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On a conjecture of C. Berenstein and A. Yger.

Francesco Amoroso

Abstract.

Let K be a field and let a ⊂ K[x1, . . . , xn] be an ideal generated by polynomials

f1, . . . , fm of degree ≤ d (d ≥ 3). Put

e = 3min{n,m}, δ = dmin{n,m} + d.

We prove that for any polynomial f ∈ a of degree df there exist polynomials

a1, . . . , am ∈ K[x1, . . . , xn]

of degree ≤ e · df + δ such that

fe = a1f1 + · · ·+ amfm.



On a conjecture of C. Berenstein and A. Yger.

Francesco Amoroso

§1 - Introduction.

Let d ≥ 5 and k ≥ 1 be two integers and let n = 10k +1. A well-known example

of E.Mayr and A.Meyer (see [MM]) shows that there are n polynomials f1, . . . , fn ∈

C[x1, . . . , xn] of degree ≤ d such that x1 belongs to the ideal generated by f1, . . . , fn

and each solution a1, . . . , an of the equation

x1 = a1f1 + · · ·+ anfn, a1, . . . , an ∈ C[x1, . . . , xn]

satisfies max deg ai > (d − 2)2
k−1

. In other words, the growth of the degrees of the

polynomial coefficients in the representation problem for an ideal a ⊆ C[x1, . . . , xn] is,

in general, double-exponential.

Given an ideal a ⊂ K[x1, . . . , xn] = R and a positive integer d, we define φa(d)

as the minimum integer D such that for all systems of generators {f1, . . . , fm} of a

with deg fi ≤ d and for all f ∈ a, we can find a representation

f = a1f1 + · · ·+ amfm

with

max
i

deg ai ≤ deg f + D.

A classical result of Hermann (see [H]) shows that φa(d) ≤ 2(2d)2
n−1

for all ideals a.

In 1991 Krick and Logar (see [KL]), using effective linear algebra tecnics, improved the

1991 Mathematics Subject Classification Primary 12E99. Secondary 11C08.
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previous bound to φa(d) ≤ dO(n23n) where r is the dimension of a. On the other hand,

the quoted result of Mayr-Meyer gives an ideal a for which

φa(d) > (d− 2)2
(n−11)/10

.

Therefore, it seems to be interesting to give algebraic conditions on a to avoid the

double exponential growth of φa. Several authors have written papers on this subject,

working with different technics: elimination theory, complex analysis, algebraic geom-

etry, Gröbner basis theory, algebraic complexity theory. The principle results we know

are the following ones.

First, for a = R the problem is reduced to the effective Nullstellensatz. In 1987

Brownawell (see [B]), using the theory of Chow forms and a theorem of Skoda, found

φR(d) ≤ 3n2dn provided that car K = 0. In 1988 Caniglia-Galligo-Heintz (see [CGH]),

with simple algebraic arguments, proved the weaker result φR(d) ≤ dn(n+3)/2 without

any assumption on K. The same year Kollár (see [K]), using algebraic geometry, proved

φR(d) ≤ dn without any assumption on K but under the technical condition d ≥ 3.

A similar result was found by Philippon (see [P1]), who used the homology of Koszul

complex instead of local cohomology, and by Fitchas-Galligo (see [FG]).

Also for zero-dimensional ideals and for complete intersection ideals, φa grows

exponentially. In 1990 Berenstein-Yger (see [BY1]) proved with analytic methods

φa(d) ≤ 3(n+1)dn for zero-dimensional ideals and φa(d) ≤ 6(n+1)2(2kk+1 +n)dk for

complete intersection ideals of codimension k, again under the assumption car K = 0.

In 1991 Dickenstein-Fitchas-Giusti-Sessa (see [DFGS]) obtained from Gröbner basis

theory φa(d) ≤ nd2n + dn + d (if dim a = 0) and φa(d) ≤ dk (if a is a complete

intersection of codimension k). In 1989 the Author (see [A1] and also [A2] for an

errata-corrige), using Kollár-Philippon’s method, showed that φa(d) ≤ dn + d − 1

provided that d ≥ 3 for all zero-dimensional ideals, and φa(d) ≤ dk(n−k+1) + dk + 1
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(d ≥ 3) for unmixed, locally complete intersection ideals of codimension k.

A problem which is related but not equivalent to the previous one is the mem-

bership problem: for a given ideal a ⊂ R, decide whether f belongs to a. Of course

a solution for the representation problem gives a solution for the membership prob-

lem, but the converse is not true. A strong result of Dickenstein-Fitchas-Giusti-Sessa

(see [DFGS]) shows that the membership problem for unmixed ideals is solvable in

polynomial time.

Last but not least, the analogous diophantine problem. We assume f1, . . . , fm ∈

R′ = Z[x1, . . . , xn] and we try to find a representation

λf = a1f1 + · · ·+ amfm, λ ∈ Z\{0}, a1, . . . , am ∈ R′

for an arbitrary f ∈ (f1, . . . , fm), with good bounds not only for deg ai but also

for λ and for H(ai) (=max |coefficients(ai)|). In 1991 Berenstein-Yger (see [BY2] and

[BY3]), combining analytic methods with a theorem of Philippon (see [P2]), solved this

problem when f1, . . . , fm don’t have common zeros in Cn. Recently, Elkadi (see [E])

and Krick-Pardo (see [KP1] and [KP2]) independently have also found good bounds

when f1, . . . , fm is a regular sequence.

Instead of looking at a representation of f ∈ a it seems also interesting to try a

representation of “small” powers of f . Given two positive integers e and d, let us define

φa(e, d) as the minimum integer D such that for all systems of generators {f1, . . . , fm}

of a with deg fi ≤ d and for all f ∈ a, we can find a representation

fe = a1f1 + · · ·+ amfm

with

max
i

deg ai ≤ edeg f + D.
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Obviously, φa(e, d) ≤ φI(d). Moreover, the effective Nullstelensatz implies φa(e, d) ≤

dn, provided that d ≥ 3 and e ≥ dn. The study of the applications of integral represen-

tation formulas (such as Weil formula or weighted Bochner Martinelli formula) suggests

that φa(n, d) is bounded essentially by dn for all ideals a (see [BY4]). Recently (see

[A2]) the Author has proved this conjecture for 1-dimensional ideals (not necessarly

unmixed): φa(n, d) ≤ dn + d − 1 for d ≥ 3. The proof combined Kollár-Philippon’s

method with the theory of reduction of ideals (developed by Nortchott and Rees), a

theorem of Lipman-Tessier (see [LT]) on the integral closure of ideals, Bertini’s theo-

rem and a theorem on Gruson-Lazarsfeld-Peskine (see [GPL]) on the regularity of the

Hilbert’s function of a reduced ideal of dimension 1. In this paper we generalise this

result, obtaining φa(3n, d) ≤ dn + d (d ≥ 3) for all ideals a.

More precisely, let us define for an ideal a in a ring R the integral closure of a

as the set a of elements g ∈ R for which gn ∈ a(a, g)n−1 (notice that this set is an

ideal of R). We have the following result.

Theorem.

Let K be a field of arbitrary characteristic, a ⊆ K[x1, . . . , xn] an ideal generated

by polynomials f1, . . . , fm of degrees d1 ≥ d2 ≥ · · · ≥ dm ≥ 3 and set

η =
3
8
(3m − 1) +

m2

4
, γ = d1 · · · dm, if m ≤ n− 1,

η =
3
8
(3n−1 − 1) +

(n− 1)2

4
+ 1, γ = d1 · · · dn + d1, if m ≥ n.

Then, for any f ∈ (a)η, we can find polynomials a1, . . . , am ∈ K[x1, . . . , xn] with

max deg (aifi) ≤ deg f + γ

such that

f = a1f1 + · · ·+ amfm.
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§2 Superficial ideals.

As in the proofs of the explicit Nullstellensatz (see [B] and [K]), the first step

in order to prove our main theorem consists in replacing the sequence f1, . . . , fm of

generators of a by m′ ≤ min{m,n + 1} suitable linear combinations g1, . . . , gm′ ∈

Kf1 + · · · + Kfm, in such a way that some “regularity” assumptions are satisfied.

However, in our case, the polynomials gi must be chosen more carefully. For this,

we need some definitions coming from local algebra, namely the notions of superficial

element and reduction of an ideal. A complete discussion about this theory for a local

ring can be found in [ZS] and [NR], but for our purposes we must work on a finitely

generated K-algebra and we also need some additional results. For the above reasons

and also for completeness, we prefer to develop the results we need independently, even

though there will be some overlap with the quoted papers.

We start from the following definitions. Let R be a noetherian ring and let

a ⊆ R be an ideal. An element x ∈ a is called a superficial element (for a) if there

exists a natural number c such that
(
an : (x)

)
∩ ac = an−1 for any sufficiently large n.

An ideal b ⊆ a is called superficial (for a) if an ∩ b = ban−1 for any sufficiently large

n. Finally, a reduction of a is an ideal b ⊆ a such that an = ban−1 for some (and

then for any sufficiently large) n.

Remarks.

(1) An ideal b ⊆ a is superficial if and only if there exists a natural number

c such that an ∩ bac = ban−1 for any sufficiently large n. Indeed, by a lemma of E.

Artin and D.G. Rees ([ZS] Theorem 4′, p.254), there exists k ∈ N such that an ∩ b =

an−k(ak ∩ b) for any n ≥ k. Therefore, if n ≥ k + c, we get an ∩ b ⊆ an ∩ bac.

(2) Let b = (x) ⊆ a be a principal ideal. If x is superficial, the ideal b is also

superficial (apply the last remark) and the converse is true if x is a non zero-divisor.

(3) Let (R,m) be a local ring and let b ⊆ a be two open ideals (i.e.
√

a =
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√
b = m). Then b is a reduction of a if and only if b is superficial (indeed we have

an ⊆ b for any sufficiently large n).

Superficial ideals will be constructed inductively using the following lemma:

Lemma 1.

Let b ⊆ a ⊆ R be two ideals with b superficial, and let x be an element of a

such that its image x in a/b is a superficial element. Then (b, x) is superficial for a.

Proof.

If x ∈ a/b is a superficial element, by definition there exists c ∈ N such that(
(an + b) : (x)

)
∩ (ac + b) = an−1 + b for any n ≥ n1. Therefore, if y ∈ an ∩ (b, x)ac

and n is sufficiently large, we have y = αx + β where α ∈ an−1 and β ∈ bac. Hence

β ∈ an ∩ bac = ban−1, since b is superficial for a, and so y ∈ (b, x)an−1. From the

remark (1) above, we deduce that (b, x) is superficial for a.

Q.E.D.

If the ring R is a finitely generated K-algebra (K being an infinite field), we

can always find superficial elements x ∈ a. More precisely, we have the following result

(see also [ZS] p.286-287).

Lemma 2.

Let R be as above and let a = (x1, . . . , xm) ⊆ R be an ideal. Then there exists

a finite number of proper linear subspaces V1, . . . ,Vu ⊂ Km such that for any vector

λ ∈ Km\
u⋃

i=1

Vi
(1)the element x = λ1x1 + · · ·+ λmxm ∈ a is superficial for a.

Proof.

Let G(R) =
∞∑

h=0

ah/ah+1 be the graded associated ring and let X =
∞∑

h=1

ah/ah+1

be the ideal of the elements of positive degree. We must find x ∈ R such that

(1) This last set is non-empty because K is infinite.
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x ∈ a/a2 ⊆ G(R) satisfies

xy = 0, y ∈ Xc ⇒ y = 0

for some natural number c. Let ℘1, . . . , ℘s be the minimal primes of G(R) and assume

℘1, . . . , ℘u 6⊇ a/a2 and ℘u+1, . . . , ℘s ⊇ a/a2. Then, for i = 1, . . . , u, the set

Vi = {λ ∈ Km |λ1x1 + · · ·λmxm ∈ ℘i}

is a proper subspace of Km; choose λ ∈ Km\
u⋃

i=1

Vi and set x = λ1x1 + · · ·λmxm ∈ a.

We have

(0) = Q1 ∩ · · · ∩Qu ∩Qu+1 ∩ · · · ∩Qs

where the Qi’s are ℘i-primary. For some c, Xc ⊆ Qu+1 ∩ · · · ∩Qs; therefore, if y ∈ Xc

and xy = 0, we have y ∈ Qu+1 ∩ · · · ∩Qs; moreover y ∈ Q1 ∩ · · · ∩Qu, since x 6∈ ℘i for

i = 1, . . . , u, and so y = 0.

Q.E.D.

§3 Reduction to an U-regular sequence.

Let a ⊆ R be an ideal and let us consider the Zariski open set U = Ua =

{℘ ∈ SpecR, ℘ 6⊇ a}. A sequence x1, . . . , xk is called U-regular if it is a regu-

lar sequence in the ring RU =
⋂

℘∈U
R℘. In other words, x1, . . . , xk is U-regular if

(x1, . . . , xk): 〈a〉 =
⋃

r∈N

(x1, . . . , xk):ar is a proper ideal and if xi is a non zero-divisor

in R/(x1, . . . , xi−1): 〈a〉 for i = 1, . . . , k. If R is a Cohen-Maculay ring, RU is also

Cohen-Maculay and the purity theorem holds; therefore, if b ⊆ R is an ideal genera-

ted by an U-regular sequence of length k, then b: 〈a〉 is unmixed of rank k.

We also need the following corollary of Bertini’s theorem:
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Lemma 3.

Let R be a finitely generated algebra over an algebraically closed field K and

let a = (x1, . . . , xm) ⊆ R be an ideal. Then there exists a non-empty Zariski open set

V ⊂ Km such that for any λ ∈ Km\V the ideal (λ1x1 + · · · + λmxm): 〈a〉 is radical

(i.e. it coincides with its radical).

Proof.

Apply [J], corollary 6.7, to X = SpecRU and to the morphism f :X → Affm
K

defined by f = (x1, . . . , xm).

Q.E.D.

Proposition 1.

Let f1, . . . , fm be a system of generators of the ideal a ⊆ R = K ′, where K is

an algebraically closed field. Then we can find an integer m′ ≤ min{m,n + 1} and m′

linear combinations (with coefficients in K) of f1, . . . , fm, say g1, . . . , gm′ , such that

√
a =

√
(g1, . . . , gm′) and the following assertions hold for i = 1, . . . ,m′:

i) The ideal bi = (g1, . . . , gi) is superficial for a;

ii) The ideal b′i = bi: 〈a〉 is unmixed of rank i and gi is a non zero-divisor in R/b′i−1;

iii) b′i is radical.

Proof.

We choose g1, . . . , gm′ by induction. Let us assume that assertions i), ii) and

iii) are satisfied for i = 1, . . . h. If
√

(g1, . . . , gh) =
√

a we put m′ = h; otherwise

bh: 〈a〉 is a proper ideal and so (by ii)) g1, . . . , gh is a U-regular sequence and bh: 〈a〉

is unmixed of rank h. Let ℘1, . . . , ℘r be its associated primes and let us consider the

proper subspaces Wi = {λ ∈ Km such that λ1f1 + · · ·λmfm 6∈ ℘i}, i = 1, . . . , r. We

also denote by Vi (i = 1, . . . , s) and by V the subspaces and the Zariski open set of

Km obtained respectively applying lemma 2 and lemma 3 to the K-algebra R/bh and

8
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to the ideal a/bh generated by the images of f1, . . . , fm. Then, if λ ∈ Km lies outside

Wi, Vi and V, the polynomial gh+1 = λ1f1 + · · ·+ λmfm has the required properties.

Q.E.D.

Remark.

It is easy to see that we can choose gi as a linear combination of fi, . . . , fm.

Let us define for an ideal a in a ring R its integral closure a as the set of elements

x ∈ R for which xn ∈ a(a, x)n−1; notice that this set is an ideal of R. We have

Corollary 1.

Let gi, bi and b′i be as in the previous proposition. Then the ideals b′i−1 + (gi)

and b′i−1 + a have the same integral closure in R℘, for any prime ideal ℘ ⊇ b′i−1 + a

of rank i.

Proof.

Let ℘ ⊇ b′i−1+a be a prime ideal of rank i. The ideal (b′i−1, gi)R℘ is open (use ii)

of the proposition above), hence there exists c1 ∈ N such that ac1R℘ ⊆ (b′i−1, gi)R℘.

Moreover, there exists another constant c2 ∈ N such that ac2b′i−1 ⊆ bi−1 ⊆ b′i−1.

Therefore, for any n ≥ c1 + c2,

anR℘ ⊆ ac1+c2R℘ ⊆ ac2(b′i−1, gi)R℘ ⊆ (bi−1, gi)R℘ = biR℘.

Hence, for any sufficiently large n,

(b′i−1 + a)nR℘ = b′i−1(b
′
i−1 + a)n−1R℘ + anR℘

= b′i−1(b
′
i−1 + a)n−1R℘ + (an ∩ bi)R℘

= b′i−1(b
′
i−1 + a)n−1R℘ + bian−1R℘

⊆ (b′i−1, gi)(b′i−1 + a)n−1Rp

since bi is superficial for a. Hence (b′i−1, gi)R℘ is a reduction of (b′i−1 + a)R℘. To

conclude the proof, we use the following lemma (see [NR], corollary of theorem 1,

p.155)

9
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Lemma 4.

Let b ⊆ a two ideals in a noetherian ring R and let us assume that a is not

entirely composed by zero-divisors. Then, if b is a reduction of a, these two ideals

have the same integral closure.

Proof.

Let x ∈ a. From aan−1 = ban−1 we see from a determinant argument that there

exists φ ∈ xn + b(b, x)n−1 such that φan−1 = 0. Hence φ = 0 and xn ∈ b(b, x)n−1.

Q.E.D.

Now we quote the following theorem of J.Lipman and B.Tessier:

Theorem. (see [LT])

Let R be a regular local ring of dimension d and let a ⊆ R be an open ideal.

Then ad ⊆ a.

From this theorem and from the corollary above, we deduce that

ai ⊆
(
b′i−1 + (gi)

)
R℘ ∩R (1)

for any prime ℘ ⊇ b′i−1 + a of rank i. The previous statement is one of the crucial

points in the proof of our main result.

§4 Proof of the main theorem.

We shall work over the homogeneous ring A = K[x0, . . . , xn]; for i = 1, . . . ,m′

let Gi = hgi be the homogenization of the polynomials gi, given by proposition 1, and

let Ji = hb′i be the homogenization of the ideal b′i; we also put J0 = (0). We denote by

Ii+1 the intersection of the isolated components of (Ji, Gi+1) whose radicals contain

I = ha but not x0. Similarly, let Ki+1 be the intersection of the isolated components

whose radicals contain x0 and let Li+1 be the intersection of the embedded ones. Then

(Ji, Gi) = Ji+1 ∩ Ii+1 ∩Ki+1 ∩ Li+1

10
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and x0 · I ⊆
√

Li+1, since G1, . . . , Gm′ is an U-regular sequence in the Zariski open set

U = {℘ ∈ SpecA such that x0 · I 6⊆ ℘}.

We want to give explicitly two integers, γi+1 and ηi+1 such that

x
γi+1
0 I

ηi+1
Ji+1 ⊆ (Ji, Gi+1).

To this end, let δi+1 = deg A/Ki+1, which is easily estimated by Bezout’s theorem.

From (1), we find that

x
δi+1
0 I

i+1
Ji+1 ⊆ Ji+1 ∩ Ii+1 ∩Ki+1. (2)

Thus, we must only control the embedded components with a suitable modification of

Kollar’s method in Patrice Philippon’s algebraic version (see [P1] and [P2]).

Definition.

Let J ⊆ A be a homegeneous ideal. We say that J has type (ε, ρ) if for any

α ∈ F = {(α1, . . . , αs) ⊆ As |x0 · I ⊆
√

(α1, . . . , αs)}

and for any

σ < dim A/J − dim A/(α)

we have xε
0 · Iρ ·Hs−σ(α|A/J) = 0 (2)

Lemma 5.

Let us assume that Ji has type (εi, ρi). Then

xεi+δi+1
0 I

ρi+i+1
Ji+1 ⊆ (Ji, Gi+1)

(2) The Hs−σ(α|M) are the homological modules associated with the Koszul com-

plex K(α|A|M) (see [N] §8.2).

11
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Proof.

Let α = (α1, . . . , αs) ∈ F be a family of generators of Li+1 and put

M = (Ji+1 ∩ Ii+1 ∩Ki+1)/(Ji, Gi+1).

From the inclusion M ↪→ A/(Ji, Gi+1) we get

M = Hs(α|M) ↪→ Hs(α|A/(Ji, Gi+1)).

On the other hand, the exact sequence

0 −→ A/Ji
×Gi+1−→ A/Ji −→ A/(Ji, Gi+1) −→ 0 (3)

gives

Hs(α|A/(Ji, Gi+1)) ↪→ Hs−1(α|A/Ji)

(since any associated prime of Ji contains neither x0 nor I we have Hs(α|A/Ji) =

0:A/Ji
Li+1 = 0). Therefore, composing the two last inclusions we get

M ↪→ Hs−1(α|A/Ji).

Now, taking into account that dim A/Ji−dim A/Li+1 > 1 and our definition of type,

the last line implies xεi
0 I

ρi
M = 0. From this and (2) we obtain our claim.

Q.E.D.

Lemma 6.

Let us assume that Ji has type (εi, ρi). Then Ji+1 has type (3εi+δi+1, 3ρi+i+1).

Proof.

Let α ∈ F and let σ < dim A/Ji+1 − dim A/(α) < dim A/Ji − dim A/(α).

From (3) we get

x2εi
0 I

2ρi ·Hs−σ(α|A/(Ji, Gi+1)) = 0. (4)

12
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On the other hand, the exact sequence

0 −→ Ji+1/(Ji, Gi+1) −→ A/(Ji, Gi+1) −→ A/Ji+1 −→ 0

gives rise to

Hs−σ(α|A/(Ji, Gi+1)) → Hs−σ(α|A/Ji+1) → Hs−σ−1(α|Ji+1/(Ji, Gi+1)).

From lemma 5 we know that xεi+δi+1
0 I

ρi+i+1
kills Ji+1/(Ji, Gi+1) hence also

Hs−σ−1(α|Ji+1/(Ji, Gi+1)). Taking into account (4), we find

x3εi+δi+1
0 I

3ρi+i+1 ·Hs−σ(α|A/Ji+1)) = 0.

Q.E.D.

The ideal J0 has type (0, 0), hence we easily obtain from the lemma above that

the ideal Ji has type (εi, ρi), where

εi =
i∑

h=1

3i−hδh, ρi =
i∑

h=1

3i−hh.

Now repeated applications of lemma 6 give

xγi

0 I
ηi

Ji ⊆ (G1, . . . , Gi) (5)

where

ηi =
i∑

h=1

h +
i−1∑
h=1

ρh =
3
8
(3i − 1) +

i2

4

γi =
i∑

h=1

δh +
i−1∑
h=1

εh−1 ≤
i∑

h=1

3i−hδh

≤
i∑

h=1

dk+1 · · · diδk ≤ d1 · · · di − deg A/Ji,

(6)

the last inequality coming from Bezout’s theorem. We distinguish two cases.

13



On a conjecture ...

• First case m′ ≤ n− 1.

We take i = m′ ≤ min{m,n− 1} in (5) and (6).

• Second case m′ ≥ n (and so m ≥ n)

The ideal Jn−1 is a homogeneous radical ideal of rank n−1 (use iii) of proposition

1) and we apply the following two lemmas (for the proofs, see [A2] lemma 5 and lemma

4 respectively):

Lemma 7.

Let c1 = dndeg A/Jn−1 − deg A/Jn ∩ In and c2 = deg A/Jn ∩ In + 1. Then

xc1
0 (Jn ∩ In)ν ⊆ (Jn−1, Gn)

for any integer ν ≥ c2.

Lemma 8.

Let Fi = hfi, i = 1, . . . ,m. Then,

Iν ⊆ (Jn ∩ In, F1, . . . , Fm)

for ν ≥ c3 = deg A/Jn ∩ In + d1.

Combining these two results, we get x
c1+max{c2,c3}
0 I ⊆ (Jn−1, Gn, F1, . . . , Fm).

Taking into account (5) with i = n− 1, this gives

x
γ′n
0 I

η′nJn−1 ⊆ (G1, . . . , Gn−1, Gn, F1, . . . , Fm).

where
γ′n = γn−1 + dndeg A/Jn−1 + d1 ≤ d1 · · · dn + d1

η′n = ηn−1 + 1 =
3
8
(3n−1 − 1) +

(n− 1)2

4
+ 1.

Our theorem follows.
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