patch movement in the infinitesimal time
dt must be equal to the net solid mass flux over the element dΣ. Equation (5.33) is
general and it can contain a non-linear dependence from other system quantities.

The First Order Model formulation can be used to state mathematical expressions
of boundary condition, in fact sand velocity us is approximated by splitting convec-
tive and diffusive term hence equation (5.33) leads to

ϕcpuΣ = wsed(ez · n)ϕs + νeq
∂ϕs

∂n
. (5.34)

This equation represents a Robin boundary condition and in this form it can still
contain non-linear dependencies. It can describe unsteady states but experimental
data are not sufficiently accurate to determine the sandy surface kinematics.

Steady State The ground surface moves slowly under the action of sand erosion
and deposition. If we consider a short period of time and we focus on the horizontal
mass transport we can set the surface velocity to zero. The same condition occurs
if erosion and deposition balance themselves. Mathematically speaking, a steady
condition implies that each variable in the mathematical system does not depend on
time, therefore the ground surface must be also steady. In the steady case equilib-
rium is reached by definition, therefore uΣ ≡ 0, therefore (5.34) leads to

wsed(ez · n)ϕs + νeq
∂ϕs

∂n
= 0 (5.35)

which is the Robin boundary condition to be used for steady aeolian sand trans-
port simulations. Equation (5.35) expresses the physical fact that the net flux of sand
through the ground surface is null, and the analytical expression of νeq fully embeds
ground mechanical properties. According to [102], ground conditions massively af-
fect final results, therefore complex physical states of the surface must be well de-
scribed by boundary conditions. In section 5.4.4 a possible data driven approach
is proposed by considering the specific case of erodible surfaces. For non-erodible
surfaces (5.35) applies also in unsteady simulations. However, for generic unsteady
flows the boundary status can switch from erodible to non-erodible (and vice versa)
due to the system evolution.

5.3 First Approach to Determine the Collisional Diffusivity

The first step in the data-driven modeling procedure is to find a proper experimental
setup that can be tested by means of numerical simulations. It is important to collect
as many details as possible from the experimental setups because each detail could
affect sampled data. In particular - due to the fact that a best practice procedure and
standard measuring protocols do not exist for wind tunnel aeolian tests - it is not al-
ways possible to directly compare data among different experiments. Furthermore,
due to the instabilities of fluid systems the air flow can drastically change under
small changes in the system. In fact, wind tunnel environments are notoriously dif-
ficult to be controlled due to the chaotic behavior of the fluid. Classical quantities
used in fluid dynamics are problematic to measure because instruments themselves
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Figure 5.5: General representation of solid concentration profiles from
several literature papers.

affect the flow state. Furthermore, the experimental scientific literature that we have
considered shows that data are sampled over vertical array of points. Multiscale
features of aeolian physics makes really problematic to build an easily controllable
experimental setup that allows to provide data with high space-time accuracy.

Keeping this in mind, we searched through the scientific literature and selected
seven scientific papers (Creyssels 2009 [58], Dong 2006 [64], Ho 2011 [102], Liu 2004
[142], Kang 2015 [122], Kawamura 1951 [203], Zhang 2007 [238]) as potentially use-
ful. However, only three of them are taken into account in this first stage, because
their data resolution is sufficient for the fitting procedure.

Particle concentration is the most important quantity to be monitored together
with the other quantities describing the fluid dynamics field. There exist several
technologies for the concentration data sampling and different units of measure are
used by different authors. We represent the particle concentration by means of its
volume fraction as dimensionless quantity. Figure 5.5 shows the particle concen-
tration distribution from several papers with similar (but not equal) experimental
setups. We remark that in all analyzed article the statistical characterization of data
is missing. The first thing to notice in Figure 5.5 is the spread value of the particle
concentrations. In particular we observe really small values of volume fraction ϕs
with high gradients near the sand bed. Another relevant observation regards the
spatial extension of the sand transport that only occupies approximately 10 cm from
the ground. We remark that data reliability is also affected by post-processing anal-
ysis that processes raw data from instruments. Therefore, several source of errors
could affect the final used data. In particular, very low particle concentrations cor-
respond to the presence of few particle in control volumes (see Figure 5.6), hence
the solid concentration might be questionable in the Eulerian context and need to be
considered with care. The next sections are devoted to deal with part of these data
and to justify the choices made in the First Order Model data-driven definition.
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Figure 5.6: Solid concentration as a function of number of particles in
four different cubes: (a) 1mm3, (b) 5mm3, (c) 1cm3 and (d) 5cm3



5.3. First Approach to Determine the Collisional Diffusivity 85

5.3.1 Fitting Models

Considering that the experiment descriptions are vague in several aspects, we sup-
pose that the sand flow is measured when equilibrium is reached. This means to use
a steady state of (5.8), hence

∇ · qs = ∇ ·
((

αsu f + wsedez
)

ϕs − νeq∇ϕs
)
= 0 . (5.36)

As discussed above, data are provided over a vertical line. In flat plane con-
ditions we suppose that all quantities depend only on z, the vertical coordinate.
Furthermore, u f is horizontal and depends on z. We can then simplify (5.36) to a
one-dimensional ordinary differential equation

d
dz

(
wsed ϕs + νeq

dϕs

dz

)
= 0 , (5.37)

therefore
wsed ϕs + νeq

dϕs

dz
= constant .

Since at infinity lim
z→+∞

ϕ(z) = 0 and lim
z→+∞

dϕ
dz (z) = 0, then the constant in the above

equation must vanish and the differential simplifies to{
wsed ϕs + νeq

dϕs
dz = 0 ,

ϕs(z = 0) = ϕ0 .
(5.38)

Instead of solving (5.38) to determine ϕs, we will try to use this equation to evaluate
the coefficient νeq assuming that we can guess from experiments the analytic form of
ϕs. So, from (5.38) we can calculate νeq

νeq = −wsed
ϕs(z)
dϕs
dz (z)

. (5.39)

The next step is then to correlate the z-dependence with a dependence from ϕs and
of the flow conditions. The following fitting models are developed in order to accu-
rately describe the experimental data behavior. In fact, data in Zhang’s experiments
show a peculiar knee in the logarithmic scale. This behavior is not physically ex-
plained by Zhang et al., therefore we develop two generic fitting models that can
take into account these peculiar trends of ϕs data.

Fitting Model A

Assume that ϕs can be written in the form

ϕA(z) := e f (z) , (5.40)

where the subscript A is used to identify this first fitting model and

f (z) :=

{
f0 − cz z < z

f∞ +
[
( f0 − cz− f∞) exp

(
− c(z−z)

f0−cz− f∞

)]
z > z

. (5.41)
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From (5.40) and (5.41) we can compute

dϕA

dz
(z) =

d f
dz

(z) e f (z) =
d f
dz

(z)ϕA(z) , (5.42)

d f
dz

(z) =

{
−c z < z

−c exp
(
− c(z−z)

f0−cz− f∞

)
z > z .

(5.43)

With this structure the fitting problem consists in finding the optimal coefficients
f0, f∞, z, c. In order to simplify the notation, model A is identified by

ϕA(z; f0, f∞, z, c) . (5.44)

Analogously, the equivalent viscosity νeq can directly be written by using (5.39),
(5.42) and (5.43) as

νeq(z) :=

{wsed
c z < z

wsed
c exp

(
c(z−z)

f0−cz− f∞

)
z > z

. (5.45)

Fitting Model B

Assume that ϕs can be written in the form

ϕB(z) := ϕ0 eg(z) , (5.46)

where the subscript B is used to identify the second fitting model for the volume
ratio and the function g is obtained by integrating its derivative

dg
dz

(z) := a + b arctan(c(z− z)) , (5.47)

where
a :=

Smax + Smin

2
b :=

Smax − Smin

π
. (5.48)

The integral of (5.47) reads

g(z) = az + b
[
(z− z) arctan(c(z− z))− ln(1 + c2(z− z)2)

2c

]
+ C . (5.49)

By imposing that g(0) = 0 we can compute the value of C, hence

C = b
[

z arctan(−cz) +
ln(1 + c2z2)

2c

]
. (5.50)

Adopting the same notation as the fitting model A we can address model B as

ϕB(z; ϕ0, Smin, Smax, z, c) . (5.51)

Analogously, the equivalent viscosity νeq can be directly written by using formula
(5.39) and (5.47) as

νeq(z) := − wsed

a + b arctan(c(z− z))
. (5.52)
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Figure 5.7: Geometric features of Zhang’s wind tunnel. The dimen-
sional proportions are not real because of the high ratio between length

and height.

Figure 5.8: Scheme of sampling spatial section for Zhang experiment.
Horizontal slices represent volumes in which number of particle are

counted by an image processing algorithm.

In both the above models z aims to quantify the peculiar knee showed in the Zhang’s
experimental data.

5.3.2 Computational Setup

In this section we provide an overall description of Zhang’s wind tunnel experimen-
tal setup and one possible computational model for its simulations. Figure 5.7 shows
a scheme of Zhang’s wind tunnel section with its main geometrical features: the sand
bed is located at 5.5 m downstream the entrance and it is symmetric between front
and back walls of the tunnel. In order to reduce possible undesired aerodynamics
effects, a smoothing process is applied to the initial and final steps of the sand bed.
In fact, sharp edges could generate a local production of turbulent kinetic energy
and potentially lead to a chaotic evolution of the fluid flow. The green sheet on the
sand bed represents the spatial region where the high speed camera records images;
it is indicated with the symbol "∗" in Figure 5.7. More details of the sampling slice
are provided in Figure 5.8, the solid concentration is evaluated by counting the num-
ber of particles in each horizontal slice and the number of particles is determined by
means of an image processing algorithm named PIV. The vertical line - where data
are provided - is located at coordinate x = 6.318 m and it is symmetric with respect
to the lateral walls. For sake of simplicity we name the vertical line as "Zhang’s line".
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Figure 5.9: Conceptual structure of the computational wind tunnel.
This figure do not respects real proportions because of high ratio be-

tween length and height.

Our computational setup is based on 2D simulations on a vertical slice which is
virtually located at the symmetry plane of the wind tunnel. Preliminary CFD simu-
lations were carried out to set acceptable boundary conditions for the fluid system,
we recall that fluid boundary conditions have relevant effects for the First Order
Model. The computational wind tunnel embed Zhang’s experimental section, but
it also includes two additional spatial regions. These two are located upwind and
downwind Zhang’s section, and their aim consists in uniforming the flow along the
wind direction in order to reach the equilibrium before the sand bed. From these
preliminary simulations we derived that a hybrid mesh with polyhedric cells in the
domain’s core and rectangular cells at the wall region can give results similar to a
pure structured grid which are usually preferred because they avoid some finite-
volume related numerical errors (e.g. non-orthogonality). The usage of a polyhedric
mesh substantially decreases the computational execution time, which is a crucial
factor in industrial context. Figure 5.9 shows the computational wind tunnel with
its additional tunnel sections.

On the top and bottom surfaces we consider wall boundary conditions for smooth
surfaces. Constant profiles for fluid velocity and turbulence quantities are used at
the inlet. We also remark that the tunnel sections added to the original Zhang’s
section are used to fix the lack of information about boundary conditions, in partic-
ular for the pressure field. Proceeding along the horizontal direction aerodynamics
quantities tend to stabilize toward a stationary equilibrium condition. The upwind
additional section allows the flow to satisfies the fluid dynamics equilibrium im-
posed by the turbulence model and by wall functions. We recall that the adopted
turbulence model is a standard k−ω SST.

Figure 5.10 b) shows the computational profiles of horizontal velocity and turbu-
lent kinetic energy when the equilibrium is reached for the Zhang-46 case (see Table
5.1). In order to calibrate the integral mass flux, the velocity profile is scaled simply
by multiplying it by a constant. Mass flux is calculated by fitting air velocity data
on Zhang’s line with an atmospheric logaritmic law and integrating it over z. The
resulting integral flux is
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Case d [mm] u∗ [m/s] z0 [m] Q [m2/s]

Zhang-46 0.2÷ 0.3 0.20031 1.54 · 10−8 4.545
Zhang-47 0.1÷ 0.125 0.44169 0.000825 3.103

Table 5.1: Fluid flow properties of the Zhang’s experiment.

Figure 5.10: Figure (a) shows horizontal air velocity for both type of
sand considered in Zhang’s experiment. Figure (b) shows horizontal air
velocity and turbulent kinetic energy profiles obtained from the virtual

wind tunnel test for the Zhang-46 case.

Q =
2u∗

κ

[
0.295 ln

(
0.295

z0

)
− 0.295 + z0

]
. (5.53)

The magnitude of integral fluxes are given in Table 5.1. Figure 5.10 a) shows the
comparison between the experimental data and the their fittings via logaritmic law.
Once the inlet boundary conditions are defined for Zhang’s wind tunnel, simula-
tions are prepared to match data shown in Figure 5.10 a). Figure 5.11 shows a piece
of the computational domain around the downwind sand step where also Zhang’s
line is visible. The plotted scalar field represents the turbulent kinetic energy and the
streamlines visualize the air velocity field with magnitude and direction. The veloc-
ity field results horizontal around Zhang’s line and no effect of turbulent kinetic
energy are present due to the upwind steps. Therefore, we can visually see that hor-
izontal gradients are not present around Zhang’s line. This fact is relevant because
the data analysis model requires that physical quantities change only over the verti-
cal direction. Figure 5.12 shows a comparison among experimental data, fitting law
and the CFD solution with optimized boundary conditions, for both regimes of the
Zhang’s experiment. We can observe that the Zhang-46 case is more accurate than
Zhang-47. However we consider these results acceptable if we take into account
uncertainties of experimental data.
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Figure 5.11: Subset of the computational domain for the case Zhang-46.
Turbulent kinetic energy field and streamlines of the velocity field are

also shown.

Figure 5.12: Comparison among experimental data, CFD simulation
and logaritmic law used the case (a) Zhang-46 and (b) Zhang-47.
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Case d · 10−3 [m] u∗ [m/s] z0 [m] Ref. Paper Figure Letters Table

Zhang-46 0.2÷ 0.3 0.20031 1.54 · 10−8 [238] 5.19 a1) a2) 5.5
Zhang-47 0.1÷ 0.125 0.44169 0.000825 5.20 b1) b2)

Kang-7 0.15 0.64 - 5.16 a1) a2)
Kang-8 0.15 0.75 - [122] 5.17 b1) b2) 5.3
Kang-9 0.15 0.82 - 5.18 c1) c2)

Kawamura-43 0.25 0.2635 - 5.13 a1) a2)
Kawamura-44 0.25 0.4929 - [203] 5.14 b1) b2) 5.4
Kawamura-45 0.25 0.7857 - 5.15 c1) c2)

Table 5.2: Identifiers and data for the analyzed experiments.

5.3.3 Particle Concentration Analysis

In this section we apply the fitting models presented in section 5.3.1 on three experi-
mental setups. We address the experiments with Zhang for [238], Kang for [122] and
Kawamura for [203]. The wind tunnel configuration for the Zhang’s experiment is
described in the previous section. Kang and Kawamura adopt a similar wind tunnel
setup (see [122] and [203]), but their description is less accurate. We can observe that
ϕ ∼ 10−3 = 0.1% in all cases, hence the assumption (5.1) results correct. We can also
note that the models for νeq (red and blue curves in Figures 5.19 and 5.20) quickly
diverge over a certain value z . The reason of this is related to the analytic structure
of the fitting models. Indeed Model A has an asymptote with value ϕ∞ := e f∞ . In
Figures 5.19 and 5.20 the presence of the asymptote is clear for both Zhang-46 and
Zhang-47 cases.

The equivalent viscosity νeq exhibit appreciable differences between Model-A
and Model-B, but yield small differences in particle concentration. Therefore, small
errors committed for νeq do not drastically influence the distribution of particle con-
centration. Most of the particles are confined to the first few centimeter hence even a
relevant error on νeq for high value of z does not lead to big differences in the overall
transport rate. We also remark that when concentration becomes very low, very few
particles are present in a control volume (e.g. if d ≈ 10−3m and ϕs ≈ 10−3 in a cube
of one cm3 the are more or less a couple of particles).

All three experiments exhibit a kind of knee where the slope changes quickly.
It is not clear whether this aspect is related to measurement issues or experimen-
tal conditions. However both models can embed this behavior if eventually high
precision measurement might become available for future tests.
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coeff. Kang-7 Kang-8 Kang-9

ModelA e f0 +1.112686380487 · 10−3 +6.37883565464 · 10−4 +4.01434347870 · 10−4 [·]
e f∞ +1.170700574460 · 10−7 +2.05716906258 · 10−7 +2.52431433411 · 10−7 [·]
z −4.707577011080 · 10−3 −1.16774579047 · 10−2 −1.77645870617 · 10−2 m
c +4.126800551370 · 102 +3.11103328150 · 102 +2.72109251904 · 102 1/m

ModelB ϕ0 +1.000000000000 · 10−3 +1.45144205409 · 10−3 +1.12844597347 · 10−3 [·]
z +2.495728218540 · 10−1 +2.05148318425 · 10−2 +2.50247765609 · 10−2 m
c +9.000000000000 · 101 +1.48168193661 · 102 +1.63596400000 · 101 1/m

Smin −2.965365223190 · 102 −2.59284228108 · 102 −1.88047995605 · 102 [·]
Smax −5.194557242710 · 101 −3.18946510000 · 101 −3.15108410508 · 101 [·]

Table 5.3: Fitting coefficients for Kang’s case.

coeff. Kawamura-43 Kawamura-44 Kawamura-45

ModelA e f0 +1.21382718818 · 10−3 +3.26422178877 · 10−3 +3.39968915227 · 10−3 [·]
e f∞ +2.53488955741 · 105 +3.52624139371 · 10−5 +4.50466501634 · 10−5 [·]
z +1.56259495587 · 10−2 +6.32479014669 · 10−4 −1.24272078366 · 10−4 m
c +2.91417588517 · 102 +3.89222876200 · 102 +2.15107022175 · 102 1/m

ModelB ϕ0 +1.99965840000 · 10−3 +3.01140000000 · 10−3 +3.19968915200 · 10−3 [·]
z +3.05470000000 · 10−3 +8.50687100000 · 10−3 +1.27000000000 · 10−2 m
c +1.00184687460 · 103 +1.69782620565 · 102 +8.00054850000 · 101 1/m

Smin −6.59741178000 · 102 −4.05001894378 · 102 −2.38901568500 · 102 [·]
Smax −1.98074132000 · 102 −9.87240000000 · 10−1 +0 [·]

Table 5.4: Fitting coefficients for Kawamura’s case.

coeff. Zhang-46 Zhang-47

ModelA e f0 +3.49888312206 · 10−3 +7.24286231220 · 10−3 [·]
e f∞ +2.60731732654 · 10−5 +2.61597108238 · 10−6 [·]
z +1.00828800000 · 10−2 +1.04704711630 · 10−2 m
c +2.96629674343 · 102 +4.39951826144 · 102 1/m

ModelB ϕ0 +3.61968280376 · 10−3 +7.2397554 · 10−4 [·]
z +1.48092639351 · 10−2 +1.1915645 · 10−1 m
c +3.86802967677 · 102 +9.89543654 · 102 1/m

Smin −3.22086775070 · 102 −4.71004838 · 102 [·]
Smax −1.00000000000 · 10−1 +0 [·]

Table 5.5: Fitting coefficients for Zhang’s case.
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Figure 5.13: Results for Kawamura-43 case. See Table 5.2 for related
data.

Figure 5.14: Results for Kawamura-44 case. See Table 5.2 for related
data.
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Figure 5.15: Results for Kawamura-45 case. See Table 5.2 for related
data.

Figure 5.16: Results for Kang-7 case. See Table 5.2 for related data.
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Figure 5.17: Results for Kang-8 case. See Table 5.2 for related data.

Figure 5.18: Results for Kang-9 case. See Table 5.2 for related data.
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Figure 5.19: Results for Zhang-46 case. See Table 5.2 for related data.

Figure 5.20: Results for Zhang-47 case. See Table 5.2 for related data.
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Figure 5.21: Simulation results in Zhang-46 case using the OpenFOAM
implementation of the First Order Model.

5.3.4 Empirical Coupling Between Fluid and Solid Phases

Sections 5.3.1 and 5.3.3 describe how to represent νeq and ϕs as functions of the dis-
tance from the sand bed z. Section 5.3.2 describe the computational domain and
fluid dynamics aspects of Zhang’s case. We can therefore test the First Order Model
in OpenFOAM with a prescribed function νeq(·), which is still a function of the wall
distance. Figure 5.21 shows the simulation result for Zhang-46 setup. The result-
ing concentration ϕs agrees with experimental data. We can therefore deduce that -
qualitatively - numerical errors has small or negligible effects for this computational
setup. As consequence, we suppose that this computational framework is suitable
to study analytical aspects for the νeq(·) formulation.

In the light of these results, the goal is therefore defining a model for νeq that
replicates the correct spatial values, but its dependent variables has to embed physi-
cal properties of the flow. We anticipate that following model is not the final solution
for the First Order Model; we report this result because its application to selected ex-
perimental setups leads to some anomalies. These last constitute the incipit for the
idea that underlies the solution explained in Section 5.4.

In order to justify the following formulation (5.60) we need to consider three
physical facts observed in all experiments that we have analyzed:

• most experiments refer to the shear velocity u∗ which is a bulk parameter that
determines if saltation occurs and its intensity,

• if u∗ > u∗t saltation occurs, where u∗t represent the threshold value.

• the fluid flow direction near the ground is horizontal and the fluid velocity
varies with respect to the wall distance z, then we can write the fluid velocity
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vector field as
u f (x, y, z) = ux(z)ex . (5.54)

We can use (5.54) to compute the second invariant as

∇u f =

0 0 ∂ux
∂z

0 0 0
0 0 0

 ,

hence

D :=
1
2

(
∇u f +∇uT

f

)
=

1
2

 0 0 ∂ux
∂z

0 0 0
∂ux
∂z 0 0

 (5.55)

and

D2 =
1
4


(

∂ux
∂z

)2
0 0

0 0 0

0 0
(

∂ux
∂z

)2

 . (5.56)

We can notice that the first and third invariants vanish for this specific flow

ID := tr D = ∇ · u f = 0 , (5.57)

IIID := det(D) = 0 ,

therefore they do not represent candidate quantities for the analytical structure of
νeq. The last candidate is the second invariant, hence using (5.55), (5.56) and (5.57)
we obtain

IID :=
1
2

(
(tr D)2 − tr

(
D2)) = −1

4

(
∂ux

∂z

)2

,

then we can consider ∣∣∣∣∂ux

∂z

∣∣∣∣ = 2
√
|IID| . (5.58)

Equation (5.58) can be used to rewrite the definition of shear velocity in terms of IID

u∗ :=

√
τwall

ρ f
=

√
ν f

∣∣∣∣∂ux

∂z
(z = 0)

∣∣∣∣ (5.58)
=

√
2ν f

√
|IID(z = 0)| . (5.59)

Using this relationship we can generalize the concept of shear velocity in every point
of the computational domain, also away of the boundary, hence the

ũ∗ =

√
2ν f

√
|IID| .

For ν
emp
eq we propose

ν
emp
eq := α

(
ũ∗

u∗t
− 1
)γ

+

= α


√

2ν f
√
|IID|

u∗t
− 1

γ

+

(5.60)
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Figure 5.22: Experimental measurements of u∗t with respect to d pre-
sented in [186].

where α, γ are model coefficients which have to be optimized for various physical
conditions. In this formulation the diffusivity vanishes when the threshold value of
u∗t is not reached and uses |IID| as Eulerian field in a way that is compatible with
the definition of u∗ at the boundary i.e. ũ∗(z = 0) ≡ u∗. In order to model the value
of u∗t we use

u∗t = 0.124

√
ρs − ρ f

ρ f
gd +

1.12 · 10−4

ρ f d
, (5.61)

which is proposed in [186] to fit the experimental data of Figure 5.22. Figure 5.23
shows the results of the optimization procedure for ν

emp
eq and the values of the ana-

lyzed experiments. The resulting coefficients are

α = 0.00494232 ,
γ = 0.33717863 .

5.4 Solid Volume Concentration Dependence of the Colli-
sional Diffusivity

We can notice that in Figure 5.23 the dots are very scattered around the model curve.
This result suggests that a model involving only the dependence from IID is not
sufficiently general to embed effects of several physical conditions. In particular,
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Figure 5.23: Results of the empirical model ν
emp
eq at the ground for sev-

eral experiments.

the concentration ϕs is the important variable missing in the previous argument re-
lated to ν

emp
eq . We remark that including ϕ as a dependent variable in the model for

νeq leads to a non-linearity in the differential operator of the convection-diffusion
model. So, in this Section we face the problem of computing a possible analyti-
cal structure of νcoll that is able to summarize the physical behavior of the saltation
cloud. The following approach is the result of several theoretical and practical at-
tempts to face this problem. The outcoming solution is a compromise between theo-
retical requirements and practical needs. Industrial applications - in addition to the
accuracy control - require a certain flexibility in the model setting. Indeed, a generic
setup can eventually show some characteristics that have not been taken into ac-
count when the model has been originally developed (e.g. the uncertainty of input
data). Therefore, the model adopts some tuning parameters in order to be morphed
when necessary.

5.4.1 Updated Literature of Experimental Data

4We have updated the experimental literature in order to identify one or more ex-
periments to be used as prototype in for the data representation. An ideal scenario
for an experiment describes each physical variable with good accuracy both in space
and time. However, real case scenarios are very different and, as discussed in Sec-
tion 5.3, data are provided in few spatial point, without temporal information of the
system evolution. We recall that in Section 5.3 the set of articles [58, 64, 102, 122,
142, 203, 238] were selected as candidates for the data analysis. However, in order to
expand the literature and avoid to lose potential good setups we also consider other
experiments. Specifically, for aeolian flows [63–67, 168, 190, 214, 215, 219, 222, 232,
241] whose content can be summarized as follows
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• The group of articles [64, 65, 168, 222, 241] contains a good description of
the experimental setup, detailing the adopted wind tunnel and used instru-
ments. The number of sand diameter values and the number of wind states
are enough to extract quantitative information. In particular [241] focuses on
energetic aspects and [65] provides some information of particles turbulence.

• The authors of [67] study a special case with gravel ground situated downwind
with respect to the sand bed. This case is interesting to figure out the sand
behavior over a non erodible and rough surface.

• In [63] interesting information can be extrapolated about the effect of particles
on fluid velocity. In particular, to evaluate the interaction between phases,
which is crucial for the Second Order Model.

• In [215] the case of sand ripple morphology is treated both with numerical and
experimental approaches. This article is interesting as a comparison for tests
on the soil morphology.

• In [214] a wind tunnel study of three dimensional flow over an obstacle is
carried out. This article can be interesting for bulk comparison of a model
where three dimensional effects of flows want to be studied.

• In [66, 190, 219, 232] other data and fitting formulas are proposed. These ar-
ticles can be used as additional information to be included in the whole fi-
nal dataset with the aim to increase number of samples for statistical analysis.
However, they have some drawbacks compared to the previous articles.

We remark that the main issue of the entire literature considered her is the lack of
completeness in the quantitative description of physical systems. In particular, all
cases focus on few details and neglect others compromising the reproducibility of
scientific results. Furthermore, statistical descriptions miss of accuracy because just
two sand types or two regimes of flow are considered.

We remark that a limit of wind tunnel as a scientific tool in the study of the aeo-
lian transport. In the articles cited above wind tunnels are similar, both in size and
class (circulating or non-circulating wind tunnel). In particular, all cases use a non-
circulating wind tunnel and their length and width of the cross section is around
one meter in size. These aspect reduces the characteristic length in the Reynolds
Number value and therefore the Reynolds Number of the entire flow. As consequence,
results coming from these specific wind tunnels cannot be theoretically scaled out
to atmospheric flows. As already discussed, infield tests are cost and time expen-
sive, they also do not provide high resolution data, therefore wind tunnels are the
only option to use in a data-driven development. Only once the model is complete
benchmarks over infield data can be carried out. As already mentioned, accurate
information about turbulence are almost impossible to be obtained. Therefore, this
aspect is properly modeled in the following with a solution that can be easily modi-
fied when additional data are found.

In conclusion, we consider [142] as prototype of experiment, because it is the only
one to combine several scenarios of flow conditions and sand types together, result-
ing in a useful grid of cases. Its quantitative details are described in the following
Section.
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Figure 5.24: Scheme of the wind tunnel setup used in [142].

5.4.2 Analytic Formulation of the Collisional Diffusivity

In this section we finally describe the data-driven procedure to compute a possi-
ble formulation of νcoll using the experimental setup presented in [142]. The flow
regimes can be flagged using the so called Free Stream Velocity, addressed with the
symbol U∞ and measured in ms−1. In particular, [142] tests six wind regimes

U∞ ∈ {8, 10, 12, 14, 16, 18},

and five ranges of diameter measured in mm

d ∈ {[0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5], [0.5, 0.6]}.

For clarity of notation, instead of using diameter intervals, in the following we use
the mean value of the interval. Therefore, each interval has an alias diameter, hence

d ∈ {0.15, 0.25, 0.35, 0.45, 0.55}.

We remark that no further statistical properties of these intervals are provided. There-
fore, we assume that diameter aliases can be used as reference values in the formulae
evaluation. Whatever the real particle diameter spectrum, we commit an error for
quantities that involve the dependence of d. In this case the diameter intervals are
narrowed therefore we suppose that errors are negligible.

The combination of these settings leads to twenty-five wind tunnel runs provid-
ing a good data-mesh for statistical investigations. Figure 5.24 shows the scheme of
the experimental setup adopted in [142], and we can suddenly notice the analogies
with Zhang’s setup. In particular, measurements are sampled over a vertical line in
a downwind region of the sand bed.

Mean Wind Velocity Characterization

The first step consists in describing the mean wind velocity profile and its turbulence
properties. A proper quantitative description of the mean wind velocity profile is
important because we need to compute its spatial derivative in order to evaluate
|IID| on the vertical line, where data is collected. In Section 3.2 we mentioned the
two classical functions used to describe the mean velocity profile for a wind flow
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(see (3.1), (3.3) and (3.2)). Their analytical formulation is based on experimental
measurements with the aim to match the mean velocity profile (see [129]). For sake
of clarity we recall here the fundamental relations

ABL relation U f =
u∗

κ
ln
(

z + z0

z0

)
, (5.62)

roughness Reynolds number Reκ =
κsu∗

ν f
, (5.63)

Nikuradse roughness κs ∼ 2÷ 5 d , (5.64)

aerodynamic surface roughness z0 =

{
ν f/9u∗ Reκ < 4⇔ smooth
κs/30 Reκ > 60⇔ rough

, (5.65)

where κ ' 0.41 is the Von Karman constant and u∗ is the shear velocity defined in
(5.59). Its value have to be intended as the mechanical stress on the surface.

In Figure 5.26 are reported the original wind mean velocity profiles presented in
[142]. We remark that the mean wind velocity profiles refer to clean conditions, i.e.
wind tunnel flow properties are tuned without the presence of sand in the domain.
This is a standard practice for wind tunnel tests (also non-aeolian tests). Once these
settings are defined, sand is introduced in the domain (making the sand bed) and
the experiments run. We do not know the perturbed profile of mean wind velocity
during the experiment. Which is a relevant aspect in the development of this model.
Without measurements of the mean wind velocity during the saltation process we
can not formally derive the perturbation involved in the transfer of momentum be-
tween sand and air due to the drag. As a consequence, we formally miss part of the
physics involved in the process and we can only establish a cause-effect quantitative
relation. On the other hand, as discussed in 5.1, the term m f in (5.3) is almost negli-
gible as well as the effects on turbulence. Therefore, we expect that the error due to
this drawback is small. As a consequence, we do not include a feedback mechanism
on the fluid velocity in this model because we do not have data for a validation step
(see Figure 5.25). As soon as an aeolian system is fully described in all quantities,
also this model can be easily updated with minor changes.

Figure 5.25: Abstract description of the model with its non-linearity.
The red cross represent the missing feedback on the leading flow by the

presence of particles.
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Figure 5.26: Original fluid velocity profiles at clean wind conditions
provided in [142]. The symbol V stands for U∞.

In order to model the flow we also propose a new formula inspired by the law of
the wall. In particular, we properly formulate a function for the so-called buffer layer

u+ =


z+ z+ ∈ [0, 5)
p4(z+) z+ ∈ [5, 30)
1
κ ln z+ + C+ z+ ∈ [30, ∞)

, (5.66)

z+ =
zuτ

ν f
, (5.67)

U f (z) = uτ u+(z+(z)) . (5.68)

The p4 is a fourth degree polynomial, whose coefficients are computed in order to
fulfill following conditions

p4(5) = 5 p′4(5) = 1 p′′4 (5) = 0

p4(30) = 1
κ ln(30) + C+ p′4(30) = 1

30κ

In (5.67) and (5.68) the term uτ can be intended as friction velocity, but it has to be in-
tended as a mathematical parameter for the fitting law. This new formulation allows
to solve a problem related to the computational wall shear stress τwall calculated with
OpenFOAM. Indeed, the shear velocity have to satisfy the definition (5.59), but the
outcoming values of u∗ showed inconsistencies with computational outputs of the
OpenFOAM simulations. In particular the wall shear stress is computed in relation
to the selected boundary condition1

k kqRWallFunction,
ω omegaWallFunction,
νt nutRoughWallFunction.

1we are referring to the distribution OpenFOAM-extend-4.0.
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identifier fitting function

new (5.68) only uτ as free parameter
opti (5.62) and z0 as free parameter

smooth (5.62) with Nikuradse smooth condition (no dependence from κs)
rough-min (5.62) with Nikuradse rough condition and κs = κs,min
rough-max (5.62) with Nikuradse rough condition and κs = κs,max

dmin = 1 · 10−4 (5.64)−→ κs,min = 2 · 10−4 (5.65)−→ z0 = 6.667 · 10−6 −→ rough-min

dmax = 6 · 10−4 (5.64)−→ κs,max = 3 · 10−3 (5.65)−→ z0 = 1.000 · 10−4 −→ rough-max

new opti smooth rough-min rough-max
U∞ uτ u∗ z0 · 10−5 u∗ z0 · 10−6 Remin

κ Remax
κ u∗ Reκ u∗ Reκ

[ms−1] [ms−1] [ms−1] [m] [ms−1] [m] [·] [·] [ms−1] [·] [ms−1] [·]
8 0.3315 0.4062 2.815 0.3264 5.106 4.4 65.3 0.3368 4.5 0.4953 99.1

10 0.3959 0.5248 4.174 0.3899 4.274 5.2 78.0 0.4107 5.5 0.6041 120.8
12 0.4647 0.5291 1.227 0.4578 3.640 6.1 91.6 0.4908 6.5 0.7216 144.3
14 0.5281 0.6876 2.972 0.5204 3.203 6.9 104.1 0.5659 7.5 0.8320 166.4
16 0.6061 0.7533 1.905 0.5975 2.790 8.0 119.5 0.6595 8.8 0.9698 194.0
18 0.6875 0.8233 1.298 0.6778 2.459 9.0 135.6 0.7582 10.1 1.1150 222.9

Table 5.6: Results of mean wind velocity fittings for different models.

d [mm] wsed [ms−1] u∗t [ms−1]

0.15 0.76752 2.41409 · 10−1

0.25 1.42068 2.95184 · 10−1

0.35 2.02412 3.43702 · 10−1

0.45 2.58013 3.87095 · 10−1

0.55 3.09378 4.26473 · 10−1

Table 5.7: Sedimentation velocity wsed computed as described in Section
5.2.2 and threshold shear velocity computed with (5.61).

d
U∞ 8 10 12 14 16 18

0.15 X X X X X X
0.25 X X X X X X
0.35 × X X X X X
0.45 × X X X X X
0.55 × × X X X X

X erosion

× no-erosion

correct prediction

incorrect prediction

Table 5.8: Boolean predictions of erosion using (5.61) proposed by [186].
The comparison between the uτ and u∗t determines if erosion occurs. U∞

is measured in ms−1 and d is measured in mm.
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Figure 5.27: (a) Experimental data and fittings of the mean wind veloc-
ity of [142]. (b) Derived values of |IID| along z, see Table 5.9 for the

related ground values.

U∞ [ms−1] max(|IID|) [s−2]

8 1.341 · 107

10 2.728 · 107

12 5.180 · 107

14 8.640 · 107

16 1.500 · 108

18 2.482 · 108

Table 5.9: Values of the maximum absolute value of the second invari-
ant with respect to experimental free-stream velocities.
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Turbulence Profile

In order to properly quantify νt we need to set the turbulence properties. In [142]
no data on turbulence are provided. Hence, we need to fill the lack of data. In view
of a computational implementation, instead of using an explicit formula for νt we
consider the k− ω system of RANS equations and we impose u f in order to match
the mean wind velocity profile U f . The velocity field defined by U f ex is divergence-
free because it varies only over z. This approach fills the lack of data and allows
to introduce the effect of a turbulence model, providing additional flexibility to the
algorithm pipeline to compute the νcoll formulation. Indeed, we could adopt a LES
approach to compute a more accurate turbulence state and as a consequence to re-
fine the model accuracy. Here we focus on RANS models because the industrial
cases considered in the SMaRT context are so large to only leave the possibility to
use these approaches.

The system of equation to be solved reads∇ · (k U f ex) = ∇ · [(σkν f + ν)∇k] + P̃k − β∗kω ,

∇ · (ω U f ex) = ∇ · [(σων f + ν)∇ω] + ω
k αPk − βω2 + (1− F1)

2σω
ω ∇k · ∇ω .

(5.69)

Therefore, solving for k and ω we can compute νt using its definition (5.6). In order to
numerically solve (5.69) we modify the standard simpleFoam2 solver of OpenFOAM.
We substantially superimpose the fluid velocity vector field U (which is divergence
free by construction). This new sub-solver is addressed as expSimpleFoam, and it
can be used with several turbulence models for future tests. In order to make a
comparison with literature formulae, we consider the approximation proposed in
[191] with a correction factor of 0.81

νt ' 0.81 κ uτ z . (5.70)

Figure 5.28 shows the comparison of νt between expSimpleFoam numerical results
and the graph of (5.70). We can notice that both formulations provide similar values
in the first ten centimeters, and suddenly diverge for higher value of z. However, we
remark that most of the solid particles transport move in the first few centimeters.
Hence, an error on νt for high values of z does not compromise the bulk behavior of
the outcoming results.

Solid Concentration Model

Despite in Section 5.3.1 we considered special functions to mimic the ϕs behavior,
the measurements of [142] are well described by

ϕs = ϕ0e−bz . (5.71)

According to (5.39) the equivalent diffusivity reads

νeq = −wsed
ϕs
dϕs
dz

= −wsed
ϕs

−bϕs
=

wsed

b
,

2simpleFoam is a standard solver in OpenFOAM which implements the SIMPLE algorithm.
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Figure 5.28: Comparison of the turbulent diffusivity obtained from
OpenFOAM simulations and formula (5.70) (see [191])

d
U∞ 10 12 14 16 18

0.15 9.43 · 10−5 1.91 · 10−4 3.21 · 10−4 4.26 · 10−4 4.99 · 10−4

0.25 4.95 · 10−5 9.78 · 10−5 1.76 · 10−4 2.68 · 10−4 3.09 · 10−4

0.35 4.06 · 10−5 5.28 · 10−5 1.13 · 10−4 2.08 · 10−4 3.29 · 10−4

0.45 2.65 · 10−5 5.43 · 10−5 1.04 · 10−4 1.69 · 10−4 2.39 · 10−4

0.55 1.79 · 10−5 3.38 · 10−5 6.92 · 10−5 1.01 · 10−4 1.71 · 10−4

Table 5.10: Value of ϕ0 for all experimental cases of [142]. U∞ is mea-
sured in ms−1 and d is measured in mm.

d
U∞ 10 12 14 16 18

0.15 25.17 27.52 25.41 23.43 20.74
0.25 17.63 19.39 20.11 21.82 2.23
0.35 16.36 13.21 16.39 19.17 20.44
0.45 11.53 14.19 16.98 17.76 20.41
0.55 9.92 12.55 14.85 16.34 18.48

Table 5.11: Value of b for all experimental cases of [142]. U∞ is measured
in ms−1 and d is measured in mm.



5.4. Solid Volume Concentration Dependence of the Collisional Diffusivity 109

Figure 5.29: Embedding of the experimental data into the space
(ϕs, |IID| , νcoll).

which is constant because wsed depends on the grain diameter (which is also constant
for each experiment stage) and b is a parameter. According to (5.9) (with λ = 1) we
can compute νcoll as

νcoll =
wsed

b
− νt . (5.72)

Therefore, for each combination of U∞ and d we can extract the behavior of νcoll on
z.

Data Embedding

In the previous steps we basically described the behavior of ϕs, |IID| and νcoll along
z for each combination of U∞ and d. Therefore, each pair (U∞, d) identifies a curve
in the space (ϕs, |IID| , νcoll) which represents all the states of the flow along the ver-
tical line. The diameter can be thought as an additional parameter, but it is not a
real system variable because it is constant in each experimental run. Therefore, we
take into account its effect only in a post processing fitting stage. Figure 5.29 shows
the the curves for the diameter d = 0.25 mm, where the black dots are the extrapo-
lated intersections between the curves and the plane νcoll = 0. The spatial location
of these curves suggests the existence of a surface which encodes the values experi-
enced in all possible physical flows. Ideally, experimental data would populate the
space (ϕs, |IID| , νcoll) as a cloud of points and consequently we would compute a
multivariate fitting with a generalized model instead of following the procedure pre-
sented here. However, due to the small amount of structured data of [142], instead
of trying to compute a multivariate fitting we project the curves on the coordinate
planes and we progressively build an analytic formula for νcoll .
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Projection on (|IID| , νcoll) Figure 5.30 shows the projections of the experimental
curves in the space (|IID| , νcoll). The prototype function that we chose reads

νcoll,IID
= ν∞

(
1−

√
II0

IID

)
+

but, in order to facilitate the data regression we use the equivalent form

νcoll,IID
= ν∞

[
1− exp

(
−1

2
(ln (|IID|)− ln(II0))+

)]
(5.73)

where ν∞ quantifies the horizontal asymptote showed by all curves, and II0 quan-
tifies the value of |IID| such that the curve intersect the plane νcoll = 0. Figure 5.31
shows the values of ν∞ for each pair (U∞, d). The data suggest to adopt

ν∞ = m∞(d) ln(ϕs) + c∞(d) , (5.74)
m∞ = S∞

m d + C∞
m , (5.75)

c∞ = S∞
c d + C∞

c . (5.76)

See Table 5.12 for the results of the non-linear regressions.

Projection on (ϕs, νcoll) Analogously to the previous projection, we consider the
projections of the experimental curves in the space (ϕs, νcoll). The prototype function
that we chose reads

νcoll,ϕ = S
(

ln
(

ϕs

Φ0

))
+

. (5.77)

This formulation allows to extract Φ0 for each pair (U∞, d). See Table 5.12 for the
results of the non-linear regressions.

Zero threshold for the collisional diffusivity Figure 5.33 shows the combination
of values Φ0 and II0, which can be interpreted as the set of point such that νcoll -
intended as two variable function - nullifies (see Figure 5.35). We aim to model this
set of points by means of (5.78), (5.79) and (5.80).

ln(II0) = m0(d) ln(Φ0) + c0(d) , (5.78)

m0 = S0
m d + C0

m , (5.79)

c0 = S0
c d + C0

c . (5.80)

Final fomulation for the collisional diffusivity Combining all formulas described
above we propose the following formula for νcoll

νcoll = [m∞(d) ln(ϕs) + c∞(d)]
[
1− e−

1
2 (ln(|IID|)−[m0(d) ln(ϕs)+c0(d)])+

]
, (5.81)

which is used in the OpenFOAM implementation of the First Order Model. Regard-
less of the analytic properties of this formulation we can notice that the strength of
the wind is encoded in the action of |IID| and it increases the diffusive effect if the
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Figure 5.30: Projection of experimental curves in the plane (|IID| , νcoll)
and their non-linear regression with the model (5.73).
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Figure 5.31: Values of ν∞ for each pair (U∞, d) and regressions with the
model (5.74).
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d U∞ ν∞ ln(II0) Φ0 S
[mm] [ms−1] [m2s−1] [·] [·] [m2s−1]

10 3.0067 · 10−2 3.45317 · 100 1.36428 · 10−7 4.59879 · 10−3

12 2.7613 · 10−2 8.59804 · 100 9.36303 · 10−7 5.19270 · 10−3

0.15 14 2.9920 · 10−2 1.23881 · 101 3.07236 · 10−6 6.43618 · 10−3

16 3.2462 · 10−2 1.85277 · 101 7.62087 · 10−6 8.06851 · 10−3

18 3.6669 · 10−2 2.40308 · 101 1.43770 · 10−5 1.03387 · 10−2

10 8.0005 · 10−2 4.56207 · 10−1 1.66954 · 10−10 6.34983 · 10−3

12 7.2587 · 10−2 1.05248 · 100 2.18338 · 10−9 6.77774 · 10−3

0.25 14 6.9868 · 10−2 1.89473 · 100 1.44423 · 10−8 7.42655 · 10−3

16 6.4214 · 10−2 3.89189 · 100 7.54107 · 10−8 7.85437 · 10−3

18 6.9209 · 10−2 5.54308 · 100 2.29763 · 10−7 9.60715 · 10−3

10 1.2315 · 10−1 1.92556 · 10−1 6.20390 · 10−13 6.84276 · 10−3

12 1.5254 · 10−1 2.38306 · 10−1 1.15714 · 10−11 9.94855 · 10−3

0.35 14 1.2272 · 10−1 6.14152 · 10−1 1.59972 · 10−10 9.11213 · 10−3

16 1.0469 · 10−1 1.46416 · 100 1.70689 · 10−9 8.94013 · 10−3

18 9.8010 · 10−2 2.76399 · 100 1.09791 · 10−8 9.50845 · 10−3

10 2.2320 · 10−1 5.86163 · 10−2 2.75155 · 10−15 9.70924 · 10−3

12 1.8115 · 10−1 1.68995 · 10−1 1.73927 · 10−13 9.26148 · 10−3

0.45 14 1.5117 · 10−1 4.04720 · 10−1 3.56860 · 10−12 8.79552 · 10−3

16 1.4438 · 10−1 7.69828 · 10−1 3.56860 · 10−12 9.64990 · 10−3

18 1.2540 · 10−1 1.68849 · 100 4.56318 · 10−10 9.52243 · 10−3

10 3.1129 · 10−1 3.01336 · 10−2 1.87456 · 10−17 1.12850 · 10−2

12 2.4583 · 10−1 9.17576 · 10−2 2.15463 · 10−15 1.04717 · 10−2

0.55 14 2.0756 · 10−1 2.14698 · 10−1 7.53524 · 10−14 1.00571 · 10−2

16 1.8844 · 10−1 4.51923 · 10−1 1.59027 · 10−12 1.04885 · 10−2

18 1.6639 · 10−1 9.58953 · 10−1 2.29982 · 10−11 1.05169 · 10−2

Table 5.12: Regression coefficient for each pair (U∞, d) with models
(5.73) and (5.77).

d [mm] m0 [·] c0 [·] m∞ [·] c∞ [·]
0.15 4.09805 · 10−1 7.75463 3.35870 · 10−3 5.90491 · 10−2

0.25 3.48498 · 10−1 7.02134 −6.99684 · 10−3 9.46753 · 10−3

0.35 2.87059 · 10−1 6.13155 −1.93696 · 10−2 −5.62199 · 10−2

0.45 2.75252 · 10−1 6.34857 −4.25968 · 10−2 −2.31561 · 10−1

0.55 2.44961 · 10−1 5.89985 −6.26840 · 10−2 −3.86368 · 10−1

Table 5.13: Regression coefficients for (5.75), (5.76), (5.79) and (5.80).
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Figure 5.32: Projection of experimental curves in the plane (ϕs, νcoll) and
regression with the model (5.77).
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Figure 5.33: Location of points (Φ0, II0) for all value of d and regression
with the model (5.78).

Figure 5.34: Parametrization with respect to d of (5.75), (5.76), (5.79) and
(5.80).
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S∞
m −1.67685 · 102 S0

m −4.02933 · 102

C∞
m 3.30322 · 10−2 C0

m 4.54142 · 10−1

S∞
c −1.13186 · 103 S0

c −4.38233 · 103

C∞
c 2.75026 · 10−1 C0

c 8.16500 · 100

Table 5.14: Regression coefficients for (5.75), (5.76), (5.79) and (5.80).

Figure 5.35: The resultant surface of νcoll function for the case of d =
0.25 mm. The colored curves represents the embedding of the experi-

mental data in the space (|IID| , ϕs, νcoll).

wind strength increases. Therefore, it is in accordance with experimental observa-
tions. Furthermore, ϕs determines both the threshold value for |IID| and the maxi-
mum value of νcoll . Also this aspect is in accordance with experimental observation.
Indeed, ϕs quantifies the presence of sand in a control volume, νcoll is a diffusive
coefficient that summarizes the collisional action of particles to each others. Indeed,
if few particle are present in a control volume the collision probability decreases
and the diffusivity is only due to turbulence effects (encoded by λνt). On the other
hand, when many particles are present in a control volume the collision probability
increases with a consequent increment of νcoll . However, it cannot increase indefi-
nitely because too many particle would lead to high dissipation. Hence, νcoll has an
asymptotic value ν∞. The formulation also includes d as a parameter, which can be
considered constant in a simulation.

5.4.3 The Flow Chart

All the steps described above can be conceptually summarized in the flow chart
of Figure 5.36. We remark that this pipeline is highly modular. Indeed, most of
sub-procedures can be substituted when new highly accurate data or new models
eventually appear in literature. The bold symbols the flow chart address the compu-
tational arrays. In particular:
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• (z,ϕs, U f )exp is a triple of arrays, all with the same size, containing the experi-
mental data.

• (ϕs, I ID, νcoll)CPU is a triple of arrays obtained evaluating the non-linear mod-
els on the computational vector zCPU . Also these arrays share the same dimen-
sion.

The showed diagram is mainly divided in two part. The upper part represents the
treatment of the experimental data and the fix for the lack of data. The main output
is the data embedding (ϕs, I ID, νcoll)CPU . However, data could directly come from
measurements or from other procedures. The bottom part treats the triple just men-
tioned and it extract the analytic formula setting the vectors coefficients c f sIID

, c f sϕs

and c f sd. The dashed boxes group main sub-steps of the flow. However, almost each
detail can be easily updated without modifying the final result.

5.4.4 Quantitative Formulation of Boundary Conditions

In Section 5.2.5 we described the generic structure of boundary conditions for ϕs.
However, we need to quantify the involved functions taking into account the exper-
imental data. In the process of data analysis used to evaluate νcoll we also indirectly
have considered information about boundary conditions. In particular, the formu-
lation of ϕs embeds the boundary value for the solid volume concentration and its
normal derivative when an erodible surface experiences saltation.

Dirichlet Boundary Condition when a Dirichlet boundary condition is set the
value of ϕs at the wall is directly obtained by ϕ0 in (5.71). Table 5.10 collects the val-
ues of ϕ0 for all combinations of U∞ and d. Figure 5.37 (a) (respectively (b)) shows
the relation between uτ (respectively |IID(z = 0)|) and ϕ0. We recall that uτ and
|IID(z = 0)| are equivalent by (5.59), and in a simulation uτ is evaluated computing
the wall shear stress τwall and using the definition (5.59). In Figure 5.37 (a)-(b) the
threshold values are plotted as black dots, and they are calculated using (5.61). Just
taking inspiration by the data, the proposed prototype function reads

ϕs(z = 0) = ϕ0 ' Aw(uτ − u∗t )
γ
+ , (5.82)

where Aw and γ are fitting coefficients depending on the grain diameter. For sake
of simplicity the behavior of Aw and γ with respect of d is approximated using a
polynomial of degree two. Hence

Aw, γ ∼ a2 d2 + a1 d + a0 (5.83)

where a0, a1 and a2 are constants. Regression procedures lead to results of Table 5.15
and 5.16. Figure 5.38 shows the behavior of coefficients Aw and γ, and their fitting
with (5.83).

Neumann Boundary Condition when a Neumann boundary condition is set, re-
calling (5.71) we have

−∂ϕs

∂n
=

dϕs

dz
= −bϕ0e−bz
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Figure 5.36: Flow chart representation of the model derivation.
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d Aw γ

0.15 1.55479 · 10−3 1.34781
0.25 1.06038 · 10−3 1.26306
0.35 1.89819 · 10−3 1.64782
0.45 8.46913 · 10−4 1.05827
0.55 6.33719 · 10−4 0.99798

Table 5.15: Values of Aw and γ for the cases of [142].

a2 a1 a0

Aw −9.47604374 · 103 4.57762211 · 100 9.46966029 · 10−4

γ −6.60991691 · 106 3.72249022 · 103 9.02030089 · 10−1

Table 5.16: Fitting coefficients for Aw and γ.

and evaluating it at z = 0 we have

dϕs

dz
(z = 0) = −bϕ0 ' Bw(uτ − u∗t )

β
+ , (5.84)

where Bw and µ are fitting coefficients depending on the grain diameter. As well as
the Dirichlet case, in order to compute Bw and µ with respect to d we use a polyno-
mial of degree two

Bw, β ∼ b2 d2 + b1 d + b0 (5.85)

where b0, b1 and b2 are constants. Regression procedures lead to the results in Tables
5.17 and 5.18. Figure 5.38 shows the behavior of the coefficients Bw and β, and their
fitting with (5.85).

Non-Erodible Surfaces For non-erodible surfaces the Robin condition (5.35) ap-
plies. Regardless the formulation of νcoll , the condition (5.35) guarantees that the
flux through the boundary is null i.e. the surface is actually non-erodible. In [102]
it is discussed the importance of the ground mechanical properties on the final con-
centration profile behavior. However, data are not quantitatively wide enough to be
used in an upgrade for the model of νcoll . Therefore the accuracy for this condition

d [mm] Bw [m−1] β [·]
0.15 2.69893 · 10−2 1.07731
0.25 2.27284 · 10−2 1.29662
0.35 5.70430 · 10−2 2.00124
0.45 2.50325 · 10−2 1.36977
0.55 1.68559 · 10−2 1.27222

Table 5.17: Values of Bw and β for the cases of [142].
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b2 [m−3] b1 [m−2] b0 [m−1]

[m−1] Bw −5.29689595 · 105 3.52820069 · 102 −1.82764285 · 10−2

[·] β −1.40701243 · 107 1.03120446 · 104 −2.00790156 · 10−1

Table 5.18: Fitting coefficients for Bw, β and law (5.85).

is not guaranteed. On the other hand, in industrial cases the amount of area of non-
erodible surfaces results to be negligible with respect to sandy surfaces. In Chapter 6
we consider a semi-stochastic Lagrangian model allowing to take into account local
properties of surfaces. Its aim is not industrial but it can be used for future develop-
ments of boundary conditions.

We remark that both Dirichlet and Neumann boundary conditions involve the
value of |IID| which is computed by the solution for u. This implies that the system
of boundary condition for (5.10) is non-linear, requiring an iterative process to be
solved. This fact shows the complexity that involve the modeling procedures in the
case of tracking boundary approaches.

5.4.5 Implementation Accuracy

The arguments developed in previous Sections is based on a mixed approach be-
tween data-driven analysis and fundamental principles of continuum mechanics.
Numerical approximations have been used for fitting procedures and for the gen-
eration of missing data. We remark that in most of the experimental literature the
statistical properties of measurements are missing, therefore some discrepancies can
be related to the summation of multiple error sources. However, in order to evaluate
the effectiveness of (5.81) formulation we can test it in the OpenFOAM implementa-
tion of the First Order Model over the same conditions of [142]. Figure 5.39 shows the
comparison between OpenFOAM results with Dirichlet boundary conditions (red
curve) and the target curve obtained from experiments (black curve). Figure 5.40
shows the same comparison but the coefficient λ is set to be five. The results are or-
ganized in a grid of images where each row represents a value of d and each column
represents a value of U∞.
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Figure 5.37: Boundary conditions values for different regimes. Colored
dots represent extrapolations from experimental data, black dots repre-
sent the threshold values according to (5.61). (a)-(b) Dirichlet boundary

condition. (c)-(d) Neumann boundary condition.

Figure 5.38: Parametrization of coefficients for boundary conditions
with respect to d.
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Figure 5.39: Implementation accuracy results with λ = 1.
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Figure 5.40: Implementation accuracy results with λ = 5.
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Figure 5.41: Sand samples of the experimental setup presented in [232].

5.5 Multi Solid Phases

The diameters range of natural sand grains is approximately
[
10−5, 10−3]m (see

[16]). It is true that in order to understand and describe the phenomenon in a con-
trolled like environment - for example in wind tunnel - it is possible to precisely
select the diameters to use in experiments. However, a natural sample of sand can
also exhibits several diameter spectra (see Figure 5.41). The First Order Model used
until now assumes one value for the characteristics sand diameter, but it can be im-
proved to consider a multiple solid phase formulation that takes into account several
diameters in one simulation.

The presence of heterogeneous sand has relevant effects on boundary condition
modeling; Paragraph 5.5.1 will briefly discuss the effect of a non-homogeneous spa-
tial distribution of the underground sand diameter spectrum. For sake of simplicity
in this section we suppose that the diameter spectrum is homogeneous in all set-
tled sand volume. The interaction between wind and particles changes significantly
with respect to the particle diameter and shape. Therefore, we expect that distinct
wind sources lead to significantly different sand clouds. We remark that natural at-
mospheric conditions are so variable that the case of a steady horizontal wind is not
very plausible, mainly due to the turbulence effects. On the other hand, lack of data
forces to adopt precautionary approximations that allow the First Order Model to per-
form predictions with a controlled error. In the industrial context a certain error is
accepted.

For the sake of simplicity, we split the diameter spectrum in multiple contiguous
intervals (i.e. a piecewise constant function) and we model each of them by means of
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an Eulerian field. The diameter spectrum is therefore modeled using a list of diam-
eters (i.e. interval) and for each diameter we pair a probability value. This table of
values characterizes the sand sample used in a simulation. No further information
of intervals widths are provided therefore the spectrum description can be thought
also as a discrete probability distribution. This discrepancy can be justified suppos-
ing that the diameters in the same interval have same collisional properties. The
model presented in Chapter 6 allows to take into account fine details of the aeolian
transport. However, it has been only developed in the very last part of the SMaRT
research activity. Therefore, its application on the Eulerian modeling is planned for
future scientific researches.

Despite the model generality increases, to define several fields implies the alloca-
tion of a proper amount of memory for each field (the memory cost depends on the
mesh domain). Consequently the computational number of phases is not arbitrary,
and the interaction among different Eulerian fields have to be properly modeled.
Furthermore, most of wind tunnel experiments in literature provide just a mean
value for the grain size diameter rather than a full diameter spectrum; this results in
uncertainties when model coefficients are defined.

We consider the system (5.3) for the fluid phase, and instead of using one equa-
tion we use the following system of transport diffusion equations for a system of N
diameters: 

∂ϕ1

∂t
−∇ · (αsu f + wsed(d1)ez − νeq,1∇ϕ1) = 0 ,

∂ϕ2

∂t
−∇ · (αsu f + wsed(d2)ez − νeq,1∇ϕ2) = 0 ,

...

∂ϕN

∂t
−∇ · (αsu f + wsed(dN)ez − νeq,N∇ϕN) = 0 .

(5.86)

In (5.8) the nonlinear viscosity νeq is formulated as the sum of the turbulent vis-
cosity νt and the collisional viscosity νcoll . The derivation of νcoll is based on the
presence of one diameter value. We model the interaction among phases by analogy
with (5.81), but instead of consider the presence of a single phase we use the total
concentration. Therefore equivalent viscosities read{

νeq,i = νt + νcoll(ϕtot, I ID; di) i = 1, 2, . . . , N
ϕtot := ∑N

i=1 ϕi
. (5.87)

We remark that the presence of ϕtot for each νeq,i realizes the nonlinear coupling
among different diameters, otherwise a phase is not influenced by the presence of
the others leading to an uncoupled system of equations. The algorithm to solve this
system of equations is analogous to the iterative algorithm used to solve the First
Order Model. But the number of internal cycles increases because of the presence of
several equation and the nonlinear coupling. Its computational cost increases sig-
nificantly therefore its industrial application is limited. We also remark that for each
equation a different boundary condition applies because (5.82) and (5.84) depend
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ϕi d [m] wi % u∗t [m/s]

0 1.0 · 10−4 5 0.220
1 1.5 · 10−4 15 0.260
2 2.0 · 10−4 35 0.275
3 2.5 · 10−4 25 0.310
4 3.0 · 10−4 15 0.320
5 3.5 · 10−4 5 0.365

Table 5.19: Discrete properties of the tested multi solid phase system.

Figure 5.42: Numerical results of the multi solid phase solver for the
setup described in Table 5.19 and 14 m/s for the free-stream velocity.

also to the diameter. For sake of simplicity boundary conditions are assumed un-
coupled i.e. we use the same formulation for the single phase First Order Model.

Figure 5.42 presents the numerical results of this model for six solid phases sys-
tem characterized by a free stream velocity of 14 m/s and sand properties defined in
Table 5.19. The spatial setup is analogous to the Liu&Dong’s experiments (see [142])
that is used for the νcoll derivation for the First Order Model. We do not have ex-
perimental data for a quantitative validation, however these results are qualitatively
correct and the order of magnitude for outcoming concentrations are reasonable if
compared with single phase results showed in Figure 5.39.

In conclusion, this preliminary version for the multi solid phases model is inter-
esting, but future researches have to be combined with high accuracy results in order
to be able to evaluate the quantitative error in a real heterogeneous sand condition.
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5.5.1 Ground Memory Function

In this paragraph we want to discuss the effects on mathematical modeling if spa-
tial heterogeneity of the diameter spectrum is taken into account in the model. As
mentioned in the previous sections a sample of sand is characterized by its diam-
eter spectrum, material density and grains shapes. In general these properties can
change with respect to the sample point in the underground region. Figure 5.43
shows a scheme of the soil section subjected to erosion (red arrows) and deposition
(green arrows) due to the wind action. The combination of several natural phenom-
ena over time - aeolian transport, sand avalanches, earthquakes, fluvial phenomena,
etc. - can lead to heterogeneous properties in the sediment material. We use the
symbol Σ(·) to address the ground surface over time. Referring to Figure 5.43, the
boundary conditions on Σ(·) are influenced by its dynamical states:

• Erosion occurs when some volume of sand is entrained in the air due to the
wind action (see ÃB → Ã′B and D̃E → D̃E′). Therefore boundary conditions
for a truly representative mathematical model have to consider the diameter
spectrum of the sand that is entrained in air (see P1) when the surface Σ(t)
evolves toward Σ(t + ∆t).

• Deposition occurs when the sand suspended in air sediments, leading to a
stratification of a steady volume of sand and consequently moving the from

Σ(t) toward Σ(t + ∆t) (see B̃CD → B̃C′D). Unlike erosion, the deposition
process creates the spatial information containing the diameter spectrum in
the sedimented volume.

• Equilibrium occurs when there is not solid mass exchange through the surface
Σ(·), i.e. the surface Σ(·) does not change in time (see points B and D in Figure
5.43).

The combination of actions described above results in an complex physical phe-
nomenon where the flow behaves in relation to heterogeneous boundary conditions,
but simultaneously the flow determines the status of boundary conditions for the fu-
ture evolution. This argument suggest the Ground Memory Function name to address
the function that maps each point in the underground spatial region to a space of
functions for the sand diameter spectrum.

GMF : Ωs ⊂ R3 → V ⊂ L2(R+)

P 7→ f (·) (5.88)

The GMF definition depends in general on the complex combination of geomor-
phological phenomena mentioned above. However, its quantitative definition for
an initial state could be performed by a systematic sampling and a consequent in-
terpolation. This level of detail is out of the scope of the models developed in this
thesis. However future researches can embed all previous modeling aspects. Chap-
ter 6 a semistochastic Lagrangian model that allows to overcome several difficulties
of the Eulerian modeling. Even though the discussion over the GMF is based on
the mathematical description of Σ(·), analogous considerations are valid for second
order models (e.g. models discussed in Chapter 2) where the spatial mesh includes
also the sedimented region. In this case the surface Σ(·) is not explicit, and instead
of describing the physical phenomenon via boundary conditions we would have to
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define such a general stress tensor that is able to describe all physical state of the
sand status, which means to be able to switch from a gas-like behavior to a plastic-
like behavior almost discontinuously.

In conclusion, we want to remark that the introduction of multiple solid phases
in a multiphase model leads to relevant modeling issues. This requires very an de-
scription of the physical system in each of its details, and most of the time these
information are not totally available from experiments. Therefore, in a industrial
context the use of several solid phases is not feasible if we consider also the addi-
tional computational cost.

Figure 5.43: Schematic representation of a ground section.

5.6 Industrial Applications

Industrial applications represent the main goal for the SMaRT research activity, in
particular for an engineering perspective for the railways industry. Therefore, we
consider two railways-related cases in large domains. The first setup considers a
spatial region surrounding the railway studied by the infield research activity of
SMaRT during its Namibia campaign. This is a good benchmark because we can
compare numerical results with macroscopic measurements. The second setup aims
to test a complex geometry of the railway infrastructure, but no experimental data
are available for this setup. In both cases we consider the First Order Model in the
ultimate form obtained in Section 5.4.

5.6.1 T-track: Simulation of a Real Scenario from ESR-3 Experimental Re-
search Activity

The term T-track refers to a special railway setup were a kind of concrete channel
is created to support the rails (see Figure 5.51). This configuration induces sand
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Figure 5.44: Laser scan measurements of the sand surface profile at the
beginning (top) and end (bottom) of the temporal window with post-
processing regularization of laser scan samples. In the top figure the

railway is clean, in the bottom one the railway is full of sand.

deposition around the railway due to aerodynamic effects. By means a laser-scan
the ground surface have been measured over time. Figure 5.44 shows the result
of the laser sampling after the filtering procedure and an artificial extension of the
domain. In particular, the top figure represents the ground surface before the sand
deposition, while the bottom figure represents it at the end of the temporal window.
The collected data can be used to create an erosion-deposition map to be used for
comparison with numerical tests.

The computational domain for the simulation is the gray slice of the global do-
main showed in Figure 5.44. The flow is not perpendicular to the railway. Hence, in
order to preserve the 3D effects, we consider periodic boundary conditions for the
front and back slice of the domain. The boundary condition for the inlet matches
infield experimental data (see [226, p. 17]). We considered a steady wind veloc-
ity with a given turbulence and a constant supply of sand. We set u∗ = 0.49 m/s,
u∗t = 0.24 m/s, z0 = 10−3 m and the turbulence intensity to be around 8%. The
domain sizes are large even considering a subset of the entire domain. Therefore,
in order to keep the computational effort close to industrial standards, the mesh is
not very fine (not as a scientific analysis would require). However, it satisfies the
classical CFD requirements.
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Figure 5.45(a) shows the wind streamlines and velocity magnitude. The zoom of
the figure makes the recirculation zones very evident. We can recognize four main
recirculation zones:

1. the first is a small recirculating zone at the foot of the downwind track (on its
left)

2. the second recirculating zone, much larger, forms in the space between the
tracks,

3. the third forms after the wind has passed the track and it is mainly due to the
presence of the track, as it occurs on the upwind size of any obstacle passed by
the wind,

4. the fourth forms right after the third one and it is mainly due to the downward
slope of the enbankment

It is likely that in other geometries these two recirculating zones may merge into one.

The location of the recirculating zone is coherent with the patterns of the friction
velocity and, therefore, of the identification of the sedimentation and erosion zones
shown in Figures 5.45 (c) and (b), respectively.

Though a pure aerodynamic simulation with no sand transport may appear sim-
plistic, however, it results useful as a preliminary metric, that can be sufficient to
solve engineering problems in real working conditions. The addition of the First Or-
der Model allows to quantify the free-surface speed i.e. the speed of sand erosion or
deposition. Such an evaluation is useful, for instance, to plan maintainance opera-
tions of the railway.

Figure 5.46 shows a comparison of erosion-deposition patterns between numer-
ical results and the infield data. Figures (a), (b) and (c) are different plots based
on the same data. In particular, they measure the erosion-deposition pattern via
the topographic changes over a temporal window of three days (see [226, p. 21]).
In particular, Figure 5.46 (a) focuses on the erosion-deposition pattern obtained by
numerical simulation. Figures 5.46 (b)–(d) point out the regions where there is an
overall sedimentation or erosion comparing the ground levels at the end and at the
beginning of the experiment.

We remark that, in addition to classical measurement errors, in this case difficult
infield conditions trigger other potential sources of errors. In particular, the tur-
bulence has an important effect on the aeolian process and we do not know much
about that. Even very time localized event with a very strong wind can drastically
change the morphology of surrounding areas. The assumptions for this numerical
setup are far from being realistic in an in-situ experiment. In spite of this, numerical
and experimental patterns are coherent and we consider these results positive for
the industrial perspective.
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Figure 5.45: (a) Streamline of flow with velocity magnitude in a mid-
dle slice of the computational domain. (b) Boolean erosion-deposition
pattern over the ground surface using our transport model (green is
sedimentation and red is erosion). (c) Friction velocity pattern over the

ground surface.
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Figure 5.46: Comparison of the erosion-deposition patterns between
the simulation and post processing of laser data from Period 1 in [226]:
(a) Boolean erosion-deposition pattern obtained with numerical simu-
lation, (b) exact topographic difference map between the start and end
of the Period 1, (c) Boolean erosion-deposition pattern obtained with
the topographic map and d Boolean erosion-deposition pattern filtering
topographic difference under 5 mm, which are considered insignificant.
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5.6.2 The Humped-Sleeper Case

We consider a railway equipped with the so-called humped sleepers. This configura-
tion is interesting because it is designed to induce an aerodynamic effect under the
rails. Figure 5.47 (top) shows the overall surface of the computational domain, Fig-
ure 5.47 (bottom) shows geometric details of the humped sleepers solution. This case
is also interesting to highlight the main criticality of the mesh morphing approach
presented in the next section.

The geometrical shape of concrete sleepers together with railways induce a par-
ticular flow which is interesting to study for sand transport. In this case we chose a
wind direction orthogonal to the railways with a logarithmic atmospheric profile is
used where u∗ = 0.5 m/s, z0 = 3 · 10−3 m and u∗t = 0.32 m/s.

Figure 5.48 resumes the numerical results of the erosion/deposition patterns.
This last is coherent with the scope of this kind of railway design. Indeed, the sleeper
shape is designed to induce an acceleration to the flow under the rail in order to blow
away the sand. The erosion pattern does not cover the whole area around the rail
infrastructure. However, most of its performance depends on the free steam velocity
of the incoming wind. This test shows that the industrial application of the First
Order Model can be useful for engineers, for example, to perform systematic tests in
order to evaluate different configurations or designs.

5.6.3 Influence of Local Shapes on Mesh Morphing

In section 2.4.4 we described two alternatives for the representation of the ground
surface. We report here a criticality of the explicit representation of the ground sur-
face. In classical mesh descriptions, the domain boundary is composed by the so-
called patches. In 3D domains patches are surfaces, instead in 2D domains patches
are curves. In case of domains that morph in time, points change their position
and consequently they modify cell properties. Numerical approximation properties
(consistency and stability) of finite volume method (as well as finite elements and
analogous method) are heavily influenced by the cell deformation. Furthermore,
flux corrections are requested to satisfy Reynolds transport theorem. All these as-
pects translate in additional computational costs.

Although the mesh morphing is computationally very expensive, in many cases
it is an efficient way to take care of the evolution of free boundaries. Figure 5.49
shows a test for the surface displacement near a wall. The mesh morphing algorithm
imposes the patch displacement as a boundary condition of an elasticity problem for
an elastic solid. The solid shape matches with the fluid domain. The solution of this
problem is obtained decomposing the finite volume mesh in tetrahedron, and solv-
ing the pseudo-elastic problem by means a finite element solver. The displacement
solution is used as vector field to move mesh points. The case in Figure 5.49 shows
that for high quality meshes even large displacement are allowed. But critical points,
such as corners suffer from cells shrinking.
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Figure 5.47: Schematic representation of the railway configuration used
in the simulation of the railway with humped-sleeper (top) and detail

representation of the track (bottom).
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Figure 5.48: (a) Friction velocity pattern over the surface. (b) Ero-
sion deposition pattern using basic method of the ratio between fric-
tion velocity and the threshold friction velocity (just for the area nearby
railways). (c) Boolean erosion deposition pattern obtained using our

model.
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Figure 5.49: Temporal evolution of the surface morphing test.
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Figure 5.50: Geometric and mesh details of the mechanical coupling
between rail and sleeper.

The criticality for the mesh morphing procedure becomes evident when geomet-
ric complexity rises up, like in the humped sleeper geometry or in the T-track config-
uration. Figure 5.50 shows a slice of a railway equipped with humped sleepers. The
basal sand-concrete interactions is similar to the morphing showed in Figure 5.49.
However, once the patch reaches the metal of the rail, a complex surface-surface
interaction occurs leading to topological changes of the domain. In particular, in
Figure 5.50 we highlight that close to the intersection between the rail and the con-
crete element (see different colors), there are three different surface normal vectors
in the neighborhood of the point P (these are mutually nearly perpendicular). Even
a very fine mesh presents a drastic variation of the normal vector around a single
point, potentially leading to numerical issues.

Another tipping point is when the sand surface is about to touch the bottom of
the rail, or when it covers the rail. Though undesirable from the practical point of
view, these configurations are far from being unrealistic. In these cases there is a
change of topology that requires a complete remeshing. Another analogous situa-
tion is shown in figure 5.51 where the metal feet of the rail creates a step. Once that
the sand hypothetically reaches the connection between rail and concrete, the mesh
points would be subjected to high deformations loosing the regularity and poten-
tially leading to numerical errors.

We conclude recalling that these critical cases represent extreme conditions which
do not likely occur in real computations. Indeed, the engineering goal is not to study
very localized interactions, but to determine the bulk mass transfer over large do-
mains and possibly to determine erosion/deposition patterns.
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Figure 5.51: A whole representation of the T-track railway with the ge-
ometric detail about the drastic variation of the surface normal vector,

for instance at the foot of the rail.
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Chapter 6

Semi-Stochastic Periodic Box

The experience gained studying Eulerian models in the previous Chapters allowed
to identify some criticalities of the Eulerian approach. In particular, we report three
main aspects:

• High difficulties in finding highly accurate experimental data. In particular,
experimental setups where all physical quantities are robustly described. So,
having the possibility to validate the model by replicating the experiment with
a computational simulation.

• Difficulties in distinguishing between numerical and modeling errors due to
different discretization aspects.

• The necessity to evaluate the statistical quantities in control volumes in order
to prove or disprove the statistical mechanics hypotheses for continuum like
models in the context of aeolian transport.

In the very last part of the SMaRT research activity - in conjuction with my super-
visor - I tutored the student Nicolò Perello for his master thesis titled A Particle-Based
Analysis of the Saltation Process: Models, Numerical Methods and Tests. I developed
autonomously the initial idea and the computational architecture for the main al-
gorithm presented in this chapter, and together with Nicolò we improved it with a
series of additional modeling details in order to increase the accuracy.

In Chapter 5 we considered a fully Eulerian continuum-like description for ae-
olian sand transport phenomena and we described how important the formulation
and the identification of the constitutive equations are, especially those pertaining
the interaction force and the boundary condition at the sand-bed surface. In order
to understand more the physical processes involved in sand transport - and possi-
bly to improve the modeling of such terms - in the present chapter we focus on a
particle-based approach. It tracks the dynamics of each particle, including their col-
lisions and interactions with the particles laying on the ground. In this respect, the
granular kinetic theory briefly described in Section 2.4 pursues a similar aim, but it
is grounded in statistical mechanics framework that requires a very large number
of particles in a control volume. If this hypothesis does not hold, several steps in
the model deduction do not apply, e.g. the concept of pressure is no longer valid in
some common conditions and ensemble means have no statistical meaning.

Another issue is the fact that, classically, particles are treated as spherical en-
tities, analogously to atoms or molecules. However, sand grains are not identical
to each other (see Figure 6.1 and 6.2). Their shapes are significantly random and
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Figure 6.1: Classification of sand grain by shape from [181, p.118].

Figure 6.2: Sand photomicrography coming from many areas of the
world [202]: (a) Kenya - Rift Valley - Samburu National Reserve, (b)
United Kingdom - Isle of Wight (Beach at Brookgreen), (c) Indonesia -
Bali - Bali island (Beach at Pemuteran), (d) Japan - Okinawa - Taketomi
island (Kondoi beach), (e) South Africa - Western Cape - Cape Peninsula

(Hout Bay) and ( f ) New Zealand - Northland (near Waipapa Bay).

the shape deviations from sphericity have important effects on collisions properties.
Furthermore, when particles shape deviate from the sphere the formalization of ki-
netic theories becomes very complex or maybe even impossible. Indeed, most of the
theories proposed in literature are developed under the hypothesis of perfect spher-
ical particles. The material properties can eventually show heterogeneity, leading to
further complexity in the modeling stages.

Eulerian-Lagrangian approaches are usually addressed with Discrete Elements
Method1 (DEM). For these models the particles are spheres in order to be able to
model binary collisions with the Boltzmann approach (as mentioned just above).
However, this hypothesis can be restrictive and can compromise the effect related
to particles shape, which is relevant both for collision and aerodynamics. Further-
more, in DEM approaches the Lagrangian system is coupled with an Eulerian model,
which is used to compute the fluid dynamics. We remark that particles volume does
not influence the volume mesh used to solve the Eulerian flow even though in real-
ity it involves a volume partitioning between solid and fluid. The particle presence
is taken into account by means of a momentum term acting on fluid (e.g. the drag
force, see Figure 6.3) and this closure requires a model; which can be an additional
source of error.

1We are considering DEMs in the context of fluid-driven particle transport.
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Figure 6.3: Conceptual representation of the DEM discretization. Par-
ticle volume does not influence the volume mesh used to solve the Eu-
lerian flow even though in reality it involves a volume partitioning be-
tween solid and fluid. The red arrow represents the drag force acting on

the particle.

In our framework we combine stochastic and deterministic models in order to
catch most aspects of the saltation physics. In the next Sections we describe step by
step the model and numerical techniques used to compute the solutions. The aim of
this model is to study fundamental properties of aeolian transport for pure scientific
purposes. A peculiar aspect of this model is the totally different paradigm of the ex-
perimental setups that can be used for validation or parameter setting. In particular,
required experiments are much simpler than experiment in wind tunnel.

For sake of clarity, we recall the summarized description of the saltation flow
which justifies the arguments of the following sections. When the air flow near
the sandy soil is sufficiently strong, aerodynamic forces overcome gravitational and
inter-particles forces providing initial condition for a ballistic trajectory into the air
flow. The lifted particles - if sufficiently energized at the initial time - can gain energy
due to the momentum transferred from the wind due to the drag force. The conse-
quent particles impacts on the sandy soil can energize other still particles through
collisions, leading to new initial conditions for new trajectories. Depending on the
wind strength the process can be sustained and reach a stationary condition.

The qualitative description presented above suggests six hot topics that will be
treated along this chapter:

• the particles trajectories

• the particles-ground impacts

• the ejection of new particles due to particles-ground impact

• the particles entrainment into the flow by the wind

• the momentum exchange between air and particles due to the drag force

• the wind flow characteristics

The source code for the developed solver has been written from scratch with
basic numerical libraries for python. We do not involve any third party code for
the physics simulation (contrary to previous First Order Model simulations that are
based on OpenFOAM). This aspect allows a high versatility for the implementation
of new features and for the code maintenance.
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6.1 Particles Trajectories

We want to investigate the quantitative properties of a generic particle trajectory
considering a pool of initial conditions and parameters. For sake of simplicity, we
consider point-like particles (i.e. we do not consider the rotational dynamics) and
steady wind profiles in the x direction, modeled by the atmospheric logarithmic law
(5.62). In particular we are interested in linking initial conditions (i.e. ejection con-
ditions) with final conditions (i.e. impact conditions). These last are crucial because
they are interpreted as inputs of the impact model (see Section 6.2). Input and out-
put data are collected in the trajectory database. This represents the map between the
domain of ejection conditions and the codomain of impact conditions. The study of
this map is the objective of this section. We remark that the argument presented in
this chapter is easily extendable to particles with rotational dynamics and for fluid
turbulent perturbations. However, the computational complexity increases and such
detailed studies are out of the scope of this precursor analysis.

6.1.1 Trajectory Equation

Newton’s law for a particle of mass m reads

m
d2~x
dt2 = ~Fdrag + ~Fgravity + ~Fg−pressure , (6.1)

where

~Fdrag =
1
2

ρ f CD(Rep)
πd2

4

∥∥∥∥~u f (~x)−
d~x
dt

∥∥∥∥
R3

(
~u f (~x)−

d~x
dt

)
, (6.2)

~Fgravity = −mg~ez , (6.3)

~Fg−pressure = −
πd3

6
∇ p̃ , (6.4)

m := ρs
πd3

6
. (6.5)

We recall that the shape of sand particles can be strongly irregular (see Figure 6.1
and Figure 6.2). Hence, in the equations above the particles diameter d is intended as
the equivalent diameter of a perfect sphere of mass m and density ρs as stated in (6.5).

The term ~Fgravity models gravitational action on grains. The term ~Fg−pressure is
derived from (5.30) and it models the action of the pressure fluctuations around a
grain surface. This term can be useful in the region near the sandy soil because the
fluid velocity nullifies the drag term. Therefore, it can become relevant to model par-
ticle entrainment into the flow. Due to the lack of data on turbulence for the moment
we neglect this term.

The emission of particles due the pure wind action is treated in Section 6.3.3 by
means of a probabilistic approach. The term ~Fdrag models the drag force exerted
by the wind on particles. The drag coefficient CD is computed with (5.16) (see Sec-
tion 5.2.2 for a detailed discussion), but it can be easily substituted with a newer



6.1. Particles Trajectories 143

Figure 6.4: Diagrams for (a) particle impact and (b) particle ejection.

model whenever present in literature. Other forces can play a role in the process,
e.g. Magnus force which is an aerodynamic force, and the electric force which play an
important role for very small particles. We do not consider these forces because we
want to prove the validity of this framework and consequently move to extend the
accuracy in modeling details in future researches. Furthermore, also [129] suggest
that the drag force is the most relevant term for the saltation process.

Equation (6.1) is solved for a grid of initial conditions. These are expressed in
a polar coordinate system with angles θ1, ζ1 and kinetic energy e1 instead of the
velocity magnitude (see Figure 6.4). However, the computational implementation
uses Cartesian coordinates and therefore we write

~vimp =

(√
2 e0

m
cos ζ0 sin θ0,

√
2 e0

m
sin ζ0 sin θ0, −

√
2 e0

m
cos θ0

)
, (6.6)

~vej =

(√
2 e1

m
cos ζ1 sin θ1,

√
2 e1

m
sin ζ1 sin θ1,

√
2 e1

m
cos θ1

)
, (6.7)



e0 =
1
2

m‖~vimp‖2 ,

θ0 = arctan
(√

(vx
imp)

2 + (vy
imp)

2
/
| vz

imp |
)

,

ζ0 = arctan 2
(

vy
imp, vx

imp

)
,

(6.8)



e1 =
1
2

m‖~vej‖2 ,

θ1 = arctan
(√

(vx
ej)

2 + (vy
ej)

2
/

vz
ej

)
,

ζ1 = arctan 2
(

vy
ej, vx

ej

)
,

where arctan 2(·) is the "2-argument arctangent" which takes into account the quad-
rant of

(
vx

ej, vy
ej

)
in the plane x− y.

Given the flow conditions (u∗, z0) and the diameter d, for each triple (e1, θ1, ζ1)
of initial conditions we numerically solve (6.1).

https://en.wikipedia.org/wiki/Atan2
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Parameter Value

e1 {a · 10−b|a = 1, . . . , 9∧ b = 6, . . . , 9} ∪ {10−5} J

θ1 10, 20, 30, 40, 50, 60, 70, 80 deg

ζ1 0, 30, 60, 90, 120, 150, 180 deg

d · 10−4 2, 3, 4, 5, 6, 7, 8, 9, 10 m

u∗ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 m/s

z0 10−3 m

Table 6.1: Combination of initial conditions and parameters used to cre-
ate the trajectory database.

dm 2 · 10−4 m
dM 10−3 m
em 10−9 s
eM 10−5 s

∆t(dm, em) 10−5 s
∆t(dM, em) 10−6 s
∆t(dm, eM) 10−4 s
∆t(dM, eM) 10−5 s

Table 6.2: Numerical time step for extrema values of e1 and d. See Figure
6.5 for the graph of ∆t.

The collected information for each trajectory are:

1. impact position

2. impact kinetic energy e0

3. impact angles θ0 and ζ0 (see Figure 6.4 (b))

4. time Timpact required to execute the trajectory

5. maximum height Hmax reached by the particle during its trajectory

Since the wind direction is constant along x the problem is symmetric with re-
spect to the x − z plane, hence ζ1 ∈ [0°, 180°]. Table 6.1 reports the combination of
values used to compute the trajectory database. Equation (6.1) is numerically inte-
grated using the Newmark method in the explicit form (see [167]). Small diameter
particles ejected with high energies travel for long distances (and larger values of
Tf inal); therefore we can use a relatively large time step. On the other hand, low val-
ues of energy and large values of diameter lead to very short trajectories where the
traveled distance is of the same order of the diameter. Therefore, in order to reduce
the overall numerical error and computational time, the numerical time step ∆t is
chosen as a function of e1 and d. We use the polynomial expression

∆t(d, e) = (∆t(dM, eM) + ∆t(dm, em)− ∆t(dM, em)− ∆t(dm, eM))
d− dm

dM − dm

e− em

eM − em

+ (∆t(dM, em)− ∆t(dm, em))
d− dm

dM − dm
+ (∆t(dm, eM)− ∆t(dmin, em))

e− emin
eM − em

+ ∆t(dm, em)

with parameters reported in Table 6.2. Figure 6.5 shows the time step function for
parameter of Table 6.2.
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Figure 6.5: Graph of ∆t as function of d and e1. See Table 6.2 the refer-
ence values.

6.1.2 Geometry and Lifetime of the Particles Trajectories

We want to show and comment some results of simulated trajectories. The scope of
these tests is to visualize and quantify the properties of particles trajectories in order
to have a better overview of the saltation phenomenon.

Particle Footprint Figure 6.6 shows the projection on the coordinate planes of the
trajectories for several ejection conditions. The aim of these plots is to give an idea
of the spatial region involved by a trajectory as a function of d and u∗. In particular,
the larger d is, the larger u∗ must be to influence trajectory of particle. The term
"Particle Footprint" derives by the fact that we can imagine to compute the hull set
of all impact points in the plane x− y. If we refine the mesh-grid of initial conditions
and parameters, the resultant hull set represents the larger soil area influenced by a
generic particles.

Particle Displacement Figure 6.7 shows the particle displacement as the euclidean
distance of the impact point from the origin. For sake of clarity we set ζ1 = 0°
which is the most representative angle to study the displacement of a particle (three-
dimensional effects are reported later). The plots are organized in order to test sev-
eral ejection conditions in accordance with Table 6.1. The red line indicate a dis-
placement of one centimeter and it can be used as a reference. We can notice that the
particle displacement is very sensible to initial conditions.

Maximum Height The maximum height Hmax reached by a particle in its trajectory
is interesting because it can be compared with bulk quantities used in geomorphol-
ogy such as the saltation layer. Figure 6.8 shows Hmax for several ejection conditions.
We can also notice that the larger Hmax is, the larger the air velocity is. Hence, the
drag force exerted on a particle for a certain value of z is larger than the force ex-
erted on a particle which does not reach the same height. We can also notice that the
qualitative behavior of Hmax plots is analogous to the particle displacement. Again,
ζ1 is set to zero.

Impact Time The impact time Timpact is the lifetime of a whole trajectory. Figure
6.9 shows Timpact for several ejection condition like other figures. Even in this case,
the qualitative behavior of the plots are analogous to the maximum height and the
particle displacement. Again, ζ1 is set to zero.
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Figure 6.6: Trajectories of particle for e1 ∈ {1 · 10−9, 5 · 10−9, 1 · 10−8, 5 ·
10−8, 1 · 10−7, 5 · 10−7} J and five equally spaced values of angles θ1 ∈

[10°, 80°] and ζ1 ∈ [0°, 175°].
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Figure 6.7: Particle displacement for several d and u∗ with ζ1 = 0°.
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Figure 6.8: Hmax for several d and u∗ with ζ1 = 0°.



6.1. Particles Trajectories 149

Figure 6.9: Timpact for several d and u∗ with ζ1 = 0°.
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6.1.3 Energy Gain

We consider the energetic properties of particles. In particular, we consider the ratio
between e0 and e1. This value is important because it measures the energy gain of
a particle during its trajectory. We can use the term "lifetime" to refer to the period
spanning from the moment in which a particle lifts from the ground, to its eventual
collision with the ground. Therefore, using the ratio e0/e1 we can classify which
initial conditions certainly lead to finite lifetimes. The saltation process also involves
particles emission and energy partition/dissipation (discussed in the next sessions).
A particle has to gain energy in order to have the chance to trigger other still particles
and consequently sustain the saltation process. e0/e1 is a representative indicator to
visualize this aspect. Figure 6.10 shows the numerical results for the case ζ1 = 0°
and several combinations of d and u∗. Figure 6.11 shows the numerical results for
four combination of d and u∗ and for six values of ζ1. Hence also three-dimensional
effects are reported. We can notice that in all cases the level set of e0/e1 = 1 define a
sort of boundary bubble in the space (e, θ, ζ) (see red lines).

6.1.4 Trajectories as Vector Field

Setting d, u∗ and z0, initial (i.e. ejection) and final (i.e. collision) conditions of a
trajectory can be considered as connected by a vector map T(d,u∗,z0)

T(d,u∗,z0) : R+ × [0, π/2]× [0, 2π] −→ R+ × [0, π/2]× [0, 2π]

(e1, θ1, ζ1) 7−→ (e0, θ0, ζ0)

The trajectory database mentioned at the beginning of this Section aims to compute
a discrete map of T(d,u∗,z0). We recall that for each (e1, θ1, ζ1) we numerically inte-
grate (6.1) parametrized by d, u∗ and z0. Figure 6.12 shows the grid of 2240 initial
conditions for each combination of (d, u∗, z0) for a total number of 120960 solved
trajectories (see Table 6.1). Figures 6.13-6.14 show the mapping of T(d,u∗,z0) for two
values of u∗ and each figure shows the effect of changing d. We can notice that in all
cases, as soon as the energy increases, there is a tendency to narrow down to a con-
stant value of ζ0 because the wind action tends to align particles along x. Less clear
is the behavior of θ0. However, the quantitative dependence of these two values
from (d, u∗, z0) need to be further studied. Three-dimensional visualizations can be
not so representative. Therefore, in Figure 6.15 we show the special case of ζ1 = 0°
showing the components of the vector field T(d,u∗,z0).

All the studies above are related to a steady unperturbed wind condition. In
future studies we will add the effect of turbulence in order to compute how strong
is its effect with respect to the steady case.
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Figure 6.10: Ratio e0/e1 and ζ1 = 0°. Red lines delimit the regions
where a particles gain energy (internal) or lose energy (external) in the

trajectory.
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Figure 6.11: Ratio e0/e1 for several ζ1. Red lines delimit the regions
where a particles gain energy (internal) or lose energy (external) in the

trajectory.



6.1. Particles Trajectories 153

Figure 6.12: The red points correspond to the set of initial condition
used to create the trajectory database.

Figure 6.13: Impact conditions (e0, θ0, ζ0) for nine values of particle di-
ameter and u∗ = 0.5 m/s. Initial conditions correspond to Figure 6.12.
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Figure 6.14: Impact conditions (e0, θ0, ζ0) for nine values of particle di-
ameter and u∗ = 0.7 m/s. Initial conditions correspond to Figure 6.12.
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Figure 6.15: Trajectory function in the e− θ plane when ζ1 = 0°.
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Figure 6.16: Temporal snapshots of a ground particle impact from [22].

6.2 Modeling of the Particle-Ground Impact

When a particle ends its trajectory, it hits the soil which is composed by other par-
ticles. As mentioned at the beginning on this chapter, the sand grain shapes can be
very irregular (see Figures 6.1-6.2). Consequently, the local arrangement of particles
around the region where the impact occurs is completely random. Even a particles
system composed by perfect spheres wouldn’t show, in general, a regular pattern
unless if it is externally forced. Therefore, when a particle hits other soil particles
the impact output properties is not deterministic. Randomness also affects the dis-
sipation process and the ejection properties of outcoming particles. The aim of this
chapter is to create a basic model to determine dynamic conditions and number of
ejected particles as result of a particle-ground collision.

6.2.1 Literature Data

Before moving into modeling details we recall some useful articles describing the
process from the experimental point of view

• The articles [221], [237], [231] and [119] perform wind tunnel tests in order to
measure particles velocities while saltation occur. These experiments result not
very useful in the quantitative study of impact models but they provide good
qualitative information.

• The articles [22] and [236] study the effect of a particle impact against a bed of
particles to study the probability distributions of kinematic quantities involved
in the process. In particular, [22] aimed to prove that the characteristic time of
the impact process is less than the characteristic time of turbulent structures.
Hence, experiments involving just particle impact can characterize this aspect
also in saltation. However, [174] reports that during the saltation process the
soil condition also involves creeping particles, making the problem even more
complex. To the best of our knowledge this is still an open problem. Further-
more, we report that [236] uses natural sand but [22] uses an artificial sample
of ceramic spherical particles (see Figure 6.16).

In order to be coherent with cited papers we suspend the notation presented
above only for this section. The presented symbols are self consistent.
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Among the previous articles, in our opinion, the most relevant paper is [236]
because it performs the study with natural sand. The data has been collected with
a high-speed camera, and 1024 impact events are used for the statistics. Authors
consider a particle as "ejected" if it reaches at least a height of one diameter. Denoting
by θr the rebound angle, by Vr the rebound velocity, by θej the ejection angle, by Vej
the ejection velocity and by n the number of ejected particles (see Figure 6.17).

Figure 6.18 reports the results for θr, the restitution coefficient ε defined as Vr/Vi
and the number of ejected particles n (excluding the rebound particle). Figure 6.19
describes the probability density for θej and Vej. We report the probability distribu-
tions parametrized by Vi and θi:

Rebound angle θr:

f (θr) =
1√

2πσθr
exp

(
− (ln θr − µ)2

2σ2

)
µ = 2.92− 0.034Vi + 0.02θi
σ = 0.9− 0.049Vi

(6.9)

Restitution coefficient ε:

f (ε) =
1√
2πσ

exp

(
− (ε− µ)2

2σ2

)
µ = 0.62 + 0.0084Vi − 0.63 sin θi
σ = 0.19− 0.0035Vi − 2.96 · 10−5θ2

1

(6.10)

Number of ejected particles n:

f (n) =
1√

2πσ n
exp

(
− (ln n− µ)2

2σ2

)
µ = −0.3 + 1.35 ln Vi − 0.01θi
σ = 0.55

(6.11)

Ejection angle θej:

f (θej) =
1√

2πσθej
exp

(
−
(
ln θej − µ

)2

2σ2

)
µ = 3.94
σ = 0.64

(6.12)

Ejection velocity Vej:

f (Vej) =
1√

2πσ Vej
exp

(
−
(
ln Vej − µ

)2

2σ2

)
µ = −1.67 + 0.082Vi − 0.003θi
σ = 0.616 m2/s2

(6.13)

Figures 6.18 and 6.19 show the graphs of the probability distributions and data for
different group of samples.

We report that [235] tries to replicate these experimental results with a fully de-
terministic DEM approach treating binary collisions with classical models and suf-
fering of problems described in the introduction of this Chapter.

Due to the random nature of the impact entrainment, a stochastic description is
typically adopted ([130], [140], [6], [105]). The grain-bed impact event in numerical
models of saltation can be achieved in two ways:



158 Chapter 6. Semi-Stochastic Periodic Box

Figure 6.17: Scheme of a particle-ground impact showed in [236].

1. DEM-like approach: the interaction between the impacting particle and a still
particle is computed via classical binary interaction (spring-dump models).
[140] simulates a random ground particles arrangement in order to introduce
the randomness. However, spherical particles are used.

2. Splash Functions approach: it is a function that links impact conditions to ejec-
tion conditions via probability distributions (see [130], [56], [218]). Its quanti-
tative definition is based on experiments, as in [235] described above.

In [129, 173, 174] the impact entrainment is considered as the most relevant mecha-
nism of the saltation process. But the impact dynamics is still poorly understood due
to the phenomenon complexity. Furthermore, to the best of our knowledge only bi-
dimensional solvers implement a model of Splash Function, and three-dimensional
solvers are based on DEM-like approaches with perfect spheres2.

6.2.2 Impact Model

We consider a Splash Function approach but we delineate formulas following the con-
servation of mass and energy. As notation, the rebounding particle is counted in the
number Nej, then the number of new ejected particles correspond to Nej− 1. We sup-
pose that if at least one particle is ejected, one of the ejected particles corresponds to
the impacting particle. This hypothesis is based on the fact that the probability that
a particle does not rebound but it ejects other particles is very low (see [236]).

Model’s inputs are the impact energy, angles and diameter (e0, θ0, ζ0, d0), accord-
ingly to the polar coordinate system described in Figure 6.4 (a). Outputs are:

• the number of ejected particles Nej (rebound plus new particles),

• the rebound energy and angles (ereb
1 , θreb

1 , ζreb
1 ) accordingly to the polar coordi-

nate system of Figure 6.4 (b),

• the energies, angles and diameters {(e1, θ1, ζ1, d1)}Ne j−1
i=1 of the new ejected par-

ticles.

We divide the impact model in two parts:

1. the Dissipation Model aims to quantify the energy dissipated due to complex
frictional interaction of sand grains when the impacting particle transfers its
momentum,

2In some computational implementations the particles diameter varies but their shape remains
spherical.
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(a)

(b)

(c)

(d)

Figure 6.18: Results of experiments from [236]. (a) Data of the nine
sample groups. Probability distributions: (b) restitution coefficient ε,

(c) rebound angle θr and (d) number of liftoff particles n.
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(a)

(b)

(c)

Figure 6.19: Results of experiments from [236]. (a) Data of the nine
sample groups. Probability distributions for (b) ejection velocity Vej and

(c) ejection angle θej
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Figure 6.20: Conceptual diagram of the impact model.

2. the Ejection Model aims to determine how epost
0 is distributed on the Nej ejected

particles and their directions.

Figure 6.20 shows the general scheme for an impact model. This concept allow
to split the complex chain of events involved in a ground-particle impact in two sim-
pler parts, thought in a real phenomenon, frictional events, particles dislodgement
and pneumatic conveying happen simultaneously.

We need to mention that the impact mechanism can be completely tracked with
a high speed camera, even without using a wind tunnel. This implies that a massive
number of tests can be easily performed with reasonably simple equipment.

6.2.3 Dissipation Models

We define the coefficient of restitution α as the ratio of the total (kinetic) energy just
after and before the collision i.e. the sum of kinetic energies of the initial conditions
of post-collision trajectories versus the one of impacting particle:

α :=
epost

0
e0
∈ [0, 1) . (6.14)

α can be thought as a stochastic variable and can be characterized by experiments
changing impact conditions.

Uniform Distribution over a Fixed Interval The simplest probability distribution
is the uniform distribution in a fixed interval:

α ∼ U(αin f , αsup) , (6.15)

where 0 ≤ αin f < αsup < 1. We call this model "dModel1".

Dependence on Energy and Angle of Impact Figure 6.21 classifies four types of
collisions based of phenomenological observations. In particular, we can say that
vertical impacts (θ0 ' 0) produce more dissipation than quasi-horizontal impacts
(θ0 ' π

2 ). Furthermore, for high-energy impacts the available energy can be enough
to eject particles even with high dissipation.

This idea is built on making αin f and αsup in (6.15) to be dependent on e0 and θ0,
i.e.

α ∼ U(αin f (e0, θ0), αsup(e0, θ0)) ,

where
αk(e0, θ0) = αk

0

(
1− e−(e0/ek)

)
sin θ0 k = {in f , sup} . (6.16)
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Figure 6.21: Four types of impact: (a) low energy and high dissipation,
(b) high energy and high dissipation, (c) low energy and low dissipa-
tion, (d) high energy and low dissipation. The green region mimic the

volume of particles influenced influence by the collision.

Figure 6.22: Graphs of αk in (6.16) with α
in f
0 = 0.3, α

sup
0 = 0.8 and ein f =

esup = 1 · 10−8 J.

Since αin f < αsup for every pair (e0, θ0), the parameters have to satisfy the following
conditions: {

α
in f
0 < α

sup
0 ,

ein f ≥ esup .
(6.17)

For high-energy impacts

α ∈
[
α

in f
0 sin θ0, α

sup
0 sin θ0

]
,

while α ' 0 for low-energy impacts or vertical impacts. The parameters ein f and esup
control how rapidly αin f and αsup reach their asymptotic values with respect to e0.

Figure 6.22 shows the behaviour of αin f and αsup for compatible values of α
in f
0 , α

sup
0 ,

ein f and esup. We call this model "dModel2". We remark that the analytical structure
of (6.16) can be easily updated if experiments shows a new plausible behavior of α.
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6.2.4 Ejection Models

Once α is determined by one of the methods described above, the particles can use
the energy epost

0 to be ejected into the flow. Energy balance implies

Nej−1

∑
k=1

e1,k + ereb
1 ≤ epost

0 , (6.18)

where ≤ is used to take into account the sources of dissipation due to particles that
are not entrained into the flow.

Particle Diameters Since a sand sample can be characterized by several types of
sand we can directly use the probability distribution of d. If the particle size is
composed by a constant value, the probability distribution becomes a Dirac delta.
Therefore, when the number of particles is determined we can extract diameter val-
ues with the proper random distribution (see Figure 5.41 and Figure 6.46). In Section
5.5.1 we discussed the ground memory effect, but its application in this context is way
beyond the scope of this preliminary study.

Ejection Angles The particle angle of ejection is another quantity strongly influ-
enced by the particles shape and arrangement. In section 6.2.1 we mentioned the
probabilistic description of the rebound angle proposed in [236] that however is
only provided for the two-dimensional case. For sake of simplicity, we choose sim-
ple uniform distributions and we observe that we can assume the existence of an
upper limit θmax

1 of θ1 due to geometrical constraints of local particle arrangement
(see Figure 6.23). Hence, θ1 ∈ [0°, θmax

1 ].

In [231] the authors suggest the existence of a correlation between velocity and
angle of ejection, but to the best of our knowledge this aspect is still debated. Because
of the lack of experimental evidences on this correlation, we consider ejection angles
independent from each other and from the ejection velocity. Since the fraction of
particles involved in the backward motion is small (see [119, 237]) and considering
the results on trajectories of Section 6.1.2 we simply consider

θ1 ∼ U(10°, 80°) , (6.19)
ζ1 ∼ U(−30°, 30°) .

As soon as new experiments provide new evidence on statistical correlations of ejec-
tion conditions, our model can be easily updated.

Minimum Value of Energy In order to distinguish between particles entrained by
the wind and particles merely moved by their ejection energy we define a specific
value of threshold energy. We address this value with the symbol emin. The Boolean
ejection condition reads{

ereb
1 ≥ emin ,

e1,k ≥ emin k = 1, 2, ..., Nej − 1 ,
(6.20)



164 Chapter 6. Semi-Stochastic Periodic Box

Figure 6.23: Schematic representation of particles arrangement that de-
termine θmax

1 .

otherwise a particle is considered as not-ejected. Since epost
0 is partitioned among the

ejected particles, if epost
0 < emin no particles are ejected. But, even if epost

0 ≥ emin the
model to extract the energy can eventually lead to no ejections (which corresponds
to a dissipation of energy).

The value of emin is related to the wind flow characteristics because for high val-
ues of u∗ a particle requires little energy (i.e. smaller values of Hmax) to be entrained
into the flow. The functional dependence of emin from flow variables is open to future
researches. In Chapter 6.4 we will discuss the effect of emin (as constant) in numerical
tests.

Energy Equi-Ripartition

The model proposed here, called eModel1, simply divides epost
0 equally among all

ejecting particle. Since emin determines the minimum value for the ejection, we can
compute the maximum number of ejectable particles as

Nmax
ej =

⌊
epost

0
emin

⌋
. (6.21)

The relation (6.21) includes the case of epost
0 < emin which corresponds to no-ejections.

The number of ejected particles Nej is chosen randomly between 0 and Nmax
ej . Hence

Nej ∈ {0, 1, ..., Nmax
ej } .

For sake of simplicity, we use the uniform discrete distribution. The mean number
of ejected particles is

Nej =
1
2

Nmax
ej .

Defining

S :=
emin

epost
0

(6.22)

previous relations read

Nmax
ej =

⌊
1
S

⌋
Nej =

1
2

⌊
1
S

⌋
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Figure 6.24: Scheme of the evolution of a ground-particle impact.

If Nej = 1 only the rebounding particle is considered, while if Nej > 1 other new
particles are ejected. For Nej ≥ 1 the ejection model reads

e1,k =
epost

0
Nej

for k = 1, ..., Nej − 1 ,

ereb
1 =

epost
0
Nej

.
(6.23)

Consecutive Extractions of Energy

Following the idea proposed in [56] and [218] we interpret a ground-particle impact
as a sequence of binary collisions. The real physics can involve ternary or high order
collisions but we suppose that higher order collisions are taken into account when
α in (6.14) is computed. We can imagine to reproduce an impact dynamics using
Figure 6.24 as reference.

1. particle A approaches the ground in direction of particle B, ending its trajec-
tory with a binary collision (see Figure 6.24 (a)).

2. in the binary collision between A and B part of the energy and momentum of
A is transferred to B. Meanwhile A rebounds (see Figure 6.24 (b)).

3. particle B is energized and it transfers its momentum to surrounding particles.
Part of this leads to dissipation due to high-order collisions with underground
particles (i.e. the value of α) and part is transferred to other particles in the
surface region (see Figure 6.24 (b)).

4. particle B transfers momentum by means of binary collisions to C and D trig-
gering the ejections (see Figure 6.24 (c)).

This sequence of events inspired the idea to interpret this phenomenon as a con-
secutive sequence of binary collisions. For each step of the sequence a fraction of
epost

0 is extracted decreasing the total amount of available energy. The process stops
when the available energy decreases below emin. We call this model eModel2.

In order to quantify ejection properties in accordance with this argument we set
eres

k=0 := epost
0 . We define by Eex

k the random variable of the k-th energy extraction and
by eex

k its realization. We indicate by eres
k the residual energy after the k-th extraction.

We can formalize the sequence of extractions for each step with the following rules:

1. we sample eex
k+1 according to the probability distribution of Eex

k+1 in

Ik := [0, eres
k ]
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that is its probability space

2. the residual energy at the k + 1 step reads

eres
k+1 := eres

k − eex
k+1 . (6.24)

This determines Ik+1 := [0, eres
k+1]

3. we continue the iterations until

eres
k=Nex

< emin ,

where Nex is the final number of extractions

In principle, the probability distribution for Eex
k+1 only requires that its probability

space is finite and defined by Ik. For the sake of simplicity we consider

Eex
k+1 ∼ U(0, eres

k ) . (6.25)

We remark that eex
k+1 could be smaller than emin. Therefore an extracted energy does

not necessarily correspond to an ejection, hence Nej ≤ Nex. This aspect is relevant
because it encodes the physical condition such that some particles are energized
but they are not entrained leading to a loss of energy. {eex

i }Nex
i=1 is the sequence of

extracted energies and {eej
i }

Nej
i=1 is the sub-sequence of extracted energies greater than

emin. Figure 6.25 shows the process of extractions for three value of epost
0 . As observed

in Section 6.2.1, most experiments associate the maximum value of energy with the
rebounding particle (see for example [22]). In order to maintain this consistency we
set

ereb
1 = max

k=1,...,Nej
{eej

k } .

We notice that the residual energy eres
k=Nex

when sequence stops is lost by dissipation.
We also remark that Nex and Nej are random variables because they depend on the
relation with the involved stochastic process. In order to estimate the maximum
value of Nej we can count the number of times that emin can be potentially extracted
consecutively. Hence

Nmax
ej =

⌊
epost

0
emin

⌋
,

which corresponds to (6.21). The minimum of Nej is zero because all eex
k can poten-

tially be less than emin. In conclusion

Nej ∈ {0, 1, ..., Nmax
ej } .
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Figure 6.25: Numerical tests of the extraction process for three values of
epost

0 and emin = 10−9 J.

6.2.5 Energy Extractions as a Markov Process

In this section we aim to interpret the model in the context of Markov processes.
We suppose to use a uniform distribution, hence we can use the residual energy eres

instead of the extracted energy eex. We recall that eex
k+1 is the extracted energy at the

k + 1 step by the uniform distribution in Ik = (0, eres
k ). We denote Eres

k as the random
variable for the residual energy and eres

k its realization. The extraction rule allows to
formulate the conditioned probability distribution as

fEres
k+1|Eres

k
(eres

k+1) =
1

eres
k

1((0,eres
k ))(e

res
k+1) for k = 0, 1, ..., N . (6.26)

The sequence {Eres
k }N

k=1 models the consecutive extraction process, where N is the
number of extractions and Eres

k=0 := epost
0 is the initial energy. Equation (6.26) implies

fEres
k+1|Eres

k ,Eres
k−1,...,Eres

1 ,Eres
0
(eres

k+1) = fEres
k+1|Eres

k
(eres

k+1) , (6.27)

in other words the sequence of random variables can be considered as a Markov
process. We recall that the sequence of realizations {eres

k }N
k=1 is decreasing and it

stops as soon as eres
N < emin. Figure 6.25 shows some numerical tests of this process.

Normalization It is convenient to deal with fractions of energy. Therefore, we nor-
malize the extracted energy dividing it by epost

0 . Therefore, we define Xk := Eres
k

epost
o

, and



168 Chapter 6. Semi-Stochastic Periodic Box

xk be its realization. Hence, the sequence of extractions stops as soon as

xk < S :=
emin

epost
0

where S is the normalized energy threshold (i.e. (6.22)). Using (6.26) the conditional
probability density function reads

fX1(x1) = 1((0,1))(x1) ,

fXk |Xk−1
(xk) =

1
xk−1

1((0,xk−1))(xk) for k = 2, 3, ..., N .
(6.28)

Probability Density of Xk For a generic joint probability distribution fX,Y of two
random variables X and Y we can write

fX,Y(x, y) = fX|Y(x) fY(y). (6.29)

We can compute the probability density function fXk for the generic random variable
Xk using recursively (6.29). For the first m extractions we have

fX1,X2,...,Xm(x1, x2, ..., xm) = fXm|Xm−1,Xm−2,...,X1
(xm) fXm−1,Xm−2,...,X1(xm−1, xm−2, ..., x1) =

= fXm|Xm−1,Xi−2,...,X1
(xm) fXm−1|Xm−2,Xm−3,...,X1

(xm−1) fXm−2,Xm−3,...,X1(xm−2, xm−3, ..., x1) = . . .

and using (6.27) we have

fX1,X2,...,Xm(x1, x2, ..., xm) = fX1(x1) fX2|X1
(x2) fX3|X2

(x3)... fXm|Xm−1
(xm)

and by (6.28) we have

fX1,X2,...,Xm(x1, x2, ..., xm) = 1((0,1))(x1)
1
x1

1((0,x1))(x2)
1
x2

1((0,x2))(x3)...
1

xm−1
1((0,xm−1))(xm)

=
1

∏m−1
h=1 xh

1((0,1)×(0,x1)×...×(0,xm−1))(x1, x2, . . . , xm) . (6.30)

We recall that the probability density function of Xk depends only on Xk−1. There-
fore, we can sequentially integrate (6.30) in order to compute the related marginal
probability distributions.

For X2 we have

fX2(x2) =
∫ 1

0
fX1,X2(x1, x2) dx1 =

∫ 1

0

1
x1

1((0,1)×(0,x1))(x1, x2) dx1 . (6.31)

The domain region where the function is not null are identified by{
0 < x1 < 1
0 < x2 < x1

or equivalently {
0 < x2 < 1
x2 < x1 < 1
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hence (6.31) reads

fX2(x2) =
∫ 1

x2

1
x1

dx1 = − ln x2 1((0,1))(x2) .

For X3 we have

fX3(x3) =
∫ 1

0
fX2,X3(x2, x3) dx2

=
∫ 1

0
fX2(x2) fX3|X2

(x3) dx2

=
∫ 1

0
− ln x2

x2
1((0,1)×(0,x2))(x2, x3) dx2

and again the integration domain can be expressed with respect to x3 as{
0 < x2 < 1
0 < x3 < x2

−→
{

0 < x3 < 1
x3 < x2 < 1

hence

fX3(x3) =
∫ 1

0
− ln x2

x2
1([0,1]×[0,x2])(x2, x3) dx2

=
∫ 1

x3

− ln x2

x2
dx2 =

ln2 x3

2
1([0,1])(x3) .

Iterating the procedure above we can define the probability density function for a
generic index. Hence

fXi(xi) := (−1)i−1 lni−1 xi

(i− 1)!
1([0,1])(xi) i = 1, 2, ..., N . (6.32)

Figure 6.26 shows the comparison of (6.32) and the numerical tests using 10000 sam-
ples.

Number of Extractions The joint probability distribution (6.30) allows to obtain the
discrete probability distribution for N. We denote with N the stochastic variable of
the number of extractions and with n its realization. Since the sequence of extraction
stops when eres

n−1 < emin we have

P(N = n) = P(X1 ≥ S, X2 ≥ S, ..., Xn < S) . (6.33)

For n = 1 we have

P(N = 1) = P(X1 < S) =
∫ S

0
1((0,1))(x1) dx1 = S .
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Figure 6.26: Comparison between numerical and theoretical results for
Xk with k = 1, 2, 3. The showed histograms is obtained performing

10000 samples.
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For n = 2 we define Ω2 := {x1 ≥ S, x2 < S}. Hence

P(N = 2) = P(X1 ≥ S, X2 < S)

=
∫∫
Ω2

fX1,X2(x1, x2) dx1 dx2

=
∫∫
Ω2

1
x1

1((0,1)×(0,x1))(x1, x2) dx1 dx2

where 
0 < x1 < 1
0 < x2 < x1
S ≤ x1 < 1
0 ≤ x2 < S

−→
{

S ≤ x1 < 1
0 < x2 ≤ S

hence

P(N = 2) =
∫∫
Ω2

1
x1

1((0,1)×(0,x1))(x1, x2) dx1 dx2 =
∫ 1

S

∫ S

0

1
x1

dx1 dx2 = −S ln S .

For n = 3 we define Ω3 := {x1 ≥ S, x2 ≥ S, x3 < S}. Hence

P(N = 3) = P(X1 ≥ S, X2 ≥ S, X3 < S)

=
∫∫∫
Ω3

fX1,X2,X3(x1, x2, x3) dx1 dx2 dx3

=
∫∫∫
Ω3

1
x1x2

1((0,1)×(0,x1)×(0,x2))(x1, x2, x3) dx1 dx2 dx3 ,

where 

0 < x1 < 1
0 < x2 < x1
0 < x3 < x2
S ≤ x1 < 1
S ≤ x2 < 1
0 < x3 < S

−→


S ≤ x1 < 1
S ≤ x2 < x1
0 < x3 < S

hence

P(N = 3) =
∫∫∫
Ω3

1
x1x2

1((0,1)×(0,x1)×(0,x2))(x1, x2, x3) dx1 dx2 dx3

=
∫ 1

S

∫ x1

S

∫ S

0

1
x1x2

dx1 dx2 dx3 =
S ln2 S

2
.

We can iterate the procedure for a generic n obtaining

P(N = n) = (−1)n−1 S lnn−1 S
(n− 1)!

for n = 1, 2, ... . (6.34)

Figure 6.27 shows the comparison of (6.34) and the numerical tests using 10000 sam-
ples. During the numerical simulations we can also track the number of ejected
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Figure 6.27: Comparison between (6.34) and the numerical tests using
10000 samples for several values of S.

particles which is smaller than the number extraction by construction. Figure 6.28
shows the mean value of Nej as function of S over 10000 samples. Table 6.3 report
some statistics on Nej.

Figure 6.28: Numerical results of Nej as function of S. The results are
obtained over 10000 samples.

theoretical numerical nearest
S Nmax

ej Nmax
ej integer Nej

0.9 1 1 0 0.11
0.8 1 1 0 0.22
0.7 1 1 0 0.36
0.6 1 1 1 0.51
0.5 2 1 1 0.69
0.4 2 2 1 0.91
0.3 3 3 1 1.20
0.2 4 4 1 1.61
0.1 10 6 2 2.31

0.01 100 12 4 4.61
0.001 1000 19 7 6.89

Table 6.3: Statistical report of Nej.
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6.3 Algorithm Architecture

In this Section we propose an algorithm that uses the models described in the pre-
vious section in order to simulate an aeolian system in a hexahedral domain. The
system of particles evolves in time, tracking all events and physical interactions.
For sake of simplicity we neglect the explicit treatment of mid-air collisions because
the probability of their occurrence is marginal with respect to the effects of ground-
particle collisions (see [130]). However, during the algorithm description we report
where it could be implemented.

The algorithm involves a temporal loop where all the system properties are up-
dated over time iterations. The temporal loop (see Figure 6.29) can be descriptively
summarized in four main sequential steps:

Input step At the generic time t we introduce particles in the system due to the
pure wind action, for example due to pressure fluctuations induced by the
eddies near the soil. The rate of particles introduction depends on the sand
concentration and wind strength. Details are discussed in Section 6.3.3.

Predictor step Positions and velocities of old and new emitted particles are used as
initial conditions in a one-step ODE integrator3 to solve (6.1) for each particle.
Here all the forces, and possibly the turbulence effect, are taken into account.
New positions and velocities are candidates for the particles positions and ve-
locities at the time t + ∆t. Details are discussed in Section 6.3.2.

Impact step Candidate positions computed in the previous step are used to detect
ground-particle collisions (see Figure 6.31 (a)). This is also the step where mid-
air collisions can be detected and taken into account in the computation.

Corrector step Positions and velocities of colliding particles are corrected or removed
in order to be compatible with the rules of the impact model. Also new parti-
cles can be emitted using the impact model rules (see Figure 6.31 (b)).

6.3.1 Wind Flow and Turbulence

In the algorithm framework we intentionally decide to impose the fluid velocity as
a known function. A similar approach is used in [130] for a two-dimensional solver
with good results. As usual, the fluid velocity can be thought as the sum of mean
and fluctuating terms. Hence

~u f = ~U f + ~u′f .

Both these terms are imposed as known functions. ~U f represent a steady (or quasi-
steady) horizontal flow which only varies along z, therefore it is divergence-free by
definition. The turbulent fluctuations are described by ~u′f . Since ~u′f is applied point-
wise in the particle position, its analytic formulation is not required to be divergence-
free i.e. ~u′f can be thought as a divergence-free vector field but we only sample its
value in the point occupied by the particle. In particular, once turbulence properties
are set, we do not need to compute a divergence-free Eulerian field.

3For sake of simplicity we use the Newmark method (see [167]) but other methods can be used.
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Figure 6.29: Flow chart of the presented algorithm.

Steer clear to solve the (incompressible) Navier-Stokes equations4 drastically re-
duce the computational costs. We set ~u′f = 0 due to the lack of robust data on
turbulence for high Reynolds flows within the saltation layer. However, in future
tests we can conjecture the space-time properties of ~u′f in order to compute sensitiv-
ity studies and eventually perform ad hoc CFD simulations to get turbulence data.

The particles feedback on the mean flow requires to solve a momentum equa-
tion in order to perturb the steady profile of ~U f taking into account the drag force
that particles exert on the air. Also the particles feedback on ~u′f is postponed to fu-
ture studies. All these aspects combined together lead to a strongly coupled system
which is similar (but not equal) to DEM approaches and also similar to second order
models for multiphase continuum flows. In fact, the final goal of the Semi-Stochastic
Periodic Box is to gain quantitative knowledge to be transferred to fully Eulerian
multiphase models.

6.3.2 Computational Aspects

Computational Domain

Since we consider a saltation state in a steady condition we imagine to simulate a
volume region in the middle of the cloud of saltating sand. Therefore, boundary
effect are negligible and all quantities change only in z. We consider an hexahedral
domain of sides Lx, Ly and Lz because we can easily apply periodic conditions on

4In form of DNS or with a turbulence model, e.g. RANS or LES.
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Figure 6.30: Schematic representation of a box domain for a flat surface.
The red curve describe an example of particle trajectory.

particles trajectories. For a generic active k-th particle, at each time step we compute
xk = mod

(
xk

Lx

)
,

yk = mod
(

yk

Ly

)
.

(6.35)

Hence, when a particle pass through the downwind surface (i.e. the plane x = Lx) it
is reintroduced from the upwind surface (i.e. the plane x = 0, see Figure 6.30). The
sand bed can be described by the graph of a smooth periodic function

fbed : [0, Lx]×
[
0, Ly

]
→ R (6.36)

(x, y) 7→ R

Therefore, a ground-particle collision occurs if

zk ≤ fbed(xk, yk) for k = 1, ..., N . (6.37)

For sake of simplicity we consider flat surfaces i.e. fbed ≡ 0. Therefore ground-
particle collisions are detected by

zk ≤ 0 for k = 1, ..., N

However, a generic fbed can be potentially used to study sand ripples or other peri-
odic structures showed in the aeolian science.

Predictor-Impact-Corrector Chain

Here we want to discuss the process involved in a collision event from the computa-
tional perspective. In particular we want to clarify why we adopt a one-step method.
The explicit Newmark method applied to the particle system at the time t reads~x(t + ∆t) =~x(t) + ∆t~v(t) + ∆t2

2
~F(t) ,

~v(t + ∆t) =~v(t) + ∆t~F(t) ,

where~x = (~x1,~x2, . . . ,~xN) is a N-tuple of positions,~v = (~v1,~v2, . . . ,~vN) is an N-tuple
of velocities and N is the number of particles at time t. We are practically solving
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Figure 6.31: (a) Predictor step for a particle involved in an incoming col-
lision. (b) Detection of the collision and correction with a new position

and velocity.

(6.1) for each moving particle. In the predictor step we compute~x(t + ∆t).

We can take Figure 6.31 as reference and focus on a generic particle in a status of
incoming collision. In the interval of time ∆t the observed particle moves approxi-
mately along the red line (see Figure 6.31(a)) and other particles in the system may
lie in an similar condition. Therefore, a collision certainly occurs in the time interval
∆t. The impact step checks which particles are subjected to collision and it applies
the impact model. Since ∆t is small to keep a small numerical error, the difference
between~x(t) and ~̃x(t+∆t) is small. Therefore, instead of computing the intersection
of the particle trajectory with the ground surface (and the related impact time), we
simply impose the new position ~x(t + ∆t) as the projection of ~x(t) to the plane z = 0
(see Figure 6.31(b)). This approach reduces the computational cost but the small er-
ror committed does not affect the system evolution. The corrector step addresses the
procedures to update the positions of colliding particles.

We remark that when a ground-particle collision occurs the impact model ap-
plies and new particles could be ejected. These do not exist for times preceding
t + ∆t. Therefore, multistep methods would take into account several time steps
and apply low order methods for initial times of a particle trajectory. The one-step
explicit methods avoid this problem and this is the reason why we use the Newmark
method in its explicit form. Indeed, since the particle moves in air without mid-air
collisions the trajectories could be solved with an high accurate multistep methods.
We also remark that the smaller ∆t is, the smaller is the number of impacts in that
time interval. Therefore the overall error committed computing new positions re-
duces.

Active and Passive Particles

Due to the impact model, saltating particles can stop their trajectory in a rest condi-
tion and new particles can be ejected from the soil. Since in our approach we do not
treat binary collisions deterministically (like in DEM models) there is no reason to
waste computational memory to save still particles on the ground. Therefore, only
moving particles are involved in the system evolution. This approach leads to deal
with dynamic containers where pointers to particles are continuously created (for
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ejected particles) and deleted (for removed particles). The computational optimiza-
tion of the source code is under development. However, the current implementation
allows to consider an acceptable number of particles for numerical tests. One of the
reasons why we neglect mid-air collisions is also the computational cost. In fact,
if N is the number of active particles, handling ground-particle collisions requires to
check the condition (6.37) i.e. N operations, while Mid-air (binary) collisions require
to check the distance for each pair of active particles i.e. N2/2 operations.

This framework is also coherent with physical observations. It allows to mimic
the continuous creation and removal of particles in their saltation trajectories. Con-
trarily to DEM methods where the number of particles in the system is constant, our
approach is capable to deal with dynamic lists of particles. Therefore, all computa-
tional resources are used only to compute moving particles.

6.3.3 Fluid Entrainment Model

When no particles are present in air the triggering mechanism is due to the aero-
dynamics structures that eventually lift the particles into the flow. The stronger the
wind is, the higher the number of lifted particles is. We address to this phenomenon
with the term "fluid entrainment". In Section 5.3.4 we have discussed the existence of
a threshold value u∗t which determines if the saltation occurs or not (see [174, 187]).
Since the value of u∗t is still debated here we use another approach.

When the saltation process become steady under a steady wind condition the
fluid entrainment and the particles ejection due to the impact model balance each
other. Therefore, we associate the emission rate due to fluid entrainment to the con-
centration of particles present in air. We introduce a specific flux of particles pwind
from the sandy soil

pwind := P e−ϕground/ϕsat , (6.38)

where ϕground is the volume concentration of particles near the ground, ϕsat repre-
sents the concentration of saturation and P measures the specific rate of emission in
clean air with dimensions [m−2s−1]. We remark that P would depend on the wind
strength (e.g. u∗) because phenomenological observations show that the stronger
the wind flow is, the higher the emission rate is. In this preliminary stage we keep it
as a free parameter.

The number of entrained particles Ninput is computed by the formula

Ninput =
⌊

pwind Lx Ly ∆t
⌋

.

Since the presence of the floor function introduces a relevant error for very small ∆t,
we use a specific time step ∆tinput for the fluid entrainment such that ∆tinput > ∆t.
Therefore, the number of particles Ninput entrained into the system is then computed
as

Ninput =
⌊

pwind Lx Ly ∆tinput
⌋

. (6.39)

The different discrete time advancement is taken into account during the input step of
the temporal loop. Using Figure 6.32 as reference, we verify whether the input time
(green time-line) falls within the interval [t, t + ∆t]. If the emission occurs Ninput
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Figure 6.32: Scheme of fluid entrainment times. The final time Tf inal is
set to 3 s, the integration time (blue line) proceeds with a time step of
∆t = 0.3 and the input time (green line) with a time step of ∆tinput =
0.8. In red are highlighted the steps in which a fluid entrainment event

occurs.

particles are added to the computational list of the active particles with compatible
positions and velocities. In particular

• x ∼ U(0, Lx), y ∼ U(0, Ly) and z = 0,

• new diameters are sampled using the diameter probability distribution for the
sand.

Ejection energies and angles would be chosen using probability distributions de-
fined by experiments as a functions of u∗. Due to the lack of data, we use uniform
distribution for e1, θ1 and ζ1 over a fixed interval

e1 ∼ U(5 · 10−8 J, 5 · 10−7 J) ,
θ1 ∼ U(30°, 80°) ,
ζ1 ∼ U(−80°, 80°) ,

(6.40)

where the cartesian coordinates can be computer using (6.7).

The Pseudo-Code

In this section we show the pseudo-code of the Semi-Stochastic Periodic Box algo-
rithm. For sake of simplicity we do not show all the implementation details. How-
ever, the presented pseudo-code is complete in all major details. The source code is
implemented in python-3.6 using numpy and scipy libraries.

6.4 Numerical Simulations

In this Section we perform some numerical tests using the algorithm presented above.
We systematically change the models parameters in order to explore how the results
change. We track the evolution of following quantities:

• the system kinetic and potential energy

• the total number of moving particles

• the number of particles introduced in the domain due to the fluid entrainment

• the number of particles introduced in the domain due to the impact model
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set temporal and domain properties;
set wind properties;
set sand properties;
set properties of impact model and fluid entrainment model;
set a number of initial particles N(t = 0) and set their positions and
diameters;

t = 0;
while t ≤ Tf inal do

save the state of the system for post-processing routines;
Input step: if fluid entrainment occurs then

compute the ground concentration ϕground of particles;
compute the number of new particles Ninput;
set energies e1, angles θ1, ζ1, diameters and positions of new particles;
convert input information into cartesian velocities;
add the new particles to the system;

end
calculate forces on particles;
Predictor step: compute new positions and new velocities if no collisions
occur;

Impact step: for particle p in the system do
if p is involved in a mid-air collision then

treatment of binary collision (neglected);
else if p is involved in a ground collision then

compute kinetic energy e0 and angles θ0, ζ0 of the impact particle;
Impact model: compute energies e1, angles θ1, ζ1 and diameters of
the ejected particles and the rebounding particle;

convert outputs of impact model into cartesian velocities;
set the particles positions;

end
Corrector step: compute corrections for positions of the new particles;
add the new particles to the system;
remove impact particles;
update the state of particles;
t = t + ∆t;

end

Algorithm 1: Pseudo-code of the Semi-Stochastic Periodic Box algorithm.
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• the sum of the previous two

• the number of particles exiting from the domain due to the impact model

In order to perform a significant statistical analysis we collect 100 system samples
equally distributed over time once the stationary state is reached (t ' 1 s). Although
Lz = 1 m, we consider a 20 cm height volume; Lx and Ly remains the same. We
divide this volume in twenty slices, one centimeter each. In each slice we compute:

• the particles concentration ϕs summing the particles volume and dividing it
by the total volume

• the mean and standard deviation of the particles velocity components vx, vy, vz

• the mean and standard deviation of the particles velocity magnitude

• the mean and standard deviation of particle diameters for the polidisperse case

• the horizontal mass flux q := ρs ϕs〈vx〉

where 〈vx〉 is the average of the x-component of particle velocity among particles in
a slice. Each slice is basically a control volume.

6.4.1 Simulations of the Monodisperse Case

In this section we show a series of numerical tests with a single value of diameter.
Table 6.5 reports the default values shared by presented results. Then, we change
parameters one by one in the presented figures. Table 6.4 reports the changed pa-
rameters and the related figures. Figures 6.33, 6.34, 6.35 and 6.36 show the result for
default values of Table 6.5, to be used as a reference for the parameter changes.

changed parameter/s Figure/s related equation

ein f , esup 6.37 (6.16)
αin f , αsup 6.38 (6.15)

emin 6.39 (6.20)
P 6.40 (6.38)

ϕreb 6.41 (6.38)
u∗ 6.42-6.43 -
〈d〉 6.44-6.45 -

Table 6.4: Map of the changed parameters and related figures.
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Lx 0.05 m
Ly 0.05 m
Lz 1 m

Tf inal 3 s
∆t 10−3 s

∆tinput 5 · 10−3 s
N(t = 0) 100 [·]

ρ f 1.225 kg/m3

ρs 2700 kg/m3

u∗ 0.5 m/s
z0 0.001 m

N(t = 0) 100 [·]
〈d〉 5 · 10−4 m

d p.d. f . δ〈d〉

dissipation model dModel1
α interval [0.2, 0.7] [·]

ejection model eModel2
emin 5 · 10−8 J

P 1 · 106 m−2s−1

ϕsat 10−3 [·]

Table 6.5: Default values used in the presented numerical tests.

Figure 6.33: Numerical result using the default setup of Table 6.5.
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Figure 6.34: Particles concentration and flux using the default setup of
Table 6.5.

Figure 6.35: Particles velocity using the default setup of Table 6.5.
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Figure 6.36: Mean and standard deviation of particles velocity compo-
nents using the default setup of Table 6.5.

Figure 6.37: Test of the dModel2 setting ein f = esup =: e (see Eq. (6.16)).

α
in f
0 = 0.2 and α

sup
0 = 0.7 in accordance to the default parameters.
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Figure 6.38: Effect of changing α.
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Figure 6.39: Effect of changing emin.
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Figure 6.40: Effect of P (see (6.38)) using dModel1.
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Figure 6.41: Effect of ϕsat (see (6.38)) using dModel1.
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Figure 6.42: Effect of u∗.
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Figure 6.43: Effect of u∗ on particles velocity.
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Figure 6.44: Effect of particle diameter.
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Figure 6.45: Effect of particle diameter.
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Figure 6.46: Truncated normal distribution in the interval[
2 · 10−4, 1 · 10−3] and mean 5 · 10−4.

Figure 6.47: The mean and standard deviation of particles diameter dis-
tribution as a function of height from the ground.

6.4.2 Simulations in the Polidisperse Case

Our model is capable to treat the polidisperse case natively. In fact, one of the main
purpose of the model is to explore the differences between different types of sand.
For example we can study the behavior of a mix of sands and verify the truthful-
ness of the Eulerian polidisperse model presented in Section 5.5. We consider a sand
characterized by the truncated normal distribution showed in figure 6.46. As a com-
parison we consider a monodisperce case where 〈d〉 = 5 · 10−4. The rest of parame-
ters are set as default values of Table 6.5. Figure 6.47 shows the mean and standard
deviation of the particles diameter with respect to z direction. Larger diameters are
confined near the ground, instead small particles can reach higher heights. This is in
accordance with the observations on trajectories presented at the beginning of this
Chapter. Figure 6.48 shows the particles concentration and flux in both the polidis-
perce and monodisperce cases. We can notice that the particles concentration of the
polidisperse case is clearly weighted by the probability density function of the di-
ameter. Figure 6.49 shows the particles velocity, the air velocity and their ratio both
in the polidisperse and monodisperse case. We can notice that in the polidisperse
case the standard deviation for the particles velocity is wider that the monodisperse
case. This is probably due to the presence of particles with several sizes reacting
very differently to the flow field.
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Figure 6.48: Solid volume concentration ϕs and mass flux. The top row
refers to the polidisperse case with 6.46. The bottom row refers to the

monodisperse case with d = 5 · 10−4 m.
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Figure 6.49: Particle velocity comparison between monodisperse and
polidisperse case.
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Figure 6.50: Approximation via the truncated normal distribution of
the diameter probability density function presented in [122]. The mean

value is 0.23 mm and extrema values are 0.1 mm and 0.55mm.

6.4.3 Comparison with Kang’s experimental setup

We want to test the model in a wind tunnel setup. In Section 5.4.1 we reported some
references to be used as data source for the derivation of the First Order Model. In
[122] the authors provide the probability density function of the diameter, particles
velocity and the distribution of the mean diameter over the saltation layer, solid
concentration and mass flux. Therefore, we have multiple metrics to evaluate the
algorithm efficacy in a polidisperse condition. Unfortunately, the air flow character-
ization is poor because only u∗ and the free stream velocity is provided. No other
info on the air velocity profile is given. Consequently, the numerical results can suf-
fer from this uncertainty. This is also the reason why we discarded the usage of this
article in the data-driven deduction of First Order Model parameters.

In this test we consider the case where the mean diameter is 0.23 mm and u∗ is
0.66 m/s and the other parameters are set as the polidisperse case presented in the
previous Section. Figure 6.50 shows the probability density function of the diame-
ter as a truncated normal distribution used for the numerical test. Figure 6.51 show
the comparison between numerical results and measurements for the solid concen-
tration and mass flux. The matching for the concentration is quite good. Instead,
the mass flux result less accurate in the first centimeter. However, in the very few
millimeters measurements are usually not very reliable and values can considerably
change with the measurement technique. We can also observe that the first three
dots almost have the same coordinate z which is quite suspicious. Figure 6.53 shows
mean diameter distribution over z. Also in this case the numerical result match as
the available experimental data. Figure 6.52 shows the components of particles ve-
locity together with the wind velocity profiles. We can notice a good match between
the experimental data and the numerical result. In the figure the particles velocity is
very sparse (see the errorbar in the figure i.e. the standard deviation), but the mean
values match the experimental data. Unfortunately, in [122] the are no statistical
characterization of measured quantities. The overall accuracy of the Semi-Stochastic
Periodic Box results are very satisfactory to be in a preliminary stage. In particular
for the particles velocity which is relevant
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Figure 6.51: Comparison between the measurements in [122] and our
numerical tests for the solid concentration and mass flux.

Figure 6.52: Mean and standard deviation of the particles velocity com-
ponents. Experimental data from [122] only show x component of the

particles vector velocity.
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Figure 6.53: Comparison of measurements and numerical results (with
standard deviation) of the mean diameter over z.
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Chapter 7

Conclusion and Future
Perspectives

The dissertation deals with mathematical and physical modeling aspects of aeo-
lian sand transport. In particular, in accordance with the industrial character of the
SMaRT project the topic is focused on the aeolian sand transport in large domains
and on the interaction of sand with complex structures. The computational frame-
work of the Eulerian solvers is based on the OpenFOAM platform, a set of finite
volume based open-source APIs written in C++ using high performance libraries for
parallel computing.

In Chapter 2 we have summarized the foundational aspects of the continuum-
like multiphase modeling. Furthermore, the Granular Kinetic Theory is recalled as
example of closure model. We also highlighted some numerical issues in the solution
of the two-phases approach with two momentum equations. In Chapter 3 the state
of the art of fully Eulerian and Eulerian-Lagrangian models has been reviewed in
order to find out deficiencies and relevant aspects of available models in literature.
In Chapter 4 we have presented different closures of degenerate parabolic sliding
models (DPSMs) to describe the morphology and evolution of sand piles studying
similarities and differences. It is shown that DPSMs are reliable for many realistic
situations characterized by negligible inertial effects and without massive motions
of the granular material. The choice of the closure model is not crucial for the fi-
nal configuration but affects the temporal evolution and the numerical convergence
speed.

Fully Eulerian models are reasonably the best candidate class of models to be
used in the simulation of sand transport in large domains. The main difficulties are
represented by the complex analytical treatment of modeling terms and numerical
methods for the model solutions. The classification of Eulerian models is related
to the number of momentum equations for the particle constituent in the mathe-
matical system. The First Order Model class consists of one momentum equation
for air and all mass conservation equations for the constituents (plus the turbulence
model). Chapter 5 described a procedure to define a convective-diffusive formu-
lation with respect to the chosen turbulence model used to describe the dynamic of
fluids. In order to insert the dynamics of sand grains the theory of mixtures (recalled
in Chapter 2) is used. Also, a data-driven approach is integrated in the argument in
order to properly evaluate the model coefficients. Its formulation allows to increase
model accuracy once wind tunnel data or computational results from Lagrangian
models increase in quantity and quality. The algorithm is designed with a modular
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approach. Therefore, it can be easily modified to be used for other particles trans-
port phenomena. We also proposed a polidisperse extension of the First Order Model.

A fundamental aspect in the correct model formulation regards surface morph-
ing due to erosion and deposition patterns over time. In order to deal with this
modeling aspect the sand surface description is discussed in Chapter 4 and inte-
grated in the equations solver. However, this detail can be neglected for most in-
dustrial applications because the surface morphing velocity is globally very slow.
Therefore, for industrial applications, it might be more effective to use a steady so-
lution of the First Order Model and approximate surface morphing with a steady
erosion/deposition surface field. Furthermore, from the pure numerical and com-
putational point of view, the mesh moving has a monumental cost if compared with
the other algorithm operations, and it is tricky to deal with. Hence whenever possi-
ble, steady simulations are preferred.

Some second order formulations were considered from literature models. How-
ever, it turns out that the model complexity and the computational cost to solve
a two-momentum system of equations drastically decrease the efficiency and the
accuracy of solution. Hence, they result not very interesting for the industrial per-
spective. Furthermore, similarly to the first order formulation the model validation
becomes very difficult because of the lack of experimental data of additional quan-
tities required in the second order formulation.

Despite these difficulties the study has determined some possible ways to model
and simulate the sand transport phenomenon in different contexts. In particular,
important pendant problems emerged and a clear overview of the problem allowed
to plan a roadmap to face mathematical, numerical, physical and experimental is-
sues. Thanks to this, right strategies can be defined for further developments. Some
examples of studies that could be useful in the research flow are the following:

• embeding more accurate turbulence models such as LES or DES,

• designing tailored wind tunnel experiments in order to increase data quality.
In particular, to measure the rate of erosion and deposition over time changing
the wind conditions,

• considering a fixed grid formulation with an automatic three-dimensional re-
finement algorithm. This would allow to optimize computational resources in
domain regions where Eulerian fields present high gradients,

• considering other numerical methods than finite volumes for the solution of
partial differential equations and eventually to be able to describe interfaces
with VOF-like approach,

• creating a reliable database of numerical solutions or experimental samplings
in order to possibly apply reduced order approaches.

Finally in Chapter 6 the Semi-Stochastic Lagrangian Box is described with the pur-
pose of exploring fundamental physical properties of particle transport at small
scales. Its computational implementation has been done from scratch in python-3
using basic libraries for scientific computing. The computational cost drastically re-
duces with respect to classical DEM solver by means of smart allocation of dynamic
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lists in memory. Beside pure computational aspects, the main advantage of the ap-
proach consists in avoiding to solve directly Navier-Stokes equations and in treating
the turbulence without the hassle of dealing with a divergence free fluctuating ve-
locity field. The model also embed stochastic sub-models in order to describe the
randomness associated to part of the collisional process. From the industrial per-
spective this model is not interesting, but it might be a fundamental scientific tool
in the development of fully Eulerian models. Despite it is still in a prelimiary devel-
opment stage, the numerical outputs show its efficacy. It results very modular and
easily upgradable for future developments. A list of feasible developments are the
following:

• implementing mid-air collisions,

• introducing the effect of a turbulence spectrum on the particles motion,

• introducing the effect of the particles drag on the velocity equilibrium profile
of air. In particular, a momentum equation might be solved to compute the
perturbation to apply to the equilibrium profile (e.g. using the perturbation
theory),

• introducing the effect of particles on the turbulence spectrum,

• introducing the "ground memory function" presented in Section 5.5.1 modify-
ing run-time the probability density function used for grains diameter,

• introducing a non-flat surface to study the sand transport over ripples using a
periodic function,

• introducing rotational effects of particles,

• relaxing the mass conservation hypothesis in order to take into account the
grains fragmentation due to collisions (very interesting in geomorphology).

Furthermore, most sub-models in this framework do not require wind tunnel tests
to be validated. For this reason we consider the Semi-Stochastic Lagrangian Box a very
promising tool for the study of particulate transport, not only for sand transport in
air, but also in other contexts (e.g. sand in water or snow in air).

In conclusion, aeolian sand transport still appears a hard phenomenon to be de-
scribed. In spite of that, taking into account new technologies and methods on ex-
perimental data sampling together with future computational capabilities, the com-
putational and modeling infrastructure developed in this thesis has the potential to
produce good results.
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