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IRRATIONALITY MEASURES FOR CUBIC IRRATIONALS

WHOSE CONJUGATES LIE ON A CURVE

F. AMOROSO AND U. ZANNIER

1. Introduction

This paper deals with irrationality measure of algebraic irrational num-
bers. There is a vast bibliography on this subject, the interested reader can
refer for instance to [8] for further references. Let us recall only some basic
facts. We say that µ is an irrationality measure for ξ ∈ R\Q if for every
ε > 0 there exists Cε > 0 such that for all p, q ∈ Z with q > 0 we have∣∣∣ξ − p

q

∣∣∣ > Cε
qµ+ε

.

We define the irrationality measure µ(ξ) as the infimum of the irrationality
measures for ξ. By Dirichlet’s Theorem, or using the theory of continued
fractions, µ(ξ) ≥ 2 and moreover for almost all real numbers equality holds.
Nevertheless, “few” examples of numbers with (provable) irrationality mea-
sure 2 are known.

For real irrational algebraic numbers the situation is different: by a cele-
brated result of Roth, which extends the Thue-Gelfond-Dyson-Siegel method
from 2 to n variables, every such number has irrationality measure 2, but this
result is not effective, in the sense that the above Cε cannot be effectively
computed (at least for small ε > 0).

Let us say that µ is an effective irrationality measure for ξ, if the real
number Cε above is effectively computable for any ε > 0, and define µeff(ξ)
as the infimum of the effective irrationality measures for ξ. Then Liouville’s
Theorem provides the easy bound µeff(ξ) ≤ d for a real algebraic number of
degree d > 1.

Feldman [12], using Baker’s theory of linear forms in logarithms, proves
that µeff(ξ) < d for a real algebraic number of degree d ≥ 3. Bombieri [6]
gives another proof of this result, using the original Thue-Dyson-Siegel
method in two variables.

In some special case, essentially when ξ is “close” to 1, the theory of Padé
approximant can give much better results. For instance for ξ := 3

√
2, Baker

[3] obtains µeff(ξ) ≤ 2.955, using 4
5

3
√

2 ≈ 1.008.

The aim of this short paper is to describe a new method (at any rate,
we have no knowledge of appearance of this method in the literature) which
provides effective irrationality measures for certain algebraic irrational num-
bers. The classical method needs a family of good approximations of ξ, which
are in most cases obtained specializing Padé approximants. Our approach
needs only one good approximation such that the point defined by its r

Date: February 20, 2022.
1



2 F. AMOROSO AND U. ZANNIER

algebraic conjugates lies on a fixed curve C ⊂ Pr−1. We then take powers
and eventually eliminate suitable coefficients. The height of the point must
be sufficiently large with respect to the curve (i. e. with respect to the field
of definition, the height and the degree of the equations defining C). This
constraint is effective, and moreover explicit if C is a line.

In section 2 we shall first consider the special case, but still interesting
in its own, of cubic roots ξl = 3

√
l3 + 1 where l is a large natural number.

The classical method deals with Padé approximants to the function z 7→
(1 − z)1−1/3. The main ingredient of our approach is a bounded height
estimate of Beukers and Schlickewei [4] for the solutions of the system of
equations

A+B = 1;

aAn + bBn = 1.

in the unknown A, B ∈ Q∗, with coefficients a, b ∈ Q∗.

In section 4 we generalize this approach to other cubic irrationals whose
algebraic conjugates are coordinates of a point lying on a fixed line of P2.
In some cases (see for instance exemples 4.3 1. and the discussion at the
end of section 2), our results are close to the results obtained with classical
methods. In other cases they are new (see for instance exemples 4.3 2.).

To deal with cubic irrationals whose algebraic conjugates are coordinates
of a point lying on a fixed curve of P2, not necessarily a line, the results of [4]
are no longer sufficient. We use instead, in section 5, a (very special) case
of a recent bounded height result [2] obtained by Masser and the authors
of this article. This allows us to prove (section 5) the following theorem,
which we state here only for algebraic integers, in order to avoid technical
definitions on heights (section 3). See Theorem 5.2 for the more general
statement.

Theorem 1.1. Let K ⊆ C be a real cubic number field; denote by σ1 =
Id, σ2, σ3 the immersions K ↪→ C. Let C ⊂ P2 be a projective curve defined
over Q. Let ~ > 0, λ > 1/2 and ε ∈ (0, 1) such that

~ ≥ c2 min
(

1,
(λ− 1/2)2

8(λ+ 1)
ε
)−2

where c = c(C) is an effective constant. Let θ ∈ OK with conjugates θ1 = θ,
θ2, θ3. We assume:

(θ1 : θ2 : θ3) ∈ C(Q)

and

max(|θ2|, |θ3|) ≤ ~, log |θ| ≤ −λ~.
Then

µeff(ξ) ≤ λ+ 1

λ− 1/2

for every generator ξ of K.

As pointed out by the referee, it would be interesting to work out the
dependence of the constant c(C) appearing in this theorem on the degree,
height and field of definition of the curve. This could be done, however at
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the price of a heavy technical work on the proofs of [2]. Some exemples (see
the discussion after the statement of Theorem 5.1) seem to suggest that c(C)
grows polynomially with the degree and the height of the curve.

As a corollary of Theorem 1.1, we recover a (not so well known) result of
Chudnwski [9] on irrationality measures for the values of a cubic algebraic
function holomorphic at 0 (see Corollary 5.5).

In principle our method, could be further generalized to irrational num-
bers of higher degree, at the price of a technical extension of the relevant
result of [2].

Acknowledgements. The authors would like to express their gratitude
to Yann Bugeaud, Sinnou David, Michel Waldschmidt and Wadim Zudilin
for helpful conversations. We kindly thank Pietro Corvaja for reading a
preliminary version of this paper and David Masser for his suggestions on
the behavior of c(C). We also thank the anonymous referee for carefully
reading and many helpful suggestions.
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2. An Example

Let l be a positive (large) integer. We look for an irrationality measure

of the cubic irrational ξl = 3
√
l3 + 1. To illustrate our method, we want to

show that µeff(ξl)→ 2 when l→∞ (which is of course a well-known result).
Put

θ = ξl − l, ζ = exp(2πi/3).

We denote by θ1 = θ, θ2 = ζξl− l and θ3 = ζ2ξl− l the algebraic conjugates
of θ and we write θ = (θ1, θ2, θ3). Let

(2.1) θn = λn,0 + λn,1θ + λn,2θ
2

with λn = (λn,0, λn,1, λn,2) ∈ Z3. Thus θn := (θn1 , θ
n
2 , θ

n
3 ) = Θλn, where

Θ =

1 θ1 θ2
1

1 θ2 θ2
2

1 θ3 θ2
3

 .

Solving in λn the system, we find λn = Θ−1θn. We have θ1θ2θ3 = 1 and
|θ2| = |θ3| = O(l) as l→ +∞. Thus

(2.2) |θ| = O(l−2), |λn|1/n � l

and the projective (non logarithmic) Weil height of θ ∈ P2(Q) satisfies

(2.3) H(θ) = |θ2| = |θ3| = O(l).

The implicit constants are absolute, for n sufficiently large with respect to
l. In order to apply a standard irrationality criterium, we search “small”
vectors un = (un,0, un,1, un,2) ∈ Z3 such that αn = un,0 + un,1θ + un,2θ

2

satisfies1

αnθ
n ∈ Z + Zθ.

By (2.1), this holds if and only if un = (un,0, un,1, un,2) is orthogonal to the
vector

vn = (λn,2, λn+1,2, λn+2,2).

of norm |vn|1/n � l. By Minkowski’s theorem we can find two linearly
independent vectors un, u′n ∈ v⊥n such that |un| ≤ |u′n| and

(2.4) |un|1/n · |u′n|1/n � |vn|1/n � l.

Thus |un|1/n � l1/2. This gives a sequence {pn/qn}n of good rational ap-
proximations to θ, defined by (un,0 + un,1θ + un,2θ

2)θn = qnθ − pn. In fact,
by (2.1) and (2.2) we have

|qn|1/n � |un|1/n|λn|1/n � l3/2;

|qnθ − pn|1/n � |un|1/n|θ| � l−3/2.

Let us assume that |u′n| satisfies a similar upper bound as |un|, that is

|u′n|1/n � l1/2. By (2.4) this holds if (and only if) the previous upper bound
for |un| is essentially optimal, i. e.

(2.5) |un|1/n � l1/2.

1A similar requirement was worked by Bombieri and Van der Poorten for a different
pourpose.
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Note that in general this is what one would expect. Then, corresponding
to u′n, one has another sequence {p′n/q′n}n of good rational approximations
such that pnq

′
n 6= p′nqn for all n. This would allow to conclude (by a standard

irrationality criterion) that

µeff(ξl)→ 2 as l→ +∞

Hence the success of this approach is reduced to producing a lower bound
for |un|1/n. Replacing n by 2n, we can assume n even. For j = 1, 2, 3 write
αn,j = un,0 + un,1θj + un,2θ

2
j . Since the height of αn ∈ P2(Q) satisfies

(2.6) H(αn)1/n � |un|1/n,

it is enough to get a lower bound for this height.

Remark 2.1. For j = 1, 2, 3 let σj : Q(θ) ↪→ C be the immersions given by
σjθ = θj. Then for γ ∈ Z[θ] we have γ ∈ Z+Zθ if and only if σ1γ+ ζσ2γ+
ζ2σ3γ = 0.

Since both θ and αn,1θ
n are in Z + Zθ, we have the two equations:

(2.7)
θ1 + ζθ2 + ζ2θ3 = 0;

αn,1θ
n
1 + ζαn,2θ

n
2 + ζ2αn,3θ

n
3 = 0.

We now use the following result of Beukers and Schlickewei ([4], lemme
2.3), which follows from an explicit construction ([5], lemma 6) of Padé
approximants to the function z 7→ (1− z)n.

Lemma 2.2 (Beukers-Schlickewei). Let a, b, A, B ∈ Q∗ such that

(2.8)
A+B = 1;

aAn + bBn = 1

for some even integer n ∈ N. Then, H(1 : A : B) ≤ c 22/nH(1 : a : b)2/n,
where c = 6

√
3.

The system (2.7) transforms into (2.8) by the change of variables:

(2.9) A = −ζθ2

θ1
, B = −ζ

2θ3

θ1
, a = − ζαn,2

ζnαn,1
, b = − ζ2αn,3

ζ2nαn,1
.

We have

H(1 : A : B) = H(θ) and H(1 : a : b) = H(αn).

By the quoted result of Beukers and Schlickewei, by (2.3) and by (2.6),

l� H(θ) ≤ c 22/nH(αn)2/n � |un|2/n.

Thus (2.5) holds and

µeff(ξl)→ 2

as claimed.
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Of course we can quantify all of this to see how near we go to effective
irrationality measure 2. Assume l ≥ 3. A more precise computation (see
the first example 4.3) shows that ξl has irrationality measure

µeff(ξl) ≤ 1 +
− log( 3

√
l3 + 1− l) + 2

3 log(6
√

3)

− log( 3
√
l3 + 1− l)− 2

3 log(6
√

3)

= 2 +
2 log(6

√
3)

3 log l
+O((log l)−2) for l→ +∞.

Our method rests essentially on an explicit Padé construction (via hyper-
geometric function) of the Padé approximants to the function z 7→ (1− z)n,
which is the main tool of the proof of Lemma 2.2. Let us compare our results
with (a special case) of a result of Alladi and Robinson [1] which uses Padé

approximants to the function z 7→ (1− z)1−1/3. Theorem 2 of op.cit. (with
k = 3, f(3) = 9/4, r = 1, s = l3) gives, again for l ≥ 3,

µeff(ξl) ≤ 1 +
− log(

√
l3 + 1−

√
l3) + 9/4

− log(
√
l3 + 1−

√
l3)− 9/4

= 2 +
3

2 log l
+O((log l)−2) for l→ +∞.

Since 2 log(6
√

3)/3 = 1.567... > 3/2, the result of Alladi and Robisons is
slightly better for large l. For small values of l we obtain:

l = 2 µeff = 5.2381 [5.5281]

l = 3 µeff = 3.7865 [3.8365]

l = 4 µeff = 3.3480 [3.3625]

l = 5 µeff = 3.1312 [3.1340]

l = 6 µeff = 2.9996 [2.9970]

l = 7 µeff = 2.9099 [2.9045]

l = 8 µeff = 2.8443 [2.8372]

l = 9 µeff = 2.7937 [2.7856]

where we have reproduced the corresponding results of [1] in brackets. Note
that our method gives something better for l ≤ 5. But in these cases our
effective irrationality measure is worse than the bound µeff(ξl) ≤ 3 predicted
by Liouville’s Theorem.
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3. Heights and absolute values.

To go further, we need some more notations. As we have seen in section 2,
given a cubic irrational θ the natural height associated with our method is
not the Weil height of θ but instead the height of the projective point defined
by its conjugates. Moreover, if θ is not a unit (as it was in section 2), for
its absolute value we have to take into account the contribution at the finite
places. We develop these remarks in the more general setting of algebraic
numbers of degree r in view of further applications.

We consider algebraic numbers as complex numbers, on choosing an im-
mersion Q ↪→ C. Given θ1, . . . , θr ∈ Q we denote by H(θ) the normalized,
non-logarithmic Weil’s height of θ = (θ1, · · · , θr), which we identify with the
corresponding point in Pr−1(Q). We put h(θ) = logH(θ) for the correspond-
ing logarithmic height. For an algebraic number θ we set H(θ) = H(1 : θ)
and h(θ) = logH(θ).

Let θ ∈ C be an algebraic number. We choose a number field K ⊆ C of
degree say r, which contains θ, we let L be any number field containing its
Galois closure, and we denote σ1, . . . , σr the immersions K ↪→ C. We set

H0(θ) = H(σ1θ : · · · : σrθ), h0(θ) = logH0(θ),

for the Weil height of the projective point (σ1θ : · · · : σrθ), and we let

‖θ‖ = |θ| ·Hfinite(θ)

where

Hfinite(θ) :=
∏
v∈ML
v-∞

max(|σ1θ|v, . . . , |σrθ|v)[Lv :Qv ]/[L:Q].

It is clear that these definitions do not depend on the choice of L and
K (but the definition of ‖θ‖ depends on the immersion Q ↪→ C). We also
remark that Hfinite(θ) ≤ 1 if θ is an algebraic integer, with equality if θ is a
unit.

Given the minimal polynomial of θ, say

xr − a1x
r−1 + · · ·+ (−1)rar ∈ Q[x],

it is easy to compute H0(·) and ‖ · ‖. First∏
v∈ML
v |∞

max(|σ1θ|v, . . . , |σrθ|v)[Lv :Qv ]/[L:Q] = max(|σ1θ|, . . . , |σrθ|).

Thus

H0(θ) = max(|σ1θ|, . . . , |σrθ|)Hfinite(θ), ‖θ‖ = |θ|Hfinite(θ).

The computation of Hfinite(θ) is a little bit more involved.

Lemma 3.1. Let v ∈ML, v -∞. Then

max(|σ1θ|v, . . . , |σrθ|v) = max(|a1|v, |a2|1/2v , . . . , |ar|1/rv ).
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Proof. Let for short θj := σjθ and Θ = max(|θ1|v, . . . , |θr|v). After renum-
bering we can assume

(3.1) |θ1|v = · · · = |θk|v > |θk+1|v ≥ · · · ≥ |θr|v
for some k with 1 ≤ k ≤ r. Then obviously

|aj |v =

∣∣∣∣∣ ∑
1≤i1<···<ij≤r

θi1 · · · θij

∣∣∣∣∣
v

≤ Θj

for j = 1, . . . , r. Moreover |ak|v = Θk. Indeed, let i1, . . . , ik with 1 ≤ i1 <
· · · < ik ≤ r. Then, by (3.1)

|θi1 · · · θik |v < |θ1 · · · θk|v = Θk

if (i1, . . . , ik) 6= (1, . . . , k).

�

Thus
Hfinite(θ) =

∏
p

max(|a1|p, |a2|1/2p , . . . , |ar|1/rp ),

where the product is over the rational primes.

Even more explicitly, assume r = 3 (which is the relevant case for this
article) and let

x3 + f1x
2 + f2x+ f3 ∈ Q[x]

with root θ. Then

(3.2) Hfinite(θ) = lcm(den(f1)6, den(f2)3,den(f3)2)1/6.

We also remark that (by Remark 3.2 1) below) we may assume f1 = 1 re-
placing θ by f1θ.

We now state some obvious properties of H0(·) and ‖ · ‖.

Remark 3.2.

1) H0(·) and ‖ · ‖ are functions Q → R+ invariant by multiplication by
non-zero rational numbers.

2) For θ ∈ Q of degree r we have ‖θ‖ ≤ H0(θ) ≤ H(θ)r and ‖θ‖ ≤ |θ|·H(θ)r.
3) For θ, θ′ ∈ Q we have H0(θ · θ′) ≤ H0(θ) ·H0(θ′) and ‖θ · θ′‖ ≤ ‖θ‖ · ‖θ′‖.

We state below a variant of Liouville’s inequality:

Remark 3.3. Let θ be a non zero algebraic number of degree r. Then

‖θ‖ ≥ H0(θ)−(r−1).

We also need a variant of a classical lemma on irrationality measures. We
start with

Lemma 3.4. Let ξ ∈ Q and q0, . . . , qr−1 ∈ Q. Put

θ = q0 + q1ξ + · · ·+ qr−1ξ
r−1.

Then

(3.3) H0(θ) ≤ rH(ξ)r(r−1) ·H(q) and ‖θ‖ ≤ H(ξ)r(r−1)d(q) · |θ|



IRRATIONALITY MEASURES FOR CUBIC IRRATIONALS 9

with d(q) =
∏
p prime max(|q0|p, . . . , |qr−1|p). Moreover, if ξ has degree r,

(3.4) H(q) ≤ c1H0(θ) and d(q) · |θ| ≤ c2‖θ‖
for some positive constants c1 and c2 depending only on ξ.

Proof. We keep all the notations above and we let ξj = σjξ, θj = σjθ. Let
v be a place of L. Put εv = 1 if v -∞ and εv = 0 otherwise. Then

|θj |v ≤ rεν max(|q0|v, . . . , |qr−1|v) max(1, |ξj |v)r−1

Thus

max(|θ1|v, . . . , |θr|v) ≤ rεν max(|q0|v, . . . , |qr−1|v) max(1, |ξ1|v, . . . , |ξr|v)r−1

≤ rεν max(|q0|v, . . . , |qr−1|v)
r∏
j=1

max(1, |ξj |v)r−1.

Inequality (3.3) follows. To prove (3.4), we solve the system

q0 + q1ξj + · · ·+ qr−1ξ
r−1
j = θj , j = 1, . . . , r

in the unknowns q0, . . . , qr−1. We find

(q0, . . . , qr−1) = Ξ−1(θ1, . . . , θr)
T

where T denote transposition and where Ξ is the r× r matrix ξj−1
i of deter-

minant
√
|disc(ξ)|. Thus

max(|q0|v, . . . , |qr−1|v) ≤ cv(ξ) max(|θ1|v, . . . , |θr|v)
which gives (3.4). �

We can now state our lemma on irrationality measures.

Lemma 3.5. Let ξ be an algebraic number of degree r. Let also s be a

positive integer ≤ r and θ
(i)
n (i = 1, , . . . , s) be sequences in

Q + Qξ + · · ·+ Qξs−1

such that θ
(1)
n , . . . , θ

(s)
n are Q-linearly independent for large n. Let us assume

that there exist H > 1, ω > 0 and n0 ∈ N such that

H0(θ(i)
n ) ≤ Hn, ‖θ(i)

n ‖ ≤ H−ωn,
for i = 1, . . . , s and for n ≥ n0. Then ξ has an effective irrationality measure
≤ (s− 1)(1 + 1/ω).

Proof. We fix an index i. Multiplying θ
(i)
n by suitable rationals numbers,

we may assume (by 1) of Remark 3.2)

θ(i)
n = p

(i)
n,0 + p

(i)
n,1ξ + · · ·+ p

(i)
n,s−1ξ

s−1

with p
(i)
n,0, . . . , p

(i)
n,s−1 coprime integers. Since θ

(1)
n , . . . , θ

(s)
n are Q-linearly in-

dependent for large n, the vectors (p
(i)
n,0, . . . , p

(i)
n,s−1) are also Q-linearly inde-

pendent. Moreover, by (3.4) of Lemma 3.4,

max(|p(i)
n,0|, |p

(i)
n,1|, . . . , |p

(i)
n,s−1|) ≤ CH

n

and
|p(i)
n,0 + p

(i)
n,1ξ + · · ·+ p

(i)
n,s−1ξ

s−1| ≤ CH−ωn
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for some C > 0 depending only on ξ. We now apply a standard irrationality
criterium.

�

4. Conjugates lying on a fixed line.

The computations in section 2 can be easily generalized to a (real) cubic
irrational θ with algebraic conjugates θ1, θ2, θ3 defining a projective point
in a fixed projective line. Moreover, the method gives an upper bound for
the effective irrationality measure of an arbitrary generator of Q(θ).

Let L be a projective line in P2 defined over Q by

β−1
1 x1 + β−1

2 x2 + β−1
3 x3 = 0.

Put c(L) = (6
√

3)1/2H(β)3/2.

Theorem 4.1. Let K ⊆ C be a real cubic number field; denote by σ1 =
Id, σ2, σ3 the immersions K ↪→ C. Let θ ∈ K such that

(σ1θ : σ2θ : σ3θ) ∈ L(Q).

We assume

(4.1) ‖θ‖ < c(L)−1H0(θ)−1/2.

Then every generator of K has effective irrationality measure

≤ 1 +
3
2h0(θ) + log c(L)

log(1/‖θ‖)− 1
2h0(θ)− log c(L)

.

Proof. We first remark that θ is irrational by Remark 3.3 since ‖θ‖ < 1,
and thus K = Q(θ). Let θj = σjθ. We then proceed as in section 2. For
the reader’s convenience we make all details explicit. Let ξ be a generator
of Q(θ) with algebraic conjugates ξ1 = ξ, ξ2, ξ3. For n ∈ N write

θn = λn,0 + λn,1ξ + λn,2ξ
2

with λn,j ∈ Q. We look for “small” vectors un = (un,0, un,1, un,2) ∈ Z3 such
that

(un,0 + un,1θ + un,2θ
2)θn ∈ Q + Qξ.

This holds if and only if un = (un,0, un,1, un,2) is orthogonal to the vector
vn = (λn,2, λn+1,2, λn+2,2). Solving the 9× 9 system

λi,0 + λi,1θj + λi,2θ
2
j = θij , i = n, n+ 1, n+ 2; j = 1, 2, 3,

we see that

H(vn) ≤ H(λn,0 : λn,1 : · · · : λn+2,2)� H(θn1 : θn2 : · · · : θn+2
3 ),

where from now on the implicit constants in � may depend on ξ and on θ,
but not on n. By a standard computation on heights,

H(θn1 : θn2 : · · · : θn+2
3 ) ≤ H(θ1 : θ2 : θ3)nH(θ1)2H(θ2)2H(θ3)2.

Thus

H(vn)� H0(θ)n.
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By Minkowski’s theorem we can find two linearly independent vectors un,
u′n ∈ v⊥n with rational entries such that

(4.2) H(un)H(u′n)� H(vn)� H0(θ)n.

Write

αn = un,0 + un,1θ + un,2θ
2, α′n = u′n,0 + u′n,1θ + u′n,2θ

2.

Thus αnθn, α′nθn are Q-linearly independent algebraic numbers in Q + Qξ.
To get an irrationality measure for θ via Lemma 3.5 we need an upper
bound for H0(αnθn), ‖αnθn‖ and for the corresponding dashed quantities.
By symmetry, it is enough to consider the last ones; we can also assume n
even. By 2) and 3) of Remark 3.2 we have

H0(α′nθ
n) ≤ H0(α′n)H(θ)n, ‖α′nθn‖ ≤ H0(α′n).

By the first inequality in (3.3) of Lemma 3.4, H0(αn)� H(un) andH0(α′n)�
H(u′n). Thus by (4.2)

H0(αn)H0(α′n)� H0(θ)n

and

(4.3)
H0(α′nθ

n)� H0(αn)−1H0(θ)2n

‖α′nθn‖ � H0(αn)−1H0(θ)n‖θ‖n.

As in section 2, we need a lower bound for H0(αn) (note that this represents
the crucial issue). Put

αn,j := un,0 + un,1θj + un,2θ
2
j for j = 1, 2, 3.

We have θ ∈ L; thus

(4.4) β−1
1 θ1 + β−1

2 θ2 + β−1
3 θ3 = 0.

Moreover αnθ
n ∈ Q + Qξ and thus

(αn,1θ
n
1 : αn,2θ

n
2 : αn,3θ

n
3 ) ∈ L′,

where L′ is the line in P2 through the points 1 and ξ, of equation∣∣∣∣∣∣
x1 x2 x3

1 1 1
ξ1 ξ2 ξ3

∣∣∣∣∣∣ = ξ′1x1 + ξ′2x2 + ξ′3x3 = 0

with ξ′ = (ξ3 − ξ2, ξ1 − ξ3, ξ2 − ξ1). Thus

(4.5) ξ′1αn,1θ
n
1 + ξ′2αn,2θ

n
2 + ξ′3αn,3θ

n
3 = 0.

Let

A = −β−1
2 θ2/β

−1
1 θ1, B = −β−1

3 θ3/β
−1
1 θ1

and

a = −ξ′2αn,2βn2 /ξ′1αn,1βn1 , b = −ξ′3αn,3βn3 /ξ′1αn,1βn1 .
Recall that we assume n even. By (4.4) and (4.5) we have

A+B = 1, aA2ρ + bB2ρ = 1

with ρ = n/2 ∈ N. By the already quoted [4], Lemma 2.3,

H(1 : A : B) ≤ c 22/nH(1 : a : b)2/n.
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with c = 6
√

3. We have

H(1 : A : B) = H(β−1
1 θ1 : β−1

2 θ2 : β−1
3 θ3)

≥ H(β)−1H(θ) = H(β)−1H0(θ)

and

H(1 : a : b) = H(ξ′1αn,1β
n
1 : ξ′2αn,2β

n
2 : ξ′3αn,3β

n
3 )

≤ H(ξ′)H(β)nH(αn) = H(ξ′)H(β)nH0(αn).

Thus

H(β)−n/2H0(θ)n/2 ≤ 2cn/2H(ξ′)H(β)nH0(αn)� cn/2H(β)nH0(αn)

and finally

H0(αn)−1 � cn/2H(β)3n/2H0(θ)−n/2 = c(L)nH0(θ)−n/2.

By (4.3),

H0(α′nθ
n)� H0(αn)−1H0(θ)2n �

(
c(L)H0(θ)3/2

)n
and

‖α′nθn‖ � H0(αn)−1H0(θ)n‖θ‖n �
(
c(L)H0(θ)1/2‖θ‖

)n
=
(
c(L)H0(θ)3/2

)−ωn
with

ω =
log(1/‖θ‖)− 1

2h0(θ)− log c(L)
3
2h0(θ) + log c(L)

.

Since ω > 0 by (4.1), Lemma 3.5 (with r = 3 and s = 2) shows that ξ has
irrationality measure ≤ 1 + 1/ω.

�

Remark 4.2. We get a non-trivial2 effective irrationality measure, if

‖θ‖ < c(L)−3/2H0(θ)−5/4.

We get effective irrationality measures ≤ 2 if

‖θ‖ ≤ c(L)−2H0(θ)−2.

Example 4.3.
1. In the situation of section 2, ξl = 3

√
l3 + 1, θ = ξl− l ∼ 1

3 l
−2 and L is the

projective line of equation

x1 + ζx2 + ζ2x3 = 0

The point β = (1 : ζ−1 : ζ−2) has height 1 and thus c(L) = (6
√

3)1/2.

We have θ1θ2θ3 = 1 and |θ2| = |θ3|. Thus ‖θ‖ = θ and H0(θ) = θ−1/2.

2i. e. better than the bound µeff(ξ) ≤ 3 given by Liouville’s Theorem
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Inequality (4.1) becomes θ < (6
√

3)−2/3 ≈ 0.209..., which is satisfied for
l ≥ 2. In this case, Theorem 4.1 gives

µeff(ξl) ≤ 1 +
3
2h0(θ) + log c(L)

log(1/‖θ‖)− 1
2h0(θ)− log c(L)

= 1 +
−3

4 log(ξl − l) + 1
2 log(6

√
3)

−3
4 log(ξl − l)− 1

2 log(6
√

3)

= 2 +
2 log(6

√
3)

3 log l
+O((log l)−2) for l→ +∞.

2. Another example is given by irrational cubic numbers of trace 0, e.g.
θ = ηb ∼ b−1 is the real root of x3 + bx− 1 = 0 for some integer b ≥ 5. Now
L is the projective line of equation

x1 + x2 + x3 = 0.

The same computation shows that

µeff(θ) = 1 +
−3

4 log(ηb) + 1
2 log(6

√
3)

−3
4 log(ηb)− 1

2 log(6
√

3)

= 2 +
4 log(6

√
3)

3 log l
+O((log l)−2) for b→ +∞.

5. Conjugates lying on a fixed curve.

We want to generalize Theorem 4.1 replacing L by any fixed projective
curve C. To do that, in place of the Beukers-Schlickewei estimate in [4] used
above, we need a recent result of Masser and the authors of this article.

Theorem 5.1. Let C ⊂ Pr−1 be a projective curve defined over Q. There
exists a c = c(C) > 1 effectively depending on C such that the following
holds. Let α ∈ Pr−1(Q), θ ∈ C(Q) and choose K ≥ c and a natural number
n ≥ K. Then, if

α1θ
n
1 + · · ·+ αrθ

n
r = 0

and if there are no proper vanishing subsums,

(5.1)
h(α)

n
≥ h(θ)

r − 1
− c

(
1

K
h(θ) + h(θ)1/2 +K

)
.

Proof. Let f1, . . . , fr ∈ Q(C) be the coordinate functions on C. Then fi/fj
is non-constant for some i 6= j. We apply [2, Theorem 4.1], taking into
account [2, Remark 4.2 i) and ii)]. �

The explicit computation of c(C) is an open question. However, the fol-
lowing couple of exemples may suggest a polynomial dependence on the
degree and on the height of the polynomial defining C.

For simplicity we assume r = 3 (which is the relevant case for this article)
and α1 = α2 = α3 = 1. A short computation shows that Theorem 5.1 then
gives h(θ) ≤ K2 provided that n ≥ K := 144c2.

Take first for C the affine curve x+y = γ, where γ is an algebraic number,
and let (θ1, θ2) ∈ C such that θn1 + θn2 = 1, where for simplicity n ∈ N is
even. Then, by [14, Exercices 17.3 and 17.4] (apply Beukers-Schlickewei
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Lemma 2.2 with A = θ1/γ, B = θ2/γ, and a = b = γn), we easily see that
h(1 : θ1 : θ2) ≤ c1 + c2h(γ) with c1, c2 > 0 absolute.

Concerning the dependence on the degree, take now for C the affine curve
defined by P = 0, where

P (x, y) :=
∏
ωd=1

∏
ηd=1

(ωx1/d + ηy1/d − 1) ∈ Z[x, y]

has degree d, and let (θ1, θ2) ∈ C such that θn1 +θn2 = 1, where for simplicity n
is now a positive multiple of 2d. Then we again easily deduce from Beukers-
Schlickewei Lemma 2.2 that h(1 : θ1 : θ2) ≤ c3+c4d, with c3, c4 > 0 absolute.

Replacing in our construction [4], Lemma 2.3, by Theorem 5.1 with r = 3
we get the following statement. Theorem 1.1 announced in the introduction
immediately follows from it.

Theorem 5.2. Let K ⊆ C be a real cubic number; denote by σ1 = Id, σ2, σ3

the immersions K ↪→ C. Let C ⊂ P2 be a projective curve defined over Q
and let θ ∈ K such that

(σ1θ : σ2θ : σ3θ) ∈ C(Q).

Let c = c(C) be the constant in Theorem 5.1, and ~ > 0, λ > 1/2 and
ε ∈ (0, 1) be parameters such that

(5.2) ~ ≥ c2 min
(

1,
(λ− 1/2)2

8(λ+ 1)
ε
)−2

.

We assume

(5.3) h0(θ) ≤ ~, log ‖θ‖ ≤ −λ~.
Then

µeff(ξ) ≤ λ+ 1

λ− 1/2
+ ε

for every generator ξ of K.

Proof. We argue as in the proof of Theorem 4.1, keeping the same nota-
tions. Recall equation (4.5),

ξ′1αn,1θ
n
1 + ξ′2αn,2θ

n
2 + ξ′3αn,3θ

n
3 = 0.

We apply Theorem 5.1 with r = 3 and with α replaced by α̃n := (ξ′1αn,1 :
ξ′2αn,2 : ξ′3αn,3). Remark that the condition on no proper vanishing subsums
is trivially satisfied since r = 3 (indeed ξ′j , αn,j and θj are non zero). By
this theorem, for any K ≥ c and for any integer n ≥ K,

1

n
h(α̃n) ≥ 1

2
h0(θ)− c

(
1

K
h0(θ) + h0(θ)1/2 +K

)
≥ 1

2
h0(θ)− c

(
1

K
+

1

~1/2
+
K

~

)
~

with c = c(C) the constant appearing in that theorem. Let ε′ ∈ (0, 1), which
will be fixed later, and choose K = c/ε′. Then for ~ ≥ (c/ε′)2 and n ≥ c/ε′,

1

n
h(α̃n) ≥ 1

2
h0(θ)− 3ε′~.
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By equation (4.3) and since h(α̃n) ≤ h(ξ′) + h0(αn), we have

(5.4)

1

n
h0(α′nθn) ≤ h(ξ′)

n
− 1

n
h(α̃n) + 2h0(θ)

1

n
log ‖α′nθn‖ ≤

h(ξ′)

n
− 1

n
h(α̃n) + h0(θ) + log ‖θ‖.

Thus, if in addition n ≥ h(ξ′)
ε′~ , we obtain from (5.4) and (5.3)

1

n
h0(α′nθn) ≤ ε′~− 1

2
h0(θ) + 3ε′~ + 2h0(θ) ≤

(
3

2
+ 4ε′

)
~

and

1

n
log ‖α′nθn‖ ≤ ε′~−

1

2
h0(θ) + 3ε′~ + h0(θ)− λ~

≤
(

1

2
− λ+ 4ε′

)
~ = −ω

(
3

2
+ 4ε′

)
~

with

ω =
λ− 1/2− 4ε′

3/2 + 4ε′
.

Note that ω > 0 if 4ε′ < λ− 1/2. Assume further 8ε′ < λ− 1/2. Lemma 3.5
(with r = 3 and s = 2) then shows that ξ has irrationality measure

≤ 1 + 1/ω =
λ+ 1

λ− 1/2
+

4(λ+ 1)ε′

(λ− 1/2)(λ− 1/2− 4ε′)

≤ λ+ 1

λ− 1/2
+

8(λ+ 1)ε′

(λ− 1/2)2
.

The result follows on choosing ε′ := min
(

1, (λ−1/2)2

8(λ+1) ε
)
≤ 1

8(λ− 1/2).

�

Example 5.3. As an easy example, let l > 1 be an integer and consider the
cubic polynomial x3 + x2 + 1

l x+ 1
l6

, which is easily seen to be an irreducible

polynomial over the rationals. Take for θl the root of x3 +x2 + 1
l x+ 1

l6
closest

to 0. The projective point Pl ∈ P2 defined by the conjugates of θl lies on the
projective curve (x1x2 + x1x3 + x2x3)6 − (x1 + x2 + x3)9x1x2x3 = 0, which
is absolutely irreducible and of genus 10, according to the computer algebra
system [11]. Moreover, an easy computation shows that the above conjugates
have all absolute value ≤ 1 and that log |θl| ∼ −5 log l as l→ +∞. By (3.2),
Hfinite(θl) = l2. Thus

h0(θl) ≤ (2 + ε1(l)) log l, and log ‖θl‖ = −(3 + ε2(l)) log l

for some ε1(l), ε2(l)→ 0 as l→ +∞ (and it is possible to show that the first
inequality is indeed an equality). We fix ε > 0 and we apply Theorem 5.2
choosing

K = Kl = Q(θl), ~ = ~l = (2 + ε1(l)) log l and λ = λl =
3 + ε2(l)

2 + ε1(l)
.
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Let us assume l sufficiently large with respect to 1/ε. Since λl → 3
2 as

l→ +∞, assertions (5.2) and (5.3) are satisfied and we get

µeff(θl) ≤
λl + 1

λl − 1/2
+ ε ≤ 5

2
+ 2ε.

Remark 5.4. Let E be an elliptic curve (of rank > 0) and u, v : E 99K P1 be
non constant morphisms. It would be tempting to apply Theorem 5.2 to the
family of cubic equations x3 + x2 + u(P )x+ v(P ) = 0 parametrized by P ∈
E(Q), but unfortunately this does not work, as we briefly show. Let θP be the
root of x3 +x2 +u(P )x+ v(P ) = 0 closest to 0. Then, using “Weil’s Height
Machine” and a conjecture of Lang proved by David and Hirata-Kohno [10,

Conjecture 1.2], it is possible to show that log ‖θP ‖ ∼ d
6 ĥ(P ) → +∞ with

d = −deg div(1, u3, v2), preventing any application of Theorem 5.2.

Back to cubic equations parametrized by rational points on a curve of
genus 0. The example above can be generalized to find an effective upper
bound for the irrationality measure of the values of a cubic algebraic function
holomorphic at 0. More precisely, let g be a power series in the variable t,
with rational coefficients, representing a cubic algebraic function, i.e. g has
degree 3 over Q(t). We assume that the conjugates g1 = g, g2, g3 of g over
Q(t), are represented by analytic functions in the closed disk |t| ≤ e−c0 , for
some c0 > 0. We have:

Corollary 5.5. Let ε ∈ (0, 1/12). There exists C(ε, g) ≥ c0 ≥ 1 such that
the following holds. Let a ∈ Z, b ∈ N coprime, with

(5.5) log |a| ≤ ε log b

and

(5.6) log b ≥ C(ε, g).

Then g(a/b) is irrational with effective irrationality measure ≤ 2 + 13ε.

Proof. Let t0 = a/b. Then, by (5.5), (5.6) and since ε < 1/2,

log |t0| = log |a| − log b ≤ −(1− ε) log b ≤ −(log b)/2 ≤ −c0

if C(ε, g) ≥ c2
0. Observe also that H(t0) = b, since a, b are coprime and

|t0| < 1. We denote by c1, . . . , c5 positive constants depending only on g
and on ε.

By the functorial properties of the height, setting ξ = g(t0), we have

(5.7) H(ξ) ≤ ec1bd,
where d ≥ 1 is the geometric degree of the algebraic function g (i. e. the
degree of its polar divisor).

Let N = [6d/ε]. We consider a Padé approximant at 0 of order N for
(1, g, g2), i. e. a non-zero vector of polynomials (Q0, Q1, Q2) ∈ Q[t] of degree
at most N such that

f = Q0 +Q1g +Q2g
2

vanishes at 0 with multiplicity ≥ [3(N + 1)] ≥ 3N . This implies

(5.8)
H(Q0(t0) : Q1(t0) : Q2(t0)) ≤ ec2bN

|f(t0)| ≤ ec2 |t0|3N ,
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where c2 depends only on the Qi. Moreover f 6= 0 since g has degree 3 over
Q(t). Since f is analytic in D(0, e−c0), there exists c3 ≥ c0 such that f does
not vanish for 0 < |t| ≤ e−c3 . Thus, if C(ε, g) ≥ c3 then θ := f(t0) is a
non zero algebraic number of degree ≤ 3. By (5.7), (5.8) and by (3.3) of
Lemma 3.4 we have

(5.9)
H0(θ) ≤ 3H(ξ)6H(Q0(t0) : Q1(t0) : Q2(t0)) ≤ ec4b(1+ε)N ,

‖θ‖ ≤ H(ξ)6H(Q0(t0) : Q1(t0) : Q2(t0))|θ| ≤ ec4b(1+ε)N |t0|3N .

For j = 1, 2, 3 let fj = Q0 + Q1gj + Q2g
2
j and θj = fj(t0). We want to

apply Theorem 5.2 with C ⊆ P2 be the projective curve parametrized by
(f1 : f2 : f3). Let c > 0 be the constant appearing in that theorem. Set
c5 := max(c3, c4/N, c) and

κ :=
log(b/|a|)

(1 + ε) log b+ c5
.

Set also

~ := ((1 + ε) log b+ c5)N > 0, λ := 3κ− 1

and choose C(ε, g) := (32c5
ε )2. Remark that

(5.10) 1− κ =
ε log b+ log |a|+ c5

(1 + ε) log b+ c5
≤ 3ε.

by (5.5) and (5.6). In particular

(5.11) κ ≥ 1− 3ε ≥ 3/4

since ε ≤ 1/12. This implies

(λ− 1/2)2

8(λ+ 1)
ε =

3(κ− 1/2)2

8κ
ε ≥ ε

32
.

Thus

c2 min
(

1,
(λ− 1/2)2

8(λ+ 1)
ε
)−2
≤
(32c5

ε

)2
= C(ε, g) ≤ log b ≤ ~

by (5.6). Assumption (5.2) is satisfied. Moreover, by (5.9) we have h0(θ) ≤ ~
and

− log ‖θ‖
~

≥ 3N log(b/|a|)− (1 + ε)N log b− c5N

((1 + ε) log b+ c5)N
= 3κ− 1 = λ.

Thus (5.3) is also satisfied.
By Theorem 5.2, θ is a cubic irrational and every generator of Q(θ) has

irrationality measure

≤ λ+ 1

λ− 1/2
+ ε =

κ

κ− 1/2
+ ε = 2 +

1− κ
κ− 1/2

+ ε ≤ 2 + 13ε

where we have plugged in (5.10) and (5.11) into the computation.
We finally remark that ξ is a generator of Q(θ), since Q(θ) ⊆ Q(ξ) and

[Q(ξ) : Q] ≤ 3 = [Q(θ) : Q].

�
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Let g be an arbitrary algebraic function (of degree possibly > 3). In [9,
Theorem 1], Chudnovski announced the upper bound µeff(g(a/b)) ≤ 2 + ε
for every ε > 0 provided that bε ≥ c1(ε, g)|a|2+ε. The Author presents a
complete proof only in the special case of a cubic algebraic function; his
proof rests on the well-known fact that cubic algebraic functions satisfies
a Riccati equation. A standard computation, starting from the choice of
the parameter N at the end of the proof of his Theorem 1, shows that his
method is indeed able to provide a more explicit result:

(5.12) µeff(g(a/b)) ≤ 2 +
2c(g)

ε
√

log b
+

2

ε
· log |a|

log b
,

if |a| ≤ b1/2−ε and log b ≥ 4c(g)2/ε2.

Our method (at the price of an explicit computation of the Padé approxi-
mation f and of a more precise zero’s lemma, see the Appendix for details)
can provide an estimate of a similar shape:

(5.13) µeff(g(a/b)) ≤ 2 +
9

ε

√
c(g)

log b
+

2

ε
· log |a|

log b

if |a| ≤ b1/2−ε and log b ≥ 210c(g)3/ε4.

In this context, it is not out of place to mention that Zudilin [15] obtained
a general statement on the values of G-functions, and thus in particular
applying to algebraic functions. A very special case of his result gives

µeff(g(a/b)) ≤ 2 + c(g)

(
1

(log b)1/3
+

log |a|
log b

)
,

for an algebraic function g (of arbitrary large degree) and a rational a/b,

provided that log |a| < 1
2 log b − c(g)(log b)2/3 and log b > c(g). This is a

weaker version of (5.12) (essentially (log b)1/3 instead of
√

log b), which is
not surprising, since his estimate is a specialization of a more general result.

6. Appendix

The aim of this appendix is to provide a complete proof of the bound (5.13)
announced in the last section.

Let g be a cubic algebraic function, regular at 0 with rational Taylor
coefficients. We choose a determination of the conjugates g1 = g, g2, g3

of g over Q(t), which we assume defined (and analytic) in the closed disk
|t| ≤ e−c0 , for some c0 ≥ 1.

Proposition 6.1. There exists C = C(g) ≥ c0 ≥ 1 such that the following
holds. Let ε1, ε2, ε3, ε4 ∈ (0, 1) be such that ε2 + ε3 + ε4 < 1/2. Let a ∈ Z,
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b ∈ N coprime, with

(6.1) log b ≥



log |a|+ C

ε2ε3
, (a)

log |a|+ C/ε3

1/2− ε2 − ε3 − ε4
, (b)

ε2C
2

ε2
1ε

4
4

. (c)

Let also

(6.2) κ =
(1− ε3) log(b/|a|)

(1 + ε2) log b+ C/ε3
.

Then g(a/b) is irrational with effective irrationality measure

≤ κ

κ− 1/2
+ ε1 ≤ 2 + ε1 +

1

ε4

(
ε2 + ε3 +

log |a|+ C/ε3

log b

)
.

Proof. We first make some elementary remarks on the parameters. By
definition (6.2) of κ we have

(6.3)

1− κ =
(ε2 + ε3) log b+ (1− ε3) log |a|+ C/ε3

(1 + ε2) log b+ C/ε3

≤ ε2 + ε3 +
log |a|+ C/ε3

log b
.

Thus 1− κ > 0 and 1− κ ≤ 1
2 − ε4 by (6.1b), i. e.

(6.4) 1/2 + ε4 ≤ κ < 1

Let now t0 = a/b. Then, by (6.1a), log b ≥ log |a|+ C and

(6.5) |t0| ≤
1

2
e−c0 ,

assuming C ≥ c0 + log 2. Remark also that H(t0) = b. We denote by c1,
. . . , c9 positive constants depending only on g. By the functorial properties
of the height,

(6.6) H(ξ) ≤ ec1bd

where ξ = g(t0) and where where d ≥ 1 is the geometric degree of the
algebraic function g (i. e. the degree of its polar divisor).

Let N be a positive integer and δ ∈ [1/(N + 1), 3). We consider, in the
terminology of [7], a (N, δ)-Padé approximant at 0 for (1, g, g2), i. e. a non-
zero vector of polynomials (Q0, Q1, Q2) ∈ Q[t] of degree at most N such
that

f = Q0 +Q1g +Q2g
2

vanishes at 0 with multiplicity M ≥ [(3 − δ)(N + 1)]. By Theorem 2 of [7]
we can find a such vector of polynomials satisfying moreover

max
j
h(Qj) ≤

c2(3− δ)2(N + 1)

δ
.

We choose

N := [6d/ε2] + 1 and δ :=
3(ε3N + 1)− 1

N + 1
.
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Since ε3 ≤ 1 we have δ ∈ [1/(N + 1), 3) as needed. Moreover

(6.7) M ≥ (3− δ)(N + 1)− 1 = 3(1− ε3)N

and

δ ≥ 2(ε3N + 1)− 1

N + 1
=

2ε3N + 1

N + 1
≥ ε3.

Thus

(6.8) max
j
h(Qj) ≤

c3N

ε3
.

Remark that this implies

(6.9) |f |R ≤ ec4N/ε3 on the disk |t| ≤ R := e−c0 ≤ 1.

Let θ := f(t0). We want first show that θ is non-zero. Let us assume the
contrary. Let f(t) =

∑∞
k=0 fkt

k and g(t)j =
∑∞

k=0 aj,kt
k (j = 1, 2) be the

expansions of f and of g, g2 around t = 0. Let also a0,k = 1 if k = 0 and

a0,k = 0 otherwise. Writing Qj(t) =
∑N

l=0 qj,lt
l for j = 0, 1, 2 we have

fM =

2∑
j=0

N∑
l=0

qjlaj,M−l 6= 0

since f vanishes at 0 with multiplicity exactly M . Let v be a place of Q. The
Local Eisenstein Theorem ([7, Corollary p.161]) gives |aj,k|v ≤ c′(v)R2k−1

v

for some c′(v), Rv depending on v and on g, with moreover c′(v) = 1 if v is
finite. Thus, by (6.8)

h(fM ) ≤ c5M + max
j
h(Qj) ≤ c5M + c3N/ε3

and, by Liouville’s inequality,

log |fM | ≥ −c5M − c3N/ε3.

On the other hand, fM t
M
0 = −

∑
j>M fjt

j
0 since we are assuming f(t0) = 0.

Let as before R := e−c0 ≤ 1. Using Cauchy’s estimates |fj | ≤ |f |RR−j , we
get

|fM | ≤ |t0|−M
∞∑

j=M+1

|f |R(|t0|/R)j = |t0|−M |f |R
(|t0|/R)M+1

1− |t0|/R

≤ 2(1/R)M+1ec4N/ε3 |t0|

by (6.9) and since |t0| ≤ |R|/2 by (6.5). Comparing the lower and the upper
bound for |fM | we find

log(1/|t0|) ≤ log(2/R) + (log(1/R) + c5)M + (c3 + c4)
N

ε3
.

We still need an (elementary) zero’s estimate to bound M . Since the Qj ’s
are polynomials of degree ≤ N , the polar divisor of f has degree ≤ c6N .
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Thus3 M ≤ c6N . Inserting this bound in the last displayed formula we get

log(1/|t0|) ≤ log(2/R) + (log(1/R) + c5)c6N + (c3 + c4)
N

ε3
<

c7

ε2ε3

since N ≤ 6d/ε2 + 1 by our choice. This contradicts (6.1a) provided that
C ≥ c7. The proof of θ 6= 0 is concluded.

We now prove an upper bound for H0(θ) and for ‖θ‖. Inequality (6.8)
implies

(6.10) H(Q0(t0) : Q1(t0) : Q2(t0)) ≤ ec8N/ε3bN .

Using Schwarz lemma in the disk |t| ≤ R := e−c0 ≤ 1 and inequali-
ties (6.9), (6.7), we get

(6.11) |θ| ≤ |f |R(|t0|/R)M ≤ ec4N/ε3(|t0|/R)3(1−ε3)N .

By (3.3) of Lemma 3.4, by (6.6), (6.10), (6.11), and since N ≥ 6dε2, we have

(6.12) H0(θ) ≤ 3H(ξ)6H(Q0(t0) : Q1(t0) : Q2(t0)) ≤ ec9N/ε3b(1+ε2)N ,

and

(6.13)
‖θ‖ ≤ H(ξ)6H(Q0(t0) : Q1(t0) : Q2(t0))|θ|

≤ ec9N/ε3b(1+ε2)N |t0|3(1−ε3)N .

We are quite in position to apply Theorem 5.2. Assuming C ≥ c9 and
taking into account (6.13), (6.2), (6.4), we have

− 1

N
log ‖θ‖ ≥ 3(1− ε3) log(b/|a|)− (1 + ε2) log b− C/ε3

= ((1 + ε2) log b+ C/ε3)(3κ− 1) > 0.

Liouville’s inequality (Lemma 3.3) implies that θ is irrational and thus ξ is
irrational as well, since θ ∈ Q(ξ). If ξ is a quadratic irrational our result is
trivial, since its effective irrationality measure is 2 which is ≤ κ

κ−1/2 by (6.4).

Thus we may assume that ξ is a cubic irrational. Let K = Q(ξ), denote by
σ1 = Id, σ2, σ3 the immersions K ↪→ C and put θj = fj(t0).

We apply Theorem 5.2 with C ⊆ P2 be the projective curve parametrized
by (f1 : f2 : f3), and ε = ε1. Let c = c(C) be the constant appearing in that
theorem. Set C := max(c0 + log 2, c7, c9, 4c),

~ := ((1 + ε2) log b+ C/ε3)N, λ := 3κ− 1.

Inequality (6.4) implies

(λ− 1/2)2

8(λ+ 1)
=

3(κ− 1/2)2

8κ
≥ ε2

4

4
.

Thus, by (6.1c),

c2 min
(

1,
(λ− 1/2)2

8(λ+ 1)
ε1

)−2
≤ C2

ε2
1ε

4
4

≤ log b

ε2
≤ N log b ≤ ~.

3Equivalently, as suggested by Waldschmidt, we can argue on the non zero resultant
Resx(P,Q) ∈ C[t] between Q(t, x) = Q0 +Q1x+Q2x

2 and the minimal polynomial P of
g over C[t].
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Assumption (5.2) is satisfied. Moreover, by (6.12) we have h0(θ) ≤ ~, and,
by (6.13) and (6.2),

− log ‖θ‖
~

≥ 3(1− ε3) log(b/|a|)− (1 + ε2) log b− C/ε3

(1 + ε2) log b+ C/ε3
= 3κ− 1 = λ.

Thus (5.3) is also satisfied. By Theorem 5.2, ξ has irrationality measure

≤ λ+ 1

λ− 1/2
+ ε1 =

κ

κ− 1/2
+ ε1.

We finally remark that, by (6.4) and (6.3),

κ

κ− 1/2
+ ε1 = 2 +

1− κ
κ− 1/2

+ ε1 ≤ 2 + ε1 + ε−1
4

(
ε2 + ε3 +

log |a|+ C/ε3

log b

)
.

�

From proposition (6.1), we easily deduce the bound (5.13) for the irra-
tionality measure of the values of a cubic algebraic function.

Corollary 6.2. Let g be a cubic algebraic function, regular at 0 with rational
Taylor coefficients. Then there exists C = C(g) ≥ 1 such that the following
holds. Let a ∈ Z, b ∈ N coprime and ε ∈ (0, 4/7) such that

(6.14) |a| ≤ b1/2−ε

and

(6.15) log b ≥ 210C3/ε4.

Then g(a/b) is irrational with effective irrationality measure

≤ 2 +
1

ε

(
9

√
C

log b
+ 2

log |a|
log b

)
.

Proof. Let C = C(g) be the constant appearing in proposition (6.1). We
let for short

ε′ =

√
C

log b
.

By (6.15) we have

(6.16) ε′ ≤

√
C

210C3/ε4
=

ε2

32C
≤ ε

8
.

We apply the proposition 6.1 choosing

ε1 = ε′/ε, ε2 = 2ε′, ε3 = ε′, ε4 = ε/2

which is an admissible choice since ε1 ≤ 1/8 < 1 by (6.16) and

ε2 + ε3 + ε4 = 3ε′ + ε/2 ≤ 7ε′/8 < 1/2

again by (6.16) and by the assumption ε < 4/7.
By the choice of ε′ and by (6.14) we have

log |a|+ C

ε2ε3
= log |a|+ C

2ε′2
= log |a|+ 1

2
log b ≤ log b.
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Moreover, by (6.14) and since 1/2− ε+ ε′ ≤ 1/2− 3ε′ − ε/2 by (6.16),

1

log b
· log |a|+ C/ε3

1/2− ε2 − ε3 − ε4
=

log |a|
log b + ε′

1/2− 3ε′ − ε/2
≤ 1/2− ε+ ε′

1/2− 3ε′ − ε/2
≤ 1.

Finally, by the choice of ε′ and by (6.15),

1

log b
· ε2C

2

ε2
1ε

4
4

=
1

log b
· 2ε′C2

(ε′/ε)2(ε/2)4
=

32C2

ε′ε2 log b
=

32C3/2

ε2
√

log b
≤ 1.

The last three displayed lines show that (6.1) is satisfied. Proposition 6.1
asserts that g(a/b) is irrational with effective irrationality measure

≤ 2 + ε1 +
1

ε4

(
ε2 + ε3 +

log |a|+ C/ε3

log b

)
= 2 +

ε′

ε
+

2

ε

(
4ε′ +

log |a|
log b

)
= 2 + 9

ε′

ε
+

2

ε

log |a|
log b

= 2 +
1

ε

(
9

√
C

log b
+ 2

log |a|
log b

)
.

�
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