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The resistance of cancer cells to a broad variety of anticancer drugs 

is known as multidrug resistance (MDR), which is a critical hindrance to 

the success of cancer chemotherapy and leads to tumor progression. It 

affects patients with hematological and solid tumors including breast, 

ovarian, lung, skin, and gastrointestinal tract cancers. The main responsible 

for MDR phenotype are ATP Binding Cassette (ABC) transporters, 

plasma-membrane associated transporters that efflux multiple drugs – 

unrelated for structure and activity – outside the cells, limiting their 

intracellular accumulation and cytotoxicity. The main ABC transporter 

related to MDR is P-glycoprotein (P-gp). Until now, different small 

molecules inhibitors of P-gp have been tested: although effective in vitro, 

they failed in preclinical models for their high toxicity and poor specificity. 

In my thesis, I investigated three alternative approaches to inhibit    

P-gp in an effective and safe way: i) the use of photodynamic tools, i.e. 

molecules able to release a chemotherapeutic drug – doxorubicin – and a   

P-gp inhibitor – nitric oxide (NO) – only if irradiated with proper 

wavelengths within tumor cells; ii) the use of natural products, with poor 

toxicity on non-transformed cells and high selectivity for P-gp 

overexpressing cells; iii) the use of a nanotechnological approaches, based 

on the co-administration of doxorubicin and a natural chemosensitizing 

product – curcumin – loaded in biocompatible solid lipid nanoparticles 

(SLN). 

In the first part of the Thesis, I validated a new class of 

photoexcitable/NO releasing doxorubicins (PNODOXOs), in which an 

appropriate NO-donor is linked through a photosensitive bridge to 

doxorubicin. The objective was to photo-generate NO at doses not toxic but 
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able to nitrate ABC transporters on critical tyrosines for their activity, 

reducing doxorubicin efflux. To this aim, I used human melanoma M14 

cells that constitutively express multiple ABC transporters. With the proper 

wavelength, power and irradiance, PNODOXOs released NO that nitrates 

P-gp and other ABC transporters, increasing the cytotoxicity of 

doxorubicin. These results may pave the way to the future use NO-

photodonors characterized by a broad-spectrum inhibition of ABC 

transporters. This feature may result in the increased retention and 

cytotoxicity of several other chemotherapeutic drugs besides doxorubicin. 

Moreover, this strategy is based on a light-induced release of NO: by 

reaching a tight spatial- and temporal-controlled release of NO only within 

the tumor cells, it maximizes the benefit against resistant irradiated tumors, 

limiting the side effects on no-transformed tissues. 

In the second and third part of the Thesis, I focused on the reversion 

of resistance to doxorubicin mediated by P-gp in triple negative breast 

cancer cells, where doxorubicin is the first therapeutic option but it is 

poorly effective because of the presence of P-gp. For my studies, I used 

three different cell lines: 1) MDA-MB-231, human triple-negative breast 

cancer cells poorly expressing P-gp; 2) MDA-MB-231/DX (generated by a 

stepwise selection of MDA-MB-231 in a medium containing doxorubicin) 

that show a moderate P-gp expression; 3) the murine JC cells highly 

expressing P-gp. 

First, I screened twelve natural pure compounds, which have been 

selected according to their different biological activities. I found that 

Glabratephrin (Glab), a prenylated flavonoid from Tephrosia purpurea, 

induced a selective and preferential cytotoxicity against P-gp-expressing 

cells, reversed doxorubicin resistance in vitro and in JC tumors in vivo, 

without systemic toxicity. Mechanistically Glabratephrin inhibited the 
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catalytic ATPase activity of P-gp, reducing the Vmax and increasing the 

Km of doxorubicin efflux. This event was due to the direct interaction of 

Glabratephrin with P-gp. Experiments with mutants P-gp allowed to 

identify the domain centred around Glycine 185 as the putative binding site 

of Glabratephrin. Indeed, the compound lost its efficacy in Glycine-> 

Valine 185 mutated P-gp. Reversing doxorubicin resistance with the 

association of Glabratephrin could decrease the dose necessary to eradicate 

resistant cancer cells, therefore diminishing the toxicity of the drug.  

Third, I continued the studies on natural products as MDR revertants, 

focusing on curcumin, a known inhibitor of P-gp that is affected by low 

stability, solubility and bioavailability. To overcome these limitations, I 

validated the efficacy of curcumin loaded in biocompatible SLN, with or 

without chitosan coating, able to increase the stability, the hydrophilicity 

and the cellular uptake of curcumin. Both curcumin-loaded SLN were five 

to ten-fold more effective than free curcumin in increasing intracellular 

retention and toxicity of doxorubicin in MDA-MB-231-P-gp expressing 

cells and JC cells. The chemosensitizing effects were due to the decrease of 

intracellular reactive oxygen species and to the consequent inhibition of the 

Akt/IKKα-β/NF-kB axis. In particular curcumin-loaded SLN reduced the 

binding of the p65/p50 NF-kB to the promoter of P-gp gene. The reduced 

transcriptional activity decreased P-gp mRNA and protein. Curcumin-

loaded SLN also effectively rescued the sensitivity to doxorubicin against 

drug-resistant JC tumors, without signs of systemic toxicity. 

Overall, my research activity used several innovative approaches, 

based on the combination of physics, medicinal chemistry, nanotechnology, 

biochemistry and pharmacology. Such multidisciplinarity may represent a 

significant advancement in overcoming MDR related to ABC transporters. 
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1.1 Multidrug Resistance 

The resistance of cancer cells to a broad variety of anticancer drugs 

is known as multidrug resistance (MDR) that produces chemotherapy 

failure and tumor progression (Chen et al., 2016). MDR is characterized by 

a cross-resistance to structurally and functionally unrelated compounds 

(Chen et al., 2016). Intrinsic drug resistance is a natural resistance of tumor 

cells to specific agents before the exposure to the agents. In acquired drug 

resistance tumor cells that are initially sensitive to drugs become resistant 

due to mutations and various adaptive responses during treatment (Holohan 

et al., 2013). 

1.1.1 Mechanisms of multidrug resistance 

MDR major mechanisms are grouped into several categories, e.g. 

decreasing drug influx, increasing drug efflux via adenosine triphosphate-

binding cassette (ABC) transporters, activating DNA repair mechanisms, 

modifying drug targets and detoxification enzymes, inhibiting apoptosis 

pathways, altering cell cycle checkpoint and cell cycle arrest (Chen et al., 

2016; Kumar and Jaitak, 2019). 

The low influx and/or the high efflux of anticancer drugs from tumor 

cells result in the lower intracellular accumulation of drugs that could not 

efficiently kill tumor cells (Cheng et al., 2019). One of the most studied 

mechanisms is the overexpression of several energy dependent drug efflux 

pumps that belonged to the ABC family of transporters (as detailed in 

paragraph 1.2). These proteins have broad and overlapping substrate 

specificity and activate the elimination of various hydrophobic compounds 

(Holohan et al., 2013). Tumor cells become resistant to a variety of 

anticancer drugs as a consequence of the overexpression or increased 

activity of these integral membrane proteins (Chen et al., 2016). 
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Resistance mechanisms related to modified drug activation and 

inactivation are specific for each class of drugs. For example, prodrugs 

(many antimetabolites and some alkylating agents) must be activated to 

their cytotoxic forms within tumor or other tissues as liver. It is known that 

resistance toward pyrimidine and purine analogs is linked to their 

inactivation by elevated deaminases (Moscow, et al., 2003). It has been 

reported that, in breast cancer, the increased activity of cytochrome P450 is 

associated with increasing docetaxel inactivation and drug resistance 

(Mansoori et al., 2017). 

Three important events can mediate and facilitate cell death: 

necrosis, apoptosis, and autophagy. The increased resistance to 

chemotherapy in tumor cells is associated with the up-regulation of anti-

apoptotic genes and down- regulation of pre-apoptotic genes (Mansoori et 

al., 2017). 

Modulation or mutation of a drug target expression can reduce the 

efficacy of the drug leading to resistance (Jones et al., 2009). For example, 

mutations in topoisomerase II in cancer cells alter its inhibition by 

doxorubicin (Housman et al., 2014). Similarly, mutations in ABL Proto-

Oncogene 2 (ABL2) kinase cause the resistance to imatinib (Mansoori et 

al., 2017). 

DNA is a target molecule for many chemotherapeutic agents. One of 

the resistance mechanisms to chemotherapeutic drugs is the DNA repair 

systems (Salehan and Morse, 2013). Repair of DNA lesions takes place 

through number of DNA repair pathways including mismatch repair, 

nucleotide excision repair, and homology-directed repair (Brown et al., 

2017). An increased activity of these enzymes after the formation of DNA 
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adducts by platinum limits cell death upon the exposure to this drug 

(Freimund et al., 2018).  

1.2 ABC transporters 

ABC transporters, consist of 48 members which are phylogenetically 

classified into seven subfamilies based on their sequence similarities from 

ABC-A to ABC-G (Ween et al., 2015). Among the ABC transporters 

which were identified in humans, most of those which there are several 

located on the cancer cells plasma membrane that significantly reduce the 

intracellular concentration of drugs, drug conjugates and metabolites 

(Holland, 2011; Wu et al., 2011). These proteins are considered the main 

responsible for the development of MDR (Vadlapatla et al., 2013). In 

addition to the role of ABC transporters as protective pumps from 

exogenous compounds and xenobiotics, they have physiological roles in 

the export of peptides, fatty acids, cholesterol and sterols, in the 

detoxification, defence against oxidative stress, and antigen presentation 

(Bodó et al., 2003; Shair et al., 2018). 

Structurally, all ABC transporters have two nucleotide-binding 

domains (NBDs) and two transmembrane domains (TMDs) (Rice et al., 

2014). ATP is hydrolysed by NBD via an ATPase activity (Dean, 2009). 

Changes in TMD conformation could be induced by binding of two ATPs 

at the dimer interface, that leading to the dimerization and configuration of 

a sandwich-like NBD. When a substrate binds to the TMD, it could induce 

a decrease in the activation energy for NBD dimerization. The bound ATP 

is hydrolyzed to ADP and Pi, which separates the NBDs, then the substrate 

is released extracellularly and the stable conformational state of the NBD is 

restored, making the protein ready for binding and transporting another 

substrate (Figure 1) (Chen et al., 2016).  
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At least 20 ABC transporters are capable of effluxing anticancer 

drugs. Multiple substrates can be transported by ABC transporters at once 

(Ween et al., 2015). The major ABC transporters involved in the 

development of MDR are P-glycoprotein (P-gp/ABCB1/MDR1), MDR 

Related Proteins (MRPs/ABCCs), and Breast Cancer Resistance Protein 

(BCRP/ABCG2/MXR) (Shapira et al., 2011). In most tumors, MDR is not 

only mediated by overexpression of one ABC transporter, but by 

expression of several transporters. For example, the co-expression of P-gp 

and BCRP transporters at the blood–brain barrier prevent effective 

chemotherapy of brain tumors (Agarwal, S., 2011). 

 

Figure 1. Schematic representation of the function of ABC transporters. ABC transporters are 

energy-dependent pumps, exhibiting a conformational change upon substrate binding and ATP hydrolysis 

that drives the substrate transport process (Chen et al., 2016). 

 

The ABCB subfamily consists of ABCB1, ABCB4, ABCB5 and 

ABCB11 which are full length transporters, and ABCB2/B3 and ABCB6-

10 which are heterodimeric and homodimeric half transporters (Szöllősi et 

al., 2018). 

P-gp (ABCB1) was the first ABC member discovered with a strong 

linkage to drug resistance. Many studies have shown that overexpression of 

P-gp is induced by chemotherapy in various types of cancer (Wang, 2014). 
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Physiologically, P-gp is expressed in all tissues and mediates drug 

resistance in breast, gastric, liver, pancreas, colon, and kidney cancers, as 

well as in leukemias (Wang et al., 2015). 

1.3 Melanoma and resistance related to ABC transporters 

Skin cancers have a very high incidence among Caucasian people 

(Chandra Pal et al., 2016). According to cellular origin, skin cancers are 

divided into two major groups: melanomas (derived from melanocytic 

cells) and non-melanoma (derived from epithelial cells) skin cancers 

(Khavari, 2006). Melanoma can be occurred in the skin, eye and ear (Toia 

et al., 2015; Oellers et al., 2018; Renzi et al., 2019), and is one of the most 

aggressive forms of skin cancer with a high frequency of metastasis and a 

poor prognosis in the metastatic stage. According to the World Health 

Organization, worldwide about 132,000 new cases of melanoma are 

diagnosed each year (Hakkim et al., 2019). 

Chemotherapy is one of the therapeutic treatment options available to 

treat melanoma but in most cases it leads to severe side effects (Wu et al., 

2019), associated with treatment failure as a consequence of MDR (Sakil et 

al., 2017). Melanoma is a highly chemoresistant because of the 

overexpression of multiple ABC transporters such as ABCA9, ABCB1, 

ABCB5, ABCB8, ABCC1, ABCC2, ABCD1, ABCG2 (Chen et al., 2009). 

Doxorubicin is one of the leading chemotherapeutic drugs in melanoma 

treatment, but its efficacy is limited by drug resistance. Notwithstanding 

the use of new immune-therapeutic strategies in melanoma treatment, since 

also immune-therapy is affected by heavy side-effects and resistance rate of 

30% patients, there is a renewed interest in improving the efficacy of 

chemotherapeutic approaches in melanoma. 
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1.4 Breast cancer and resistance related to ABC transporters 

Worldwide, breast cancer is one of the most frequently diagnosed 

cancers and is the leading cause of cancer death in women. It is estimated 

that the global cancer burden to have risen to 18.1 million new cases and 

9.6 million deaths in 2018 (Bray et al., 2018), showing the highest 

oncological incidence in women (Hosni et al., 2019). 

In Egypt, breast cancer is the most frequent tumor, constituting about 

38.6% of female cancer cases recorded by National cancer registry program 

of Egypt in 2010. Breast cancer female cases represented 32.04 % of 

cancers in Egypt, according to the National Population-Based Registry 

Program of Egypt 2008– 2011 (Ibrahim et al., 2014). It is more prominent 

among young premenopausal Egyptian women, when it is characterized by 

poor prognosis and low survival rate (Omar et al., 2003).  

Based on molecular profile, breast cancer can be divided into subtypes 

including:  

1) Luminal breast cancers, which can be subdivided into luminal A 

and B subtypes: they are heterogeneous in terms of mutation spectrum, 

gene expression, copy number changes and patient outcomes (Koboldt 

et al., 2012); 

2)  Human epidermal growth factor receptor-2 (HER2) subtype; 

3) Normal breast-like and basal-like triple negative breast cancer 

(TNBC) (Tajbakhsh et al., 2019). 

TNBC is an aggressive and invasive subtype and accounts for 10–20% 

of all breast cancers (Stuart, et al., 2010). TNBC represent 28.5% of breast 

cancer patients in Egypt (El-Hawary et al., 2012). It is characterized by the 
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lack of estrogen receptor (ER), progesterone receptor (PR), and HER2 

(Neophytou, et al., 2018). TNBC have a high frequency of TP53 mutations 

combined with loss of retinoblastoma1 (RB1) oncosuppressor (Perou, 

2011). Seven subtypes of TNBC were identified through the analysis of 

differential expression of a set of genes and include a mesenchymal, a 

mesenchymal-stem cell-like, two basal-like, a luminal androgen 

receptor/luminal-like, an immunomodulatory, an unclassified type, with 

different prognosis (Neophytou, et al., 2018). 

Chemotherapy is the main treatment option for patients with TNBC. In 

spite of the rather aggressive clinical behavior of TNBC, after neo-adjuvant 

chemotherapy, about 30 to 40% of patients achieve a complete response 

with no histological evidence of disease at the time of surgery (Lehmann et 

al., 2016). However, the emergence of drug resistance in many cases 

reduces the efficacy of the current neoadjuvant and adjuvant chemotherapy 

(Wu et al., 2014; Willers et al., 2019). 

P-gp and ABCG2 are the main ABC transporters expressed in TNBC. 

P-gp, a 170 kDa plasma membrane drug efflux transporter encoded by the 

MDR1 gene (Juliano and Ling, 1976), is located on chromosome 7 

(q21.12). It consists of two ATP binding cassettes and two homologous 

regions containing two hydrophobic TMDs of six α-helices, and two NBDs 

located on the cytoplasmic side (Higgins et al., 1997; Ren et al., 2016). The 

drug binding activity results in the activation of one of the TMD of P-gp 

and in the subsequent hydrolysis of ATP, leading to a major 

conformational change, which causes drug efflux (Figure 1) (Saraswathy 

and Gong, 2013). 

P-gp limits the chemotherapeutic drug intracellular accumulation and 

the drugs cytotoxicity in various cancers (Housman et al., 2014), including 
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TNBC (Iris C Salaroglio et al., 2018). The protein has one of the broadest 

spectrum of substrates, including anthracyclines (doxorubicin, 

daunorubicin and epirubicin), Vinca alkaloids (vinblastine and vincristine), 

epipodophyllotoxins (etoposide, teniposide), taxanes (paclitaxel, 

docetaxel), colchicine and some of the most recent anticancer targeted-

therapies such as lapatinib, imatinib, dasatinib, sorafenib, erlotinib, 

gefitinib and gemtuzumab (Gottesman, et al., 2002; Brózik et al., 2011; 

Jiang et al., 2014).  

P-gp inhibition has be carried out using different class of 

pharmacological inhibitors, including competitive, non-competitive or 

allosteric blockers of drug-binding site(s), inhibitors of ATP hydrolysis, 

agents disrupting the integrity of cell membrane lipids (Figure 2) (Bansal et 

al., 2009; Akhtar et al., 2011), but these approaches all failed for the poor 

specificity and the high toxicity due to the inhibition of physiological 

functions of P-gp in non-transformed tissues.  

 

Figure 2. Inhibitory mechanisms of P-glycoprotein (Bansal et al., 2009; Akhtar et al., 2011). 
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BCRP is thought to function as homodimers or heterodimers (Mo and 

Zhang, 2012). It also transports anthracyclines, in particular mitoxantrone, 

and is similar to P-gp and MRP according to toxic-kinetic and 

pharmacokinetic properties (Jani et al., 2014). 

1.5 Mechanisms of doxorubicin resistance 

Doxorubicin (Adriamycin
®
) (Figure 3) is an antibiotic isolated from 

the cultural broth of bacteria belonging to Streptomyces spp. It is 

constituted by an aglycon (an anthraciclinonic moiety) linked to an amino 

sugar (daunosamine). It is a class I anthracycline, widely used in therapy 

for the treatment of a variety of tumours including solid tumours, soft 

tissues sarcomas, osteosarcomas and many hematological malignancies 

(Minotti, 2004). Several molecular mechanisms which could underlie its 

anti-tumoral activity have been proposed, including: inducing DNA 

damage, increasing reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) such as nitric oxide (NO), impairing mitochondrial 

metabolism, inducing endoplasmic reticulum (ER) stress and immunogenic 

cell death (Riganti, Gazzano, et al., 2015; Riganti, Kopecka, et al., 2015; 

Salaroglio, et al., 2018).  

The clinical use of doxorubicin is hampered by its cardiotoxicity and 

easy development of resistance. Among the several mechanisms proposed 

to explain the resistance, the overexpression of ABC transporters on cell 

surface such as P-gp, MRPs, BCRP and lung resistance protein (LRP) is 

one of the most critical factor (Wang, et al., 2019). As a result, doxorubicin 

accumulates less within the cell, decreasing DNA damage and apoptosis, 

mitochondrial damage, ER stress and immunogenic cell death (Cox and 

Weinman, 2015; Gazzano, et al., 2018; Salaroglio et al., 2018). Besides P-

gp and BCRP that mediates doxorubicin efflux, ABCB8 determines 
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doxorubicin resistance in melanoma cells by protecting the genome of the 

mitochondria (Tacar, et al., 2013). 

Since doxorubicin inhibits topoisomerase II (Tacar, et al., 2013), also 

mutations or increased expression of this enzyme determines resistance to 

the drug (Lovitt, et al., 2018). Moreover, an increase in anti-apoptotic 

pathway is also a critical mechanism of doxorubicin resistance (Xu et al., 

2018).  

1.6 Strategy to overcome drug resistance 

To overcome clinical MDR a number of strategies have been 

proposed. Several pharmacological ABC transporters modulators have 

been tested in clinical trials. They are classified as first, second and third 

generation modulators, on the basis of their affinity and specificity for 

ABC transporters (Kathawala et al., 2015; Li et al., 2016). Most inhibitors 

have been directed towards P-gp.  

P-gp substrates are capable of binding to P-gp specifically or non-

specifically (Orelle et al., 2008). The first generation modulators, such as 

verapamil and cyclosporine, despite their promising results in preclinical 

trials, showed major toxicities in clinical trials because of the inhibition of 

both P-gp and their physiological targets (such as Ca
++

 channels, immune 

modulator proteins), producing unexpected drug-drug interactions and side-

effects. The majority of second generation inhibitors are analogs of the first 

generation compounds, lacking of the original pharmacological activity. 

However, they were modulators of cytochrome p450 activities, determining 

the alteration in the metabolism of chemotherapeutic drugs, catabolites, 

xenobiotics and other co-administered drugs (Kumar and Jaitak, 2019). The 

third generation drugs, including Tariquidar and Elacridar, were developed 

to overcome the limitations of both first and second generations, being 
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more specific and potent on P-gp or BCRP, with minimal impact on 

cytochrome p450 system and drug pharmacokinetics (Hyafil et al., 1993; 

Dantzig et al., 1999; Mistry et al., 2001). Although some of these inhibitors 

have  succeeded to enhance the efficacy of anticancer drugs in preclinical 

studies and in some clinical trials, most of these inhibitors showed high 

toxicity (Thomas and Coley, 2003). The latest frontiers in ABC 

transporters inhibition is the co-administration of the antineoplastic agents 

with ABC transporters inhibitors (Szakács et al., 2006; Zinzi et al., 2014). 

To overcome pharmacokinetic and pharmacodynamic limitations, the co-

encapsulation in liposomes of biocompatible nanoparticles have been 

experimented (Hu and Zhang, 2012), but these studies are still at preclinical 

levels. 

Hence, alternative strategies inhibiting P-gp in order to improve 

chemotherapy efficacy is still an unmet need. 

1.6.1 Photodynamic therapy: overview of its possible use as a tool to 

overcome drug resistance 

Photodynamic therapy (PDT) include a range of approaches that 

generate ROS and RNS within the target tissues, after energy-specific 

activation of photodynamic compounds (i.e. visible and near-infrared 

absorbing molecules or photosensitizers) upon irradiations with a specific 

wavelength, able to release ROS/RNS-generating moieties from the donor 

compound (Obaid et al., 2016). PDT causes minimal toxicity to normal 

tissues in comparison with chemotherapy and radiotherapy, since the 

generation of ROS/RNS is a light-triggered process occurring only in 

irradiated tissues (specifically in tumors) and photosensitizers usually are 

not toxic if not irradiated (i.e. in non-transformed tissues) (Li et al., 2013).  
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NO, a potent RNS is an endogenous messenger produced by the nitric 

oxide synthase (NOS) enzyme, which can exists in three isoforms: neuronal 

nNOS, endothelial eNOS, and inducible iNOS. The first two are 

constitutive and induce formation of little amount of NO (pM or nM 

concentrations), while the third one is an inducible isoform which produces 

high levels of NO (M concentrations). At low concentrations NO displays 

cytoprotective and second-messenger effects, at high concentration toxic 

effects (Wink and Mitchell, 1998). At micromolar concentration it triggers 

antitumoral effects through the oxidative damage of DNA, inactivation of 

DNA-repairing systems, the reduction of nucleotide synthesis, the 

interference with tricarboxylic acid cycle and the mitochondrial respiratory 

chain, the generation – together with the ROS superoxide, of the string pro 

oxidant species peroxynitrite (ONOO
.
) (Huerta et al., 2008).

 
NO-donors are 

products able to release NO, and consequently they can be used as NO-

prodrugs (Sharma et al., 2013). 

Previous works from our group have shown that classical NO-donors 

such as S-nitrosopenicillamine, sodium nitroprusside and S-

nitrosoglutathione, are able to reduce the efflux of doxorubicin in human 

cancer cells. The mechanism is not the typical activation of the soluble 

guanylate cyclase, but the nitration of critical tyrosine residues of P-gp and 

MRP transporters (Riganti et al., 2005; De Boo et al., 2009). Also furoxan 

derivatives (1,2,5-oxadiazole 2-oxides), which are known to release NO 

under the action of thiol co-factors, can inhibit in a similar manner P-gp 

and MRP1 (Fruttero et al., 2010). On these bases, new doxorubicin 

derivatives, in which moieties containing nitrooxy or furoxan NO-donor 

groups were linked through an ester bridge at C-14 of the antibiotic, were 

developed. Some of these NO-releasing doxorubicins were able to 

overcome resistance by inhibiting ABC transporters via tyrosine nitration, 
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and increasing the intracellular retention of doxorubicin (Chegaev et al., 

2011; Riganti et al., 2013; Gazzano et al., 2016). 

A particular kind of NO-donors is represented by the NO-photodonors 

(NOPDs), namely products able to release NO under the action of specific 

wavelengths. This strategy allows a precise control of timing, location and 

dosage of the NO-released. A NOPD must satisfy precise requisites for 

biological application; in particular it must be excited by the visible light. 

Its side photoproducts should not be toxic and or absorb visible light. 

Examples of such products are NO/nitrite complexes of transition metals 

combined with appropriate chromophores (Ford, 2008, 2013; Fry and 

Mascharak, 2011). These complex structures, however, are not suitable for 

chemical manipulations, in contrast to structurally simple NOPDs, e.g. 

substituted nitrobenzenes which undergo to a nitro-nitrite rearrangement 

followed by release of NO and formation of the related phenols under blue 

light (Suzuki et al., 2005; Kitamura et al., 2016). Structural modification of 

these products can be carried out by simple synthetic procedures. A typical 

examples of such NOPDs is 4-nitro-3-(trifluoromethy)aniline (Figure 3) 

(Caruso et al., 2007; Callari and Sortino, 2008; Conoci et al., 2013). These 

NOPDs have never been exploited as possible MDR-overcoming strategies 

exploiting a photodynamic approach.  

 

Figure 3. Molecular structure of doxorubicin (Dox) and Nitric Oxide Photodonor (NOPD). 
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1.6.2 Natural products: overview of their use as chemosensitizers 

A variety of phytochemicals, including alkaloids, lipophilic 

terpenoids, steroids and triterpenes inhibit P-gp, MRP1 and BRCP in a 

competitive manner (Wink et al., 2012). Several natural compounds such 

as quercetin, catechins, morin and capsaicin have been reported as selective 

P-gp inhibitors (Zhang and Morris, 2003; Nabekura et al., 2005). 

Flavonoids and terpenoids are chemical compounds which are commonly 

present in several plants and have a wide range of pharmacological effects, 

enhancing or reducing the efficacy of other drugs through modulation of P-

gp expression (Yu et al., 2016). Stemona alkaloids increase the efficacy of 

anticancer drugs by reducing drug efflux via P-gp (Umsumarng et al., 

2017). Capsaicin reverses drug resistance in vivo by improving doxorubicin 

pharmacokinetic, reducing P-gp efflux (Kim et al., 2018). Zuccagnia 

punctate (monotypic species widely distributed in western Argentina) and 

two of its components - 3,7-dihydroxyflavone and 20,40 

dihydroxychalcone - have been reported to modulate both the expression 

and activity of P-gp (Yu et al., 2016). 

In this Thesis, I will focus mainly on two natural products: 

glabratephrin and curcumin. 

1.6.2.1 Glabratephrin as a bioactive natural compound 

Glabratephrin is a prenylated flavonoid from Tephrosia purpurea 

(Ammar et al., 2013). T. purpurea was reported to contain rotenoids, 

flavones, isoflavones, flavanones, flavanols, chalcones (Pelter et al., 1981). 

Prenylated flavonoids are the major compounds of this plant. Since their 

first isolation, glabratephrin (Vleggaar et al., 1978), and recently, 

isoglabratephrin (Hegazy et al., 2009)
 
are the only examples in nature of 

prenylated flavonoids with 4-hydroxy-2,7-dioxaspiro[4.4]nonan-1-one-3,3-



Introduction 

 

23 

 

dimethyl ring system. This prenylated flavonoid with its rare carbon 

framework is the major constituent in T. purpurea (Mohamed et al., 2008).  

It was found that glabratephrin has antifungal activity against four 

phytopathogenic fungi (Helminthosporium spp., Pestalotiopsis spp, 

Alternaria alternata and Colletotrichum acutatum) (Afzal et al., 2014). 

Different fractions of the T. purpurea extract have hepatoprotective 

(Paharia and Pandurangan, 2013), anti-inflammatory (Gulecha et al., 2011), 

anti-ulcer (Deshpande et al., 2003), anti-diabetic (Pavana et al., 2008) and 

antioxidant activities in rats (Saraf et al., 2006). 

1.6.2.2 Curcumin as a natural P-gp inhibitor 

Curcumin is a secondary metabolite isolated from the turmeric of 

Curcuma longa L. which have several biological activities, including 

inhibiting P-gp function and expression (Lopes-Rodrigues et al., 2016). 

Turmeric or natural curcuminoids have been reported to have antioxidant 

(Llano et al., 2019), anti-inflammatory (Menon and Sudheer, 2007), 

anticancer
 
(López-Lázaro, 2008; Guerrero et al., 2018)

 
and antimicrobial 

activities (Zorofchian Moghadamtousi et al., 2014). Curcuma longa safety 

has been studied in various animal models such as rats, guinea pigs and 

monkeys (Shankar et al., 1980; Qureshi et al., 1992), indicating that it is 

not toxic even at high doses in laboratory animals (Limtrakul et al., 2004, 

2005). 

1.6.2.2.1 Curcumin-loaded solid lipid nanoparticles 

Since curcumin is a highly lipophilic drug, nanotechnologists 

produced different formulations encapsulating curcumin, in order to 

enhance its solubility, stability, specificity, tolerability, cellular 

uptake/internalization efficacy and therapeutic index (Yallapu et al., 2012, 
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2013) (Figure 4) (Yallapu et al., 2015). Among the latest nanocarriers used 

for curcumin delivery there are solid lipid nanoparticles (SLNs), i.e. solid 

nanoparticles ranging from 300 to 600 nm formed by long chain saturated 

or unsaturated fatty acids that dispose themselves as in lipid micelles. SLNs 

advantageous properties are biocompatibility, small particle size, chemical 

and mechanical stability and easy functionalization that may enhance the 

delivery of bioactive lipophilic molecules (Guri et al., 2013; Nakhlband et 

al., 2018; Rehman et al., 2018). The lipid core within SLNs can protect the 

encapsulated lipophilic drugs from chemical degradation and enhance their 

physical stability. Moreover, SLNs have been reported to ameliorate the 

half-time of the drugs in the systemic circulation, modulate release kinetics, 

and increase therapeutic efficacy of anticancer drugs (Baek et al., 2018; 

Wang et al., 2018). 

In my thesis, I used curcumin-loaded SLN with or without chitosan. 

Chitosan is a common coating agent in nanoparticulate drug delivery 

system. It is nontoxic, biocompatible and biodegradable and has been 

proven to control the release of drugs. It is soluble in aqueous media, 

avoiding the use of organic solvents during SLNs preparation, and, once 

added to the synthesized SLNs, it does not require further purification of 

nanoparticles (Agnihotri et al., 2004). 
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Figure 4. Schematic transition from curcumin to curcumin nanoformulations.       A literature 

graphical representation using PubMed, patents (through online search engines) and websites of clinical 

trials (search conducted in April 2015). b. Implication of curcumin and nanocurcumin (curcumin 

nanoformulations) in different diseases (asterisk shows a widespread study). c. Delivery methods of 

curcumin and curcumin nanoformulations (asterisk represents the route which is commonly used to 

deliver curcumin). d. Types of nanocarriers commonly used to deliver curcumin efficiently. 1–8: polymer 

nanoparticles, solid nanoparticles, liposome/lipid nanoparticles, micelles, dendrimers, polymer 

conjugates, nanogels, and metal/metal oxide nanoparticles, respectively (Yallapu et al., 2015). 
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The general aim of this thesis is to overcome doxorubicin resistance 

through using different strategies to increase doxorubicin efficacy in drug 

resistant cancer cells based on physical, natural and nanotechnological 

approaches. 

In particular: 

1- In the first part, I applied a physical PDT-based approach, using 

light-activated/NO-releasing doxorubicin, to overcome doxorubicin 

resistance in human melanoma (M14) cells. 

 

2- In the second and third part, I used natural products to overcome 

doxorubicin resistance in human (MDA-MB-231 and their resistant 

counterpart MDA-MB-231/DX) and murine (JC) TNBC doxorubicin 

resistant cell lines. In particular, I studied the chemosensitizing 

efficacy and the biochemical mechanisms underlying 

chemosensitization of: 

 
 

a. Glabratephrin as new natural compound inhibiting P-gp; 

b. Curcumin-loaded SLN as new nanotechnological formulations of 

a natural product, able to inhibit P-gp. 
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3.1 Chemicals 

The plastic ware for cell cultures was obtained from Falcon (Becton 

Dickinson, Franklin Lakes, NJ). The electrophoresis reagents were 

obtained from Bio-Rad Laboratories (Hercules, CA). The protein content of 

cell lysates was assessed with the BCA kit from Sigma Chemicals Co. (St. 

Louis, MO). Unless specified otherwise, all reagents were purchased from 

Sigma Chemicals Co. Deionized water was obtained by a MilliQ system 

(Millipore, MO, USA). 

3.2 Cell lines 

M14 melanoma cells, human breast cancer MCF7 cells, human 

TNBC MDA-MB-231, murine mammary cancer JC cells syngeneic with 

Balb/C mice, and rat cardiomyocytes H9c2 were purchased from ATCC 

(Manassas, VA). MDA-MB-231/DX were generated by culturing parental 

MDA-MB-231 cells in complete medium, adding Dox at increasing 

concentrations every 5 passages (p0: 10 nM Dox; p5: 25 nM; p10: 50 nM; 

p15: 100 nM; p20: 250 nM; p25: 500 nM; p30: 1000 nM). For all the 

reported experiments, MDA-MB-231/DX 500 nM was used. Human 

fibroblasts were a kind gift of Prof. Franco Novelli, Department of 

Molecular Biotechnology and Health Sciences, University of Torino, Italy.  

Cells were maintained in RPMI-1640 (MCF-7, MDA-MB-231, JC 

cells) or in DMEM (H9c2, fibroblasts) media supplemented with 10% v/v 

fetal bovine serum, 1% v/v penicillin-streptomycin, 1% v/v L-glutamine. In 

photo-irradiation experiments, cells were exposed to a 400 nm wave length, 

10W violet led for 20 minutes, using an irradiance of 7 mW/cm
2
, in PBS at 

room temperature. Nov-irradiated cells were maintained in PBS in a dark 

room for 20 minutes at room temperature. After this period time, PBS was 
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changed with fresh medium and cells were left for 24 h in the incubator 

before the experimental procedures described below. 

3.3 Photo-excitable/NO-releasing doxorubicins synthesis and 

characterization 

The synthesis of PNODOXOs (Photodonor NO covalently linked to 

doxorubicin through a suitable bridge) was performed at the Department of 

Drug Science and Technology, University of Turin, as reported in 

(Chegaev et al., 2017). The preparation of the acids used to synthesize the 

target PNODOXOs 11-13, is reported in Scheme 1a. A solution of 4-

chloro-1-nitro-2- (trifluoro methyl)benzene (3) in 1,3-diaminopropane 

heated at 140°C afforded the diamine propane derivative 4. This product 

treated with succinic anhydride in CH2Cl2 solution in the presence of Et3N 

gave the acid 5. The acid 7 was obtained by oxidation in with an aqueous 

solution of Na ClO2 of the related aldehyde 6 dissolved in t-butanol. The 

aldehyde 6 resulted from the action of 4-formylbenzoyl chloride on 4 in 

CH2Cl2 solution, in the presence of Et3N. Finally the acid 9 was prepared 

by hydrolysis of the corresponding methyl ester 8, in turn obtained by 

reacting 4 and methyl 4-(3-bromopropoxy)benzoate in MeCN in the 

presence of K2CO3. 

Preparation of PNODOXOs 11-13 is outlined in Scheme 1b. 

Reaction of 14 bromo/chloro daunomicin hydrobromide 10 with the acids 

5, 7, 9 was performed at room temperature in dry DMF in the presence of 

KF. The resulting products were purified by flash chromatography, 

successively suspended in dry THF and treated with 1 equiv. of HCl in dry 

dioxane to give the corresponding hydrochlorides. In the case of the 

preparation of 13 the oily product obtained by flash chromatography was 

only additionally purified by RP-flash chromatography (eluent gradient 
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from 4/6 to 2/8 MeCN/0.005M HCl). The final purity of the products was 

evaluated by RP-HPLC techniques. 
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Stability and NO release from compound 11-13 were performed at 

the Department of Drug Science and Technology, University of Turin, as 

detailed in the Results section 

3.4 Plant materials and natural pure compounds 

Pure compounds were provided by Prof. Meselhy R. Meselhy from 

Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 

Egypt; Prof. Ahmed A. El-Beih from Chemistry of Natural and Microbial 

Products Department at National Research Centre (NRC), Egypt and Dr. 

Ahmed H. El-Desoky
 
from Pharmacognosy Department at NRC, Egypt. 

The chosen compounds included: the triterpenes neviotine A and 

sipholenol N that were isolated from the Red Sea marine 

sponge Siphonochalina siphonella (El-Beih et al., 2018); Arctigenin that 

was isolated from seeds of Arctium lappa L. (Jin et al., 2007); Delta-

Valerolactone, Gamma-Valerolactone and Enterolactone that are 

bacterial metabolites from Arctigenin (Jin et al., 2007; Jin and Hattori, 

2010); the furanocoumarins Bergapten and Iso-Bergapten, extracted from 

medicinal plant Angelica pubescens (Xiao and Liu, 2005); Osthol, 

extracted from Tagetes L. Spp. (López et al., 2011); Guggulsterone that 

was isolated from the oleogum resin of Commiphora wightii (Arnott.) 

(Meselhy, 2003); Magnesium lithospermate B, extracted from Cordia 

spinescens (Boraginaceae species) (Lim et al., 1997); Glabratephrin, a 

prenylated flavonoid from T. purpurea (Khalafallah et al., 2009; Maldini et 

al., 2011; Ammar et al., 2013)(Table 1). 
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Table 1. Tested natural pure compounds. 
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The aerial parts of Tephrosia purpurea were collected in February 

2010, in Gabal Elba, Egypt. A voucher specimen has been deposited in the 

herbarium of National Research Centre, Cairo, Egypt. The plant was air 

dried in shade, reduced to 36 mesh powder using cutter mill and kept in 

tight closed containers till extraction. 

3.4.1 Extraction and isolation of Glabratephrin 

Air-dried aerial plant powder (1200 g) of T. purpurea was extracted 

with CH2Cl2–methanol (MeOH) (1:1) (3 L) by maceration at room 

temperature. Solvent was stripped off under vacuum at 40°C. The residue 

(70 g) was subjected to silica gel column chromatography and eluted with 

n-hexane, ethyl acetate (EtOAc) and MeOH in increasing order of polarity 

up to 100% EtOAc, then washed with MeOH. Similar fractions were 

combined to yield 9 main fractions. Fraction 7, eluted with n-hexane-

EtOAc (4:6), was subjected to silica gel column chromatography, eluted 

with n-hexane-EtOAc (2:1) to yield 12 subfractions. Subfraction 11 was 

purified by Sephadex LH-20 column chromatography to yield compound 1 

(94 mg), which was identified by 
1
H-NMR analysis and was found to be 

glabratephrin (Figure 5). 

 

Figure 5. 
1
H-NMR analysis of compound 1 (glabratephrin). 
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3.5 Solid lipid nanoparticles (SLN) preparation 

SLNs, loaded with curcumin, with and without chitosan, were 

prepared at the Department of Drug Science and Technology, University of 

Turin, using the "cold dilution of microemulsion” method (Chirio et al., 

2018). This preparation method is based on the preparation of an Oil/Water 

microemulsion (µE), diluted by an aqueous solution at room temperature, 

to obtain nanoparticles precipitation as lipid solid matrices. 

A saturated solution of trilaurin, dissolved in 1 mL of ethylacetate, 

was diluted in 5 mL deionized water to precipitate SLN, that were then 

collected and diluted in 5 mL of 2% w/w aqueous solution of Pluronic 

Pluronic® F68, ad detailed in (Chirio et al., 2019). 11 mg curcumin, 

dissolved in 1 mL 1,2 propanediol, was added to the 1 mL of SLN that 

were subsequently diluted in Pluronic® F68, as reported above. Curcumin-

loaded SLN were subjected to gel filtration, to remove solvents and 

unencapsulated drugs. The mean diameter of the SLNs was 215.3 + 5.4 nm, 

with a polydispersity index of 0.222 and a ζ-potential of -18.96 + 2.88. The 

encapsulation efficiency was 70 + 2.1 % (Chirio et al., 2019). An aqueous 

solution of 15 mg chitosan in 10 ml were added to 100 µl of SLN loaded 

with curcumin, incubated under stirring conditions for 4 h, precipitated by 

centrifugation at 25,000 x g for 10 min. The association of chitosan with 

the SLN was verified by UV-vis spectrophotometry, as detailed (Chirio et 

al., 2011). 

3.6 Nitrite release 

The amount of nitrite, the stable derivative of NO, from PNODOXs 

or from cells treated with PNODOXOs, was measured 

spectrophotometrically by adding 0.15 ml of supernatants to 0.15 ml of 

Griess reagent (Riganti et al., 2008), in a 96-well plate. After a 10 min 
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incubation at 37 °C in the dark, absorbance was measured at 540 nm with a 

HT Synergy 96-well micro-plate reader (Bio-Tek Instruments, Winooski, 

VT). For each experiment, a blank was prepared in the absence of cells, 

and its absorbance was subtracted from that measured in the presence of 

cells. Nitrite concentration was expressed as nmoles nitrite/mg cell 

proteins. 

3.7 Cytotoxicity 

The release of lactate dehydrogenase (LDH) in the extracellular 

medium, considered an index of DOX cytotoxicity (Chegaev et al., 2017), 

was measured spectrophotometrically (Riganti et al., 2008). 50 µl of 

medium were centrifuged at 12,000 x g for 15 min, and diluted in 0.2 ml of 

82.3 mM triethanolammine phosphate hydrochloride (TRAP, pH 7.6). 

Cells were washed with PBS, detached with trypsin/EDTA, and sonicated 

on ice (1 X 10 s, amplitude 40%; Hielscher UP200S ultrasound sonicator, 

GmbH, Teltow, Germany). LDH activity was measured in 200 µL of 

medium and by adding 5mM NADH and 20 mM pyruvic acid, measuring 

the change in absorbance at 340 nm with a HT Synergy 96-well micro-

plate reader (Perkin Elmer, Shelton, CT). The reaction kinetics was linear. 

The results were expressed as µmoles NAD
+
/min/mg cell proteins. 

3.8 Cell viability 

Cell viability was evaluated by measuring the percentage of cells 

stained with crystal violet (Riganti, Kopecka, et al., 2015; Kopecka et al., 

2018) as indicated in the Results section. The quantitation of crystal violet 

staining was performed by reading the absorbance of each well at 540 nm 

(HT Synergy 96-well micro-plate reader). The mean absorbance of 

untreated cells was considered 100%; the absorbance units of the other 

experimental conditions were expressed as percentage of viable cells vs. 
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untreated cells. To calculate the IC50 i.e. the concentration of each natural 

compound that decreased the cell viability by 50%, cells were seeded in 

quadruplicate in 96-well plates, treated at scalar concentrations (from 10
-9

 

M to 10
-2

 M) of each compounds for 72 h and stained with crystal violet. 

IC50 was calculated with the GraphPad Prism (v 6.01) software. The 

Combination Index (CI) was calculated by measuring the viability in cells 

incubated with scalar concentrations (from 10
-10

 M to 10
-3

 M) of 

doxorubicin and glabratephrin, using the CalcuSyn software 

(www.biosoft.com/w/calcusyn.htm). 

3.9 Immunoblotting 

Cells were rinsed with ice-cold lysis buffer (50 mM, Tris, 10 mM 

EDTA, 1% v/v Triton-X100), supplemented with the protease inhibitor 

cocktail set III (80 μM aprotinin, 5 mM bestatin, 1.5 mM leupeptin, 1 mM 

pepstatin; Calbiochem, San Diego, CA), 2 mM phenylmethylsulfonyl 

fluoride and 1 mM Na3VO4, then sonicated and centrifuged at 13,000  g 

for 10 min at 4 
o
C. 20 μg protein extracts were subjected to SDS-PAGE 

and probed with the antibodies for: anti-P-gp/ABCB1 (C219, Calbiochem), 

anti-MRP1 (Abcam, Cambridge, UK), anti-MRP2 (Abcam), anti-MRP3 

(Santa Cruz Biotechnology Inc., Santa Cruz, CA), anti-MRP4 (Abcam), 

anti-MRP5 (Santa Cruz Biotechnology Inc.), anti-BCRP (Santa Cruz 

Biotechnology Inc.), anti-phosphoSer473 Akt (Cell Signalling Technology, 

Danvers, MA), anti-Akt (Cell Signalling Technology), anti-

phosphoSer176/180 IKKα/β (Cell Signalling Technology), anti- IKKα/β 

(Cell Signalling Technology), anti- IkBα (Santa Cruz Biotechnology Inc), 

followed by a peroxidase-conjugated secondary antibody (Bio-Rad 

Laboratories). The membranes were washed with Tris-buffered saline-

Tween 0.1% v/v solution, and the proteins were detected by enhanced 

chemiluminescence (Bio-Rad Laboratories). To check the equal control 
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loading in lysates, samples were probed with an anti-actin (Sigma 

Chemicals Co.) or with an anti-β-tubulin (Santa Cruz Biotechnology Inc.) 

antibody. To analyse the presence of nitrated proteins, cell extracts were 

subjected to immunoprecipitation using a rabbit polyclonal anti-

nitrotyrosine antibody (Millipore, Billerica, MA). Immunoprecipitated 

proteins were separated by SDS-PAGE and probed with the respective 

antibodies against ABC transporters, as indicated above. 

3.10 ATPase activity 

1 mg whole cell lysate was immunoprecipitated with antibodies for 

P-gp, MRP1, MRP3, MRP4, MRP5, BCRP, using the PureProteome 

protein A and protein G Magnetic Beads (Millipore). The ATPase activity 

of each immunopurified transporter was measured spectrophotometrically 

(Kopecka et al., 2014). 20 μg of each immunoprecipitated total protein 

were incubated for 30 min at 37°C with 50 μl of the reaction mix (25 mM 

Tris/HCl, 3 mM ATP, 50 mM KCl, 2.5 mM MgSO4, 3 mM dithiothreitol, 

0.5 mM EGTA, 2 mM ouabain, 3 mM NaN3; pH 7.0). The reaction was 

stopped by adding 0.2 ml ice-cold stopping buffer (0.2% w/v ammonium 

molybdate, 1.3% v/v H2SO4, 0.9% w/v SDS, 2.3% w/v trichloroacetic acid, 

1% w/v ascorbic acid). After 30-min incubation at room temperature, the 

absorbance of the phosphate hydrolyzed from ATP was measured at 620 

nm, using a Packard EL340 microplate reader (Bio-Tek Instruments). The 

absorbance was converted into nmol hydrolyzed phosphate (Pi)/min/mg 

proteins, according to the titration curve previously prepared. 

3.11 Intracellular doxorubicin accumulation and efflux 

5 x 10 
5
 cells were incubated as reported in the Results section, then 

washed twice with PBS, detached with scraper and centrifuged at 13.000 x 

g for 5 min at 4°C. Cell pellets were resuspended in 400 µl of a 1:1 mixture 
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of ethanol/0.3 N HCl and sonicated. The amount of intracellular 

doxorubicin was detected using a HT Synergy 96-well micro-plate reader. 

Excitation and emission wavelengths were 475 and 553 nm, respectively. A 

blank was prepared in the absence of cells in each set of experiments and 

its fluorescence was subtracted from that measured in each sample. 

Fluorescence was converted in nmoles doxorubicin/mg cell proteins using a 

calibration curve. 

For doxorubicin efflux, 5 x 10 
5
 cells were incubated for 10 min with 

increasing (0-50 μM) concentrations of doxorubicin, with or without 

glabratephrin, then washed and analyzed for the intracellular concentration 

of doxorubicin. A second series of dishes, after the incubation under the 

same experimental conditions, were left for further 10 min at 37°C, then 

washed and tested for the intracellular drug content. The difference of 

doxorubicin concentration between the two series, expressed as nmol 

doxorubicin extruded/min/mg total cell proteins were plotted versus the 

initial drugs concentration. Values were fitted to Michaelis-Menten 

equation to calculate Vmax and Km, using the Enzfitter software (Biosoft 

Corporation, Cambridge, United Kingdom). 

3.12 Quantitative real time-PCR (qRT-PCR) 

Total RNA was extracted by phenol/chloroform method. 1 μg RNA 

was reverse-transcribed using the iScript Reverse Transcription Supermix 

kit (Bio-Rad Laboratories), according to the manufacturer’s instruction. 25 

ng cDNA were amplified with 10 μL IQ
TM

 SYBR Green Supermix (Bio-

Rad Laboratories). Primers were designed with the qPrimer Depot software 

(http://primerdepot.nci.nih.gov/): P-gp/ABCB1/MDR1 (human): 5’-

TGCTGGAGCGGTTCTACG-3’,5’-ATAGGCAATGTTCTCAGCAATG-

3’; MRP1/ABCC1 (human): 5’-CATTCAGCTCGTCTTGTCCTG-3’; 5’-
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GGATTAGGGTCGTGGATGGTT-3’; BCRP/ABCG2 (human): 5’-

GTTTCAGCCGTGGAAC-3’; 5’-CTGCCTTTGGCTTCAAT-3’; S14 

(human): 5’-CGAGGCTGATGACCTGTTCT-3’, 5’-

GCCCTCTCCCACTCTCTCTT-3’. RT-PCR was carried out with a iQ
TM

5 

cycler (Bio-Rad Laboratories). Cycling conditions were: 30 s at 95°C, 

followed by 40 cycles of denaturation (15 s at 95°C), annealing/extension 

(30 s at 60°C). The same cDNA preparation was used to quantify the genes 

of interest and the housekeeping gene S14, used to normalize gene 

expression. The relative quantitation of each sample was performed using 

the Gene Expression Quantitation software (Bio-Rad Laboratories). Results 

were expressed in arbitrary units. For each gene, the expression in 

untreated cells was considered “1”. 

3.13 Flow cytometry analysis 

Cells were harvested, washed twice in PBS, detached with cell 

dissociation solution (Sigma Chemical Co.) and re-suspended in culture 

medium containing 5% v/ v fetal bovine serum. Samples were washed with 

0.25% w/v PBS-bovine serum albumin (BSA), incubated with the primary 

antibody for anti-ABCB1/P-gp antibody (clone C219, Abcam) for 45 min 

at 4 °C. After twice washing with PBS-BSA 1% w/v, cells were incubated 

with a secondary fluorescein isothiocyanate (FITC)-conjugated antibody 

(Sigma Chemical Co.) for 30 min at 4 °C. After washing twice with PBS-

BSA 1% w/v and fixing in paraformaldehyde 2 % w/v for 5 min at room 

temperature, samples were analyzed by Guava® easyCyte flow cytometer 

(Millipore), using the InCyte software (Millipore). Control experiments 

included incubation of cells with non-immune isotypic antibody, followed 

by the secondary antibody. 
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3.14 Rhodamine 123 efflux 

Rhodamine 123 accumulation, which is inversely related to its 

efflux, was used as a second index of P-gp activity (Riganti et al., 2011). 

Cells were washed with fresh PBS, detached and re-suspended in 1 ml of 

medium containing 5% v/v fetal bovine serum. The samples were 

maintained at 37°C for 20 min in the presence of 1 μg/ml rhodamine 123. 

After this incubation time, cells were washed and re-suspended in 0.5 ml of 

PBS. The intracellular rhodamine 123 content was detected 

fluorimetrically, using a HT Synergy 96-well micro-plate reader. The 

results were expressed as nmoles/mg total proteins. 

3.15 Overexpression of wild-type and mutated P-gp 

The pHa vector containing the complete mdr1 cDNA, encoding for 

P-gp, was purchased from Addgene (Cambridge, MA) and subcloned into 

pCDNA3 vector as described (Doublier et al., 2008). By sequencing the 

mdr1 gene present in the pCDNA3 vector, we verified that it contained the 

wild-type sequence of P-gp (data not shown). pCDNA3 vector containing 

the wild-type mdr1 cDNA, was subjected to PCR-based mutagenesis using 

the QuikChange kit (Stratagene, La Jolla, CA), following the 

manufacturer’s instructions to generated the mutated constructs Gly185Val, 

Ser400Asn, Gly412Ala, Ser893Ala, Ser893Thr. The mutations were 

confirmed by DNA sequencing (data not shown). In transfection 

experiments, 5 x 10
4
 cells were seeded in fetal bovine serum-free medium 

and treated with 6 µl of jetPEI transfection reagent (Polyplus-transfection 

SA BIOPARC, Illkirch, France) and 3 µg DNA empty-pCDNA3 (mock 

cells), wild-type mdr1-pCDNA3 (wild-type P-gp) or mutated mdr1-

pCDNA3 (mutated P-gp). After 6 h, cells were washed and grown in 
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complete medium for 48 h before the experiments indicated in the Results 

section. 

3.16 ROS measurement 

1 x 10
5
 cells were re-suspended in 0.5 ml PBS, incubated for 30 min 

at 37°C with 5 μM of the fluorescent probe 5-(and-6)-chloromethyl-2',7'-

dichlorodihydro-fluorescein diacetate-acetoxymethyl ester (DCFDA-AM), 

centrifuged at 13,000 x g at 37°C and re-suspended in 0.5 ml PBS. The 

fluorescence of each sample, considered an index of ROS levels, was read 

at 492 nm (λ excitation) and 517 nm (λ emission), using a HT Synergy 96-

well micro-plate reader. The results were expressed as nmoles/mg cell 

proteins. 

3.17 αNF-kB and HIF-1α activity 

 Nuclea were isolated with the Nuclear Extraction kit (Active Motif, 

Rixensart, Belgium), as per manufacturer’s instructions. NF-kB activity 

was measured on 10 µg of nuclear proteins by using the TRansAM Flexi 

NF-kB activation kit (Active Motif), using the mix of antibodies provided 

by the kit (p50, p65, Rel-A, c-Rel, p52) or each antibody separately. HIF-

1α activity was measured using the HIF Activation Kit (Active Motif), as 

per manufacturer’s instructions. The absorbance at 450 nm was measured 

with a Packard EL340 microplate reader (Bio-Tek Instruments). For each 

set of experiments, a blank was prepared with bis-distilled water, and its 

absorbance was subtracted from that obtained in the presence of nuclear 

extracts. Results were expressed as mU/mg nuclear proteins. 

3.18 Chromatin Immunoprecipitation (ChIP) assays 

Chromatin immunoprecipitation (ChIP) experiments were performed 

using the Magna ChIP A/G Chromatin Immunoprecipitation kit (Millipore) 
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as per manufacturer’s instructions. Samples were immunoprecipitated with 

5 µg of ChIP grade anti-p50 (Abcam) or anti-p65 (Abcam) antibody, or 

with no antibody, as a blank. The immunoprecipitated DNA was then 

washed and eluted twice with 100 µl of elution buffer (0.1 M NaHCO3, 

0.1% v/v sodium dodecyl sulfate), the crosslinking was reversed by  

incubating the samples at 65°C for 6 h, then samples were incubated with 

proteinase K (Sigma Chemicals Co.) for 1 h at 55°C. The DNA was eluted 

using the GenElute Mammalian Genomic DNA Miniprep kit (Sigma 

Chemicals Co.) and analyzed by qRT-PCR, as detailed above. The primer 

sequences of P-gp/ABCB1/MDR1 promoter, designed with Primer3 

software (http://frodo.wi.mit.edu/primer3), were:  

5’-CGATCCGCCTAAGAACAAAG-3’;  

5’-AGCACAAATTGAAGGAAGGAG-3’. The following primers were 

used to amplify the sequence of P-gp/ABCB1/MDR1 promoter by qRT-

PCR, from 20 ng of non-immuno-precipitated genomic DNA:  

5’-GACCAAGCTCTCCTTGCATC-3’; 

5’-AGGGAAGTCTGGCAGCTGTA-3’. The results were expressed as 

ratio between the expression in immuno-precipitated samples and the 

expression in genomic samples. The relative expression of this ratio in 

untreated samples was considered as “1”. As negative internal controls, 

immuno-precipitated samples were subjected to qRT-PCR with the 

following primers matching 10,000 bp upstream of the promoter:  

5’-GTGGTGCCTGAGGAAGAGAG-3’; 

5’-GCAACAAGTAGGCACAAGCA-3’. In this condition, no qRT-PCR 

product was detected (data not shown). 

3.19 Docking studies 

The docking studies were performed with the Molecular Operating 

Environment (MOE) software. 
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3.20 In vivo tumor growth 

1×10
7
 JC cells were mixed with 100 μl Matrigel and orthotopically 

implanted in 6 week-old female immunocompetent Balb/C mice (Charles 

River Laboratories Italia, Calco), housed (5 per cage) under 12 h light/dark 

cycle, with food and drinking provided ad libitum. Tumor growth was 

measured daily by caliper, according to the equation (LxW
2
)/2, where 

L=tumor length and W=tumor width. When tumor reached the volume of 

50 mm
3
, mice (n= 8/group) were randomized. In a first experimental set, 

animals were treated on day 1, 7, 14 after randomization as it follows: 1) 

vehicle group (ctrl), treated with 200 µl saline solution intravenously (i.v.); 

2) glabratephrin group, treated with a 200 µl water/10% DMSO solution 

i.v., containing 5 µM glabratephrin; 3) doxorubicin group, treated with 5 

mg/kg doxorubicin, dissolved in 200 µl water i.v.; 4) glabratephrin + 

doxorubicin group, treated with 100 µl of saline solution i.v. containing 5 

µM glabratephrin + 100 µl water solution containing 5 mg/kg doxorubicin.  

In a second experimental group, animals were treated on day 1, 7, 14 

after randomization as it follows: 1) vehicle group (ctrl), treated with 200 

µL saline solution intravenously (i.v.); 2) curcumin group, treated with 5 

mg/kg curcumin, dissolved in 200 µl water/10% DMSO solution i.v.; 3) 

doxorubicin group, treated with 5 mg/kg doxorubicin, dissolved in 200 µl 

water i.v.; 4) curcumin + doxorubicin group, treated with 100 µl of 

water/10% DMSO solution containing with 5 mg/kg curcumin + 100 µl 

water solution containing 5 mg/kg doxorubicin; 5) chitosan coated-SLN 

carrying curcumin group, treated i.v. with 200 µl of saline solution 

containing 5 mg/kg curcumin; 6) chitosan coated-SLN carrying curcumin + 

doxorubicin group, treated i.v. with 100 µl of saline solution. containing 5 

mg/kg curcumin + 100 µl water solution containing 5 mg/kg doxorubicin; 

7) uncoated-SLN carrying curcumin group, treated i.v. with 100 µl of 
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saline solution containing 5 mg/kg curcumin; 8) uncoated-SLN carrying 

curcumin + doxorubicin group, treated i.v with 200 µl of saline solution 

containing 5 mg/kg curcumin + 100 µl water solution containing 5 mg/kg 

doxorubicin.  

Tumor volumes were monitored daily. Animals were euthanized at 

day 21 after randomization with zolazepam (0.2 ml/kg) and xylazine (16 

mg/kg). lactate dehydrogenase (LDH), aspartate aminotransferase (AST), 

alanine aminotransferase (ALT), alkaline phosphatase (AP), creatinine, 

creatine phosphokinase (CPK) and CPK-MB, cardiac troponin I (cTnI) and 

T (cTnT) were measured on blood samples collected immediately after 

euthanasia, using commercially available kits from Beckman Coulter Inc. 

(Beckman Coulter, Miami, FL). The Animal care and experimental 

procedures were approved by the Bio-Ethical Committee of the Italian 

Ministry of Health (#122/2015-PR). 

3.21 Statistical analysis 

All data in the text and figures are provided as means + SD. The 

results were analysed by a one-way analysis of variance (ANOVA) and 

Tukey’s test, using GraphPad Prism (v 6.01) software and Statistical 

Package for Social Science (SPSS) software (IBM SPSS Statistics v.19). 

p < 0.05 was considered significant. 
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4.1 Aim 1: Use of photoexcitable/NO-releasing doxorubicins 

(PNODOXOs) to reverse drug resistance in human melanoma  

 

4.1.1 Stability of PNODOXOs 

The stability of the PNODOXOs 11, 12 and 13 (Scheme 1, section 

Materials and Methods) was evaluated by HPLC in phosphate buffer (PBS) 

pH 7.4., in Dulbecco Modified Eagle Medium (DMEM) and in human 

serum. All compounds were hydrolysed with pseudo-first kinetics. The 

observed pseudo-first-order rate constants (kobs) for the hydrolysis were 

calculated by fitting the remaining PNODOXOs against the time with one-

phase exponential decay equation (Graf Pad, Prism software v6).  

Equation 1:     t1/2= 0.693/ kobs 

The corresponding half-lives (t1/2), calculated from equation 1, were 

reported in Table 2. 
 

Table 2. The stability of the target products 11-13 was evaluated by HPLC. 

 Stability  t1/2 (h) 

Compd PBS DMEM Human serum 

11 2.0 1.8 0.75 (45 min) 

12 Nd 
> 24 

84% conc. at 24 h 
12.1 

13 
> 24 

90% conc. at 24 h 

> 24 

85% conc. at 24 h 

> 24 

60% conc. at 24 h 
  

 Nd: non detectable 
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As expected the two aromatic esters 12, 13, were more stable than 

the aliphatic ester 11. HPLC analysis showed that doxorubicin and the 

acids 5, 7, 9 (Scheme 1) were the main degradation products. This is in 

keeping with the higher stability to hydrolysis in the compounds 12, 13 of 

the amide function as to the ester one. 

4.1.2 Spectroscopic and photochemical properties 

4.1.2.1 NO-photorelease of PNODOXOs 

The capacity of 11-13 and of the reference compound 4, a strong 

photoexcitable NO donor (NOPD) with the same structure of the NO 

releasing moiety of compound 12, to release NO over 30 min, under 

irradiation with a violet led with wavelength 400 nm and 10W power was 

evaluated at 100 M concentration in PBS (pH 7.4), using an irradiance of 

7 mW/cm
2
. NO released was detected as nitrite, its main degradation 

product in aerobic aqueous solution, by Griess reaction. The results are 

summarized in Figure 6. Upon irradiation, PNODOXOs 11, 12 were NO-

donor as potent as the reference 4, while 13 displayed a significantly lower 

release. In these conditions, all compounds released NO time-dependently, 

while they did not release NO in the dark (data not shown). 
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Figure 6. NO release by compounds 4, 11, 12 and 13 upon irradiation in PBS. Results were expressed 

as mmoles NO released/mmoles of each compound. The graph is representative of one out of three 

similar experiments. 
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4.1.3 Biological assays 

The release of NO from compound 4 and two PNODOXOs 12 and 

13 - i.e. a strong and poor NO-releasing PNODOXs - were tested in human 

melanoma M14 cells, which express several ABC transporters (Figure 7). 

Dox did not elicit any increase of nitrites independently from cell 

irradiation, except when co-incubated with compound 4 (Figure 8). In line 

with the NO release in acellular systems, compound 4 and 12 significantly 

increased nitrite levels in irradiated cells, whereas the less potent 

PNODOXO 13 did not. As expected, none of the compounds increased 

nitrite in not-irradiated cells (Figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. ABC transporters expression in melanoma cells. The expression of P-gp, MRP1, MRP2, 

MRP3, MRP4, MRP5, BCRP was measured in human melanoma M14 whole cell lysates by 

immunoblotting. Actin was used as control of equal protein loading. Human MCF7 cells were included 

as cell line with low/undetectable levels of most transporters. The figure is representative of one out of 

three similar experiments. 
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Figure 8. Nitrites amount in melanoma cells treated with NOPD and PNODOXOs. 

M14 cells were maintained for 20 minutes at room temperature in PBS, in a dark room (white columns) 

or were subjected to irradiation (grey columns) with 400 nm, 10W violet led (7 mW/cm
2
), in the absence 

(CTRL) or presence of 5 µM compound 4 (NOPD), Dox (D), Dox + compound 4 (D + 4), compound 12 

or 13 (PNODOXOs). After 24 h in complete medium, cells were subjected to the following assays. Nitrite 

levels were measured by the Griess methods. Measurements were performed in triplicate and data are 

presented as means ±SD (n = 3); vs. untreated cells (CTRL): * p < 0.005; vs. Dox-treated cells (D): ° p < 

0.005. 

 

As mentioned earlier, NO inhibits the drug efflux activity of ABC 

transporters by nitrating critical tyrosines (Riganti et al., 2005; De Boo et 

al., 2009; Fruttero et al., 2010; Chegaev et al., 2011; Riganti et al., 2013; 

Gazzano et al., 2016). In line with these findings, P-gp, MRP1, MRP4 and 

BCRP were nitrated on tyrosines when exposed to compound 4 (alone or 

co-incubated with Dox) and compound 12, the strongest PNODOXO, upon 

irradiation (Figure 9A). When nitrated, these pumps had a reduced catalytic 

ATPase activity (Figure 9B), suggesting that cells treated with PNODOXO 

12 can accumulate more of drug upon irradiation.  
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Figure 9. Nitration and ATPase activity of ABC transporters by NOPD and PNODOXOs. (A) 

Immunoblot detection of nitrated ABC transporters in M14 melanoma cells maintained for 20 min at 

room temperature in PBS in a dark room (-irr) or irradiated (+ irr; λexc = 400 nm, 7 mW/cm
2
), in the 

absence CTRL or presence of 5 μM compound 4 (NOPD), Dox (D), Dox + compound 4, compound 12 

PNODOXO). (B) ATPase activity. Data are presented as means ± SD (n = 3); vs untreated cells (CTRL), 

*p < 0.02; vs Dox-treated cells, °p < 0.002. 

+ irr 
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Although not all the transporters present in M14 cells were nitrated, 

we evaluated if the reduced activity of nitrated drug efflux transporters was 

sufficient to induce Dox-mediated damages. The anti-tumor efficacy of 

Dox and PNODOXOs by measuring the extracellular release of LDH, an 

index of cell damage and necrosis (Riganti et al., 2005). As expected, Dox 

alone did not induce any cell damage in M14 cells. The co-incubation of 

Dox and compound 4, however, significantly induced cytotoxicity upon 

irradiation, overcoming Dox-resistance. A similar effect was exerted by the 

stronger PNODOXO 12, while no toxicity was elicited by the weaker 

PNODOXO 13 (Figure 10).  

 

 

 

 

 

 

 

Figure 10. Cytotoxicity of NOPD and PNODOXOs. Cytotoxicity observed in melanoma M14 cells 

maintained for 20 min at room temperature in PBS in the dark (white columns) or irradiated (grey 

columns; λexc = 400 nm, 7 mW/cm2), in the absence (CTRL) or in the presence of 5 μM 5 μM 

compound 4 (NOPD), Dox (D), Dox + compound 4, compound 12 and compound 13 (PNODOXOs). 

Measurements were performed in triplicate and data are presented as means ± SD (n = 3); vs untreated 

cells (CTRL), *p < 0.001; vs Dox-treated cells, °p < 0.001 significantly induced cytotoxicity upon 

irradiation, overcoming Dox-resistance. 

 

The absence of toxicity of 4 and 13 was confirmed also in not-

transformed cells, such as fibroblasts and cardiomyocytes (Figure 11), a 

well-known target of Dox (Granados-Principal et al., 2010). As expected, 

Dox was toxic in both cell populations. Interestingly the co-incubation with 
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4 did not increase further the Dox’s cytotoxicity. Curiously, compound 12, 

which was cytotoxic against melanoma cells, was less toxic than parental 

Dox on non-transformed cells, such as fibroblasts and cardiomyocytes 

(Figure 11 A-B). 

 

 

 

 

 

 

Figure 11. Cytotoxicity on human fibroblasts and rat H9c2 cardiomyocytes. Cytotoxicity observed 

human fibroblasts (A) and rat H9c2 cardiomyocytes (B) maintained for 20 min at room temperature in 

PBS in the absence (CTRL) or in the presence of 5 μM compound 4 (NOPD), Dox (D), Dox + compound 

4, compound 12 and compound 13 (PNODOXOs). Measurements were performed in triplicate and data 

are presented as means ± SD (n = 3); vs untreated cells (CTRL), *p < 0.001; vs Dox-treated cells, °p < 

0.001.  
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4.2 Aim 2: Using natural products to overcome doxorubicin 

resistance in human and murine TNBC cells 

  

4.2.1 A screening on natural pure compounds to overcome 

doxorubicin resistance 

We performed a screening of the twelve natural pure compounds, 

selected on the basis of their different biological activities on cell 

proliferation, cell death and redox properties reported in literature, and 

indicated in Table 1 (Materials and Methods section): neviotine A (Nev) 

and sipholenol N (Sip); Arctigenin (Arc); Delta-Valerolactone (D-Val), 

Gamma-Valerolactone (G-Val) and Enterolactone (Ent); Furanocoumarins; 

Bergapten (Ber) and Iso Bergapten (Iso-B); Osthol (Osh); Guggulsterone 

(Gug); Magnesium lithospermate B (MLB) and Glabratephrin (Glab). 

4.2.1.1 Doxorubicin accumulation and viability in MDA-MB-231 cells, 

resistant counterpart MDA-MB-231/DX cells and JC cells 

First, from MDA-MB-231 breast cancer cells, we generated the 

MDA-MB-231/DX subline by culturing parental cells in medium with 

increasing concentrations of doxorubicin, as detailed in the Material and 

Methods section. Murine mammary JC cells were used as a model of 

constitutively-expressing P-gp cells (Lee et al., 2003). Starting from 

passage number 10, MDA-MB-231/DX sub line increased P-gp protein and 

mRNA, reaching a plateau level of protein and mRNA (Figure 12A-B) 

starting from passage 20, corresponding to culture conditions with 250 nM 

doxorubicin-containing medium. 

The increase of P-gp was not accompanied by any increase in MRP1 

or BCRP (Figuer 12A), other two transporters involved in Dox efflux 

(Gottesman et al., 2002). However, the increase in P-gp expression was 

accompanied by a progressive increase in the transcriptional activity of 
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Hypoxia Inducible Factor 1α (HIF-1α), a transcription factor activated by 

doxorubicin (Kopecka et al., 2015) and an inducer of P-gp gene 

transcription (Comerford et al., 2002) (Figure 12C).  

 

  
 

 

Figure 12. MDA-MB-231/DX subline generation. 

(A) MDA-MB-231 cells were cultured in medium with increasing concentration of doxorubicin, as 

indicated in Materials and Methods section, generating the resistant subline (MDA/DX). At time 0 (p0) 

and every 5 passages (p) cells were lysed and subjected to immunoblotting for the indicated proteins. 

Tubulin was used to check the equal control of protein loading. The figure is representative of 1 out of 3 

experiments. Parental MDA-MB-231 (MDA) cells were included as internal control. (B) P-gp mRNA 

was measured by RT-PCR in triplicates. Data are presented as means + SD (n=3). MDA/DX vs MDA: ** 

p < 0.01; ** p < 0.001. (C) HIF-1α activity was measured by ELISA in duplicates. Data are presented as 

means + SD (n=3). MDA/DX vs MDA: * p < 0.05; ** p < 0.001. 

 

 

For all the subsequent experiments, we used cells at passage 25, i.e. 

stably growing in medium containing 500 nM Dox. 
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As shown in Figure 13A, MDA-MB-231/DX cells had an 

intermediate expression between parental MDA-MB-231 and JC cells. 

Consistently, MDA-MB-231/DX cells retained significantly less 

doxorubicin than parental MDA-MB-231 cells and JC cells had the lowest 

accumulation of the drug (Figure 13B). In viability assays, 5 µM 

doxorubicin induced a significant reduction of MDA-MB-231 cells, that 

was less pronounced in MDA-MB-231/DX subline and absent in JC cells 

(Figure 13C). Similarly, 25 µM Dox, that was more accumulated within all 

cell lines except on JC cells (Figure 13B), produced a moderate decrease in 

cell viability in MDA-MB-231/DX cells and had no effects on JC cells 

(Figure 13C). These data suggest that MDA-MB-231/DX subline was able 

to survive to a dose of doxorubicin (5 µM) that typically discriminates 

sensitive from resistant cells (Riganti et al., 2005), but was damaged by a 

five-fold higher (5 µM) dose of doxorubicin that induced significant 

damages in most cell lines, except JC cells (Riganti, Gazzano, et al., 2015). 

This different behavior can be explained by the difference in expression 

levels of P-gp between MDA-MB-231, MDA-MB-231/DX and JC cells. 

On the basis of these results, we considered MDA-MB-231, MDA-MB-

231/DX and JC cells as doxorubicin-sensitive, moderately doxorubicin-

resistant and strongly doxorubicin-resistant cells, respectively. 
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Figure 13. Doxorubicin accumulation and cytotoxicity in breast cancer cells with different degrees 

of resistance. 

(A) MDA-MB-231 cells (MDA), MDA-MB-231/DX cells (MDA/DX) and JC cells were lysed and 

subjected to immunoblotting for the indicated proteins. Tubulin was used to check the equal control of 

protein loading. The figure is representative of 1 out of 3 experiments. (B) Cells were incubated 24 h with 

5 or 25 µM doxorubicin (Dox). The intracellular drug accumulation was measured fluorimetrically in 

duplicates. Data are presented as means ± SD (n = 3). MDA-MB-231/DX cells vs. MDA-MB-231 cells: * 

p < 0.05; ** p < 0.01. (C) Cells were grown 72 h in fresh medium (Ctrl) or in medium with 5 or 25 µM 

Dox. Cell viability was measured by crystal violet staining in quadruplicates. Data are presented as means 

± SD (n = 3). MDA-MB-231/DX cells vs. MDA-MB-231 cells: * p < 0.05; Dox vs Ctrl cells: °° p < 

0.01, °°° p < 0.001. 
5  
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The IC50 of each compound was > 1 mM in all cell lines, with the 

exception of Sip, Osh, MLB and Glab in MDA-MB-231/DX and JC cells, 

where the value was reduced below 250 µM (Table 3). 

 

 

Table 3. IC50 (mM) of natural compounds in breast cancer cells. 

 

 

 

1 × 10
4
 cells were seeded in quadruplicate in 96-well plates, treated at scalar concentrations (from 10

-9
 M 

to 10
-2

 M) of each compounds for 72 h, then cell viability was calculated by crystal violet staining. IC50 

i.e. the concentration of each compound that decreased the cell viability by 50%, was calculated with the 

GraphPad Prism (v 6.01) software. Data are means ± SD (n = 4).  

 
 

In preliminary screening, we incubated the three cell lines with Sip, 

Osh, MLB or Glab at different concentrations (1 nM, 10 nM, 100 nM, 1 

µM, 10 µM), with or without 5, 0.5 and 0.05 µM doxorubicin. We 

measured cell viability using crystal violet after 72 h. In sensitive MDA-

MB-231 cells, none of the compounds increased the cytotoxic effects of 

doxorubicin (Figure 14A). In moderately resistant MDA-MB-231/DX cells, 

5, 0.5 and 0.05 µM reduced cell viability no more than 20%, but Sip, Osh, 

Compound 

IC50 (mM) 

in MDA-MB-

231 cells 

IC50 (mM) 

in MDA-MB-

231/DX cells 

IC50 (mM) 

in JC cells 

Neviotine A > 1 > 1 > 1 

Sipholenol N > 1 0.0238 0.0164 

Arctigenin > 1 > 1 > 1 

Delta-Valerolactone > 1 > 1 > 1 

Gamma-Valerolactone > 1 > 1 > 1 

Enterolactone > 1 > 1 > 1 

Bergapten > 1 > 1 > 1 

Iso Bergapten > 1 > 1 > 1 

Osthol > 1 0.1986 0.0828 

Guggulsterone > 1 > 1 > 1 

Magnesium lithospermate B > 1 0.1963 0.0637 

Glabratephrin > 1 0.2356 0.1378 
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MLB and Glab increased cell death starting from 10 nM concentration 

(Figure 14B). In highly -resistant JC cells, doxorubicin did not significantly 

reduce cells viability, as expected. Interestingly, only Glab rescued the 

cytotoxicity of doxorubicin when used at 100 nM or higher concentrations 

(Figure 14C).  

 

 

 

Figure 14. Effects of selected natural compounds on doxorubicin cytotoxicity in breast cancer cells 

with different degrees of resistance. 

MDA-MB-231 cells (MDA, panel A), MDA-MB-231/DX cells (MDA/DX, panel B) and JC cells (panel 

C) were grown for 72 h in fresh medium (0) or in medium containing sipholenol N (Sip), Osthol (Osh), 

Magnesium lithospermate B (MLB) and Glabratephrin (Glab) at 1 nM, 10 nM, 100 nM, 1 µM and 10 

µM, alone or in the presence of 0.05 µM, 0.5 µM and 5 µM doxorubicin (Dox). Cell viability was 

measured by crystal violet staining, in quadruplicated. The heatmaps represent the mean percentage of 

viable cells in each condition, where the viability of untreated cells was considered 100%, in a 

colorimentric scale (n = 3 independent experiments). For MDA-MB-231 cells: Dox 0.05 µM vs. untreated 

cells: ** p < 0.01, Dox 0.5 and 5 µM vs. untreated cells: *** p < 0.01 (all experimental conditions). For 

MDA-MB-231/DX cells: Dox 0.05, 5 and 5 µM vs. untreated cells: not significant; Dox + 10 nM 

compounds vs. Dox alone: ° p < 0.05; Dox + 100 nM/1 µM/10 µM compounds vs. Dox alone: °°° p < 

0.001. For JC cells: Dox 0.05, 5 and 5 µM vs. untreated cells: not significant; Dox + 100 nM Glab vs. 

Dox alone: ° p < 0.05; Dox + 1 µM/10 µM compounds vs. Dox alone: °°° p < 0.001. 
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The effect of Glab was synergistic with Dox as indicated indeed the 

combination index (CI) was 0.29721 in MDA-MB-231/DX cells and 

0.10922 in JC cells (Figure 15).  

 

Figure 15. Isobologram analyses of doxorubicin and Glabratephrin combination. 

MDA-MB-231/DX cells (MDA/DX, panel A) and JC cells (panel B) were grown for 72 h in fresh 

medium or in medium containing doxorubicin (Dox) and Glabratephrin (Glab), either alone or in 

combination, in the range of concentrations between 10
-9

 and 10
-4

 M. Cell viability was measured by 

crystal violet staining in quaduplicates. The isobologram analyses were performed using the CalcuSyn 

software.  

 

4.2.2 Mechanisms of the chemosensitizing effects of Glabratephrin  

We thus investigated whether Glab enhanced doxorubicin 

cytotoxicity by increasing its intracellular retention and reducing 

doxorubicin efflux via P-gp. To clarify this point, we first measured the 

intracellular retention of doxorubicin. After 24 h incubation with 

doxorubicin and Glab at 100 nM, the anthracycline retention was 

significantly more accumulated in the P-gp-expressing MDA-MB-231 and 

JC cells but not in the P-gp-negative MDA-MB-231 cells (Figure 16A). 

Similarly, Glab increased the retention of rhodamine 123, another substrate 

of P-gp, in MDA-MB-231 and JC cells when co-incubated (Figure 16B). 

These data suggest that Glab competes with doxorubicin or rhodamine 123 

for the efflux through P-gp, likely modifying its activity. 
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To further explore this issue, we measured the kinetic parameters of 

doxorubicin efflux from MDA-MB-231/DX and JC cells. As shown in 

Figure 16C, MDA-MB-231/DX cells have a lower Vmax than JC cells, 

consistently with lower expression of P-gp of the former. In both cell lines, 

Glab reduced the Vmax of doxorubicin efflux (Figure 16C). These data 

indicate that Glab reduced the maximal catalytic efficiency of P-gp. Glab 

did not change the amount of P-gp protein (Figure 16D), suggesting that 

the reduction of doxorubicin Vmax was only caused by a decreased activity 

of the transporter, not by a different expression. Our hypothesis was proved 

by the significant decrease of P-gp ATPase activity induced by Glab 

(Figure 16E). In parallel, Glab increased the Km of doxorubicin (Figure 

16C), indicating a reduction in doxorubicin affinity for P-gp. This 

experimental set pointed out that Glab may directly binds to P-gp and alters 

its catalytic efficiency. 
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Figure 16. Glabratephrin reduces doxorubicin efflux by inhibiting P-gp activity. 

(A) MDA-MB-231 cells (MDA), MDA-MB-231/DX cells (MDA/DX) and JC cells were incubated 24 h 

with 5 µM doxorubicin, in the absence (-) or presence (+) of 100 nM Glabratephrin (Glab). The 

intracellular drug accumulation was measured fluorimetrically in duplicates. Data are presented as means 

± SD (n = 3). Glab-treated vs. untreated cells: * p < 0.05; *** p < 0.001. (B) Cells were incubated 20 

minutes with 1 µg/mL rhodamine 123, in the absence (-) or presence (+) of 100 nM Glab. The 

intracellular accumulation of rhodamine 123 was measured fluorimetrically in duplicates. Data are 

presented as means ± SD (n = 3). Glab-treated vs. untreated cells: *** p < 0.001. (C) Cells were 

incubated 10 minute with increasing concentrations of Dox (0.5-50 µM), in the absence (-) or presence 

(+) of 100 nM Glab. One series of dishes was analyzed for the intracellular doxorubicin concentration 

(c1); a second series was washed and let in the incubator for additional 10 minutes, then analyzed for the 

intracellular doxorubicin concentration (c2) as well. The dc/dt value was considered indicative of 

doxorubicin velocity of efflux. Data are presented as means ± SD (n = 3). Glab-treated vs. untreated cells: 

* p < 0.05; ** p < 0.01; *** p < 0.001. (D). Cells were grown 24 h in the absence (-) or presence (+) of 

100 nM Glab, then lysed and subjected to immunoblotting for P-gp. Tubulin was used to check the equal 

control of protein loading. The figure is representative of 1 out of 3 experiments. (E) Cells were grown as 

in (D). The P-gp ATPase activity was measured spectrophotometrically in duplicates. Data are presented 

as means ± SD (n = 3). Glab-treated vs. untreated cells: * p < 0.05; ** p < 0.01. 
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4.2.2.1 Molecular docking studies of glabratephrin on P-gp 

To clarify that Glab may effectively binds P-gp, we studied its 

binding affinity to the protein (PDB: 4M2S) using Molecular Operating 

Environment (MOE) application for lead optimization and prediction of 

Glab-P-gp interaction. Docking accuracy was validated by redocking the 

co-crystallized ligand QZ59-RRR, cyclic-tris-(R)-valineselenazole, into the 

binding site of 4M2S. The docked ligand was overlying on the native co-

crystallized ligand with root mean square deviation (RMSD) 1.31 Å, and 

binding free energy was (−10.07 kcal/mol) (Figure 17). 

 

 
 

Figure 17. Superposition of the co-crystallized ligand QZ59-RRR (orange color) and re-docked 

ligand QZ59-RRR (green color). 

 

For molecular docking calculation, firstly, the protein structure was 

separated from the inhibitor, followed by refinement using molecular 

minimization with the addition of hydrogen bond. Glab docking calculation 

was carried out using the slandered default variable for the MOE program. 

Glab was docked into the same groove of the co-crystallized ligand QZ59-

RRR (Figure 18). 
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Figure 18. Superposition of the co-crystallized ligand QZ59-RRR (orange color) and glabratephrin 

(green color). 

 

The docking score based on the binding affinity, measured by 

RMSD values, hydrogen bond and binding free energy (S-score, kcal/mol) 

(Table 4) was used to evaluate binding affinity.  

Table 4. Binding affinity evaluation using binding free energy.  

Name Score (Kcal/mol) 
No. of H-bond 

involved 

Amino acid 

involved 

Ligand (QZ59-

RRR) 
-10.07 2 GLN 721 PHE 979 

Glabratephrin -10.95 2 GLN 721 PHE 332 

 

The binding mode of Glab with P-gp exhibited one H-bond donor 

with Gln 721 at a distance of 3.2 Ǻ and one arene interaction with Phe979 

(Figure 19A), one H-bond donor with Gln 721 at a distance of 2.6 Ǻ and 

one arene interaction Phe 332 (Figure 19B). These results suggest that both 

the carbonyl group of the acetyl residue and the mono-substituted phenyl 

moiety of Glab are necessary to interact with P-gp. 
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Figure 19. Modelling of the functional groups involved in the interaction between Glab and P-gp. 

 

 

In order to identify a possible mechanism by which Glab interferes 

with P-gp, we over-expressed wild-type P-gp and five different mutants 

containing the mutations most commonly annotated in human tumors - 

Gly185Val, Ser400Asn, Gly412Ala, Ser893Ala, Ser893Thr 

(ABCMDb/Database for Mutations in ABC proteins; 

(http://abcmutations.hegelab.org/) - in MDA-MB231 cells. As shown in 

Figure 20A, both wild-type and mutated P-gp were expressed at 

comparable levels, higher than the levels of endogenous P-gp. 

Interestingly, Glab increased doxorubicin accumulation in cells expressing 

wild-type P-gp and all mutated P-gp, except in cells expressing Gly185Val-
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mutated P-gp (Figure 20B). Consistently, Glab reduced the ATPase activity 

of wild-type and mutated P-gp with the exception of Gly185Val-mutated P-

gp (Figure 20C). 

 

 

 

Figure 20. Glabratephrin loses its efficacy in Gly185Val mutated P-gp. 

MDA-MB-231 cells were transfected with an empty vector (mock) or with expression vectors encoding 

wild-type (wt) P-gp, or Gly185Val, Ser400Asn, Gly412Ala, Ser893Ala, Ser893Thr-mutated P-gp. (A) 

Cells were lysed and subjected to immunoblotting for the indicated proteins. Tubulin was used to check 

the equal control of protein loading. The figure is representative of 1 out of 3 experiments. (B) Cells were 

incubated 24 h in the absence (-) or presence (+) of 100 nM Glabratephrin (Glab), with 5 µM 

doxorubicin. The intracellular drug accumulation was measured fluorimetrically in duplicates. Data are 

presented as means ± SD (n = 3). MDA-MB-231 cells overexpressing P-gp vs. mock cells: *** p < 0.001; 

Glab-treated cells vs corresponding untreated cells: °°° p< 0.001. (C) The P-gp ATPase activity was 

measured specrophotometrically in duplicates. Data are presented as means ± SD (n = 3). MDA-MB-231 

cells overexpressing P-gp vs. mock cells: *** p < 0.001; Glab-treated cells vs corresponding untreated 

cells: °°° p< 0.001. 
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4.2.3 Efficacy of Glabratephrin against drug-resistant JC tumors      

We next evaluated the efficacy of Glab in mice bearing JC tumors 

that were completely refractory to doxorubicin (Figure 21A-B). While Glab 

alone did not have any effects, the combination of Glab + doxorubicin 

lowered the rate of tumor growth (Figure 21A) and resulted in smaller 

tumor masses (Figure 21B). The growth profile was characterized by an 

initial delay in the growth of tumor, followed by a steady-state in the tumor 

volumes, suggesting that the effect of Glab + doxorubicin is cytostatic. 

 

 

 

Figure 21. Glabratephrin effect against drug-resistant JC tumors in vivo. 

JC cells were orthotopically implanted into 6 week-old female balb/C mice. When tumor reached the 

volume of 50 mm
3
, mice (n= 8/group) were randomized and treated as reported in the following groups, 

treated on day 1, 7, 14 after randomization: 1) vehicle group (Ctrl), treated with 200 µL saline solution 

intravenously (i.v.); 2) glabratephrin group (Glab), treated with a 200 µL water/10% DMSO solution i.v., 

containing 5 µM glabratephrin; 3) doxorubicin group (Dox), treated with 5 mg/kg doxorubicin, dissolved 

in 200 µL water i.v.; 4) glabratephrin + doxorubicin group (Glab+Dox), treated with 100 µL of saline 

solution i.v. containing 5 µM glabratephrin + 100 µL water solution containing 5 mg/kg doxorubicin. (A) 

Tumor growth was monitored daily by caliper measurement. Data are presented as means±SD. *p<0.001: 

Glab+Dox treatment vs all the other treatment (days 9-18). (B) Photographs of representative tumors of 

each group. 

Most P-gp inhibitors effective in vitro, failed in preclinical models 

for the high systemic toxicity (Callaghan et al., 2014). We thus measured 

the hematochemical parameters in the treated animals at the time of 

sacrifice (Table 5). According to these assays, no signs of liver toxicities - 

indicated by lactate dehydrogenase (LDH), aspartate aminotransferase 
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(AST), alanine aminotransferase (ALT), alkaline phosphatase (AP) – and 

kidney toxicities – indicated by creatinine – were detected in Glab-treated 

animals, alone or in combination with doxorubicin. In our experimental 

protocol, doxorubicin was used at a the maximum tolerated dose (Gazzano 

et al., 2018) that did not induce fatal-events related to heart toxicity, but 

induced a cardiac damage indicated by the increase of creatine 

phosphokinase (CPK), its cardiac specific isoform CPK-MB, and cardiac 

troponin T (cTnT). Furthermore, Glab alone did not affect cardiac 

parameters and did not worsen the damaged elicited by doxorubicin when 

used in combination. 

 
 

Table 5. Hematochemical parameters of the treated mice. 
 

 Ctrl Glabratephrin Doxorubicin 
Glabratephrin + 

Doxorubicin 

LDH (U/L) 504 +6578  298 +6892  471 +6791  561 +6792  

AST (U/L) 39 +193  35 +145  41 +139  38 +127  

ALT (U/L) 7 +34  5 +36  7 +38  10 +39  

AP (U/L) 31 +113  23 +145  18 +139  27 +128  

Creatinine (mg/L) 0.012 +0.071  0.008 +0.065  0.008 +0.061  0.009 +0.064 

CPK (U/L) 77 +287  62 +281  45 * +542  78 * +591  

CPK-MB (ng/mL) 0.062 +0.128  0.044 +0.110  0.076 * +0.321  *0.081  +0.296  

cTnI (pg/mL) 0.034 +1.089  0.089 +1.028 0.041 +1.055  0.042 +1.032  

cTnT (pg/mL) 0.301 +1.983  0.217 +1.872  0.104 * +2.986  0.285 * +3.117  
 

 

Balb/C mice (n=8 animals/group) were treated as described the Figure 17. Blood was collected 

immediately after euthanasia and analyzed for lactate dehydrogenase (LDH), aspartate aminotransferase 

(AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), creatinine, creatine phosphokinase 

(CPK) and CPK-MB, cardiac troponin I (cTnI) and T (cTnT). Data are presented as means±SD. * p < 

0.05: vs ctrl group. 
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4.3 Aim 3: The use of curcumin-loaded SLN as a nanotechnological 

approach to inhibit P-gp 

 

4.3.1 Curcumin-loaded SLN effect against drug-resistant cancer 

cells in vitro 

In preliminary experiments, we measured the increase of doxorubicin 

accumulation and cytotoxicity in MDA-MB-231 cells expressing wild-type 

P-gp (Figure 20). As shown in Figure 22A-B, free curcumin increased 

doxorubicin retention and doxorubicin-induced cell damage at 25-50 μM. 

However, at these concentrations, curcumin became cytotoxic also without 

doxorubicin. This is due to the fact that at micromolar concentrations 

curcumin exerts a cytotoxic activity on cancer cells (Lu et al., 2013) and 

non-transformed cells (Hollborn et al., 2013). Therein, finding a new 

strategy to increase the delivery of curcumin at lower concentrations is 

mandatory in the perspective of setting an effective anticancer strategy 

(Figure 22B). 

 

 

Figure 22. Dose-dependence free curcumin on doxorubicin accumulation and cytotoxicity in MDA-

MB-231-P-gp cells. MDA-MB-231-P-gp cells were incubated 24 h with fresh medium (ctrl) or with the 

5-25-50 μM curcumin (cur), in the absence (-) or presence (+) of 5 50 doxorubicin (Dox). (A) 

Intracellular doxorubicin was measured fluorimetrically in duplicates. Data are presented as means ± SD 

(n = 3). ° p< 0.01: vs Dox. (B) The release of LDH in the extracellular medium was measured 

spectrophotometrically in duplicate. Data are presented as means ± SD (n = 3). * p < 0.05: vs untreated 

cells (ctrl); ° p< 0.05 vs Dox-treated cells. 
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In order to reduce the concentration of curcumin below the toxicity 

threshold, maintaining its ability to increase doxorubicin accumulation, we 

validated the SLN loaded with curcumin, decorated or not with chitosan. 

We hypothesized that SLN may allow a higher delivery of curcumin within 

the cells, enhancing the chemosensitizing effects towards free curcumin. 

Preliminary experiments showed that blank SLN, i.e. SLN without 

curcumin, did not increase the release of LDH in MDA-MB-231-P-gp cells 

if diluted 1:100 after 24 h (data not shown). This dilution, which 

corresponded to a final concentration of 5 μM curcumin, was used in all the 

subsequent experiments. Curcumin-loaded SLN and chitosan-

containing/curcumin-loaded SLN increased doxorubicin accumulation 

(Figure 23A) and doxorubicin-induced release of LDH, without being 

cytotoxic in the absence of doxorubicin (Figure 23B). 

 

 

Figure 23. Effect of curcumin-loaded SLN and chitosan-containing/curcumin-loaded SLN on 

doxorubicin accumulation and cytotoxicity in MDA-MB-231-P-gp cells. MDA-MB-231 cells were 

incubated 24 h with fresh medium (ctrl) or with 5 μM curcumin (cur), blank SLN (bl SLN), curcumin-

loaded SLN (cur SLN, containing 5 μM cur),(without and with chitosan. When indicated, 5 μM 

doxorubicin (Dox) was added. (A) Intracellular doxorubicin was measured fluorimetrically in duplicates. 

Data are presented as means ± SD (n = 3). ° p< 0.001: vs Dox; # p < 0.001 vs cur. (B) The release of 

LDH in the extracellular medium was measured spectrophotometrically in duplicate. Data are presented 

as means ± SD (n = 3). * p< 0.001: vs ctrl; ° p< 0.001: vs Dox; # p < 0.001 vs cur 
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Similar effects were obtained on the highly P-gp-expressing murine 

JC cells (Figure 24A-B). 

 

Figure 24. Effect of curcumin-loaded SLN and chitosan-containing/curcumin-loaded SLN on 

doxorubicin accumulation and cytotoxicity in JC cells. JC were incubated 24 h with fresh medium 

(ctrl) or with 5 μM curcumin (cur), blank SLN (bl SLN), curcumin-loaded SLN (cur SLN, containing 5 

μM cur), without and with chitosan. When indicated, 5 μM doxorubicin (Dox) was added. (A) 

Intracellular doxorubicin was measured fluorimetrically in duplicates. Data are presented as means ± SD 

(n = 3). ° p< 0.001: vs Dox; # p < 0.001 vs cur. (B) The release of LDH in the extracellular medium was 

measured spectrophotometrically in duplicate. Data are presented as means ± SD (n = 3). * p< 0.001: vs 

ctrl; ° p< 0.001: vs Dox; # p < 0.001 vs cur. 

To clarify whether the effects of SLN were due to changes in P-gp 

expression or activity, we first measured whether curcumin released from 

SLN may act as inhibitor of P-gp efflux activity, measuring the retention of 

rhodamine 123, a typical P-gp substrate. In long-term assays – (i.e. after a 

24 h incubation of curcumin, curcumin-loaded SLN and chitosan-

containing/curcumin-loaded SLN followed by a 20 min incubation with 

rhodamine 123) we observed an increased retention of rhodamine, 

indicative of a diminished efflux via P-gp, in cells treated with curcumin-

loaded SLN and chitosan-containing/curcumin-loaded SLN (Figure 25A). 

In the short-term assays (i.e. curcumin and curcumin-loaded SLN co-

incubated with rhodamine 123 for 20 min) we did not detect any changes in 

rhodamine efflux (Figure 25B). 
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Figure 25. Effect of curcumin-loaded SLN and chitosan-containing/curcumin-loaded SLN treated 

cells on P-gp activity. (A) MDA-MB-231-P-gp cells were incubated 24 h with fresh medium (ctrl) or 

with 5 μM curcumin (cur), blank SLN (bl SLN), curcumin-loaded SLN (cur SLN, containing 5 μM cur), 

without and with chitosan. The P-gp substrate rhodamine 123 was added in the last 20 minutes. (B) Cells 

were co-incubated for 20 min with fresh medium (ctrl) or blank SLN (bl SLN), curcumin-loaded SLN 

(cur SLN, containing 5 μM cur), without and with chitosan, together with rhodamine 123. In both assays, 

the intracellular accumulation of rhodamine 123 was measured fluorimetrically in duplicates. 

Measurements were performed in triplicate and data are presented as means ± SD (n = 3). * p< 0.001: vs 

ctrl; # p < 0.001 vs cur. 

This experimental set suggests that it is unlikely that SLN loaded 

with curcumin act as competitive inhibitors of P-gp. We hypothesize that 

the increase in doxorubicin and rhodamine 123 retention was due to 

changes in P-gp expression. To investigate this issue, we first measured the 

amount of P-gp on cell surface, corresponding to the active form of the 

protein. As shown in Figure 26A-B, curcumin-loaded SLN and chitosan-

containing/curcumin-loaded SLN slightly decreased the amount of surface 
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P-gp in MDA-MB-231-P-gp cells. Doxorubicin increased P-gp, likely as a 

consequence of the increased transcription of P-gp/ABCB1/MDR1 gene 

induced by active HIF-1α upon doxorubicin exposure (Kopecka et al., 

2015). This increase was not reversed by free curcumin or blank SLN; but 

only by curcumin loaded SLN. No changes in untreated cells were detected 

in any experimental conditions. 

 
 

Figure 26. Surface P-gp in curcumin-loaded SLN and chitosan-containing /curcumin-loaded SLN 

treated cells. MDA-MB-231 cells were incubated 24 h with fresh medium (ctrl) or with 5 μM curcumin 

(cur), blank SLN (bl SLN), curcumin-loaded SLN (cur SLN, containing 5 μM cur), without and with 

chitosan. When indicated, 5 μM doxorubicin (Dox) was added. (A) Mean fluorescence intensity (MFI). 

(B) P-gp on cell surface was measured by flow cytometry. Measurements were performed in triplicate 

and data are presented as means ± SD (n = 3). * p< 0.01: vs ctrl; ° p< 0.001: vs Dox; # p < 0.001 vs cur.  



Results 

 

76 

 

The changes in the surface P-gp proteins were paralleled by changes 

in the mRNA of P-gp/ABCB1/MDR1; while in cells not exposed to 

doxorubicin, we did not detect any significant changes in P-gp mRNA, and 

doxorubicin treatment hugely increased it. Curcumin-loaded SLN and 

chitosan-containing/curcumin-loaded SLN, but not free curcumin or blank 

SLN, reduced such increase (Figure 27A). By contrast, neither doxorubicin 

nor the other treatments changed the mRNA level of MRP1/ABCC1 

(Figure 27B) and BCRP/ABCG2 (Figure 27C), two transporters involved 

in doxorubicin efflux, suggesting that effect of SLN carrying curcumin is 

specific for P-gp transcription. 

 

Figure 27. P-gp, MRP1 and BCRP mRNA in curcumin-loaded SLN and chitosan-

containing/curcumin-loaded SLN treated cells. MDA-MB-231-P-gp cells were incubated 24 h with 

fresh medium (ctrl) or blank SLN (bl SLN), curcumin-loaded SLN (cur SLN, containing 5 μM cur), 

without and with chitosan. When indicated, 5 μM doxorubicin (Dox) was added. The expression of the P-

gp (panel A), MRP1 (panel B) and BCRP (panel C) mRNAs was measured by qRT-PCR in triplicates. 

Data are presented as means ± SD (n = 3). * p< 0.01: vs ctrl; ° p< 0.001: vs Dox; # p < 0.001 vs cur. 
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We next investigated the potential mechanisms of curcumin-loaded 

SLN in reducing P-gp transcription after doxorubicin exposure. 

Doxorubicin is known to increase ROS in treated cells (Kim et al., 2006; 

Pilco-Ferreto and Calaf, 2016) and curcumin has been reported to prevent 

such increase, limiting the side-effects related to oxidative stress in non-

transformed cells (Mohajeri and Sahebkar, 2018). We thus investigated 

how ROS levels change in MDA-MB-231-P-gp cells exposed to 

doxorubicin and curcumin. As expected, doxorubicin increased 

intracellular ROS. Free curcumin did not prevent ROS increase, whereas 

curcumin-loaded SLN, either with or without chitosan, significantly 

reduced ROS (Figure 28). 

 

 

 

 

 

 

 

 
Figure 28. Effect of curcumin-loaded SLN and chitosan-containing/curcumin-loaded SLN in ROS 

levels. MDA-MB-231-P-gp cells were incubated with fresh medium (ctrl) or with 5 μM curcumin (cur), 

curcumin-loaded SLN (cur SLN, containing 5 μM cur), without and with chitosan. When indicated, 5 μM 

doxorubicin (Dox) was added. ROS levels were measured fluorimetrically in triplicates. Data are 

presented as means ± SD (n = 3). * p< 0.05: vs ctrl; ° p< 0.001: vs Dox; # p < 0.01 vs cur. 
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Intracellular ROS can mediate the activation of several transcription 

factors. Among these redox-sensitive factors, HIF-1α (Comerford et al., 

2002; Kopecka et al., 2015) and NF-kB (Bentires-Alj et al., 2003; Karabay 

et al., 2018) are well known transcriptional inducers of P-

gp/ABCB1/MDR1. We thus investigated whether the effects of curcumin 

were due to the changes in transcriptional activity in these factors. 

HIF-1α activity was increased by doxorubicin, as already reported 

(Kopecka et al., 2015), but nor free curcumin neither curcumin-loaded SLN 

formulations affect its activity in doxorubicin-treated and untreated cells 

(Figure 29). 

 

 

 

 

Figure 29. Effect of curcumin-loaded SLN and chitosan-containing/curcumin-loaded SLN on HIF-

1α activation. MDA-MB-231 cells were incubated with fresh medium (ctrl) or with 5 μM curcumin 

(cur), curcumin-loaded SLN (cur SLN, containing 5 μM cur), without and with chitosan. When indicated, 

5 μM doxorubicin (Dox) was added. HIF-1α activation was measured by ELISA in triplicates. Data are 

presented as means ± SD (n = 3). * p< 0.001: vs ctrl. 

 

 

 

 

chitosan 
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In keeping with the higher ROS levels, doxorubicin-treated cells 

displayed a higher activation of NF-kB that was not reduced by free 

curcumin and blank SLN. NF-kB activity was instead blunted in 

doxorubicin-treated cells by curcumin-loaded SLN either without or with 

chitosan (Figure 30) that reduced ROS levels (Figure 28). 

 

 

 

 

 

 

 

 

Figure 30. Effect of curcumin-loaded SLN and chitosan-containing/ curcumin-loaded SLN in NF-

kB levels. MDA-MB-231 cells were incubated with fresh medium (ctrl) or with 5 μM curcumin (cur), 

curcumin-loaded SLN (cur SLN, containing 5 μM cur), without and with chitosan. When indicated, 5 μM 

doxorubicin (Dox) was added. NF-kB activation was measured by ELISA in duplicates. Data are 

presented as means ± SD (n = 3) * p< 0.05: vs ctrl; ° p< 0.001: vs Dox; # p < 0.01 vs cur. 

  
 

NF-kB is a multimeric transcription factor that can form 

heterodimers between each components, including p65, p50, p52, Rel-A, c-

Rel, characterized by different transcriptional effects (Orlowski and 

Baldwin, 2002; Christian et al., 2016). p65 has been described to bind to 

MDR1 promoter and activate the transcription of P-gp/ABCB1/MDR1 

(Karabay et al., 2018). 

NF-kB dimers, in particular p50/p65, are sequestered in cytoplasm in 

an inactive form by IkB-α inhibitor. However, the phosphorylation of IkB-

α on serine 32 primes the latter for ubiquitination and proteasomal 
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degradation, freeing NF-kB dimers to translocate in the nucleus and 

become active transcription factors (Hinz et al., 2012). The master 

regulator of IkB-α phosphorylation is the IKK-α/β complex that becomes 

activated after the phosphorylation on serine 176 and 180 (Israel, 2010). 

Among the multiple kinases activating IKK α/β, there is Akt that is active 

when phosphorylated on serine 473 (Zhao et al., 2017). ROS are known 

activators of Akt and downstream IKK-α/β/NF-kB cascade (Liu et al., 

2019) that is often constitutively activated in cancer cells (Mu and Liu, 

2017; Zhao et al., 2017; Liu et al., 2019).  

We thus investigated which NF-kB components were involved in P-

gp/ABCB1/MDR1 transcrition and eventually targeted by cuycrumin-

loaded SLN. Doxorubicin increased p50 (Figure 31A), p65 (Figure 31B) 

and at lesser extent c-Rel (Figure 31C) binding to target DNA sequences in 

nuclear extracts. In accord with previous evidences (Christian et al., 2016), 

p50, p65 and – at smaller extent – c-Rel binding activity was reduced by 

curcumin-loaded SLN, without or with chitosan (Figure 31A-C). Of note, 

curcumin-loaded SLN reduced the basal activity of p50 and p65 also in the 

absence of doxorubicin, suggesting particularly strong and specific effects 

for this dimer. 
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Figure 31. Effect of curcumin-loaded SLN and chitosan-containing/ curcumin-loaded SLN on the 

activity of NF-kB subunits. MDA-MB-231 cells were incubated with fresh medium (ctrl) or with 5 μM 

curcumin (cur), curcumin-loaded SLN (cur SLN, containing 5 μM cur), without and with chitosan. When 

indicated, 5 μM doxorubicin (Dox) was added.. The binding activity of p50 (A), p65 (B) or c-Rel (C) was 

measured by ELISA, in duplicates. Data are presented as means ± SD (n = 3). * p< 0.001: vs ctrl; ° p< 

0.02: vs Dox; # p < 0.01 vs cur. 

 

To confirm that the nuclear translocation and binding of p50/p65 to 

DNA target sequences, was responsible of the transcription of P-

gp/ABCB1/MDR1 gene, we immunoprecipitated p50 and p65 bound to 

DNA and amplified the immunoprecipitated DNA with primers specific for 

MDR1 promoter. This ChIP assays indicated that doxorubicin increases the 

transcription of MDR1 gene mediated by p50 (Figure 32A) and p65 (Figure 

32B). SLN-loaded curcumin, both with and without chitosan, but non free 

curcumin, decreased p50- and p65-induced transcription of the gene, both 
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in the absence or in the presence of doxorubicin (Figure 32A-B), 

confirming the results of the activation of p50 and p65 obtained in the 

ELISA (Figure 31A-B). 

 

Figure 32. Effect of curcumin-loaded SLN and chitosan-containing/ curcumin-loaded SLN on p50 

and p65 transcriptional activation of MDR1 gene. MDA-MB-231 cells were incubated with fresh 

medium (ctrl) or with 5 μM curcumin (cur), curcumin-loaded SLN (cur SLN, containing 5 μM cur), 

without and with chitosan. When indicated, 5 μM doxorubicin (Dox) was added. The binding of p50 (A) 

or p65 (B) to MDR1 promoter was measured by ChIP. The immunoprecipitated DNA was measured 

amplified by qRT-PCR in triplicates. Data are presented as means ± SD (n = 3). * p< 0.01: vs ctrl; ° p< 

0.001: vs Dox; # p < 0.01 vs cur. 

 

The expression of upstream activators of p50/p65 dimer - Akt, 

phospho-Akt, IKKα/β, phospho-IKKα/β- and inhibitor IkB-α was measured 

by immunoblotting. While doxorubicin increased the active form of Akt 

(phospho (Ser473) Akt) and IKKα/β (phospho (Ser176/180) IKKα/β), 

curcumin-loaded SLN, with or without chitosan, decreased these events, 

contrarily to free curcumin or blank SLN that were devoid of effects. 

Consistently, doxorubicin decreased the total amount of IkB-α; this 

decrease was restored by curcumin-loaded SLN with or without chitosan, 

not by free curcumin or blank SLN. Neither curcumin nor SLN affected the 

expression of total Akt or IKKα/β. Moreover, no changes were detected in 

cells not treated with doxorubicin (Figure 33). 
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Figure 33. Effect of curcumin-loaded SLN and chitosan-containing/curcumin-loaded SLN on the 

expression of Akt, phospho-Akt, IKKα/β, phospho-IKKα/β and IkB-α. MDA-MB-231-P-gp cells 

were incubated 24 h with fresh medium (ctrl) or blank SLN (bl SLN), curcumin-loaded SLN (cur SLN, 

containing 5 μM cur), without and with chitosan. When indicated, 5 μM doxorubicin (Dox) was added. 

Cells were lysed and probed with the indicated antibodies. Tubulin was used as control of equal protein 

loading. The figure is representative of 1 out or 3 experiments with similar results. 

 

 

 

4.3.2 Curcumin-loaded SLN is effective against drug-resistant JC 

tumors in vivo 

We next evaluated the efficacy of curcumin-loaded SLN, with or 

without chitosan, alone or in combination with doxorubicin, in mice 

bearing doxorubicin-resistant/P-gp-expressing JC. While free curcumin did 

not reduce tumor growth (Figure 34A, upper panel) and masses (Figure 

34B), both curcumin-loaded SLN decreased the rates of growth (Figure 

34A, upper panel). Doxorubicin, alone and in combination with free 

curcumin, was completely ineffective (Figure 34A, lower panel; Figure 

34B), in line with the high resistance of these tumors to the drug. By 

contrast, the combinations of curcumin-loaded SLN, with or without 

chitosan, plus doxorubicin were the most effective in reducing tumor 

growth (Figure 34A, lower panel) and massed (Figure 34B). These 
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combinations were significantly more effective than doxorubicin or 

curcumin alone, or than curcumin-loaded SLN without doxorubicin (Figure 

34A). 

 

Figure 34. Curcumin-loaded SLN effect against drug-resistant JC tumors in vivo. 

JC cells were orthotopically implanted into 6 week-old female balb/C mice. When tumor reached the 

volume of 50 mm
3
, mice (n= 8 mice/group) were randomized and treated as reported in the following 

groups, on day 1, 7, 14 after randomization: 11) vehicle group (ctrl), treated with 200 µl saline solution 

intravenously (i.v.); 2) curcumin group (cur), treated with 5 mg/kg curcumin, dissolved in 200 µl 

water/10% DMSO solution i.v.; 3) doxorubicin group (Dox), treated with 5 mg/kg doxorubicin, dissolved 

in 200 µl water i.v.; 4) curcumin + doxorubicin group (cur+Dox), treated with 100 µl of water/10% 

DMSO solution containing with 5 mg/kg curcumin + 100 µl water solution containing 5 mg/kg 

doxorubicin; 5) chitosan coated-SLN carrying curcumin group (cur SLN chitosan), treated i.v. with 200 

µl of saline solution containing 5 mg/kg curcumin; 6) chitosan coated-SLN carrying curcumin + 

doxorubicin group (cur SLN + Dox chitosan), treated i.v. with 100 µl of saline solution. containing 5 

mg/kg curcumin + 100 µl water solution containing 5 mg/kg doxorubicin; 7) uncoated-SLN carrying 

curcumin group (cur SLN), treated i.v. with 100 µL of saline solution containing 5 mg/kg curcumin; 8) 

uncoated-SLN carrying curcumin + doxorubicin group (cur SLN + Dox), treated i.v with 200 µl of saline 

solution containing 5 mg/kg curcumin + 100 µl water solution containing 5 mg/kg doxorubicin. (A) 

Tumor growth was monitored daily by caliper measurement. Data are presented as means±SD. *p<0.01: 

vs. ctrl; *p<0.001: vs. Dox; 
#
p<0.001: vs. cur. (B) Photographs of representative tumors of each group. 

 

Furthermore, we measured hematochemical parameters in the treated 

animals at the time of sacrifice, i.e. the liver toxicity parameters LDH, 

AST, ALT, AP, the kidney toxicity parameter creatinine, the heart toxicity 

parameters CPK, CPK-MB, cTnI and cTnT. Free curcumin and cucurmin-
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loaded SLN did not worsen these hematochemical parameters indicative of 

cardiotoxicity (Table 6). 

Table 6. Hematochemical parameters of the treated mice. 
 

- Doxorubicin Ctrl Curcumin 
Chitosan-coated 

SLN curcumin 

Uncoated 

SLN curcumin 

LDH (U/L) 639 +7091  409 +7189  1021 +6781  678 +7112  

AST (U/L) 54 +89  43 +101  48 +121  29 +99  

ALT (U/L) 8 +38  8 +41  10 +37  8 +34  

AP (U/L) 49 +134  41 +139  29 +129  18 +139  

Creatinine 

(mg/L) 
0.005 +0.056  0.010 +0.062  0.009 +0.062  0.008 +0.054  

CPK (U/L) 99 +314  83 +312  56 +382  39 +334  

CPK-MB 

(ng/mL) 
0.058 +0.109  0.032 +0.118  0.045 +0.129  0.041 +0.118  

cTnI (pg/mL) 0.082 +1.011  0.032 +1.019  0.062 +1.008  0.029 +1.024  

cTnT (pg/mL) 0.213 +2.182  0.101 +2.178  0.123 +2.189  0.162 +1.897  

+ Doxorubicin Ctrl Curcumin 
Chitosan-coated 

SLN curcumin 

Uncoated 

SLN curcumin 

LDH (U/L) 761 +7561  506 +7192  821 +7821  801 +6523  

AST (U/L) 44 +103  45 +132  36 +105  89 +137  

ALT (U/L) 15 +36  18 +41  13 +39  19 +56  

AP (U/L) 25 +138  56 +167  44 +139  41 +168  

Creatinine  

(mg/L) 
0.009 +0.083  0.009 +0.082  0.011 +0.093  0.010 +0.093  

CPK (U/L) 89 * +556  89 * +571  81 * +562  81* +504  

CPK-MB 

(ng/mL) 
0.71 * +0.302  0.045 * +0.287  0.062 * +0.297  0.016 * +0.322  

cTnI (pg/mL) 0.039 +1.021  0.046 +1.033  0.067 +1.031  0.052 +1.019  

cTnT (pg/mL) 0.209 * +3.197  0.172 * +2.882  0.209 * +2.904  0.178 * +2.821  

 

Balb/C mice (n=8 mice/group) were treated as described the Figure 30. Blood was collected immediately 

after euthanasia and analyzed for lactate dehydrogenase (LDH), aspartate aminotransferase (AST), 

alanine aminotransferase (ALT), alkaline phosphatase (AP), creatinine, creatine phosphokinase (CPK) 

and CPK-MB, cardiac troponin I (cTnI) and T (cTnT). Data are presented as means±SD. * p < 0.05: vs 

ctrl group. 

 

In all the assays in vitro and in vivo we did not notice any significant 

difference between the SLN with or without chitosan.  
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In the first part of this thesis the goal was to apply a physical-based 

approach to reverse doxorubicin resistance. To this aim, we used 

photoexcitable/NO-releasing doxorubicins (PNODOXOs), i.e. 

doxorubicins able to release NO when irradiated with a specific 

wavelength, power and irradiance. We chose the human melanoma M14 

cells since they express multiple ABC transporters, thus representing a 

model of strongly chemoresistant cells. 

The source of NO in cells treated with PNODOXOs can origin from 

the upregulation of iNOS induced by doxorubicin (Riganti et al., 2005; De 

Boo et al., 2009) or by the release of NO by the NO-donor conjugated with 

the anthracycline (Chegaev et al., 2011; Riganti et al., 2013; Gazzano et 

al., 2016). The ability of doxorubicin to induce iNOS is proportional to the 

drug’s intracellular accumulation: this event usually occurs in doxorubicin-

sensitive cells, but not in doxorubicin-resistant cells where the drug is 

rapidly effluxed by ABC transporters (De Boo et al., 2009). Since 

melanoma cells express at least three transporters involved in doxorubicin 

efflux (e.g. P-gp, MRP1, BCRP), it is unlikely that the drug reaches an 

intracellular concentration sufficient to induce iNOS. We hypothesize 

instead that the increase of nitrite is due to the release of NO from 

PNODOXOs, because: 1) it occurs only after irradiation; 2) the value of 

nitrite released by compounds 4, 12 and 13 in acellular systems are 

compatible with the amounts of nitrite measured in the supernatants of cells 

treated with those compounds. 

Since P-gp, MRP1 and BCRP are the main transporters involved in 

doxorubicin efflux; their nitration may explain the increased intracellular 

retention of Dox observed in irradiated cells treated with compound 4. 
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The reversion of doxorubicin resistance using NO donors or NO-

releasing doxorubicin that nitrate ABC transporters is not new. However, 

the first novel aspect of this work is the use of doxorubicin and NOPD 

(compound 4) at equimolar concentration, i.e. 5 µM. Previous works 

demonstrated an effective nitration and inhibition of ABC transporters 

activity only when classical NO donors (such as SNAP, SNP, GSNO) were 

used at significantly higher concentrations, i.e. 100 µM (Riganti et al., 

2005; De Boo et al., 2009), difficult to reach in vivo. Moreover, each NO 

donor has a different kinetics of NO release: this makes necessary to 

increase high concentrations and/or prolong incubation time to reach the 

intracellular concentration of NO-derivatives sufficient for proteins 

nitration (Ischiropoulos, 2003). A second novelty of this work is the use of 

photoexcitable/NO releasing doxorubicins, where NOPD and doxorubicin 

are equimolar, i.e. 5 µM. The use of PNODOXOs offers the advantage to 

finely tune the amount of NO released, allowing reaching nitrating 

concentrations in a strictly controlled manner and period, enabling to 

reduce the amount of NOPD used. Not all the ABC transporters present in 

M14 cells were nitrated. The amount and localization of target proteins, the 

amount and accessibility of tyrosines, the type of amino acids surrounding 

tyrosines critically influence nitration (Ischiropoulos, 2003). We cannot 

exclude that changing tumor type and/or incubation conditions we may 

obtain a different spectrum of nitrated ABC transporters. 

As expected, doxorubicin did not induce any cell damage in M14 

cells, in line with what was observed in other resistant cancer cells with 

low intracellular accumulation of doxorubicin and high drug efflux rate via 

ABC transporters (Riganti et al., 2005, 2013; De Boo et al., 2009; Chegaev 

et al., 2011; Gazzano et al., 2016). Of note, the NOPD compound 4 and the 

PNODOXs compounds 12 and 13 were not toxic either in non-irradiated 
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cells: the amount of NO released is indeed in the nanomolar range, i.e. 

below the cytotoxic micromolar range of NO (Wink and Mitchell, 1998). 

By contrast, the co-incubation of doxorubicin and compound 4 

significantly induced cytotoxicity upon irradiation. A similar effect was 

exerted by the stronger PNODOXO 12, while no toxicity was elicited by 

the weaker PNODOXO 13. The significant increase in NO released by 12 

together with the cytotoxic effect of doxorubicin itself is the likely reason 

for this cytotoxic effect. 

In not-transformed cells, fibroblasts and cardiomyocytes, a well-

known target of doxorubicin, the absence of toxicity of 4 and 13 was 

confirmed. As expected, doxorubicin was toxic in both cell populations. 

Interestingly the co-incubation with 4 did not increase further the 

doxorubicin’s cytotoxicity. Compound 12, which was cytotoxic against 

melanoma cells, was less toxic than parental doxorubicin on not-

transformed cells, suggesting a preferential toxicity of PNODOXOs 

towards cancer cells. These observations point out the possibility of a 

therapeutic window of using PNODOXOs maximizing the therapeutic 

benefits against the tumors, reducing the side toxicities on non-transformed 

tissues. The possibility to selectively irradiate accessible tumors, such as 

melanoma, further increases the specificity of the therapeutic effects of 

PNODOXOs on tumor cells.  

As conclusion of this first part, we can state that the use of combined 

doxorubicin and NOPD or PNODOXOs offers the advantage to finely tune 

the amount of NO released, allowing reducing the amount of NO donors 

used to reverse chemoresistance. By modulating the ratio between NOPD 

and doxorubicin, a different amount of NO can be released, allowing to 

switch from a “not-toxic/ABC-transporters nitrating” to a “highly 

cytotoxic” concentration of NO, and to explore the pleiotropic anti-tumor 
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effects exerted by different NOPD/ doxorubicin ratios. On the other hand, 

PNODOXOs – that have a fixed ratio between NOPD and doxorubicin – 

are expected to have more favourable kinetics and less drug-drug 

unfavourable interactions than the co-administration of NOPD and 

doxorubicin. Overall, both approaches grant a high flexibility in the field of 

anti-tumor strategies based on NO donors. Melanoma is a highly 

chemoresistant tumor expressing multiple ABC transporters: it has been 

demonstrated that inhibiting only one transporter is not sufficient to 

effectively reverse chemoresistance (Chen et al., 2009). Our strategy 

inhibits at the same time the activity of different ABC transporters. In this 

way, the NO photorelease increases the accumulation of doxorubicin by 

reducing the extrusion activity of the dedicated transporters (e.g. P-gp, 

MRP1, BCRP). Such broad-spectrum inhibition of ABC transporters may 

result in the increased retention and cytotoxicity of several other 

chemotherapeutic drugs, determining an efficient reversion of 

chemoresistance not limited to doxorubicin. 

 

In the second part of the Thesis we used natural products to 

overcome doxorubicin resistance in human and murine TNBC cell lines. 

Starting from the human TNBC MDA-MB-231 cells, which had a 

low expression of P-gp, we generated a doxorubicin-resistant subline, 

namely MDA-MB-231/DX, using a classical stepwise selection protocol in 

medium with increasing concentration of doxorubicin. This selection up-

regulate P-gp following the progressive activation of the transcription 

factor HIF-1α even in normoxic conditions. The activation of HIF-1α after 

acute (Doublier et al., 2012) or prolonged (Kopecka et al., 2015) exposure 

to doxorubicin is an event occurring in ER/PR-positive breast cancer 
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(Doublier et al., 2012) or in colon cancer (Kopecka et al., 2015), 

suggesting that is a process common to different cancer cell types during 

the acquisition of resistance. The generated subline MDA-MB-231/DX 

cells has an intermediate resistance to doxorubicin between the sensitive 

MDA-MB-231 cells and the highly resistant JC cells. 

In a first preliminary screening of 12 natural products selected for 

their different biological activity on proliferation and redox metabolism, we 

identified four compounds - Sip, Osh, MLB and Glab – that showed a 

preferential cytotoxicity against resistant cells. The peculiar cytotoxicity of 

a compound on highly P-gp-expressing cells is known as “collateral 

sensitivity” (Pluchino et al., 2012) and is considered an innovative way to 

eradicate drug-resistant cells. Thiosemicarbazones, 1,10-phenanthrolines, 

as well as natural-product-derived sesquiterpenic benzoquinones and 

flavonoids have been recently identified as potent inducers of collateral 

sensitivity (Szakács et al., 2014). Curiously, the four natural products with 

the lowest IC50 against JC cells contain benzoquinone- or flavonoid-

derivatives within their structure. We thus focused on these compounds and 

tested their ability to reverse doxorubicin resistance in our models, by 

combining each compound with doxorubicin at different concentrations. 

The results of cytotoxicity screening indicated that when combined with 

Dox - the four compounds exerted a selective toxicity against cells 

expressing moderate levels of P-gp, such as MDA-MB-231/DX cells. Glab 

was the unique compound that maintained its sensitizing efficacy against 

highly expressing P-gp cells. As suggested by the different CI index 

between MDA-MB-231/DX and JC cells, the higher P-gp level is, the 

higher synergism is observed. We thus hypothesized that Glab may directly 

interfere with the expression or activity of P-gp, reducing the efflux of 

Dox. This interference may explain the synergic effect induced by the 
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combination of Dox and Glab in P-gp-expressing cells only. Indeed, Glab 

reduced the Vmax of doxorubicin efflux, in line with the decreased 

efficiency of catalytic activity of P-gp exerted by the compound. Moreover, 

Glab increased the Km of doxorubicin, suggesting a reduced affinity of the 

drug towards P-gp. 

These data support the hypothesis that Glab may interferes with the 

doxorubicin binding or release from P-gp, or with the NBDs that bind and 

hydrolyse ATP. Since P-gp has multiple drug binding pockets and the 

binding and releasing sites for doxorubicin have been not yet identified, we 

produced different mutated constructs of P-gp, bearing the clinically 

relevant mutations already reported in human tumors and affecting protein 

stability, conformation or drug efflux (ABCMDb/Database for Mutations in 

ABC proteins; http://abcmutations.hegelab.org/), in order to get more 

information on the putative site of interaction between Glab and P-gp. 

Ser400Asn, Gly412Ala, Ser893Ala, Ser893Thr, Gly185Val-mutated P-gp 

were expressed in parental MDA-MB-231 cells and showed the same 

expression level and ATPase activity than wild-type P-gp. Ser400 and 

Gly412 mutations have no reported clinical significance; these amino acids 

are located in exons 12 and 13 that are components of the nucleotide 

binding domain (NBD) at the N-terminal side (Raymond and Gross, 1989) 

of P-gp (Raymond and Gross, 1989). Ser893 is located between the 10
th
 

and 11
th
 transmembrane domain ™ of P-gp; its mutation alters the efflux of 

lipophilic drugs, such as simvastatin (Becker et al., 2009), ondansetron 

(Choi et al., 2010) and paclitaxel (Gréen et al., 2006). Gly185 is located in 

a large hydrophobic domain of P-gp and is involved in drug binding and 

subsequent release outside the cell (Chen et al., 1986). Moreover, Gly185 

dictates the conformation changes occurring between the hydrolysis of 

ATP and the release of the efflux of the drugs; its mutation into Val 
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determines a more efficient coupling between these two processes (Omote 

et al., 2004). Interestingly, Gly185Val has been involved in the resistance 

to lipophilic drugs such as colchicine, epipodophyllotoxins (Safa et al., 

1990). Moreover, this mutation impairs the effects of P-gp allosteric 

inhibitors, such as distearoyl-phosphatidylethanolamine-polyethylene 

glycol (DSPE-PEG), which increases the Km of doxorubicin and reduces 

ATPase activity in wild-type P-gp, not in Gly185Val-mutated P-gp 

(Kopecka et al., 2014). Of note, Glab shows the same properties of DSPE-

PEG, since it increased doxorubicin Km and decreased P-gp ATPase 

activity, but lose its efficacy in cells mutated at Gly185. We may 

hypothesize that Glab binds and/or interacts indirectly with Gly185, and 

that this interaction disrupts the efficient coupling between ATP hydrolysis 

and doxorubicin efflux. In consequence of the decreased catalytic activity 

of P-gp, the release of doxorubicin towards the external side is less 

efficient, as suggested by the increased Km of the drug. In consequence of 

the decreased catalytic cycle of P-gp, doxorubicin is also effluxed with a 

reduced Vmax.  

We finally validated the efficacy and safety of Glab in vivo, treating 

balb/C mice bearing JC tumors that were completely unresponsive to 

doxorubicin. In line with the results obtained in vitro, Glab restored the 

efficacy of doxorubicin, without displaying additional side-toxicities 

according to the hematochemical parameters measured. Given the huge 

reduction in tumor growth elicited by the combination of Glab and 

doxorubicin, the addition of Glab could be an option in reducing the dose 

of doxorubicin, preserving a good efficacy against P-gp/expressing tumors 

and limiting the dose/dependent cardiotoxicity. 

Overall this second part of the thesis demonstrates that natural 

products may offer a safe and effective alternative to small molecules 
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designed for inhibiting P-gp (Callaghan et al., 2014) or selectively killing 

P-gp-expressing cells (Pluchino et al., 2012), that are often effective in 

vitro but not in preclinical models, for the low efficacy and/or the undesired 

toxicities. We identified Glab as a chemosensitizing agent, whose efficacy 

is higher in strongly P-gp-expressing JC cells than in moderately P-gp-

expressing MDA-MB-231/DX cells, suggesting that it can be tested as an 

effective chemosensitizer in breast cancers strongly resistant to 

doxorubicin.  

In the third part of the thesis, I coupled the use of a natural product, 

curcumin, with a nanotechnological approach, based on its encapsulation 

within SLN. Curcumin has recently shown several anti-tumor properties, 

including the inhibition of oncogenic factors such as STAT-3 and NF-kB, 

the inhibition of the pro-invasive factor Sp-1 and the inhibition of chronic 

pro-tumor inflammation. Interestingly, these effects are accompanied by a 

low toxicity against non-transformed cells (Vallianou et al., 2015), 

suggesting that it could be a selective agent against tumor cells. It has been 

already reported that curcumin down-regulate P-gp expression (Choi et al., 

2008), by downregulating NF-kB activation, a strong inducer of P-gp. 

Indeed, free curcumin has synergized with paclitaxel, a typical P-gp 

substrate, in different cancer cell lines (Hossain et al., 2012).  

The main disadvantages of curcumin are the poor water-solubility, 

the unfavorable pharmacokinetic, the easy degradation at slightly alkaline 

pH, that limit curcumin efficacy in clinical practice. To increase the 

bioavailability of curcumin, it has been proposed the use of nanocarriers 

that may decrease curcumin degradation and increase its uptake within 

tumor cells (Sun et al., 2013).  In my thesis, I tested the efficacy of 

curcumin encapsulated in SLN designed to achieve a high biocompatibility 

in the perspective of a systemic administration of the formulation in vivo. 
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Indeed the cold dilution of microemulsion method (Chirio et al., 2018) 

followed in the SLN preparation granted : 

- a good hydrophilicity avoiding the use of organic solvents that can 

have an unacceptable toxicity or interfere with the drug 

encapsulation; 

- stable ζ potential, low PI index; 

- high and reproducible encapsulation efficacy. 

In parallel, other SLNs have been produced by introducing in the 

microemulsion system chitosan, a polymer that coats SLN surface and 

further increases the hydrophilic properties of the SLN. Moreover, chitosan 

is highly biodegradable, granting a good biocompatibility, and has strong 

adhesive properties to epithelial cells, that are supposed to favor the uptake 

of the coated SLN within the cell.  

In a preliminary comparison of free curcumin, curcumin-loaded SLN 

and chitosan-containing/curcumin-loaded SLN, we observed that the latter 

formulations produced the same retention of doxorubicin and doxorubicin-

induced toxicity at a concentration (i.e. 5 µM) five to ten-fold lower than 

free curcumin. These results suggested that SLN likely elicited a higher 

delivery of curcumin within the cells, allowing to curcumin to exert its 

chemosensitizing effects on TNBC human MDA-MB-231 expressing wild-

type P-gp and murine JC cells at a concentration at which curcumin was 

ineffective. Therefore the encapsulation of curcumin within SLN improved 

the cellular uptake of the drug. Moreover, at this concentration, neither 

blank SLN nor curcumin-loaded SLN and chitosan-containing/curcumin-

loaded SLN were cytotoxic for the cells. To achieve the same 

chemosensitizing efficacy, free curcumin had to be used at 25-50 µM, a 
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range of concentrations that elicits cytotoxicity in vitro and was difficult to 

reach in vivo. These data indicate the superior efficacy and safety 

curcumin-loaded SLN over free curcumin. 

Mechanistically, curcumin delivered by SLN did not act as a 

competitive inhibitor of P-gp, since it did not increase the retention of 

rhodamine 123, a classical P-gp substrate, if co-incubated at short term. By 

contrast, a 24 h incubation of curcumin-loaded SLN and chitosan-

containing/curcumin-loaded SLN increased the accumulation of both 

doxorubicin and rhodamine 123. This event was paralleled to the decrease 

in P-gp mRNA and protein and was evident in cells treated with 

doxorubicin that increases P-gp expression, as expected (Maitra et al., 

2001). This result looks promising because it suggests that curcumin-

loaded SLN reduced P-gp expression only in cancer cells after exposure to 

chemotherapy, without affecting the basal expression of the transporter. 

This means that likely the physiological effects of P-gp in non-transformed 

tissues are less affected than the activity of P-gp within the tumor, leading 

to expect a lower rate of undesired side-toxicities. Moreover, no changes in 

MRP1 and BCRP mRNA levels were detected, suggesting that curcumin-

loaded SLN effects were specific for P-gp. Such specificity for P-gp may 

further contribute to limit the undesired toxicity due to the non-selective 

inhibition of other ABC transporters.  

Unexpectedly, Intracellular doxorubicin accumulation and 

cytotoxicity, levels of P-gp, MRP1 and BCRP mRNAs, amount of P-gp 

surface and activity showed the same trends for chitosan-

containing/curcumin-loaded SLN than for the curcumin-loaded SLN 

without chitosan. Chitosan-containing SLN are known for their higher 

hydrophilic properties. It is likely that the good solubility in cell culture 

medium achieved by uncoated curcumin-loaded SLN is sufficient to reach 
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the maximal curcumin delivery necessary to induce a chemosensitizing 

effect. On the other hand, our data suggest that chitosan coating likely did 

not change significantly the amount of released curcumin within the cells. 

To further investigate the mechanism at the basis of the down-

regulation of the doxorubicin-induced P-gp transcription, we focused on 

three events elicited by doxorubicin in cancer cells and involved in P-gp 

up-regulation: the increase in intracellular ROS, the activation of the 

transcription factors HIF-1α and NF-kB, which are both inducers of P-gp 

and activated in response to increased ROS. Our data indicated that 

doxorubicin increased ROS levels, HIF-1α and NF-kB activity, as 

expected; curcumin-loaded SLN and chitosan-containing/curcumin-loaded 

SLN reduced ROS and NF-kB activation, without any effects on HIF-1α. 

We identify p50, p65 and – at lesser extent – c-Rel as the NF-kB 

components inhibited by curcumin. Our results are in accord to previous 

findings, demonstrating that p65, which commonly dimerizes with p50 

(Christian et al., 2016), is the leading NF-kB binds MDR1 promoter and 

activates the transcription of P-gp (Karabay et al., 2018). By reducing both 

p65 and p56 binding to MDR1 promoter, curcumin delivered by SLN 

strongly reduced the levels of P-gp mRNA. Our studies on the signalling 

upstream NF-kB suggest that the effects of curcumin are due to a decreased 

activation of Akt and IKK-α/ β complex upon doxorubicin treatment, 

leading to a reduced expression of IkB-α that finally allowed the nuclear 

translocation and transcriptional activity of p65/p50 dimer. Since ROS 

activate the Akt/IKK-α/β/NF-kB axis (Zhao et al., 2017; Liu et al., 2019), 

we hypothesize that the prime mover of P-gp reduction was the decrease in 

intracellular ROS induced by curcumin and the consequence down-

regulation of Akt/IKK-α/β/NF-kB/P-gp pathway. This may explain why the 

effects of curcumin-loaded SLN and chitosan-containing/curcumin-loaded 
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SLN were more pronounced in cells treated with doxorubicin, where there 

are high levels of intracellular doxorubicin, and less pronounced in 

untreated cells, where ROS levels were significantly lower.   

The effects of curcumin-loaded SLN and chitosan-

containing/curcumin-loaded SLN were not cell line or species-specific, 

since they were shared by both human and murine doxorubicin-resistant 

cells. Moreover, our in vivo experiment proved that both curcumin-loaded 

SLN and chitosan-containing/curcumin-loaded SLN were effective against 

doxorubicin-resistant JC tumors. Consistently with the anti-tumor 

properties of curcumin (Vallianou et al., 2015), both SLN reduced the 

growth of tumors in the absence of doxorubicin at a dosage at which free 

curcumin was ineffective. These profiles indirectly suggest the better 

bioavailability and delivery to tumor of curcumin when carried by SLN 

than when administered as free drug. Most importantly, the effects of 

curcumin-loaded SLN and chitosan-containing/curcumin-loaded SLN were 

most pronounced in doxorubicin-treated animals, where the anti-tumor 

effects of doxorubicin were rescued by the combination treatments. This is 

consistent with the mechanism of increased intracellular accumulation of 

doxorubicin, due to the down-regulation of P-gp, observed in vitro. 

Furthermore, both SLN formulations did not display signs of systemic 

toxicities and did not worsen the cardiac damage, indicated by the increase 

in CPK, CPK-MB and cTnT, induced by doxorubicin.  

As already observed for in vitro assays, there were no differences between 

curcumin-loaded SLN and chitosan-containing/curcumin-loaded SLN, 

although chitosan should grant a higher stability and biocompatibility of 

the nanocarriers. It is likely that uncoated SLN had a good pharmacokinetic 

profile and a good hydrophilicity sufficient to elicit anti-tumor property, 

and a good biocompatibility that avoids side-toxicities.  
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As a conclusion of this third part, we produced two nanocarriers 

loaded with curcumin, able to down-regulate P-gp expression and rescue 

doxorubicin efficacy against resistant TNBC tumors at lower and non-toxic 

doses than free curcumin. After systemic co-administration with 

doxorubicin, our formulations were effective in reducing the growth of 

highly resistant tumors, revealing a good safety profile.  
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The main goal of this thesis is testing different approaches to 

increases the efficacy of doxorubicin in ABC transporters expressing 

tumors. 40 to 70% of tumors are resistant to chemotherapy and targeted-

therapy at the diagnosis as a consequence of the constitutively expression 

of ABC transporters. This percentage increases after the treatment with 

chemotherapy that increases the expression of ABC transporters. Until 

now, inhibiting these transporters, in particular P-gp that recognizes the 

broadest spectrum of substrates is a still unmet clinical need. Since small 

chemical inhibitors effective in vitro have repeatedly failed in preclinical 

models for the high toxicity and the low specificity, we tested alternative 

approaches. 

The first one was a physico-chemical approach based on the use of 

hybrid doxorubicins containing the anthracycline moiety and a 

photoexcitable NO-releasing group, i.e. a group able to release NO, a non-

competitive inhibitor of ABC transporters including P-gp, only upon 

irradiation at specific wavelength. The innovation of this approach is the 

highly temporal and spatial controlled inhibition of ABC transporters that 

increases the effects on tumor tissue only, sparing non-transformed tissues. 

This is a strong innovation compared to systemically administered 

inhibitors of ABC transporters. The main disadvantage is that the 

irradiation-based approach can be used for superficial tumors (e.g. skin 

cancers) or endoscopically accessible tumors (e.g. gastrointestinal tumors, 

bronchial tumors, prostate tumors), due to the low penetration - i.e. few 

millimetres - of the light used. Changing the wavelength used, moving 

from violet toward a green or red light increases the light penetration, 

allowing the targeting of internal tumors. This implies the design of 

different photoexcitable NO donors, their stable conjugation with 



Conclusion &Future Perspectives 

 

114 

 

doxorubicin or other chemotherapeutic drugs, the validation in vitro and in 

vivo of the new hybrids. These steps represent the future development of 

our first work. 

Another alternative to the small chemical inhibitors tested in the past 

to inhibit P-gp is the use of natural products, characterized by low toxicity 

on non-transformed tissue and by a preferential toxicity on P-gp-expressing 

cancer cells. Glab is an example of this category of compounds, exerting 

the maximal efficacy on moderately P-gp-expressing and highly-P-gp-

expressing cells thanks to the ability to impair the catalytic cycle of P-gp. 

Thanks to the experiments with mutants P-gp we hypothesized that Glab 

inhibits P-gp by interacting with the domain centred around Glycine185, a 

domain that is involved in the release of hydrophobic drugs including 

doxorubicin from the pump. Despite these indications, we did not 

completely clarify the exact binding site of Glab. Modelling studies are 

currently on going to clarify this point.  

Until now, few chemical small molecules displayed a selective 

toxicity against P-gp-expressing tumors, i.e. induce a collateral sensitivity. 

To the best of our knowledge, Glab is the first natural product inducer of 

collateral sensitivity and of chemosensitizing effects. In depth studies of 

molecular modelling may led to identify the key groups of Glab responsible 

for the inhibition of P-gp. This may pave the way to the design of small 

libraries of Glab analogues, both inducers of collateral sensitivity and 

inhibitors of P-gp, with higher specificity and selectivity. 

Not always natural products as free compounds are able to reach a 

satisfactory bioavailability, as in the case of curcumin that reversed 

doxorubicin resistance in vitro only when used at toxic concentrations and 

was devoid of effects in vivo, likely as a consequence of its low solubility 
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and stability in hydrophilic biological fluids. Nanobiomaterials can 

overcome these limitations by offering a wide range of biocompatible 

carriers, able to improve the pharmacokinetics and pharmacodynamics 

profile of the natural products. In our hand, curcumin-loaded SLN proved 

to be five to ten-fold more potent than free curcumin, able to overcome 

doxorubicin resistance by downregulating P-gp and targeting a pro-survival 

pathway - Akt/IKK-α/β/NF-kB – typically activated in cancer cells. After 

having demonstrated the anti-tumor efficacy in vivo, we are currently 

performed immunohistochemistry-based analysis of the collected tumors to 

verify that the molecular events observed in vitro also occur within the 

tumor mass. Moreover, although curcumin-loaded SLN associated with 

doxorubicin was not more toxic than doxorubicin alone according to the 

hematochemical parameters analysed, an in depth analysis of the target 

organs - liver, kidney, heart, lung, bone marrow, central nervous system - is 

required to check the lack of toxicity undetectable with the hematochemical 

parameters. Another study that we plan to perform is a detailed distribution 

and pharmacokinetic profile of the curcumin-loaded SLN. This will allow 

an optimization in the scheduled treatment and in the route of 

administration, in order to further increase the anti-tumor benefits and the 

safety. 

A limitation of our work is that Glab and curcumin-loaded SLN have 

been tested on commercial cell lines, not in primary samples. The 

promising results obtained, however, may pave the way to test these 

approaches in patient-derived TNBC cells and tumor xenografts, in order to 

identify subset of patients – unresponsive to doxorubicin for the presence 

of high levels of P-gp and characterized by poor prognosis – who may 

benefit from the use of Glab or curcumin as potential adjuvant agents in 

doxorubicin-based treatments. 
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Overall, our results with natural compounds are clinically relevant 

because chemotherapy based on anthracyclines such as doxorubicin is the 

first therapeutic option in TNBC (Harbeck and Gnant, 2017). Unluckily, 

this type of breast cancer results less responsive to doxorubicin than other 

breast cancer types (Székely et al., 2017). One of the main reasons for this 

low success is the abundant presence of P-gp in breast cancer cells (Iris C. 

Salaroglio et al., 2018). Increasing doxorubicin efficacy in TNBC is still an 

unmet need. We suggest that the use of natural compounds may help to 

achieve this goal. 

In conclusion, my thesis work collected a series of proof of concepts 

on alternative, effective and safe approaches, based on multidisciplinary 

approaches combining physics, medicinal chemistry, nanotechnology and 

pharmacology. Such multidisciplinarity may represent a significant 

advancement in overcoming MDR related to ABC transporters.   
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 الأدوية مقاومة باسم للسرطان المضادة الأدوية من واسعة لمجموعة السرطانية الخلايا مقاومة تعُرف

و . الورم تطور إلى مما يؤدي السرطان الكيميائي في التغلب على العلاج نجاح قويا أمام عائقًا تشكل والتي المتعددة،

 والمبيض الثدي سرطان ذلك في بما والأورام الصلبة الدم أورام من يعانون الذين المرضى يتعرض لهذه المقاومة

للمقاومة للأدوية المتعددة هو  الظاهري النمط ويعد المسؤول الرئيسي عن. الهضمي الجهاز وسرطان والجلد والرئة

المتعددة  تدفق الأدوية والتي البلازما بأغشية مرتبطة وهي ناقلات ، ATP Binding Cassette (ABC) الناقلات

الخلايا وبالتالي يحد من  داخل تراكم هذه الأدوية من يحد مما ، والنشاط بالهيكل لها علاقة لا والتي الخلايا خارج

 حتى. هو ال بي جليكوبروتين بمقاومة الأدوية المتعددة المتعلق ABC الرئيسي يعتبر الناقل. تأثيرها السام على الخلايا

خطوط الخلايا  في فعالة أنها من الرغم للبي جليكوبروتين، على مثبطة مختلفة صغيرة اختبار جزيئات تم ، الآن

 .وافتقارها للتخصصية العالية نظرا لسميتها السريرية قبل النماذج في فشلت أنها إلا السرطانية خارج الكائن الحي،

 :وآمنة فعالة بطريقة جليكوبروتينلتثبيط البي  بديلة طرق ثلاثة هذه الدراسة تم بحث في

 الدوكسوروبيسين كعلاج دواء إطلاق على قادرة جزيئات وهي الضوئية، الديناميكية الجزيئات أولا: استخدام

 الخلايا داخل مناسبة موجية بأطوال تشعيعه تم إذا وذلك فقط للبي جليكوبروتين النيتريك كمثبط وأكسيد كيميائي

الطبيعية الغير محولة والغير مسرطنة وفي  الخلايا على ضعيفة السمية الطبيعية المنتجات استخدامثانيا:  . السرطانية

 نانو طرق استخدام التي لديها نسبة عالية من البي جليكوبروتين. ثالثا: للخلايا السرطانية عالية نفس الوقت لها انتقائية

 والذي تم الكركمين وهو الكيميائية للحساسية مثير ومنتج طبيعي الدوكسوروبيسين المشاركة بين على مبنية تكنولوجية،

 .حيويا متوافقة صلبة نانوية دهنية جسيمات في تحميله

أكسيد النيتريك المثار ضوئيا والمطلق  من جديد صنف من بالتحقق قمت ، الرسالة من الأول الجزء في

متصل  حساس للضوء جسر بواسطة كمركب مناسب مانح لأكسيد النيتري يرتبط حيث للدوكسوروبيسين،

 ولكنها سامة غير ضوئي لأكسيد النيتريك بجرعات توليد هو ذلك من الهدف كان. PNODOXOsبالدوكسوروبيسين 

الدوكسوروبيسين  تدفق من يقلل مما لزيادة نشاطها، الحرجة التيروزينات على ABC ناقلات ال نيترة على قادرة

تستطيع بطريقة  والتي البشرية M14 خلايا سرطان الجلد تم استخدام الهدف، هذا ولتحقيق. خارج خلايا السرطان

 PNODOXOsتطلق ال   ، والإشعاع والقوة الصحيح الموجي الطول مع. متعددة ABC ناقلات جوهرية أن تنتج

 الخلوية السمية من يزيد مما ، الأخرى ABC الذي بدوره يقوم بنيترة البي جليكوبروتين وناقلات ال أكسيد النيتريك

 بتثبيط مانحات ضوئية لأكسيد النيتريك تتميز باستخدام المستقبل إلى الطريق تمهد قد النتائج هذه. للدوكسوروبيسين

 العلاجية الأدوية بالعديد من الخلايا وتسمم احتباس زيادة إلى الميزة هذه تؤدي قد. ABC لناقلات ال واسع المجال

لأكسيد  للضوء مستحث إطلاق على الاستراتيجية هذه تعتمد ، ذلك على علاوة. ينالدوكسوروبيس جانب إلى الأخرى

فتزيد هذه  السرطانية، الخلايا داخل به التحكم نستطيع محكم لأكسيد النيتريك إطلاق إلى الوصول خلال من النيتريك

 .الأنسجة الغير مسرطنة على الجانبية الآثار من وتحد المقاومة للأدوية، المشععة الأورام ضد الفائدة الاستراتيجية من

 الخلايا عن مقاومتها للدوكسوروبيسين ارجاع على تم التركيز الرسالة، من والثالث الثاني الجزئين في

 العلاجي الخيار الدوكسوروبيسين حيث يعد السلبية، ثلاثي الثدي سرطان خلايا في تثبيط البي جليكوبروتين بوساطة

 لسرطان الخلايا البشرية نوع من تم استخدام. وجود البي جليكوبروتين بسبب ولكن تضعف فاعليته الأول لهذه الخلايا 

والتي لديها نسبة قليلة من البي جليكوبروتين. أيضا تم استخدام خلايا  (MDA-MB-231)وهو  ثلاثي السلبية الثدي

نتاج البي جليكوبروتين والتي قمت والتي لديها القدرة على إ (MDA-MB-231/DX) سرطان الثدي ثلاثي السلبية
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لديها  (JC)من الدكسوروبيسين في وسط غذائي. كما تم استخدام خلايا من الفئران  تدريجية بإنتاجها بواسطة جرعات

 .نسبة عالية من البي جليكوبروتين

 أن وجدت ولقد .ةالمختلف البيولوجية لأنشطتهم وفقًا عشرمركبا طبيعيا نقيا تم اختيارهم اثني تم اختبار أولاً،

 والتفضيلي الانتقائي الخلايا تسمم في تسبب ، Tephrosia purpurea من مستخلص فلافونويد وهو الجلابراتيفرين،

 أن يعكس للبي جليكوبروتين عند معالجتها بالدكسوروبيسين. استطاع الجلابراتيفرين السرطانية المنتجة الخلايا ضد

أي  دون الحي، الجسم في JC أورام ال وفي الخلايا السرطانية خارج الجسم الحيخطوط  في الدوكسوروبيسين مقاومة

الحفزي للبي  ATPase نشاط إنزيم استطاعت مادة الجلابراتيفرين أن تثبط ميكانيكيا. سمية على باقي الخلايا الطبيعية

وقد نتج  .سين خارج الخلاياالدوكسوروبي تدفق من والحد الحد الأقصى لسرعة معدل الأيض من والحد جليكوبروتين،

البي جليكوبروتين المحور  مع التجارب سمحت. و البي جليكوبروتين الجلابراتيفرين بين المباشر التفاعل بسبب ذلك

 فعاليته المركب فقد ، الواقع في. للجلابراتيفرين المفترض الربط كموقع Glycine 185 حول المتمركز المجال بتحديد

في حالة المعالجة  الدوكسوروبيسين مقاومة إن عكس. للبي جليكوبروتين المحور Glycine-> Valine 185ال  في

 السرطان خلايا على للقضاء اللازمة من الدوكسوروبيسين الجرعة تستطيع أن تقلل الجلابراتيفرين المزدوجة مع

 .الدواء على باقي خلايا الجسم سمية تقليل وبالتالي ، المقاومة

الطبيعية التي لديها القدرة على عكس مقاومة الخلايا  بالمنتجات اسة تأثير الكركمين كأحدتمت در ثالثاً،

. الحيوي والتوافر الاستقرار والذوبان بانخفاض للبي جليكوبروتين ولكنه يتأثر معروف مثبط وهو للأدوية المتعددة،

 متوافقة في جزيئات نانوية دهنية صلبة تحميله تم الذي الكركمين فعالية من بالتحقق قمت القيود، هذه على وللتغلب

والتي تزيد من قدرة  للماء والمحبة الاستقرار، زيادة على والتي لها القدرة بالشيتوزان، تغليفها بدون أو مع حيويا،

 لىإ خمسة من فاعلية أكثر بالكركمين من الجزيئات النانوية المحملة تم إثبات أن كل. الكركمين الخلايا على امتصاص

خلايا سرطان  في الدوكسوروبيسين وسمية احتباس زيادة في بمفرده وظهر ذلك استخدام الكركمين عن أضعاف عشرة

التي تحتوي على  JC نسبة من البي جليكوبروتين وخلايا ال  والتي لديها MDA-MB-231الثدي الثلاثي السلبية 

 داخل التفاعلي الأكسجين أنواع انخفاض عن ناتجة الكيميائي التحسس آثار كانت. نسبة عالية من البي جليكوبروتين

 .Akt / IKKα-β / NF-kBمحور  تثبيط من ذلك عن ينتج وما الخلايا

 

 P65 / P50 من الربط بالكركمين اختزلت الجزيئات النانوية الدهنية الصلبة المحملة الخصوص وجه على 

NF-kB وبالتالي نقص  النسخي النشاط ضإلى المسؤول عن جين البي جليكوبروتين. انخفmRNA   والبروتين

 حساسية فعال أنقذت الجزيئات النانوية الدهنية الصلبة المحملة بالكركمين بشكل الخاص بالبي جليكوبروتين. كما

في الخلايا الطبيعية الغير  السمية على علامات وجود دون ، للأدوية المقاومة JC أورام ال ضد الدوكسوروبيسين

 .مسرطنة

 

 الطبية والكيمياء الفيزياء من مزيج على بناءً  المبتكرة الأساليب من استخدمت الدراسة العديد عام، بشكل

 على التغلب في ملحوظاً  تقدماً  المتعددة التخصصات هذه تمثل قد. الصيدلة وعلم الحيوية والكيمياء النانو وتكنولوجيا

 .ABC بنواقل ال والمتعلقة مقاومة الخلايا السرطانية للأدوية المتعددة
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 الأدوية مقاومة باسم للسرطان المضادة الأدوية من واسعة لمجموعة السرطانية الخلايا مقاومة تعُرف

 و. الورم تطور إلى يؤدي مما السرطان على التغلب في الكيميائي العلاج نجاح أمام قويا عائقًا تشكل والتي المتعددة،

المختلفة وذلك بعد معالجتهم لفترات طويلة بالعلاج  الأورام من يعانون الذين المرضى المقاومة في تكون هذه

 ناقلات وهي ، ATP Binding Cassette (ABC) الناقلات تلك المقاومة هو عن الرئيسي المسؤول ويعد. الكيميائي

 وبالتالي بداخلها الأدوية هذه تراكم من يحد مما الخلايا، خارج المتعددة الأدوية تدفق والتي البلازما بأغشية مرتبطة

 بي ال هو المتعددة الأدوية بمقاومة المتعلق ABC الرئيسي الناقل يعتبر. الخلايا على السام تأثيرها من يحد

 في فعالة أنها من الرغم على جليكوبروتين، للبي مثبطة مختلفة صغيرة جزيئات اختبار تم الآن، حتى. جليكوبروتين

 وافتقارها العالية لسميتها نظرا السريرية قبل النماذج في فشلت أنها إلا الحي، الكائن خارج السرطانية الخلايا خطوط

 .للتخصصية

 :وآمنة فعالة بطريقة لتثبيط البي جليكوبروتين بديلة طرق بحث ثلاثة هذه الدراسة تم في

 الدوكسوروبيسين كعلاج دواء إطلاق على قادرة جزيئات وهي الضوئية، الديناميكية الجزيئات أولا: استخدام

 الخلايا داخل مناسبة موجية بأطوال عهتشعي تم إذا للبي جليكوبروتين وذلك فقط النيتريك كمثبط وأكسيد كيميائي

الطبيعية الغير مسرطنة وفي نفس الوقت لها  الخلايا على ضعيفة السمية الطبيعية المنتجات ثانيا: استخدام السرطانية.

 مبنية تكنولوجية، نانو طرق استخدام التي لديها نسبة عالية من البي جليكوبروتين. ثالثا: للخلايا السرطانية عالية انتقائية

 في تحميله والذي تم الكركمين وهو الكيميائية للحساسية مثير ومنتج طبيعي الدوكسوروبيسين المشاركة بين على

 .حيويا متوافقة صلبة نانوية دهنية جسيمات

أكسيد النيتريك المثار ضوئيا والمطلق  من جديد صنف باختبار قمت ، الرسالة من الأول الجزء في

 ABC ناقلات تستطيع أن تنتج والتي البشرية M14 على خلايا سرطان الجلد PNODOXOsللدوكسوروبيسين 

البي جليكوبروتين  نيترة على كان له القدرة سامة غير الضوئي لأكسيد النيتريك بجرعات التوليد تم إثبات أن. متعددة

 .الخلوية سميته من وبالتالي زادالدوكسوروبيسين خارج خلايا السرطان  تدفق من قلل مما الأخرى ABC وناقلات ال

 الخلايا عن مقاومتها للدوكسوروبيسين ارجاع على تم التركيز الرسالة، من والثالث الثاني الجزئين في

 العلاجي الخيار الدوكسوروبيسين حيث يعد السلبية، ثلاثي الثدي سرطان خلايا في تثبيط البي جليكوبروتين بوساطة

 لسرطان الخلايا البشرية نوع من تم استخدام. وجود البي جليكوبروتين بسبب تضعف فاعليتهولكن  الأول لهذه الخلايا 

والتي لديها نسبة قليلة من البي جليكوبروتين. أيضا تم استخدام خلايا  (MDA-MB-231)وهو  ثلاثي السلبية الثدي

البي جليكوبروتين والتي قمت والتي لديها القدرة على إنتاج  (MDA-MB-231/DX) سرطان الثدي ثلاثي السلبية

لديها  (JC)من الدكسوروبيسين في وسط غذائي. كما تم استخدام خلايا من الفئران  تدريجية بإنتاجها بواسطة جرعات

 .نسبة عالية من البي جليكوبروتين

 أن وجدت قدول .المختلفة البيولوجية لأنشطتهم وفقًا عشرمركبا طبيعيا نقيا تم اختيارهم اثني تم اختبار أولاً،

 والتفضيلي الانتقائي الخلايا تسمم في تسبب ، Tephrosia purpurea من مستخلص فلافونويد وهو الجلابراتيفرين،

 أن يعكس للبي جليكوبروتين عند معالجتها بالدكسوروبيسين. استطاع الجلابراتيفرين السرطانية المنتجة الخلايا ضد

أي  دون الحي، الجسم في JC أورام ال وفي السرطانية خارج الجسم الحيخطوط الخلايا  في الدوكسوروبيسين مقاومة

 في حالة المعالجة المزدوجة مع الدوكسوروبيسين مقاومة تم إثبات أن عكس. سمية على باقي الخلايا الطبيعية
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 وبالتالي ومة،المقا السرطان خلايا على للقضاء اللازمة من الدوكسوروبيسين الجرعة تستطيع أن تقلل الجلابراتيفرين

 .الدواء على باقي خلايا الجسم سمية تقليل

الطبيعية التي لديها القدرة على عكس مقاومة الخلايا  بالمنتجات تمت دراسة تأثير الكركمين كأحد ثالثاً،

. الحيوي والتوافر الاستقرار والذوبان بانخفاض للبي جليكوبروتين ولكنه يتأثر معروف مثبط وهو للأدوية المتعددة،

 متوافقة في جزيئات نانوية دهنية صلبة تحميله تم الذي الكركمين فعالية من بالتحقق قمت القيود، هذه على وللتغلب

والتي تزيد من قدرة  للماء والمحبة الاستقرار، زيادة على والتي لها القدرة بالشيتوزان، تغليفها بدون أو مع حيويا،

 إلى خمسة من فاعلية أكثر بالكركمين من الجزيئات النانوية المحملة ن كلتم إثبات أ. الكركمين الخلايا على امتصاص

خلايا سرطان  في الدوكسوروبيسين وسمية احتباس زيادة في بمفرده وظهر ذلك استخدام الكركمين عن أضعاف عشرة

التي تحتوي على  JC نسبة من البي جليكوبروتين وخلايا ال  والتي لديها MDA-MB-231الثدي الثلاثي السلبية 

 أورام ال ضد الدوكسوروبيسين من حساسية فعال كما رفعت تلك الجزيئات بشكل .نسبة عالية من البي جليكوبروتين

JC أي تأثير سام على الخلايا الطبيعية الغير مسرطنة وجود دون للأدوية، المقاومة. 

 الطبية والكيمياء الفيزياء من مزيج لىع بناءً  المبتكرة الأساليب من استخدمت الدراسة العديد عام، بشكل

 على التغلب في ملحوظاً  تقدماً  المتعددة التخصصات هذه تمثل قد. الصيدلة وعلم الحيوية والكيمياء النانو وتكنولوجيا

 .ABC بنواقل ال والمتعلقة مقاومة الخلايا السرطانية للأدوية المتعددة


