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Feeding the gut microbiome:
impact on multiple sclerosis
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Multiple sclerosis (MS) is a multifactorial neurological disease characterized by

chronic inflammation and immune-driven demyelination of the central nervous

system (CNS). The rising number of MS cases in the last decade could be partially

attributed to environmental changes, among which the alteration of the gut

microbiome driven by novel dietary habits is now of particular interest. The intent

of this review is to describe how diet can impact the development and course of

MS by feeding the gut microbiome. We discuss the role of nutrition and the gut

microbiota in MS disease, describing preclinical studies on experimental

autoimmune encephalomyelitis (EAE) and clinical studies on dietary

interventions in MS, with particular attention to gut metabolites–immune

system interactions. Possible tools that target the gut microbiome in MS, such

as the use of probiotics, prebiotics and postbiotics, are analyzed as well. Finally,

we discuss the open questions and the prospects of these microbiome-targeted

therapies for people with MS and for future research.
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1 Introduction

Multiple sclerosis (MS) is a neurological disease characterized by inflammation and

immune-driven demyelination of the central nervous system (CNS) (1). MS affects 2.5

million people worldwide (2) and is a major cause of progressive disability in young adults

in Europe (3), with a higher prevalence in women (women/men ratio of ~2–3:1) (4). MS

exists in several forms, with each form characterized by different disease progression and

disability manifestations. The most common form of MS is relapsing–remitting MS

(RRMS), which is characterized by the alternation of inflammatory acute phases, called

relapses, and periods of remission (5). In general, several years after RRMS onset, most

patients can develop a secondary progressive form of the disease (secondary progressive

MS, SPMS), which is characterized by clinical deterioration, independent of relapses. In a

minor proportion of subjects, MS can manifest in a chronic onset as primary progressive

MS (PPMS) (6). The pathogenesis of MS is characterized by the presence of pro-

inflammatory self-reactive T cells, mainly T-helper 1 (Th1), Th17, and Th22 cells,
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producing interferon gamma (IFN-g), interleukin 17 (IL-17) and

IL-22, and a deficit of regulatory T cells (Tregs), which lose the

ability to suppress the autoreactive response (7–9). B lymphocytes

participate in CNS inflammation by producing autoantibodies,

presenting antigens, and modulating the response of T cells (10).

The imbalance between the autoreactive and regulatory elements

results in demyelinating lesions in the CNS (5).

To date, the etiology of MS is not completely understood, but

both genetic and environmental factors have been proposed as

putative determinants that influence the development and response

of the immune system in individuals, predisposing them to MS

onset. The principal environmental risk factors associated with MS

are Epstein–Barr virus infection, smoking, vitamin D deficiency,

and adolescent obesity (11). Obesity in adolescence has been

associated with MS (12) and with the risk of pediatric-onset MS

(13, 14). Low levels of circulating vitamin D and chronic

inflammation are correlated with excess adiposity (15), causing

increased levels of leptin that consequently enhance the pro-

inflammatory phenotype of leukocytes (16, 17). On the other

hand, leptin inhibits the proliferation of Tregs, inducing the

hyporesponsiveness of these cells (18). Since 2016, gut dysbiosis

has been reported in people with MS (pwMS), suggesting that the

gut microbiota composition could be considered a new

environmental factor associated with the disease (19–25). Healthy

gut microbiota is characterized by an equilibrium between

commensals, i.e., beneficial microorganisms with mutualistic

interactions with the host, and pathobionts, which have a

potential pathogenic influence on the organism (26). Conversely,

dysbiosis is defined as alterations in the balance of the gut

microbiota composition that can affect the gastrointestinal

immune responses and influence distal effector sites through the

gut–brain axis (GBA), promoting CNS disease development,

including MS (27).

Recent investigations have indicated that the rising number of

MS cases worldwide, similar to other autoimmune disorders, can

partially be ascribed to rapid environmental changes, such as diet-

induced changes that could result in alterations in the human gut

microbiota (28). For centuries, dietary habits have been generally

based on the consumption of easily accessible foods, such as

vegetables, wheat, and rice, and the main protein intake was

primarily from legumes, as animal meat was consumed

occasionally (29). Modern foods appear safer, are ready-to-eat,

and are rich in flavor, with the addition of salt, sugar, fats, and

food additives (30, 31). The consumption of meat and the intake of

fats have increased in developed countries. Conversely, there has

been a decrease in the vegetable content in the diet, with a

consequent reduction in its diversity (30, 32). Therefore, a

worldwide spread of a new dietary program called “Western diet”

(WD) occurred. WD is composed of processedis composed of

processed energy-dense food with low content of fiber and

vitamins and high content of saturated fats and sucrose (33). WD

leads to a selection of gut microorganisms that are more prone to

harvesting energy from WD food, triggering the production of bile

acids and toxic products for fiber-fermenting bacteria. This results

in lower diversity of the microbiota, dysbiotic state, and in intestinal

inflammation (34). Diet-induced dysbiosis also promotes intestinal
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permeability, lipopolysaccharide (LPS)-mediated immune

activation, systemic inflammation, and damage of the blood–

brain barrier (BBB), which are considered critical pathways for

the activation of the microglia and the induction of

neuroinflammation in MS (35, 36).

In this review, we will discuss the role of nutrition and its link to

the gut microbiota and immune system in MS, describing both

preclinical evidence in experimental autoimmune encephalomyelitis

(EAE), the most commonly used experimental mouse model of MS

(37), and clinical studies on dietary interventions in MS. Finally, we

will discuss the possible tools that target the gut microbiome in MS,

such the use of probiotics, prebiotics and postbiotics.
2 Nutrition as a risk factor for MS

Developed countries have reported a higher incidence of MS

(38), and studies on immigration have shown that moving into a

place with high MS cases in the first two decades of life affects the

future risk of developing the disease. Nonetheless, the duration of

exposure to a new environment rather than the age at moving might

also be important (39). Environmental factors that perturbate the

gut microbiome in early life could increase the risk of MS. Early

antibiotic administration in EAE rats perturbated the composition

of the gut microbiota, reduced the levels of short-chain fatty acids

(SCFAs), aggravated EAE with stronger immune response in the

lymph nodes, and increased inflammation in the CNS (40). Data

from an observational study revealed that pwMS born with cesarean

section had a younger age of MS onset of 5.2 years compared to

those born through natural delivery; similarly, pwMS fed infant

formula had a younger age of MS onset of 4.2 years compared to

breastfed pwMS. Interestingly, these associations were more

apparent in patients without a family history of MS (41). Among

the various risk factors for MS onset, diet could also play an

important role.

Diet quality indices have been used in multiple investigations, as

the associations between high scores were related to a significant

reduction in the risk of all-cause mortality, cardiovascular disease,

cancer, type 2 diabetes, and neurodegenerative diseases (42). The

timing of exposure to modifiable lifestyle risk factors may be crucial

in determining the risk of MS, which identified adolescence (6–

20 years of age) as a critical period (43). In fact, obesity during

adolescence is critical in determining the risk of MS (14, 44, 45). It

has been reported that a high score in the dietary inflammatory

index, a global index of dietary inflammatory potential, during

adolescence increases the risk of MS (46). From the same study, it

was found that high consumption of fresh fish, canned tuna,

poultry, cheese, yogurt, butter, fruit, vegetables, and dietary

supplements during adolescence (13–19 years of age) was

associated with a significantly reduced risk of MS between 15 and

50 years (47). Some of the aforementioned foods are considered

“healthy” in regions where food insecurity is high, indicating that

nutritional status could be a factor in adolescent MS risk (48). A

recent study has demonstrated that the consumption of healthy

foods including fruits, yogurt, and legumes at various periods

between childhood and young adulthood was associated with a
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reduced probability of adult-onset MS (49). Given the limitations of

these studies, such as the retrospective measures of diets and the

presence of confounders, further investigations are required in

order to confirm the role of diet quality in adolescence and the

likelihood of adult-onset MS.

Diet quality appears to have a role in the health status of pwMS.

In a large international sample of pwMS within the Health Outcomes

in a Sample of People with MS (HOLISM) study, the authors

demonstrated that every 10-point increase in the total score of the

Diet Habits Questionnaire was associated with nearly a six- and a

five-point increase in the physical and mental health-related quality

of life (QoL), respectively, and a 30% reduced likelihood of a higher

level of disability (50). These data were confirmed in a large follow-up

cross-sectional survey in which participants in the North American

Research Committee on MS (NARCOMS) Registry completed a

dietary screener questionnaire that estimates the intake of fruits,

vegetables and legumes, whole grains, added sugars, and red/

processed meats. Participants with diet quality scores in the highest

quintile had lower levels of disability and lower depression scores. In

addition, pwMS reporting a composite healthy lifestyle had lower

odds of reporting severe fatigue, depression, pain, or cognitive

impairment (51). In a longitudinal magnetic resonance imaging

(MRI) study, it has been reported that pwMS with unhealthier diet

preferences, with low intake of fruits, vegetables, and whole grains

coupled with higher consumption of sugary beverages and red meats,

had higher T2 lesion volume accrual over the 5-year follow-up period

(52). In an investigation on Dutch women with MS, an association

was found between diet quality and both physical and mental QoL

(53). Furthermore, it has been shown that a healthier diet score, with

high consumption of fiber, fruits, and vegetables, was associated with

better mental, physical, and total QoL, lower depression and pain,

and fewer cognition, vision, and bowel symptoms (54). The

mechanisms of action by which diet quality could reduce disability,

fatigue, and cognitive impairments are versatile. Diet may be linked

with inflammatory disease activity and disease-related degeneration

(55). Moreover, it can also act through the prevention of vascular

comorbidities, which are associated with a more rapid disability

progression in MS, increased disease activity, lower brain volume,

and neuroperformance (56–58). Lastly, diet–microbiome interactions

could sustain local inflammation, gut microbiota imbalance, and host

immune dysregulation in MS, driving disease onset and

progression (28).
3 Relationship between the gut
microbiota and immune system in MS

Gut dysbiosis has been associated with a variety of disorders

including autoimmune and CNS-related ones (59), such as MS, due

to its ability to modulate the immune responses in the gut-

associated lymphoid tissues (GALT) (60). GALT includes Peyer’s

patches and isolated lymphoid follicles where antigen-presenting

cells (APCs), B and T cells, and IgA+ plasmablasts reside (60). The

gut microbiota–immune system communication consists of several

complex pathways including antimicrobial peptides (AMPs),

pattern recognition receptor systems (PRRs), serotonin, and
Frontiers in Immunology 03
metabolites. Briefly, signals from commensal (and pathogenic)

microbiota produce a cascade of interaction involving, first,

epithelial cells, dendritic cells (DCs), macrophages, and innate

lymphoid cells, and then cells of the adaptive immune system,

with the final aim of maintaining homeostasis and regulation of

immune system development and maturation. All these pathways

have been described in depth by Zheng et al. (61); therefore, here,

we will focus on the mechanisms involved in the regulation of the

immune system by the gut microbiota in MS.

The first evidence on the association between the gut microbiota

and the immune system in the development of immune diseases

dated back to 2011 (62, 63), when it was demonstrated that germ-

free mice developed attenuated EAE and produced lower pro-

inflammatory cytokines and more Tregs compared to mice with a

normal intestinal microbial composition. In addition, it was

reported that the presence of some bacteria in the intestine, such

as the short filamentous bacteria (SBF), can promote the activation

of Th17 cells, providing evidence of a relationship between the

activation of immune cells in the gut and neurological inflammation

(62). Specifically, the metabolites produced by SBF activate

macrophages, which, on the one hand, contribute to the synthesis

of IL-23 and, on the other hand, act as APCs toward T cells, which

then differentiate into Th17 cells (64). Another resident of the

human gut microbiome influencing T-cell homeostasis is the

symbiont Bacteroides fragilis. Polysaccharide A (PSA), the most

abundant capsular polysaccharide expressed by B. fragilis, mediates

the conversion of CD4+ T cells into IL-10-producing Foxp3+ Tregs

via Toll-like receptor 2 (TLR2) and suppresses Th17 responses (65–

67). In addition, oral administration of PSA from B. fragilis has been

associated with a lower EAE “clinical” score in an IL-10- and TLR2-

dependent manner (68) and with higher frequencies in the CNS-

draining lymph nodes of CD39+ Tregs (69).

The intestinal microbiota interacts with the immune system

also through serotonin, a neurotransmitter produced by the

metabolism of dietary tryptophan, which appears to influence the

immune system during neuroinflammation. It has been reported

that high levels of this neurotransmitter in the intestine attenuated

the severity of EAE in mice (70), while it promoted the suppression

of IL-17 and IFN-g release in MS (71). Moreover, studies reported

that Akkermansia muciniphila can release vesicles that increase the

serotonin levels in the hippocampus and colon (72). Tryptophan

metabolites have also been reported to influence CNS inflammation

via the transcription factor aryl hydrocarbon receptor (AHR) (73).

AHR is a cytoplasmic receptor whose activity can regulate

autoimmunity via natural killer cells, macrophages, DCs, and T

cells (74). Recently, it has been reported that the knockdown of

AHR led to a recovery of chronic EAE, impacting also the

production of microbiota metabolites by increasing bile acids and

SCFAs (74).

SCFAs [e.g., acetate, propionate (PA), and butyrate] are the

major metabolites of bacterial fermentation of dietary fibers and are

capable of inducing the differentiation of Tregs in a lot of ways (75,

76), including: 1) acting as histone deacetylase (HDAC) inhibitors,

thus enhancing histone H3 acetylation in the promoter and

enhancer regions of the Foxp3 gene, the master regulator of Tregs

(75); 2) involving G-protein-coupled receptor 43 (GPCR43), which
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regulates intestinal inflammation through regulating the neutrophil

chemotaxis and mediating cytokine expression (77); 3) inducing IL-

10 and retinoic acid production from DCs (78); and 4) reducing the

proliferation of IL-22+ ILC3 cells (79). Several bacteria produce

SCFAs, including Butyricimonas , Faecalibacterium , and

Clostridium cluster IV and XIVa, which are reduced in MS, and

Akkermansia, which has conversely been reported to increase in MS

(19, 21, 76, 80–82). Treatment with SCFAs has been reported to

ameliorate EAE via long-lasting imprinting on Tregs (83).

Several studies on pwMS have reported the presence of gut

dysbiosis in MS (22, 24, 84). Figure 1 and Table 1 describe the

findings of the most relevant articles, reporting the microorganisms

found altered in pwMS, together with their effect on the immune

system (19–21, 25, 76, 80–82, 85–93). Overall, a peculiar gut

microbiome signature has never been identified, highlighting the

need to study large cohorts. Recently, the International MS

Microbiome Study (IMSMS) was constituted with the aim of

investigating the role of the gut microbiota in MS, as well as

evaluating the interrelationship between disease-modifying

therapies and gut microbial communities in pwMS. The first

results have been published in late 2022 and strongly supported
Frontiers in Immunology 04
specific gut microbiome associations with MS risk, course,

progression, and functional changes in response to treatment

(82). Alterations in the gut microbiota composition could also be

found in other inflammatory autoimmune diseases. Similarly to MS,

the SCFA-producing genera Faecalibacterium and Bacteroides

appeared reduced in rheumatoid arthritis (RA) compared to

healthy subjects (94). In inflammatory bowel disease, a decrease

in the level of Faecalibacterium prausnitzii has also been described

(95). Furthermore, Prevotella spp. was found reduced in both type 1

diabetes and spondyloarthritis (Prevotella strain 9), as also occurs in

MS (94, 96). Finally, an increase in the level of Streptococcus has also

been observed in systemic lupus erythematosus (97).

4 Experimental evidence of
gut microbiota induced diet
modulation in EAE

The EAE model has been used to examine the putative effects of

diet on the disease and on the gut microbiota (98). Different studies

have focused on evaluating the role of specific diets (99–101) or
FIGURE 1

Gut microbiota composition and functions in relapsing–remitting multiple sclerosis (RRMS). Gut dysbiosis is observed in RRMS: intestinal
microorganisms identified as increased, compared to healthy controls, are shown in the left panel, whereas those that decreased are shown on the
right. Putative mechanisms affecting the immune system are shown: an increase in Methanobrevibacter leads to a higher dendritic cell (DC)
recruitment (1), while augmented Akkermansia levels are related to a higher short-chain fatty acid (SCFA) production and regulatory T-cell (Treg)
differentiation (2, 3). Higher Akkermansia levels also lead to the upregulation of the genes involved in T- and B-receptor signaling (4). Raised levels of
Firmicutes, such as Streptococcus oralis and Flavonifractor plautii, affect T-cell activity, promoting Th17 cell differentiation and IL-17 production (5,
6). In contrast, the levels of Prevotella appear decreased, thus leading to an increase in Th17 cells (8). The levels of Butyricimonas, Clostridium cluster
XIVa and IV, and Faecalibacterium result impaired, with consequent lower SCFA production (9, 10) and Treg differentiation (11). Impaired
Faecalibacterium levels also lead to higher TNF-a levels (12). Lastly, lower Adlercreutzia levels result in higher CD4+ T-cell priming from DCs (13), in
lower macrophage type 2 (M2) polarization (14), and reduced IL-10 production (15). From the lamina propria, cells then migrate into the
bloodstream, reaching the central nervous system (CNS) (7, 16). This figure was partly generated using Servier Medical Art provided by Servier,
licensed under a Creative Commons Attribution 3.0 Unported License; created with BioRender.com.
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TABLE 1 Microorganisms altered in multiple sclerosis (MS).

Abundance Effects on the immune
system

Reference

ased in RRMS (20)

ased in PPMS (85)

eased in MS (19)

ased in RRMS (20)

eased in MS (20)

ased in pediatric MS (25)

ased in RRMS (20)

eased in MS (19)

eased in MS (20)

eased in MS Involved in SCFA production (21, 76)

eased in MS Linear negative relationship with
the intestinal Th17 frequency

(86)

eased at MS onset (87)

ased in RRMS (20)

eased at MS onset (87)

ased in RRMS (20)

eased in MS Positively associated with SCFA
production and negatively with
TNF-a levels

(19, 80)

eased at MS onset (87)

eased at MS onset (87)

ased in PPMS (85)

eased in pediatric MS (25)

ased in MS Affects CD4+ T cells and IL-17 (88–90)

eased in pediatric MS (25)

eased in MS Affects SCFAs, Tregs, and anti-
inflammatory cytokine production

(19)
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Kingdom Phylum Class Order Family Genus Species

Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Brucellaceae Mycoplana Incr

Hyphomicrobiaceae Gemmiger Incr

Betaproteobacteria Burkholderiales Sutterellaceae Sutterella Decr

Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas Incr

Pasteurellales Pasteurellales Haemophilus Decr

Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Incr

Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter Incr

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Decr

Porphyromonadaceae Parabacteroides Decr

Butyricimonas Decr

Prevotellaceae Prevotella Decr

Paraprevotella Decr

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia Incr

Blautia Decr

Dorea Incr

Ruminococcacceae Faecalibacterium Decr

Anaerotruncus Decr

Subdoligranulum Decr

Unclassified Incr

Ruminococcaceae Decr

Eubacteriales Oscillospiraceae Flavonifractor Flavonifractor
plautii

Incr

Lachnospiraceae Decr

Clostridium cluster
IV and XIVa

Decr
e

e

e

e
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e
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TABLE 1 Continued

Species Abundance Effects on the immune
system

Reference

Streptococcus
thermophilus

Increased in MS (19)

Streptococcus
salivarius

Increased in MS (19)

Streptococcus
oralis

Increased in MS (86)

Streptococcus
mitis

Increased in MS Promotes Th17 differentiation and
participates in cell-mediated tissue
damage in autoimmunity

(86, 91)

Decreased at MS onset (87)

Decreased at MS onset (87)

Decreased in MS (20)

Increased in MS Associated with SCFA production
and pro-inflammatory effects

(21, 81, 82)

Akkermansia
muciniphila

Increased in PPMS (85)

Eggerthella
lenta

Increased in MS (19)

Decreased in MS (20, 21)

Decreased in MS Affects M2 polarization, IL-10
expression in M2 macrophages,
and inhibition of CD4+ T-cell
priming by DCs

(20, 92)

Increased in MS Recruitment of inflammatory cells
and DCs

(21, 93)

Increased in MS (88)

e immune system is also reported.
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Kingdom Phylum Class Order Family Genus

Bacilli Lactobacillales Streptococcaceae Streptococcus

Negativicutes Selenomonadales Veillonellaceae Megasphaera

Mitsuokella

Lactobacillaceae Lactobacillus

Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia

Actinobacteria Coriobacterideae Coriobacteriales Coriobacteriaceae Eggerthella

Collinsella

Adlercreutzia

Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter

Heunggongvirae Uroviricota Caudovirales

Shown are the sets of microorganisms altered in MS, MS onset, RRMS, PPMS, and pediatric MS. Along with their abundance in MS, their role in th
RRMS, relapsing–remitting multiple sclerosis; PPMS, primary progressive multiple sclerosis; SCFA, short-chain fatty acid; DCs, dendritic cells.
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food components such as fats (83), salt (102), and isoflavone (103),

showing that some of these components have an impact on the

disease course or symptom severity of EAE. However, it is not clear

whether these effects are mediated by the gut microbiota, the

modulat ion of inflammatory pathways , an improved

mitochondrial function, the reduction of reactive oxygen species

(ROS), or by other mechanisms (98). In this section, we explore the

evidence on protection from or exacerbation of EAE following

modification of the gut microbiome induced by diet.
4.1 High-fat diet

A high-fat diet, typical of the Western lifestyle, is linked to

obesity and has been shown to increase the severity of EAE,

impacting the immune system balance (99, 101, 104). Different

types of fatty acids in terms of chemical chain length could have

different effects. It was reported that long-chain fatty acids (LCFAs)

enhanced the differentiation and proliferation of Th1 and/or Th17

cells and impaired their intestinal sequestration via the p38/

mitogen-activated protein kinase (MAPK) pathway (83).

Alternatively, dietary SCFAs produced by the microbiota

expanded gut Tregs through the suppression of the Jun N-

terminal kinase 1 (JNK1) and p38 pathway. These effects could be

mediated by the gut microbiota, as treatment with lauric acid LCFA

reduced the concentrations of Prevotellaceae and Bacteroides and

the number of fecal SCFAs. The gut microbiota was found to be

necessary for the effect of LCFA on the increase in Th17 cells, as no

Th17 cells were detectable in the small intestine after feeding LCFA

to control germ-free mice (83).
4.2 High-salt diet

Salt is a widely consumed nutrient in the Western lifestyle. In a

mouse model, a high-salt diet increased the CNS infiltration of

Th17 and exacerbated the actively induced EAE. This effect was

mediated by the gut microbiota: a high-salt diet decreased the level

of Lactobacillus murinus, but restoration with L. murinus

supplementation mitigated the effects of the high-salt diet, leading

to the amelioration of EAE (102). In a C57BL/6 mouse model, a

high-salt diet also elicited an inflammatory environment, triggered

apoptosis in the brain, caused gut dysbiosis, and reduced the

production of SCFAs (105).
4.3 High-sugar diet

Added sugars are highly present in WD (106). Long-term

consumption of caffeine-free high-sucrose cola beverages

aggravates the pathogenesis of EAE in a microbiota-dependent

manner. Indeed, it leads to specific microbial taxon selection and

to Th17 increase. This effect was mediated by the gut microbiota, as

mice depleted of microbiota via antibiotics before the induction of

EAE were shown to be less susceptible to the disease (107). The

microbiota is probably not the only pathway involved in sugar-
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driven Th17 activation. It was observed that a high amount of

glucose promoted Th17 cell differentiation by activating

transforming growth factor alpha (TGF-a) from its latent form

through the upregulation of mitochondrial ROS in T cells (108).
4.4 Dietary fibers

Conversely, dietary fibers are highly consumed in non-

industrial ized societies , where the incidence of non-

communicable diseases is lower (109). The fermentation of

dietary fibers by gut microbes increases the production of SCFAs,

which has an effect on the immune system, but it appeared that

dietary non-fermentable cellulose fiber intake could also protect

EAE mice from the disease independently of SCFAs (110). In

particular, cellulose-fed mice displayed significant changes in the

bacterial microbiota composition and expanded the Th2 cell

population, leading to protection from the disease. Interestingly,

cecal metabolites from mice raised on a cellulose-rich diet

stimulated the Th2 immune response with increased IL-5

production compared to cecal extracts from control diet-fed

animals. Although the Th2 cytokine neutralization did not fully

restore spontaneous EAE to a level comparable to the control diet,

the additional effects of the cellulose-rich microbiome on T cells and

other immune cells may have disease-protective effects (111).
4.5 Dietary tryptophan

Dietary protein restriction was shown to interfere with systemic

immune responses (112). Specifically, tryptophan is an essential

amino acid present in food such as meats, dairy, legumes, and

grains, and its metabolites are crucial determinants of organ

inflammation. It was reported that a complete deficiency in

dietary tryptophan was sufficient to inhibit encephalitogenic T-

cell responses and prevent CNS autoimmunity in EAE. This

mechanism is mediated by microbiota, as a complex change in

the gut microbiome composition induced by dietary tryptophan

restriction was observed, with alterations also in the bacterial

catabolite levels (113). These catabolites are known to exert a

plethora of immunomodulatory functions via the AHR pathway

(114). Paradoxically, if dietary tryptophan is removed post-EAE

onset, the clinical disease progresses continuously, while mice fed a

control diet proceed with disease recovery (115, 116). This form of

the disease mediated by post-EAE tryptophan restriction can be

mitigated by supplementation with the microbially derived AHR

ligand indoxyl-3-sulfate, providing further evidence of the

involvement of tryptophan-metabolizing bacteria and the anti-

inflammatory effects of the AHR agonist (115).
4.6 Isoflavones

Phytoestrogens are food components that can influence the gut

microbiota composition and systemic immune responses (92).

Isoflavones are a major class of phytoestrogens that are highly
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abundant in legumes like soybeans. Recently, it has been observed

that an isoflavone diet offered protection against EAE (103, 117).

Isoflavone dietary content can lead to insufficient priming in the

periphery after disease induction and to a decrease in the severity of

spinal cord pathology. Moreover, it can reduce the number of

inflammatory cells in the CNS and the frequency of activated

myelin-specific CD4+ T cells. An isoflavone diet confers the

microbiota anti-inflammatory characteristics comparable to a

healthy gut microbiome in humans. In particular, the gut

microbiota includes specific bacteria that can metabolize

isoflavone into S-equol, a metabolite that provides protection

from disease. However, the cellular and molecular pathways by

which the gut bacterium-generated S-equol suppresses disease are

unknown. Interestingly, an isoflavone diet increases the abundance

of Parabacteroides distasonis and Adlercreutzia equolifaciens, and

bacterial therapy with these strains protects against EAE only when

the host follows an isoflavone diet (103).
4.7 Dietary restriction regimes

Dietary restriction (DR) is a term derived from dietary regimens

used in experimental models in which there is a lower energy intake

compared to ad libitum but without malnutrition (100). The

number of calories provided could have an effect on the immune

system and the gut microbiota: DR regimens have protective effects

against EAE (100). DR induces hormonal, metabolic, and cytokine

changes, reducing the severity of clinical EAE (118–120). It is

plausible that protection is mediated by the gut microbiota,

although the precise role of DR-induced perturbation of the gut

flora in conferring these effects is largely unknown (100, 121). In

mice with an intermittent fasting (IF) diet, a form of DR, an

amelioration in the pathology and the clinical course of EAE was

observed (121). IF changed the microbiota composition with an

enrichment of Lactobacillaceae, Bacteroidaceae, and Prevotellaceae.

Interestingly, a healthier gut microbiota was not the consequence of

a better clinical course, but probably the cause, as fecal microbiome

transplantation from IF mice to immunized mice on a normal diet

ameliorated EAE (121).
5 Dietary interventions in EAE and MS:
state of the art

Diet is the major determinant of gut microbiota composition,

and the beneficial effects of some dietary interventions are currently

under investigation. In this section, we will explore the effects of

some dietary interventions on EAE and MS.
5.1 Mediterranean diet

The Mediterranean diet (MD) is the best-studied and most

evidence-based diet that results able to prevent both cardiovascular

disease and several other chronic diseases, including the

neurodegenerative ones (122, 123). MD encompasses a lot of
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aspects beyond nutritional behavior, including social, cultural,

economic, and environmental factors. The association of cultural

and nutritional features with physical activity is enclosed into the

MD model, making it widely considered to be a healthy lifestyle

rather than just a dietary pattern (124). MD is characterized by the

consumption of vegetables, fruits, whole grains, legumes, nuts, and

olive oil and by reduced consumption of red meats, saturated fats,

poultry, and dairy (28). MD is associated with increased microbial

diversity (30) and SCFAs, the major metabolites of bacterial

fermentation of dietary fibers. No specific component of the MD

has been shown to be as beneficial as the whole diet (123).

Investigations into the role of MD in MS are quite recent (125–

127). MD could potentially modulate the chronic inflammatory

state (128), have an impact on the gut microbiome (129), and

prevent vascular comorbidities (123). A multicenter study on

pediatric patients with RRMS or clinically isolated syndrome

(CIS) investigated how the consumption of one food component

at the bottom of the MD pyramid, e.g., vegetables, and one at the

top, e.g., saturated fat, could impact MS. This study showed that

each 10% increase in saturated fat tripled the hazard of relapse. In

contrast, each additional cup equivalent of vegetables decreased the

hazard of relapse by 50% (130). In another study on pwMS, a higher

adherence to the MD was associated with normal waist

circumference and was inversely correlated with the MS Severity

Score (MSSS) and Expanded Disability Status Scale (EDSS) score

(125). Moreover, the MD-style diet was associated with reduced

fatigue severity (131). Furthermore, in a recent cross-sectional

study, a higher MD alignment, measured with the Mediterranean

Diet Adherence Screener (MEDAS), attenuated the negative impact

of disease duration on the Multiple Sclerosis Functional Composite

(MSFC). In fact, pwMS in the third and fourth MEDAS quartile

MSFC scores were quite similar between the longer (more than

14 years) and shorter (less than 14 years) disease duration groups

(132). In a pilot randomized controlled trial, researchers assigned

following or not following an MD intervention for 6 months. The

diet encouraged the intake of fish and other foods high in poly- and

monounsaturated fats, fresh fruits, vegetables, and whole grains;

eliminated meat, dairy, and processed foods; and limited the salt

intake to <2 g/day. The intervention group exhibited a statistically

significant decline in the trajectory of the Neurological Fatigue

Index MS scores, a trend toward reduced MS symptoms, measured

by the Multiple Sclerosis Impact Scale—29, and a reduction in the

EDSS score over time compared to the non-intervention group

(127). It was also reported that 6 months of MD reduced the dietary

inflammatory status score compared to controls (126). As clinical

outcomes, participants who followed MD had a statistically

significant improvement in the physical and cognitive fatigue

severity, although MD did not elicit any improvement in disease-

related disability as measured by EDSS (126).

In non-neurological cohorts, it was demonstrated that MD

could affect the microbiota composition, diversity, and activity,

with beneficial effects on host metabolism (133–137). Data on its

beneficial effect on MS are still novel. In a pilot study, the effects on

the gut microbiome of a high-vegetable/low-protein (HV/LP) diet,

which had a similar composition to the MD, were compared to the

WD in people with RRMS. The HV/LP group, compared to the WD
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group, showed increased abundance of the butyrate-producing

bacteria Lachnospiraceae family in the gut microbiota, decreased

pro-inflammatory IL-17+ and programmed death 1 (PD-1)+ T cells,

and increased anti-inflammatory programmed death-ligand 1 (PD-

L1)+ monocytes. As clinical outcomes, a significant reduction of the

EDSS score and the relapse rate was observed during follow-up in

the HV/LP group (138). Interestingly, a recent study on pwMS has

observed a positive correlation between meat consumption and the

concentrations of circulating Th17 cells. Combining the data from

the MS and healthy control cohorts, the authors found that meat

consumption was negatively correlated with the relative abundance

of Bacteroides thetaiotamicron, a common gut bacterium with high

genetic capacity to digest polysaccharides. B. thetaiotamicron was

also strongly negatively correlated with circulating Th17 cells, while

Th17 cells were positively correlated with meat intake. Five blood

metabolites were significantly correlated with all three

measurements. These data suggest a network involving dietary

meat consumption, the gut microbiome, Th17 cells, and blood

metabolites (139).

MD could be combined with other interventions, such as

rehabilitation programs to maximize its beneficial effects. A recent

study has evaluated the effects of a brief high-impact

multidimensional rehabilitation program (B-HIPE) in a leisure

environment on the gut microbiota, which mitigated MS

symptoms and improved QoL. Adherence to B-HIPE, which

included MD in its 1-week program, resulted in a significant

reduction in Coriobacteriaceae and Peptostreptococcaceae, as well

as in an enrichment of Bacteroidaceae and Barnesiellaceae. A

depletion of Collinsella and Ruminococcus, together with an

enrichment of Bacteroides, Sutterella, and Oscillospira, was

observed. Interestingly, Ruminococcus and Collinsella, which were

depleted by the B-HIPE intervention, positively correlated

wi th Th17 ce l l abundance , support ing auto immune

neuroinflammation (140).
5.2 Ketogenic diet

The ketogenic diet (KD) is characterized as a high-fat, adequate-

protein, and low-carbohydrate diet. In the absence of an adequate

amount of carbohydrates, the liver converts fats into ketone bodies,

replacing glucose as the primary energy source (141). KD has been

used to reduce body weight and improve metabolic disorders (142).

In neurology, KD has been well-documented as a dietary

intervention for children and adolescents with refractory epilepsy

(143). Beta-hydroxybutyrate (BHB) and acetoacetate (ACA) are the

two principal ketone bodies produced in KD. They possess potential

neuroprotective and anti-inflammatory properties as they can

promote the reduction of oxidative stress, the maintenance of

mitochondrial function, the regulation of epigenetic modifications

and can affect the composition of the gut microbiome (144). In

EAE, KD reduced brain inflammation with improvement in motor

disability, CA1 hippocampal synaptic plasticity, and spatial learning

and memory (145). Moreover, KD in cuprizone (CPZ)-induced

demyelination mice improved the behavioral and motor

abnormalities and ameliorated the spatial learning and memory
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deficits. KD also reduced the hippocampal demyelination, inhibited

the activation of the microglia and reactive astrocytes, attenuated

the CPZ-induced oxidative stress, and modulated the SIRT1/PPAR-

g and SIRT1/P-Akt/mTOR pathways (146).

In pwMS, KD improved the fatigue and depression scores with

a reduction of the body mass index (BMI), total fat mass, and

serologic leptin (147). In addition, an improvement in the QoL, a

reduction in the peripheral lymphocyte count, and a mild reduction

in the EDSS score were reported in participants following KD (119).

In a recent phase II study, 57 participants concluded a 6-month

prospective, intention-to-treat KD intervention. Significant

improvements in the EDSS score, the 6-min walk and nine-hole

peg tests were reported. This was accompanied by a significant

reduction in fat mass and an increase in the MS QoL physical health

and mental health composite scores. A lowering in serum leptin was

also reported in this study (148).

KD was reported to influence the expression of enzymes

involved in the inflammatory response in MS: KD inhibited the

systemic expression of the enzymes cyclooxygenase 1 (COX1),

COX2, and arachidonate 5-lipoxygenase (ALOX5), which are

involved in the biosynthesis of pro-inflammatory eicosanoids and

implicated in demyelination and inflammation in MS (149). In

addition, in another study, the KD group showed significantly

reduced serum neurofilament light chain (sNfL) levels compared

to the common diet group (150).

KD could also modulate the gut microbiome in MS: a 6-month

KD intervention was able to decrease six groups of bacteria

compared to MS patients without the dietary intervention,

leading to a total decrease in the total bacterial concentration.

The impaired groups included not only the bacteria present in all

patients, such as Bacteroides and Faecalibacterium prausnitzii, but

also those that could be found only in some subsets of individuals.

Conversely, Akkermansia was the only bacteria to not show a

decrease immediately after KD intervention. However, this effect

was temporary. Indeed, this initial reduction in the bacterial

concentrations appeared to recover after 12 weeks, reaching the

values reported for healthy controls after 23–24 weeks. This was

indicated for some groups of bacteria, but not for Akkermansia,

which declined following KD (151). Although these are promising

results, a long-term prescription of KD in pwMS needs to be

carefully evaluated based on cost–benefit analysis. In fact, KD

increased the total number of apoB-containing lipoproteins, and

this could contribute to increasing the risk of cardiovascular disease

in pwMS (152).
5.3 Calorie restriction

DR has been demonstrated to increase life span and protect

against age-related pathologies in various model organisms (153,

154). There are different types of DR, but the principle consists of a

daily calorie restriction (CR) of about 20%–50% with respect to the

normal ab libitum consumption without malnutrition, maintaining

adequate vitamin and mineral intake (100, 153).

In EAE, it was demonstrated that CR elicited less severe

inflammation, demyelination, and axon injury. CR had an anti-
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inflammatory effect, with observed increasing plasma levels of

corticosterone and adiponectin and reduced concentrations of IL-

6 and leptin (118). In Lewis rat model, severe CR (66%) rats did not

exhibit clinical signs of EAE, showing instead T- and B- cell

reduction and lower IFN-g production (120). As CR requires

significant lifestyle changes, certain periodic DR is now becoming

more diffused, with the name IF (155). IF is a form of DR that

involves intermittent elimination (fasting) or a drastic reduction in

food intake for a set or a variable period of time (156, 157). There

are several types of IF, as follows: 1) the 5:2 diet, with severe energy

restriction (e.g., 75%–90% of energy needs) for 2 days a week with

ad libitum consumption on the remaining five; 2) alternate-day

fasting, with severe restriction applied on alternating days; 3) time-

restricted feeding (TRF), with restriction of food intake to a

temporal window, typically ≤10 h, within the waking phase; and

4) the fasting-mimicking diet (FMD), a periodic cycle of low

calories, sugars, and protein with unsaturated fat and complex

carbohydrates as major sources of energy (156, 158, 159). IF in

humans in the short-to-medium term has beneficial effects on

glucose and lipid homeostasis (160). However, the metabolic

benefits of TRF in healthy subjects are sparse, with some

methodological issues needing further clinical studies (157, 161).

In a mouse model of MS, it was demonstrated that IF ameliorated

the clinical course of the disease, leading to less inflammation,

demyelination, and axonal damage; reversed the EAE-mediated

CNS accumulation of total CD4+ T cells; reduced the levels of pro-

inflammatory cytokines and Th1 and Th17 cells; increased the

number of Tregs; and enhanced the expression of brain-derived

neurotrophic factor (BDNF) and remyelination markers (119, 121,

162–164). It was also observed that IF led to a strong reduction of

monocyte accumulation in the spinal cord of EAE mice. Purified

spinal cord-infiltrating monocytes from fasted mice most significantly

downregulated the pro-inflammatory genes associated with monocyte

pro-inflammatory activity, inflammation, and inflammatory diseases,

such as TNF-a, IL-1b, CXC chemokine ligand 2 (CXCL2), and

CXCL10 when compared to monocytes from fed mice (165).

Studies evaluating the effects of DR in pwMS are still in their

infancy. Fasting during the religious period of Ramadan was

observed to have no short-term unfavorable effects on the disease

course in pwMS with mild disabilities (166). It was also reported

that, in people with RRMS, fasting during Ramadan significantly

increased the mean physical and mental health, although no

difference in terms of the modified fatigue impact scale was

observed (167). FMD was reported to promote clinically

meaningful improvements in health-related QoL, a slight

reduction in lymphocytes and white blood cell counts, and a mild

reduction in the EDSS scores (119). Daily CR with a 22% daily

reduction in energy needs and an intermittent CR diet with 2 days

of 75% reduction after 5 days of no restrictions were evaluated in

patients with MS. In both groups, a significant improvement in the

emotional well-being/depression scores relative to the control was

observed (168). In this group of participants, various T-cell subsets

were also measured. Only those individuals following the

intermittent CR diet showed significant reductions in memory T-

cell subsets, including effector memory subsets, with concomitant

increases in naive subsets and reductions in Th1 cells over the 8-
Frontiers in Immunology 10
week follow-up (169). However, the long-term maintenance rate of

these diets appeared low; moreover, in the long-period diet, the

weight loss was lower (median = −0.29 kg), and there were no

statistically significant changes in the patient-reported QoL, fatigue,

or sleep quality. In contrast to CR diets, adherence to a 6-month

TRF diet, which consists of the consumption of all calories in an 8-h

interval with a 16-h fasting period daily, appeared relatively good.

Nevertheless, between the TRF and control groups, no changes in

weight or any of the patient-reported outcomes studied were

reported (155). Finally, intermittent CR with 400–500 calorie

intake every other day was also examined. Intermittent CR was

safe, well tolerated, and led to reduced leptin levels and to

alterations in the gut microbiota, similar to that observed in IF-

EAE mice (121).

CR and IF have been indicated to also affect the gut microbiota

composition. IF was reported to promote a lower relative

abundance of Akkermansia in EAE and also in pwMS (121, 170).

Moreover, the abundance of Lactinobacillaceae, Bacteroidaceae,

and Prevotellaceae increased after IF compared to controls in

EAE. In particular, Lactobacillus johnsonii, Lactobacillus reuteri,

Lactobacillus murinus, and Lactobacillus sp. ASF360 species were

increased in IF, as well as Bacteroides caecimuris of the

Bacteroidacaea family. In addition, Bifidobacterium pseudolongum

in IF was reported to have twice the abundance of the control (121).

Faecalibacterium, Lachnospiraceae incertae sedis, and Blautia

showed an augmented abundance after 15 days of intermittent

energy restriction (IER) in patients with RRMS (121).
5.4 Low-salt diet

Sodium intake has gained attention as a potential dietary risk

factor for the onset and progression of MS (171, 172). This

hypothesis results from observations on mouse models of MS in

which mice on a high-sodium diet showed increased EAE disease

exacerbation, increased BBB permeability, and brain pathology with

augmented CNS-infiltrating and peripherally induced antigen-

specific Th17 cells (173, 174). Serum- and glucocorticoid-

regulated kinase 1 (SGK1) mediates the effect of extracellular salt

on the differentiation of Th17 cells with a phenotype characterized

by the upregulation of the pro-inflammatory cytokines granulocyte

macrophage colony-stimulating factor (GM-CSF), TNF-a, and IL-

2 (173).

The relationship between sodium intake and the immune

system components was shown in healthy subjects. Indeed, a

strong positive association between short-term salt-intake levels

and monocyte numbers with a pro-inflammatory phenotype was

reported, and a decrease in salt intake was accompanied by an

enhanced production ability of the anti-inflammatory cytokine IL-

10 (175, 176). It was also observed that a high-salt diet induced a

short-term imbalance between Th17 cells and Tregs, with an

increase in IL-17-producing Th17 cells and a decrease in the

frequency of Tregs. This condition was reversed when following a

low-salt diet (177). In patients subjected to an increased salt intake

for 14 days, not only a significant increase in Th17 cells but also a

modification in the gut microbiota was reported, with reduced
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survival of intestinal Lactobacillus species in participants harboring

Lactobacillus at baseline (102).

Investigations did not find an association between dietary

sodium intake and MS risk (178, 179). Moreover, a strong

association between dietary salt intake and pediatric-onset MS

risk was not even observed (179). In another study, the authors

reported that pwMS with excess sodium intake had no decrease in

time to relapse compared with patients without excess sodium

intake (180). The results from the investigation on the association

between salt consumption and MS activity are conflicting. An

observational study of patients with RRMS followed for 2 years

showed a positive correlation between the exacerbation rates and

sodium intake. Individuals with medium or high sodium intake,

estimated from sodium excretion in urine samples, showed an

exacerbation rate of 2.75-fold, a 3.4-fold greater chance of

developing a new lesion and, on average, eight more T2 lesions

on MRI (181). In contrast, in another study, the 24-h urine sodium

levels were not associated with conversion to clinically defined MS,

nor with clinical or MRI outcomes over the 5-year follow-up (182–

184). Therefore, the opposing outcomes may have been related to

the techniques used for sodium measurement rather than to

excluding salt as a potential risk factor for MS.

Recently, novel frontiers of research have focused on studying

the tissue accumulation of sodium (185). Sodium was shown to be

stored at higher concentrations as non-osmotic Na+ in extrarenal

tissues, such as the muscle and skin interstitium, creating a local

electrolyte environment that does not equilibrate with plasma and

eludes the control of the kidney (186–188). The tissue sodium

storage depends on extrarenal regulatory mechanisms, with the

involvement of the immune system (189, 190). Sodium MRI (23Na-

MRI) allows a direct noninvasive measurement, and enables the

visualization of the actual sodium content in the body, thus

representing a more accurate method to determine the actual

sodium load during health and disease compared to food

questionnaires or sodium excretion analysis (191). A recent work

has shown that men with early-stage MS who had relatively little

physical disability displayed, using 23Na-MRI, abnormally high

levels of skin sodium compared to age-matched healthy controls

(191). The relationship between salt concentrations in the skin, as

well as the influence of dietary sodium on non-osmotic Na+ tissue

accumulation, and the immunopathology of MS remains to be

elucidated. Altogether, sodium homeostasis could have an effect on

the immune system, microbiome, and the body’s accumulation of

Na+, with potential effects on MS. To this end, more evidence is

required in order to understand the possible therapeutic role of a

low-salt diet (Figure 2).
6 Probiotics, prebiotics and
postbiotics

6.1 Probiotics

A probiotic is defined by the International Scientific Association

for Probiotics and Prebiotics (ISAPP) as a “live microorganism that,

when administered in adequate amounts, confers a health benefit
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on the host” (192). Given the involvement of the GBA in the

pathogenesis of MS (23), probiotics could represent an emerging

therapeutic alternative. Studies on the use of probiotics in MS are

quite scarce in humans when compared to those performed on

EAE. As described in a recent meta-analysis evaluating the efficacy

of probiotic consumption in the management of EAE, the incidence

of disease was significantly lower in mice treated with probiotics, as

they showed a significant delay in EAE onset. Moreover, treated

mice had lower scores for clinical symptoms than the controls.

Considering the duration of EAE, treatment with Enterococci

bacteria in mice could significantly shorten the disease duration

(193). These clinical improvements after probiotic treatment were

correlated with reduced inflammation and immunomodulation

(194). The bacteria used for treatment were principally

Lactobacillus spp., probiotic combinations, Bifidobacterium spp.,

and Escherichia coli Nissle 1917 (ECN) (195). As previously

described, positive outcomes were observed more frequently with

Lactobacillus spp., probiotic combinations, and ECN (195).

It was shown that probiotics had an impact on the immune

system, with an effect on the increasing anti-inflammatory

cytokines and Tregs, together with a reduction in pro-

inflammatory cytokines (194). The administration of probiotics

promoted the secretion of IL-10, IL-4, and TGF-b and enriched the

population of CD4+CD25+Foxp3+ Tregs, while the secretion of IL-

17, IFN-g, GM-CSF, and TNF-a appeared decreased, as well as the

levels of Th1 and Th17 cells (194). Administration of probiotics

such as IRT5 (consisting of Lactobacillus casei, Lactobacillus

acidophilus, L. reuteri, Bifidobacterium bifidum, and Streptococcus

thermophilus) inhibited the pro-inflammatory Th1/Th17

polarization, but induced IL-10-producing cells and/or Foxp3+

Tregs both in the peripheral immune system and at the site of

inflammation (196). The multispecies probiotic Lactibiane Iki

(composed of Bifidobacterium lactis LA 304, L. acidophilus LA

201, and Lactobacillus salivarius LA 302) also promotes an

immature, tolerogenic phenotype of DCs that can directly induce

immune tolerance in the periphery (197). It was observed that a

combination of the probiotic strains Lactobacillus plantarum and

Bifidobacterium animalis increased the secretion of IL-4 and IL-10

by Th2 cells via the upregulation of the transcriptional factor

GATA-3 in the brain and, subsequently, T-cell differentiation to

the Th2 subset (198). This event is critical for the suppression of

EAE because it is mediated by Th2 cytokines, which shift the

immune response from a Th1 to a Th2 response (199). The role

of anti-inflammatory cytokines was confirmed by observation of the

attenuation of Th1 and Th17 cytokines dependent on IL-10

induction in the periphery after the administration of Lactobacilli

(200). Probiotics inhibit Th17 differentiation and IL-17 production

via downregulation of the transcriptional factor ROR-gt (197, 198).
Probiotic treatment with the L. casei strain T2 also reduced the

expression of the IDO gene, which appeared overexpressed in CPZ-

induced EAE mice and interfered with the expression of

microRNAs (miRNAs) in EAE, with a reduction of miR-155 and

an increase of miR-25 (201–203), by reversing the demyelination

effects of CPZ in mice (204). In MS, miRNAs may play an

important role in the developmental fate of lymphocytes (203):

the expression of miR-155 was linked to Th1 and Th17 responses,
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whereas that of miR-25 was significantly upregulated in the

peripheral blood B cells of RRMS patients (201, 202). The

zwitterionic molecule PSA in the cell wall of B. fragilis was

demonstrated to have an immunomodulatory and a protective

effect against CNS demyelinating disease (66, 205). PSA mediates

the conversion of CD4+ T cells into Foxp3+ Tregs that produce IL-

10, and the immunomodulatory commensal bacterial products

impact the migration of CD4 Tregs through the regulation of

CD39 (66, 206).

Probiotics could also have a beneficial effect by promoting the

restoration of the intestinal barrier (IB). It was observed that ECN

improved the IB function through the upregulation of the tight

junction proteins zonula occludens 1 (ZO-1) and Claudin-8 and the

antimicrobial peptides Reg3b and Reg3g. In this experimental
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design, a correlation between the perturbation of the IB function

and the severity of the neurological syndromes was also

reported (207).

Probiotic treatment was observed to modulate the gut

microbiota composition. A multispecies probiotic increased the

abundance of the genus Lachnoclostridium and of several taxa

belonging to the family Bifidobacteriaceae, strains that have been

correlated with anti-inflammatory immune markers (138, 197, 198).

L. reuteri treatment was demonstrated to promote the growth of the

commensal microbe Bacteroidetes and to reduce the abundance of

pathobiont Proteobacteria or potentially the pathogenic Gram-

negative Deferribacteres (208). Lastly, the multistrain probiotic

VSL#3 (a mixture of Lacticaseibacillus paracasei DSM 24732, L.

plantarum DSM 24730, L. acidophilus DSM 24734, Lactobacillus
FIGURE 2

Impact of diets on multiple sclerosis (MS). Effects of the Mediterranean diet (MD; first panel), the ketogenic diet (KD; second panel), calorie restriction
(CR; third panel), and low-salt diet (fourth panel) on the immune system and the gut microbiota in MS. Different diets affect the immune system and
the gut microbiota by increasing (red) and decreasing (blue) the number of cells, cytokines, and microorganisms. TThis figure was created with
BioRender.com.
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delbruckeii subsp. bulgaricus DSM 24734, Bifidobacterium longum

DSM 24736, Bifidobacterium infantis DSM 24737, Bifidobacterium

breve DSM 24732, and S. thermophilus DSM 24731) decreased

Anaerostipes, Dorea, Oscillospira, Enterobacteraceae, and

Ruminococcus, while Bacteroides, Odoribacter, Lactobacillus, and

Sutterella were increased in a mouse model of progressive MS

(TMEV-IDDmodel) (209). These changes would be associated with

the beneficial effects of probiotic treatment accompanied by

increased plasma levels of SCFAs (209).

Although the therapeutic potential of probiotics in EAE has

been studied, there are limited trials regarding probiotic

supplementation in MS. A recent meta-analysis considering

pwMS indicated a significant difference between three multistrain

probiotics and a placebo group in terms of improvements in mental

health parameters (210–213). The EDSS scores showed a

statistically significant decrease, but the indicator obtained from

the clinical trial was highly heterogeneous, providing an extremely

low certainty of evidence (210). Interestingly, in pwMS, probiotics

improved the metabolic profile, with a reduction in insulin and

homeostatic model assessment for insulin resistance (HOMA-IR)

(210). Considering inflammation, oxidative stress, and cytokine

response as a result of probiotic supplementation, a significant

reduction in high-sensitivity C-reactive protein (hs-CRP),

malondialdehyde (MDA), and IL-6 was shown (210). A

significant increase in the IL-10 level and a higher BDNF level in

the probiotic group were also observed (212, 213).

Currently, there are no clinical trials evaluating the effects of

probiotics on gut microbiota composition, IB integrity, and the

relationship with immune parameters and/or immune cells. It was

reported in a study that the probiotic VSL#3 was associated with an

enrichment of the microbiota taxa depleted in MS in both pwMS

and healthy controls. In pwMS, a decreased mean fluorescence

intensity of HLA-DR (human leukocyte antigen—DR isotype) on

myeloid-derived CD45+LIN−CD11C+ DCs was reported following

VSL#3 administration. In spite of this, the authors did not find a

significant correlation between the stool metabolites and immune

markers in pwMS following probiotic supplementation.

Interestingly, these effects did not persist following the

discontinuation of the probiotic (214).
6.2 Prebiotics

A prebiotic is defined as “a substrate that is selectively utilized

by host microorganisms conferring a health benefit” (215).

Prebiotics stimulate the growth and functionality of specific

intestinal bacterial genera or species, such as Bifidobacteria,

Lactobacilli, and beneficial taxa including Roseburia, Eubacterium,

and Faecalibacterium spp (215, 216). The increased biomass and

cell wall components of bacteria influence immune regulation:

indeed, the intake of prebiotics can augment bacterial metabolic

products, such as SCFAs, and change the microbiota composition

through the production of antimicrobial agents, with a reduction of

infections and a decrease of decrease in the number of bacteria

containing lipopolysaccharide (216). Prebiotics are mainly fructans,

such as fructooligosaccharides (FOS) and inulin, and galactans,
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such as galactooligosaccharides (GOS). Other possible prebiotic

candidates are human milk oligosaccharides, polyphenols, and

polyunsaturated fatty acids (215). The immunomodulatory effects

of prebiotics are dependent on the shift in the microbiota

population through the production of fermentation products like

SCFAs and through a gut microbiota-independent mechanism, i.e.,

by modulating B-cell responses, as observed for long-chain b2!1-

fructans in germ-free mice (217, 218).

Studies assessing the efficacy of prebiotics in immune

modulation in the context of autoimmune diseases are limited. A

study on patients with RA reported an increase in the number of

circulating Tregs together with favorable Th1/Th17 ratios after

28 days of dietary intervention using a high-fiber dietary

supplement (219). A decrease in the level of serum TNF-a with a

reduction of the disease severity score after 12 weeks of gum arabic

supplementation was also observed in 40 patients with RA,

demonstrating prebiotic efficacy (220, 221). Recently, the

therapeutic effects of pomegranate peel extract, a promising

prebiotic compound, have been examined in EAE: when used as a

treatment, it alleviated the clinical symptoms of EAE, hindered DC

activation and Th17 cell differentiation, and induced the production

of immunoregulatory cytokines through the modulation of the gut

microbiota (222). Given their beneficial effects on the gut

microbiome and their possible effects on the immune system,

prebiotics appear as possible therapeutic candidates for future

studies on EAE and pwMS. Clinical trials using prebiotic fiber or

high-fiber supplements in pwMS are currently ongoing

(NCT04038541 and NCT04574024).
6.3 Postbiotics

Postbiotics, also known as metabiotics, are the structural

components of probiotic microorganisms and/or their metabolites

and/or signaling molecules with determined chemical structures

that can optimize host-specific physiological functions, regulation,

and metabolic and/or behavior reactions connected to the activity of

host indigenous microbiota (223), such as SCFAs, enzymes, cell

surface proteins, and vitamins (224). The SCFAs acetate, PA, and

butyrate are the main metabolites produced in the human colon by

the bacterial anaerobic fermentation of indigestible polysaccharides

such as dietary fiber and resistant starch (225). In recent reports,

different groups have observed lower levels of PA and/or butyrate in

the serum of pwMS (226–228), which was also confirmed in the

analysis of stool samples (228–230). Circulating follicular Tregs

were positively correlated with the serum levels of PA, and butyrate

was positively associated with the frequency of IL-10-producing B

cells (226). The reduced serum concentration of butyrate seen in

pwMS correlated with alterations in barrier permeability and

inflammation (227). Another report observed higher plasma

acetate levels in pwMS, with a correlation with EDSS and

increased IL-17+ T cells (231). In contrast, analysis of patients

with RRMS or CIS showed that the acetate levels were nominally

lower and the ratios of acetate/butyrate and acetate/

(propionate + butyrate) were significantly lower in pwMS

compared to healthy controls in the multivariate model (232).
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Studies on SCFA supplementation in EAE and MS are in their

infancy. Butyrate has been examined only in an experimental

model: preventive administration of butyrate provided a beneficial

effect on CNS autoimmunity by halting both the demyelination and

inflammation of the CNS (233). The myelinated areas of the corpus

callosum in the brains of butyrate-treated mice appeared

significantly ameliorated compared with those in mice treated

with CPZ alone (234). Furthermore, butyrate significantly

suppressed demyelination and enhanced remyelination in an

organotypic slice culture (234). Administration of methyl butyrate

after EAE induction alleviated the clinical symptoms with an

improvement of the histopathological manifestations of CNS and

reduced the effector T cells in the CNS and intestinal lamina

propria. Methyl butyrate also increased the proportion of Tregs

and the secretion of IL-10 in peripheral immune organs (224).

PA has been examined in both mice and humans. PA treatment

increased the CD4+CD25+Foxp3+ Treg frequency in EAE mice, and

the transfer of Tregs improved the clinical course of the recipient EAE

mice compared to controls (83). In addition, PA treatment prevented

enhanced demyelination and immune cell infiltration in the spinal

cord caused by a high-fat diet, inhibited the Th17-mediated

inflammatory processes, enhanced the Treg frequency, and targeted

the p38/MAPK and IL-10 signaling pathways (229). Significantly

decreased Th17 cell frequencies were observed in obese pwMS

supplemented with PA (229). In pwMS, the number of Tregs

increased after 14 days of PA supplementation, while the Th17 and

Th1 cell counts decreased. After at least 1 year of supplementation, the
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annual relapse rates decreased significantly compared to retrospective

data. Furthermore, EDSS was stabilized in the PA group compared

with non-PA recipients, and in a small subset of pwMS, an increase in

gray matter volume in the basal ganglia was observed in brain MRI

scans (228). These promising results need confirmation from other

clinical trials including a higher number of participants (Figure 3).
7 Conclusions

The relationship between the gut microbiota, diet, and the

immune system has attracted increasing attention in MS research,

demonstrating that the actors that link diet (or specific food

components) to the microbiome–immunity crosstalk are a current

challenge. Interestingly, one of the first evidence of gut dysbiosis inMS

came from a Japanese cohort (19). Japan has only recently registered

an increase in MS cases, highlighting that changing the exposition to

environmental factors, such as diet, impacts the incidence of MS (28).

Effectively, the westernization of lifestyle and diet has been shown to

have pro-inflammatory effects on the gut microbiota (138), thus

increasing the risk of MS. On the contrary, a healthy diet is able to

shift the intestinal microbiota into an anti-inflammatory type,

providing proof of concept for diet-based interventions in the

context of MS. The results from preclinical models are promising

and suggest that feeding the gut microbiome with high-fiber,

isoflavone, low-salt, low-sugar, and low-fat diets can positively

influence the disease course via modulation of the immune system.
FIGURE 3

Proposed pathways involved in the effects of prebiotics, probiotics, and postbiotics on the immune system. The effects of probiotics (middle), prebiotics
(left), and postbiotics (right) on the immune system and gut microbiota are summarized. This figure was created with BioRender.com.
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Probiotics, prebiotics and postbiotics are other elements that are

emerging as key players in the interventions for MS, thanks to their

ability to promote anti-inflammatory effects by acting both on the

immune system and on the intestinal microbiota; however, only few

studies have investigated their role in MS so far. Both prebiotics and

postbiotics can be useful in promoting gut and immune system

health but with different mechanisms of action. Postbiotics are

already produced by bacteria and therefore do not require

fermentation in the digestive tract as prebiotics, which are non-

digestible substances. This means that postbiotics can have a more

direct and rapid effect on gut and overall health. In addition,

postbiotics do not share the same side effects as prebiotics, such

as flatulence and gut irritation, thus minimizing the risks associated

with their intake (235). Furthermore, postbiotics can have some

advantages compared to prebiotics, including their precise chemical

structure, dose, safety, and long shelf-life (223).

The transfer of these conclusions into the human setting is highly

complex given numerous host factors, including genetics, BMI,

prescribed drugs, and preexisting gut microbiota composition,

which overall could influence how individuals respond to diets or

probiotics. The available studies present several limitations, including

a small sample size, short intervention duration, and only a few health

outcomes. Randomized controlled trials are needed to highlight the

mechanisms of action of diets and probiotics, the specific “weight” of

the gut microbiota, and the influence of other pathways. The

integration of data from the microbiota, inflammatory state, MRI,

and relapse rates may be considered as a future readout for this

purpose. These results could be the starting point for studies on food–

DMT interactions, which would help build the rationale for validated

dietary, rather than effective mixtures of selected microorganisms,

recommendations for pwMS.
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