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Abstract: This paper conducts an in-depth exploration of carbon farming at the confluence of
advanced technology and EU policy, particularly within the context of the European Green Deal.
Emphasizing technologies at technology readiness levels (TRL) 6–9, the study critically analyzes
and synthesizes their practical implementation potential in the agricultural sector. Methodologically,
the paper integrates a review of current technologies with an analysis of EU policy frameworks,
focusing on the practical application of these technologies in alignment with policy directives. The
results demonstrate a symbiotic relationship between emerging carbon farming technologies and
evolving EU policies, highlighting how technological advancements can be effectively integrated
within existing and proposed legal structures. This alignment is crucial for fostering practical, market-
ready, and sustainable agricultural practices. Significantly, this study underscores the importance of
bridging theoretical research with commercialization. It proposes a pathway for transitioning current
research insights into innovative, market-responsive products, thereby contributing to sustainable
agricultural practices. This approach not only aligns with the European Green Deal but also addresses
market demands and environmental policy evolution. In conclusion, the paper serves as a critical
link between theoretical advancements and practical applications in sustainable carbon farming. It
offers a comprehensive understanding of both the technological and policy landscapes, aiming to
propel practical, sustainable solutions in step with dynamic environmental policy goals.

Keywords: advanced sensing techniques; AI; carbon credits; soil carbon sequestration

1. Introduction

The 2023 report of the United Nations Intergovernmental Panel on Climate Change
highlights the fact that current efforts to limit global temperature rise to 1.5 ◦C are not
sufficient. This report, the year 2019 was utilized as the baseline for analysis, states that
emissions need to be decreased by 43% by 2030 to meet the Paris Agreement goals. Much
more effort is needed imminently to achieve these goals [1].

At the end of the previous century, as a means for decreasing CO2 emissions, economists
proposed the development of carbon markets since financial incentives have historically
been proven as a very good vehicle for achieving goals. This was put on a path to realization
after the Kyoto Protocol was signed. In a simplistic way, the main principle behind this is
to ensure that for every tonne of CO2 emitted somewhere, another tonne of CO2 emissions
is captured elsewhere. The clean development mechanism (CDM) was the first carbon
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market scheme to be realized back in 2006. In essence, richer countries could logistically
reduce their emissions by paying for the development of carbon-lowering projects in de-
veloping countries and accounting them in their own targets. In response, the EU set up
the European Union Emissions Trading System (EU ETS). A study prepared for DG Clima
in 2016 stated that “. . .85% of the covered projects and 73% of the potential 2013–2020 certified
emission reductions (CERs) supply have a low likelihood of ensuring environmental integrity (i.e.,
ensuring that emission reductions are additional and not over-estimated). Only 2% of the projects
and 7% of CER supply have a high likelihood of ensuring environmental integrity. The remainder,
13% of the projects and 20% of the potential CER supply, involve a medium likelihood of ensuring
environmental integrity. . . our analysis suggests that the CDM’s performance as a whole has
anything but improved, despite improvements of a number of CDM standards. The main reason for
this is a shift in the project portfolio towards projects with more questionable additionality. . .” [2].
Still and despite the low carbon prices and the aforementioned problems and challenges,
the EU ETS managed to reduce carbon emissions by more than 1 bn t CO2(eq) between 2008
and 2016 [3].

On 1 January 2021, the 4th Phase of the EU ETS commenced, with the EC planning
a review of the 2018 Directive by 2026. Since 2018, prices have continuously increased,
exceeding in February 2023 the 100 EUR/t CO2(eq) mark. In the “Fit for 55” package the EC
proposes to increase the EU ETS reduction target for 2030 to −61% compared to 2005. Such
a target is expected to increase the scarcity of EU Emission Allowances (EUAs) leading to
a considerable increase in prices up to 129 EUR/t CO2(eq) [4]. The European Investment
Bank (EIB) in “EIB Group Climate Bank Roadmap 2021–2025” which was published in
November 2020 proposed a new methodology for calculating the shadow cost of carbon
(EIB uses an economic (shadow) price of carbon to convert changes in tonnes of GHG into
euros) reaching 800 EUR/t CO2(eq) in 2050 as is presented in Figure 1 (the values are in
EUR of 2016) [5].
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The price of carbon has a strong link with financing, and especially when projects
present carbon negativity, CO2 credits can and need to be sold to improve the financial
outlook and profitability of these projects. This paper aimed to navigate the complex
domain of carbon farming, not as a comprehensive review, but as a pivotal exploration
in the context of technology development policy. While it references a broad spectrum of
research papers, its core strength lies not in reiterating existing knowledge, but in critically
analyzing and synthesizing the current state of technology, particularly those at technology
readiness levels (TRL) 6–8. By intertwining the policy and legal frameworks of the European
Union on carbon farming with cutting-edge technological advancements, the aim of the
paper was to chart a pragmatic and forward-thinking path for technology development.
This approach was meticulously designed to not only respond to market demands but
also to align with the ambitious targets of the European Green Deal. Consequently, this
paper serves as a crucial bridge between ongoing research, technology development, and
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commercialization, underscoring the potential of integrating current research insights
to foster the creation of innovative products. This endeavor aims not just at theoretical
advancement, but at catalyzing practical, sustainable solutions in carbon farming that are
in step with evolving environmental policy goals.

2. Carbon Capture and Storage

In general, carbon credits can be issued by any project that can reduce, avoid, destroy,
or capture emissions. This is directly related to CO2 capture and storage, which can take
place as follows:

• CO2 capture In specific production pathways CO2 can be captured at the plant which
has CO2 as a side product of its process [6], or by a specially designed plant that
directly captures CO2 from the air [7]. This can be either reused or sequestered. The
captured CO2 can be biogenic, from fossil fuels, or from direct air capture.

• Geological Carbon Sequestration: CO2 is captured and stored in geological formations
actively contributing to reaching the set climate goals [8].

• Biological Carbon Sequestration, which comes in three forms:

# Soil Carbon Sequestration: This is mostly related to agriculture. Sequestration
of carbon in the ground takes place through the process of photosynthesis. The
carbon storage in the earth is in the form of organic carbon (SOC) or carbonates.
Usually, it is accomplished by properly chosen crop rotation which minimizes
the loss of carbon from the ground along with adding manure, cover cropping
to improve soil structure, adding organic matter, and finally, conservation
tillage practices that enhance water use efficiency, reduce soil erosion, and
increase carbon sequestration in the topsoil.

# Ocean Carbon Sequestration: As in geological carbon sequestration, CO2 is
captured and is then injected directly into water forming bicarbonates [9].

# Forest Carbon Sequestration. This is related to forestry. By utilizing appropriate
practices (e.g., thinning followed by prescribed burning) sequestered CO2
accumulation can be increased in the form of forest soil, litter, biomass, and
deadwood [10].

3. Carbon Farming

The Farm to Fork Strategy is an integral part of the EU comprehensive plan to achieve
carbon neutrality by 2050. It sets radical goals to transform the EU food system, with a
significant emphasis on sustainable practices and reducing the environmental and carbon
footprint of food production and consumption. Under this strategy, the EU aims to reduce
the use of chemical pesticides by 50%, decrease nutrient losses by at least 50% while
ensuring no deterioration in soil fertility, and reduce the use of fertilizers by at least 20% by
2030. These ambitious targets are designed to facilitate a systemic change in agricultural
practices, aligning them with environmental sustainability. Moreover, the strategy envisions
a significant increase in organic farming, covering 25% of agricultural land by 2030, thus
fostering biodiversity and reducing the agricultural sector’s carbon footprint.

In this transformative context, carbon farming emerges as a key component. Carbon
farming can be defined as a farm management system where methods are utilized to
achieve the sequestration of atmospheric carbon into the soil and in crop roots, wood, and
leaves. The overall objective is to remove CO2 from the atmosphere and store it in the soil
for the long term [11,12].

The European Commission has adopted the Communication on Sustainable Carbon
Cycles in line with the Farm to Fork Strategy. This communication outlines the actions
targeting at mainstreaming carbon farming as a green business model. The main measures
included are as follows [13]:

• The promotion of carbon farming practices under the Common Agricultural Policy
(CAP) and other EU programmes
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• Activities promoting the standardization of monitoring, reporting, and verification
methodologies.

The main carbon farming practices for cropping are the following [14–17]:

• Adopt no-till cropping practices: Soil disturbance by any means and especially tillage
leads to breaking up of soil aggregates, organic matter, and biochemical structures. It
increases the risk of soil erosion and GHG release. These can be avoided with no-till
practices, whereby improving SOC sequestration and soil structure. It is important to
underline that no-till practices alone do not account for SOC sequestration, but they
are important for systematic carbon farming approaches that also incorporate other
practices [18].

• Apply biochar: Biochar is derived from pyrolysis or gasification of organic material
and its application is basically direct carbon application with most of the carbon
content being absorbed in the short term of the carbon cycle. It enhances soil fertility
and stability, SOC sequestration, and water retention. It is a low-cost choice and it is
environmentally friendly [19].

• Apply mulch to bare soil: Bare soil, as heavily tilled soil too, is prone to wind and water
erosion reducing topsoil SOC content. Practices like mulching in the form of cover
crops, crop residues, composting, etc., prevent erosion and enhance SOC sequestration
by establishing biochemical structures and increasing microbial activity, soil structure,
and nutrient cycling. They also help with soil water retention and lowering the mean
soil temperature [20].

• Establish areas of native vegetation: Establishing areas of native vegetation as a form
of carbon farming primarily contributes to carbon sequestration, where the inherent
compatibility of native vegetation with local conditions leads to robust growth and
enhanced carbon absorption during photosynthesis. This not only sequesters carbon
in plant tissues but also improves soil health through robust root systems that retain
soil structure and prevent erosion, creating a conducive environment for nutrient
cycling and further soil carbon sequestration. The promotion of biodiversity is another
significant benefit, as native vegetation provides habitats for local fauna, contributing
to a more resilient ecosystem and a healthier soil microbiome. Additionally, native
vegetation plays a role in local water cycle regulation, affecting the soil’s ability to store
carbon through its water retention capacity. Moreover, the reduced input requirements
for native vegetation, such as the reduced requirements for water, fertilizers, and pes-
ticides, contribute to lower greenhouse gas emissions associated with the production
and application of these inputs, making it a more sustainable choice [21].

• Inter-crop with perennial pastures: Avoiding monocultures and establishing biodiver-
sity with crop rotations of polycultures accompanied by native vegetation reducing
areas of bare soil to the minimum, leads to cultivation of a field scale ecosystem.
Moving in this direction means reaping the benefits of regenerative agriculture with
microbial biomass and root networks increasing soil health, fertility crop yield, and
SOC sequestration, while also avoiding erosion [22].

• Plant perennial pastures: Cropping perennial pastures entails cultivating perennial
grasses with deep root systems that enhance soil-carbon sequestration, improve soil
structure, and prevent erosion. These grasses capture atmospheric carbon dioxide,
significantly reducing carbon release back into the atmosphere. Additionally, perennial
pastures foster soil microbial activities essential for nutrient cycling, aiding further
in carbon sequestration. They also promote local biodiversity, providing habitats for
various organisms, which in turn supports a more resilient ecosystem conducive for
long-term carbon sequestration. Moreover, being resilient to environmental stressors,
perennial pastures require reduced inputs like water, fertilizers, and pesticides, thus
reducing associated greenhouse gas emissions [23].

• Plant tree belts: Except from the aforementioned benefits, tree belts also offer wind
protection for the crops, they lower the mean soil temperature by providing shade, they
improve the biodiversity of the fields, and provide a habitat for various organisms [24].
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• Plant trees for harvest: Planting trees for harvest, such as oil mallee, engages in carbon
sequestration during growth, while improving soil health through enhanced structure
and erosion prevention. This practice supports local biodiversity, contributing to a
more resilient ecosystem. The harvested products like oil serve as renewable resources,
potentially reducing reliance on fossil-based products. Additionally, the lower input
requirements compared to conventional crops, reduce associated greenhouse gas
emissions. Through a managed harvesting and replanting cycle, this practice can
provide sustainable income and resources alongside environmental benefits [25].

• Retain stubble after crop harvest: Stubble retention reduces soil erosion, helps with
water retention and infiltration while enhancing nutrient and carbon input. Its impact
is even greater when combined with other practices and in general it enhances plant
diversity leading to more carbon being sequestered. The results depend on the quality
of the carbon input but in any case, stubble retention improves soil health [26].

Table 1 presents a summary of the literature review results performed in this section
highlighting the key findings, gaps identified, and relevance.

Table 1. Summary of literature review findings of Section 3.

Reference Key Findings Gaps Identified Relevance

[11,12]

Defined carbon farming as a farm
management system aiming at the

sequestration of
atmospheric carbon.

Detailed impact assessment of
different carbon farming practices
on various soil types and climates.

Provides a definition of carbon
farming to be used as a base,

aligning with the paper’s focus on
bridging technology and policy.

[13]

Outlines EU actions for
mainstreaming carbon farming as

part of the Sustainable Carbon
Cycles Communication.

Need for more comprehensive
policy frameworks that integrate

economic, environmental, and
social aspects.

Highlights the policy background
against which the paper’s

recommendations are made.

Describes main carbon farming
practices for cropping, such as

no-till practices, biochar application,
and mulching.

Comparative analysis of the
effectiveness and scalability of

different carbon farming practices.

Forms the basis for discussing the
technological aspects of carbon

farming practices in the EU context.

4. Measuring Soil Carbon Sequestration

Carbon stock in soil encompasses both organic and inorganic carbon. The latter, soil
inorganic carbon (SIC), exists as carbonate minerals within the soil. Soil organic carbon
(SOC), on the other hand, is found in the following two forms: as fresh plant matter,
which is readily available SOC, and in the form of humus or charcoal, known as inert
SOC. Current research studies predominantly concentrate on the sequestration of SOC.
Soil carbon acts as a significant carbon sink, capable of capturing and storing carbon
which would otherwise contribute to atmospheric CO2 levels. SOC typically retains carbon
for several decades, a duration influenced by decomposition rates, whereas SIC has the
capacity to sequester carbon for over 70,000 years. Methods commonly employed for SOC
sequestration primarily involve land management strategies, including planting perennial
crops, retaining plant residues and compost, minimizing tillage, and adopting varied
agricultural practices specific to different regions.

4.1. Traditional Methods

The recommended calculation for changes in SOC stock is to multiply organic carbon
measurements with bulk density measurements for a fixed depth of 0–30 cm. The result
of this calculation should then be reported as the mass of carbon per unit area, usually t
[CO2(eq)] ha−1 [27]. Traditionally, in detail the steps to be followed for estimating the soil
carbon sequestration are the following [28]:

• Sampling design—stratification of the farm
• Sample collection
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• Sample preparation and analytical methods
• Quantification of SOC stocks
• Scaling SOC stocks to landscape and whole farms.

Stratification is very important and key to the overall quantification of soil carbon
stocks and can be affected by various parameters, including agricultural productivity,
economic outputs, potential GHG emissions, and social and cultural values [29]. After the
points from where samples will be collected have been specified, traditionally samples are
taken by hand using a steel corer since most arable lands do not contain a large amount of
rocks. The samples need to be collected at least at 0–10 and 10–30 cm depth intervals, while
it is good to take samples in the 30–50 cm depth, if feasible. In literature, it is proposed to
take fewer samples at the 30–50 cm depth due to the difficulties faced in obtaining them.
The samples are then sent to a soil laboratory where by using standardized dry combustion
or wet oxidation, SOC can be measured.

4.2. Emerging Methods

The process described above is time consuming, labor consuming, and costly. There
are several emerging alternative methods aiming to address these shortcomings. These can
be categorized as follows [30–32]: spectroscopy; eddy covariance and carbon flux; remote
sensing; and electrical conductivity.

4.2.1. Spectroscopy

The theoretical base of spectroscopy approaches is based on the soil diffuse reflectance
property. This, in turn, depends on soil composition, particle size distribution, organic
matter, iron oxides and carbonates present, and soluble salts in the soil [33]. Reflectance
spectroscopy for SOC estimation appears to have many advantages compared to lab
measurements in terms of cost-effectiveness, ease of use, and reliable repeatability, aiding
in the construction of large soil libraries [34]. Multiple types of spectroscopy have been
used for soil carbon measurement like visible [35] and near-infrared (Vis–NIR) [36,37], mid-
infrared (MIR) [37], laser-induced breakdown spectroscopy (LIBS) [38], inelastic neutron
scattering (INS) [39,40], X-ray fluorescence (XRF) [41], and γ-ray spectroscopy [42]. Vis–NIR
is currently considered to be one of the most promising methods due to the relatively high
accuracy and in-field use capabilities [30]. The same conclusion was reached in a study
where a hyperspectral optical sensor was used, and the most important spectrum was
400–700 nm (Vis) for SOC prediction [43]. Enhanced results have been achieved with data
fusion of visible spectrum data, RGB digital camera data, and sentinel 2 bands with the use
of machine learning [44]. Other fusion attempts were made between MIR and XRF and the
resulting model results did not surpass the individual models [45]. On the other hand, the
combination of Vis–NIR and the XRF model produced superior results in SOC estimation
compared to the individual models [46].

In any case, the accuracy of the results depends heavily on the processing techniques.
A study of Vis–NIR–SWIR spectroscopy, with the use of three spectrometers in four field
and lab setups, underlines the importance of the ISS spectral alignment method, for direct
comparability of data [47]. Other studies also focused on Vis–NIR [48] and MIR [49] data
pre-processing methods.

The spectroscopy methods can be utilized in mainly three ways. The first method
consists of obtaining the samples in the field in the traditional way and then using a
spectrometer in the laboratory; the second method is to use a portable spectrometer in
the field; the third is the use of spectrometer sensor assemblies in the soil. A performance
assessment between a fixed position MIR, a portable MIR, and portable Vis–NIR device
data, processed by the Cubist ML algorithm was carried out [50]. Fixed position MIR
gave the most accurate results, but the portable Vis–NIR device was the most cost-effective
for the field-scale use. Portable NIR spectrometers currently cost in the range of a few
thousand euros in terms of hardware, but still face maturity issues especially when used by
non-experts [51].
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4.2.2. Eddy Covariance and Carbon Flux

This method measures carbon fluxes in the atmosphere around agricultural lands and
in areas where there is a considerable carbon exchange between the air and the soil [52–54].
The method can be used for large areas and presents challenges in its application for small
farm level measurements. As stated in [55] spatial carbon flux variations under 20 m cannot
be traced. Other challenges have also occurred in the multi-year dataset from EC in [56]
with sensor drift due to dirt, sensor self-heating, and high wind speeds among them. All
these sources of uncertainty add-up in the long-term, demanding reoccurring calibration,
data filtering, and data gap filling (due to quality flags). At the same time, however, when
eddy covariance data are correlated with other data, such as farm management data, more
accurate measurements can be obtained [57].

4.2.3. Remote Sensing

Remote sensing was first used to measure soil carbon in larger areas. Optical sensors
that can capture object wavelengths in the visible, near infrared, and shortwave infrared
spectral regions mounted on airborne (aircrafts and drones) or spaceborne (satellites) plat-
forms can provide sufficient data (bands and indices) for measuring soil carbon especially
when coupled with artificial intelligence (AI) and machine learning (ML) techniques [58].

Specifically, on airborne platforms, there are sensors mounted either on aircraft or more
commonly on unmanned aerial systems (UAS). Examples of aircraft-based platforms are
APEX and HyMap. In [59] HyMap acquired data were used for field-scale SOC predictions
for various surfaces. In [60] Apex hyperspectral data were used along with local soil
datasets and sentinel 2 data. The study shows that the CAI index from APEX and the NBR2
index from sentinel 2 highly correlate with crop residue cover in the field that affects the
SOC prediction and therefore, appropriate thresholds can be applied. On the other hand,
many studies have been conducted to assess the suitability of UAS-mounted sensors for
SOC prediction. In [61], UAV hyperspectral data along with a lab-derived hyperspectral
dataset were evaluated for field scale SOC prediction and the results suggested the optimal
band selection for this specific use. Other attempts, examined the use of UAV hyperspectral
data and soil-library data as an alternative to field sampling [62] as well as the use of UAV
multispectral Vis–NIR data from 120 m altitude and 12 cm spatial resolution achieving
R2 = 0.95 and RMSE = 0.21% on the validation of the model [63]. Although the use of
airborne platforms is quite promising (large cover, easier flight repetition), the ease-of-use,
availability, and archived data of spaceborne platforms make up the factor that defines
them as the most popular choice. Landsat imagery-derived indices for SOM estimation [64],
LAI derived by MODIS imagery and a SOC model data for SOC estimation [65], SOC
estimation with indices derived from sentinel 2 imagery [66,67], and SOC and bulk density
estimation based on SAR data from sentinel 1 along with a structural equation model [68]
are just a few examples.

Many studies have examined the effect of various indices and other data as predictors
on SOC estimation. The NBR2 (correlates with soil moisture) and NDVI (correlates with
vegetation) thresholds from sentinel 2 have also been examined for noise removal and
better accuracy in [69]. In another study, Landsat-8 derived indices were characterized
as weak predictors, while soil structure, geographic features, weather data, and BI were
characterized as stronger predictors [70].

This underlines the importance of combining satellite data with stronger predictors
and other sources. For example, the use of sentinel 2 data along with GIS [71], the fu-
sion of sentinel 1 and sentinel 2 data [72], and the fusion of sentinel 1, sentinel 2, and
DEM [66–70,73–76].

4.2.4. Electrical Conductivity

The measurement of electrical conductivity of soils has been tested for many years
with non-contact and Coulter-based sensors [77] and it has been an invaluable tool with
multiple applications in precision agriculture [78,79]. There are references in the relevant lit-
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erature that electrical conductivity could also be used to estimate soil carbon [80], especially
with low soil salinity. In the study of [81] no direct correlation with SOC content was found
but the EC readings could be valuable for improved SOC spatial estimation. While EC
levels cannot be quantified precisely, their relative differences are useful as ancillary data,
in a relative sense, when combined with other information such as soil texture, land use,
and soil salinity [82]. Since electrical conductivity is used extensively to measure/estimate
multiple soil parameters and at the same time low cost sensors or even non-contact sensors
are currently deployed, electrical conductivity could be used in soil carbon measurement
approaches utilizing multiple techniques [30]. An approach for predicting clay and SOM
content with the combination of electrical conductivity and RGB imagery was made [74,83]
providing a simple and promising method without soil sampling. Some other examples are
the combination of EC data and a γ-ray spectrometer for field-scale soil property estima-
tion [38], as well as with ground-penetrating radar (GPR) for field-scale SOC estimation [84].
It is worth mentioning that with the use of machine learning, predictions of EC itself and
SOC content can be made by providing data from extensive soil libraries [85]. This study
was an attempt to produce a data-driven prediction model with the physical attributes
that affect the predictions being more transparent. Originally, for this purpose, there are
model-based predictions, where a plethora of SOC models can be used [86].

4.2.5. Soil Organic Carbon Modelling

To sum up all the above, there are various methods such as laboratory spectroscopy,
in situ measurements, airborne hyperspectral and multispectral imagery, spaceborne hy-
perspectral and multispectral imagery, etc. but there is not a cost-effective and sufficiently
rapid way for direct SOC measurements, even on the field-scale. What is more, there are
many studies that state the importance of various chemical and biological indicators that
affect SOC content [87]. Carbon inputs, climate, soil carbon pools, and soil properties play
a significant role in the rate of change of SOC sequestration [88] together with elevation,
slope, and vegetation type [89] as well as land use and management in exogenic factors [90].
As many as possible of the above indicators must be considered in order to produce a
model that can provide accurate estimations of SOC content. Many approaches have been
made in the past for SOC modelling [91] and a variety of options is available today or
even validated [86] but their accuracy in most cases cannot be compared to data-driven
approaches, although, they can be used as a component of stochastic filtering methodolo-
gies such as Kalman filtering [92,93]. On the other hand, there are plenty of data-driven
approaches in order to find the relationship between ancillary data and SOC content. A
study tested the use of ANN, SVM, MLR, and RF methodologies with RF being the most
accurate [94], while in another study RF, XGBoost, and RFRK methodologies were com-
pared with RFRK showing the best results and XGBoost also being very promising on the
local scale [95]. Another study between PLSR, RF, KNN, ANN, CNN, and LSTM stated
that LSTM and CNN following, showed the best results but their training requires large
datasets [96]. Finally, other deep learning routes have been explored [97,98] showing also
promising results but as it stands more studies should be conducted in order to define the
most suitable configuration of collected data and ML/DL algorithms as there are plenty of
them available to be studied [87].

Table 2 presents a summary of the literature review results performed in this section
highlighting the key findings, gaps identified, and relevance.
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Table 2. Summary of literature review findings of Section 4.

Reference Key Findings Gaps Identified Relevance

[27,28]

Describes traditional methods for
SOC stock calculation and steps for

estimating soil-carbon
sequestration, emphasizing

sampling design and preparation.

The need for more efficient, less
labor-intensive methods for

large-scale SOC measurement.

Highlight traditional
methodologies as a baseline for

discussing advancements in carbon
sequestration measurement.

[30–32]

Introduces emerging methods such
as spectroscopy, eddy covariance,

remote sensing, and electrical
conductivity, aiming to address

shortcomings of traditional
methods.

Exploration of the accuracy and
practical application limits of these

emerging methods in diverse
environmental settings.

Provide a comprehensive overview
of current innovations in SOC
measurement, crucial for the

paper’s focus on technological
advancements.

[33–46]

Discusses various types of
spectroscopy used for soil carbon
measurement, such as Vis–NIR,

MIR, and XRF, and their advantages
in cost-effectiveness and

repeatability.

Detailed comparison of different
spectroscopy methods in terms of
accuracy, ease-of-use, and cost for

practical applications.

Support the paper’s exploration of
cost-effective and efficient

technologies in carbon farming.

[52–57]

Eddy covariance method outlined
for measuring carbon fluxes,

highlighting its use for large areas
but noting challenges in small-scale

application.

Need for refinement in sensor
technology and data processing to

enhance accuracy, especially for
small-scale farms.

Aligns with the discussion on
scalable and adaptable

measurement technologies in
carbon farming.

[58–76]

Description of remote sensing
techniques utilizing various

platforms and sensors for
soil-carbon estimation, often

coupled with AI and ML
techniques.

Further research into AI algorithms
for remote sensing and data fusion

techniques between remote and
local sensing methods for more

accurate SOC estimation with lower
cost.

Illustrates the intersection of remote
sensing technology with AI,

relevant to the paper’s theme of
integrating cutting-edge technology

with carbon farming.

Explores the use of electrical
conductivity in soil carbon
estimation, highlighting its

potential when combined with
other techniques.

Investigation into the direct
correlation of EC readings with

SOC content across different soil
types and conditions.

Adds to the paper’s discussion on
multi-faceted, innovative
approaches to soil-carbon

measurement.

5. From Research to Market

There are many prisms under which carbon farming can be seen. First, from the
environmental point of view, soil holds quite a large amount of carbon stocks and this needs
to be maintained this way. What is more, the potential of enhanced carbon sequestration is
helping, in a way, to tackle GHG offsets. From the agricultural point of view, the amount
of carbon that was released from the topsoil until now, can be regained and subsequently
improve soil fertility, crop yield, food security, freshwater systems, etc. Finally, from the
economic point of view, agricultural benefits possibly lead to farmers’ economic stability
and in combination with environmental goals, one more economic incentive is coming
up to help farmers adopt carbon farming practices. Currently, there are several market
products that can measure soil carbon or even provide platforms for issuing carbon credit
certificates. A study performed by Cleantech Group in 2021 identified over 20 companies
active in the following [99]:

• Sub-surface sampling
• Soil modelling
• Sub-surface sampling and soil modelling
• Surface sampling and soil modeling
• Soil analytics
• Satellite data.
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Furthermore, a very small number of companies have been identified offering or
advertising to offer in the medium-term future services relevant to issuing carbon credit
certificates. In all cases, these companies follow a standard to measure SOC and then have
an accreditation organism verify and certify the measurements. These certified measure-
ments can then be utilized in schemes leading to the issue of carbon credit certificates.
The average acre can generate about 0.2 credits annually, while at the same time in the
US an income of 30 USD can be achieved per acre on an annual basis [100]. These figures
highlight the dynamics of the market and the potential extra income for farmers especially
taking into consideration the increasing perspective of carbon credit value. Many coun-
tries and unions around the world including the EU, Australia, and US are taking action
with public policies in order to smooth the way for farmers entering the voluntary carbon
market where they can sell the generated carbon credits to other entities that need them to
balance their emissions [101]. For example, in Australia, the 2022 carbon farming projects
reached 213 entries while in the period 2015–2021 there were 212 entries in total [100]. The
private sector is already participating in such markets with one notable example being
Microsoft that bought 40,000 credits from SOC sequestration generated through the Regen
Network [102].

For these credits to correspond to real net reductions in GHGs and in order to be
tradable, protocols have been developed. These protocols are in fact frameworks that
define how to measure, monitor, report, and verify soil carbon sequestration (SOC MRV).
Most of those focus on the benefits of GHG impacts of the project and each protocol has
provisioned different included practices among cropping, tillage, grazing, input, and other
variables that affect the state of the project. They refer to farming projects that implement
conventional methods where they want to switch to regenerative agriculture practices.
These protocols are designed to evaluate the impact of adopted practices in terms of
the following:

• Additionality: The protocol evaluates whether the adopted practices in a project
lead to emission reductions in addition to what would have happened by following
conventional or other practices before project registration.

• Leakage: The protocol evaluates if project activities result in emission increase beyond
project boundaries. For instance, if those activities for enhanced SOC sequestration
lead to lower productivity, forcing agricultural land expansion in order to compensate,
this will result in increased emissions in the net balance. Monitoring for potential
losses is prescribed in all of the protocols.

• Reversal: There is a risk in the case of the release of SOC sequestered in previous
observations, due to enforced actions or practices on the project. In order to mitigate
this risk, a percentage of 5 or 10% of the credits goes to a buffer pool in most of
the protocols.

• Permanence: Protocols require that generated carbon credits will remain in the soil in
the long-term. Measures to mitigate the risk of reversals are in place. The permanence
period can be 10, 20, 25, 30 years, equal to the credit generation period or dual
options with 100 years period or 25 years with a 20% credit deduction, depending on
the protocol.

A baseline scenario which refers to the initial SOC state of the project is being used to
quantify the amount of generated carbon credits. Each protocol has differences, as shown
above, with variations in the requirements between each MRV as described in [103]. The
span of these variations is presented below:

• Measurement approach: One of the most popular approaches is sampling but models
or remote sensing techniques are eligible in a few cases while hybrid approaches are
also frequent.

• Model: In case of modeling approaches, DNDC, RothC, GGIT, FullCAM, or any other
peer-reviewed model can be used.

• Baseline: With project registration a steady baseline can be set (static), a moving base-
line depending on the results/predictions (dynamic), or both established by sampling.
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• Stratification: In a few protocols there is required a minimum of 1–3 strata while in
others it is at least recommended.

• Min samples: Three samples per strata or a number of required samples per 1000 ha.
• Sampling frequency: One sampling with project registration and least every 5 years

after that.
• Allowable uncertainty: 10–20% in most cases.

From the public policy prism, the EU is positive to move forward with carbon farm-
ing [104] and seems to be in favor of carbon credits [105] but still, there is progress to be
made at that level. Apart from legislation, there are also critical steps to be carried out [103]:

• Protocol differences and things to be changed especially in the capture of spatio-
temporal variability. The prohibitive cost of sampling is an obstacle for capturing
temporal variability and the requirements regarding the number of samples are simply
also not enough to ensure accuracy in spatial variability of SOC. Sampling is crucial in
order to establish a baseline and stratification, depending not on a standard number
but on geographic and soil conditions, is important. Other means such as spectroscopy,
remote sensing or hybrid methods must be explored.

• Credit equivalency issues that occur from inter-protocol requirements such as sampling
depth and equivalent soil mass. All soil sampling protocols require taking samples at
30 cm, with recommendations reaching 1 or 2 m depth. Sampling depth is essential
to understand the effect of the enforced practices on the SOC distribution as well as
monitoring the changes in bulk density. Equivalent soil mass is taking into account
the changes in bulk density that lead to different soil mass mainly in the topsoil and
ultimately having more realistic measurements. A more unified approach among
protocols regarding sampling will bring better credit equivalency. This step needs
to be made in order to give the opportunity to farmers to trade their carbon credits,
presenting them with another economic incentive to continue carbon farming practices
and reduce permanence risk.

• Project scale issues that go hand in hand with uncertainty. In terms of sampling,
smaller scale plots that meet the protocol requirements have denser samples than
larger plots providing more certain measurements—which still may be not enough.
On the other hand, with regard to modelling—that can be a valuable tool—uncertainty
grows inversely related to field scale. Scale categories may not be possible to be set
but generating credits depending on the uncertainty of the results is feasible. Finding
the appropriate project scale will lead to more cost-efficient MRVs that will generate
carbon credits with less risk in terms of additionality and reversal. Establishing a
regional SOC sequestration overview in parallel with a project-scale overview will
reduce risk of leakage.

• Benchmarking ability is the key in introducing new methods for measuring SOC
sequestration and quantifying the uncertainty of the findings. A plethora of geographic
conditions, soil structure, spectroscopy, and other data certainly exist in private or
open-access libraries. The development of a joint open-access library of high standards
will help shift the focus onto areas with a lack of data and eventually pave the way for
better model calibration, a more accurate baseline, and higher determination.

Finally, Table 3 presents a summary of the literature review results performed in this
section highlighting the key findings, gaps identified, and relevance.
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Table 3. Summary of literature review findings of Section 5.

Reference Key Findings Gaps Identified Relevance

[99]

Identified over 20 companies active
in various aspects of soil carbon
measurement and carbon credit

certification, indicating a growing
market.

Exploration of the long-term
viability and scalability of these

companies’ technologies in different
agricultural settings.

Demonstrates the market’s response
to carbon farming, aligning with the
paper’s focus on bridging research

with practical applications.

[100]

Discusses the economic potential of
carbon farming for farmers,

including income generation from
carbon credits.

Analysis of market barriers and
incentives for widespread adoption

of carbon farming practices.

Highlights the economic
implications of carbon farming,

relevant to policy development and
market dynamics.

[101]

Details public policy actions
supporting carbon farming,

showing international movements
towards integrating carbon farming

into policy frameworks.

Assessment of the effectiveness of
these policies in promoting

sustainable farming and their
impact on rural economies.

Provides context for the discussion
on policy development and its
influence on carbon farming

practices and market dynamics.

[102]

Example of private sector
engagement in carbon markets,

with Microsoft’s purchase of carbon
credits, showcasing corporate

interest.

Exploration of corporate
motivations and the potential for

long-term commitments to carbon
farming projects.

Illustrates private sector
involvement, underlining the

importance of carbon farming in
corporate sustainability strategies.

[103]

Discusses the protocol differences
in soil-carbon measurement and
credit issuance, highlighting the

need for standardization.

Need for unified protocols to ensure
accuracy, comparability, and trust in

carbon credit markets.

Relevant to the paper’s theme of
integrating policy and technology
for reliable carbon credit systems.

[104,105]

Indicate the EU positive stance
towards advancing carbon farming,

suggesting potential future
developments in legislation and

support.

Detailed analysis of how EU
policies could evolve to support
carbon farming initiatives more

effectively.

Offers insight into the policy
landscape, crucial for

understanding the regulatory
context of carbon farming in the EU.

6. Conclusions and Way Forward

Carbon farming is on the rise. Respective tools and tradable carbon credit certificates
are nascent and need to scale up in order to meet the set goals. Research is showing that
approaches encompassing different methods and technologies will be the way forward.
Innovators need to combine different approaches and technologies in the most cost-effective
way possible to support the uptake of these solutions especially by small and medium
farmers. The technologies and approaches that can be combined can be summarized as
given below:

• Satellite and drone multispectral photography.
• Eddy Covariance.
• Electro-conductivity either from ground sensors or non-contact sensors.
• Spectrometers, both portable and low-cost ground sensors since recently, spectral

sensor breakouts became available for both visible and NIR with each having a cost of
~EUR 25.

• Farming and meteorological data analysis through farm management information
systems (FMIS).

All the above will essentially be combined through the use of AI and Big Data analytics
technologies, as presented graphically in Figure 2.
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• Integration of AI, remote sensing, and IoT in achieving lower cost, accurate carbon
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• Investigation of carbon credit market dynamics and evaluation of possible farmer

incentives.
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• Scalability and barriers to adoption of carbon farming technologies.
• Determination of the impact of carbon farming on the technical progress of agriculture.

The ultimate outcome will be easy access for farmers to issue tradable carbon credit
certificates, increasing their income while providing an invaluable service to removing and
storing atmospheric CO2.
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