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Abstract – We study the functor DefkE of infinitesimal deformations of a locally free sheaf
E of OX -modules on a smooth variety X , such that at least k independent sections lift to
the deformed sheaf. We deduce some information on the k-th Brill-Noether locus of E ,
such as the description of the tangent cone at some singular points, of the tangent space
at some smooth ones and some links between the smoothness of the functor DefkE and the
smoothness of some well know deformations functors and their associated moduli spaces.
As a tool for the investigation of DefkE , we study infinitesimal deformations of the pairs
(E,U), where U is a linear subspace of sections of E . We generalise many classical results
concerning the moduli space of coherent systems to the case where E has any rank and X any
dimension. This includes a description of its tangent space and the link between smoothness
and the injectivity of the Petri map.
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1. Introduction

Let X be a smooth projective variety of dimension n and E be a locally free sheaf
of OX-modules on X . We are interested in the deformations of E together with some
of its sections.
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Much is known about the classical case of a line bundle L on a smooth projective
curve C. Classical Brill-Noether theory concerns with is concerned with the subvari-
etiesWk

d
(C) of Picd(C) of linear systems onC of degree d and projective dimension at

least k or equivalently of line bundles on C of degree d having at least k + 1 independ-
ent sections. Properties of Wk

d
(C) like non emptiness, connectedness, irreducibility

and dimension were largely investigated, successfully determined and summarised in
[2].

During the last few years, several generalisations of this problem were investig-
ated. Many efforts have been carried out to analyse the moduli space of stable vector
bundles of fixed rank and degree on a curve, having at least k independent sections.
In this context, less is known, about dimension, connected components and singular
locus, see for instance [14] and reference therein for an overview on this case.

To overcome the difficulties of the Brill-Noether theory of vector bundles, the
concept of coherent systems was introduced, see [3, 4, 19, 20, 29, 30] and reference
therein. A coherent system on an algebraic variety is the pair of a vector bundle E
of fixed rank n and degree d together with a linear subspace U of sections of E
of dimension k. There is a notion of stability which allows to construct the moduli
spaces of coherent systems fixing the parameters (n, d, k), see [19, 20]. The relation
between these moduli spaces and Brill-Noether theory is obvious: any vector bundle
which occurs as part of a coherent system must have at least a prescribed number
of independent sections. Conversely, a vector bundle with a prescribed number of
linearly independent sections determines, in a natural way, a coherent system. This
defines a forgetful map (E,U) → E surjecting to the corresponding Brill-Noether
locus. This map is an obvious generalisation of the classical projection Gk

d
(C) →

Wk
d
(C), where Gk

d
(C) is the variety that parametrises the linear systems of degree d

and projective dimension exactly k on a curveC. In many of the above works [loc.cit.],
the aim is to deduce as much information as possible on the Brill-Noether loci from
the moduli spaces of coherent systems that are easier to describe.

In [16], the infinitesimal study of the moduli space of coherent system on varieties
was carried out, allowing a description of the tangent space and an obstruction space,
see also [4, Section 3].

On the other hand, in [28] the authors generalised Brill-Noether theory to line
bundles on smooth projective varieties of dimension greater than one. They were able
to prove non emptiness and find the dimension of the Brill-Noether loci of a curve C
over a smooth surface X of maximal Albanese dimension, under the hypothesis that
a properly defined Brill-Noether number is positive and under some mild additional
assumptions.

Finally, the general case of vector bundles on varieties of higher dimension is still
quite mysterious. In [8], the authors prove the existence of a Brill-Noether type strati-
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fication of the moduli spaces of stable vector bundles on a smooth projective varieties
with fixed Chern classes under the assumption that all the cohomology groups of
degree greater than one vanish. Some properties known in the classical Brill-Noether
theory for line bundles on curves are expected to hold for the general case of vector
bundles on higher dimensional varieties too. Many of them are known to experts but
often there is no reference for them.

In this paper, we are interested in the infinitesimal deformations of a locally free
sheaf E of OX-modules on a smooth variety X that preserve at least a prescribed
number of independent sections. As a tool for this analysis we also study infinitesimal
deformations of E with a fixed subspace of global sections U. We focus on the local
study of the Brill-Noether loci and of the moduli space of local system respectively,
on all properties we can predict using deformation theory and we do not concentrate
on its global structure.

It is nowadays almost accepted that the most appropriate way to analyse locally a
moduli problem through infinitesimal deformations is via derived algebraic geometry.
The philosophy behind, called the Deligne’s principle, may be formulated in the fol-
lowing way: every deformation problem on a field of characteristic zero is controlled
by a differential graded Lie algebra (dgLa) via the Maurer-Cartan equation and gauge
equivalence. A rigorous proof of this philosophy was independently given by Lurie
[21] and Pridham [32] via an equivalence of infinity categories between dgLa and
formal moduli problem. The dgLa associated with a certain deformation problem is
defined only up to quasi-isomorphism and it encodes much information about the
problem. For instance, its first cohomology group coincides with the Zariski tangent
space of the moduli space and its second cohomology group is an obstruction space
for the problem.

This approach has been successfully applied in many cases such as deformations
of locally free sheaves [13], locally free sheaves with prescribed cohomological dimen-
sions [27], coherent sheaves [11], pairs of manifold and coherent sheaves [17].

Inspired by this philosophy and following [26], we find the dgLa controlling infin-
itesimal deformations of a pair (E,U) as above and are able to recover and generalise
some classical results. Later we deduce from this study and the obvious forgetful maps
of functors of deformations, some information about infinitesimal deformations of E
such that at least a certain number of independent sections lift. Note that such deform-
ations are basically more difficult to study than the deformations of (E,U), since they
do not define a deformation functor and they do not classically fall within the reach of
Deligne’s principle. The dgLas’s approach completely describes deformations of the
pairs (E,U), for any rank of E and any dimension of X , and provides some informa-
tion on deformations of E with at least a certain number of independent sections. An
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approach based on dgl pairs was used in [6] and [5] to analyse the cohomology jump
functors. There, the authors extend Deligne’s principle to deformations with cohomo-
logy constraints and in [9] this extension is fully proved. The fact that these are not
deformation functors is still an obstacle to a full understanding of the problem.

Our main motivation here was to test the power of the derived techniques in this
very classical context, where the classical theory has not yet answered all questions
and predict some properties the associated moduli spaces has to satisfy. In particular,
using this alternative approach, we are able to show some results, probably expected
by the experts. This can be considered a first step to tackle this kind of deformations.

Here, we restrict our attention to holomorphic locally free sheaf E of OX-modules
on a smooth complex manifold. In [18], we extend these techniques to describe a
dgLa that controls deformations of (E,U) on any algebraically closed field of charac-
teristic zero K, using Thom-Whitney constructions. This would offer the possibility
to broaden the classical results of Brill-Noether theory over any K. Once we have an
explicit description of the dgLa, we aim to apply this powerful approach to investig-
ate formality or abelian homotopy and deduce information about smoothness of the
Brill-Noether locus.

The article is organised as follows. For the convenience of the reader, we first
collect some basic notions on deformation functors, differential graded Lie algebras
and the link between them.

In the second section, we briefly recall the definition of deformations of a locally
free sheaf and exhibit the dgLa that controls these deformations following [13].

The third section is finally devoted to the study of deformations of pairs (E,U),
where E is a locally free sheaf of OX-modules on a smooth variety X and U is a
linear subspace of its sections. For the basic definitions and the identification of the
dgLa that controls these deformations, we follow [26]. Moreover, we are able to gen-
eralise some classical results: the condition for a section of a locally free sheaf to be
extended to a first order deformation and the description of the image of the Petri map
(Proposition 4.14). We also describe the tangent space to the functor of deformations
of (E,U) in the case U = H0(E) (Corollary 4.15).

In Section 4, we specialize the study of deformations of pairs (E,U) to the case
of a smooth curve. In Lemma 5.1, we find two equivalent conditions to the injectivity
of the Petri map, which is known to be crucial in the classical study of Brill-Noether
loci. In Proposition 5.6, we compute the dimension of the tangent space to the functor
of deformations of a pair (E,U) and find equivalent conditions to its smoothness,
generalising the classical results concerning the variety Gr

d
(C).

Section 5 is devoted to our main aim. Let E be a locally free sheaf E of OX-
modules on a smooth variety X , such that dim H0(X, E) ≥ k. We study infinitesimal
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deformations of E such that at least k independent sections of E lift. First we define
this kind of deformations and observe that the functor DefkE associated to them is not
a deformation functor in the sense of Definition 2.2. Theorem 6.3 describes the first
order deformations DefkE (C[ε]) and the vector space generated by them, suggesting
that the locally free sheaves with at least k + 1 independent sections are singular points
in the moduli space of sheaves with at least k sections. Propositions 6.5 and 6.6 deal
with the smoothness of the functor DefkE , linking it with other known conditions.

We indicate with K an algebraic closed field of characteristic zero. We will work
often over the fieldC of complex numbers. We denote byK[ε] the ring of dual number,
meaning ε2 = 0.

2. Preliminaries on deformation functors

The first part of this section is dedicated to some preliminaries on functors of Artin
rings and deformation functors we will need in the article. In the second part, we
introduce the basic definitions of differential graded Lie algebras and the deformation
theory associated to them. For a complete presentation of the topics, we refer the
reader to [10, 22, 23, 25, 33].

2.1 – Theory of deformation functors

Definition 2.1. A functor of Artin rings is a covariant functor F : ArtK → Set,
such that F(K) = ∗, where ∗ is the one point set, Set denotes the category of sets in a
fixed universe and ArtK the category of local Artinian K-algebras with residue fields
K.

Consider the following diagram whose objects and arrows are in ArtK

B ×A C //

��

C

��
B // A,

applying a functor F : ArtK → Set, we get a map

η : F(B ×A C) → F(B) ×F(A) F(C).

Definition 2.2. A functor of Artin rings F is called a deformation functor if it
satisfies the following conditions:
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• η is surjective whenever B→ A is surjective
• η is an isomorphism whenever A = K.
The functor F is called homogeneous, if η is an isomorphism, whenever B → A is
surjective.

The name comes from the fact that most functors arising by deforming geometric
objects are deformation functors and some of them are actually homogeneous.

Remark 2.3. Our definition of a deformation functor follows [22]. The first con-
dition here is the classical Schlessinger’s condition (H1) in [33], while the second is
slightly more restrictive than the (H2) of [33]. We assume these conditions because
they guarantee good properties for tangent spaces and obstruction theory as stated in
Proposition 2.4 and Theorems 2.12 and 2.15. For more details see [10, Example 6.8].

Proposition 2.4. Let F be a deformation functor, the set tF = F(K[ε]) has a nat-
ural structure of K-vector space. If ϕ : F → G is a morphism of deformation functors
the induced map ϕ : tF → tG is linear.

Definition 2.5. Let F be a deformation functor. The vector space tF = F(K[ε])
is called the tangent space to F.

Definition 2.6. A morphism of functors of Artin rings ϕ : F → G is called
smooth if for every surjection B→ A in ArtK, the map

F(B) → G(B) ×G(A) F(A)

is also surjective.
A functor of Artin rings F is smooth if the morphism F → ∗ is smooth, i.e. if

F(B) → F(A) is surjective for every surjective morphism B→ A in ArtK.

Remark 2.7. Note that, if ϕ : F → G is smooth, then the induced map F(A) →
G(A) is surjective for all A ∈ ArtK.

Proposition 2.8. Let ϕ : F → G a smooth morphism of functors of Artin rings.
Then: F is smooth if and only if G is smooth.

Proof. Let B→ A be a surjection in ArtK.
(⇒) : Consider the following commutative diagram

F(B) // //

ϕB
����

F(A)

ϕA
����

G(B) // G(A)
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in which the vertical arrow are surjective by smoothness of ϕ and the upper horizontal
arrow is surjective by smoothness of F. Thus the lower arrow is surjective too and G
is smooth.
(⇐) : Let fA ∈ F(A). Since G is smooth, there exists an element gB ∈ G(B) that

lifts ϕA( fA) ∈ G(A). By smoothness of ϕ, the element ( fA, gB) ∈ F(A) ×G(A) G(B)
has a pre-image fB ∈ F(B), that assures the surjectivity of F(B) → F(A) and then the
smoothness of F.

We now introduce the notion of obstruction theory that is crucial in the study of
deformations.

By a small extension in ArtK we mean an exact sequence

e : 0→ J → B
ϕ
→ A→ 0

where ϕ : B → A is a morphism in ArtK and J is an ideal of B annihilated by the
maximal ideal mB. In particular J is a finite dimensional vector space over B/mB =K.

Definition 2.9. Let F be a functor of Artin rings. An obstruction theory (V, ve)
for F is the data of a k-vector space V, called obstruction space, and for every small
extension in ArtK:

e : 0→ J → B
ϕ
→ A→ 0

of an obstruction map ve : F(A) → V ⊗K J satisfying the following properties:
• If a ∈ F(A) can be lifted to F(B) then ve(a) = 0.
• (base change) For every morphism α : e1 → e2 of small extensions, i.e. for every

commutative diagram

(2.1)

0 // J1 //

αJ

��

B1 //

αB

��

A1 //

αA

��

0

0 // J2 // B2 // A2 // 0

we have ve2(αA(a)) = (IdV ⊗ αJ )(ve1(a)) for every a ∈ F(A1).
An obstruction theory (V, ve) for F is called complete if the converse of the first
condition holds, i.e. the lifting exists if and only if the obstruction vanishes.

Remark 2.10. Note that, if F is smooth then all the obstruction maps are trivial.
The inverse holds if the obstruction theory is complete.

Clearly if F admits a complete obstruction theory then it admits infinitely ones; it
is in fact sufficient to embed V in a bigger vector space. One of the main interest is to
look for the smallest complete obstruction theory.
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Definition 2.11. A morphism of obstruction theories (V, ve) → (W, we) is a lin-
ear map ϕ : V →W , such that we = ϕ(ve) for every small extension e. An obstruction
theory (OF, obe) for F is called universal if for every obstruction theory (V, ve) for F
there exists a unique morphism (OF, obe) → (V, ve).

Theorem 2.12. [10, Theorem 3.2] Let F be a deformation functor, then there
exists a universal obstruction theory (OF, obe) for F. Moreover the universal obstruc-
tion theory is complete and every element of the vector space OF is of the form obe(a)
for some small extension

e : 0→ K→ B→ A→ 0

and some a ∈ F(A).

In the following, we will also need the notion of relative obstruction theory.

Definition 2.13. Let ϕ : F → G be a morphism of functors of Artin rings and
suppose G to be a deformation functor. A relative obstruction theory (V, ve) for ϕ is
the data of
• K-vector space V, called obstruction space,
• for every small extension in ArtK:

e : 0→ J → B
ϕ
→ A→ 0

of an obstruction map ve : F(A) ×G(A) G(B) → V ⊗K J satisfying the following
properties:
(1) If (a, β) ∈ F(A) ×G(A) G(B) can be lifted to F(B) then ve(a, β) = 0.
(2) (base change) For every morphism α : e1 → e2 of small extensions, i.e. for

every commutative diagram as (2.1), the following diagram is also commutat-
ive

F(A1) ×G(A1) G(B1)
ve1 //

(αA,αB )

��

V ×K J1

IdV ⊗αJ

��
F(A2) ×G(A2) G(B2)

ve2 // V ×K J2.

A relative obstruction theory is called complete if the converse of the first con-
dition holds, i.e. the lifting exists if and only if the obstruction vanishes.

Remark 2.14. Note that, if ϕ : F → G is smooth then all the relative obstruction
maps are trivial. The inverse holds if the relative obstruction theory is complete.
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Theorem 2.15. [10, Theorem 3.2] Let ϕ : F → G be a morphism of deformation
functors, then there exists a unique universal relative obstruction theory for ϕ.

Theorem 2.16. [22, Proposition 2.17] Let ϕ : F → G be a morphism of deforma-
tion functors and ϕ′ : (V, ve) → (W, we) be a compatible morphism between obstruc-
tion theories. If (V, ve) is complete, ϕ′ : V → W is injective and tϕ : tF → tG is
surjective then ϕ is smooth.

2.2 – Differential graded Lie algebras and deformation functors

Definition 2.17. A differential graded Lie algebra, briefly a dgLa, is the data
(L, d, [ , ]), where L =

⊕
i∈Z Li is a Z-graded vector space over K, d : Li → Li+1 is

a linear map, such that d ◦ d = 0, and [ , ] : Li × L j → Li+j is a bilinear map, such
that:
• [ , ] is graded skewsymmetric, i.e. [a, b] = −(−1)deg a deg b[b, a],
• [ , ] verifies the graded Jacoby identity,i.e.

[a, [b, c]] = [[a, b], c] + (−1)deg a deg b[b, [a, c]],

• [ , ] and d verify the graded Leibniz’s rule, i.e. d[a, b] = [da, b] + (−1)deg a[a, db],
for every a, b and c homogeneous.

Definition 2.18. Let (L, dL, [ , ]L) and (M, dM, [ , ]M ) be two dgLas, amorphism
of dgLas ϕ : L→M is a degree zero linear morphism that commutes with the brackets
and the differentials.

A quasi-isomorphism of dgLas is a morphism of dgLas that induces an isomorph-
ism in cohomology.

Let L be a differential graded Lie algebra, then there is a deformation functor
DefL : ArtK → Set canonically associated to it, as follows

Definition 2.19. For all (A,mA) ∈ ArtK, we define:

DefL(A) =
MCL(A)
∼gauge

,

where:
MCL(A) =

{
x ∈ L1 ⊗ mA | dx +

1
2
[x, x] = 0

}
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and the gauge action is the action of exp(L0 ⊗ mA) on MCL(A), given by:

ea ∗ x = x +
+∞∑
n=0

([a,−])n

(n + 1)!
([a, x] − da).

We recall that the tangent to the deformation functor DefL is the first cohomology
space H1(L) of the dgLa L. Moreover, a complete obstruction theory for the functor
DefL can be naturally defined and its obstruction space is the second cohomology
space H2(L) of the dgLa L.

If the functor of deformations of a geometrical object X is isomorphic to the
deformation functor associated to a dgLa L, then we say that L controls the deforma-
tions of X.

By definition, any morphism ϕ : L→ M , induces a morphism ϕ : DefL → DefM ,
that is an isomorphism whenever ϕ is a quasi-isomorphism.

3. Deformation of locally free sheaves

Let X be a smooth projective variety of dimension n and E a locally free sheaf of
OX-modules on X . First of all we recall some notions about the deformations of the
locally free sheaf E .

Definition 3.1. Let A be a local Artinian K-algebra with residue field K. An
infinitesimal deformation of E over A is a locally free sheaf EA of OX ⊗ A-modules
over X × Spec A, with a morphism πA : EA→ E such that the obvious restriction of
scalars πA : EA ⊗AK→ E is an isomorphism. The deformation will be indicated with
(EA, πA) or, shortly, with EA.

Two of such deformations EA and E ′A are isomorphic if there exists an isomorph-
ism φ of sheaves of OX ⊗ A-modules that makes the following diagram commutative:

(3.1)
EA

φ //

πA   

E ′A

π′
A~~

E .

The functor of infinitesimal deformations of E is

DefE : ArtK → Set .

It is classically known that DefE is a deformation functor. Moreover its tangent
space is tDefE = DefE (K[ε]) = H1(X, End(E)) and the obstructions are contained in
H2(X,End(E)), see for example [34].
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Let E be a locally free sheaf of OX-modules on X and let End E be the locally free
sheaf of its endomorphisms. Over the ground field C, consider

A0,∗
X (End E) :=

n⊕
i=0

A0,i
X (End E) :=

n⊕
i=0

Γ

(
X,A0,i

X (End E)
)
,

the graded vector space of global sections of the sheaf of differential forms with values
on the sheaf End E . The Dolbeault differential on forms and the bracket defined as the
wedge product on forms and the composition of endomorphisms induce a structure of
dgLa on it. It is well known that this dgLa is the one that controls the deformations of
E .

Proposition 3.2. [13, Theorem 1.1.1] The dgLa A0,∗
X (End E) controls deforma-

tions of E . The isomorphism of functors is given, for all A ∈ ArtC, by

Ψ : Def
A0,∗
X (End E)

(A) −→ DefE (A)
x −→ ker(∂̄ + x)

In particular, the tangent space to DefE is DefE (C[ε]) = H1(X, End E) and the
obstructions to deformations are contained in H2(X, End E), that fits in the classical
picture.

Remark 3.3. If the ground field is any algebraically closed field of character-
istic zero, instead of Dolbeault forms, the associated dgLa is defined via the Thom-
Whitney complex associated with the sheaf of endomorphisms End E (see [12]).

4. Deformation of locally free sheaves with a fixed subspace of sections

Let E be a locally free sheaf of OX-modules on a smooth projective variety X and
fix a subspaceU ⊆ H0(X,E). In this section, we study infinitesimal deformations of E
which preserves the subspace U. We point out that in the literature such a pair (E,U)
is called a local system of type (n = rk E, d = deg E, k = dimU). Deformations of local
systems, stability conditions for them and the concerned moduli space are studied in
[3, 16, 19, 20].

We start with some definitions and results of [26, 27].

Definition 4.1. Let A be a local Artinian K-algebra with residue field k. An
infinitesimal deformation of the pair (E,U) over A is the data (EA, πA, iA) of:
• a deformation (EA, πA) of E over A,
• a morphism iA : U ⊗ A→ H0(EA),
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such that the following diagram commutes

(4.1)

U ⊗ A

π

��

iA // H0(EA)

πA

��
U �
� i // H0(E).

Two of such deformations (EA, πA, iA), (E ′A, π
′
A, i
′
A) are isomorphic if there exist an

isomorphism φ : EA→ E ′A of sheaves of OX ⊗ A-modules, such that π′A ◦ φ = πA as
in diagram (3.1), and an isomorphism ψ : U ⊗ A→ U ⊗ A, that makes the diagram
commutative:

(4.2)

U ⊗ A

ψ

��

iA // H0(EA)

φ

��
U ⊗ A

i′
A // H0(E ′A).

Note that, this implies that φ induces an isomorphism φ : iA(U ⊗ A) → i′A(U ⊗ A).
The functor of infinitesimal deformations of (E,U) is

Def(E,U) : ArtK → Set,

that associates with every A ∈ ArtK a deformation (EA, πA, iA) as defined above. In
the following, we will often shorten the notation of such a deformation with (EA, iA).

Proposition 4.2. The functor Def(E,U) : ArtK → Set defined above is a deform-
ation functor.

Proof. First observe that Def(E,U)(K) = {(E, i)}, where i : U → H0(E) is the
inclusion and so Def(E,U) is a functor of Artin rings.

To prove it is a deformation functor, we verify the two conditions of Definition
2.2.
• Let B→ A and C → A two morphisms of Artin rings, suppose the first one to be

surjective, we have to prove that

η : Def(E,U)(B ×A C) → Def(E,U)(B) ×Def(E,U )(A) Def(E,U)(C)

is surjective. Let ((EB, iB), (EC, iC)) ∈ Def(E,U)(B) ×Def(E,U )(A) Def(E,U)(C) and let
(EA, iA) be the deformation over A to which both reduce. It is classically known
(see for example [33, Prop.3.2] for the line bundle case), that Ẽ := EB ×EA EC is
a locally free sheaf of OB×AC-modules that deforms E and which reduces to EB
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and EC over B and C, respectively. By hypothesis, iB ⊗B IdA = iC ⊗C IdA = iA :
U ⊗ A→ H0(EA), that means that U is a subspace of sections of E that lift to
EB and EC . Thus, there exists ĩ := iB × iC : U ⊗ (B ×A C) → H0(Ẽ) and (Ẽ, ĩ) ∈
Def(E,U)(B ×A C) proves the surjectivity of η.

• Let now A = K, we have to prove that η is bijective. The surjectivity is done.
Suppose now that (Ê, î) ∈ Def(E,U)(B ×K C) is an other deformation of (E,U)
sent to ((EB, iB), (EC, iC)) under η. Since Ê and Ẽ both reduce to EB, EC , E over
B, C and k respectively, it is classically known (see [33, Prop.3.2]), that they are
isomorphic. Note now that î : U ⊗ (B ×K C)→ H0(Ê) is completely determined by
its reductions over B and C, that are respectively î ⊗B×KC B = iB and î ⊗B×KC C =
iC . Thus î and ĩ have to coincide.

There is a natural transformation of functors

Def(E,U) → DefE,

that associates with every deformation of the pair (E,U) over A ∈ ArtK, the deforma-
tion of the sheaf E over A forgetting the deformed space of sections.

Lemma 4.3. The relative obstruction theory of the natural transformation
Def(E,U) → DefE is contained in Hom(U,H1(X, E)).

Proof. Let 0→ J → B→ A→ 0 be a small extension. Let

((EA, iA), EB) ∈ Def(E,U)(A) ×DefE (A) DefE (B),

thus EA is a deformation of E over A that lifts to a deformation EB over B. Consider
the exact sequence

0→ E ⊗ J → EB → EA→ 0,

that induces the exact sequence in cohomology

0→ H0(E) ⊗ J → H0(EB) → H0(EA)
δ
→ H1(E) ⊗ J → . . . .

Note that a section s ∈ H0(EA) lifts to a section of EB if and only if its image under the
boundary map δ in H1(X,E) ⊗ J is zero. Thus, the obstructions of Def(E,U) relative to
DefE are contained in Hom(U,H1(X, E)) ⊗ J and the obstruction theory is complete.
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From now on, the base field will be C. Consider the complex of sheaves of differ-
ential forms on X with values in the sheaf E with the Dolbeault differential

0→ A0,0
X (E)

∂̄
→ A

0,1
X (E)

∂̄
→ A

0,2
X (E)

∂̄
→ . . .

and the sheaf Hom(A0,∗
X (E),A

0,∗
X (E)) of homorphisms of this complex. Note that

the graded vector space of global sections of the sheafHom(A0,∗
X (E),A

0,∗
X (E)) is the

same as the graded vector space of homomorphisms of the complex of global sections

0→ A0,0
X (E)

∂̄
→ A0,1

X (E)
∂̄
→ A0,2

X (E)
∂̄
→ . . .

We denote it as Hom∗(A0,∗
X (E), A0,∗

X (E)).
As always, when one considers the homomorphism of a complex, one can endow

Hom∗(A0,∗
X (E), A0,∗

X (E)) with an obvious structure of dgLa using as bracket the wedge
product on forms and the composition of homomorphism and as differential the
bracket with the differential of the complex. The dgLa Hom∗(A0,∗

X (E), A0,∗
X (E)) con-

trols the deformation of the complex (A0,∗
X (E), ∂̄), as proved in [24, Section 4].

Note that there exists an inclusion of dgLas

(4.3) φ : A0,∗
X (End E) → Hom∗(A0,∗

X (E), A0,∗
X (E)),

defined for ω · f ∈ A0,p
X (End E) and η · s ∈ A0,q

X (E) as

φ(ω · f )(η · s) = ω ∧ η · f (s) ∈ A0,p+q
X (E).

It is easy to see that the elements in A0,∗
X (End E) correspond to the morphism of

the complex A0,∗
X (E) that are A0,∗

X -linear. Moreover, the Maurer-Cartan elements of
A0,∗
X (End E) which are equivalent to zero in Hom∗(A0,∗

X (E), A0,∗
X (E)) under the inclu-

sion φ correspond to the deformations of E that preserve the dimension of the cohomo-
logy spaces Hi(X, E) for every index i, as proved in [24, Lemma 4.1].

Next, consider the complex

QU : 0→ U
i
↪→ A0,0

X (E)
∂̄
→ A0,1

X (E)
∂̄
→ A0,2

X (E)
∂̄
→ . . . ,

where U is in degree -1. We define the graded vector space

DU =
{

f ∈ Hom∗(QU,QU ) | f |
A0,∗
X (E)

∈ A0,∗
X (End E)

}
.

For any element f ∈ D j
U , we use the notation f = ( f−1, fi), where f−1 : U→ A0, j−1

X (E)
and fi ∈ A0, j

X (End E). Endowed with the same differential and bracket as Hom∗(QU,QU ),
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DU is a dgLa. In particular, the tangent space to DefDU is DefDU (C[ε]) = H1(DU )

and the obstructions to deformations are contained in H2(DU ).
Consider the morphism:

r : DU → A0,∗
X (End E),

that associates with any f = ( f−1, fi) ∈ DU , the element fi ∈ A0,∗
X (End E). By definition,

it is a morphism of dgLas and it is clearly surjective. Denoting by M∗ = ker r = { f ∈
DU | f |

A0,∗
X (E)

= 0}, we have the following short exact sequence of dgLas

0→ M∗ → DU → A0,∗
X (End E) → 0,

that induces the following exact sequence in cohomolgy

0→ H0(M∗) → H0(DU ) → H0(A0,∗
X (End E)) →

→ H1(M∗) → H1(DU ) → H1(A0,∗
X (End E)) →

→ H2(M∗) → H2(DU ) → H2(A0,∗
X (End E)) → . . .

(4.4)

Since A0,∗
X (End E) is the Dolbeault resolutions of the sheaf End E , there are iso-

morphisms H j(A0,∗
X (End E)) � H j(X, End E), for all j ≥ 0. Note that as dg vector

space M∗ is isomorphic to Hom∗(U, QU ), where U is considered as a dg-vector
space concentrated in degree -1, thus H0(M∗) � Hom(U, H−1(QU )) = 0, H1(M∗) �
Hom(U,H0(X, E)/U) and H j(M∗) � Hom(U,H j−1(X, E)), for j ≥ 2.

Therefore the long exact sequence (4.4) becomes

0→ H0(DU ) → H0(X,End E) →

→ Hom(U,H0(X, E)/U) → H1(DU ) → H1(X,End E)
α
→

→ Hom(U,H1(X, E))
β
→ H2(DU )

γ
→ H2(X,End E) → · · ·

(4.5)

where the map α is the restriction to U of the morphism induced in cohomology by
the inclusion φ defined in (4.3).

Note, that the dgLa morphism r : DU → A0,∗
X (End E) induces a natural transform-

ation of functors:
DefDU → Def

A0,∗
X (End E)

.

Lemma 4.4. A complete relative obstruction theory of the natural transformation
DefDU → Def

A0,∗
X (End E)

is contained in Hom(U,H1(X, E)).

Proof. Let 0→ J → B→ A→ 0 be a small extension. Let

x = ((x−1, xi), x̃i)) ∈ DefDU (A) ×Def
A

0,∗
X
(End E )

(A) Def
A0,∗
X (End E)

(B),
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thus xi ∈ MC
A0,∗
X (End E)

(A) lifts to x̃i ∈ MC
A0,∗
X (End E)

(B).
Choose a lifting x̃−1 ∈ Hom(U, A0,0

X (E)) ⊗ B of x−1 and define x̃ = (x̃−1, x̃i). The
relative obstruction of x is the class of ob(x) = dx̃ + 1

2 [x̃, x̃] ∈ H2(DU ) ⊗ J. Tensoring
the sequence in (4.5) with J, we get the exact sequence:

. . .→ Hom(U,H1(X, E)) ⊗ J → H2(DU ) ⊗ J
γ
→ H2(X,End E) ⊗ J → · · ·

Since the element ob(x) goes to zero under the map γ, the relative obstruction ob(x)
is contained in Hom(U,H1(X, E)) ⊗ J.

The defined obstruction is complete. Indeed, if there exists a lifting x̃ ∈ DefDU (B)
of x, it satisfies the Maurer-Cartan equation, thus ob(x) = dx̃ + 1

2 [x̃, x̃] = 0.

The following proposition is one of the main result of this section.

Proposition 4.5. [26, Corollary 4.1.14] The dgLa DU controls deformations of
the pair (E,U). The isomorphism of functors is given, for all A ∈ ArtC, by

Φ : DefDU (A) −→ Def(E,U)(A)
x −→

(
(ker(∂̄ + x0), Id+x−1

)
Proof. For completeness and clearness we write here the proof. We leave to the

reader the classically known calculations for the isomorphism of the functors of Pro-
position 3.2. We divide the proof in two steps.
First step: the natural transformation of functors Φ is well defined. Let x =
(x−1, xi) ∈ D1

U ⊗ mA be a Maurer-Cartan element and prove that it defines a deforma-
tion of the pair (E,U). It is a classical fact that EA := ker(∂̄ + x0) with the map πA :=
Id ⊗π defines a locally free sheaf that is deformation of the sheaf E (Proposition 3.2).
The map iA := Id+x−1 fits in the diagram (4.1), in particular iA(U ⊗ A) ⊂ H0(X, EA).
Indeed,

(∂̄ + x0) ◦ (Id+x−1)|U⊗A = ∂̄ ◦ Id+∂̄ ◦ x−1 + x0 ◦ Id+x0 ◦ x−1

= 0 + (∂̄ ◦ x−1 + x0 ◦ Id) + x0 ◦ x−1

= (dx)−1 +
1
2
[x, x]−1 = 0,

since U ⊂ H0(X, E) and x ∈ MCDU (A). Then, the maps iA and πA makes the
diagram (4.1) commutative. Indeed, since x−1 ∈ DU ⊗ mA:

πA ◦ iA|U⊗A = (Id⊗π) ◦ (Id+x−1)|U⊗A = (Id⊗π)|U⊗A + (Id⊗π) ◦ x−1 = π + 0 = i ◦ π.

Moreover, the morphism above is well defined on deformation functors. Let x, y ∈
MCDU (A) be two gauge equivalent elements via z ∈ D0

U ⊗ mA, i.e. ez ∗ x = y. For
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i ≥ 0, the elements ezi : A0,i
X (E) ⊗ A→ A0,i

X (E) ⊗ A define an isomorphism of degree
zero and, as classically know, the gauge relation is equivalent to the commutativity

∂̄ + y0 = e[zi,−](∂̄ + x0) = ezi+1 ◦ (∂̄ + x0) ◦ e−zi .

Thus, φ := e−z0 defines an isomorphism between the deformed sheaves ker(∂̄ + x0)

and ker(∂̄ + y0).
Similarly, the element ψ := ez−1 : U ⊗ A→U ⊗ A defines an isomorphism and the

gauge relation is equivalent to the commutativity of the diagram (4.2). Indeed,

y−1 = ez ∗ x−1 = x−1 +

+∞∑
n=0

([z,−])n

(n + 1)!
([z, x]−1 − (dz)−1) =

= x−1 +

+∞∑
n=0

([z,−])n

(n + 1)!
([z, x]−1 + [z, Id]−1) = x−1 +

+∞∑
n=1

([z,−])n

n!
(Id+x−1) =

=

+∞∑
n=0

([z,−])n

n!
(Id+x−1) − Id = e[z,−](Id+x−1) − Id ,(4.6)

where we use (dz)−1 = i ◦ z−1 − z0 ◦ i = −[z, Id]−1. Thus:

Id+y−1 = e[z,−](Id+x−1) = ez0 ◦ (Id+x−1) ◦ e−z−1,

as we wanted.
Second step: Φ is an isomorphism of functors.
First the injectivity of Φ(A) for every A ∈ ArtC. Suppose that x = (x−1, xi) and y =

(y−1, yi) ∈ MCDU (A) induce isomorphic deformations (ker(∂̄ + x0), Id+x−1) and
(ker(∂̄ + y0), Id+y−1) via the isomorphisms (φ, ψ), as in Definition 4.1.

It is classical to lift φ to an isomorphism of the form ez , with z ∈ A0,0(End E) ⊗ mA

and to get the following commutative diagram

(4.7)

0 // U ⊗ A

ψ

��

Id+x−1// ker(∂̄ + x0)
i //

φ=ez

��

A(0,0)X (E) ⊗ A
∂̄+x0 //

ez

��

· · ·

0 // U ⊗ A
Id+y−1// ker(∂̄ + y0)

i // A(0,0)X (E) ⊗ A
∂̄+y0 // · · ·

The isomorphism ψ is of the form ew , with w ∈ Hom(U,U) ⊗ mA too, because it is
the identity on the residue field. Thus there exists an element t = (w, z) ∈ D0

U ⊗ mA,
such that et is an isomorphism that makes the diagram (4.7) commutative. It is an
easy calculation, similar to (4.6), to see that the commutativity is equivalent to the
gauge relation y = et ∗ x.
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Moreover, by next Proposition 4.6, the morphism of functor Φ is smooth, thus
Φ(A) is surjective, for all A ∈ ArtC.

Proposition 4.6. The morphism of functors Φ : DefDU −→ Def(E,U) defined in
Proposition 4.5 is smooth.

Proof. Let 0 → J → B → A → 0 be a small extension. Let x = (x−1, xi) ∈
DefDU (A) and Φ(x) = (EA, iA) ∈ Def(E,U)(A). The smoothness of Φ is equivalent
to saying that x lifts to an element x̃ ∈ DefDU (B) if and only if (EA, iA) lifts to a pair
(EB, iB) ∈ Def(E,U)(B). One direction is obvious.

For the other one, we recall that the morphism of functors Ψ : DefA0,∗(End E) →

DefE , defined in Proposition 3.2, is smooth. Thus it is enough to show that the relative
obstruction theories of Lemmas 4.3 and 4.4 are isomorphic via the correspondence
between the Dolbeault and Čech cohomology.

As in Lemma 4.4, let

x = ((x−1, xi), x̃i)) ∈ DefDU (A) ×Def
A

0,∗
X
(End E )

(A) DefA0,∗(End E)(B)

and let ob(x) ∈ Hom(U,H1(X, E)) ⊗ J be its obstruction. Observe that here H1(X, E)
is the Dolbeault cohomology group and let us find the element in Čech cohomology
that corresponds to ob(x). For every s ∈ U ⊗ A, ob(x)(s) ∈ H1(X, E) ⊗ J. This class
is represented by a closed element in A0,∗

X (E) ⊗ J, denoted again by ob(x)(s), which
is then locally exact. Therefore there exist an open coverW = {Wi} of X and τi(s) ∈
A0,0
Wi
(E) ⊗ J, such that ∂̄τi(s) = ob(x)(s)|Wi . Define on Wi ∩Wj the elements σi j(s) =

τi(s) − τj(s), they are Čech cocycles and their class [{σi j(s)}i j] ∈H1(X,E) ⊗ J defines
the corresponding element ob(x)(s) in Čech cohomology.

As in Lemma 4.3, let

((EA, iA), EB) ∈ Def(E,U)(A) ×DefE (A) DefE (B),

where Φ(x) = (EA, iA) and EB = Ψ(x̃i). For every s ∈ U ⊗ A, the obstruction to lift
iA(s) ∈ H0(EA) to a section of EB lives in H1(X, E) ⊗ J and is given by δ(iA)(s),
where δ is the coboundary map

. . .→ H0(EB) → H0(EA)
δ
→ H1(E) ⊗ J → . . . .

Recall that the construction of the coboundary map is obtained by chasing the follow-
ing diagram

0 // Č0(W, E) ⊗ J //

δ̌
��

Č0(W, EB) //

δ̌
��

Č0(W, EA) //

δ̌
��

0

0 // Č1(W, E) ⊗ J // Č1(W, EB) // Č1(W, EA) // 0.
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The element (iA)(s) = {iA(s)|Wi }i ∈ H0(EA) can be lifted to an element iA(s)|Wi −

τi(s) ∈ Č0(W, EB). Applying the Čech differential to it, we get δ̌(iA(s)|Wi − τi(s)) =
{iA(s)|Wi − τi(s) − iA(s)|Wj + τj(s)}i j = {τi(s) − τj(s)}i j = {σi j(s)}i j . As we state, the
two obstructions coincides.

As a direct consequence of Proposition 4.5, we get the following result, already
obtained in [16, Théoreme 3.12]. See also [3, Proposition 3.4] for the curve case.

Corollary 4.7. The tangent space to Def(E,U) is H1(DU ) and all obstructions
are contained in H2(DU ).

Remark 4.8. If the ground field is any algebraically closed field of characteristic
zero, in the same spirit as for deformations of the sheaf E (see Remark 3.3), we
expect to define a dgLa that controls deformations of (E,U) using the Thom-Whitney
complex associated with the sheaf of homomorphism of a suitable complex of sheaves
[18].

In the following, we briefly focus on smoothness of the forgetful morphism r :
Def(E,U) → DefE . The following corollary is a direct consequence of Lemmata 4.3
and 4.4. Otherwise, it can be obtained applying Theorem 2.16 to the exact sequence
(4.5).

Corollary 4.9. If Hom(U, H1(E)) = 0, the forgetful morphism of functors r :
Def(E,U) → DefE is smooth.

Remark 4.10. By Proposition 2.8, the smoothness of the forgetful morphism
r : Def(E,U) → DefE implies the equivalence between the smoothness of the two
functors DefE and Def(E,U).

Corollary 4.11. If the map α : H1(X,End E)→Hom(U,H1(X,E)) that appears
in (4.5) is surjective, then the forgetful morphism r : Def(E,U) → DefE is smooth.

Proof. Let 0→ J → B→ A→ 0 be a small extension in ArtC and consider

x = ((x−1, xi), x̃i)) ∈ DefDU (A) ×Def
A

0,∗
X
(End E )

(A) Def
A0,∗
X (End E)

(B).

Since xi lifts to x̃i , from the diagram of obstruction theories

(4.8)

DefDU (A)
ob //

��

H2(DU ) ⊗ J

γ

��
Def

A0,∗
X (End E)

(A) ob // H2(End E) ⊗ J
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we get that the relative obstructions to lift x to an element in Def(E,U)(B) is contained
in ker γ. This kernel is trivial: Indeed, looking at (4.5), the surjectivity of the map
α : H1(X, End E) → Hom(U, H1(X, E)) implies that the morphism γ : H2(DU ) →

H2(End E) is injective.

Remark 4.12. The condition Hom(U,H1(E)) = 0 is equivalent to the surjectivity
of the map α : H1(X,End E) → Hom(U,H1(X, E)). Indeed, by Corollary 4.11, if α is
surjective, then r is smooth and also the map H1(DU ) → H1(X,End E) on the tangent
spaces of the functors is surjective. By the exact sequence (4.5), the map α is actually
the zero map and so Hom(U,H1(X, E) = 0.

The other implication is obvious.

Corollary 4.13. In the notation above, we have

dim tDef(E,U )
≥ dim tDefE − k · dim H1(X, E),

where k is the dimension of U ⊆ H0(X, E).

Proof. By the long exact sequence (4.5),

· · ·→Hom(U,H0(X,E)/U)→H1(DU )
β
→H1(X,End E)

α
→Hom(U,H1(X,E))→ · · ·

we have

dim tDef(E,U )
= dim H1(DU ) ≥ dim Im β = dim ker α = dim H1(X,End E) − dim Imα

≥ dim H1(X,End E) − dim Hom(U,H1(X, E)) = dim tDefE − k · dim H1(X, E).

Using our description of deformations via dgLas, we can generalise a classical
result. Fix a section s ∈ H0(X, E), the morphism φ of (4.3) induces in cohomology
the cup product

− ∪ s : H1(X,End E) → H1(X, E),

where a ∪ s = α(a)(s), for every a ∈ H1(X,End E).

Proposition 4.14. Let E be a locally free sheaf over a projective variety X . A
section s ∈ H0(X, E) can be extended to a section of a first order deformation of E
associated to an element a ∈ H1(X,End E) if and only if a ∪ s = 0 ∈ H1(X, E).
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Proof. Let s ∈ H0(X, E) be a section and define U = 〈s〉. Recalling our descrip-
tions via dgLas of the first order deformations given after Proposition 3.2 and in
Corollary 4.7, we can rewrite the exact sequence (4.5) as

· · ·H1(DU )=Def(E,U)(C[ε])
r
→H1(X,End E)=DefE (C[ε])

α
→Hom(U,H1(X,E)) · · ·

The section s can be extended to a deformation associated to a ∈ H1(X, End E) =
DefE (C[ε]) if and only if a ∈ Imr . Since Imr = kerα we have the required description.

The same result is classically known for line bundles over a curve (see [2, Lemma
page 186]) and for line bundles over a projective variety (see [34, Proposition 3.3.4]).

This result can be reinterpreted in terms of some special maps and it can be seen
as a generalization of [2, Proposition 4.2 (i)], [14, Section 2] and [28, Section 4.3]. In
the spirit of [28, Section 4.3], we define a generalization of the Petri map - we will
properly introduce in the next section - as the map induced by the cup product:

µ0 : H0(X, E) ⊗ H0(X,KX ⊗ E∗) → H0(X,KC ⊗ E ⊗ E∗),

where KX is the canonical bundle of X, E∗ is the dual bundle of E and the map

αn : H1(X,End E) ⊗ Hn−1(OX) → Hn(End E),

is given by the cup product. Proposition 4.14 can be stated saying that for all σ ∈
H1(X,End E) ⊗ Hn−1(OX) and for all ψ ∈ H0(X, E) ⊗ H0(X,KX ⊗ E∗) the following
cup product vanishes:

αn(σ) ∪ µ0(ψ) = 0,

or equivalently that αn
(
H1(X,End E) ⊗ Hn−1(OX)

)
⊂ Hn(OX) is orthogonal to

Im µ0 ⊂ H0(X,KC ⊗ E ⊗ E∗).

In the particular case of deformations of pairs (E,H0(E)), the exact sequence (4.5)
splits

0→ H1(DU ) → H1(X,End E)
α
→ Hom(H0(X, E),H1(X, E)) → . . .

Thus the tangent space tDef
(E,H0(E ))

= H1(DU ) can be identified with the kernel of the
morphism α : H1(X,End E) → Hom(H0(E),H1(X, E)).

Corollary 4.15. The tangent space to the deformations of the pair (E, H0(E))
can be identified with

tDef
(E,H0(E ))

= {a ∈ H1(X,End E) | a ∪ s = 0, ∀ s ∈ H0(X, E)}.
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In the case of line bundles, the description of the tangent space above is also given
in [28, Proposition 3.3, (i)].

5. Deformations of the pair (E,U) over a curve

In this section, we restrict our attention on curves, i.e., we fix a smooth projective
curve C of genus g and we study deformations of the pair (E,U), where E is a locally
free sheaf of rank n and degree d on C and U ⊆ H0(C, E) is a subspace of sections of
dimension k.

First suppose E = L to be a line bundle on C. The Petri map, introduced first
by Petri in [31] and studied deeply in [1] and [2], is classically defined as the map
induced by the cup product:

µ0 : U ⊗ H0(C,KC ⊗ L∗) → H0(C,KC),

where KC denotes the canonical sheaf of C and L∗ the dual line bundle of L. In
[3, 14, 28] a generalization of µ0 to the case of a vector bundle E is introduced as the
map induced by the cup product:

µ0 : U ⊗ H0(C,KC ⊗ E∗) → H0(C,KC ⊗ E ⊗ E∗),

where E∗ is the dual of the vector bundle E .
Classically for line bundles and also in the successive generalizations [loc. cit.],

the Petri map plays a role in the study of the smoothness of the deformations of the
pair (E,U) over a curve C. We aim to recover and generalise these kind of results.

Consider the sequence (4.5); in the case of curves, it reduces to

0→ H0(DU ) → H0(C,End E) → Hom(U,H0(C, E)/U) →

→ H1(DU ) → H1(C,End E)
α
→ Hom(U,H1(C, E)) → H2(DU ) → 0.

(5.1)

So we are able to recover [3, Proposition 3.4 (i)].

Lemma 5.1. In the above notations, the following conditions are equivalent:

• H2(DU ) = 0,
• the map α is surjective,

• Hom(U,H1(E)) = 0,
• the Petri map µ0 is injective.
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Proof. The equivalence between the first two conditions follows from the exact
sequence (5.1). The equivalence between the second and the third is Remark 4.12.
Finally, the second and the last condition are equivalent because α and µ0 are dual
maps. Indeed, using Serre duality H1(C,End E)∗ � H0(C,KC ⊗ E ⊗ E∗) and
(Hom(U,H1(C, E)))∗ � (U∗ ⊗ H1(C, E))∗ � U ⊗ H1(C, E)∗ � U ⊗ H0(C,KC ⊗ E∗).

Aiming to link these conditions with the smoothness of the functor of deforma-
tions of (E,U), we prove the following result.

Lemma 5.2. In the above notations

h1(DU ) = h2(DU ) + h0(DU ) + k χ(E) − χ(End E) − k2,

where χ(E) and χ(End E) denote the Euler characteristics of E and End E respect-
ively.

Proof. From the above exact sequence (5.1), we obtain that

h0(DU ) − h0(End E)+ k ·
(
h0(E) − k

)
− h1(DU )+ h1(End E) − k · h1(E)+ h2(DU )= 0;

therefore

h1(DU ) = h2(DU ) + h0(DU ) + k ·
(
h0(E) − h1(E)

)
+ h1(End E) − h0(End E) − k2

= h2(DU ) + h0(DU ) + k · χ(E) − χ(End E) − k2.

Remark 5.3. Let E be a vector bundle of rank n and degree d on a curve C of
genus g, then χ(E) = d + n(1 − g) (see [15] page 154), then χ(End E) = n2(1 − g).
Therefore

k χ(E) − χ(End E) − k2 = k (d + n(1 − g)) − n2(1 − g) − k2

= k(d + n(1 − g)) + n2(g − 1) − k2

Then, as in [3, Definition 2.7] and [14, Definition 2.1], we can introduce the Brill-
Noether number.

Definition 5.4. Let E be a vector bundle of rank n and degree d on a curve C
of genus g and let U be a subspace of sections of dimension k. The Brill-Noether
number is

β(n, d, k) = n2(g − 1) − k(k − d + n(g − 1)) + 1.
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Remark 5.5. This number is a generalization to vector bundles of the well known
Brill-Noether number ρ for the data of a degree d line bundle over a curve of genus g
with a subspace of sections of dimension k:

ρ = g − k(g − d + k),

defined in [1] and [2]. As for the classical case of ρ, β gives an estimate of the dimen-
sion of the Brill-Noether loci in the corresponding moduli spaces.

We are now ready to prove our main result of this section. It generalises [2, Pro-
position 4.1], that for a line bundle L on a curve connects the injectivity of the Petri
map with the smoothness of the deformations of the pair (L,U) and calculates the
dimension of the concerned moduli space in the smooth case.

Proposition 5.6. Let E be a vector bundle of rank n and degree d on the curve
C of genus g and let U be a subspace of sections of dimension k. Then, the tangent
space to deformations of the pair (E,U) has dimension

β(n, d, k) − 1 + h0(DU ) + h2(DU ).

Moreover, the functor Def(E,U) is smooth and its tangent space has dimension β(n,d, k) −
1 + h0(DU ) if and only if H2(DU ) = 0 if and only if the Petri map is injective.

Proof. The tangent space to the deformations of the pair (E,U) is H1(DU ). Then,
according to Lemma 5.2 and Remark 5.3, the dimension of it is given by

h1(DU ) = h2(DU ) + h0(DU ) + k χ(E) − χ(End E) − k2

= h2(DU ) + h0(DU ) + k(d + n(1 − g)) + n2(g − 1) − k2

= h2(DU ) + h0(DU ) − 1 + β(n, d, k),

As already pointed out in Lemma 5.1, the Petri map is injective if and only if its
dual map α is surjective, that is equivalent to the condition that H2(DU ) = 0. Since the
obstructions to deform the pair (E,U) are contained in H2(DU ), if it vanishes, then the
functor Def(E,U) is smooth and the dimension of the tangent space is easily calculated
by the above formula. For the other direction, the condition on the dimension of the
tangent space implies that H2(DU ) = 0.

Remark 5.7. Proposition 5.6 is the analogous to [3, Proposition 3.10]. In this
article, the author focus their attention on the moduli space of coherent systems from
the global point of view. In order to construct a moduli space, they need a suitable
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notion of stability. The stability conditions, they define, imply that h0(DU ) = 1. Thus
the formula for the dimension of the tangent space reduces to β(n, d, k) + h2(DU ) (see
Lemma 3.5 [loc. cit]).

6. Deformations of a locally free sheaves and some of its sections

In this section, we consider a locally free sheaf E of OX-modules on a smooth
projective variety X , such that dim H0(X,E) ≥ k and study infinitesimal deformations
of E such that at least k independent sections of E lift to the deformed locally free
sheaf.

These deformations correspond to the infinitesimal deformations of the locally
free sheaf E induced by an infinitesimal deformation of a pair (E,U), for some sub-
space U ⊆ H0(X, E) with dim U = k. In other words, they are the deformations in the
image of the forgetful maps of functors:

rU : Def(E,U)→DefE,

for some U ⊆ H0(X, E), with dim U = k. We denote this subfunctor of DefE with
DefkE . More explicitly, we give the following definition.

Definition 6.1. Let E be a locally free sheaf of OX-modules on a smooth pro-
jective variety X , such that h0(X, E) ≥ k. Let Gr(k, H0(E)) be the grassmannian of
all subspaces of H0(X, E) of dimension k. We define the functor DefkE : ArtK → Set,
that associates with every A ∈ ArtK the set

DefkE (A) =
⋃

U∈Gr(k,H0(E))

rU (Def(E,U)(A)).

and call it the functor of deformations of E with at least k sections.

Remark 6.2. In the case h0(X, E) = k, all sections are required to lift to the
deformed locally free sheaf and the functor DefkE is in one-to-one correspondence via
the forgetful morphism with the functor Def(E,H0(E)), analysed at the end of Section
4. Thus, our study of Def(E,H0(E)) applies completely to it and in particular DefkE is
in this case a deformation functor.

In general, the functor DefkE is a functor of Artin rings, but unfortunately, it is not
a deformation functor. Indeed, by definition, if K is the ground field, we have

DefkE (K) =
⋃

U∈Gr(k,H0(E))

rU (Def(E,U)(K)) = {E},

since each of the functors Def(E,U) are of Artin rings.
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Consider now two morphisms of Artin rings B→ A and C → A and suppose one
of them to be surjective. The map

η : DefkE (B ×A C) → DefkE (B) ×DefkE (A)
DefkE (C)

will be in general not surjective. Indeed, let (EB, EC) ∈ DefkE (B) ×DefkE (A)
DefkE (C)

and let U and V subspaces of sections of E that lift to EB and to EC respectively, such
that U ∩ V has maximal dimension and suppose dim U ∩ V < k. Then the existence
of a lift of (EB, EC) in DefkE (B ×A C) will contradict the maximality of dim U ∩ V .

From now on, we restrict ourself to the field of complex numbers C. Even if the
description of the locus DefkE (A) for A ∈ ArtC is still quite mysterious, we can expli-
citly determine the first order deformations and the vector space they generate.

Theorem 6.3. In the above notations, if h0(X, E) = k, the tangent space to the
deformation functor DefkE is

tDefkE
= DefkE (C[ε]) = {a ∈ H1(X,End E) | a ∪ s = 0, ∀ s ∈ H0(X, E)}.

If, instead h0(X, E) ≥ k + 1, the first order deformations of E with at least k sections
are described by the cone

DefkE (C[ε]) = {ν ∈ H1(X,End E) | ∃U ∈ Gr(k,H0(E)) such that ν ∪ s = 0, ∀s ∈ U}

and the vector space generated by it, that we call the tangent space to DefkE , is

tDefkE
= H1(X,End E).

Proof. As already noticed, in the case h0(X,E)= k, the functor DefkE is in one-to-
one correspondence with the functor Def(E,H0(E)) and the tangent space is described
in Corollary 4.15 to be

tDefkE
� tDef

(E,H0(E ))
= {a ∈ H1(X,End E) | a ∪ s = 0, ∀ s ∈ H0(X, E)}.

If h0(X, E) ≥ k + 1, by definition,

DefkE (C[ε]) =
⋃

U∈Gr(k,H0(E))

rU (Def(E,U)(C[ε])).

For each U ∈ Gr(k,H0(E)), we calculate the image of the tangent space to deforma-
tions of the pair (E,U) using the exact sequence (4.5):

. . .→ H1(X,DU )
rU
→ H1(X,End E)

αU
→ Hom(U,H1(X, E)) . . .
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Thus

rU (Def(E,U)(C[ε])) = kerαU = {ν ∈ H1(X,End E) | ν ∪ s = 0, ∀s ∈ U}

and the first statement is proved.
For the second statement, we have to prove that the vector space generated by

DefkE (C[ε]) is the whole space H1(X, End E). One inclusion is obvious. For the
other one, it is enough to prove that, for all s ∈ H0(X, E) non zero section and for
all w ∈ H1(X, E), there exists an element ν ∈ DefkE (C[ε]) such that ν(s) = w. Since
dim H0(X,E) ≥ k + 1, it is always possible to find a subspace U ∈ Gr(k,H0(E)), such
that s < U and to build the matrix of ν.

Remark 6.4. This theorem generalises the classical results for line bundles on
curves [2, Proposition 4.2] and line bundles on a smooth projective varieties [28,
Proposition 3.3]. Our explicit description of the tangent space is also a particular case
of the one of the Zariski tangent space to the cohomology jump functors done in
[5, Theorem 1.7] using dgl pairs.

Moreover, our result is coherent with the well known fact that the locally free
sheaves E such that h0(X,E) ≥ k + 1 are contained in the singular locus of the moduli
space of locally free sheaves with al least k independent sections. That is classically
obtained defining that moduli space as a determinantal variety (see [2, Proposition
4.2], [3, Theorem 2.8], [8, Corollary 2.8], et. al.)

In the setting of deformation functors, the next step after the description of the
tangent space is the study of an obstruction space. As well known, in the deforma-
tion functors case both spaces have a meaning in term of the corresponding moduli
space. Unfortunately, our functor DefkE is not a deformation functor (see Remark 6.2).
However, Definition 2.6 holds for DefkE and in the following we try to get some geo-
metrical information linked to its smoothness.

Proposition 6.5. As above, let E be a locally free sheaf of OX-modules on the
projective variety X , such that h0(X, E) ≥ k. If there exists an U ∈ Gr(k, H0(X, E))
such that Hom(U, H1(X, E)) = 0 or, in an equivalent way, such that the map αU :
H1(X,End E) → Hom(U,H1(X, E)) that appears in (4.5) is surjective, then

DefE is smooth ⇔ Def(E,U) is smooth ⇔ DefkE is smooth.

Proof. From Corollaries 4.9 and 4.11, the two equivalent hypothesis imply that
the forgetful morphism rU is smooth. Then, the first equivalence is a direct con-
sequence of Remark 4.10. In regard to the second equivalence, since the obstruction
is complete, each EA ∈ DefkE (A) comes from a pair (EA, iA) ∈ Def(E,U)(A), for every
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A ∈ArtK. The above argument implies obviously the equivalence between the smooth-
ness of Def(E,U) and DefkE .

Proposition 6.6. In the above notation, if there exists an U ∈ Gr(k,H0(E)) such
that H2(DU ) = 0, then both the functors Def(E,U) and DefkE are smooth.

Proof. Since H2(DU ) = 0, the functor Def(E,U) is smooth and relative obstruc-
tion to rU is zero, thus rU is smooth too. These two properties assure that DefkE is
smooth too.

Remark 6.7. In general, the hypothesis H2(DU ) = 0 implies strictly that αU is
surjective. Since for a curve they are both equivalent to the injectivity of the Petri
map (see Lemma 5.1), Proposition 6.6 assures that on a curve C, if there exists
U ∈ Gr(k,H0(E)), such that the Petri map µ0 : U ⊗ H0(C,KC ⊗ E∗) → H0(C,KC ⊗

E∗ ⊗ E) is injective, then both the functors Def(E,U) and DefkE are smooth. See [7, Pro-
position 2.1] for a similar result, there the authors assume the injectivity of the Petri
map for every U ∈ Gr(k,H0(E)).
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