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Abstract: The gypsum crystals (CaSO4·2H2O) crystallizes in a low symmetry system (monoclinic)
and shows a marked layered structure along with a perfect cleavage parallel to the {010} faces.
Owing to its widespread occurrence, as a single or twinned crystal, here the gypsum equilibrium
(E.S.) and growth shapes (G.S.) have been re-visited. In making the distinction among E.S. and
G.S., in the present work, the basic difference between epitaxy and homo-taxy is clearly evidenced.
Gypsum has also been a fruitful occasion to recollect the general rules concerning either contact or
penetration twins, for free growing and for twinned crystals nucleating onto pre-existing substrates.
Both geometric and crystal growth aspects have been considered as well, by unifying theory and
experiments of crystallography and crystal growth through the intervention of βadh, the physical
quantity representing the specific adhesion energy between gypsum and other phases. Hence, the
adhesion energy allowed us to systematically use the Dupré’s formula. In the final part of the paper,
peculiar attention has been paid to sediments (or solution growth) where the crystal size is very
small, in order to offer a new simple way to afford classical (CNT) and non-classical nucleation
(NCNT) theories, both ruling two quantities commonly used in the industrial crystallization: the
total induction times (ttotal

ind ) and crystal size distribution (CSD).

Keywords: equilibrium and growth shapes of gypsum; origins of gypsum-twins; epitaxy and
homoepitaxy; crystal size distribution

1. Introduction

Writing an all-encompassing review paper on gypsum, CaSO4·2H2O, represents a sci-
entific task that transcends our capabilities. Despite having worked on this strategic crystal
and its related mineral products for many decades, our gaze has always been directed with
the attention of that type of researcher who takes equal account the “crystallography of the
low-symmetry systems” and the complex phenomenon usually called “crystal growth”.
It will, therefore, not be a coincidence that in this review we will make constant reference
to the School of Marseille, where Mrs. Simon [1,2], Kern [3–5], Boistelle [6–8], and many
others have accustomed us to inextricably unite the “crystal bulk” to the “crystal surface”
properties and to the “mother phase = environment” characteristics. This meant putting
together the “classic 3D crystallography” with the “2D thermodynamics and kinetics”
and the “fluid-dynamics” of the foreign phases, which can (or cannot) enter the crystal to
become part of its own equilibrium E.S. and growth shapes G.S.

Essentially, for these reasons, we tried to deal with gypsum, aware that it would
not make sense to treat gypsum without its twinning. Furthermore, from geologists, we
understand every day that the lattice geometry is a consequence of the physics that they
experience in epitaxy and in analogous phenomena (such as topo-and homo-taxy).

Hence, we conceived this review as composed by:
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(i) a short chapter giving the general rules for twinning, from the twin-geometry to the
adhesion energy between the individuals composing a twin, to both its activation
energy for nucleation and the related frequency;

(ii) the basic distinction between the unicity of gypsum E.S. and its G.S. intrinsic plurality,
as contained either in experiments (observation) or theory (calculation). A peculiar
attention will be paid to the recent AFM observation on the cleavage {010} pinacoid,
which changed our way of thinking on the gypsum growth mechanisms;

(iii) the intervention of classic twinning (geometry) in the formation of straight twins,
along the superposition of the homo-epitaxy (physics) when “curved” gypsum twins
appear, as it usually occurs in geology;

(iv) the origins of the gypsum twinning, for both “contact and penetration twins”. The
meaning of the Original Composition Plane (OCP) will be recovered, along with
a twin analysis that takes into account all the literature data and an our recently
published and complete study on the gypsum laws (for experiments and calculation);

(v) a final paragraph outlining that gypsum usually present as an evaporite precipitating
from brines and also is found as a scale in many industrial processes. Special care
will be carried out for the growth of “very small sized crystals”, leaving aside the
beauty and ease of the large ones we encountered when working on their E.S. and G.S.
Homo- and heterogeneous nucleation will be addressed along with the fundaments
of classic (CNT) and non-classic (NCNT) nucleation theories. We will formulate, here
and first as well, a practical application of foreseeing tind, i.e., the induction time
needed to observe the microscopic and freshly precipitated crystals. Their crystal size
distribution (CSD) will be analyzed, with a specific attention to the Dead Sea (Israel)
phenomena: all the papers revolving around the PhD Thesis of A. Reiss [9] will be
considered, having taken into account that all these studies [10–16] constitute the first
example of how to scientifically tackle the problem of desertification.

2. General Rules for Twinning
2.1. Twinning (Geometry and Structure)

Let us recollect a classic definition of twinning (a crystal A on another crystal A in
twinned position). Only one crystal species (A) is involved, and it can occur either during
phase transitions or chemical reactions producing a crystal from other phases (vapour,
solution, melt) and also from a pre-existent crystal phase. Hence, a twin can be viewed
as an anomaly or a defect in respect to a homogeneous crystal. In any case, two twinned
individuals are linked by a symmetry element (plane, axis), which cannot belong to the
symmetry of the crystal A.

2.2. Specific Twin Energy

The specific twin energy can be obtained by applying Dupré’s equation, starting from
a general relation and recollecting that all the playing quantities are referred to the surface
unity, and then should be expressed in erg × cm−2 [1,2].

Figure 1 explains the three stages needed to separate two distinct phases (A and
B). The (AB) aggregate is made by two individuals (A and B), both having an area S. To
separate them, a work WA/B

sep is needed. At this point, it is a matter of moving from the
separation works to the specific surface energies. As an example to crystal A, its specific
surface energy is defined: γA = WA

sep/(2S) according to the Born–Stern definition [17]. This
general formula can be easily applied to a twin reaction: (A) is the parent crystal (P), while
the other crystal (B) is the twinned (T) one. Accordingly, one realizes the transition from the
separation works: WA/B

sep = WA
sep + WB

sep − 2EA/B
adh to the specific surface energies, applied

to the parent (P) and the twinned (T) crystals. The so obtained separation works are to
be divided by their common area (2S), and hence one finally writes the Dupré’s formula
adapted to a twin: γPT = γP + γT − βP/T

adh . For a deeper understanding of the general
formula, readers are invited to observe both Figure 1 and Table 1.
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Figure 1. The separation work WAB comes from the balance of two works: (i) that for separating each
of the two phases (WA, WB) and (ii) the work recovered (−2EAB) by coupling the two phases. To
achieve the sense of “specific”, all works must be divided by 2S. Table 1 is for twinning.

Table 1. The total expense (WP/T
sep ), as in the first row, equals the sum of two energies: that to separate

crystal P (WP
sep) and also crystal T (WT

sep). Furthermore, we must consider the energy gain obtained by

recomposing the twin 2EP/T
adh /2S, as from Figure 1. The second and third rows describe the transition

from expenses and gain to the specific surface energy values.

Total Energy
Expense = Energy (P)

Expense + Energy (T)
Expense − Total Energy

Gain

WP/T
sep = WP

sep + W T
sep − 2EP/T

adh

γPT = γP + γT − β P/T
adh

γtwin = γ0 + γ0 − β P/T
adh

Thus, from Table 1, one achieves for a twin: γP = γT = γ0. The specific energy of this
aggregate depends on each constituent and on their adhesion energy, according to the
Dupré’s equation:

γPT= γtwin= 2γ0−βP/T
adh (1)

The energy amount 2γ0 is the cohesion energy of the single crystal (Ecohes = 2γ0), while
γ0 is nothing else than the specific surface energy of the original composition plane (OCP)
of the twin. From the value of the specific adhesion energy, Equation (1) reads (Figure 2):
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P

T

P

T

Figure 2. The drawing refers to Equation (1). Furthermore, it comments that the E.S. of a crystal
embryo is able to make a twin. Case (a): γtwin = 2γ0, for two separated crystals. Case (c): 0 < γtwin <
2γ0, for a non-perfect adhesion between P and T. Case (b): γtwin = 0, when one cannot distinguish P
from T.
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(a) if βP/T
adh = 0, any twin occurs, since γtwin = 2γ0 (two normal and separated crystals)

(b) if βP/T
adh = 2γ0, the adhesion is perfect, since γtwin = 0 (a unique crystal obtains, since

one cannot distinguish P from T)
(c) if βP/T

adh < 2γ0, adhesion will be non-perfect. Hence, 0 < γtwin < 2γ0 (because twinning
has its obvious cost)

Practically, the case (c) is the most interesting, also for gypsum. Since we are dealing
with a “twin nucleation” we must examine the E.S. of its 3D-nucleus. Then, its 3D–activation
energy (∆G*

twin), keeping in mind that we will consider, hereinafter, two ways: (i) a 3D-
nucleation on a pre-existing crystal face; (ii) a 3D-nucleation on a free crystal face. We have
just introduced, for that, the concept of the free energy variation (∆G) as a function of the
Born–Stern energies we used in Figure 1 and Table 1.

2.3. The Free 3D-Nucleation of an “Already Twinned” Crystal

We would like to draw the Gibbs–Wulff–Kaischew theorem [18–20] to represent a twin
E.S. (contact twin, for the sake of simplicity). In Figure 3 the i-free faces are indicated by (γP

i ,
Si, hi), while the contact face is drawn as (γ0, S0, h0). As usual, ∆µ is the thermodynamic
supersaturation, and V is the molecular volume of the crystal. Then, a system of (i + 1)
equations is obtained:

γP
i −

∆µ

2V
hi = 0

γP
i

hi
=

∆µ

2V
(γP

i −βadh)−
∆µ

2V
h0 = 0 →

γP
i − βadh

h0
=

∆µ

2V
(2a)

that represents the Gibbs–Wulff–Kaischew theorem, as in Equation (2a), and the next
Equation (2b):

γP
1

h1
=

γP
2

h2
=

γP
3

h3
= · · · =

γP
i − βadhes

h0
=

∆µ

2V
(2b)Minerals 2024, 14, x FOR PEER REVIEW  5  of  21 
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Figure 3. The Gibbs–Wulff–Kaischew theorem. In the Figure, the O point, called the Wulff’s point [19],
represents the completely random origin.

In both Equation (2a,b), the thermodynamic supersaturation is represented by ∆µ = kB
T ln β, where kB is the Boltzmann constant, T is in Kelvin degrees, and β = (C/Ceq) = (1 +
σv). Here, the exceeding supersaturation σv is the distance of the mother phase from its
equilibrium. The actual solution concentration is C, while Ceq is its value at the equilibrium.

There is a way to evaluate the total surface energy (Etot) and the total crystal volume (Vtot):

(i) Etot = 2 × [γ1 S1 + γ2 S2 + . . .] + γ0 S0
(ii) The variation in V tot is obtained through the Euler theorem (homogeneous functions

of 3rd degree), which implies: dVtot = h1dS1 + h2dS2 + . . . h0dS0. This geometric
problem can be solved through the directing cosines (cosµi, cosπi, cosτi) of the segment
normal to each i-face. The true independent variable became the (Si) areas and,
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hence, the distances (hi) are abandoned. The minimum of Etot obtains through the
Lagrange’s multipliers:

λ × E tot − dVtot + λ1 × (dS1 × cosµ1 + . . . + dS0 × cosµ0) + λ2 × (dS1 × cosπ1 + . . . +
dS0 × cosπ0) + λ3 × (dS1 × cosτ1 + . . . + dS0 × cosτ0) = 0

The constants (λ, λ1, λ2, λ3) can be easily calculated. In our reference frame, the
equation of the i-face of the crystal reads: x × cosµi +y × cosπi + z × cosτi − hi = 0. Here, a
point P (having λ1, λ2, λ3 coordinates) can be always found. That is the Wulff-point, which
assumes a distance (di) from the i-face of the crystal

di = hi − λ1 × cosµi − λ2 × cosπi − λ3 × cosτi (3a)

The distance (di) is now related to the constant (λ), implying → di = λ × 2γi, and
Equation (3b) allows writing of the twin E.S., under the assumed condition: 0 < βadh < 2γ0

γ1
d1

=
γ2
d2

= . . . =
γ0 − (βadh/2)

d0
=

1
2λ

(3b)

where the constant, λ, has been calculated from ∆G, according to the Gibbs–Thomson [18,21]
method: λ−1 = (2V/∆µ). Once (∆µ) and the molar crystal volume (V) are known, the crystal
size is known as well.

So far, we evaluated our crystal through its specific adhesion energy βP/T
adh on the

contact plane (OCP). Introducing the energy difference (∆ϕ) between a simple crystal and
a twinned one: ∆ϕ = γ0 −

(
βadh

2

)
, one obtains for different adhesion energies:

βP/T
adh = 0 → ∆ϕ = γ0 ; 0 < βP/T

adh < 2γ0 → 0 < ∆ϕ < γ0 ; βP/T
adh = 2γ0 → ∆ϕ = 0

2.4. Activation Free Energy for the Nucleation of a “Free” 3D-Twinned Embryo

A normal single crystal is made by N particles going from a dispersed to a condensed
phase: their potential energy receives a negative (−∆µ) transition. The volume term (−N
× ∆µ) opposes to the newly generated surface term N2/3 × ∑i ciγi, having neglected both
crystal edges and corners, and defined as (ci) a shape factor for every i-face having a specific
surface energy (γi). The variation in the Gibbs free energy (∆G) reads:

∆G = −N × ∆µ+ N2/3 × ∑i ciγi (4a)

At the unstable equilibrium of this normal crystal: d(∆G)/dN = 0. Hence, a critical

value (N = N*) is needed for which N* = 8
27

(∑i ciγi)
3

(∆µ)3 . Thus: ∆G (N = N*) = ∆G* will assume,

for a (spherical) normal crystal, the value:

∆G∗normal =
(∑i ciγi)

3

(∆µ)2 (4b)

A twin crystal is always made by N particles and the corresponding ∆G value will
adapt himself. Hence ∆G will change to ∆Gtwin, as from Equation (5a), Figure 4.

∆Gtwin = −N∆µ + N
2
3

[
2∑

i
ciγi + 2∑

j
cjγj + γ0c0

]
(5a)
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Figure 4. Twinned crystal: the free i-faces are not interested with the original contact plane (OCP-
dashed line), and then can grow “homothetically”. Instead, the j-faces adjacent to the OCP, will have
an extension depending on the twin energy. The OCP has the constant (c0) related to γ0, its specific
surface energy, as in Figure 3.

From the just cited Equation (5a), the N* size for which d(∆Gtwin)/dN = 0, should
change as well:

∆G∗twin =
4

27

[
2∑i ciγi + 2∑j cjγj + γ0c0

]3

(∆µ)2 (5b)

In case of twins (0 < βP/T
adh < 2γ0), it is always: ∆G*twin > ∆G*normal, as drawn in

Figure 5a, where ∆µ is maintained constant.
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One should consider the 3D nucleation frequency (J3D) as well, which defines the
number of nuclei generated per cm3 and per second. It is correctly assumed that, for a
normal crystal: J3D

normal
∼= exp (−∆G*/kBT), while J3D

twin
∼= exp (−∆G*twin/kBT) for a twin.

3. Gypsum Crystal: From Equilibrium to Growth (or Dissolution) Forms

The crystal E.S. has been univocally defined by Wulff’s theorem [19]:

γ1
h1

=
γ2
h2

=
γ3
h3

= . . . = λ−1 = constant (6)

Here it presented in its simplest way, since it contains our needs:

- E.S. is always a closed and convex polyhedron.
- The constant λ does not depend on the i-face. Its value λ−1 = (2V/∆µ).
- The γi values were chosen as the minima among the i-faces.
- The hi distances of each i-face from the Wulff’s point of the polyhedron are always

proportional to the related γi, as from Equation (6).
- From all the previous items, one must say that the E.S. cannot have a defined volume,

due to Equation (6). It will be homothetic; its shape only depends on the calculated
(or measured) γi values.

Then, one safety writes: E.S. → γi → Wulff’s polyhedron. The E.S. varies according to
the adopted interatomic potential.

3.1. The Theoretical E.S. of Gypsum (CaSO4 ·2H2O)

- Simon and Bienfait [1] calculated the theoretical E.S. by searching the Periodic Bond
Chains (PBCs) through the Hartman–Perdok (HP) method, [22] and considering the
Coulomb interaction based on the electric (e) charge distribution: Ca = +2e, S = −0.3e,
O (SO2−

4 ) = −0.575e, H = +0.326e, O (H2O) = −0.652e. Their E.S. is made by: 3 flats (F)
forms: {010}, {120}, {011}.

- Heijnen and Hartman [23] modified the preceding Coulomb potential, by changing
the charges on the two types of H2O. Their E.S. is always made by the forms {010},
{120}, {011}, and {111}, even if {010} is less dominant with respect to the preceding case.
In both the just quoted works [1,23], the surface was not relaxed (γ = γ unrelaxed).
The surface relaxation was introduced only 20 years later.

- Massaro, Rubbo, and Aquilano [24] used two methods to calculate the surface profiles
of gypsum: (i) searching for the PBCs through the HP method; (ii) a more advanced
way, using the GDIS, 2005 programme [25]. In both cases, a general utility lattice
programme [26] (GULP, 2003) was used to evaluate the γ values. This new synthesis
allowed the attainment of richer and more isotropic E.S., for both unrelaxed and
relaxed shapes. The final gypsum E.S. was made by four flat (F): {010}, {120}, {011},
{111} forms; two stepped (S): {100}, {122} forms, and one kinked (K): {102} form.

In a long period (1965–2010), the theoretic E.S. of gypsum increased in {hkl} forms,
even if is not substantially changed. One may rightly ask which is the E.S. closest to the
reality. The answer is simple: as for whatever kind of crystal, the gypsum E.S. has to
be experimental and, hence, it will depend on T and P and on the medium where the
observation has been made (vapour, solution, melt). See [3] for solution growth, as an
example. Then:

γtheoretical ̸= γexperimental (7)

Moreover, we need to think that the {hkl} forms are considered as made by perfect
surfaces; actually, dislocations could change their reality. Nevertheless, Equation (6) does
not change, and one may write that both the stable E.S. and the unstable E.S. (as for
nucleation) will depend only on the ratios among the γi values. Ultimately, only the Wulff’s
polyhedron dictates the E.S. unicity.
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3.2. The Growth Shape (G.S.) of Gypsum

When a real crystal is immersed in a growing (dissolving) medium, the situation
changes. It is out of the equilibrium and each of its (hkl) faces can grow (at supersaturation)
or dissolve (unsaturation). Hence, a lot of new crystal–medium interfaces will appear, each
presenting its own perfection level. Frank’s discovery [27] imagined that a given (hkl) face
could be disturbed by defects (edge and/or screw dislocations). Since then, the “ideal
crystal” can be only an approximation of the “real crystal”. To understand this, please look
at a natural crystal face, having an averaged area = 1 cm2, where up to 1014 dislocations
can cross a face! This clearly proves that for a given crystal, the E.S. has nothing to do with
its growth shape (G.S.).

The crystal face could be either perfect or imperfect. Moreover, its non-unicity will
be further determined by its surrounding bulk-medium and thus by: (i) super(under)
saturation (±∆µ); (ii) temperature T and pressure p; (iii) diffusion within the boundary
layer (bulk and/or surface); (iv) fluid-dynamics, outside the boundary layer

The cornerstones of the Burton–Cabrera–Frank (BCF) theory [27], despite the many
additions, are not changed in time.

(a) A perfect face (hkl) is populated by elementary steps of thickness dhkl. Every step is
made by atomic or molecular kinks in which the mother phase can enter, and steps
can advance. This mechanism is nothing else than the “2D-nucleation”.

(b) An imperfect (hkl) face will be crossed by one screw dislocation (at least), which
generates on its surface a permanent winding up of the exposed step. This face can
normally advance through spiral growth, under the ∆µ of the mother phase.

(c) The growth units (G.U.s) can enter the kink-steps through their diffusion on the face
surface or in the bulk of the mother phase. Further, it may happen that 2D-nuclei
can form in between adjacent successive steps, so giving rise to a mixed mechanism:
spiral growth + 2D nucleation.

3.2.1. On the {h0l} Growth Forms of Gypsum in Its [010] Zone

Following [28], the gypsum Space Groups (S.G.s) can be A2/a or C2/c. When looking
at the {100} form, which is perpendicular to the glide plane, the stacking . . .AB. . . is made
by the d200 slices (Figure 6). If two different PBCs, at least, should run within each of
these slices, a screw dislocation crossing the face with its Burgers vector equal to the d200
thickness would generate a growth spiral having the stacking . . .AAAA. . ., corresponding
to a new polytype of the S.G. A2. However, this is not allowed for the {100} form. Only the
[001] PBCs develop within the d200 thickness corresponding to the period imposed by the
S.G. A2/a since no bond can be found between two successive [001] PBCs in each d200 slice.
These slices cannot be self-consistent layers able to spread in 2D, and the face will grow as a
stepped one [29]. All the forms crossing normal to the glide plane should have S character:
hence, polytypism cannot be setup in the [010] zone. Then, it could not be surprising that
both {100} and {001} forms very rarely appear in the growth morphology of natural crystals
and never belong to the habit of crystals grown from pure aqueous solutions. Concerning
the change in growth mechanism, it can occur if an impurity could be adsorbed (either
temporarily, or permanently in biominerals) in between two consecutive chains on the {100}
form, and the face character [30] would change from S to F.
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Figure 6. The homemade drawing, representing the gypsum projected along its [001] direction, is
a strict application of the HP method [22]. Ca-atoms (blue) are located on the tetrahedra tops (and
bottom), while SO2−

4 ions are square-shaped. Each SO2−
4 ion is only linked to its two water molecules.

The limits of the d020 spacing are located in between the water molecules. The screw 21 axes, parallel
to [010], lie in between A and B layers of thickness d200. The d 040 thickness is also indicated as a
private communication by L. Pastero.

3.2.2. Going to the AFM Finer Observation of Gypsum in Its [010] Zone

We have just viewed the gypsum crystal in its complexity. Nevertheless, there is a finer
way to approach its morphology, that is, by using more modern instruments to investigate
the spirals growing on the {010} pinacoid, which is the most important form of gypsum
(Figures 6 and 7).
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The spiral arms in Figure 7 and those measured in the original work [31], indicate the
true character of the forms lying in the [010] zone of gypsum:

(i) straight steps are: [100], [001], [101] and then {001}, {100}, and {−101} are F forms
(ii) kinked steps are: [201], [102] and then {−102} and {−201} are S or K forms.

Growth T plays an important role on the 2D-pattern shape. Actually, it is well-
known that the entropic terms, contained in the expression of the edge energy, reduce
its value and then increase the probability of a step to occur, both at equilibrium and in
the growth patterns; accordingly, the polygonization of a growth pattern reduces with
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increasing T, and hence the pattern becomes more rounded. These results represent a
quantitative advancement in the knowledge of thermodynamic properties of gypsum and
may have application in both geology and material science investigations. Moreover, this
methodological approach could be a reference point for testing the validity of the simulation
models of detailed surface studies in crystal growth from dilute aqueous solutions.

Summing up, the growth forms of Gypsum coming from rigorous observation of its
faces are resultantly increased thanks to the optical macroscopy, microscopy, and AFM. The
old (F) forms are: {010}, {120}, {011}, and {111}. The new F forms are: {001}, {100}, and {−101},
all belonging to the [010] zone (as in Figure 7); instead, {−102} and {−201} are stepped (S)
or kinked (K) forms.

The theoretical and athermal E.S. of gypsum that was obtained by applying both the
PBC and the GDIS methods is much more isotropic than those evaluated up to now. The E.S.
is only determined by the ratios among the γi values of the forms and then is not a proof of
the realism of the γi we calculated. The only available measurement that should be consid-
ered to check our reliability was obtained by Oglesby et al., 1976, who determined the {010}
cleavage energy of gypsum as a function of the room air pressure [32]. They measured the
cleavage energies as γ−35 ◦C

010 = 384 and γ+65 ◦C
010 = 360 erg cm−2, while the averaged cleavage

energy was γ+25 ◦C
010 = 355 ± 3 erg cm−2. A linear fit gives: γ = −0.26T + 440 (erg cm−2),

where T is measured in Kelvin.
Previously, it has been shown that the thermal energy and entropy contributions to

the surface free energy of a slab subjected to periodic 2D-boundary conditions, are not
linear functions of T, but the combination (Eth-TSth) is a nearly linear decreasing function
of T, except at very low T. For that, the specific surface entropy can be estimated as 0.26 erg
cm−2 K−1 at room T. Therefore, from the fit of the cleavage work, one obtains lower and
upper bounds to the athermal γ at 0 K. The upper bound is just 440 erg cm−2, i.e., the
extrapolation of the experimental γ at 0 K; it includes the zero-point vibration energy of the
surface; the lower one is γ calculated at 238.15 K, amounting to 378 erg cm−2 and includes
both configuration and vibration contributions. The comparison with γ0 K

010 = 432 erg cm−2

here calculated, allows us to be quite confident in the force field we used [25,26].
It is also reasonable considering that the {010} form has the highest entropy, for the

cleavage plane terminates with water molecules; the surface entropy being equal to about
0.26 erg cm−2 K−1 at room T, determines a γ decrease by about −77.48 erg cm−2. Taking
into account the values of the specific surface entropy of the ionic compounds, we can
assume an approximate decrease by −30 erg cm−2 of the γ value for the most “anhydrous”
gypsum surfaces such as, for instance, the {010} at room T. Thus, the shapes calculated at
0K do not change significantly at room T.

The method here that follows is a synthesis of two different points of view. The classic
one, derived by the HP method, was aimed at predicting the crystal growth morphology:
under this respect, the attachment energy (Eatt) ratios measure the relative rate of crystal-
lization of a dhkl layer over the various faces; although the method does not pretend to
obtain the crystal E.S., it revealed fruitful to its determination. In the more modern way, the
quest of potential surface configurations implemented in GDIS allows for a systematic scan
of surface structures. When these structures can relax, as can be conducted with a code for
energy minimization such as GULP, one can obtain more realistic crystal morphologies
exhibiting a richer variety of forms

4. Origin of the Gypsum Twin Laws

In the following we aim to introduce the most important difference arising regarding
the twin debate. The gypsum case is particularly sensible, owing to this crystal diffusion
and reputation, but also to the imprinting turning point [4] due to Kern and Rehn who
changed the way of thinking on twinning, moving from a geometric vision to the point of
view of the crystal growth. Starting from previous considerations [5], the change reads:

Geometric definition: we have two twins, the first showing (100) as the twin plane,
while the second one has the twin plane (101).
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Growth definition: the twin genesis deeply varies. The contact (100) and (101) twins
have these planes as the original composition planes (OCPs). The penetration (100) and
(101) twins have the (010) plane as OCP, while the [001] and [101] directions became the
original composition steps (OCS) on the just found (010) OCP.

The reconstructed drawing of Figure 8 has been obtained either by evaporating a
Ca-sulphate solution, or by mixing two solutions containing CaCl2 and H2SO4, respectively.
Accordingly, the most frequent twin law is always the so-called Montmartre twin (101),
which represents the opposite of the natural data, where the most frequent law is the
“swallow tail” (100) twin law.
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4.1. The Gypsum Mega-Crystals Born in Caves (Naica, Mexico and Pulpi, Spain)

In the Naica cave, faceted and transparent gypsum crystals grew, measuring an impres-
sive 11 m (length) and 1 m (width). They were formed by a self-feeding mechanism, ther-
mally driven by an anhydrite–gypsum transition (solution-mediated), at T = 54.5 ± 2 ◦C,
over time [33–36]. Intriguingly, a similar formation mechanism was proposed for large
and transparent gypsum crystal, selenite, (up to 2 m in length) found in the geode of
Pulpí. However, data from fluid inclusions [37] indicate that Pulpí–gypsum precipitated
at T = 20 ± 5 ◦C. The solubility in water, between gypsum and anhydrite, is higher at
lower T (only if T < 54.5 ◦C). Consequently, gypsum crystals in Pulpí grew at a lower T
when compared to those in Naica, resulting in a higher βbulk value. This higher βbulk value
promotes massive nucleation, leading to many smaller crystals in the Pulpí cave [38]. This
occurs when comparing the gypsum crystals in Pulpí with those in the Naica cave.

The growth of gypsum crystals via the anhydrite–gypsum transition is not completely
organized, as concerns natural samples [33,36,37,39]. According to [38], gypsum has
been synthesized using the experimental setup exploited to grow the silicate carbonate
biomorphs [35]. Then, synthesis has been obtained via the anhydrite–gypsum self-feeding
mechanism, at room T ∼= 20 ± 5 ◦C. Being closed and sealed to the atmosphere, the setup
favours the reproduction of a closed, geode-like system. Hence, the laboratory allowed
both to replicate the conditions under which gypsum precipitated in Naica and Pulpí caves,
and to obtain the in situ monitoring of crystals by optical microscopy.
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4.2. How Can We Distinguish in Lab the Origin of the Gypsum-Twin Laws?

The (100) contact twin law is the only well-recognized gypsum law, in natural envi-
ronments, whereas it has never been observed through lab experiments. In the lab, the
(100) and

(
101

)
penetration twin laws are the most widespread [1,2,40]. Moreover, it is

commonly accepted that: (i) α-amylase (an enzyme excreted into soils and water) triggers
the precipitation of a gypsum twin habit (Montmartre twin) similar to those present in the
Eocene deposits of the Paris Basin; (ii) the presence of CO2−

3 ions in the mother solution
can promote the (101

)
contact twin law of gypsum [41].

The question asked at the beginning of the paragraph was also posed in our lab;
it has been recently well-answered by Cotellucci et al. who showed which ones of the
gypsum twin laws can occur in pure solutions [40] at different evaporation rates (ER).
They indicated that the (100) penetration twin law mainly occurs at slow evaporation
rates (ER ≤ 0.030 gH2O/h), i.e., low β values, whereas the opposite is true for the

(
101

)
penetration law (ER > 0.030 gH2O/h). Experiments further reveal another attribution for
gypsum habits and twins. Prismatic single crystals and twins, following both the (100)
contact and penetration laws, occur when only Ca2+ and SO2−

4 ions are dissolved in solution,
at very low β values:1.3 (at 25 ◦C) ≤ β ≤ 1.4 (at 15 ◦C). According to this thinking, whether
the anhydrite–gypsum dissolution process will be lab-reproduced at T > 25 ◦C (that means:
β < 1.303), only blocky, prismatic single crystals and (100) contact twin law should be
observed. A very low and constant over time β value is the key parameter to obtain these
habits. Noteworthy, these conditions hold for the growth of the giant gypsum crystals in
Naica [38], which exhibits only prismatic single crystals and gypsum twins following the
(100) contact twin law.

Coming back to the few words written at the beginning, it took 60 years to pass from
geometry to a thermodynamic–kinetic point of view, when working with the twinning.
Once again, our short chapter proves that: evaporation rate (ER) → variable β regimes →
variable (C − Ceq) values are the parameters determining the observed geometry, and not
the vice versa. In other words, the pure geometry is a consequence, while the true cause
stays in the complex thermodynamic–kinetics couple.

Finally, there is an elegant method recently found with the aim of distinguishing,
through a simple optical microscope, the (100) from (101) contact twins. Fluid inclusions
captured during crystal growth assume a direction parallel to the [001] of the trapping
crystal, since gypsum always grow [001] elongated, as in [40–43].

5. Curved Gypsum Crystals

The problems concerning the gypsum curvature are now 35 years old, having gone
through the concepts of twinning, epitaxy, and homo-epitaxy. The first to bring some
clarity to the question was the solution group of research [6,7,44,45] guided by R. Boistelle
(CRMC2-Marseille). Here, they studied crystals in the lab, looking at the curvature with
a crystallographic eye. The first precipitated crystals, formed at a high initial β value,
were [001] elongated and showed neither defects nor curvature. Crystals of the second
generation, grown at lower β, were generally curved with the only exception of those grown
in the presence of Na+ ions, as we will see later on. It was also certified that curvature
can be syngenetic with crystal growth: at high β the ad/absorption kinetics of foreign
molecules is too slow with respect to those of the main growth units building the crystal,
whereas, at lower β, the crystal forms are progressively poisoned by the foreign impurities.

Some chemical influences can be considered to explain the crystal deformation:

- Na+ ions do not induce any curvature, since they are small (1.24 Å) and do not form
soluble complexes. If adsorbed, the crystal lattice is not disturbed

- Cd2+ and Mg2+ ions give rise to large soluble complexes and once incorporated,
especially on the {120} form, they introduce important lattice defects. The amount of
incorporated Cd2+ increases with increasing β; furthermore, it is worth saying that the
initial β values needed for the gypsum nucleation increase with Cd2+ concentration.
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The same occurs on the terminal {−111} faces, and this can explain the S-shaped form
of curved crystals [6,7,44].

A few years later [45], from X-ray topography of gypsum, no screw dislocations were
observed perpendicular to the {010} form. It took us almost twenty years to be able to make
public that screw dislocations lines cross the {010} pinacoid [46]. Few growth hillocks were
observed on the quoted faces, meaning that spirals do not make a significant contribution
to the overall growth rate of the {010} form: hence, the 2D-nucleation can be considered as
the main step generation mechanism.

Finally, only four years ago, patterns on the {010} form of gypsum crystals were studied
in our lab, by AFM, under controlled T and low β values. From the hillocks formed by
growth spirals generated by screw dislocations, the 2D-E.S. on the {010} form of gypsum
was calculated [31].

The last papers published on the gypsum curvature come from our lab as well [40,41]
and they are more complete with respect to past works. The ancient way of thinking
the curved gypsum crystals as more or less rigid bodies showing one or two rotation
angles [6,7] is now consigned to history (Table 2). The curved crystal habit can be seen
as a continuous variation in the rotation angle between two successive compenetrated
single individuals.

Table 2. Calculated rotation angles between two equivalent 010 gypsum lattices, along their corre-
sponding area and angular misfits. The linear misfit is null, and the angular one is very small, for the
rotation angle (a); this agrees with the observed occurrence frequency, which is much higher than
that of mechanical twin, corresponding to the rotation angle (b).

Rotation Angle Lattice
1

Lattice
2

Linear
Misfit (∆%)

Angular
Misfit (◦)

(a) 18◦58′ [401]
5[001]

[402]
[−204]

0
0 2◦3′

(b) 23◦53′ [302]
4[001]

[301]
[−203]

6.4
1.9 1◦38′

A new criterion to understand the curved habit of gypsum has been recently found [40]:
the evaporation rate (E.R.) effect on gypsum habit. This effect was investigated by carrying
out four batches of experiments at four different E.R., and different gypsum habits as a
function of E.R. have been detected. By increasing the E.R., the (101) penetration twins are
favoured with respect to the (100) penetration ones, and the (101) twin law can occur with
two different habits whose occurrence frequencies are related to the E.R. as well. Previous
experiments disclosed the formation of the well-known (100) and (101) twinned gypsum
crystals in the presence of organic molecules characteristic of sedimentary environments.
Consequently, these twin laws can be detected in evaporitic sedimentary environments.
Aimed at favouring researchers to identify the twin laws of gypsum, the measurement
of the crystal aspect ratio (length/width crystal ratio) has been proposed [40,41] as a
potentially fast and useful tool to distinguish between (100) and (101) penetration twins.
At higher evaporation rates (ER ≥ 0.79 g/h), curved crystals exhibit both “symmetric” and
“asymmetric” curvatures. Based on crystallographic considerations, Rinaudo et al. [6,7]
suggested that a twinning mechanism may promote the symmetric curvature, whereas
Cotellucci et al. hypothesized [40] an homoepitaxy for the asymmetric one. Moreover,
until today, the crystal curvature has been related to impurities absorption, but another
growth attribution has been here documented, independent from the chemical environment
and only related to β values. These experimental findings provide the first evidence of
different gypsum habits as a function of E.R. in a pure system. Acicular single crystals,
curved crystals, (100), and (101) penetration twins are the habits detected. When the
effect of additives on gypsum is explored by performing growth experiments, and when
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different habits are analyzed in evaporitic environments, this wide array of habits should
be considered.

Summing up, we would like to add personal considerations. The number of “twin
laws” of gypsum is necessarily limited and confined to well-known literature already
described within the present review paper. Nonetheless, a new way of thinking [40] has
been introduced: the observed phenomena giving origin to the “continuous rotation angles”
occur in the 010—gypsum plane and, consequently, can be attributed only to homo-epitaxy
(gypsum 010-plane growing on gypsum 010-plane means: crystal A/crystal A growth).
After the recent papers published by our research group on the homo-epitaxy of aragonite
and calcite, there is a good reason to be proud of having added gypsum to the enriching
family of “homo-epitaxial crystals”.

6. Gypsum Brines

The recurrent Ca-sulphates (gypsum, bassanite, and anhydrite) differ by their hy-
dration degree. Gypsum is the most common sulphate mineral on Earth, spanning from
Africa and Asia, to America, Australia, and even Antarctica. It is an evaporitic mineral that
predominantly precipitates from brines in a wide geographical ranged scale and is found
as well in many processes that utilize or produce industrial brines. In these processes, such
as desalination and the production of oil and hydrothermal energy, gypsum precipitation
under saline conditions also occurs and forms a scale that may clog membranes, pipes,
and boreholes, affect aquifers and reservoirs, and can result in the temporary halting of
production. Thus, insights into gypsum formation can be used to better understand its
natural occurrence and improve industrial practises. It is also plain to see that over the
last decade, thermodynamics, nucleation along with crystal growth mechanisms and kinet-
ics have been widely studied, to better understand how these factors shape the gypsum
morphology. Its precipitation under saline and hypersaline conditions has been the focus
of several studies, but thermodynamic data are derived mostly from experiments with
artificial solutions that have limited background electrolytes with Ca2+/SO2−

4 ratios being
quite similar to the 1:1 ratio in gypsum. Furthermore, the majority of kinetic processes are
still derived from lab experiments made at low ionic strength. Thus, both natural gypsum
and industrial processes are still less well-known. To prevent the gypsum scale formation
(as other minerals), scale inhibitors are often added in industry to brines; their addition
increases operational costs and introduces undesired consequences in nature. Furthermore,
modern advanced techniques (like AFM, TEM, plus small and wide-angle X-ray scattering,
such as SAXS/WAXS) are increasingly used to study the early precipitation and growth
stages. Nonetheless, the chemical complexity of brines becomes a challenge when applying
both these old and new techniques.

Our work here focuses on the precipitation of gypsum brines. First, ionic strength,
brine composition, and T effects on thermodynamics are broadly discussed, since all
these brine properties have been shown by recent micro-macroscopic observations that
tried to explain both the morphology and crystal size distribution. Secondly, we tried to
highlight the micro-macroscopic discrepancies by studying low and high ionic strengths.
The special challenges posed by experiments with brines are also discussed. Then, starting
from contemporary literature, we will outline further research needed to improve our
understanding of both natural gypsum precipitation and its industrial settings.

As there is a wealth of ideas in this research area, which has generated certain confu-
sion, we will try to remedy this following a principle of order.

6.1. Thermodynamics

Determination of Saturation, Solubility, and Activity.
Here, we state that one needs to get rid of some terms already used [12,16] in thermo-

dynamics:

DSgypsum =
IAP
Keq

(8)
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where (i) DSgypsum indicate the saturation degree of a gypsum solution, (ii) is the thermo-
dynamic solubility, Keq = IAPeq, which is the product of the ionic activities and represents
the value of IAP, at the equilibrium. Once again, we prefer using the definition through the
free energy variation (∆G) in the system:

∆G
RT

= ln
(

IAP
Keq

)
(9)

According to Equations (8) and (9) one can immediately writing that:(
IAP
Keq

)
= 1 → ∆G = 0, means the system crystal/solution in equilibrium → DSgypsum = 1(

IAP
Keq

)
< 1 → ∆G < 0, if crystals dissolve in the unsaturated solution → DSgypsum < 1(

IAP
Keq

)
> 1 → ∆G > 0, when crystal grows in supersaturated solution → DSgypsum > 1

The solubility (Cs) of a mineral is the molal concentration of that mineral dissolved
in a solution at equilibrium. As an example, in the case of gypsum at equilibrium, the
case (DSgypsum = 1) has to be applied. Hereinafter, one should be cautious when using the
term Ω because, in the following, we will use Ω (m3 × mol−1) to represent the volume
of the G.U. inside every kind of crystal, and not the saturation degree (DSgypsum) of a
gypsum solution.

6.2. Gypsum Precipitation in Saline Environments: Mechanisms and Rates
6.2.1. Pathways of Nucleation

As outlined elsewhere in this review, during nucleation, the growth units (G.U.s) are
dissolved in a supersaturated solution and react to form a crystal, according to two main
schematic theories: a “classical-CNT” or a “non-classical-NCNT” pathway. According
to CNT, a nucleus with a structure similar to the macroscopic bulky crystal is formed. A
specific interfacial tension γ arises between such metastable nuclei and the solution. These
n-sized nuclei may dissolve or further react with the monomers, so further increasing
the (∆G) value of the system. As a nucleus surpasses its critical size n*, being (n ≥ n*)
and consequently ∆G < ∆G*, the activation energy for nucleation ∆G* is reached and the
nucleus will become a stable crystal, as in our Figure 5. Following the CNT, nucleation is a
single-step process in which a solid forms with the crystal bulk properties. When foreign
nuclei are absent in the solution, one obtains homogeneous nucleation. If the new forming
nuclei are generated on pre-existing nuclei or other surfaces, then γ is lowered, and hence
∆G* as well: the nucleation is hetero-directed, and we will call it heterogeneous nucleation.
As an example, dust nanoparticles in solution act as nuclei for gypsum, and nucleation is
practically heterogeneous.

Concerning CNT, we are interested [47] to correctly show the homogeneous 3D-
nucleation frequency (J3D = nuclei × sec−1 and per solution unit volume).

J3D−homo = Ak exp

{
−(16π/3)

Ω2γ3
sl

kBT(∆µ)2

}
(10)

which stands for a spherical nucleus, so giving rise to the constant = (16π/3). We improved
Equation (10): the constant Ak ≈ 1025; Ω is the volume of the G.U. in the crystal and
equals 7.469 × 10−5 (m3 × mol−1); γsl is the specific interface solution/crystal energy;
kB is Boltzmann’s constant; T is the Kelvin temperature; and ∆µ = (kB T) is ln β, where
β = (a/a eq)T,p is here expressed through the solution activities, measured at constant T
and pressure.

As a crude approximation, we can accept that the frequency of heterogeneous nucle-
ation differs from the homogeneous one owing to a new specific interfacial solution/crystal
energy [9,16]. It was also invoked [48] that hetero-nuclei lower the interfacial solu-
tion/crystal energy, in such a way that γ3

hetero = γ3
sl × (0.1 − 0.3). The just found gyp-

sum correction factor: 0.1 < f(θ) < 0.3 is for heterogeneous nucleation, necessarily being
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0 < f(θ) < 1. NCNT is any nucleation process that does not follow the just described path.
Observations made at the nano- and micrometric scales demonstrate that nucleation often
begins with “pre-nucleation” clusters reacting to form the stable bulk crystal. Hence, NCNT
involves at least two steps.

The rate of nucleation, J3D, is difficult to measure. Practically, experiments on nucle-
ation kinetics measure the induction time (Tind), which is the time passing between the
initial β value and the ability to detect the new phase. This obviously depends on the
method of detection and, thus, Tind is method specific. However, it was assumed that the
faster the nucleation rate, the shorter is Tind. This means that the relationship [49] between
Jtotal, the total nucleation frequency, and Tind could be:

Tind =
K

Jtotal
(11)

where K is a coefficient of proportionality. Equation (11) can be used to determine the effect
that solution properties have on the frequency of nucleation. Kinetic models based on
this equation accurately predict the gypsum Tind under saline and hypersaline conditions.
Moreover, when coupled with crystal growth equations, CNT-based models were able
to describe the change in the concentration of SO2−

4 ions over the course of gypsum
precipitation, from the initial β value until chemical equilibrium was attained.

For practical purposes it can be useful the approach recently followed when evaluating
the Jtotal due to both homo- and heterogeneous nucleation [9,16]. The original intuition
comes from [49], where the coefficient Ak in Equation (10) is simply A = b × Cs. Here, we
like to repeat that Cs is the mineral solubility, i.e., its molal concentration in solution at
equilibrium (DSgypsum = 1). The coefficient (b) is nothing else, and the proportion between
homo (bhomo) and heterogeneous (bhet) nucleation is to be adopted to evaluate the induction
time that one measures, as the nucleation frequency reaches Jtotal. In this way, we modified
the total induction time and wrote:

Ttotal
ind =

K
Cs

× 1

bhomoexp
{
−(fhomo)

Ω2γ3
sl

kBT(∆µ)2

}
+ bhetexp

{
−(fhet)

Ω2γ3
het

kBT(∆µ)2

} (12)

In Equation (12), we only introduced new terms in order to complete its signification.
They are: (i) the two constants (fhomo ) and (fhet ), characterizing the factor forms of the
respective homo and hetero-nuclei; ii) the term γ3

het = γ3
sl × (0.1 − 0.3), as it was just

anticipated when considering the hetero-nucleation in place of the homo-nucleation.
Gypsum commonly precipitates from evaporated seawater in lagoon beach sabkhas [50].

When the evaporation factor value >2.8, β can, thus, work even if, at low β, the kinetics of
the reaction is very slow. As a matter of fact, the calculated induction time is longer than
the age of the Earth when the evaporation seawater factor reaches the value of ≈3. The
induction time becomes reasonable (few years) only if the evaporation factor approaches
the value of ≈3.3, as it may be seen in [13]. An interesting and more realistic case can be
found [13] in the mass balance on the Dead Sea. These Authors, starting from a preceding
calculation [10] estimated that the annual evaporation factor of the Dead Sea brine in
the northern basin varies between 1.003 and 1.005, whereas the evaporation factor of the
Dead Sea brine in the evaporation ponds at the southern basin reaches near 1.6. This large
difference between the measured evaporation factors is a result of the difference in the
water bodies’ volume to surface area ratio.

To date, there is no mathematical framework to calculate Jnucleation based on NCNT
models. However, while nucleation is a micro-phenomenon, Equation (12) is derived from
bulk properties (i.e., γ, T, β, etc.). At the nanoscale, these thermodynamic and kinetic
properties may differ from the bulky ones. Moreover, Equation (12) does not consider
the number of steps during nucleation. Nevertheless, it is well known that one should
have handle a robust mathematical framework for treating nucleation kinetics, whether the
process arises either via the CNT or NCNT path.
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6.2.2. Crystal Size Distribution (CSD) of Gypsum and Its Implications

The CSD of a given population summarizes the mutual effects of chemical (nucleation,
growth, and dissolution) and mechanical (agglomeration or breakage of crystals) processes
affecting the individual crystals. Thus, the CSD can interpret the geology, who oversaw the
history of the crystal population. Since gypsum can form undesired scale as well, its CSD
becomes important in various industrial processes. As an example, the gypsum CSD deter-
mines the filtration rate during wet industrial processes in which the mineral precipitates.
Accordingly, understanding the mutual interaction between chemistry, physics, and the
mechanisms that control gypsum shape and size, may help adopt new protocols to obtain
the precipitation process towards the preferable CSDs.

In this regard, we aim at outlining that the GS shapes of gypsum single crystals have
been discussed in other words, within this paper; in fact, the very small gypsum sizes
studied in CSDs have nothing to do with the beautiful ones we described when dealing
with well-formed single crystals, by applying the BCF models.

Looking to the not distant future of our lakes or ponds, the Dead Sea might be a
very useful example, especially if we would consider that gypsum-CSD will determine if
the crystals will quickly settle to the bottom or remain suspended and whiten the surface
waters. This is a “Lognormal size distribution” in which the logarithm of the size is normally
distributed, as it usually occurs in natural environments, on desalination membranes, and
from batch solutions of hypersaline brines [51–54].

Today, all the growth models that relate the growth rate to the distance from equilib-
rium cannot explain the gypsum CSD, since only some decades ago it has been realized that
geologic samples, including grain size in sediments and minerals in rocks, often follow or
closely approximate a lognormal distribution. Middleton [52] had made the first rigorous
attempt to explain the development of such CSD within a geological context and showed
that a lognormal distribution can be mathematically modelled in several ways, describing
it in sediments. However, Middleton noted that his model pre-supposed assumptions not
necessarily valid from the underlying physical process.

Recently, it has been suggested that agglomeration of particles during the early stages
of gypsum precipitation may be a mechanism affecting the final CSD. This suggestion is in
agreement with the observation [55] that gypsum crystals are meso-crystals. However, the
extent to which agglomeration shapes the final CSD, still requires further study [11,14,56].

7. Conclusions

Even if we wanted to privilege the educational aspects, some research foundations
have been acquired: this is what we intend to discuss in these review conclusions. Sharp
distinctions have been made between equilibrium and growth shapes of gypsum, along
with a practical presentation of the related experimental and theoretical results. Hence,
we took the opportunity to highlight how only modern experimentation (like the AFM
measurements) has made it possible to improve knowledge of the growth mechanisms
of important surfaces, as the {010}-pinacoid, and of the forms in zone with the [010] axis.
The integrated study between crystallography and geology has allowed us to delve deeper
and discriminate between different gypsum twins, for both contact and penetration, by
using concepts such as the capture of fluid inclusions (F.I.) and their orientation in the
gypsum crystal, together with the evaporation rate (E.R.) and the ionic strength (I.S.) of the
mother solutions.

In this regard we are pleased to remember that, for the first time, it has been focused
that: twinning, epitaxy, homo-epitaxy and topo-taxy can coexist in gypsum, thanks to our
fruitful studies (since many years and also today) on the rich gypsum twin morphology.

Taking advantage of our experience to deepen the study of gypsum brines, we were
allowed to improve mathematical tools needed to understand both nucleation and growth
of very small gypsum crystals, in order to better quantify the knowledge of the induction
times and of the CSD.

Finally, this overview was necessary to address some of the new issues, only partially resolved:
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- gypsum and copolymers, including all the products needed in cultural heritage;
- all the non-published interfaces among gypsum and the most common Ca-carbonates

(aragonite-calcite)
- the transition: gypsum → brushite CaHPO4·2H2O → ardealite Ca2·HPO4·SO4·4H2O
- the transition: gypsum → brushite → (Hap)-hydroxyapatite [Ca5(PO4)·3OH] along

with other biomimetic minerals

A lot of minerals concerning the past-life and the organism living today may be the
interest for future studies on “gypsum brothers”. Many thanks to you, and remember:
“. . .our work has just begun”!
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