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In this paper we propose an approximation method based on the classical Schoenberg-Marsden 
variation diminishing operator with applications to the construction of new quadrature rules. We 
compare the new operator with the multilevel one studied in [12] in order to characterize both of 
them with respect to the well known classical one. We discuss convergence properties and present 
numerical experiments.

1. Introduction

Recently two kinds of approximation techniques have been introduced and studied in the literature. As far as we know, both 
seminal papers [18,19], one dealing with the so called progressive iterative approximation (PIA) [9,11,16,17,20,28,29] and the other 
one with the so called multilevel approximation (MA) [6,12,13,15,24] were published in 2004.

They are two different ways of triggering an iterative procedure, acting on some kind of remainder (or error) in the chosen base 
method.

Induced by these ideas, in [12] the authors present and study MA, providing some new results on polynomial reproduction 
and convergence, when applied to the well known variation-diminishing Schoenberg-Marsden operator, also in order to define new 
quadrature formulas, based on it.

Similarly now we are interested in investigating PIA and comparing it with MA in a sort of a twin paper. So we are going to use 
similar notation with application to the same operator as in [12].

The reason to use the simplest among quasi-interpolating (QI) operators [3] is to make evident such techniques. For MA a second 
reason is explained in [6,13], where, even if in 2D, the best performance results are obtained right by this operator. The same is done 
in [24]. Indeed the simplicity of such an operator definition limits a possible error propagation. For PIA a second reason is taken 
from its very definition, born in the parametric setting. We remark that PIA has been widely used in the parametric setting for CAGD 
purposes, but, as far as we know, no studies have been carried out in the functional setting for approximation theory scope.
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The aim of using such a spline quasi-interpolating (QI) operator [22,25] is to exploit the good properties of B-spline functions, as 
locality, shape smoothness and approximation accuracy [2].

The aim of using PIA techniques is to improve the performances of the base QI spline results, by taking into account that in the 
classical PIA method the limit of the generated sequence of QI spline functions is an interpolating spline at certain fixed points of the 
approximation interval [𝑎, 𝑏], while in an evolution of the classical PIA technique the limit function is the least square function of the 
original data to be approximated [11,20].

Such a property of asymptotic interpolation is interesting, since, as we know, interpolation has a well-developed theory and 
it is a very powerful tool for function approximation, but, since it needs to solve, often large, systems of linear equations with 
possibly bad condition, the weaker form of asymptotic interpolation of QI operators becomes a very good alternative. In fact they 
can directly yield approximations and do not require solution of any linear system. For this reason QI operators are very important 
in the study of approximation theory and its applications, e.g. in solving partial differential equations and integral equations, curve 
and surface fitting, integration, differentiation, approximation of zeros, and so on, and they have been widely studied in recent years 
[1,7,14,21,23,26,27].

Therefore in this paper we continue the study of spline QI operators on bounded domains, restricted to the 𝐶1 quadratic variation-

diminishing Schoenberg-Marsden operator, but suitably modified by PIA technique in order to bypass the problem of solving a linear 
system of equations.

The paper is organized as follows. In Section 2 we recall the definition and the properties of the classical Schoenberg-Marsden 
operator. In Section 3 we modify such an operator by PIA technique and study polynomial reproduction and convergence. Then the 
new improved operator is used in Section 4 to approximate integrals, while in Section 5 we propose another approach of PIA. Finally 
in Section 6 some numerical results and comparisons between the classical and the improved operators are presented, showing the 
new operators provide better performances than the QI classical one.

2. The variation-diminishing Schoenberg-Marsden operator

Let 𝐼 = [𝑎, 𝑏] ⊂ℝ and Λ𝑛 be a uniform partition, dividing 𝐼 in 𝑛 subintervals, whose associated extended partitions are

𝑥−2 < 𝑥−1 < 𝑥0 = 𝑎 < 𝑥1 <⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏 < 𝑥𝑛+1 < 𝑥𝑛+2, (1)

and

𝑥−2 = 𝑥−1 = 𝑥0 = 𝑎 < 𝑥1 <⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏 = 𝑥𝑛+1 = 𝑥𝑛+2 (2)

with 𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = −2, … , 𝑛 + 2 and ℎ = 𝑏−𝑎
𝑛

, except at multiple knots, where it is zero.

Let also 𝑆1
2 (Λ𝑛) be the space of spline functions 𝑠 ∈ 𝐶1(𝐼) on Λ𝑛 whose restriction on any subinterval is a polynomial in ℙ2 , 

space of polynomials of degree at most 2. The set of 𝑛 + 2 quadratic B-spline functions B𝑛 = {𝐵𝑖 ∶= 𝐵𝑖,2 ∶ 𝑖 = 0, … , 𝑛 + 1} is a basis 
of 𝑆1

2 (Λ𝑛). In case of partitions (1) they can be obtained as scaled translated of the quadratic 𝐶1 B-spline 𝐵 centered at 𝑥 = 0 with 
support ‘radius’ 32 , i.e. 𝐵𝑖,2(𝑥) = 𝐵(𝑛𝑥 − 𝑖 + 1

2 ) (see also [5] for a similar definition in the bivariate setting on triangulations), while for 
partitions (2) the multiplicity at the interval extrema is to be taken into account. Such basis functions satisfy the usual good properties 
of non negativity, partition of unity, minimal compact support. In particular the support of 𝐵𝑖 is [𝑥𝑖−2, 𝑥𝑖+1]. Moreover they can be 
generated by the well known Cox-de Boor recurrence relation [2]

𝐵𝑖,𝑑 (𝑥) =
𝑥− 𝑥𝑖−𝑑
𝑥𝑖 − 𝑥𝑖−𝑑

𝐵𝑖−1,𝑑−1(𝑥) +
𝑥𝑖+1 − 𝑥

𝑥𝑖+1 − 𝑥𝑖−𝑑+1
𝐵𝑖,𝑑−1(𝑥), 𝑖 = 0, ..., 𝑛+ 𝑑 − 1 (3)

with

𝐵𝑖,0(𝑥) =

{
1 if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1),
0 otherwise

for B-splines of degree 𝑑.

Let us consider the quadratic version of the variation-diminishing Schoenberg-Marsden operator

𝑆 ∶ 𝐶(𝐼∗) → 𝑆1
2 (Λ𝑛), defined as

𝑆𝑓 =
𝑛+1∑
𝑖=0

𝑓 (𝑠𝑖)𝐵𝑖, (4)

where 𝐼∗ is an open interval containing 𝐼 and where

𝑠𝑖 =
𝑥𝑖−1 + 𝑥𝑖

2
= 𝑎+ (2𝑖− 1)

2
ℎ, 𝑖 = 0,… , 𝑛+ 1

for partitions (1) and

𝑠0 = 𝑥0, 𝑠𝑖 =
𝑥𝑖−1 + 𝑥𝑖

2
, con 𝑖 = 1,… , 𝑛, 𝑠𝑛+1 = 𝑥𝑛
270

for partitions (2) are the so-called Greville sites [2]. Moreover 𝑆 reproduces ℙ1 and ‖𝑆‖ = 1.
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Theorem 2.1. [12] Let 𝑓 ∈ 𝐶(𝐼), where 𝐼 is the closure of 𝐼∗. Then

‖𝑓 −𝑆𝑓‖𝐼 ≤ 𝜔

(
𝑓,

3
2
ℎ

)
(5)

for sufficiently small ℎ. If 𝑓 ∈ 𝐶1(𝐼), then

‖𝑓 −𝑆𝑓‖𝐼 ≤ ℎ𝜔

(
𝑓 ′,

ℎ

2

)
and, if 𝑓 ∈ 𝐶2(𝐼), then

‖𝑓 −𝑆𝑓‖𝐼 ≤ 1
4
ℎ2‖𝑓 ′′‖,

where ‖ ⋅‖𝐼 denotes the maximum norm on 𝐼 and 𝜔(𝑓, 𝛿) =max{|𝑓 (𝑥) −𝑓 (𝑦)|, 𝑥, 𝑦 ∈ 𝐼 ∶ ‖𝑥 −𝑦‖ ≤ 𝛿} is the classical modulus of continuity 
of 𝑓 on 𝐼 .

3. The progressive iterative variation-diminishing Schoenberg-Marsden operator

The aim of modifying the operator (4) is to reach better performances by defining a progressive iterative operator starting from 
the corresponding base one.

In literature progressive iterative approximation (PIA) is located in the parametric setting and it is meant to be an approxima-

tion technique where, starting from initial data points {𝑃𝑖}𝑛+1𝑖=0 , at each iteration they are slightly modified till when some suitable 
conditions are satisfied. In the case of classical PIA such conditions provide asymptotic interpolation of initial data points. The close 
relationship between the value of a spline and the nearby B-spline coefficient has led to the definition and use of control points, term 
that comes from Computer Aided Geometric Design, where spline curves, i.e. vector-valued spline, rather than spline functions, i.e. 
scalar-valued spline, are used. However the graph of a spline function defines a spline curve (𝑥, 𝑆𝑓 (𝑥)). Then, since by a B-spline 
property 𝑥 =

∑
𝑖 𝑠𝑖𝐵𝑖(𝑥), then we can call {𝑃𝑖 ∶= (𝑠𝑖, 𝑓 (𝑠𝑖)}𝑛+1𝑖=0 the control point sequence of the spline function 𝑆𝑓 [2]. Therefore 

here with PIA we mean the above iterative technique, where, starting from initial function data {(𝑠𝑖, 𝑓 (𝑠𝑖)}, at each iteration they 
are slightly modified, so that the resulting spline sequence tends to interpolate them.

So we rewrite 𝑆𝑓 , given in (4), as

𝑆0𝐼𝑓 (𝑥) =
𝑛+1∑
𝑖=0

𝑓0(𝑠𝑖)𝐵𝑖(𝑥) (6)

with 𝑓0(𝑠𝑖) = 𝑓 (𝑠𝑖). Then the iterative procedure is thus triggered by defining

Δ0𝑓𝑖 = 𝑓0(𝑠𝑖) −𝑆0𝐼𝑓 (𝑠𝑖), 𝑖 = 0,1,… , 𝑛+ 1, (7)

and, setting

𝑓1(𝑠𝑖) = 𝑓0(𝑠𝑖) + Δ0𝑓𝑖 𝑖 = 0,1,… , 𝑛+ 1, (8)

at the first iteration we get the new operator 𝑆1𝐼 defined as

𝑆1𝐼𝑓 (𝑥) =
𝑛+1∑
𝑖=0

𝑓1(𝑠𝑖)𝐵𝑖(𝑥). (9)

In general we define the operator 𝑆𝑝𝐼 after 𝑝 iterations as

𝑆𝑝𝐼𝑓 (𝑥) =
𝑛+1∑
𝑖=0

𝑓𝑝(𝑠𝑖)𝐵𝑖(𝑥), (10)

with

𝑓𝑝(𝑠𝑖) = 𝑓𝑝−1(𝑠𝑖) + Δ𝑝−1𝑓𝑖 and Δ𝑝−1𝑓𝑖 = 𝑓0(𝑠𝑖) −𝑆(𝑝−1)𝐼𝑓 (𝑠𝑖). (11)

If

lim
𝑝→∞

𝑆𝑝𝐼𝑓 (𝑠𝑖) = 𝑓 (𝑠𝑖), 𝑖 = 0,1,… , 𝑛+ 1, (12)

holds, then the initial operator 𝑆 satisfies the property of progressive iterative approximation (PIA).

From (11) and (12) we note that

lim
𝑝→∞

Δ𝑝−1𝑓𝑖 = 𝑓0(𝑠𝑖) − lim
𝑝→∞

𝑆(𝑝−1)𝐼𝑓 (𝑠𝑖) = 𝑓0(𝑠𝑖) − 𝑓0(𝑠𝑖) = 0, 𝑖 = 0,1,… , 𝑛+ 1. (13)
271

Moreover, from (7) and (8) we get
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𝑓1(𝑠𝑖) = 2𝑓0(𝑠𝑖) −
𝑛+1∑
𝑗=0

𝑓0(𝑠𝑗 )𝐵𝑗 (𝑠𝑖), 𝑖 = 0,1,… , 𝑛+ 1. (14)

Iterating this process, we get

𝑓𝑝(𝑠𝑖) = (𝑝+ 1)𝑓0(𝑠𝑖) −
𝑛+1∑
𝑗=0

𝑝−1∑
𝑟=0

𝑓𝑟(𝑠𝑗 )𝐵𝑗 (𝑠𝑖). (15)

Indeed, starting from (14), by induction we suppose (15) hold for 𝑝 − 1:

𝑓𝑝−1(𝑠𝑖) = 𝑝𝑓0(𝑠𝑖) −
𝑛+1∑
𝑗=0

𝑝−2∑
𝑟=0

𝑓𝑟(𝑠𝑗 )𝐵𝑗 (𝑠𝑖)

and prove it for 𝑝. From (11) we write

𝑓𝑝(𝑠𝑖) = 𝑓𝑝−1(𝑠𝑖) + Δ𝑝−1𝑓𝑖

= 𝑝𝑓0(𝑠𝑖) −
𝑛+1∑
𝑗=0

𝑝−2∑
𝑟=0

𝑓𝑟(𝑠𝑗 )𝐵𝑗 (𝑠𝑖) + 𝑓0(𝑠𝑖) −𝑆(𝑝−1)𝐼𝑓 (𝑠𝑖)

= (𝑝+ 1)𝑓0(𝑠𝑖) −
𝑛+1∑
𝑗=0

𝑝−2∑
𝑟=0

𝑓𝑟(𝑠𝑗 )𝐵𝑗 (𝑠𝑖) −
𝑛+1∑
𝑗=0

𝑓𝑝−1(𝑠𝑗 )𝐵𝑗 (𝑠𝑖)

= (𝑝+ 1)𝑓0(𝑠𝑖) −
𝑛+1∑
𝑗=0

𝑝−1∑
𝑟=0

𝑓𝑟(𝑠𝑗 )𝐵𝑗 (𝑠𝑖).

So, if PIA property holds, the coefficients in (15) for all 𝑖 and for increasing 𝑝 asymptotically tend to the unique coefficients obtained by 
solving the linear system coming from the interpolation conditions, i.e., if 𝐼𝑓 =

∑
𝑖 𝛼𝑖𝐵𝑖 is the unique spline such that 𝐼𝑓 (𝑠𝑗 ) = 𝑓 (𝑠𝑗 ), 

then lim𝑝→∞ 𝑆𝑝𝐼 = 𝐼𝑓 , since lim𝑝→∞ 𝑓𝑝(𝑠𝑖) = 𝛼𝑖 for all 𝑖, 𝑗.
Now, similarly to multilevel approximation in [12], we study the operator 𝑆𝑝𝐼 on both partitions (1) and (2).

3.1. PIA operator 𝑆𝑝𝐼 on simple knot partitions

In case of partitions (1), from Δ𝑝−1𝑓𝑗 in (11) let us analyse

𝑆(𝑝−1)𝐼𝑓 (𝑠𝑗 ) =
𝑛+1∑
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑠𝑗 ),

when 𝑗 = 0, … , 𝑛 + 1. If 𝑗 = 0, 𝑠0 ∈ (𝑥−1, 𝑥0) and the B-splines containing such a point are 𝐵0 and 𝐵1. In particular

𝐵0(𝑠0) =
6
8
, 𝐵1(𝑠0) =

1
8
.

Then

𝑆(𝑝−1)𝐼𝑓 (𝑠0) =
𝑛+1∑
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑠0) =
6
8
𝑓𝑝−1(𝑠0) +

1
8
𝑓𝑝−1(𝑠1).

If 𝑗 = 1, … , 𝑛, 𝑠𝑗 ∈ (𝑥𝑗−1, 𝑥𝑗 ) and the B-splines containing such a point are 𝐵𝑗−1(𝑥), 𝐵𝑗 (𝑥) and 𝐵𝑗+1(𝑥). In particular

𝐵𝑗−1(𝑠𝑗 ) =
1
8
, 𝐵𝑗 (𝑠𝑗 ) =

6
8
, 𝐵𝑗+1(𝑠𝑗 ) =

1
8
.

Then

𝑆(𝑝−1)𝐼𝑓 (𝑠𝑗 ) =
𝑛+1∑
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑠𝑗 ) =
1
8
𝑓𝑝−1(𝑠𝑗−1) +

6
8
𝑓𝑝−1(𝑠𝑗 ) +

1
8
𝑓𝑝−1(𝑠𝑗+1).

If 𝑗 = 𝑛 + 1, 𝑠𝑛+1 ∈ (𝑥𝑛, 𝑥𝑛+1) and the B-splines containing such a point are 𝐵𝑛(𝑥) and 𝐵𝑛+1(𝑥). In particular

𝐵𝑛(𝑠𝑛+1) =
1
8
, 𝐵𝑛+1(𝑠𝑛+1) =

6
8
.

Then

(𝑝−1)𝐼
𝑛+1∑ 1 6
272

𝑆 𝑓 (𝑠𝑛+1) =
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑠𝑛+1) = 8
𝑓𝑝−1(𝑠𝑛) + 8

𝑓𝑝−1(𝑠𝑛+1).
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Therefore

Δ𝑝−1𝑓0 = 𝑓0(𝑠0) −
6
8
𝑓𝑝−1(𝑠0) −

1
8
𝑓𝑝−1(𝑠1);

Δ𝑝−1𝑓𝑖 = 𝑓0(𝑠𝑖) −
1
8
𝑓𝑝−1(𝑠𝑖−1) −

6
8
𝑓𝑝−1(𝑠𝑖) −

1
8
𝑓𝑝−1(𝑠𝑖+1), 𝑖 = 1,… , 𝑛; (16)

Δ𝑝−1𝑓𝑛+1 = 𝑓0(𝑠𝑛+1) −
1
8
𝑓𝑝−1(𝑠𝑛) −

6
8
𝑓𝑝−1(𝑠𝑛+1).

3.2. PIA operator 𝑆𝑝𝐼 on boundary triple knot partitions

Now let us consider the case of partitions (2). The procedure is similar, but here the B-splines have different supports near 𝑎 and 
𝑏, so let us study

𝑆(𝑝−1)𝐿𝑓 (𝑠𝑗 ) =
𝑛+1∑
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑠𝑗 ), 𝑗 = 0,… , 𝑛+ 1,

to get the correct value of Δ𝑝−1𝑓𝑗 in (11).

If 𝑗 = 0, 𝑠0 = 𝑥0 and the B-splines containing such a point are 𝐵0(𝑥), 𝐵1(𝑥) e 𝐵2(𝑥). In particular

𝐵0(𝑥0) = 1, 𝐵1(𝑥0) = 0, 𝐵2(𝑥0) = 0.

Then

𝑆(𝑝−1)𝐿𝑓 (𝑠0) =
𝑛+1∑
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑠0) = 𝑓𝑝−1(𝑠0).

If 𝑗 = 1, 𝑠1 ∈ (𝑥0, 𝑥1) and the B-splines containing such a point are 𝐵0(𝑥), 𝐵1(𝑥) e 𝐵2(𝑥). In particular

𝐵0(𝑠1) =
1
4
, 𝐵1(𝑠1) =

5
8
, 𝐵2(𝑠1) =

1
8
.

Then

𝑆(𝑝−1)𝐿𝑓 (𝑠1) =
𝑛+1∑
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑠1) =
1
4
𝑓𝑝−1(𝑠0) +

5
8
𝑓𝑝−1(𝑠1) +

1
8
𝑓𝑝−1(𝑠2).

If 𝑗 = 2, … , 𝑛 − 1, 𝑠𝑗 ∈ (𝑥𝑗−1, 𝑥𝑗 ) and the B-splines containing such a point are 𝐵𝑗−1(𝑥), 𝐵𝑗 (𝑥) e 𝐵𝑗+1(𝑥). In particular

𝐵𝑗−1(𝑠𝑗 ) =
1
8
, 𝐵𝑗 (𝑠𝑗 ) =

6
8
, 𝐵𝑗+1(𝑠𝑗 ) =

1
8
.

Then

𝑆(𝑝−1)𝐿𝑓 (𝑠𝑗 ) =
𝑛+1∑
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑠𝑗 ) =
1
8
𝑓𝑝−1(𝑠𝑗−1) +

6
8
𝑓𝑝−1(𝑠𝑗 ) +

1
8
𝑓𝑝−1(𝑠𝑗+1).

If 𝑗 = 𝑛, 𝑠𝑛 ∈ (𝑥𝑛−1, 𝑥𝑛) and the B-splines containing such a point are 𝐵𝑛−1(𝑥), 𝐵𝑛(𝑥) e 𝐵𝑛+1(𝑥). In particular

𝐵𝑛−1(𝑠𝑛) =
1
8
, 𝐵𝑛(𝑠𝑛) =

5
8
, 𝐵𝑛+1(𝑠𝑛) =

1
4
.

Then

𝑆(𝑝−1)𝐿𝑓 (𝑠𝑛) =
𝑛+1∑
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑠𝑛) =
1
8
𝑓𝑝−1(𝑠𝑛−1) +

5
8
𝑓𝑝−1(𝑠𝑛) +

1
4
𝑓𝑝−1(𝑠𝑛+1).

If 𝑗 = 𝑛 + 1, 𝑠𝑛+1 = 𝑥𝑛 and the B-splines containing such a point are 𝐵𝑛−1(𝑥), 𝐵𝑛(𝑥) e 𝐵𝑛+1(𝑥). In particular

𝐵𝑛−1(𝑥𝑛) = 0, 𝐵𝑛(𝑥𝑛) = 0, 𝐵𝑛+1(𝑥𝑛) = 1.

Then

𝑆(𝑝−1)𝐿𝑓 (𝑠𝑛+1) =
𝑛+1∑
𝑖=0

𝑓𝑝−1(𝑠𝑖)𝐵𝑖(𝑥𝑛+1) = 𝑓𝑝−1(𝑥𝑛+1).

Therefore

Δ𝑝−1𝑓0 = 𝑓0(𝑠0) − 𝑓𝑝−1(𝑠0);
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Δ𝑝−1𝑓1 = 𝑓0(𝑠1) −
1
4
𝑓𝑝−1(𝑠0) −

5
8
𝑓𝑝−1(𝑠1) −

1
8
𝑓𝑝−1(𝑠2);
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Δ𝑝−1𝑓𝑖 = 𝑓0(𝑠𝑖) −
1
8
𝑓𝑝−1(𝑠𝑖−1) −

6
8
𝑓𝑝−1(𝑠𝑖) −

1
8
𝑓𝑝−1(𝑠𝑖+1), con 𝑖 = 2,… , 𝑛− 1; (17)

Δ𝑝−1𝑓𝑛 = 𝑓0(𝑠𝑛) −
1
8
𝑓𝑝−1(𝑠𝑛−1) −

5
8
𝑓𝑝−1(𝑠𝑛) −

1
4
𝑓𝑝−1(𝑠𝑛+1);

Δ𝑝−1𝑓𝑛+1 = 𝑓0(𝑠𝑛+1) − 𝑓𝑝−1(𝑠𝑛+1).

We remark that Δ𝑝−1𝑓0 = Δ𝑝−1𝑓𝑛+1 = 0, since

Δ𝑝−1𝑓0 =𝑓0(𝑠0) − 𝑓𝑝−1(𝑠0)

=𝑓0(𝑠0) − (𝑓𝑝−2(𝑠0) + Δ𝑝−2𝑓0)

=𝑓0(𝑠0) − (𝑓𝑝−2(𝑠0) + 𝑓0(𝑠0) − 𝑓𝑝−2(𝑠0))

=𝑓0(𝑠0) − 𝑓𝑝−2(𝑠0) − 𝑓0(𝑠0) + 𝑓𝑝−2(𝑠0)

=0.

Similarly it can be carried out for Δ𝑝−1𝑓𝑛+1 = 0.

3.3. Polynomial reproduction

Now we present a result on polynomial reproduction, that holds for partitions (2), but not for partitions (1).

Theorem 3.1. In case of partitions (2) the operator 𝑆𝑝𝐼 reproduces linear polynomials, as in the base case of operator 𝑆 , i.e.

𝑆𝑝𝐼𝑓 (𝑥) = 𝑓 (𝑥) if 𝑓 ∈ ℙ1.

Proof. If 𝑓 ∈ ℙ1, then all Δ𝑝−1𝑓𝑖 in (17) are zero. We show it by induction. The case 𝑖 = 0 has already been shown and Δ𝑝−1𝑓0 = 0
holds for all 𝑓 , so 𝑓𝑝(𝑠0) = 𝑓𝑝−1(𝑠0) = 𝑓0(𝑠0). Similarly in the case 𝑖 = 𝑛 + 1 where Δ𝑝−1𝑓𝑛+1 = 0 for all 𝑓 , so 𝑓𝑝(𝑠𝑛+1) = 𝑓𝑝−1(𝑠𝑛+1) =
𝑓0(𝑠𝑛+1).

Let be 𝑖 = 1 and set 𝑝 = 1 as base condition. In particular from (17)

Δ0𝑓1 =𝑓0(𝑠1) −
1
4
𝑓0(𝑠0) −

5
8
𝑓0(𝑠1) −

1
8
𝑓0(𝑠2)

=3
8
𝑓0(𝑠1) −

1
4
𝑓0(𝑠0) −

1
8
𝑓0(𝑠2).

Setting 𝑓 (𝑥) = 𝑥, by definition of 𝑠𝑖 in partitions (2) we get

Δ0𝑓1 =
3
8

(
𝑎+ 1

2
ℎ

)
− 1

4
𝑎− 1

8

(
𝑎+ 3

2
ℎ

)
=3
8
𝑎+ 3

16
ℎ− 1

4
𝑎− 1

8
𝑎− 3

16
ℎ

=0.
From (11) 𝑓1(𝑠1) = 𝑓0(𝑠1) holds.

Now let us assume 𝑓𝑝−1(𝑠1) = 𝑓𝑝−2(𝑠1), that by recursion coincides with 𝑓0(𝑠1), hold and prove it holds for a general 𝑝:

Δ𝑝−1𝑓1 =𝑓𝑝−1(𝑠1) −
1
4
𝑓𝑝−1(𝑠0) −

5
8
𝑓𝑝−1(𝑠1) −

1
8
𝑓𝑝−1(𝑠2)

=3
8
𝑓𝑝−1(𝑠1) −

1
4
𝑓𝑝−1(𝑠0) −

1
8
𝑓𝑝−1(𝑠2)

=3
8
𝑓0(𝑠1) −

1
4
𝑓0(𝑠0) −

1
8
𝑓0(𝑠2).

For 𝑓 (𝑥) = 𝑥 by definition of 𝑠𝑖 for partitions (2) we have

Δ𝑝−1𝑓1 =
3
8

(
𝑎+ 1

2
ℎ

)
− 1

4
𝑎− 1

8

(
𝑎+ 3

2
ℎ

)
=3
8
𝑎+ 3

16
ℎ− 1

4
𝑎− 1

8
𝑎− 3

16
ℎ

=0.
From (11) 𝑓𝑝(𝑠1) = 𝑓𝑝−1(𝑠1) = 𝑓0(𝑠1) follows.

Let be 𝑖 = 2, … , 𝑛 − 1 and set 𝑝 = 1 as base condition. In particular from (17)

Δ0𝑓𝑖 =𝑓0(𝑠𝑖) −
1
8
𝑓0(𝑠𝑖−1) −

6
8
𝑓0(𝑠𝑖) −

1
8
𝑓0(𝑠𝑖+1)
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=2
8
𝑓0(𝑠𝑖) −

1
8
𝑓0(𝑠𝑖−1) −

1
8
𝑓0(𝑠𝑖+1).
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Setting 𝑓 (𝑥) = 𝑥, by definition of 𝑠𝑖 in partitions (2) we get

Δ0𝑓𝑖 =
2
8

(
𝑎+ 2𝑖− 1

2
ℎ

)
− 1

8

(
𝑎+ 2𝑖− 3

2
ℎ

)
− 1

8

(
𝑎+ 2𝑖+ 1

2
ℎ

)
=2
8
𝑎+ 2𝑖− 1

8
ℎ− 1

8
𝑎− 2𝑖− 3

16
ℎ− 1

8
𝑎− 2𝑖+ 1

16
ℎ

=0.
From (11) 𝑓1(𝑠𝑖) = 𝑓0(𝑠𝑖) holds.

Now let us assume 𝑓𝑝−1(𝑠𝑖) = 𝑓𝑝−2(𝑠𝑖), that by recursion coincides with 𝑓0(𝑠𝑖), hold and prove it holds for a general 𝑝:

Δ𝑝−1𝑓𝑖 =𝑓𝑝−1(𝑠𝑖) −
1
8
𝑓𝑝−1(𝑠𝑖−1) −

6
8
𝑓𝑝−1(𝑠𝑖) −

1
8
𝑓𝑝−1(𝑠𝑖+1)

=2
8
𝑓𝑝−1(𝑠𝑖) −

1
8
𝑓𝑝−1(𝑠𝑖−1) −

1
8
𝑓𝑝−1(𝑠𝑖+1)

=2
8
𝑓0(𝑠𝑖) −

1
8
𝑓0(𝑠𝑖−1) −

1
8
𝑓0(𝑠𝑖+1).

For 𝑓 (𝑥) = 𝑥 by definition of 𝑠𝑖 for partitions (2) we have

Δ𝑝−1𝑓𝑖 =
2
8

(
𝑎+ 2𝑖− 1

2
ℎ

)
− 1

8

(
𝑎+ 2𝑖− 3

2
ℎ

)
− 1

8

(
𝑎+ 2𝑖+ 1

2
ℎ

)
=2
8
𝑎+ 2𝑖− 1

8
ℎ− 1

8
𝑎− 2𝑖− 3

16
ℎ− 1

8
𝑎− 2𝑖+ 1

16
ℎ

=0.
From (11) 𝑓𝑝(𝑠𝑖) = 𝑓𝑝−1(𝑠𝑖) = 𝑓0(𝑠𝑖) follows.

Finally let be 𝑖 = 𝑛 and set 𝑝 = 1 as base condition. In particular from (17)

Δ0𝑓𝑛 =𝑓0(𝑠𝑛) −
1
8
𝑓0(𝑠𝑛−1) −

5
8
𝑓0(𝑠𝑛) −

1
4
𝑓0(𝑠𝑛+1)

=3
8
𝑓0(𝑠𝑛) −

1
8
𝑓0(𝑠𝑛−1) −

1
4
𝑓0(𝑠𝑛+1).

Setting 𝑓 (𝑥) = 𝑥, by definition of 𝑠𝑖 in partitions (2) we get

Δ0𝑓𝑛 =
3
8

(
𝑏− 1

2
ℎ

)
− 1

8

(
𝑏− 3

2
ℎ

)
− 1

4
𝑏

=3
8
𝑏− 3

16
ℎ− 1

8
𝑏+ 3

16
ℎ− 1

4
𝑏

=0.
From (11) 𝑓1(𝑠𝑛) = 𝑓0(𝑠𝑛) holds.

Now let us assume 𝑓𝑝−1(𝑠𝑛) = 𝑓𝑝−2(𝑠𝑛), that by recursion coincides with 𝑓0(𝑠𝑛), hold and prove it holds for a general 𝑝:

Δ𝑝−1𝑓𝑛 =𝑓𝑝−1(𝑠𝑛) −
1
8
𝑓𝑝−1(𝑠𝑛−1) −

5
8
𝑓𝑝−1(𝑠𝑛) −

1
4
𝑓𝑝−1(𝑠𝑛+1)

=3
8
𝑓𝑝−1(𝑠𝑛) −

1
8
𝑓𝑝−1(𝑠𝑛−1) −

1
4
𝑓𝑝−1(𝑠𝑛+1)

=3
8
𝑓0(𝑠𝑛) −

1
8
𝑓0(𝑠𝑛−1) −

1
4
𝑓0(𝑠𝑛+1).

For 𝑓 (𝑥) = 𝑥 by definition of 𝑠𝑖 for partitions (2) we have

Δ𝑝−1𝑓𝑛 =
3
8

(
𝑏− 1

2
ℎ

)
− 1

8

(
𝑏− 3

2
ℎ

)
− 1

4
𝑏

=3
8
𝑏− 3

16
ℎ− 1

8
𝑏+ 3

16
ℎ− 1

4
𝑏

=0.
From (11) 𝑓𝑝(𝑠𝑛) = 𝑓𝑝−1(𝑠𝑛) = 𝑓0(𝑠𝑛) holds.

From all these facts 𝑓𝑝(𝑠𝑖) = 𝑓𝑝−1(𝑠𝑖) follows for all 𝑝 and 𝑖 = 0, … , 𝑛 + 1. Then

𝑆𝑝𝐼𝑓 (𝑥) =
𝑛+1∑
𝑖=0

𝑓0(𝑠𝑖)𝐵𝑖(𝑥).
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Therefore, since 𝑆 reproduces ℙ1, we get the thesis. □



Applied Numerical Mathematics 206 (2024) 269–282E. Fornaca and P. Lamberti

Remark 3.1. Note that the above theorem does not hold for partitions (1). This is due to the definition of Δ𝑝−1𝑓𝑖 in (16), when 
𝑖 = 0, 𝑛 + 1, while in cases 𝑖 = 1, … , 𝑛 the behaviour is similar to what happens for partitions (2). Indeed, if 𝑖 = 0 and 𝑝 = 1, from (16)

it results

Δ0𝑓0 =𝑓0(𝑠0) −
6
8
𝑓0(𝑠0) −

1
8
𝑓0(𝑠1)

=2
8
𝑓0(𝑠0) −

1
8
𝑓0(𝑠1).

For 𝑓 (𝑥) = 𝑥 by definition of 𝑠𝑖 for partitions (1) we have

Δ0𝑓0 =
2
8

(
𝑎− 1

2
ℎ

)
− 1

8

(
𝑎+ 1

2
ℎ

)
=2
8
𝑎− 2

16
ℎ− 1

8
𝑎− 1

16
ℎ

=1
8
𝑎− 3

16
ℎ.

Going on this way, increasing 𝑝, in general we never get Δ𝑝−1𝑓0 = 0.

A similar argument holds for 𝑖 = 𝑛 + 1. Indeed, for 𝑝 = 1, from (16)

Δ0𝑓𝑛+1 =𝑓0(𝑠𝑛+1) −
1
8
𝑓0(𝑠𝑛) −

6
8
𝑓0(𝑠𝑛+1)

=2
8
𝑓0(𝑠𝑛+1) −

1
8
𝑓0(𝑠𝑛).

For 𝑓 (𝑥) = 𝑥 by definition of 𝑠𝑖 for partitions (1) we have

Δ0𝑓𝑛+1 =
2
8

(
𝑏+ 1

2
ℎ

)
− 1

8

(
𝑏− 1

2
ℎ

)
=2
8
𝑏+ 2

16
ℎ− 1

8
𝑏+ 1

16
ℎ

=1
8
𝑏+ 3

16
ℎ.

Going on this way, increasing 𝑝, in general we never get Δ𝑝−1𝑓𝑛+1 = 0.

This fact holds for any 𝑛.

3.4. Convergence

In order to provide results on convergence, we recall some properties presented in [4,9,10,17].

Theorem 3.2. [17] Let 𝑈 = (𝑢0, … , 𝑢𝑛) be a blending basis. Then, if the basis 𝑈 is totally positive (TP) and its collocation matrix 𝑀 at 
𝑡0 < 𝑡1 <… < 𝑡𝑛 is nonsingular, the curve 𝛾0(𝑡) =

∑𝑛

𝑖=0 𝑃
0
𝑖
𝑢𝑖(𝑡) satisfies the PIA property, where 𝑡𝑖 is the assigned parameter value of the 

point 𝑃 0
𝑖

, 𝑖 = 0, … , 𝑛.

Thus such a sufficient condition ensures the convergence of PIA procedure. However we are interested in bases with fastest 
convergence rates in a given space with normalized totally positive (NTP) bases.

Definition 3.1. [4,9] Let 𝑈 = (𝑢0, … , 𝑢𝑛) be a TP basis of a vector space of functions U. Then we say that (𝑢0, … , 𝑢𝑛) is a B-basis if 
for any other TP basis (𝑣0, … , 𝑣𝑛) of U the matrix 𝐾 of change of basis (𝑣0, … , 𝑣𝑛) = (𝑢0, … , 𝑢𝑛)𝐾 is TP.

Let us recall that, if a vector space of functions has a TP (resp., NTP) basis, then it has a B-basis (resp., normalized B-basis). It has 
been proved [4] that in a vector space of functions with NTP bases its normalized B-basis has optimal shape preserving properties 
among all the NTP bases of the space.

Theorem 3.3. [10] Given a space of functions U with an NTP basis, the normalized B-basis provides a PIA with the fastest convergence rate 
among all NTP bases of U.

A necessary and sufficient condition for PIA convergence is 𝜌(𝐼 −𝑀) = 1 −min0≤𝑖≤𝑛 𝜆𝑖 < 1, where 𝜌(𝐵) is the spectral radius of 
matrix 𝐵 and {𝜆𝑘}𝑛𝑘=0 are the 𝑛 +1 eigenvalues of 𝑀 . So the higher min0≤𝑖≤𝑛 𝜆𝑖 is, the faster is the convergence of PIA procedure [9].

An example of B-basis for polynomial spaces is the Bernstein basis. For such a basis the minimal eigenvalue of the corresponding 
collocation matrix decreases quickly as the degree increases, so in this case PIA method is practically not interesting for its slow 
convergence. In contrast to the case of polynomials, when applying PIA with a B-spline basis, that is a B-basis and so the optimal 
276

NTP basis of the spline space [4], the convergence rate keeps high, even for high dimensional spaces, if degree is kept low. Indeed 
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the minimal eigenvalue of the collocation matrix 𝑀 of the B-spline basis of degree 2 keeps almost constant (from 0.45 to 0.49) in 
spite of the dimension 𝑛 = 10, … , 100, while in case of B-spline of degree 3 the convergence is slower because of the behaviour of the 
minimal eigenvalue of the corresponding collocation matrices, when 𝑛 increases, since it is smaller [9]. So this is a good reason to 
use quadratic splines.

4. Numerical integration based on 𝑺𝒑𝑰

Approximating the integral I(𝑓 ) = ∫ 𝑏

𝑎
𝑓 of a function 𝑓 on an interval [𝑎, 𝑏] by quadrature formulas based on QI splines is a well 

known topic in literature (see for example the wide bibliography in [8]). For the operator 𝑆 we have

I𝑆 (𝑓 ) =
𝑛+1∑
𝑖=0

𝑓 (𝑠𝑖)

𝑏

∫
𝑎

𝐵𝑖.

Since 𝜔𝑖 = ∫ 𝑏

𝑎
𝐵𝑖 =

𝑥𝑖+1−𝑥𝑖−𝑑
𝑑+1 , 𝑖 = 0, … , 𝑛 + 1, here for degree 𝑑 = 2 and symmetric partitions, for which 𝜔𝑛−𝑖+1 = 𝜔𝑖, 𝑖 = 0, … , 𝑛 + 1, 

we have 𝜔0 = 𝜔𝑛+1 =
ℎ

3 , 𝜔1 = 𝜔𝑛 = 2 ℎ

3 , 𝜔𝑗 = ℎ, 𝑗 = 2, … , 𝑛 − 1. Then

I𝑆 (𝑓 ) =
𝑛+1∑
𝑖=0

𝜔𝑖𝑓 (𝑠𝑖) =
ℎ

3

[
𝑓 (𝑠0) + 𝑓 (𝑠𝑛+1)

]
+ 2ℎ

3

[
𝑓 (𝑠1) + 𝑓 (𝑠𝑛)

]
+ ℎ

𝑛−1∑
𝑖=2

𝑓 (𝑠𝑖). (18)

A quadrature formula I𝑆𝑝𝐼 (𝑓 ) associated to 𝑆𝑝𝐼 in (10) is consequently obtained by substituting 𝑓 with 𝑓𝑝 in (18), in both cases 
of partitions (1) and (2), only taking into account the definition of the corresponding 𝑠𝑖 ’s.

5. Another approach to PIA property

Following [9], now we approach PIA property by considering the progressive iteration on the blending functions, instead of on 
the functional coefficients, in order to keep the initial data unchanged.

So, starting from 𝑆0𝐼𝑓 in (6), in order to compute the second function of the sequence {𝑆𝑝𝐼𝑓}∞
𝑝=0, we modify the basis instead 

of modifying the coefficients. Then we have (9), rewritten as

𝑆1𝐼𝑓 (𝑥) =
𝑛+1∑
𝑖=0

𝑓1(𝑠𝑖)𝐵0
𝑖
(𝑥)

and, taking into account (8), rewritten as

𝑓1(𝑠𝑖) = 𝑓0(𝑠𝑖) + Δ0𝑓𝑖 = 2𝑓0(𝑠𝑖) −
𝑛+1∑
𝑗=0

𝑓0(𝑠𝑗 )𝐵0
𝑗
(𝑠𝑖),

we have

𝑆1𝐼𝑓 (𝑥) =
𝑛+1∑
𝑖=0

𝑓0(𝑠𝑖)2𝐵0
𝑖
(𝑥) −

𝑛+1∑
𝑖=0

𝑛+1∑
𝑗=0

𝑓0(𝑠𝑗 )𝐵0
𝑗
(𝑠𝑖)𝐵0

𝑖
(𝑥). (19)

Changing the indices 𝑖 and 𝑗 in the second sum on the right hand side of (19), we can write

𝑆1𝐼𝑓 (𝑥) =
𝑛+1∑
𝑖=0

𝑓0(𝑠𝑖)
[
2𝐵0

𝑖
(𝑥) −

𝑛+1∑
𝑗=0

𝐵0
𝑖
(𝑠𝑗 )𝐵0

𝑗
(𝑥)

]
.

Denoting 𝐵1
𝑖
(𝑥) ∶= 2𝐵0

𝑖
(𝑥) −

∑𝑛+1
𝑗=0 𝐵

0
𝑖
(𝑠𝑗 )𝐵0

𝑗
(𝑥), 𝑖 = 0, 1, … , 𝑛 +1, it results 𝑆1𝐼𝑓 (𝑥) =

∑𝑛+1
𝑖=0 𝑓0(𝑠𝑖)𝐵

1
𝑖
(𝑥). Iterating this process, we get 

𝑆𝑝𝐼𝑓 (𝑥) =
∑𝑛+1

𝑖=0 𝑓0(𝑠𝑖)𝐵
𝑝

𝑖
(𝑥), where, similarly to (15), but this time acting on the B-splines and not on the coefficients, we get the 

new blending functions

𝐵
𝑝

𝑖
(𝑥) ∶= (𝑝+ 1)𝐵0

𝑖
(𝑥) −

𝑛+1∑
𝑗=0

𝑝−1∑
𝑟=0

𝐵𝑟
𝑖
(𝑠𝑗 )𝐵0

𝑗
(𝑥), 𝑖 = 0,1,… , 𝑛+ 1, 𝑝 ≥ 0. (20)

In [9] the example of an NTP basis of ℙ𝑛 is considered, where by Theorem 3.2 the authors can state that the PIA approximant so 
defined tends to the Lagrange interpolant of degree 𝑛 as 𝑝 tends to infinity. In particular the 𝑖-th polynomial of the NTP basis tends 
to the 𝑖-th Lagrange interpolation polynomial, while the functional coefficients do not change with iterations. So, if we choose the 
Bernstein basis of degree 𝑛, that is the normalized B-basis of ℙ𝑛, by Theorem 3.3 we get the fastest convergence to the Lagrange 
interpolation polynomials.

Now, if in the B-spline case the iterations modify the coefficients, and not the blending functions, as we have shown in Section 3, 
277

by Theorem 3.2 such coefficients asymptotically tend to the unique coefficients obtained by solving the linear system coming from the 
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Fig. 1. 𝐵
𝑝

4 (𝑥), 𝑝 = 0, 1, 2, 𝑥 ∈ [−1, 1], defined on a partition of type (2) with 𝑛 = 5. (For interpretation of the colours in the figure, the reader is referred to the web 
version of this article.)

interpolation conditions. However, if we proceed as in the above polynomial case, i.e. by keeping the coefficients fixed and modifying 
the B-spline basis, from (12) we can write:

𝑓 (𝑠𝑖) = lim
𝑝→∞

𝑆𝑝𝐼𝑓 (𝑠𝑖) =
𝑛+1∑
𝑗=0

𝑓0(𝑠𝑗 ) lim
𝑝→∞

𝐵
𝑝

𝑗
(𝑠𝑖), 𝑖 = 0,… , 𝑛+ 1.

By PIA property, while 𝑝 increases, we know that 𝑆𝑝𝐼𝑓 tends to the unique spline interpolating 𝑓 at the Greville sites, so

lim
𝑝→∞

𝐵
𝑝

𝑗
(𝑥), 𝑗 = 0,… , 𝑛+ 1,

comes out to be the unique 𝑗-th asymptotic nodal blending piecewise polynomial, where with nodal we mean a behaviour as Lagrange 
interpolation polynomials, i.e.

lim
𝑝→∞

𝐵
𝑝

𝑗
(𝑠𝑖) =

{
1 if 𝑗 = 𝑖

0 if 𝑗 ≠ 𝑖
, 𝑖, 𝑗 = 0,… , 𝑛+ 1.

In Fig. 1 we show how 𝐵𝑝

4 modifies its shape when 𝑝 = 0, 1, 2.

Consequently we can also immediately rewrite the corresponding quadrature formula, given in Section 4, taking into account the 
new approach above described, as

I𝑆𝑝𝐼 (𝑓 ) =
∑
𝑖

𝑓 (𝑠𝑖)𝑤𝑖

with

𝑤𝑖 =

𝑏

∫
𝑎

𝐵
𝑝

𝑖
=
[
(𝑝+ 1)𝜔𝑖 −

∑
𝑗

∑
𝑟

𝐵𝑟
𝑖
(𝑠𝑗 )𝜔𝑗

]
.

6. Numerical results

Now we present some numerical results, obtained both on approximation and numerical integration and based on the operators 
studied throughout this paper, applied to the following test functions:

• 𝜑1(𝑥) = 2𝑥, 𝑥 ∈ [0, 1];
• 𝜑2(𝑥) =

1
1+16𝑥5 , 𝑥 ∈ [0, 1];

• 𝜑3(𝑥) = 2𝑥2 − 5𝑥 + 4, 𝑥 ∈ [2, 3.5];
• 𝜑4(𝑥) =

1
3 e

(− 81
16 (𝑥−

1
2 )

2)
, 𝑥 ∈ [1.5, 6];

• 𝜑5(𝑥) = sin(4.5𝑥), 𝑥 ∈ [1.5, 3];
• 𝜑6(𝑥) = arctan(100(𝑥 − 0.3)), 𝑥 ∈ [2, 4];
278

• 𝜑7(𝑥) = e−𝑥 sin(5𝜋𝑥), 𝑥 ∈ [2.8, 5].
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Table 1

Maximum norm of Δ𝑝−1𝑓𝑖 , 𝑖 = 0, … , 𝑛 + 1, 𝑛 = 30, in (16) and in (17) for 
increasing values of 𝑝 and for the two test functions 𝜑2 and 𝜑7 in case of 
partitions (1) and (2), respectively.

𝜑2(𝑥), 𝑥 ∈ [0,1] 𝜑7(𝑥), 𝑥 ∈ [2.8,5]

𝑝 partitions (1) partitions (2) partitions (1) partitions (2)

8 1.19(−04) 1.80(−07) 1.22(−05) 1.69(−06)
16 2.31(−07) 4.71(−10) 2.28(−08) 4.10(−09)
32 1.77(−12) 4.94(−15) 1.71(−13) 4.20(−14)
40 5.44(−15) 5.55(−17) 5.27(−16) 1.46(−16)
48 5.55(−17) 5.55(−17) 7.59(−18) 5.20(−18)
64 5.55(−17) 5.55(−17) 3.47(−18) 5.20(−18)
96 5.55(−17) 5.55(−17) 3.47(−18) 5.20(−18)

Table 2

Maximum norm of the error in the approximation of the test function 𝜑1 for increasing 
values of 𝑛: on the left for partitions (1) and on the right for partitions (2).

n 𝐸𝑆 𝐸𝑆1𝐼 𝐸𝑆2𝐼 𝐸𝑆 𝐸𝑆1𝐼 𝐸𝑆2𝐼

12 4.44(-16) 1.41(-01) 1.58(-01) 4.44(-16) 6.66(-16) 6.66(-16)

28 6.66(-16) 1.32(-01) 1.48(-01) 4.44(-16) 4.44(-16) 4.44(-16)

56 4.44(-16) 1.28(-01) 1.44(-01) 4.44(-16) 4.44(-16) 4.44(-16)

112 4.44(-16) 1.27(-01) 1.43(-01) 4.44(-16) 4.44(-16) 4.44(-16)

224 4.44(-16) 1.25(-01) 1.42(-01) 4.44(-16) 4.44(-16) 4.44(-16)

6.1. Numerical results on approximation

First of all, in order to verify (13), i.e. the convergence from approximation to interpolation, two examples of decreasing Δ𝑝−1𝑓𝑖, 
while increasing 𝑝 with 𝑛 = 30, are shown in Table 1 for partitions (1) and (2), respectively. From Table 1 we can see that for 
increasing 𝑝 PIA operator tends to interpolate the given functions at Greville sites, as in the parametric case it tends to interpolate 
the control points, iteration after iteration.

Now for 𝑄 = 𝑆, 𝑆1𝐼 , 𝑆2𝐼 we set 𝐸𝑄(𝑓 ) = ‖𝑓 − 𝑄(𝑓 )‖∞, evaluated on 500 equispaced points in [𝑎, 𝑏]. Moreover we define the 
numerical (or observed) approximation order as follows:

𝑟𝑄 = log2
𝐸𝑄|𝑛=7⋅2𝑙−1
𝐸𝑄|𝑛=7⋅2𝑙 for 𝑄 = 𝑆,𝑆1𝐼 ,𝑆2𝐼 and 𝑙 = 3,4,5,

with 𝐸𝑄 ∶=𝐸𝑄(𝑓 ), when it is not necessary to point out 𝑓 .

Unfortunately results in case of partitions (1) are comparable or worse with respect to the ones of the base operator 𝑆 , so we do 
not report them here, except the ones in Table 2, where ℙ1 reproduction for PIA operators on partitions (2) is confirmed.

Conversely, as we can see in Tables 3-4, for increasing 𝑛 in general PIA operators improve the results obtained with the corre-

sponding base operator 𝑆 on partitions (2), already at the first iteration of 𝑝, i.e. 𝑝 = 1.

In Tables 5-6 the maximum norm of the error and the corresponding numerical approximation order are presented for the test 
function 𝜑3 on partitions (2), confirming the asymptotic interpolation, as 𝑝 tends to infinity. However, since here the maximum norm 
on [𝑎, 𝑏] and not at the Greville points is reported, one could even conjecture the ‘asymptotic reproduction’ of ℙ2 .

6.2. Numerical results on integration

For numerical integration we compare results obtained by quadratures I𝑆 (𝑓 ) and I𝑆1𝐼 (𝑓 ) to evaluate the integral of some functions 
whose exact value is known.

Let us set 𝐸𝑄(𝑓 ) = I(𝑓 ) − I𝑄(𝑓 ) and

𝑟𝑄 = log2
|𝐸𝑄|𝑛=2𝑙−1|𝐸𝑄|𝑛=2𝑙 for 𝑄 = 𝑆,𝑆1𝐼 ,𝑆2𝐼 with 𝑙 = 8,9,10.

In Tables 7-8 we approximate

I(𝑔1) =

1
1

𝑑𝑥 = 1 [ arctan(4) − arctan(−4)
]
≈ 0.662908831834016,
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∫
−1

1 + 16𝑥2 4
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Table 3

Maximum norm of the error in the approximation of test function 𝜑2-𝜑7 for increasing values of 𝑛 on 
partitions (2).

n 𝐸𝑆 𝐸𝑆1𝐼 𝐸𝑆2𝐼 𝐸𝑆 𝐸𝑆1𝐼 𝐸𝑆2𝐼

𝜑2 12 8.17(-03) 1.21(-03) 6.92(-04) 𝜑5 3.93(-02) 5.39(-03) 2.31(-03)

28 1.57(-03) 5.61(-05) 3.49(-05) 7.23(-03) 9.49(-04) 3.08(-04)

56 3.95(-04) 9.80(-06) 4.40(-06) 1.82(-03) 2.37(-04) 7.92(-05)

112 9.91(-05) 1.35(-06) 5.56(-07) 4.54(-04) 3.56(-05) 6.99(-06)

224 2.48(-05) 6.34(-08) 6.32(-08) 1.13(-04) 2.18(-07) 6.37(-07)

𝜑3 12 7.81(-03) 1.29(-03) 4.40(-04) 𝜑6 1.07(-05) 2.12(-06) 8.11(-07)

28 1.43(-03) 2.34(-04) 8.05(-05) 2.28(-06) 4.12(-07) 1.38(-07)

56 3.59(-04) 5.84(-05) 2.01(-05) 6.07(-07) 1.04(-07) 3.55(-08)

112 8.97(-05) 8.46(-06) 1.45(-06) 1.57(-07) 1.55(-08) 2.88(-09)

224 2.24(-05) 6.33(-15) 1.90(-07) 3.92(-08) 3.74(-11) 3.07(-10)

𝜑4 12 5.12(-04) 3.39(-04) 2.78(-04) 𝜑7 2.59(-02) 1.83(-02) 1.72(-02)

28 2.04(-04) 8.16(-05) 5.21(-05) 1.01(-02) 2.84(-03) 1.56(-03)

56 8.03(-05) 2.08(-05) 6.33(-06) 2.60(-03) 1.72(-04) 8.06(-05)

112 2.77(-05) 3.78(-06) 9.67(-07) 6.59(-04) 1.05(-05) 1.09(-05)

224 6.86(-06) 5.21(-08) 4.00(-08) 1.66(-04) 1.31(-06) 1.58(-06)

Table 4

Numerical approximation order of test function 𝜑2-𝜑7 for increasing values 
of 𝑛 on partitions (2).

n 𝑟𝑆 𝑟𝑆1𝐼 𝑟𝑆2𝐼 𝑟𝑆 𝑟𝑆1𝐼 𝑟𝑆2𝐼

𝜑2 28 - - - 𝜑5 - - -

56 1.99 2.51 2.93 1.99 2.00 1.96

112 1.99 2.86 2.99 2.00 3.73 3.50

224 1.99 4.41 3.14 2.00 3.46 3.46

𝜑3 28 - - - 𝜑6 - - -

56 2.00 2.00 2.00 1.99 1.99 1.96

112 2.00 2.79 3.79 1.95 2.75 3.62

224 1.99 30.00 1.57 2.00 8.70 3.23

𝜑4 28 - - - 𝜑7 - - -

56 2.64 2.00 3.04 1.99 2.81 4.27

112 1.54 1.54 3.04 1.98 2.09 2.88

224 2.00 2.02 3.57 1.99 9.87 2.79

Table 5

Maximum norm 𝐸𝑆𝑝𝐼 (𝜑3) in [2, 3.5] for increasing values of 𝑝 in case of partitions (2).

n 𝐸𝑆2𝐼 𝐸𝑆10𝐼 𝐸𝑆20𝐼 𝐸𝑆30𝐼 𝐸𝑆35𝐼 𝐸𝑆40𝐼

𝜑3 12 4.39(-04) 7.00(-07) 4.77(-10) 3.73(-13) 1.15(-14) 3.55(-15)

28 8.05(-05) 1.29(-07) 8.69(-11) 6.88(-14) 5.33(-15) 5.33(-15)

56 2.01(-05) 3.21(-08) 2.17(-11) 1.78(-14) 5.33(-15) 5.33(-15)

112 1.45(-06) 2.25(-09) 2.67(-12) 3.99(-15) 3.55(-15) 3.55(-15)

224 1.90(-07) 5.62(-10) 6.68(-13) 3.99(-15) 3.55(-15) 3.55(-15)

Table 6

Numerical approximation order 𝑟𝑆𝑝𝐼 (𝜑3) in [2, 3.5] for increasing 
values of 𝑝 in case of partitions (2).

n 𝑟𝑆2𝐼 𝑟𝑆10𝐼 𝑟𝑆20𝐼 𝑟𝑆30𝐼 𝑟𝑆35𝐼 𝑟𝑆40𝐼

𝜑3 28 - - - - - -

56 2.00 2.00 2.00 1.95 1.11 -

112 3.79 3.84 3.03 2.16 - -

224 2.93 2.00 1.99 - - -
280
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Table 7

Absolute errors and numerical approximation order for I(𝑔1) and I(𝑔2) on partitions (2) for 𝑝 = 1
and increasing values of 𝑛.

I(𝑔1) I(𝑔2)

𝑛 𝐸𝑆 𝑟𝑆 𝐸𝑆1𝐼 𝑟𝑆1𝐼 𝐸𝑆 𝑟𝑆 𝐸𝑆1𝐼 𝑟𝑆1𝐼

128 6.86(-06) 5.11(-08) 1.65(-04) 6.67(-07)

256 1.70(-06) 2.00 6.23(-09) 3.03 4.13(-05) 1.99 8.40(-08) 2.99

512 4.24(-07) 2.00 7.70(-10) 3.01 1.03(-05) 2.00 1.05(-08) 3.00

1024 1.06(-07) 2.00 9.56(-11) 3.00 2.59(-06) 2.00 1.32(-09) 3.00

Table 8

Absolute errors and numerical approximation order for I(𝑔3) and I(𝑔4) on partitions (2) for 𝑝 = 1
and increasing values of 𝑛.

I(𝑔3) I(𝑔4)

𝑛 𝐸𝑆 𝑟𝑆 𝐸𝑆1𝐼 𝑟𝑆1𝐼 𝐸𝑆 𝑟𝑆 𝐸𝑆1𝐼 𝑟𝑆1𝐼

128 2.03(-05) 5.09(-06) 1.63(-04) 5.43(-07)

256 5.09(-06) 1.99 1.27(-06) 2.00 4.09(-05) 1.99 4.64(-08) 3.55

512 1.27(-06) 2.00 3.18(-07) 2.00 1.02(-05) 2.00 4.44(-09) 3.39

1024 3.18(-07) 2.00 7.95(-08) 2.00 2.56(-06) 2.00 4.70(-10) 3.24

I(𝑔2) =

1

∫
−1

𝑥𝑒𝑥𝑑𝑥 = 2
𝑒
≈ 0.735758882342885,

I(𝑔3) =

1

∫
0

|𝑥2 − 0.25|𝑑𝑥 = 1
4
,

I(𝑔4) =

1

∫
0

𝑒−𝑥 sin(5𝜋𝑥)𝑑𝑥 = 5𝜋(𝑒+ 1)
𝑒(25𝜋2 + 1)

≈ 0.086730404755780.

7. Conclusions

In conclusion, while for partitions (1) the results of base operator e PIA operators are comparable, so that we do not report them 
here, we can see a good improvement in case of partitions (2).

We remark that partitions (1) and (2) tend to identify while 𝑛 increases, but not while 𝑝 increases, so, if on one hand for both 
partitions convergence to interpolation holds while 𝑝 increases, on the other hand it is reasonable that by increasing 𝑛 we can get 
improvements on the error maximum norm. However, while convergence to identification of both partitions with increasing 𝑛 is 
confirmed for MA approximation, here numerical evidence shows us that it seems not to be the same for PIA, for which partitions (2)

give always better results. Moreover better results on the speed of convergence are obtained with PIA quadratic than cubic splines.

Another good reason for presenting PIA in the functional setting is to have a tool for approximation and asymptotic interpolation, 
without managing systems of linear equations.

Finally, for sake of clearness and completeness, in Table 9 we highlight similarities and differences of PIA versus MA. In general 
we can remark that PIA on partitions (2) and MA operators improve the results obtained by the corresponding base method and the 
numerical convergence orders confirm this fact. This means that for partitions (1) MA provides better results than PIA ones, while 
for partitions (2) the results obtained by PIA and MA are comparable. Moreover all polynomial reproduction results are confirmed.
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Table 9

A comparison between PIA and MA.

PIA MA [12]

𝑆𝑓 = 𝑆0𝐼 𝑓 =
∑𝑛+1

𝑖=0 𝑓 (𝑠𝑖)𝐵𝑖, 𝑆𝑓 = 𝑆(0)𝑓 =
∑𝑛+1

𝑖=0 𝑓 (𝑠𝑖)𝐵𝑖,

with 𝑠𝑖 =
𝑥𝑖−1+𝑥𝑖

2
, 𝑖 = 0,… , 𝑛+ 1. with 𝑠𝑖 =

𝑥𝑖−1+𝑥𝑖
2

, 𝑖 = 0,… , 𝑛+ 1.

𝑆1𝐼 𝑓 =
∑𝑛+1

𝑖=0 𝑓1(𝑠𝑖)𝐵𝑖, 𝑆1𝐿𝑓 = 𝑆(1)𝑓 + 𝑆(0)Δ1𝑓 ,

with 𝑓1(𝑠𝑖) = 𝑓0(𝑠𝑖) + Δ0𝑓𝑖, with 𝑆(1)𝑓 =
∑ 𝑛

2
+2

𝑖=−1 𝑓 (𝑠
(1)
𝑖
)𝐵(1)

𝑖

Δ0𝑓𝑖 = 𝑓0(𝑠𝑖) − 𝑆𝑓 (𝑠𝑖) and Δ1𝑓 = 𝑓 −𝑆(1)𝑓 .

and 𝑓0(𝑠𝑖) = 𝑓 (𝑠𝑖).

𝑆2𝐼 𝑓 =
∑𝑛+1

𝑖=0 𝑓2(𝑠𝑖)𝐵𝑖, 𝑆2𝐿𝑓 = 𝑆(2)𝑓 + 𝑆(1)Δ2𝑓 +𝑆(0)Δ2
1𝑓 ,

with 𝑓2(𝑠𝑖) = 𝑓1(𝑠𝑖) + Δ1𝑓𝑖 with 𝑆(2)𝑓 =
∑ 𝑛

2 +2
𝑖=−1 𝑓 (𝑠

(2)
𝑖
)𝐵(2)

𝑖
,

and Δ1𝑓𝑖 = 𝑓0(𝑠𝑖) −𝑆1𝐼 𝑓 (𝑠𝑖). Δ2𝑓 = 𝑓 −𝑆(2)𝑓

and Δ2
1𝑓 =Δ2𝑓 − 𝑆(1)Δ2𝑓 .

𝑆𝑝𝐼𝑓 =
∑𝑛+1

𝑖=0 𝑓𝑝(𝑠𝑖)𝐵𝑖, 𝑆𝑝𝐿𝑓 = 𝑆(𝑝)𝑓 +𝑆(𝑝−1)Δ𝑝𝑓 (𝑥) +…
𝑆𝑝𝐼𝑓 (𝑥) =

∑𝑛+1
𝑖=0 𝑓 (𝑠𝑖)𝐵

𝑝

𝑖
(𝑥), ⋯+𝑆(1)Δ𝑝−1

2 𝑓 + 𝑆(0)Δ𝑝

1𝑓 ,

with 𝑓𝑝(𝑠𝑖) = 𝑓𝑝−1(𝑠𝑖) + Δ𝑝−1𝑓𝑖, with 𝑆(𝑝)𝑓 =
∑ 𝑛

2𝑝 +2
𝑖=−1 𝑓 (𝑠(𝑝)

𝑖
)𝐵(𝑝)

𝑖
,

Δ𝑝−1𝑓𝑖 = 𝑓0(𝑠𝑖) −𝑆(𝑝−1)𝐼 𝑓 (𝑠𝑖). Δ𝑝𝑓 = 𝑓 −𝑆(𝑝)𝑓,…
𝐵

𝑝

𝑖
(𝑥) ∶= (𝑝+ 1)𝐵0

𝑖
(𝑥) −

∑𝑛+1
𝑗=0

∑𝑝−1
𝑟=0 𝐵

𝑟
𝑖
(𝑠𝑗 )𝐵0

𝑗
(𝑥), … ,Δ𝑝−1

2 𝑓 =Δ𝑝−2
3 𝑓 −𝑆(2)Δ𝑝−2

3 𝑓

𝑖 = 0,1,… , 𝑛+ 1, 𝑝 ≥ 0 and Δ𝑝

1𝑓 =Δ𝑝−1
2 𝑓 −𝑆(1)Δ𝑝−1

2 𝑓 .

On partitions (1): no polynomial reproduction. 𝑆𝑝𝐿, 𝑝 ≥ 0 reproduce ℙ1.

On partitions (2): 𝑆𝑝𝐼 , 𝑝 ≥ 0 𝑆𝑝𝐿, 𝑝 ≥ 1 reproduce ℙ2 on partitions (1).

reproduce ℙ1 and numerical evidence 𝑆𝑝𝐿, 𝑝 ≥ 1 asymptotically reproduce ℙ2
shows an asymptotic reproduction of ℙ2. for increasing 𝑛 on partitions (2).

References

[1] C. Allouch, P. Sablonnière, D. Sbibih, A collocation method for the numerical solution of a two dimensional integral equation using a quadratic spline quasi-

interpolant, Numer. Algorithms 62 (2013) 445–468.

[2] C. de Boor, A Practical Guide to Splines, Springer, 2001.

[3] M. Buhmann, J. Jäger, Quasi-Interpolation, Cambridge University Press, 2022.

[4] J.M. Carnicer, J.M. Peña, Totally positive bases for shape preserving curve design and optimality of B-splines, Comput. Aided Geom. Des. 11 (1994) 633–654.

[5] C.K. Chui, R.H. Wang, On a bivariate B-spline basis, Sci. Sin., Ser. A XXVII (11) (1984) 1129–1142.

[6] A. Conchin-Gubernati, P. Lamberti, Multilevel quadratic spline integration, J. Comput. Appl. Math. 407 (2022) 114057.

[7] C. Dagnino, P. Lamberti, Numerical integration of 2-D integrals based on local bivariate 𝐶1 quasi-interpolating splines, Adv. Comput. Math. 8 (1998) 19–31.

[8] C. Dagnino, P. Lamberti, S. Remogna, On spline quasi-interpolation through dimensions, Ann. Univ. Ferrara 68 (2022) 397–415, https://doi .org /10 .1007 /s11565 -
022 -00427 -4.

[9] J. Delgado, J.M. Peña, A comparison of different progressive iteration approximation methods, in: M. Dæhlen, et al. (Eds.), Mathematical Methods for Curves 
and Surfaces: 7th International Conference, MMCS 2008, Tønsberg, Norway, June 26-July 1, 2008, in: LNCS, vol. 5862, Springer-Verlag Berlin Heidelberg, 2010, 
pp. 136–152.

[10] J. Delgado, J.M. Peña, Progressive iterative approximation and bases with the fastest convergence rates, Comput. Aided Geom. Des. 24 (2007) 10–18.

[11] C. Deng, H. Lin, Progressive and iterative approximation for least squares B-spline curve and surface fitting, Comput. Aided Geom. Des. 47 (2014) 32–44.

[12] E. Fornaca, P. Lamberti, Multilevel Schoenberg-Marsden variation diminishing operator and related quadratures, J. Comput. Appl. Math. 445 (2024) 115804, 
https://doi .org /10 .1016 /j .cam .2024 .115804.

[13] P. Lamberti, A. Saponaro, Multilevel quadratic spline quasi-interpolation, Appl. Math. Comput. 373 (2020) 125047.

[14] P. Lamberti, Numerical integration based on bivariate quadratic spline quasi-interpolants on bounded domains, BIT Numer. Math. 49 (2009) 565–588.

[15] C.-Y. Li, C.-G. Zhu, A multilevel univariate cubic spline quasi-interpolation and application to numerical integration, Math. Methods Appl. Sci. 33 (2010) 
1578–1586.

[16] H. Lin, Local progressive-iterative approximation format for blending curves and patches, Comput. Aided Geom. Des. 24 (2010) 322–339.

[17] H. Lin, H. Bao, G. Wang, Totally positive bases and progressive iteration approximation, Comput. Math. Appl. 50 (3–4) (2005) 575–586.

[18] H. Lin, G. Wang, C. Dong, Constructing iterative non-uniform B-spline curve and surface to fit data points, Sci. China, Ser. F 47 (2004) 315–331.

[19] L. Ling, A univariate quasi-multiquadric interpolation with better smoothness, Comput. Math. Appl. 48 (2004) 897–912.

[20] M. Liu, B. Li, Q. Guo, C. Zhu, P. Hu, Y. Shao, Progressive iterative approximation for regularized least square bivariate B-spline surface fitting, J. Comput. Appl. 
Math. 327 (2018) 175–187.

[21] Y. Lu, R. Wang, Quasi-interpolating operators and their applications in hypersingular integrals, J. Comput. Math. 16 (4) (1998) 337–344.

[22] P. Sablonnière, Quadratic spline quasi-interpolants on bounded domains of 𝑅𝑑 , d=1, 2,3, in: Spline and Radial Functions, Rend. Semin. Mat. (Torino) 61 (3) 
(2003) 229–246.

[23] P. Sablonnière, Univariate spline quasi-interpolants and applications to numerical analysis, Rend. Semin. Mat. (Torino) 63 (3) (2005) 211–222.

[24] R.-H. Wang, J. Wu, X. Zhang, Numerical integration based on multilevel quartic quasi-interpolants operator, Appl. Math. Comput. 227 (2014) 132–138.

[25] R.-H. Wang, C.-J. Li, Bivariate quartic spline spaces and quasi-interpolation operators, J. Comput. Appl. Math. 190 (1–2) (2006) 325–338.

[26] R.-H. Wang, X. Zhang, Numerical integration based on bivariate quartic quasi-interpolation operators, Numer. Math. J. Chinese Univ. 16 (3) (2007) 226–232.

[27] R. Yu, C. Zhu, X. Hou, L. Yin, Quasi-interpolation operators for bivariate quintic spline spaces and their applications, Math. Comput. Appl. 22 (2017) 10, https://

doi .org /10 .3390 /mca22010010.

[28] L. Zang, J. Tan, X. Ge, Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights, Vis. Comput. 32 (2016) 
1109–1120.

[29] L. Zang, J. Tan, X. Ge, G. Zheng, Generalized B-splines’ geometric iterative fitting method with mutually different weights, J. Comput. Appl. Math. 329 (2018) 
282

331–343.

http://refhub.elsevier.com/S0168-9274(24)00210-1/bib99BFAFF481C6E2585F7D0DE1C5CFDF1Ds1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib99BFAFF481C6E2585F7D0DE1C5CFDF1Ds1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib9C6FBB4FDA36B4552D83856B94764BAEs1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibF32D2C8C67D9A5D6C12CB68F25867A14s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib046C37E4113103B8AC83FBEFD9E8E354s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib9AF3107A066F6B0DEFB1CAFC0499F6EDs1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib5BC574A47246F122016869B32A6AA6F0s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibF5CE9F5CB682A1F863D5A8C51AC28683s1
https://doi.org/10.1007/s11565-022-00427-4
https://doi.org/10.1007/s11565-022-00427-4
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib93E14F24F152DCDA3DAE2919B4F58FF8s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib93E14F24F152DCDA3DAE2919B4F58FF8s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib93E14F24F152DCDA3DAE2919B4F58FF8s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib490F4961395923759053A4682E24A0EDs1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib702F8AECBEF5C2BB5364EFAB8CFB0EA2s1
https://doi.org/10.1016/j.cam.2024.115804
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibE8280907C8D32D5AF0F36E5442E84A34s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib9B7D173B068DC4D5517BFAE92D676437s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib4E53DC002CDBFD193CA5CA646D2193B1s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib4E53DC002CDBFD193CA5CA646D2193B1s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib512A4EC33CCC2D06AEE09A101A9B92E0s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib00730B18744A1B32737BA2E6463C1C40s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib5F10B473E6835E976C929824873B0A7Cs1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibB6F1C37B727A567F1AF39DFC48910DD6s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibFD40F2E3E0C4C276E2F2FD34C1461E45s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibFD40F2E3E0C4C276E2F2FD34C1461E45s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib0D8E74B9170DFCEB5F7B83EA44A20FE7s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibD3ECD27A89C63C91226B194ED33A4D71s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibD3ECD27A89C63C91226B194ED33A4D71s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib99952C89762F098777D45C31007B5D49s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibEA9D6D1C6A1509092F5A6A2A359E3353s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib185F7DC668EFBDA11913D588AE5DFB55s1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib595BCBF4B59231C7B0E31F2D9506FD32s1
https://doi.org/10.3390/mca22010010
https://doi.org/10.3390/mca22010010
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibA513D3302EFFB4B8C33276987F9EFBCFs1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bibA513D3302EFFB4B8C33276987F9EFBCFs1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib5322EAB6229E0E2DA973999C8EC3ABEDs1
http://refhub.elsevier.com/S0168-9274(24)00210-1/bib5322EAB6229E0E2DA973999C8EC3ABEDs1

	Progressive iterative Schoenberg-Marsden variation diminishing operator and related quadratures
	1 Introduction
	2 The variation-diminishing Schoenberg-Marsden operator
	3 The progressive iterative variation-diminishing Schoenberg-Marsden operator
	3.1 PIA operator SpI on simple knot partitions
	3.2 PIA operator SpI on boundary triple knot partitions
	3.3 Polynomial reproduction
	3.4 Convergence

	4 Numerical integration based on SpI
	5 Another approach to PIA property
	6 Numerical results
	6.1 Numerical results on approximation
	6.2 Numerical results on integration

	7 Conclusions
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary material
	References


