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Introduction

The principles of quantum mechanics, developed in the first half of the ’900
century, formed the basis for the first ”quantum revolution”, which estab-
lished, during the second half of the century, the new rules underlying the
description of nature. In more recent times, the growing understanding of
the quantum states of many physical systems and the ability to directly ma-
nipulate them, allowed the creation of technological devices that base their
operation on quantum principles. Potentially, these devices offer enormously
superior performances compared to the current ones, in the fields of telecom-
munications, metrology and sensors. In recent decades, quantum technologies
aroused increasing interest from the scientific community, which is preparing
for the challenges of the ”second quantum revolution” offering the possibility
of further improvements in various scientific fields.

In particular, in recent years there has been an interest in the development of
physical systems capable of emitting single photons on request and in a stable
way over time to generate new methods of secure communication, quantum
computation and the definition of cybersecurity protocols. Numerous devices
have been created with the aim of satisfying this demand. Nevertheless, these
devices still have non-ideal characteristics. Among the new candidates as
single photon sources, luminescent defects in the diamond play an important
role, which can be created in a controlled way by means of ion implantation.
Among the possible optically active defects, the most studied diamond retic-
ular defect is the nitrogen-vacancy (NV) complex, consisting of a nitrogen
substitutional defect arranged in a reticular site adjacent to a vacancial-type
defect, which represents a more stable structure more with respect to the
corresponding individual defects. This complex, in addition to being a sin-
gle photon emitter in conjunction with an appropriate optical stimulation,
possesses remarkable spin properties. The possibility of single spin optical
initialization, read out at room temperature and its long spin coherence time,
make the NV center promising in the field of sensors, laying the foundations
for its possible use as an ultra-sensitive nano-detector of electromagnetic and
temperature fields with an unprecedented combination of spatial resolution
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and sensitivity.

In this thesis a recent non-classicality criterion with respect to the usually
adopted second-order autocorrelation function was experimentally investi-
gated in order to discriminate single photon sources. Its advantage lies in
the resistance to Poissonian noise as well as in the possibility of assessing the
non-classicality of emitters even in large ensembles.
In addition, in this thesis the statistical nature of a single photon source in
a continuous laser regime is analyzed. Although the sub-Poissonian statistic
(V ar[n] < E[n]) of these sources in the pulsed laser regime is now estab-
lished, in conditions of continuous optical stimulation the Poissonian statistic
(V ar[n] = E[n]) is believed to be the one actually measured. However, there
is a possibility of observing the quantum nature of the source if the excitation
rate is comparable with the inverse of the lifetime.
Moreover luminescent nanodiamonds were internalized in living cells consist-
ing in a network of mouse hyppocampal neurons. Thanks to the exceptional
natural biocompatibility of the diamond, temperature variations at the level
of the single hippocampus cell, linked to biological processes, were analyzed
in detail.
Finally, technological and experimental improvements are analyzed to achieve
better sensitivities for measuring electromagnetic fields by exploiting bulk di-
amonds.

The thesis is structured as follows:

Chapter 1 – The diamond and the nitrogen-vacancy center. The basic no-
tions relating to the properties of the diamond and of the center are presented.

Chapter 2 – Single photon emitters: basics. The single photon sources (SPSs)
and their applications are presented. The Glauber function and recently pro-
posed anti-correlation function (dubbed θ parameters) are analyzed for SPSs
identification in continuous laser exposure regime. Finally, the well-known
two-level model is presented, which allows to describe the SPS and therefore
to characterize it by analyzing the behavior of the Glauber function.
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Chapter 3 – Single photon source characterization. After having analyzed
the emission statistics in the case of pulsed laser regime, the statistical distri-
bution of a SPS in continuous laser exposure regime in described. Finally a
new method to discriminate the presence of SPSs in the presence of thermal
and Poissonian fields is presented.

Chapter 4 – NV− center as a sensor. The basic principles of the measure-
ment techniques used (the optically detected magnetic resonance ODMR)
are presented, analyzing in detail the measurement of magnetic and electric
fields and temperature variations.

Chapter 5 – Single photon confocal microscope with microwave control equip-
ment for sensing measurements. The confocal microscope theory and the
apparatus used is presented.

Chapter 6 – NV− center as bio-sensor. The bio-sensing properties are clari-
fied from the theoretical point of view. The possibility of applications of the
sensor in the biological field for the detection of electromagnetic fields and
temperature variations is outlined.

Chapter 7 – Nanodiamonds quantum sensors application: temperature mea-
surement inside living cells. The experimental results in the detection of
temperature variation in a cell culture of mouse cortical neurons are shown.

Chapter 8 – Bulk diamonds based-sensors: sensitivity improvements towards
biological applications. The experimental results obtained to improve the
sensitivity of the measurement technique are shown by exploiting the greater
spin coherence of the bulk diamond, pulsed measurement techniques and op-
timized a bias magnetic fields.

Summary. The results obtained are summarized and the future prospects
for the research activity continuation are highlighted.
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Chapter 1

The diamond and the
nitrogen-vacancy center

1.1 The diamond

The diamond is a well known material. While its brilliance is at the center of
interest in the jewelry industry, its extreme physical properties make it unique
and appealing in scientific and technological applications. The diamond is
entirely based on carbon atoms, a chemical element of group IV, known for
its abundance and versatility due to its ability to establish chemical bonds
of different types both with other carbon atoms both with other elements.
For this reason carbon occurs in nature in different forms with well-defined
chemical structures and characterized by different inter-atomic bonds.
If in a diamond each carbon atom is bonded to four other atoms arranged
at the vertices of a tetrahedron, according to a structure that guarantees
the crystal’s peculiar hardness, in graphite and fullerene each carbon atom
is bonded to three more atoms creating planar structures. There are also
cylindrical structures with a nanometric diameter made up entirely of carbon
atoms and called nanotubes, which can be imagined as rolled up graphene
sheets.
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Figure 1.1: Carbon phase diagram.

By observing the carbon phase diagram (see Figure 1.1) it can be seen that
under normal ambient pressure and temperature conditions, the thermally
stable allotropic form is the graphite. In these conditions, the diamond ap-
pears as a metastable form but the potential barrier that needs to be overcome
for a spontaneous conversion into graphite is so high (≃ 2 eV ) that this never
happens spontaneously under normal ambient conditions. The diamond, on
the other hand, appears to be the configuration that maximizes the bond
energy, and therefore the most stable, at a temperature of the order of 4000
K (melting point) and at pressures of the order of GPa.

1.1.1 Crystal structure

Among all the possible allotropic forms of carbon, in the diamond the atomic
orbitals of carbon pass from the electron configuration 1s2 2s2 2p2 to a new
hybridized configuration, creating the 4 atomic valence orbitals sp3 : 2s 2px,y,z,
each with an unpaired electron. This electronic configuration determines
the typical tetrahedral structure of the carbon atoms in the diamond, which
generate, from the crystallographic point of view, a face-centered cubic lattice
(FCC) with cell parameter a0 = 3.57 Å, where the carbon atoms of the base
occupy the lattice positions (0, 0, 0) and (14 ,

1
4 ,

1
4) (see Figure 1.2). In this
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configuration, each carbon atom has a distance from its first 4 neighbors
equal to 1.5 Å, has an atomic density of 1.77× 1023 cm−3 and a mass density
of 3.54 g cm−3.

Figure 1.2: Diamond lattice primitive cell.

1.1.2 Mechanical, chemical and vibrational properties

Each carbon atom shares its 4 electron orbitals with 4 adjacent atoms. The
4 starting atomic orbitals generate 8 energy sub-bands, 4 of which are com-
pletely occupied by the valence electrons of the crystal, and constitute the
valence band of the diamond, while the other 4 remain unoccupied and consti-
tute the conduction band. The amplitude of forbidden energy that separates
the valence band from the conduction band has a very high value compared
to other materials, equal to Egap = 5.5 eV . The bond energy between the
carbon atoms in the diamond is also very high (7.73 eV ) and determines the
extreme mechanical macroscopic characteristics that determine the industrial
and technological interest of this material. In particular, atomic cohesion gen-
erates a high Young’s modulus (1220 GPa) and a hardness value equal to 10
on the Mohs scale. From a chemical point of view, the high bonding energy
means that the only chemical process capable of eroding the diamond surface
is oxidation at high temperatures. Consequently, the diamond is chemically
inert and, if we add to this the fact that it is made up entirely of carbon
atoms, it appears that the crystal is bio-compatible and can therefore play
an important role in bio-physical applications. Among the other character-
istics of the diamond, there is the high Debye temperature (2200 K), which
reflects the fact that the crystal is characterized by a low density of phonons
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at ambient temperature compared to other crystals. This determines a low
number of collisions with the crystal lattice and consequently the diamond
has a high thermal conductivity.

1.1.3 Electrical and optical properties

The high bond energy between the carbon atoms and the high forbidden
energy amplitude have important consequences on the electrical and optical
properties of the diamond. As for the binding energy, it guarantees the
possibility of applying an electric field up to the value of breakdown Ebd =
107 V cm−1, which allows to subject the diamond to intense electric fields
without generating electric discharges inside. The high band gap, on the other
hand, means that, from an electrical point of view, at room temperature the
diamond is included in the category of insulating materials or, alternatively,
it can be considered as a semiconductor with a large gap energy. On the other
hand, a forbidden energy of 5.5 eV ensures that the diamond is transparent
to light in a spectral range up to λ = 220 nm, encompassing the whole
spectrum visible and infrared. Finally, the diamond has a high refractive
index, described by the Sellmeier’s law :

n2 = 1 +
4.3556 · λ2

λ2 − (0.1060)2
+

0.3306 · λ2

λ2 − (0.1750)2
(1.1)

Being its refractive index of nmedium = 2.42, the material has a high re-
flectance (up to 17 %) and therefore the light that is transmitted to it can
undergo numerous internal reflections before emerging from the crystal: this
feature becomes problematic to maximize the amount of photoemitted radi-
ation by the luminescent centers it can contains.

1.1.4 Bulk diamond production

The high cost and poor reproducibility of different natural diamonds, char-
acterized by uncontrolled growth conditions, made it necessary to develop
methods for producing artificial samples. In particular, there are two syn-
thetic diamond synthesis procedures: the high pressure and high temperature
(HPHT) technique and the chemical vapor deposition (CVD) technique.
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1.1.4.1 High pressure and high temperature (HTHP) technique

This synthesis technique originates from a diamond sample (called ”seed”),
around which carbon is present, generally in graphitic form. The sample is
also immersed in a solvent in which there are catalysts (Fe, Co, Ti) which
have the function of accelerating the growth process. Everything is pressed
until pressures of the order of 10 GPa are reached and is heated up to tem-
peratures of 1770 K, thus recreating the growth conditions of the natural
diamonds that occur below the earth’s crust. The graphite sample is sub-
jected to pressure and temperature conditions in which the diamond is the
thermodynamically favored allotropic form. Although this technique is very
economical, it has the disadvantage of creating diamond with many impuri-
ties in the crystalline matrix. Consequently, the HTHP technique is mostly
used for mechanical applications. By refining the technique it is however pos-
sible to reduce impurities, in particular the most abundant is that of nitrogen.
This is achieved by inserting catalysts (such as Ti, Al, or Zr), which bind to
the impurities during the synthesis process, avoiding their incorporation into
the crystal lattice.

1.1.4.2 Chemical vapor deposition (CVD) technique

The technique consists in the deposition of single atomic layers on a suitable
substrate, chosen in such a way as to minimize the reticular “mismatch” and
therefore mechanical stress. To produce artificial diamond using this proce-
dure, the most suitable substrate is the monocrystalline diamond in order to
allow homoepitaxial growth. Alternatively, another material can be used as
long as it has similar crystallographic characteristics, in this case the pro-
cedure is called heteroepitaxial. During the growth process, the substrate
temperature is about 1000 K and the pressures of the order of 10−3 Pa. 2.46
GHz frequency microwaves are used to activate a chemically highly reactive
plasma composed of carbon ions and hydrogen ions. The carbon is deposited
on the substrate forming both the chemical bonds sp2 and sp3, generating
graphite and diamond, respectively. Hydrogen plasma is capable of splitting
graphite bonds, allowing only the diamond deposition. Other gases (such as
nitrogen and boron) can be introduced into the chamber during the growth
process to create, in a controlled way, some luminescent defects or, alterna-
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tively, to dope the material from an electrical point of view. For this reason
the CVD technique, even if it is more expensive and slower than HPHT tech-
nique, it allows the production of monocrystalline high purity diamonds or
with more controlled doping.

1.1.5 Nanodiamonds production

The techniques for the creation of NV centers in diamond are well estab-
lished also for nanodiamonds (NDs). Nanodiamonds-based sensors exploit
colloidal suspensions of single diamond particles of minimum diameter of 4-5
nm, but on average the nanodiamonds typically used in experiment have a
size of 50-100 nm. The nanometer size makes nanodiamonds-based sensor of
extreme interest for bio-sensing application, as they are potentially usable in
vivo experiments. Nonetheless, they have also important drawbacks such as
e.g. the increased sensitivity of NV spins to environmental noise. Indeed,
while in a bulk diamond the in coherence time T ∗

2 is mainly influenced by the
electronic impurities and nuclear spins in the surrounding, for nanodiamonds
the coherence time is further reduced due to the surface spin noise. This
should be taken into account in the estimation of the sensitivity limit (see
Equation (6.2)). Despite this limitation, nanodiamonds have attracted inter-
est also as a non-toxic alternative to quantum dots for biomedical imaging,
as magnetic sensors and finally as drug transporters (thanks to the discovery
of the possibility to functionalize the diamonds surface in various ways, ex-
ploiting the covalents carbon bonds). The great interest and the exceptional
range of applications of NDs is boosting the development of novel fabrication
techniques, even if the actual technologies are already able to provide very
pure nanodiamonds with controlled surface chemistry at a relative low cost
[1, 2]. Nanodiamonds are usually fabricated by milling of CVD or HPHT
crystals, in this way the nanocrystals sizes are ranging from 20 to 200 nm.
To reach smaller sizes, in order to increase the internalization rate in living
organisms for sensing or drug delivery purposes, detonation nanodiamonds
can be produced starting from solid carbonous precursors, with this method
sizes down to a couple of nanometers can be achieved.
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1.1.6 Classification

Artificial diamonds are classified according to their degree of purity [3]. Given
that the most common and naturally present impurities are nitrogen and
boron (being elements with an atomic radius very similar to that of carbon
and therefore easily incorporated into the diamond lattice), their respective
concentrations are used to proceed with the categorization, as described be-
low.
The types of diamonds are as follows:

• Ia when the nitrogen impurity concentration is between 100 ppm and
1000 ppm, which is high enough to be measurable with IR spectroscopy.
Being so abundant, nitrogen is in aggregate form. This category of
artificial diamond is referred to as ”mechanical grade” diamond, since
the only technologically relevant characteristic is mechanical hardness;

• Ib when the nitrogen concentration is around 500 ppm, still measur-
able with IR spectroscopy. The distribution of the substituted nitrogen
atoms is no longer in aggregate form, but isolated. Most of the dia-
monds created with the HPHT technique belong to this category. The
nitrogen impurities introduce a continuous absorption band in the green
and blue region of the visible spectrum, giving the diamond sample a
typical yellowish color;

• IIa when the nitrogen concentration is less than 10 ppm and therefore
becomes difficult to measure with conventional techniques. The diamond
is transparent and is referred to as”optical grade” type. Most of the
diamonds created with the CVD technique belong to this category;

• IIb when the nitrogen concentration is still lower than in the previous
category. The properties of the diamond are significantly influenced
by the presence of isolated boron impurities, which acts as an acceptor
and determines a conductive behavior of the p-type diamond. Diamonds
belonging to this category are referred to as ”electronic grade” diamonds,
alluding to their good charge carrying properties.

• Finally, the crystalline matrix of the purest diamonds may still have
an intrinsic magnetic field due to the non-zero spin of the naturally
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occurring C13 isotope atoms. By using isotopically purified gases during
the growth process, it is possible to significantly reduce the concentration
of C13, and such a sample is called ”quantum grade”.

1.2 Color center in diamond: the nitrogen-vacancy (NV)

center

The diamond optical properties described in the previous sections can be
adequately modified by introducing defects in the crystalline matrix in a
controlled way. These defects can be of various types:

• interstitial, when the impurity is constituted by an atom that is in-
serted between the positions of the diamond lattice;

• substitutional, when the impurity atom is inserted in the place of a
carbon atom, thus occupying the correct lattice position;

• vacancial, when the carbon atom is missing from the crystalline site;

• a combination of them, when the impurity consists of an atomic
structure in which several types of defects appear (such as the nitrogen-
vacancy complex which will be discussed in the next sections).

These defects can be naturally present in the crystalline matrix of the di-
amond, or artificially inserted during the diamond CVD growth, or subse-
quently by means of ion implantation.The presence of such impurities intro-
duces electronic levels within the diamond forbidden band. Depending on the
type of defect, the energy levels can be very close to the valence/conduction
band, or deeper, creating localized electronic states. Typically these levels
consist of a ground state and one or more excited states. During an appro-
priate stimulation, for example an optical stimulation (by means of a laser
source with a wavelength small enough to provide the required energy) or an
electrical stimulation(by an external current), the electronic state can change
from its own fundamental state to its excited state. Depending on the energy
absorbed by the electronic state, the system can transit in one of the vibra-
tional levels of the excited state. After a few ns the system evolves to the
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vibrational state zero of its excited level and it can go through the following
relaxation processes, see Figure 1.3:

• relax directly to the ground state, emitting its own characteristic radia-
tion, which in this case is called zero phonon line ”ZPL”;

• relax in one of the vibrational levels of the ground state, thus emit-
ting photons of longer wavelength. In this case the emission spectrum
presents additional peaks which are called phononic repetitions ;

• alternatively the physical system can relax without photon emission,
through lattice interactions and/or resonant energy transfer to proxi-
mate defects. In this case the system relax through a non-radiative
channel.

Figure 1.3: Diagram of the transitions between the energy levels in the diamond band gap.
The black bold lines represent the ground state and the excited state. The black lines
represent the vibrational levels of the respective states. The green arrow represents the
stimulation (optical or electrical). Finally, the red arrows refer to the possible relaxation
channels.

The defects for which it is possible to observe photon emission are also called
luminescent defects and, in particular, if the emission occurs in the visible,
they are called color centers.
There is a parameter, called quantum efficiency, defined as the ratio between
the probability of radiative and non-radiative relaxation. In general, for the
use of these defects, the quantum efficiency should be as high as possible.
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By subjecting the diamond sample to optical stimulation, it is also possible
that the exciting photon stimulate the valence band electronic state. In this
case, the electronic state can be promoted to a virtual excited state and re-
laxed by interacting with the diamond crystal lattice. This effect is called
Raman scattering and results in the emission of light at different wavelengths
than that of the exciting radiation. This energetic variation is linked to the
energy of the vibrational state involved (Raman shift for first order Raman
scattering in the diamond: RS = 1332 cm−1). This spectral shift appears
both for higher energies if the phonon is absorbed (Anti-Stokes transitions),
and lower if the phonon is generated following the transition (Stokes transi-
tions).

Of all the luminescent defects in artificial diamonds, the most studied is
the nitrogen-vacancy (NV) center, which is the main topic of this thesis. The
nitrogen-vacancy defect is a complex of impurities composed of a substitu-
tional nitrogen atom, arranged in a reticular site adjacent to a vacancy-type
defect, see Figure 1.4. The system has a pyramidal symmetry (C3v) and
has as its symmetry axis the direction that joins the nitrogen atom with the
vacancy. With respect to the tetrahedral structure of the diamond, there
are in total 4 possible orientations of the defect, among them equally proba-
ble under conventional synthesis conditions. There are two configurations in
which the complex can be found and they are distinguished by the number
of electrons involved: the neutral state, called ”NV0” and the negative one,
called ”NV−”. The 3 carbon atoms surrounding the vacancy contribute by
sharing 1 electron each to the complex, while nitrogen with 2. If in total
there are only these 5 electrons in the system, the center it is electrically neu-
tral (NV0) with total electron spin S = 1

2 . Alternatively, the defect can trap
1 additional electron from the surrounding lattice. In this case, the center
NV− is formed, which is negatively charged and has total electron spin S = 1.
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Figure 1.4: Diamond crystalline structure with nitrogen-vacancy defect.

1.2.1 Optical properties

Both charge states of the complex are optically active (i.e. capable of emit-
ting luminescence if stimulated optically), but are characterized by a different
spectral emission (see Figure 1.5).

Figure 1.5: Spectral emission of the nitrogen-vacancy centers.

The most defined emission peak, present at wavelengths λ = 575 nm for the
neutral state of charge and λ = 638 nm for the negative state, is associated
with the respective zero phonon line (ZPL). It is due to the purely radiative
relaxation of the complex. The emission at longer wavelengths is associated
with the relaxation process mediated by the production of phonons.
It is important to underline that the center, once formed, is not bound to
remain in a fixed state of charge but can pass from one to the other simply
by electronic entrapment/de-entrapment. The state of charge is determined
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by the position of the Fermi level in the diamond, which depends on the
concentration of nitrogen atoms and other impurities in the crystal, as well as
on the chemical termination of the surface, which may be primarily hydrogen
atoms or oxygen. In the case of hydrogen termination, due to electric dipole
interactions, the neutral configuration NV 0 is more likely because the Fermi
level of the diamond is at lower energy than the NV − level. If, on the other
hand, the surface is oxidized, the effect due to the electric dipole interactions
leads to the opposite situation. The intensity of the interaction with the
surface terminations is inversely proportional to the square of the distance,
therefore this effect is observed across the first 20 nm of depth from the
surface, while at greater depths it becomes negligible.
As can be seen from the Figure 1.5, the emission associated with this type of
defect in artificial diamonds is not monochromatic. Furthermore, the life time
of the electronic state in excited states is about 12 ns, which is too high for
applications in quantum communication. Therefore, although the nitrogen-
vacancy complex appears as a single photon source, it cannot satisfy all the
characteristics of ideality presented in the previous section. On the other
hand, the NV − center exhibits particular properties relevant to spintronics,
which make it a system of interest for a number of applications in quantum
computing and magnetometry.
It will be precisely the negative state of charge, the cornerstone of this thesis
work.

1.2.2 NV− energy levels structure

The NV− complex is characterized by 2 additional electrons with respect to
the electron configuration of the diamond, which determine the effective spin
of the system: S = 1. Consequently, analyzing in more detail the scheme of
energy levels (Figure 1.6), it presents a ground state of spin triplet (3A2) and
an excited state of triplet (3E), separated by an energy of 1.945 eV.
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Figure 1.6: NV− energy levels structure

The letters indicate the type of symmetry of the orbitals involved in the
transitions optics.
The states with third spin component |ms = ±1⟩ are degenerate in the ab-
sence of electromagnetic fields. Instead, due to the spin-orbit interaction,
there is an energy difference between the state |ms = 0⟩ and the states
|ms = ±1⟩, which as indicated in the Figure amounts to Dgs ∼ 2.87 GHz.
This type of splitting is also present for the excited state and is worth Dex ∼
1.42 GHz.
With a green emission laser it is possible to excite the system in a non-
resonant way, from the ground state to the excited state (green lines in Fig-
ure 1.6). The relaxation mode can follows two alternative paths depending
on the initial spin state of the system:

• If the initial state is |ms = 0⟩, a radiative transition occurs with the emis-
sion of a photon at around wavelength 637 nm (ZPL). In this process,
the quantum number ms is conserved. It is also possible a relaxation
with production of phonons, in which case it is possible to observe the
phononic replicas at wavelengths range between 650 nm and 800 nm.
The lifetime of the excited state depends on the temperature and on the
type of crystal: for a monocrystalline diamond it is worth τ = 12 ns.

• If the initial state is |ms = ±1⟩, two relaxation channels are possible.
The first, in which the spin is preserving, is completely analogous to that
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previously described. In the second relax channel the quantum number
ms is not conserved and the system relaxes in the configuration |ms = 0⟩
of the ground state. In the latter case the system passes through two
metastable states of singlet, namely 1A and 1E, between which there is
a radiative transition at a wavelength of 1042 nm. The spin variation
process is known in literature as inter-system crossing. The metastable
states have a lifetime of 200 ns. (More in detail, this relaxation channel
through the metastable levels is also possible from the |ms = 0⟩ level,
however the probability is much lower).

From the excited state |ms = ±1⟩, the transition through the metastable
state happens with a probability of ∼ 30%. This involves the configuration
|ms = ±1⟩ is characterized by a radiative efficiency lower than that |ms = 0⟩.
In fact, these two states are referred to as dark-state and bright-state respec-
tively. Regardless of the initial spin, if the external laser irradiation it lasts
over time, as a consequence of multiple cycles of excitation and relaxation
the electronic spin of the system is initialized in the state |ms = 0⟩, due to
the above process. The application of a microwave pulse of frequency equal
to Dgs can modify the spin, bringing the electronic state in |ms = ±1⟩, as
will be explained in detail in Chapter 4.

1.2.3 NV color center creation processes

One of the reasons why the nitrogen-vacancy defect has been extensively
studied is that nitrogen is an impurity naturally present in diamonds, typi-
cally it is the most common one (this is the reason why it is used to classify
artificial diamonds according to its concentration). To control the creation
of the NV center, one can regulate the density of nitrogen defects during the
growth of the diamond itself and/or adjust the vacancy density in the lattice
after the diamond sample creation. For this purpose, the sample is irradi-
ated with ions or other energetic particles, such as electrons and neutrons.
This process damages the crystal by creating vacancies. By controlling the
incident particles fluence it is possible to regulate the concentration of the
induced vacancies in the crystal. Furthermore, the type and energy of the
particles used determines the depth at which the defects are formed. For
ions, for example, this process takes place decisively at their Bragg peak. To
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create vacancy in a controlled way, codes are used that simulate the effect of
particles radiation.
At the end of irradiation process the sample is subjected to heat treatment
at a temperature above 600 °C (annealing process). At these temperatures
the thermal energy is sufficient to allow the vacancies to become mobile and
therefore able to migrate from one reticular site to another, unlike the sub-
stitutional nitrogen which remains immobile within the reticulum. This mi-
gration process continues as soon as a NV center is formed, which represents
a significantly more energy-stable complex.
A diamond synthesized with the CVD technique is characterized by a small
percentage of native defects, because during growth only a fraction of sub-
stitutional nitrogen (typically < 0.5%) forms NV complexes by trapping the
vacancies also created naturally during growth. So sometimes it can be conve-
nient to implant nitrogen ions in order to simultaneously increase the nitrogen
concentration as well as the vacancy-type defects.
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Chapter 2

Single photon emitters: basics

A single photon source (SPS) is referred to as a physical system capable
of emitting a single photon at a time. For the applications that will be
described in the next sections, an emitter of this type must have some ideal
characteristics, including:

• reliably guarantee an on-demand emission;

• have a high emission rate (of the order of GHz);

• guarantee a stable emission over time;

• exhibit monochromaticity of the emitted photon, preferably at a wave-
length in which the transmission along the optical fibers is maximized;

• indistinguishability.

Since the 1970s physical systems, which attempt to implement a single pho-
ton emitter, have been studied. They can be divided into two types, that is
sources with probabilistic emission and sources with deterministic emission.
A first example of a probabilistic emitter is represented by the attenuated
pulsed laser. In this approach, a laser beam is attenuated so that it statistically
emitted only one photon in a single pulse. These pulses inevitably have a
multi-photonic component and it is therefore not possible to guarantee that
a single photon is present in each emission.
An alternative probabilistic technique exploits the phenomenon of the para-
metric down conversion (PDC), which can occur in particular materials, such
as non-linear crystals. In the PDC, the absorption of a photon can create
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a pair of photons. In the process, the conservation of the energy and the
momentum of incident and outgoing photons occurs. One of the 2 photons
emitted is used as a trigger signal, which is detected by a single photon de-
tector. This triggers the second photon arrival. The probabilistic aspect of
PDC technique concerns the instant in time in which the emission occurs: the
pair of photons is not created in a predefined instant, as the creation process
is governed by statistical laws. Another disadvantage concerns the impossi-
bility of guaranteeing a high emission rate, as the pair creation efficiency is
very low: a pair of correlated photons is emitted every approximately 1012

photons of excitation.
An example of a deterministic emitter, closer to the ideal concept of a single
emitter, is given by quantum dots. These consist of hetero-structures fab-
ricated using epitaxial growth methods such as the molecular beam epitaxy
(MBE): on a semiconductor with a certain band gap another semiconductor
with a less wide band gap is grown. The size of these structures are nanomet-
ric, i.e. comparable with the characteristic wavelength of the charge carriers
that are confined to them. In a regime of weak electrical or optical excitation,
an exciton can be produced and the subsequent radiative recombination of
the same electron-hole exciton pair results in the emission of a single photon.
Although deterministic, the process typically occurs at cryogenic tempera-
tures and this typically represents a significant technological disadvantage.
An alternative solution, which carries the promise of overcoming the limi-
tations of the aforementioned systems, is represented precisely by the lumi-
nescent defects in solids. Taking up the characteristics of the ideal source
required for the use of these devices, the radiation collected by the lumines-
cent defects has the following advantages:

• can be considered on demand, because it occurs when the user decides
to stimulate the defect (for example optically);

• is characterized by a high temporal stability, given that the photochem-
ical degradation (photobleaching) typical of molecular systems is not
present and, in particular, the use of diamond as host material ensures
resistance to deterioration and chemical agents;

• some of these defects are characterized by a high quantum efficiency,
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made possible by the low phonon density which reduces the probability
of having non-radiative transitions or in any case assisted by interactions
with reticular vibrations.

It is important to underline that not all defects have the same emission char-
acteristics. Each impurity generates a specific discrete energy levels structure
in the forbidden band, and therefore must be studied individually to under-
stand if it can present suitable characteristics. The diamond is an excellent
material to host defects: its high band gap can allow numerous radiative
transitions inside it (in the diamond there are more of 500 optically active
defects). Furthermore, being a transparent material over the entire visible
spectrum, it does not absorb photons emitted by defects, even if the effect of
internal reflections is not negligible due to its high refractive index.
Of all the luminescent defects in artificial diamonds, the most studied is the
nitrogen-vacancy complex.

2.1 SPSs applications

As described, the nitrogen-vacancy center in the diamond is a single pho-
ton emitter, therefore it can be used for various applications in this sense.
Although its emission is not ideal, single photon states are valid candidates
such as quantum bit : the NV center therefore has potential applications in
quantum computing and in quantum cryptography. Its use can also make a
decisive contribution in quantum metrology, where the single photon can be
used to link the candela unit to fundamental constants.

2.1.1 Quantum computation

The concept of quantum computer is based on unique properties characteriz-
ing physical systems governed entirely by quantum mechanics, such as state
superposition and the entanglement. A quantum computer would be able
to solve certain problems in a significantly more efficient way than a clas-
sic computer, making it even obsolete. The quantum computer is based on
the implementation of quantum bits, instead of the bits on which the current
information technology is based. At present, there are two possible logical
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states, typically referred to as ”0” and ”1”. Information technology of quan-
tum computers, called QIP (Quantum Information Processing) is based on
qubits.
The ideal physical system in which to implement the qubits is still the sub-
ject of fundamental research. Several candidates have been proposed: cold
atoms, photons, nuclear spins in molecular systems, superconducting devices,
quantum dots and defects in solids.
To build a quantum computer, specific criteria must be satisfy, called Di-
Vincenzo criteria [4]. 7 have been listed, of which the first 5 are related
to quantum computation and the last 2, here not considered, necessary for
quantum communication.
The first 5 criteria are shown below.
1. Scalability and qubits well defined;
2. Ability to initialize the qubits status;
3. Coherence time much greater than the time of a logic gate operation;
4. Availability of a universal set of quantum gates;
5. Possibility to selectively query the qubits states.
Nitrogen-vacancy centers can be considered good candidates that satisfy these
criteria. In fact they have a high coherence time (τ > 2 ms) and since the
spin states have different luminosity, it is also possible to implement an op-
tical spin state readout of the single defect.
Furthermore, a NV− center inside a magnetic field has 3 states of distin-
guishable triplet. If we consider only the state |ms = 0⟩ and |ms = ±1⟩, the
system is on 2 levels. Thanks to the possibility of coupling the NV− centers
to the nuclear spin of the surrounding crystal defects, quantum prototypes
registers can be constructed.

2.1.2 Quantum cryptography

Cryptography deals with making a message indecipherable to actors who are
not authorized to intercept it. Since the advent of computers, the public-key
cryptographic techniques developed were based on complex mathematical
problems, such as the prime number factorization: a problem that (it is be-
lieved) cannot be solved efficiently by a computer working according to the
”classical” information theory. Despite today’s advanced computational ca-
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pabilities, computation times are so long that the code is relatively secure.
The security of this approach will fail with the advent of quantum computers.
Fortunately, quantum mechanics creates the problem with the quantum com-
puter, but provides also the solution thanks to the quantum cryptography, or
more correctly on quantum key distribution (QKD) solution. Indeed QKD
allows the secure distribution of cryptographic keys that will be used in sym-
metric (and quantum-safe) cryptographic protocols such as the Vernam cipher
of the AES (advanced encryption standard). Specifically QKD solution ex-
ploits single photons and the single photon sources can themselves represent
a good way to encrypt the information.

Most known QKD protocol is called BB84. The abbreviation is composed
by the inventors initials (Bennett and Brassard) and by the date of the first
pubblication of the protocol (1984). The first protocol implementation us-
ing attenuated laser as single photon sources only happened in 1992. The
crypto-key to be transferred safely is encoded through the polarization of
single photon states that are sent from a sender A (Alice) to the receiver B
(Bob). According to this protocol, Alice arbitrarily prepares single photons
in polarization states on two different bases, each chosen at random. For
example, Alice causally configures the photons in four different polarization
states corresponding to the eigenstates of a horizontal-vertical base and a 45°
base:

| ↑ ⟩ = 1 | → ⟩ = 0 (2.1)

| ↖ ⟩ = 1 | ↗ ⟩ = 0 (2.2)

Bob performs polarization measurements on the photons that are sent to him,
choosing also randomly between the two possible measurement bases. After
the broadcast of the key, Alice, through a classic channel, publicly communi-
cates the basis in which she has sent the photons, but not their polarization
state, so that Bob can eliminate the measurements made using the wrong
polarization bases. In this way, the remaining measures (sifted key) corre-
spond exactly to the state of incoming photons. The probability that Bob
randomly adopts the correct basis with which Alice prepared the photons is
50%, therefore about half of the photons sent will determine the sifted key.
It should be noted that when Bob and Alice use different bases the bit has
however a 50% chance of being correct (with the wrong polarizer, the photon
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polarization state is projected onto the other base), hence then total proba-
bility that Bob has a wrong bit is equal to 1

4 . Let’s assume that an eventual
spy (Eve) has the intention and the ability to intercept all the bits of the key
and, in order not to reveal the interception itself, to retransmit each photon
to Bob. According to the rules of quantum mechanics, by performing a mea-
surement on a physical state on an arbitrary basis, the system is perturbed
causing its wave function collapse on the measured value. As a result, the
message relayed to Bob is affected by Eve’s measure. Eve, like Bob, has to
choose randomly between the 2 polarization bases with a 50% probability of
guessing the base chosen by Alice. This intermediate measure perturbs the
polarization state and produces an increase in the total probability that Bob
receives wrong bits even within the sifted key. If only the bits belonging to
the sifted key are considered, the probability that Bob receives the wrong
bit in the presence of Eve is about 25%. At this point, Alice and Bob can
decide to sacrifice a part of the key and broadcast its content on a classic
channel. By analyzing later the probability of receiving Bob’s wrong bits, it
is possible to assess with certainty whether the key has been intercepted or
if it has reached its destination without interception attempts. In the latter
case, the remainder of the sifted key not shared on the classic channel is used
as a key and the message encoded by it can be sent via the classic channel.
The protocol security level is significantly worsens if a classical source (such
as the attenuated laser) characterized by non-negligible multi-photonic com-
ponents is used, instead a single photon source (SPS). In this case Eve can
carry out a photon number splitting (PNS) attack, that is, deterministically
intercepting photons from each multiphotonic pulse, so as to have informa-
tion about the signal sent. In this way Eve would have the possibility of
determining the polarization of only one of these photons without altering
the quantum observables of the others. In this way Eve is able to obtain the
information without disturbing the state of the qubits transmitted. Further-
more, the recipient would have no way of detecting this intrusion because the
missing photons can be attributed to losses during transmission and recep-
tion and therefore the safety requirement would be missing.
In conclusion, the system presented so far is totally safe from external attacks
only if we consider the case in which there are pulses containing always and
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only a single photon. This condition can be adequately satisfied by using
nitrogen-vacancy centers as single photon sources. This type of system was
built in 2004 [5], using this sources in nanodiamonds with an average diame-
ter of 90 nm. The above experiment gave results in complete agreement with
the theoretical models.

2.1.3 Metrology

According to the International System of units, the luminous intensity is
quantified as equal to 1 candela (1 cd) if: in a given direction, a source emits
monochromatic radiation with a frequency equal to 540 × 1012 Hz with an
intensity in the direction of propagation of a value equal to 1 W in a steradian.
The Candela project takes care of redefining this unit of measurement, based
on the photons number rather than the power carried by the light. This
would involve the possibility of tracing this measurement unit to Planck’s
constant, thus having a direct reference to a fundamental constant.

2.2 SPSs identification theory

One of the most debated issues in quantum mechanics is related to under-
standing the boundary separating the counterintuitive behavior of the sys-
tems governed by the quantum laws from the classical, familiar properties of
the macroscopical systems. This transition also manifests itself in the realm
of optics where, even if undoubtedly the radiation emitted by any possible
source of light is indeed composed by an ensemble of individual photons, the
properties of classical sources differ consistently from those of nonclassical
ones.
Since nonclassical optical states have now become a fundamental resource for
quantum technology [6], the determination of nonclassicality for a state is not
only important for studies concerning boundaries from quantum to classical
world, but also represents an important tool for quantifying such resources.
Vast literature exists on the characterization of SPSs. Most of the techniques
rely on the sampling of the second-order autocorrelation function (or Glauber
function g(2)), whose value is never smaller than 1 for classical light, while it
is lower than 1 for sub-Poissonian light, and in particular vanishes for single-
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photon states, where g(2) = 0 is expected in the ideal case of a single photon
source.

2.2.1 Glauber function g(2)

To clarify whether the collected luminescence consists of a sequence of sin-
gle photons emitted by individual defects, mathematically the second order
autocorrelation functiong(2) is used. This function is defined as follows:

g(2)(t) =
⟨I(t0) · I(t0 + t)⟩

⟨I(t0)⟩2
(2.3)

where I(t0) and I(t0+ t) are the electromagnetic fields intensity evaluated at
two different times and the average is carried out over time.
The light intensity is equal to the square of the electric field amplitude:

I ∝ E(+)(t) · E(−)(t) (2.4)

where E(+) and E(−) are the positive and negative frequency components of
the field. In quantum mechanics this expression can be redefined using the
creation and annihilation operators, respectively â† and â:

E(+)(t) ∝ â E(−)(t) ∝ â† (2.5)

So the equation (2.3) becomes:

g(2)(t) ∝ ⟨E(−)(t) · E(−)(t+ τ) · E(+)(t) · E(+)(t+ τ)⟩
⟨E(−)(t) · E(+)(t)⟩ · ⟨E(−)(t+ τ) · E(+)(t+ τ)⟩

(2.6)

Considering small values of t (t → 0) and using the above operators, the
following expression is obtained:

g(2)(0) ∝ ⟨â† · â† · â · â⟩
⟨â† · â⟩ · ⟨â† · â⟩

(2.7)

Taking into account the bosonic commutator:

[â†, â] = â† · â− â · â† = 1 (2.8)

and introducing the number operator :

n = â† · â (2.9)
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Is possible to obtain:

g(2)(0) ∼ ⟨â† · (â · â† − 1) · â⟩
⟨â† · â⟩ · ⟨â† · â⟩

=
⟨n2⟩ − ⟨n⟩

⟨n⟩2
(2.10)

where ⟨n⟩ is the mean value of the photon.
If the light source consists of a single photon emitter, then n = 1 and therefore
the function vanishes: g(2) = 0. If it were possible to produce 2 photons
simultaneously (as for example in the case of an agglomeration of 2 single
photon emitters), then g(2) = 0.5 and so on.
It is important to underline that these results represent an ideal cases, while
the experimental procedure presents non-idealities such as background noise
and dark counts from the detectors, which can invalidate the result if not
properly taken into account. Typically it is sufficient that the value of g(2)

turns out to be < 0.5 to conclude that it is a single photon source. In the
low-photon-flux regime, this parameter is equivalent to Grangier’s parameter
α [7], defined as the ratio between the photon coincidence probability and
the product of the single photon detection probabilities at the output of a
Hanbury-Brown & Twiss interferometer, which is the typical approach used
to estimate g(2) experimentally. This parameter g(2), can be extended to any
order K by defining g(K):

g(K)(0) =
⟨n(n− 1)...(n−K + 1)⟩

⟨n⟩K
(2.11)

2.2.2 Parameter θ(K) to quantifying SPSs in presence of strong
classical light

Recent years have seen an impressive advancement of quantum technology
in the optical domain [8, 9, 10, 11, 12] and single-photon metrology [13]
up to a point where the associated techniques are not anymore restricted
to scientific labs, but are starting to effectively penetrate in the industry
[14, 15], in the world-wide market [16], ultimately approaching everyday’s
life. As a consequence, it is of the utmost importance to develop simple
methods [17, 18, 19, 20, 21, 22, 23, 24] to characterize optical states that are
significantly more complex than that of the proof-of-principle single isolated
quantum systems (with possible addition of a small amount of background).
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Composite and application-driven quantum systems require an appropriate
characterization. Such systems are significantly affected by inevitable noise
and decoherence effects occurring when the system is moved from a controlled
lab-like environment to the real-world. From a theoretical point of view,
devising reliable and robust non-classicality criteria for such quantum systems
is a topic of high interest [25, 26, 27, 28]. For instance, the characterization
of ensembles of single-photon sources (SPSs) [18, 29, 30] in the presence of
strong backgorund noise is considered. The most widespread techniques for
the characterization of quantum optical states are based on the measurement
of second order Glauber’s autocorrelation function g(2) , defined in the section
2.2.1. and typically used to intuitively assess the nonclassicality of optical
sources.

This parameter g(2) (or Grangier’s parameter α), can immediately be ex-
tended to any orderK by defining g(K) (see Eq.(2.11)) as the ratio of the prob-
ability of a K-fold coincidence divided by the product of K single click prob-
abilities of K non-photon-number-resolving (non-PNR) detectors attached to
the output ports of a generalized multiport Hanbury-Brown & Twiss interfer-
ometer (HBTI). Operationally, such an HBTI can be comprised of cascaded
two-ports beam splitters [31, 32, 33, 34, 35, 36, 37]. One of the main advan-
tages of the g(K) parameter is that its value does not depend on the splitting
ratio among the HBTI arms, on the overall losses and on the detection effi-
ciency of the detectors comprising the HBTI.

The experimental measurement of g(K) has proven to be a useful resource
in quantum optics. It has been demonstrated how to identify, by simultane-
ously sampling multiple-order g(K)’s (in the specific case, K = 2, 3, 4), the
underlying mode structure of complex multimode fields such as the superpo-
sition of a SPS emission with thermal fields, or a multi-thermal field with a
Poissonian field, a task that cannot be achieved by only measuring g(2) [38].
This useful technique presents some limitations, emerging for instance when
the fields to be reconstructed are composed by one or more distinct SPSs in
presence of Poissonian or both thermal and Poissonian background noise. A
situation of interest, e.g., when trying to identify single-photon emission due
to color centers in diamond. Furthermore, some “a priori” knowledge on the
state to be reconstructed (e.g., the number and types of modes composing
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it) is needed to achieve reliable results.
Lately, a new criterion for assessing optical sources nonclassicality, mainly
focused on clusters of single-photon emitters, has been proposed [39] and
successfully implemented to test SPSs based on emitters such as color centers
[40], trapped ions [41] and colloidal CdSe/CdS dot-in-rods[42]. This criterion
is based on the measurement of a parameter, θ(K), defined as:

θ(K)(0) =
Q(0⊗K)

(Q(0))K
, (2.12)

where Q(0) and Q(0⊗K) are, respectively, the probability of no-photon detec-
tion at the end of one arm and in K HBTI arms simultaneously. The param-
eter θ(K) has an interesting properties: the θ(K) value is not affected by the
presence of Poissonian light, so that it can be extremely valuable in the char-
acterization of photoluminescent emitters [43, 44, 45, 46, 47, 48, 49, 50, 51],
since such a parameter would be insensitive to residual back-reflected exci-
tation laser light. As a drawback, θ(K), contrarily to g(K), strongly depends
on the experimental apparatus, i.e. the BSs splitting ratio, the optical trans-
mission of the HBTI and detection efficiencies of the detectors involved.

2.3 SPSs charactherization theory

Once a SPS has been identified using the autocorrelation function criterion or
using the θ(K) parameter, it is advisable to characterize its emission in order
to have a complete description of the source. In particular, the emission of a
SPS can mainly be described using the following parameters: lifetime, satu-
ration power and asymptotic emission intensity. The lifetime (τ) is defined
as the average time between the excitation of the source and the subsequent
relaxation through the emission of a photon. As defined, the lifetime deter-
mines an important characteristic of a SPS, namely the emission rate (1/τ).
As regards the saturation power (Psat), this quantity indicates the excitation
power beyond which the emission of the source tends to a constant value. The
maximum intensity obtained in this condition is defined as the asymptotic
emission intensity (I∞). In order to obtain these quantities, mathematical
models are used which describe a SPS in a simplified way. The simplest is
the 2-level model.
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2.3.1 SPS two-levels model

Normally a SPS can be well described by two energy levels model: a funda-
mental level (here called 1) and an excited one (2). These levels are separated
by a ∆E = E2−E1 = hν0 and their occupation probabilities, also called pop-
ulations, are indicated respectively as n1 and n2.
Initially it is assumed that the system is prepared in its ground state. There-
fore, the following relations hold for populations at t = 0:

n1(t) + n2(t) = 1 ∀t
n1(0) = 1

n2(0) = 0

(2.13)

By exciting the system non-resonantly with a laser of frequency ν1 > ν0,
the system transitions to a vibrational level and subsequently relaxes non-
radiatively to the excited level (2). From this level the source can then
transition to the ground state (1) by emitting a photon, see Figure 2.1.

Figure 2.1: Representation of a SPS according to the two-level model

The dynamics of the populations of the two levels, neglecting the vibrational
one, is described by the following equations:{

ṅ1(t) = −k12n1(t) + k21n2(t)

ṅ2(t) = +k12n1(t)− k21n2(t)
(2.14)

where k12 indicates the probability per unit of time that a photon is promoted
from the 1 level to 2 and, conversely, k21, the probability per unit time that
a photon spontaneously relaxes from the level 2 to 1. The first of these two
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quantities is directly proportional to the excitation power P , so k12 = αP .
The second can be written according to the lifetime τ of the source. In fact,
if we imagine turning off the exciter pump at a time t = 0, the system of
equations reduces to ṅ2(t) = −k21n2(t), the whose solution is a decreasing
exponential with τ = 1

k21
.

In the general case, solving the previous system of equations for n2, we obtain
that the level 2 population can be expressed as follows:

n2(t) = n2(∞)(1− e−λt) =
k12
λ
(1− e−λt) (2.15)

where λ = k12 + k21 and n2(∞) indicates the population of the excited level
in the stationary case, i.e. when the excitation pump has been on for a long
time.
We can relate the expression just found with the second order autocorrelation
function, described in section 2.2.1. The autocorrelation function described in
Eq.(2.3), can be rewritten by making explicit I(t0), intensity of the source in
stationary conditions, and I(t0 + t), intensity after a time t from the photon
emission, as the number of photons emitted per time unit, the following
relations are obtained:

{
I(t0) ≡ I = ηr · k21 · n2(∞)

I(t0 + t) = ηr · k21 · n2(t)
(2.16)

with ηr detector efficiency of the instrumental apparatus. Inserting these last
expressions in Eq.(2.3), we obtain:

g(2)(t) =
n2(t)

n2(∞)
= 1− e−λt (2.17)

Below, in Figure 2.2, the graph of the autocorrelation function obtained is
shown.
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Figure 2.2: Trend of the autocorrelation function predicted by the two-level model for a SPS.

By studying the number of correlations as the time varies between the emis-
sion of the first photon and the detection of the second, it is possible to
obtain parameters necessary for the characterization of the sources, such as
the lifetime. By interpolating the graph it is possible to obtain the argu-
ment of the exponential λ of Eq.(2.17) at different pump laser power values.
Once the λ(P ) values are known, a linear interpolation can be performed
and the parameter of interest can be obtained. For convenience, the report
is reproduced:

λ = k12 + k21 = αP +
1

τ
(2.18)

To complete the characterization, it is interesting to obtain the saturation
power Psat and the asymptotic emission intensity I∞ of a SPS, which are
related to the intensity by the following relationship:

I = I∞ · P

P + Psat
(2.19)

Comparing this definition with the terms in Eq.(2.16), in which the expression
of n2(∞) (see Eq.(2.15), of reported below:

I = ηr · k21 ·
αP

αP + k21
= ηr · k21 ·

P

P + k21
α

(2.20)

From this expression it can be easily seen that the saturation power is none
other than the term k21

α and that, in the same way, the asymptotic emission
intensity is given by ηr · k21.
By measuring the emission intensity as a function of the power and perform-
ing a suitable interpolation, it is also possible to obtain the saturation power
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and the asymptotic emission intensity of a SPS [52].
The model just illustrated describes the SPS as two-level structures in which
the only transitions involved are radiative. Even if this condition is hardly
satisfied in practice, since the inevitable interactions between the SPS and
the surrounding environment lead to the presence of non-radiative transi-
tions, it is often sufficient to understand the characteristics of the source.
Alternatively, one can imagine describing the SPS as a three-level structure:
a fundamental level, an excited level, and a metastable intermediate level.
However, the procedure is the same.
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Chapter 3

Single photon source characterization

In this chapter the results obtained on the characterization of single photon
sources (SPSs) are described.
The first result concerns the theoretical study on the SPSs statistical distri-
bution of the photon emission. While in pulsed laser regime the well-known
sub-Poissonian statistic is obtained, it is shown here how the same statistic
can be obtained by subjecting the source to a continuous laser. This statistic,
index of the quantum nature of the source, can potentially occur when the
emission and relaxation rates are comparable and the experimental condi-
tions are such as to guarantee an almost ideal collection of photons.
The second result concerns a practical application of the theoretical model
described in the previous chapter. From the experimental results it can be
deduced that the glauber function g(K) and the theta parameters θ(K) si-
multaneously can be an excellent method to resolve the optical states and
trace the presence of single photon sources, even when immersed in a bath
of thermal and Poissonian light.

3.1 Statistical emission in pulsed laser regime

As reported in the previous chapter, the presence of a SPS (and therefore
the sub-Poissonianity of the emitted photon statistics) can be observed from
the second order autocorrelation function by analyzing its emission for mea-
surement times of the order of the lifetime of the source itself, or ps/ns. For
longer measurement times, this function does not provide any indication on
the distribution of the photons emitted. The method that is adopted involves
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directly deriving the mathematical expression of the average value and the
variance of the number of photons emitted and, from their comparison, the
type of emission statistics is then established. This method is well developed
in the scientific literature to describe the emission of a SPS excited with a
pulsed laser [53, 54, 55]. The procedure with which the SPS emission statis-
tics is derived in the pulsed laser regime is reported here.
Let us consider the excitation of a SPS with a laser that emits pulses at a
frequency f . In a measurement time T , the system receives N pulses, where
N = f · T . By defining q the pumping efficiency, that is the probability for
the SPS transition from its fundamental level to the excited one, given an
incident pulse. Assuming that the system has a unitary quantum efficiency,
which implies that the source always transits radiatively to the ground level
once prepared in its excited level. In this case, the emission process is bino-
mial and the probability of extracting from the system n photons given N

incident pulses is given by the following distribution:

B(n |N, q) =
N !

n ! (N − n) !
qn(1− q)N−n (3.1)

In this case, exploiting the normalization relation
∑N

n=0 B(n |N, q) = 1, it can
be shown that for the binomial distribution in 3.1 the following expressions
are satisfied: 〈

n
〉
= Nq V ar[n] = (1− q)

〈
n
〉

(3.2)

Since the pumping efficiency q is typically lower than 1, it follows that for a
SPS excited with a pulsed laser the emission statistic is of the sub-Poissonian
type since V ar[n] <

〈
n
〉
[53].

This same behavior is obtained even if the non-ideal nature of the instru-
ments used to detect the photons is taken into account. In fact, this is
demonstrated below by taking into consideration the effects of both the effi-
ciency and the dead time of the detectors.
First, imagine detecting the photons emitted by the source with a detector
with an efficiency ηr lower than 100%. In this case, the probability of count-
ing a photon is given by the convolution of the pumping efficiency with the
instrumental one. This quantity, in fact, must take into account both the
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probability of the system of emitting a photon, given a pump pulse, and the
probability of the instrument detecting it. Consequently, the probability of
extracting from the system n photons given N incident pulses becomes:

B(n |N, q ηr) =
N !

n ! (N − n) !
(q ηr)

n(1− qηr)
N−n (3.3)

Also the expressions given in Eq.(3.2) become:〈
n
〉
= Nq ηr V ar[n] = (1− q ηr)

〈
n
〉

(3.4)

Since ηr is assumed to be less than unity, then again we find that V ar[n] <〈
n
〉
. Also in this case, therefore, the emission statistics are of the sub-

Poissonian type [54].
Considering now the case of a further non-ideal element: a detector which
has a dead time D different from 0. (This quantity will be described in
more detail in the section 3.2.4.2). In this case, the probability of detecting
a photon becomes q′ = q ηr

1+Int(fD) q ηr
, where Int indicates the mathematical

operation selection of the integer part of the number between brackets [55].
Consequently, the binomial distribution takes the form B(n |N, q′) and the
expressions reported in Eq.(3.4) become:〈

n
〉
=

Nq ηr
1 + Int(fD) q ηr

V ar[n] = (1− q ηr)
〈
n
〉

Also in this case we obtain the result V ar[n] <
〈
n
〉
.

From these examples, therefore, it emerges that the non-ideal elements accen-
tuate the sub-Poissonian behavior of the emission statistic of a SPS excited
with a pulsed laser with respect to the ideal case.

3.2 Statistical distribution of a SPS in continous laser

regime

Depending on the properties of the light source, three statistical distribu-
tion regimes can be obtained in photon counting measurements: Poissonian,
super-Poissonian and sub-Poissonian. These regimes are defined by the rela-
tionship between the variance Var[n] and the average number ⟨n⟩ of photon
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counts for the corresponding distribution. For super-Poisson statistics typ-
ical of less coherent sources such as LEDs: V ar[n] > ⟨n⟩; for Poissonian
statistics characteristic of coherent light sources such as lasers: V ar[n] = ⟨n⟩
and for sub-Poisson statistics characteristic of quantum lights: V ar[n] < ⟨n⟩.
Experimentally, by measuring the source light intensity for a time T, from
the count of emitted photons, and repeating the measurement n times, it is
possible to clarify the nature of the analyzed source.
The autocorrelation function evaluated at t = 0 can be easily rewritten in
order to make explicit the variance and the average number dependence,
starting from Eq.(2.10):

g(2)(0) =
⟨n2⟩ − ⟨n⟩2 + ⟨n⟩2 − ⟨n⟩

⟨n⟩2
=

V ar[n] + ⟨n⟩2 − ⟨n⟩
⟨n⟩2

=
V ar[n]− ⟨n⟩

⟨n⟩2
+1

(3.5)
The request for a g(2)(0) = 0 to identify an SPS is in accordance with the
sub-Poissonianity request V ar[n] < ⟨n⟩. Provided that the measurement is
performed for a time T of the order of its lifetime τ the emission statistic is
sub-Poissonian.
On the other hand, when a measurement is carried out experimentally on
macroscopic times T >> τ , there is currently no mathematical description
capable of determining the relationship that links the variance and the aver-
age value of the number of photons emitted. In this section, a new method
is set out for directly deriving the mathematical expression of variance and
mean value. This procedure is already developed in the literature for the
description of the emission of an SPS excited with a pulsed laser [53, 54, 55],
while it is absent in the continuous excitation regime.

3.2.1 Emission probability

To obtain the variance Var[n] and the average number ⟨n⟩ of photon counts,
it is necessary to derive the probability that the source has to emit a photon
following laser excitation.
Let us assume that a SPS, initially prepared in its fundamental level (|ms = 0⟩
in the case of the NV center), is subjected to continuous excitation. The elec-
tronic state spends a characteristic time (lifetime τ) in the excited level and
then relaxes by returning to the ground-state (see section 1.2.2). It can be
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assumed that the photon emission is a random event and that successive
emissions are independent of each other. This process has a Poissonian na-
ture. Setting µ2 = 1/τ the emission rate, the probability density functions of
the photon emission process in the time window between t and t+ dt is:

fem(t) dt = µ2 e
−µ2t θ(t) dt (3.6)

where θ(t) is the Heaviside symbol.
The same can be considered for the case of the absorption of pump photons.
In fact, also this process has a Poissonian nature. Setting µ1 the absorption
rate of the pump photons, the probability density functions that the photon
is absorbed between t and t+ dt is given by:

fex(t) dt = µ1 e
−µ1t θ(t) dt (3.7)

In order to model the overall behavior of an SPS, however, it is not sufficient
to treat the absorption and emission process separately. Instead, it is nec-
essary to consider that photons are emitted only if a pump photon is first
absorbed. Consequently, in this case the probability that the first photon
emitted falls between t and t + dt, given the previous emission at t = 0, is
obtained from the convolution of fem(t) e fex(t) as follows:

f(t) dt =

∫∫
fem(t

′) fex(t
′′) δ(t− t′− t′′) dt′ dt′′ =

µ1 µ2

µ1 − µ2
(e−µ2t−e−µ1t) θ(t) dt

(3.8)
The goal becomes to establish the emission statistics of the process described
by Eq(3.8). We can immediately identify two regimes in which the statistic
is of the Poissonian type, that is V ar[n] =

〈
n
〉
. In fact, if absorption prevails

(µ1 ≫ µ2), f(t) tends to be equal to fex(t). In this condition the process is
of the Poissonian type as well as its emission statistic. The same situation
also occurs if the emission (µ2 ≫ µ1) prevails since f(t) tends to be equal to
fem(t). As far as the intermediate regime is concerned, there is no indication
to determine the type of statistic. It is therefore necessary to explicitly derive
the mean value and variance of the number of photons emitted.

3.2.2 Probability generating function

In order to derive the moments of the number of photons emitted distribution,
is necessary know the probability PT (n) of having n photons emitted in a time
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interval T . Once this expression is determined, it will be possible to derive the
average number of photons emitted in a time T as

〈
n
〉
=

∑
n nPT (n). With

the same procedure it is also possible to derive the higher order moments.
The procedure by which these quantity can be derived is shown below.
First of all, taking advantage of the knowledge of the f(t) function reported
in Eq.(3.8), the probability of having the n − th photon emitted in a time
interval between t and t + dt is derived. This quantity is obtained from the
convolution of a number n of f(ti) and is denoted by fn(t), where t =

∑N
i=1 ti.

Subsequently, from this expression we derive the probability that the n− th
photon is emitted in the time interval [0, T ]. This quantity can be expressed
as follows:

KN(T ) =

∫ T

0

fn(y)dy (3.9)

The expression just presented for Kn(T ) can be obviously rewritten as the
sum of the probabilities of issuing at least n photons in T :

KN(T ) =
∞∑

n=N

PT (n) (3.10)

This implies that PT (n) can be simply obtained as:

PT (N) = KN(T )−KN+1(T ) (3.11)

As can be easily observed, this last equation links PT (n) to the convolution
of n probability density functions f(t), that are known quantities. Conse-
quently, the expression in (3.11) can be used to derive, in principle, all mo-
ments of the number of emitted photons distribution. However, due to the
computational difficulty due to the convolutions involved, it is convenient in
this case to adopt a different approach. The probability generating function
is used to derive the desired moments. Before getting to the heart of this
alternative approach, however, it is considered appropriate to report the def-
inition and some properties of this function.

In general, given a discrete variable n, the probability generating function
is defined as a power series in which the coefficient associated with the n− th
term is the probability P (n). In the case under analysis, it takes the following
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form:

G(t, ξ) =
∞∑
n=0

Pt(n) ξ
n (3.12)

This last equation can then be rewritten differently by making explicit the
Pt(n) coefficients. The final result of this replacement is shown below.

G(t, ξ) = 1 +
∞∑
n=1

Kn(t)(ξ − 1) ξn−1 (3.13)

This alternative expression contains in Kn(t) the only quantity known so far,
that is the function f(t).
Once the probability generating function has been defined, it should be noted
that this function has some very interesting properties. In particular, starting
from its analytical expression it is possible to derive directly the probabilities
Pt(n) and the moments of the associated distribution. In fact, the following
relations hold:

Pt(n) =
1

n !

∂n

∂ξn
G(t, ξ)

∣∣∣∣
ξ=0

(3.14)

〈
n
〉
=

∂

∂ξ
G(t, ξ)

∣∣∣∣
ξ=1

(3.15)

〈
n(n− 1)

〉
=

∂2

∂ξ2
G(t, ξ)

∣∣∣∣
ξ=1

(3.16)

V ar[n]t =
〈
n(n− 1)

〉
+
〈
n
〉
−

〈
n
〉2

(3.17)

From what has just been described it may seem that the use of the prob-
ability generating function to derive the distribution moments leads to the
same problems as the initial approach. In fact, in Eq.(3.13) there are how-
ever n convolutions of f(t). However, unlike the previous case, it is possible
to overcome this limit by using the Laplace transforms. In fact, the Laplace
transform of the probability generating function presents a very simple math-
ematical expression since it contains only the transform of f(t), which is
denoted by f̃(s). This result is reported below:

G̃(s, ξ) =

∫ ∞

0

G(t, ξ)e−st dt =
1

s

1− f̃(s)

1− ξ f̃(s)
(3.18)

49



The probabilities Pt(n) and the moments of the associated distribution can
also be easily calculated starting from this new expression and analytically
calculating the Laplace anti-transform. The new relationships of interest are
as follows:

Pt(n) = L−1

[
1

n !

∂n

∂ξn
G̃(s, ξ)

∣∣∣∣
ξ=0

]
(3.19)

〈
n
〉
= L−1

[
∂

∂ξ
G̃(s, ξ)

∣∣∣∣
ξ=1

]
(3.20)

〈
n(n− 1)

〉
= L−1

[
∂2

∂ξ2
G̃(s, ξ)

∣∣∣∣
ξ=1

]
(3.21)

Precisely these properties make it advantageous to use this alternative ap-
proach to the one presented initially.

To summarize, this alternative approach involves deriving the probabilities
Pt(n) and the moments of the associated distribution by following these steps:

• the Laplace transform of f(t) is first computed;

• the found expression is subsequently replaced in Eq.(3.18) so as to derive
the Laplace transform of G(t, ξ);

• finally, the desired quantities are derived using the Eq.(3.17) and Eqs.(3.19)
- (3.21).

3.2.3 Mean value and the variance derivation of the distribution
of the number of photons emitted by an SPS

Using the general approach described in the previous section to determine the
statistical moments of a probability distribution, the procedure is applied to
the case in which the probability density function f(t) is the one presented in
Eq.(3.8). Consequently, the Laplace transform of f(t) is initially computed,
obtaining:

f̃(s) =
µ1µ2

(µ1 + s)(µ2 + s)
(3.22)

This expression is used to derive the Laplace transform of the probability
generating function by applying the equation (3.18). The following expression
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is obtained:

G̃(s, ξ) =
s+ µ1 + µ2

s2 + (µ1 + µ2)s− µ1µ2(ξ − 1)
(3.23)

At this point, it is possible to proceed by calculating the average value and
the variance of the distribution of the number of photons emitted by an SPS,
in order to obtain the type of emission statistic for macroscopic measurement
times. Eq.(3.19) is used to derive the average value, obtaining:

〈
n
〉
=

µ1µ2

(µ1 + µ2)2

(
e−(µ1+µ2) t + (µ1 + µ2) t− 1

)
(3.24)

Of the latter expression, however, only the behavior for t → ∞ is concerned.
In fact, studying the system for macroscopic times, i.e. at the laboratory
scale, means working on time scales of ms/s. These scales for an SPS are
comparable to an infinite time since the characteristic times of these emitters
are of the order of lifetime (µs/ns). Here is the expression of

〈
n
〉
t
for t → ∞.〈

n
〉
=

µ1µ2

(µ1 + µ2)
t (3.25)

Subsequently, the variance of the distribution of the number of photons emit-
ted is also obtained and for the sake of brevity only the result for t → ∞ is
reported.

V ar[n] =
µ2
1 + µ2

2

(µ1 + µ2)2
〈
n
〉

(3.26)

At this point, having known all the quantities required, it is possible to
derive the type of emission statistic for t → ∞. For convenience, the ratio is
calculated:

V ar[n]〈
n
〉 =

µ2
1 + µ2

2

(µ1 + µ2)2
=

1 +
(
µ1

µ2

)2(
1 + µ1

µ2

)2 (3.27)

If its value is equal to 1, the relation V ar[n] =
〈
n
〉
holds, which implies that

there is a Poissonian emission. If this ratio is less than or greater than 1,
it is evident that the statistic is of the sub-Poissonian or super-Poissonian
type, respectively. The graph in Figure 3.1 plots Eq.(3.27) as a function of
the ratio µ1

µ2
.
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Figure 3.1: V ar[n]
<n>

as a function of the logarithm of µ1

µ2
.

To confirm the validity of this approach, it clearly emerges from the graph
that the emission statistic is Poissonian both in the case in which the ab-
sorption prevails (µ1 ≫ µ2) and in the opposite one in which the emission
is predominant (µ2 ≫ µ1). This result is in line with what has already
been mentioned. The really interesting result that can be deduced from the
discussion and therefore from the 3.1 graph is that, when the emission and
relaxation rates are comparable (µ1 ∼ µ2), the emission statistic of an SPS
excited with a continuous laser for macroscopic times is sub-Poissonian.

3.2.4 Effect of optical losses and detector dead time on the non-
classical properties

This section explores how the results just obtained are modified by the non-
ideality of the tools used to detect photons. In particular, the SPS emission
statistic under continuous laser excitation in the presence of optical losses is
derived below. Subsequently, this calculation is repeated taking into account
the effect of the detectors dead time.

3.2.4.1 Statistical distribution of a SPS in presence of optical losses

In the presence of optical losses, it must be taken into account that, given
n photons emitted, only a part of these is actually detected by the mea-
suring apparatus. In order to model this effect, a detection efficiency ηr is
introduced into the discussion. This quantity describes overall the non-ideal
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elements that contribute to the losses. Among these contributions we can,
for example, mention those non-radiative transitions that reduce the quan-
tum efficiency ηQ of an SPS (the metastable level for example in the case of
the NV center). Other contributions may be related to excitation efficien-
cies, photon extraction efficiencies, uncorrelated background photons, mode
superpositions, beam-splitter losses, and also detectors efficiencies and dark
counts.
Due to the presence of optical losses, the function f(t) previously obtained no
longer correctly describes the probability that the first photon detected falls
in the interval [0, t] given the previous emission at t = 0. Consequently, it is
necessary to obtain this quantity in the new conditions in such a way as to
be able to derive the emission statistics following the same approach adopted
previously. To obtain the desired expression, it is appropriate to introduce
a new probability of detecting k photons in a time interval t in the presence
of optical losses. This quantity is indicated with the notation Pηr(k) and
its mathematical expression can be linked to the known probability Pt(n) to
emit n photons at the same time, as follows:

Pηr(k) =
∞∑
n=k

Pt(n)B(k |n, ηr) (3.28)

As can be seen, the new probability Pηr(k) consists of a sum whose terms
are the probabilities Pt(n) weighted by the respective probabilities B(k |n, ηr)
to reveal k photons, when n photons are emitted, and an overall optical
efficiency equal to ηr. Furthermore, it should be noted that the sum runs
on all integers greater than k in such a way as to take into account all the
configurations that can give rise to k photons detected.
By setting k = 1, we can derive the probability that the first photon detected,
in the presence of optical losses, falls in the interval [0, t]. In this way, the
desired quantity is obtained, the expression of which takes the following form:

fηr(t) =
∞∑
n=1

(1− ηr)
n−1 ηr fn(t) (3.29)

Once this quantity is known, the previously illustrated method can be applied
to derive the emission statistic associated with it. In particular, the Laplace
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transform of fηr(t) is initially calculated and the final result is reported below.

f̃ηr(s) =
∞∑
n=1

(1−ηr)
n−1 ηr f̃n(s) =

ηrf̃(s)

1− (1− ηr)f̃(s)
=

ηrµ1µ2

s2 + (µ1 + µ2)s+ ηrµ1µ2

(3.30)
The latter expression is then used to derive the Laplace transform of the
probability generating function. In fact, applying the Eq.(3.18) with fηr(s)
instead of f(s), we obtain:

G̃ηr(s, ξ) =
s+ µ1 + µ2

s2 + (µ1 + µ2)s+ ηrµ1µ2(1− ξ)
(3.31)

At this point, the moments can be calculated. In particular, using Eq.(3.19),
the following expression is obtained for the average value, which is equal to
the average value of the ideal case weighted for the ηr efficiency:〈

n
〉
ηr
= ηr

µ1µ2

(µ1 + µ2)2
(
e−(µ1+µ2) t + (µ1 + µ2) t− 1

)
= ηr

〈
n
〉

(3.32)

For macroscopic measurement times, that is for t → ∞, the average value is
equal to the previous case less the multiplication factor ηr.〈

n
〉
ηr
= ηr

µ1µ2

(µ1 + µ2)
t (3.33)

Finally, the variance of the distribution of the number of photons emitted is
obtained and, for the sake of brevity, only the result for t → ∞ is reported.

V ar[n]ηr =
µ2
1 + 2 (1− ηr)µ1µ2 + µ2

2

(µ1 + µ2)2
〈
n
〉
ηr

(3.34)

At this point it is possible to derive the type of emission statistic, evaluating
for convenience also in this case the ratio

V ar[n]ηr
<nηr>

, which for t → ∞ takes the
following expression:

V ar[n]ηr
< n >ηr

=
µ2
1 + 2 (1− η)µ1µ2 + µ2

2

(µ1 + µ2)2
(3.35)

As before, the latter equation is represented graphically as a function of the
relationship µ1

µ2
, see Figure 3.2. The graph was evaluated for three different
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efficiency values ηr in such a way as to be able to visually evaluate the effect
of optical losses on the type of emission statistic in the various regimes.

Figure 3.2:
V ar[n]D,ηr

<n>D,ηr
as a function of the logarithm of µ1

µ2
.

As can be seen, the optical losses do not modify the shape of the curve, but
progressively reduce the amplitude of the minimum with respect to the ideal
case. Consequently, in the intermediate regime (µ1 ∼ µ2), as ηr decreases, the
statistic becomes less and less sub-Poissonian, tending towards the Poissonian
case. In the other configurations, however, we always have

V ar[n]ηr
<n>ηr

= 1 as
expected.

3.2.4.2 Statistical distribution of a SPS in presence of optical losses and detector
dead time

In addition to the optical losses, a further element of non-ideality is consid-
ered, that is the dead time of the detectors. They, after measuring a photon,
take some time to restore the initial conditions and be ready for a new mea-
surement. As a direct consequence, the photons hitting the instrument in this
time interval are not detected and are therefore lost. For this very reason,
this time is called dead time. Specifically we consider the effect of dead−time
in no-paralizable detectors such as SPAD detector operated in Geinger mode
with active quenching circuit, that is the kind of detectors more used in this
kind of application, and specifically, the one I used in my experiment.
Therefore, having known the effect of this non-ideal element on photon de-
tection, it is evident that the previously obtained function fηr(t) no longer
correctly describes the probability that the first photon detected falls within
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the interval [0, t] given the previous revelation at t = 0. It is necessary to
obtain this quantity in the current conditions in such a way as to be able
to derive the emission statistics following the same approach adopted previ-
ously. In particular, said D the dead time of the detector, the probability
must have the following form:

fD,ηr(t) = Afηr(t) θ(t−D) (3.36)

To obtain fD,ηr(t), we need to specify the normalization constant A. To derive

it, it is necessary to compute the Laplace antitransform of the function f̃ηr(s),
see appendix A.4, so as to obtain the expression of fηr(t). The result obtained
from this operation is the following:

fηr(t) =
ηrµ1µ2√

(µ1 + µ2)2 − 4ηrµ1µ2(e−
µ−t

2 − e−
µ+t

2 )
(3.37)

where µ± = µ1 + µ2 ±
√

(µ1 + µ2)2 − 4ηrµ1µ2.
At this point, the constant A can be derived by imposing the normalization
condition

∫∞
0 Afηr(t) θ(t − D) dt = 1 and the resulting expression has the

following form:

A =

√
(µ1 + µ2)2 − 4ηrµ1µ2

2ηrµ1µ2

(
e−

µ−D
2

µ−
− e−

µ+D
2

µ+

) (3.38)

Replaced in Eq.(3.36) the constant A, we get:

fD,ηr(t) =
e−

µ−t

2 − e−
µ+t

2

2
(
e−

µ−D
2

µ−
− e−

µ+D
2

µ+

) (3.39)

Once the expression of fD,ηr(t) s known, we can apply the method previously
illustrated to derive the emission statistic associated with it. In particular,
f̃D,ηr(s) is initially calculated and the Laplace transform of the probability
generating function is derived by applying Eq.(3.18) with fD,ηr(s) instead of
f(s) (not shown here).

At this point, we can calculate those moments of the distribution of the
number of photons emitted. However, the Laplace antitransform present in
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the formula for calculating the average value cannot be calculated analyti-
cally. This aspect, however, does not represent a limit for the discussion since
the quantity we are interested in is the average value for t → ∞. However,
this expression can be derived by exploiting the following property of Laplace
transforms: 〈

n
〉
D,ηr

= lim
t→∞

∂

∂ξ
G(t, ξ)

∣∣
ξ=1

= lim
s→0

∂2

∂ξ2
G̃(s, ξ)

∣∣
ξ=1

t (3.40)

The result obtained is the following:

〈
n
〉
D,ηr

=
µ−µ+

(
µ−e

−µ+D

2 − µ+e
−µ−D

2

)
µ2
− (2 + µ+D) e−

µ+D

2 − µ2
+(2 + µ−D) e−

µ−D

2

(3.41)

The same to derive the variance of the distribution of the number of photons
emitted (not shown here).

At this point it is possible to derive the ratio
V ar[n]D,ηr

<n>D,ηr
. In particular, this

quantity for t → ∞ takes the following form:

V ar[n]D,ηr

< n >D,ηr

∼ 1

(1+ < n >ηr
D
t )

2
=

1

[1 + ηr
µ1

µ2
(1 + µ1

µ2
)D]2

(3.42)

This last equation is graphically represented as a function of the ratio µ1

µ2
,

with fixed efficiency and for different values of D, in such a way as to visually
evaluate the effect of the detectors dead time on the type of emission statistic
in the various regimes. The graph is represented in Figure 3.3.

The dead time of the detectors changes the shape of the curve with respect
to the ideal case. In particular, when this quantity is different from 0, the
trend is no longer symmetrical with respect to µ1

µ2
. To confirm this aspect,

the asymptotic trends of Eq.(3.42) for µ1 ≫ µ2 and µ2 ≫ µ1. Below are the
results obtained by setting D = kτ , with τ lifetime of the SPS.

V ar[n]D,ηr

<n>D,ηr
→ 1

(1+ηr
µ1
µ2

(1−µ1
µ2

) k]2
→ 1 per µ2 ≫ µ1

V ar[n]D,ηr

<n>D,ηr
→ 1

(1+ηrk)2
= cost < 1 per µ1 ≫ µ2

(3.43)

Consequently, when the dead time is different from 0, the system exhibits a
sub-Poissonian behavior extrinsic to the emission source and this trend tends
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to affect more and more emission regimes as the value of D increases. In
particular, for D ≪ τ this effect is confined to the µ1 ≫ µ2 regime only.
On the contrary, for D ≥ τ the non-ideality of the detectors also affects the
region in which µ2 ≫ µ1.

Figure 3.3:
V ar[n]D,ηr

<n>D,ηr
as a function of the logarithm of µ1

µ2
.

3.2.5 Results discussion

For macroscopic measurement times t ≫ τ , the emission statistic of a SPS
excited by a laser of continuous power is of type:

• Poissonian if the absorption rate or the emission rate prevails respec-
tively;

• sub-Poissonian if the two processes are concurrent.

To experimentally measure the emission statistics of such a system, it is nec-
essary to take into account the effect of those non-ideality elements treated
in the previous section. In fact, the optical losses reduce the intrinsic sub-
Poissonianity of the source, while the dead time of the detectors introduces
an apparent sub-Poissonian behavior extrinsic to the system under analysis,
an artifact. From a practical point of view, it is therefore necessary to work
at high optical efficiencies and at dead time D ≪ τ . However, this last re-
quirement severely limits the experimental verification of the model. In fact,
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current detectors have dead times higher than the lifetime of an SPS. Typi-
cally their value is of the order of tens/hundreds of ns.

This model can offer a new measurement protocol for deriving the prop-
erties of such sources. In fact, it can be noted that in correspondence with
the minimum of the curve shown in Figure 3.1, µ1 = µ2, that is αP = τ−1

(see the parameters k12 and k21 in section 2.3.1). Consequently, a scan of
the emission statistic as a function of the optical excitation power would al-
low to determine the SPS lifetime from the value of P corresponding to the
minimum of V ar[n]

<n> . This measurement protocol would be particularly com-
petitive with respect to the methods currently used, requiring the use of a
single detector and a reduction in measurement times since to obtain the SPS
emission statistic would be sufficient times of ms order.

3.3 Reconstruction of optical states exploiting both

the g(K) and θ(K) parameters simultaneously

In the next sections an excellent method to resolve the optical states and trace
the presence of single photon sources, even when immersed in a bath of ther-
mal and Poissonian light, is illustated. Such a technique consists in applying
the glauber function g(K) and the theta parameters θ(K) simultaneously.

3.3.1 Theoretical model for g(K)(0) and θ(K)(0) derivation

The physical phenomenon considered here (see Fig. 3.5) is the emission of
multimode light from one or many different optical sources observed byN = 4
non-PNR detectors in a tree configuration. There we develop a general model
for N arms HBTI assuming, for simplicity, that the photons are split in the
N arms of the HBTI with equal probability 1/N , and that each subsequent
detector has identical system efficiency (including transmission losses and
detection efficiency) η. This assumption does not qualitatively change the
results. Let us define the characteristic function for a discrete probability
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function pn of having n photons in our system (with
∑+∞

n=0 pn = 1)

Γ(z) =
+∞∑
n=0

pnz
n (3.44)

Accounting for the efficiency η, the characteristic function in Eq.(3.44) be-
comes:

Γ(z) =
+∞∑
n=0

[1− η(1− z)]npn (3.45)

See appendix B.1 for the derivation. From the characteristic function Γ(z)
one can estimate the moments of the distribution Pn:

d
dzΓ(z)

∣∣∣∣
z=1

= E{n},

d2

dz2Γ(z)

∣∣∣∣
z=1

= E{n(n− 1)},
...

dK

dzKΓ(z)

∣∣∣∣
z=1

= E
{

n!
(n−K)!

}
,

(3.46)

where E{x} represents the expectation value of the variable x. It is straight-
forward to show from Eqs. (3.46) that the generic g(K)(0) function can be
expressed as:

g(K)(0) =
dK

dzKΓ(z)(
d
dzΓ(z)

)K ∣∣∣∣
z=1

. (3.47)

Let us now suppose that we have a combination of several optical sources
at once, with different statistical distributions. For instance, for M single-
photon emitters with photon emission probability p, one thermal source and
one Poissonian source (but the result can be generalized to any number and
type), the total photon-number probability distribution reads:

pTOT
n =

∑
k,l,m

δn,(k+l+m)P
bin
k (p,M)P th

l (ν)P poi
m (µ), (3.48)

where the three sources have, respectively, binomial
(
P bin
k (p,M) =

(
M
k

)
pk(1−

p)M−k
)
, thermal

(
P th
l (ν) = νl

(1+ν)l+1

)
and Poissonian

(
P poi
m (µ) = µme−µ

m!

)
photon
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number distributions. For a multimode field, where each mode’s statistical
distribution is given by a characteristic function, the composite characteristic
function ΓTOT (z) can be simply written as the product pf the characteristic
functions

ΓTOT (z) = Γth(z)Γpoi(z)Γbin(z), (3.49)

where Γth(z), Γpoi(z) and Γbin(z) are, respectively, the characteristic functions
related to the thermal source, the coherent one and the SPS ensemble (see
Eq.(3.45)). Thus, also the g(K)(0) values can be calculated from the char-
acteristic function ΓTOT (z) from Eq.(3.47) and Eq.(3.49). To generalize the
previous examples, here we consider multimode optical fields comprised of
a total of S modes. Instead of requiring a priori knowledge on the photon
number statistics of each of the S modes, we identify all possible S-mode
combinations (with arbitrary statistics):

ΓTOT (z) = δS,(jpoi+jbin+jth)

jpoi∏
j=0

Γpoi
j (z)

jth∏
j=0

Γth
j (z)

jbin∏
j=0

Γbin
j (z) (3.50)

(since the sum of multiple Poisson distributions is also a Poisson distribution,
it is enough to consider only one Poissonian mode, i.e. jpoi ≤ 1).
Let us now investigate the expression of the θ(K)(0) function, defined in
Eq.(2.12), for this multimode field. The no-click probability of the detec-
tor at the end of the ith branch of a K-branch detector tree with n impinging
photons can be calculated as the convolution of the probability of having ki
out of n photons in the ith branch (governed by binomial distribution) and the
probability of observing zero out of ki incoming photons in the same branch
(πi = (1− η)ki, being η the detection efficiency of the detector):

Qi(0|n) =
n∑

ki=0

n!

n!(n− ki)!

(
1− η

K

)ki(
1− 1

K

)n−ki

=

(
1− η

K

)n

. (3.51)

Analogously, the probability of detecting zero out of n photons simultane-
ously in K ≤ N branches is the probability of a particular permutation of n
photons over K branches of the detector-tree (governed by the multinomial
distribution) multiplied by the joint probability of detecting zero photons in
each branch (

∏K
i πi) considering all the possible photon distributions in the
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K branches, i.e. all possible {ki} sets fulfilling the condition
∑K

i=0 ki = n:

Q(0⊗K |n) =
∑

k1,...,kK

[∑K
i=1 ki=n]

n!

k1! . . . kK !

K∏
i=1

(
1− η

K

)ki

=

( K∑
i=1

1− η

K

)n

= (1− η)n .

(3.52)
In order to calculate the terms in Eq.(2.12), the conditioned probabilities in
Eqs.(3.51) and (3.52) must be averaged on the statistical distribution. In
this case it can be shown, with a procedure analogous to the one leading to
Eq.(3.49), that QTOT (0) and QTOT (0⊗K) can be factorized as:

QTOT (0) =
∞∑
n=0

(1− η

K
)npTOT

n = Qth(0)Qpoi(0)Qbin(0) (3.53)

and

QTOT (0⊗K) =
∞∑
n=0

(1− η)npTOT
n = Qth(0⊗K)Qpoi(0⊗K)Qbin(0⊗K). (3.54)

Thus, the θ(K)(0) function can be calculated as:

θ(K)(0) =
Qth(0⊗K)Qpoi(0⊗K)Qbin(0⊗K)

(Qth(0)Qpoi(0)Qbin(0))K
=

Qth(0⊗K)Qbin(0⊗K)

(Qth(0)Qbin(0))K
, (3.55)

where we used the propertyQpoi(0⊗K) = [Qpoi(0)]K , demonstrating that θ(K)’s
insensitive to Poissonian light and, as a consequence, resilient to a Poissonian
noise. Again, this result can be extended to an arbitrary number of sources of
each type by simply including appropriate multipliers to the above factorized
expression, in a similar manner to Eq.(3.50).

3.3.2 Experimental reconstruction

The technique described in the section 3.3.1 has been tested by applying it to
several different multi-mode optical fields detected by our detector tree—SP,
see section 3.3.3. The detector tree is composed of three 50:50 fiber beam
splitters (FBSs) connected to N = 4 InGaAs/InP single-photon avalanche
diodes (SPADs) in a tree configuration, allowing us to discriminate up to
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four incoming photons.
We generate a multimode optical field combining, in our experimental setup
(Figure 3.5), up to four optical modes (because of the N = 4 constraint
on the detection side). The multimode field is produced by three differ-
ent source types: a Poissonian (coherent) source, thermal source and single-
photon source (see section 3.3.2 for details).
The reconstruction of the S-mode field is achieved by a minimization al-
gorithm based on a least square difference between the theoretical g(K)’s
and θ(K)’s (labeled ”rec”) and the ones obtained in the experiment (labeled
”exp”). Specifically, the function to be minimized is:

LS =
4∑

K=2

λg(K)
(
g(K)
rec (0)− g(K)

exp (0)
)2

+ λθ

4∑
K=2

(
θ(K)
rec (0)− θ(K)

exp (0)
)2

(3.56)

where λθ and λg(K) are Lagrange multipliers, g
(K)
rec (0) is given by Eq.(3.47)

and θ
(K)
rec (0) by Eq.(3.55). The photon number resolution of our detection

system is limited to N = 4, therefore we can only reconstruct a maximum
of S = 4 arbitrary modes. In our reconstruction algorithm we assume that
these four modes are completely unknown. So, with each experimental data
set we perform mode reconstructions for all possible four-mode combinations
of one Poissonian, four thermal and four single-photon modes. We then com-
pare the minimized LS values and choose the mode combination and the
set of reconstructed average energies per mode that result in the lowest LS
value (details in appendix B.2). This way, our algorithm truly identifies
the multimode light field with unknown modes, and not merely matches the
previously-known modes with appropriate mean photon numbers. To test
the robustness and reliability of our method, in our experiment we perform a
series of acquisitions in several regimes, combining different modes and com-
paring the results of our mode-reconstruction technique (exploiting both θ(K)

and g(K) parameters) with the ones obtained using only the g(K)’s (adding
in both cases a further constraint on the overall no-click probability Q(0⊗N),
to have a definite average number of photons of the light field) as in [38].
In particular, we especially focus on cases in which the multi-mode optical
field under test features one or more single-photon modes, although heav-
ily polluted by classical (thermal and/or Poissonian) light, giving an overall
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g(2)(0) ≥ 1. The obtained results are summarized in Table 3.1, comparing
the fidelity achieved by both reconstruction methods, defined as the distance
Fx = (2|m⃗e · m⃗x|)/(|m⃗e|2+ |m⃗x|2), where m⃗e is the set of expected mean pho-
ton numbers and m⃗x is the one reconstructed with the “x” method (x = g+θ
labels the one exploiting both g(K) and θ(K) functions, whilst x = g indicates
the one based solely on the g(K)’s as in [38]). The expected mean photon
number set m⃗e is obtained by separately measuring the mean photon num-
ber per pulse of each mode composing the optical field to be reconstructed.
Table 3.1 shows the number of modes present in the multimode light field
under examination (Se), as well as the number of modes identified by both
reconstruction methods, respectively labeled Srec

g+θ and Srec
g (for both of them,

the number of correctly recognized modes is indicated in parentheses). For

each case studied, the value of g
(2)
exp(0), the observable that is typically used

for discriminating between classical and non-classical states, is also reported
in the last column of Table 3.1.

These results demonstrate how the g(K), θ(K) method manages to faithfully
reconstruct the modal structure of the multimode light field characterized by
our detector tree, always obtaining large fidelities (above 0.95) and identifying
the correct number and type of optical modes for all the cases investigated.
This gives the experimental proof of both the reliability and robustness of our
method, that clearly outperforms the one relying solely on the g(K) parame-
ters [38] in all the cases (except for case V where fidelities are comparable).
The latter, in fact, not only achieves comparatively lower fidelities (occasion-
ally going below 0.9, indicating poor reconstruction), but in half of the cases
it does not correctly identify the number and types of optical modes compris-
ing the multimode field under test, as it is evident from column (f) of Table
3.1.
The expected and reconstructed modal structures for the multi-mode fields
marked with a star in Table 3.1, column (b), are shown in Figure 3.4. We show
selected cases in which different single photon emitters are combined together
(Figure 3.4a)) or mixed with strong Poissonian and/or thermal sources (Fig-
ure 3.4b)-f)). Each plot compares the mean-photon number of every mode
present in the light field (yellow bars) with the reconstructed one obtained
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Method g + θ Method g

Case (a)Se (b)Mode configuration (c)Fg+θ (d)Srec
g+θ (e)Fg (f)Srec

g (g)g
(2)
exp(0)

I 4 1 SPS, 2 Th, 1 Poi 0.9597 4 (4) 0.9337 4 (4) 1.137± 0.002
II 4 1 SPS, 3 Th 0.9518 4 (4) 0.9480 4 (4) 1.332± 0.002
III 4 2 SPS, 1 Th, 1 Poi ⋆ 0.9745 4 (4) 0.9469 4 (4) 1.044± 0.003
IV 4 2 SPS, 2 Th ⋆ 0.9979 4 (4) 0.9949 4 (3) 1.411± 0.005
V 4 3 SPS, 1 Poi ⋆ 0.9941 4 (4) 0.9963 4 (4) 0.998± 0.003
VI 4 3 SPS, 1 Th ⋆ 0.9996 4 (4) 0.9729 3 (3) 1.532± 0.012
VII 4 3 Th, 1 Poi 0.9819 4 (4) 0.7325 4 (3) 1.103± 0.001
VIII 4 4 Th 0.9547 4 (4) 0.8481 4 (3) 1.245± 0.001
IX 3 1 SPS, 1 Th, 1 Poi 0.9885 3 (3) 0.9755 4 (3) 1.072± 0.002
X 3 1 SPS, 2 Th 0.9934 3 (3) 0.9390 3 (3) 1.478± 0.003
XI 3 2 SPS, 1 Poi ⋆ 0.9931 3 (3) 0.8463 4 (3) 0.996± 0.004
XII 3 2 SPS, 1 Th 0.9972 3 (3) 0.8325 3 (2) 1.732± 0.011
XIII 3 2 Th, 1 Poi 0.9749 3 (3) 0.9749 4 (3) 1.135± 0.001
XIV 3 3 SPS ⋆ 0.9947 3 (3) 0.9660 4 (3) 0.64± 0.03
XV 3 3 Th 0.9509 3 (3) 0.9490 3 (3) 1.349± 0.001

Table 3.1: Performance comparison between the g + θ and the g methods. Columns (a)
and (b) show, respectively, the number Se of modes and the mode types of the multimode
light field to be reconstructed. Column (c) shows the fidelity Fg+θ between the expected
multimode optical field and the one reconstructed exploiting both g(K)’s and θ(K)’s, while
column (d) indicates the number of optical modes Srec

g+θ identified (correctly identified) by
this technique. Columns (e) and (f) are equivalent of columns (c) and (d), respectively,
but for the reconstruction method that uses g(K)’s only. Finally, column (g) shows the

g
(2)
exp(0) value experimentally measured for each mode configuration. The reconstructed mean
photon number per mode for starred configurations are shown in Fig. 3.4, together with
their theoretically-expected counterparts. SPS: single photon state; Th: thermal mode; Poi:
Poissonian mode.
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with our novel technique (dark blue bars) and with the reconstruction method
exploiting only the g(K)’s (light blue bars).
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Figure 3.4: Mode structure reconstruction results. Expected and reconstructed mean photon
number per mode for the light fields generated by: a) three single-photon emitters; b) two
single-photon emitters in the presence of Poissonian light; c) two single-photon emitters
together with two thermal fields; d) three single-photon emitters in the presence of a thermal
field; e) three single-photon emitters in the presence of a Poissonian field; f) two single-photon
emitters with both a Poissonian and a thermal mode. Yellow bars correspond to the mean
photon numbers per mode present in our light field, whilst dark and light blue bars represent,
respectively, the ones obtained with the g(K)+ θ(K) and g(K)-only reconstruction techniques.
Poi: Poissonian mode. SPS: single photon state. Th: thermal mode.
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In particular, Figure 3.4 shows the following cases: a) three single-photon
emitters; b) two single-photon emitters in presence of heavy Poissonian noise;
c) two single-photon emitters in presence of two thermal sources; d) three
single-photon emitters in presence of thermal noise; e) three single-photon
emitters in presence of heavy Poissonian noise; f) two single-photon emit-
ters mixed with both a Poissonian and a thermal mode. Even though the
Poissonian and thermal mode intensities are, respectively, about 30 and 10
times higher than that of each single-photon emitter, our technique correctly
recognizes and reconstructs the type and number of light modes compos-
ing our optical field, identifying non-classical single-photon emission even in
supposedly classical optical fields, i.e. with g

(2)
exp(0) ≥ 1, and not finding

single-photon emission in multimode fields with no single-photon mode.

3.3.3 Experimental setup

In our experimental setup, shown in Figure 3.5, a pulsed telecom laser (1.55
µm) attenuated to the single-photon level generates a Poissonian mode. Each
pseudo-thermal mode is produced by making the same laser pass through a
rotating ground glass disk. Finally, heralded single-photon states at 1.55
µm are obtained from a heralded single-photon source based on spontaneous
parametric down-conversion (SPDC). A continuous wave (CW) laser (at 532
nm) pumps a periodically-poled lithium niobate (PPLN) crystal, generating
photon pairs at 810 nm (idler) and 1.55 µm (signal) [56, 57]. The idler photon
is spectrally filtered and coupled to a single-mode fiber (SMF) connected to
a Si-SPAD, heralding the presence of the corresponding signal photon. The
generated state is close to a single-photon Fock state, with g(2)(0) < 0.05.
Once these modes are incoherently combined, the resulting multi-mode field
is sent to our detector tree, allowing for a photon-number resolution up to
N = 4 photons. With our scheme, we can generate S-mode optical fields
(with S = 1, ..., N) whose underlying mode structure can comprise up to S
thermal and/or single-photon modes, and up to one Poissonian mode, giving
rise to (2S + 1) possible different modal configurations. As stated above,
in our particular case we consider a maximum of N = 4 modes combined
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together.
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Figure 3.5: Experimental setup.The physical systems under study are a classical or non-
classical multimode fields. The non-classical ones correspond to the emission of M ≤ N
single-photon sources, heavily affected by thermal and/or Poissonian noise, optically coupled
to a detector tree able to discriminate up to N = 4 incoming photons. The classical fields,
instead, are arbitrary compositions of multi-thermal and Poissonian modes. On the left,
three types of sources generate photons at 1.55 µm: a coherent (Poissonian) mode, produced
by attenuating a pulsed laser; pseudo-thermal mode(s), generated by the pulsed laser sent
to a rotating ground glass disk; single-photon mode(s) are emitted by a heralded single-
photon source based on SPDC in a PPLN crystal. On the right, a pictorial scheme of our
detector tree, which consists of a cascade of three 50:50 fiber beam splitters (FBSs) in a tree
configuration connected to four InGaAs/InP SPADs.

3.3.4 Results discussion

Overall, our technique exploiting both g(K) and θ(K) enables a reliable re-
construction of the mode structure of very complex multimode fields, with
simultaneous presence of Poissonian, thermal and/or single-photon emission,
even in cases that are not successfully reconstructed with the method ex-
ploiting g(K) parameters only. This is particularly interesting, since it is a
well known issue that, when sampling g-function only, it is practically im-
possible to distinguish the emission of a SPS in the presence of noise from
the simultaneous emission of two distinct and differently coupled SPSs. The
studied cases demonstrate that the proposed technique is extremely efficient
for characterizing SPSs in noisy environments, with practical applications to
nonclassical emission from fluorescent targets. The applications range from
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characterization of color centers in diamond [43, 44, 45, 46, 47, 48, 49, 50],
which can be affected (or even overtaken) by both Poissonian (residual ex-
citation laser light) and thermal (stray light, unwanted fluorescence) noise
contributions, to nonclassical imaging with fluorophores. According to our
results, the proposed technique for the mode reconstruction of optical fields,
based on the combination of g(K) and θ(K), not only outperforms the one
illustrated in [38], but it is also capable to reconstruct more complex mode
structures that could not be processed with the legacy method, ultimately
proving that adding θ(K) parameters estimation in the mode reconstruction
algorithm leads to superior performance. Finally, the fact that this new tech-
nique does not rely on any “a priori” assumption on the number and type of
modes constituting the optical field (except for the obvious constraint on the
maximum number of modes allowed, due to the finite photon number resolu-
tion of the PNR detector used) not only is a clear evidence of its robustness,
but also allows for its widespread application to several practical scenarios in
quantum metrology and other quantum technologies.
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Chapter 4

NV− center as a sensor

4.1 Optically detected magnetic resonance (ODMR)

technique: theory

In this section the spin properties of the negative charge state of the nitrogen-
vacancy (NV−) center are analyzed in detail. As mentioned in section 1.2.2,
its ground state is in a spin triplet configuration (S=1). Due to that state
configuration, the energy levels assume different energies values depending
on the electromagnetic fields, the temperature and the reticular mechanical
stresses. By measuring the energy difference between the ground state levels
characterized by the different third spin component (ms), it is possible to
estimate the electromagnetic fields and/or thermal variations. The method
that allows to evaluate the levels resonance frequency (i.e. their energetic
difference) is the optically detected magnetic resonance (ODMR) technique.

In the next sections the standard ODMR technique and a new ODMR variant
for a faster measurement are described.
Afterwards, we will put this in the contest of the ground state Hamiltonian
and we will discuss the dependence of the energy levels on the magnetic and
electric fields and finally on the temperature and consequently we will show
their effects on the ODMR spectrum.
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4.1.1 Continuous ODMR technique

One of the characteristics that makes NV− centers so attractive and conve-
nient as key element in various type of sensors is the possibility to discrim-
inate the spin components of the electronic state. This is allowed by the
different coupling of the |ms = 0⟩ state with a metastable level, compared
to the |ms = ±1⟩ states and results in a variation of the photoluminescence
(PL) of the defect under laser non resonant excitation, (see section 1.2.1).
The ODMR technique consists in the application of a microwave field (MW)
on the sample, simultaneously with its exposure to a non resonant laser at
a frequency higher than the resonant one, corresponding to the energy gap
between the ground state and the excited 3E level (e.g., 532 nm) (see Figure
4.1a). When the MW frequency reaches the ground state resonance, with a
certain probability (depending on the MW power), those NV centers will be
initialized in the states |ms = ±1⟩ rather than |ms = 0⟩. As mentioned, this
corresponds to a reduction in photoluminescence of the NV centers, as it can
be observed, e.g., in Figure 4.1b, where a typical ODMR spectrum is reported.

a) b)

Figure 4.1: a) NV− state transition that occurs after laser excitation and MW excitation.
The coupling of the states |ms = ±1⟩; with the metastable level generates a statistically lower
PL emission than the |ms = 0⟩. b) The profile of the ODMR spectrum as a function of the
frequency f can be expressed with the following function: F (f) = R · [1−C · func( f−f0

FWHM
)].

Where F is the fluorescence collected by the sample, R is the emission rate of the incident
photons, C is the contrast (i.e. the difference in the emission rate between the state |ms = 0⟩
and the states |ms = ±1⟩, i.e. at the resonant frequency), func is the function that fits better
to the profile of the minimum (Lorentzian curve), FWHM is the width of the peak, and f0
is the resonant frequency (Dgs in absent of external fields).
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Consequently, as will be described in the following sections, a variation of
the measurement of the MW resonance frequency ∆Dgs, allows to obtain an
estimate, for example, of the temperature variation:

∆T =
∆Dgs

∂Dgs/∂T
(4.1)

In the same way it is possible to obtain magnetic and electric fields variations,
substituting the appropriate coupling coefficients as will be described in the
following sections.

It is important to underline that a standard method to derive the frequency
at the minimum of the dip of the ODMR graph consists, for example, by in-
terpolating the data with a Lorentzian function. By integrating the ODMR
measurement for an increasingly longer time, the estimation of the resonant
frequency is improved. However, this method may require too long mea-
surement times for certain applications. In the next sections some ODMR
methods are described to improve the sensitivity of the measurement.

4.1.2 Differential ODMR technique

By repeatedly acquiring the ODMR spectrum, it is possible to evaluate the
temperature variation ∆T that may have occurred in two distinct instants
of time, see Equation 4.1. This is typically realized by a frequency shift
measurement of the ODMR fluorescence dip.
When a fast measurement is needed, such as when the target is a biological
sample, in order to preserve the cells health and its biological processes, it is
necessary to expose the target to lasers and microwaves as quickly as possible.
To estimate the resonant frequency shift ∆Dgs more conveniently than the
traditional method, the following experimental procedure could be adopted.
The full ODMR spectrum is acquired only once. The data is post-processed
creating the differential spectrum (see Figure 4.2).
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Figure 4.2: Sketch of differential measurement. From the ODMR spectrum (upper part of
the figure) the differential spectrum (lower part of the figure) is derived taking, for every
value of the microwave (MW) frequency, the difference in fluorescence F̃ between two point
separated by 2fdev. F̃ is zero at the two extreme of the spectrum and at the resonant
frequency Dgs. Around Dgs there is a region where ∆F̃ depends linearly on ∆Dgs trough
the differential spectrum slope.

Where in correspondence to each microwave scanning frequency f , a differ-
ential fluorescence value F̃ is associated, evaluated as follows: F̃ = F (f +
fdev)−F (f − fdev). F represents the fluorescence collected by the sensor and
fdev represents a frequency deviation chosen in order to optimize the differ-
ential graph. (For the measurements carried out in the biological field with
our diamond samples and in our experimental conditions fdev = 2 MHz).
This method is advantageous since temperature variations are estimated by
the differential signal F̃ that is now linear with respect to frequency shift,
around the resonant frequency Dgs:

∆F̃ = slope ·∆Dgs (4.2)

rather than finding a minimum that is more difficul to estimate (see Figure
4.2).
The slope is obtained through a linear regression from the differential spec-
trum.
The differential signal F̃ is acquired at a single frequency chosen in the lin-
ear region of the differential spectrum. Any variation ∆F̃ recorded will be
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attributable to a shift in the resonance frequency ∆Dgs (see Eq.(4.2)) and
therefore, for example, an eventual temperature variation ∆T (see Eq. 4.1)
will be stimated, according to:

∆T =
∆Dgs

∂Dgs/∂T
=

∆F̃ /slope

∂Dgs/∂T
(4.3)

4.1.3 Lock-in technique

Another experimental strategy to obtain an estimate of the resonant fre-
quency shift ∆Dgs in a short measurement time is to use the lock-in detec-
tion technique. The principle is similar to the one adopted for the differential
ODMR technique: measure the fluorescence F emitted by the NV center at a
single microwave frequency, instead of recreating the entire ODMR spectrum
by performing a frequency scan. As in the previous section, in this way a
reading of a fluorescence variation (F̃ ) can be directly associated with the
variation of external fields, provided that the dependence (the one that was
the slope in the previous method) has been obtained from the complete dif-
ferential graph.
In addition, a further advantage of the lock-in technique is to ”move” the
measured signal to a frequency region affected by less noise providing the
possibility to detect small signal amplitudes even in the presence of strong
noise.
The working principle of a lock-in amplifier (LIA) can be explained by con-
sidering a single ODMR dip with Lorentzian lineshape of linewidth FWHM ,
contrast C and frequency f0 (Fig. 4.1b). The detected fluorescence can be
written as:

F (f) = R · [1− C · 1

1 + ( f−f0
FWHM/2)

2
] (4.4)

where R is the fluorescence in the absence of MW. Consider a sinusoidal
MW input signal, fMW (t) = fc + fdev · sin(2πfmodt), where fmod is the mod-
ulation frequency, fc is the central frequency and fdev is the frequency de-
viation. Suppose that we also have available a reference signal V ref(t) =
V ref
0 · sin(2πfmodt) at the same modulation frequency (Figure 4.3). After in-

tegration over the period T all oscillating components vanished and only DC
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output in form of dispersion-type signal with a zero-crossing at f0 remains:

VLIA(f, fdev) ∝
F (f + fdev)− F (f − fdev)

2
=

V0C

2
·[ 1

1 + ( (f+fdev)−f0
FWHC/2 )2

+
1

1 + ( (f−fdev)−f0
FWHC/2 )2

]

(4.5)
V0 is a voltage determined by R and the output settings of the LIA (Figure
4.3a)). Setting fdev = FWHM

2
√
3

maximizes the amplitude of the LIA signal
and consequently the signal-to-noise ratio of the measured signal. A time-
varying field, for example an eventual temperature variation ∆T (see Eq.
4.1), is sensed by setting fc = f0 and detecting resonance frequency shifts
f0(t) = f0 + δf(t), where δf(t) = ∂Dgs/∂T ·∆T (t) as:

VLIA(t) ≃
−3

√
3

4
· V0C

FWHM
· ∂Dgs/∂T ·∆T (t) (4.6)

The demodulated signal is linear in the temperature variation and therefore
provides a good measure for ∆T (t). Lock-in detection is ideal for very noisy
signals and allows one to achieve optimally driving a low-density ensemble,
maintaining a linewidth that closely resembles those obtained from single
NV defects. The reason why it is sometimes preferable to use the differential
ODMR is related to its simpler application. In fact, creating the lock-in
signal requires a more advanced instrumentation (see Figure 4.3b)).

a) b)

Figure 4.3: a) Optically detected magnetic resonance signal. The MW frequency is modu-
lated at the frequency fmod around the central value fc with a certain frequency deviation
fdev. Right: The demodulated signal has a dispersive lineshape when sweeping the central
frequency. b) Block diagram of a lock-in amplifier.
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4.2 NV− sensor property

In this section the electronic state spin property of the NV − is described
highlighting its dependence with respect to external fields and temperature
variation.

4.2.1 NV− ground electronic state

The Hamiltonian of 3A2, the ground spin state of the NV system, can be
written in the following form [58, 59]:

Ĥgs

h
= ŜDŜ + ŜAÎ + ÎQÎ (4.7)

where Ŝ = (Ŝx, Ŝy, Ŝz) and Î = (Îx, Îy, Îz) are the dimensionless electron and
nitrogen nuclear spin operators, respectively. The first term represents the
fine structure splitting due to the electronic spin-spin interaction, coupled by
the fine structure tensor D. The second term is generated by the hyperfine
interaction between NV electrons and the nitrogen nucleus (I = 1 for a 14N
nucleus, while I = 1/2 for a 15N nucleus), with the hyperfine tensorA. Finally,
the third term represents the nuclear electric quadrupole interaction, with the
electric quadrupole tensor Q. It should be noted that, in this notation, the
component z coincides with the NV axis of symmetry. Due to the symmetry
of the NV center, D, A, and Q are diagonal in the NV coordinate system
[60, 61] and, in terms of the natural spin-triplet basis {|ms = 0 >, |ms =
+1 >, |ms = −1 >}, the Hamiltonian can be written as:

Ĥgs

h
= Dgs[Ŝ

2
z − Ŝ2/3]︸ ︷︷ ︸

electronic spin−spin interaction

+A//
gsŜz Îz + A⊥

gs[ŜxÎx + ŜyÎy]︸ ︷︷ ︸
electron−nucleus spin interaction

+ Qgs[Î
2
z − Î2/3]︸ ︷︷ ︸

nuclear spin−spin interaction

(4.8)
where Dgs≃ 2.87 GHz is the zero field splitting, Qgs is the nuclear electric

quadrupole parameter, A
//
gs and A⊥

gs are the axial and non-axial magnetic
hyperfine parameters [62, 63]. The parameters values are reported in Table
4.1.
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Hyperfine parameters Value
Zero field splitting Dgs ≃ 2.87 GHz

Axial hyperfine term A
//

gs,14N ≃ -2.14 MHz

A
//

gs,15N ≃ 3.03 MHz

Transverse hyperfine term A⊥
gs,14N ≃ -2.70 MHz

A⊥
gs,15N ≃ 3.65 MHz

Nuclear electric quadrupole term Qgs ≃ -5 MHz

Table 4.1: Hyperfine parameters for the NV defect determined at room temperature.

4.2.2 Magnetic field sensing

A static magnetic field produces the well-known Zeeman effect [64], that it is
described by:

V̂gs

h
=

µBg
//
gs

h
ŜzBz +

µBg
⊥
gs

h
(ŜxBx + ŜyBy)︸ ︷︷ ︸

Zeeman interaction

+
µNgN
h

ÎB⃗︸ ︷︷ ︸
nuclear Zeeman interaction

(4.9)

where µB is the Bohr magneton, µN is the nuclear magneton, g
//
gs and g⊥gs

are the components of the ground state electronic g-factor tensor and gN is
the isotropic nuclear g-factor. In the presence of relatively weak magnetic
fields, it is possible to approximate the almost diagonal g-factor tensor in a
diagonal form, with constant ge = 2.003 [65]. As reported in Table 4.2, the
interaction of the magnetic field with the nucleus is 2000 times smaller and,
consequently, it is typically neglected [66]. The presence of external fields
eliminates the energy degeneracy of the levels |ms = ±1 >, whose splitting
become γeBz, where γe =

µBge
h (see Figure 4.4). If, instead of a single NV cen-

ter, an ensemble of NV centers is considered, up to eight magnetic resonance
dips can be observed, due to the four possible orientation of the NV axis in
the diamond’s crystalline matrix (see Figure 4.5). For certain directions of
the magnetic field, some resonances can be degenerate.
A NV-based magnetometer can be realized, for example, by applying a bias
field along the NV axis, removing the degeneracy, so that changes in the
magnetic field projection along this axis affect the resonance frequencies al-
most linearly. Another option is to use all four NV alignments; although
the eight ODMR frequencies have more complicated dependence on B⃗, this
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a) b)

Figure 4.4: NV ground-state 3A2 scheme. Above: a) 14N hyperfine states and b)15N hyper-
fine states. Below: schematic ODMR spectra. The spectra are shown considering Zeeman
splitting and hyperfine splitting.

option yields information about the direction of magnetic field [67].
Because of this interesting properties connected to the presence of a magnetic
field, the use of NV center as a magnetic field sensor firstly was proposed in
[68, 69] and demonstrated with single NV [64, 70] and NV ensembles [71] in
2008.

4.2.3 Electric field sensing

The Hamiltonian describing the interaction with the electric field was derived
from molecular orbit theory by Doherty et al.[59] and it can be written in
the following form:

V̂gs

h
= d//gs(Ez+Fz)[Ŝ

2
z−

Ŝ2

3
]+d⊥gs(Ex+Fx)(Ŝ

2
y−Ŝ2

x)+d⊥gs(Ey+Fy)(ŜxŜy+ŜyŜx)

(4.10)

where d
//
gs and d⊥gs are respectively the axial and non-axial Stark shift compo-

nents of the permanent electric dipole moment d⊥gs in the ground triplet state

[73], E⃗ is the electric field and F⃗ is the mechanical strain.
According to Eq.(4.10) the effect of the electric field E⃗ plays the same role as
mechanical strain F⃗ [74, 75]. The strain depends on the diamond material:
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Figure 4.5: ODMR spectra in the absence a) and in the presence b) of an external bias
magnetic field. The magnetic field lifts the degeneracy of the |ms = ±1 > states and results
in two separate dips in the ODMR spectrum. c) An example ODMR spectrum (excited
at 532 nm) with a magnetic field in an arbitrary direction for an ensemble NV centers in
diamond. Each of the four NV alignments has a different magnetic field projection along its
quantization axis, leading to eight ODMR peaks (two for each NV alignment). For each dip
a coupling with the nuclear spin of the 14N atom generates additional three hyperfine levels
[72].

in single-crystal samples, the mechanical strain field is substantially negligi-
ble; while, in polycrystalline ones, a relatively high strain field is induced by
the growth conditions, leading to a splitting of the spin state |ms = ±1 >
even in absence of external fields.
The frequency shift caused by the electric field is much smaller than the shift
produced by the presence of a magnetic field (see Table 4.2). For this reason,
in order to reliably measure this second-order effect caused by the Stark shift,
it is necessary to decouple it from the Zeeman shift.

Briefly, the fine structure Hamiltonian of the NV ground state, describing
the energy levels of the electronic spin states due to the spin (Ŝ) interaction
with the static magnetic (B⃗), electric (E⃗), and strain (F⃗) fields, can be written
in terms of the natural spin-triplet basis {|ms = 0 > , |ms = +1 >, |ms =
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−1 >} in the following matrix form:

Ĥgs =

 0 −µBge
Bx−iBy√

2
−µBge

Bx+iBy√
2

−µBge
Bx+iBy√

2
hD + µBgeBz −hd⊥gs(Px − iPy)

−µBge
Bx−iBy√

2
−hd⊥gs(Px + iPy) hD − µBgeBz


where it is possible to observe that the natural-spin basis vectors are eigen-
states of the Hamiltonian only in the presence of both the magnetic and
electric field aligned with the NV axis. In this condition, D = Dgs + d

//
gsPz

describes the frequency shift of the resonance lines resulting from the zero-
field splitting and from the Stark effect associated with the component of the
vector P⃗ = E⃗ + F⃗ . Otherwise, external fields not aligned to NV symmetry
axis produce a non-diagonal matrix, and therefore energy levels of undefined
spin. In particular, the presence of additional transverse strain and electric-
field components P⊥ modifies the ground-state structure.
The Hamiltonian assumes a quasidiagonal form considering a new spin basis
{|0 >, |+ >, |− >}, obtained by a field-dependent mixing of the |ms = +1 >
and |ms = −1 > spin states according to the following unitary operator:

Û =

1 0 0

0 ei
ϕ
2 sin(θ2) e−iϕ2 sin(θ2)

0 ei
ϕ
2 cos(θ2) −e−iϕ2 sin(θ2)


where tan(ϕ) = Px/Py and tan(θ) = (d⊥gsP

⊥)/(µBgeBz) are the field-dependent
phases defining the spin state mixing. The Hamiltonian takes the following
form in the {|0 >,|+ >,|− >} basis:

Ĥ ′
gs = ÛĤgsÛ † =

 0 c1µBgeB
⊥ c2µBgeB

⊥

c∗1µBgeB
⊥ hD +W 0

c∗2µBgeB
⊥ 0 hD −W


with

W =
√

(hd⊥gsP
⊥)2 + (µBgeBz)2 (4.11)

The complex constants c1 and c2 represent the phase of the matrix elements
and B⊥ is the transverse component of the magnetic field with respect to
the NV axis. If B⊥ ≈ 0, the non-diagonal terms can be neglected and the
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Hamiltonian can be regarded as diagonal in the basis {|0 >, |+ >, |− >
}. The energy difference between the |0 > and the |± > states is hD ±
W , corresponding to ODMR resonances separated by 2W/h depending on
the strengths of the magnetic, electric, and strain fields, as well as their
orientations with respect to the axes of the NV center. Since the states
|± > are a coherent superposition of the states |ms = ±1 >, we underline
that the ODMR resonance is observed also in this case as a reduction in the
fluorescence emission at the new MW resonance frequencies.

4.2.4 Temperature variation sensing

Another interesting feature of the NV complex is the temperature dependence
of its spin levels [76]. Indeed, the microscopic origin of Dgs, also called the
zero field splitting (ZFS) parameter, is due to spin-spin interactions in the
NV’s orbital structures, and the value depends on the lattice length, which
is strongly correlated to the local temperature. When the local temperature
increases the diamond lattice spacing of the NV center increases as well,
lowering the spin-spin interaction and reducing the ZFS parameter Dgs. The
resonant frequency between the two levels is:

Dgs,T = Dgs,T0
+ ∂Dgs/∂T ·∆T (4.12)

The term Dgs,T0
represents the spin-spin interaction at room temperature

T0. The second term represents the effect of a temperature increase on the
system. Under ambient conditions Dgs,T0

≃ 2.87GHz and the temperature
dependence is dD/dT ≃ −74kHz/K [76]. In general, the ZFS parameter
shows a non-linear dependence, and its value increases when temperature
decreases [77].

Property Coupling coefficient
Magnetic field γe =

µBge
h

≃ 28 GHz T−1

γN = µNgN
h

≃ 15 MHz T−1

Electric field d//,gs ≃ 3.5 mHz V−1m
d⊥,gs ≃ 0.17 Hz V−1m

Temperature ∂Dgs/∂T ≃ -74 kHz K−1

Table 4.2: Coupling coefficient of the NV center with the external fields and temperature.
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To realize a NV-based temperature sensor, the most obvious solution is ex-
ploiting the Dgs temperature dependence. This requires that no external

field is present (B⃗ , E⃗ , F⃗ = 0), i.e. |ms = ±1 > is degenerate. In this case,
an increase in temperature leads to a decrease in the resonance frequency,
associated with a shift of the degenerate levels |ms = ±1 > towards the level
|ms = 0 >.
Nevertheless, this is the simplest but not the optimal solution, since, even
in the absence of applied fields, the sample may have an internal strain (es-
pecially when nanodiamonds are used instead of bulk diamond) and may be
affected by the Earth’s magnetic field. Unless it is possible to find a bulk
diamond sample with negligible F⃗ and to design an experimental set up able
to reasonably compensate for the external magnetic field (e.g. Helmholtz
coils), the dips would not be perfectly overlapped because of the non perfect
degeneracy of |ms = ±1 >, thus showing a larger full-width-at-half-maximum
(FWHM) and therefore a lower resolution.
A better solution is to apply an external magnetic field in order to signif-
icantly separate the spin levels, or in case of nanodiamonds, have samples
with high internal mechanical stress. However in this configuration, a single
dip can shift for a temperature variation, but also for a variation of mag-
netic field. To decouple the two contributions it is sufficient to monitor both
|ms = +1 > and |ms = −1 > spin states at the same time, using simultane-
ous driving of the microwaves in ODMR technique [78]. As it can be seen in
the Figure 4.6, by simultaneously monitoring the initial dips (red curves), it
is in principle possible to understand if there are variations in the magnetic
field (the dips move in opposite directions) or in temperature (the dips move
in the same direction).
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Figure 4.6: Example of magnetic and thermal shifts of the spin resonance, in ODMR spectra.
Dips with equal colors correspond to paired resonances. The colors represent the timeline of
the dips. The initial dips is red, then green and finally blue.
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Chapter 5

Single photon confocal microscope
with microwave control equipment for
sensing measurements

5.1 Confocal microscope theory

This section analyzes the theoretical functioning of the confocal microscope,
which is the essential tool for optically stimulating the diamond sample and
collecting its photoluminescence.

5.1.1 Operating principles

Confocal microscopy in single photon luminescence is used to characterize
the NV centers. With this technique it is possible to map luminescent phys-
ical systems, with a spatial resolution that is substantially limited by the
excitation laser wavelength. The feature that best qualifies this technique is
represented by the possibility of viewing the different optical planes of the
sample, thanks to the presence of a collection iris, which has the function of
eliminating the diffused light from the planes out of focus, (see Figure 5.1).
The term ”confocal” derives from the fact that there are 3 optically conju-
gated points of the system, that is: the laser source, the displayed object
and the collection point of the emitted radiation. Hence, unlike conventional
microscopy, where the image is formed directly on the detector, in confocal
microscopy the probe radiation coming from the source illuminates the object
only one point and therefore a scan of the laser beam or sample is required
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to form the final image.

Figure 5.1: Confocal microscope setup. The rays of light arriving from objects lying at
different depths with respect to the focal plane are intercepted by the collection iris (Pinhole).

As regards the study of the NV centers, the suitable source is a laser beam
with a wavelength in the green (λ = 532 nm). To make the laser beam as
similar as possible to an ideal plane wave, a lens is used, which focuses the
beam at infinity. The light beam is reflected by a dichroic mirror (i.e. in our
case a long-pass at 567 nm) and is then collected by a lens. The latter has
the function of focusing the beam on a well-defined focal plane. The sam-
ple, which in turn contains one or more luminescent centers, is excited and
isotropically emitting the luminescence radiation at different wavelengths,
mainly in the red (λ > 600 nm) in the specific case of NV centers (see Figure
1.5). Part of the luminescence radiation is collected by the lens, arrives at the
dichroic and, unlike the radiation of excitation, is transmitted and reaches
the detector after passing through the collection iris. Without this latter
optical component, the incoming light would be composed of photolumines-
cence generated by centers located at different depths, i.e. at different focal
planes, making it difficult to isolate individual centers. This process is called
optical sectioning, since geometrically removes the portion of fluorescence not
coming from the focal plane.
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5.1.2 Spatial resolution

Spatial resolution in optical microscopy is subject to the phenomena of aber-
ration and diffraction: both limit the image quality. The first effect can
ideally be removed by optimizing the optical alignment of the system. The
second effect can only be minimized and represents the ultimate limit of the
instrument’s resolution.
To study the formation of an image mathematically, the Point Spread Func-
tion (PSF), is used. The PSF represents the impulse response in the field of
image processing. In a generic microscope, the I (x, y, z) function describ-
ing the image is given by the convolution of the one representing the probed
object OBJ (x, y, z) e of the PSF.

I(x, y, z) = OBJ(x, y, z)⊗ PSF (x, y, z) (5.1)

A hypothetical object significantly smaller than resolution of the instrument
(such as a single color center) can be approximated with a Dirac delta dis-
tribution:

OBJ(x, y, z) = δ3(x0, y0, z0) (5.2)

So the I (x, y, z) image resulting from an object of this type turns out to be
the PSF (x, y, z) of the microscope itself.
The excitation radiation distribution near the object focal plane can be de-
termined analytically (in paraxial approximation) by considering an incident
plane electromagnetic wave that enters in the objective and is focused; this
function is called Ip and, having cylindrical symmetry, can be expressed as:

Ip(ρ, θ, z) =
2 · [J1(ν)]2

ν2
with z = 0 (5.3)

where:

ν =
2π

λ
· ρ · n · sen α (5.4)

In Eq.(5.3) the z axis coincides with the optical axis, ρ represents the distance
from the optical axis, J1 is the first order Bessel function, n is the refractive
index of the medium (assumed to be homogeneous) between the target and
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the sample, λ is the excitation wavelength and α is the half-opening of the
light cone coming out of the lens. The equation (5.3) shows how the elec-
tromagnetic radiation, after being collected by the objective, is not entirely
focused on one point of the sample but on a spatial region of finite size, called
”Airy disk”. This happens because the radiation is diffracted through the
pupil of the objective itself.

The resolution ηxy on the xy plane can be defined as the inverse of the radius
of the Airy disk Rxy, as follows:

Rxy =
0.61 · λ
n · sen α

=
0.61 · λ
N.A.

(5.5)

This is defined as the FWHM of Ip(ρ, θ, z) at z = 0, having defined N.A. such
as the numerical aperture of the objective. Therefore:

ηxy =
1

Rxy
(5.6)

To define the resolution ηz on the z axis it is necessary to impose ρ = 0 in
Eq.(5.3), which becomes:

Ip(0, θ, z) = [sen (
u

4
) · 4

u
]2 (5.7)

with:

u =
2π

λ
· z · n · sen2 α (5.8)

At this point Rz is defined as the distance (along z) between the maximum
intensity and the nearest zero. You get:

Rz =
2 · n · λ
N.A.2

(5.9)

So the resolution along the optical z axis is given by:

ηz =
1

Rz
(5.10)

It is therefore observed that both the axial and lateral resolution depend of
the excitation radiation wavelength and the objective numerical aperture.
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While the wavelength cannot be varied, since only photons of certain ener-
gies can efficiently stimulate the luminescent centers under examination, the
numerical aperture does not affect the emission of the center. To maximize
resolution is possibile act on this last quantity, for example by using oil im-
mersion objectives, which allow you to improve the refractive index matching
and therefore N.A. (with respect to the objectives used in air).

5.1.3 Optical sectioning

The radiation emitted by the sample passes through the objective and is
focused by the lens, before being collected by the detector.
The magnification of this system is given by the value M = f2

f1
, where f1

and f2 are the focal distances of the objective and the lens, respectively.
For geometric reasons, the light intensity distribution on the image focal
plane is the same as that on the sample focal plane, that is Ip. However, the
image is modified by the M scale factor in the directions transverse and axial.
Now consider an optical plane uniformly illuminated. The luminous intensity
profile is defined by the square of the PSF, therefore the energy collected is:

Etraditional microscope =

∫
PSF (x, y, z)2 dx dy (5.11)

The integral is generally constant (along z) due to energy conservation, there-
fore at any distance the same energy is collected. Consequently, it is impos-
sible to determine the position of the correct plane on the z axis. In the
confocal microscope, however, the iris blocks all the radiation coming from
planes out of focus, preventing it from reaching the detector. In this case the
energy collected is:

Econfocal microscope =

∫
PSF (x, y, z)4 dx dy ∼ 1

z2
per z >> λ (5.12)

From Eq.(5.12) it can be seen that the light intensity revealed by a uniformly
illuminated plane progressively reduces in intensity moving away from the
focus (focal plane: z = 0). This feature of the confocal microscope is called
”optical sectioning”.
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5.2 Experimental set-up

The set-up used for all the experiments performed is described in this section
and is illustrated in the Figure 5.2. The confocal microscope is set up in
order to also carry out the control using microwaves to create the ODMR
graph (and post-processing the data the differential ODMR graph). As an
additional branch of collection, the set-up is organized so that a lock-in mea-
surement can be performed. Finally, the instrument for measuring neuronal
firing is described.

5.2.1 Confocal microscope with ODMR control

The experimental set-up developed for this thesis is presented here. De-
pending on the purpose of the experiments, the collection line was specially
modified.
The apparatus used to measure, by means of nanodiamonds, the tempera-
ture induced in neuronal cells (see chapter 7) is shown in Figure 5.2a. It is
based on an Olympus IX73 inverted microscope, in which optical elements to
implement single-photon confocal imaging and microwave control for ODMR
measurements were integrated. A CW 532-nm laser (Coherent Prometheus
100NE, noise reduced regime, 2nd harmonics) is used to excite the NV centers
in the NDs. The power of the excitation light is varied using a Neutral Den-
sity filter. Then an acousto-optic modulator (AOM), controlled by a pulse
generator (Pulse streamer, Swabian Instruments), is applied to the laser emis-
sion to switch on and off the laser illumination on the sample. This solution
allows to shine the laser on the sample only during the measurement time,
reducing the total amount of light energy delivered to the sample. This is
of key importance in biological applications. Finally, a 60× air microscope
objective (Olympus UPLANFL, NA = 0.67) is used for both excitation and
photoluminescence (PL) collection. The spot size of the focused laser beam
is ∼ (1.2 × 1.3)µm2, see section 5.2.1.1). The NV PL is filtered by a 567
nm dichroic mirror, a 650 nm long-pass filter and a Notch filter centered at
532 nm to remove the residual green laser scattering, and then collected by
a single photon avalanche diode operated in Geiger mode (SPAD, SPCM-
AQR 15, Perkin Elmer). The emission rate from a single ND was around 300
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kCounts/s. The Petri dish, containing the cell culture with NDs, was placed
in a closed incubation chamber with a temperature control (Okolab Temper-
ature Controller, temperature stability 0.1 C). The sample could be moved
via a manually or software-controlled piezoelectric XYZ scanning stage al-
lowing selecting the area of interest. The output signal from the SPAD
was fed to a data acquisition board system (National Instruments, USB-
6343 BNC). To implement the ODMR measurements, a microwave source
(Keysight N5172B) was used. The output signal was then amplified (Mini-
Circuits, ZHL 16W 43+) to a power of 20 dBm and fed to a homemade planar
broadband antenna, which provided a strong, homogeneous, electromagnetic
radiation, specifically designed for ODMR measurements in a 400 MHz fre-
quencies range centered around the 2.87 GHz spin resonance. The Petri dish
was placed on the top of the antenna.

In order to improve the measuring sensitivity of the magnetic field, as de-
scribed in chapter 8, the collection line has been modified. In these experi-
ments, carried out with a bulk diamond sample, the sensitivity is improved
by means of the lock-in technique (see section 4.1.3 for theoretical details).
The microwave control central frequency was internally modulated at fmod =
5001 Hz with modulation depth fdev = 0.5 MHz, where fdev represents the
deviation from the central microwave frequency. For simultaneous hyperfine
driving, the microwave was mixed via a double-balanced mixer with a ∼2.16
MHz sinewave to create two simultaneous driving modulated frequencies near
the central frequency. Then, the microwave generator was connected to the
LIA to provide a sinusoidal reference channel modulated at fmod. A perma-
nent magnet fixed on a translation stage, allowing micrometric movement
along the three spatial axes, provided the external magnetic field applied to
the diamond sample. The photoluminescence (PL) emission was spectrally
filtered with a notch filter centered at 532 nm and a long-pass filter centered
at 650 nm, then collected and detected with two different acquisition sys-
tems. A 4% fraction of the total PL intensity was sent to the single-photon
avalanche detector (SPAD). The signal from the SPAD was used for the
ODMR spectrum acquisition. The remaining 96% fraction of the emitted PL
intensity was collected by NA = 0.25 objective (Olympus 10×) and imaged
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onto a photodetector (Thorlabs DET 10A2). Finally, the signal from the
photodiode was sent to the input channel of the LIA. In the measurement of
the Linear Spectral Density(LSD) of the noise, a time constant of τ = 300 µs
was set. For the estimation of LSD, we acquired the LIA signal for 1 minute
with a sampling rate of s = 10 kHz and subsequently the LIA signal was
Fast-Fourier trans- formed. The time constant of the LIA was set to τ = 1
ms for the construction of the LIA spectrum.

a) b)

Laser 532 nm

AOM

DBS

SPAD

PC

Specimen 
holder

Optical Microscope

xyz stage
µw

magnet

Figure 5.2: a) Experimental set-up scheme used for nanodiamonds experiment (see Chapter
6). The optical excitation using a green laser, the microwave(µw) control and the fluorescence
detection are depicted. The optical excitation is switch on and off using an Acousto Optic
Modulator (AOM). A Dichroic Beam Splitter (DBS) is used to separate the optical path
of the green excitation and of the red photoluminescence (PL). The photoluminescence is
filtered by a long-pass filter (LPF) and a notch filter (NF). Finally is collected by the single-
photon avalanche diode (SPAD) and analyzed by the data acquisition board (DAQ). The
cells are cultured on a Petri dish, placed inside an incubator (temperature chamber), which
can be moved by means of a three-axis piezoelectric system (xyz stage). The temperature
inside the closed incubation chamber is controlled by a PID and measured by a thermocouple.
b) Schematics of the experimental set-up used for bulk diamonds experiment (see Chapter 7).
The optical excitation and the microwave control is the same. The differences concern the
presence of an additional path in the collection of photoluminescence: the lock-in detection
are depicted. The 96% of the PL is then sent to a photodiode (PD), the remaining 4% is
sent to the SPAD. In the inset a drawing of the bulk diamond sample is shown. The sensing
layer has a thickness of 15 nm and a is localized at depth of 10 nm below the surface.
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5.2.1.1 Spatial resolution of our set-up

The spatial resolution of our experimental set-up is shown below. As can be
seen from the FWHM of the Gaussian in the Figure 5.3, there is a spatial
resolution in the x and y planes of about 1 µm while in z of about 6 µm.
These results are reasonably in agreement with the theoretical limit, which
is found by inserting our set-up data into the equations (5.5) and (5.9). The
theoretical resolution limit for the x and y axes is Rxy ∼ 0, 5µm, while that on
the z axis is Rz ∼ 2µm. The slight experimental disagreement is considered
to be related to residual aberrations.
The values have been obtained using nanodiamonds of size 40 nm, placed on
a slide.

Figure 5.3: Spatial resolution of our set-up

5.2.2 Multi Electrode Arrays (MEA)

Multisite extracellular recordings were performed using the MEA-system,
purchased from Multi-Channel Systems (Reutlingen, Germany). The 60 elec-
trodes array (TiN) was composed of an 8 × 8 square grid with 200 µm
inter-electrode spacing and 30 µm electrode diameter. Data acquisition was
controlled through MC-Rack software (Multi-Channel Systems Reutlingen,
Germany), sampling at 10 kHz.
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Chapter 6

NV− center for bio-sensing

The NV− center plays a significant role in the field of sensors. As mentioned
in section 1.2.2, the complex is in the spin triplet configuration and has an
energy levels structure which gives it the peculiarity of having highly spin-
dependent optical transitions of the electronic state.
Using the ODMR technique it is possible to measure the splitting between
the energy levels of the center, which occur in the presence of external fields
(see section 4.2) [79].
The performance of a single NV− center as a sensor is compared with that
of the main magnetic field measurement techniques, based on the use of Hall
probes, force sensors and SQUID sensors (Superconducting Quantum Inter-
ference Devices). The use of the NV − center allows to achieve a higher spatial
resolution than other techniques, while maintaining high sensitivity even at
room temperature; this constitutes a significant advantage over SQUID sen-
sors, which require cryogenic temperatures to perform highly sensitive mea-
surements [80, 81, 82]. There are several possible implementations for sensors
based on NV− centers. For example, a single spin associated with a defect
contained in a nanodiamond can be positioned at nanometric distances from
the sample and used to make precise measurements of the magnetic field and
map its local properties. A possible strategy to achieve this objective is based
on the insertion of NV centers on the tip of atomic force microscopes [83], in
order to generate, in addition to a sample surface three-dimensional image
(topography) at high resolution, also a probed magnetic forces image. Alter-
natively, NV− centers present with high concentration in a diamond volume
can be used to detect fields generated by distant sources with high sensitivity
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(of the order of 1 pT Hz−1/2) and micrometric spatial resolution.
As for the use of the NV− center as an electric field sensor, also in this area
techniques that require recourse at low temperatures to perform high sensi-
tivity measurements is necessary. At the state of the art, sensors such as the
single electron transistor (SET) and tunnel effect microscopy is used. Even in
this case, the possibility offered by the NV− center to carry out at room tem-
perature high spatial resolution measurements with sensitivity of the order
of 102 V cm−1 Hz−1/2 constitutes a significant advantage. The NV− center
sensitivity to electromagnetic fields depends strongly by the spin coherence
time τ , which is itself limited by the interaction with the other spins located
in the immediate vicinity in the reticulum (in prepared samples appropriately
τ can reach the value of 1.8 ms). By maximizing this parameter and using
appropriate spin resonance techniques it is possible to achieve a sensitivity
which, combined with the possibility of approaching the sensor at nanometric
distances from the sample, allows to discriminate the magnetic fields gener-
ated by single electron or nuclear spins and electric fields generated by single
elementary charges.
In addition, since the diamond, thanks to its high bonding energy, chemi-
cally inert and resistant to deterioration, this type of device is biocompat-
ible. There are many possible applications in the biological field in which
it is planned to exploit these sensors [84, 85, 86, 87, 83, 88]. For example,
the NV− center would allow the study of neuronal pulses associated with the
generation of the action potential along the axons of neurons.
Finally, among the various applications in the sensor field, the NV− center of-
fers the possibility of detecting the temperature of the environment in which
it is located, a topic that will be presented in chapter 7.

6.1 The biosensing theory

As mentioned above, NV sensors are particularly suitable for biological sens-
ing, i.e. sensing of biological systems. Before describing the experiments
focusing on the NV-based sensor it is necessary to specify the type of biologi-
cal specimens of interest, the expected magnitude of the electromagnetic field
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produced by these specimens and the principal parameters such as sensitivity
and spatial/temporal resolution, required for the NV-based sensors.
This section, after reviewing some of the devices typically used for biosensing,
analyzes in detail neuronal and cardiac cells. Higher sensitivity and resolution
of electromagnetic fields is considered necessary to expand the understanding
of the fundamental processes regulating the interaction of these cells.

6.1.1 From the conventional electrophysiological techniques to NV
sensors

The electrical activity of excitable cells can be investigated by means of the
conventional patch-clamp technique [89] or through Micro Electrode Array
(MEA) [90] recordings.

• Single-cell recordings, performed under voltage- or current-clamp config-
uration, respectively allow to monitor ion currents or the membrane rest-
ing potential, postsynaptic responses and action potential firing activity
[91]. Besides having an extreme versatility (monitoring overall electri-
cal events from the whole cell, from microdomains of the cell membrane
or even from single channel proteins), patch-clamp has a high temporal
resolution and high sensitivity: all these features make this electrophysi-
ological approach the gold standard for measuring the electrical activity.
Though, patch-clamp is rather invasive, as it damages the cell membrane
through the recording electrode: this implies that only one recording is
feasible for each cell [92].

• On the contrary, MEA is a non-invasive approach, used to measure the
membrane potential variations from many cells simultaneously. The
MEA probe is structured as an array of sensing electrodes, of variable
geometry dimensions and material, which are immersed in a glassy (insu-
lating) double layer. Commonly, sensing electrodes are made of titanium
or indium tin oxide (ITO), and have a diameter that can vary between
10 and 30 µm [93, 94]. By means of MEAs, it is possible to monitor
the electrical activity of a neuronal network as a whole, and measuring
its changes along with its maturation, even though informations on the
biophysical properties of ion channel cannot be directly inferred. This
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specific measurement need, requiring non-invasive and iterative detec-
tion for biological applications has prompted the study and realization
of different devices. In the following I discuss and compare the most
promising ones.

Promising devices for the detection of weak magnetic fields, in addition to
the NV-based sensors, are the superconducting quantum interference device
(SQUID) sensors [80, 82] and chip-scale atomic magnetometers (CSAMs) [95].

• Until now, the measurement of very weak magnetic fields was the do-
main of SQUIDs sensors. These sensors have reached sensitivity levels
of (0.9–1.4) fT/Hz1/2 with a pick-up coil area of the order of 1 cm2 .
However, SQUIDs require cryogenic cooling, which, in addition to im-
plying significant cost and maintenance complexity, requires positioning
the sensor a few centimeters from the sample.

• An alternative is offered by the CSMAs, that are based on microfabri-
cated alkali vapor cells integrated with small optical components such
as diode lasers and fiber optics. These devices have reached sensitivities
below 5 fT/Hz1/2 at sensor volume 8 mm3[95]. However, despite the ex-
ceptional sensitivity, the minimum working distance between sensor and
magnetic source for CSAM or SQUIDS remains at least few mm, that
makes them unsuitable for monitoring individual cell signals or small tis-
sues, being the amplitude of the magnetic field decreasing quadratically
with distance.

The sensors for the detection of electric fields, emerging in the last few decades
are single-electron transistors (SETs) [96], that are a promising candidate for
achieving higher detection sensitivity due to the Coulomb oscillations. How-
ever, the existence of a SET- based biosensor has emerged only in recent years
[97], probably because of their difficulty of the room-temperature operation.

Finally, in recent years there has been a growing interest in the use of temper-
ature sensors capable of operating on a nanometric scale. It has been known
that local temperature variations at the intracellular level play a fundamental
role in cellular activities related to body temperature homeostasis and energy
balance [98]. Particular attention is paid to the possibility of measuring local
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temperature variations of cell organelles (i.e. nucleus, mitochondria, etc.)
or ion channels. For example, different simulation model [99, 100] shows a
hypothetical variation in temperature at the level of the ion channels, due to
the flow of the ions from the inside to the outside of the plasma membrane,
during the genesis of the action potential. Due to the difficulty of this local
measurement, no one has ever measured this thermal variation. Interestingly,
temperature changes may drastically alter the neuronal firing frequency, as
demonstrated by Guatteo et al.[101]. Currently fluorescence probes are pow-
erful method used to study intracellular temperature variation thanks their
high spatio-temporal resolution. The probes typically used for this measure-
ment are organic or inorganic fluorescent probes, such as fluorescent proteins,
organic dyes [102, 103, 104, 105], quantum dots (QDs) [106, 107] and many
others.

• Organic proteins are biocompatible probes, rather stable and very easy
to chemically target. But there are different problems related the use
of these probes: these are often autofluorescent and to avoid the phe-
nomenon it is necessary to add specific quenchers; they cannot be used
for a long time, in fact these sensors suffer from photobleaching and
unstable photoluminescence. In the best case scenario, the probe degra-
dation consists of fluorescence suppression, in the worst case scenario it
releases an electron that binds to nearby molecules making them toxic.
These probes are organic and by their nature they are also subject to
even weak pH variations, for this reason it is fundamental a strict control
of the cell environment [108, 109].

• The inorganic probes such as quantum dots (QDs) have the advantage
of being stable in fluorescence, have a high sensitivity to temperature
variations and their nanometric size allows obtaining a spatial resolution
useful for cellular measurements. Although the size of these sensors
would allow spatial resolution limited by the diffraction limit only, their
chemical composition is found to be non-biocompatible in most of the
cases.

• Other temperature sensors are based on up converting nanoparticles
(UCNPs) [98, 110]: nanoscale particles (diameter 1-100 nm) that exhibit
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photon upconversion, i.e. when stimulated by incident photons they
are able to emit fluorescence’s of shorter wavelength. They are usually
composed of rare-earth based lanthanide or actinide-doped transition
metals. Their core-shell structure allows sensor compatibility, however,
sensitivity is not high.

• Extremely interesting devices able to realize all these measurements
(magnetic, electrical and temperature sensing) eventually at the same
time, are one based on the NV center in diamond. The advantages
of these sensors are manifold: they have stable photoluminescence in
the visible and near-infrared range, their chemical composition ensures
resistance to photobleaching and diamond is an inert and therefore bio-
compatible material [111], so cell/neurons can be grown directly on its
surface [112, 113, 114] or nanodiamonds can be injected inside them, al-
lowing for sub-cellular spatial resolutions [115] with a non-invasive tech-
niques. Finally, NV sensors can operate at room temperature and, in
more detail, their dynamical range of temperature sensing extends fur-
ther 500 K for both bulk [116] and nanoscale [117] diamonds.

The various sensors discussed are shown in the Table 6.1, where the main
advantages and disadvantages that differentiate them are stated. In the re-
mainder of this section, the modelization of the target neural and cardiac
signals for NV-based biosensing will be reviewed.

6.2 NV sensor for bio-electromagnetic signals

6.2.1 NV center as sensor for neuronal signals

In the last decades, neuroscience has attracted great interest beyond the
scientific community. Because of the increase in life expectation, cases of
neurodegenerative diseases such as Parkinson’s, Alzheimer’s, Huntington’s
disease and many others are constantly growing. Currently, these diseases
are incurable, even symptoms mitigation is difficult because of late diagnosis
when most of the neurons involved have been irreparably damaged. This rea-
son strongly prompts to develop new increasingly precise and sensitive tech-
niques, allowing a deeper understanding of neuronal circuits ranging from
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sensors application advantages disadvantages
patch-clamp electrical cells activity -high time resolution invasive

-high spatial resolution (no-biocompatible)
(ion channels level)
-high sensitivity

MEA electrical activity non-invasive low spatial resolution
of a neuronal network (many cells)

SQUID weak magnetic fields 1 fT/Hz1/2 - 1 cm2 -cryogenic cooling
-cost
-low spatial resolution
(few centimeters)

CSMAs weak magnetic fields 5 fT/Hz1/2 - 8 mm3 -low spatial resolution
(few centimeters)

Organic intracellular local -biocompatible -photobleaching
proteins temperature variations -high spatial resolution -photoblinking

nanometric scale -toxic (some times)
QDs intracellular local -high sensitivity non-biocompatible

temperature variations -nanometric size
UCNPs intracellular local bio-compatible low sensitivity

temperature variations
NV-centres magnetic, electrical and -stable photoluminescence

temperature sensing -biocompatible
-room temperature

Table 6.1: Summary of the various types of sensors and their main characteristics.
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functioning of synaptic sites to the behavior of the entire neuronal network.
Neurons are the functional units of the nervous system. They communicate
via electrical signals, known as action potentials.
The action potential (AP) consists in the variation in time of the membrane
potential Vm, where Vm = Φein − Φeout is the electrical potential difference
between intra- and extra-cellular side of the cell membrane. The AP charac-
teristic waveform is shown in Figure 6.1b). The AP pulse is caused by several
ionic species (Na+, K+, Ca2+), which flow through the neuronal membrane.
The two electrophysiological techniques mostly used to study cell excitability
and synaptic transmission in a neuronal network are the patch-clamp and the
MEA. In the last decade scientists have tried to study more and more specif-
ically the propagation of the electrical signal from the cell body (or soma) to
the whole dendritic tree. In other words, the goal would be to create a device
that allows scanning the neuron point by point from the soma to the axon
and the dendrites, following and characterizing the electrophysiological varia-
tions of the electrical signal during its propagation. The technology closer to
this ambitious goal is the one of the CMOS-MEA, that allows having a much
higher density of electrodes with respect to the traditional MEA technology.
Numerous studies have managed to scan the path of the electrical signal in
a neuronal network at the level of the single neuron [118, 119, 120].

Bakkum et al.[120] recently have developed a high electrode density CMOS-
MEA device capable of stimulating a specific area and simultaneously scan-
ning the signal along some points from the soma to the axon. Clearly, this
technique is much more sensitive than MEA, but given the stochasticity of
the cell’s placement in space, it requires cells to be marked in order to follow
their path. Recently several groups have correlated this technology to the
technique of optogenetics. They tagged the genes of interest and activated
them following an optical stimulation and simultaneously followed the signal
thanks to the integration of the CMOS-MEA [121, 122].
However, these techniques do not allow following the entire dynamics of the
action potential, but to have a scan of a region depending on the position of
the electrodes with respect to the neuron with its axon and its dendritic body.
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a)

b)

Figure 6.1: a) Single neuron simplified sketch. In the upper box a zoom of the neuronal
membrane is reported, where the ionic current and the corresponding magnetic field are
schematized. In the lower box the axial current and the relative magnetic field are shown.
b) Schematic representation of neuronal action potential (AP). Resting membrane potential
(-Vm) is -70 mV. When Vm is driven and exceeds the threshold (following an initial stimu-
lus), a rapid membrane depolarization occurs. In this phase the Na+ channels open, allowing
sodium to enter in the neuron and bringing Vm to approximately +35 mV. Then the repo-
larization phase begins, caused by Na+ channels inactivation and opening of K+ channels.
This outward current drives the membrane potential close to -93 mV (hyperpolarization).
Finally, the Na+/K+ ATP-ase restores the initial conditions. During the depolarization, the
influx of positive charges produces local internal and external longitudinal currents, which
are responsible for the AP propagation in the axon adjacent area. The propagation direc-
tionality is guaranteed by the AP refractory period: although the local currents propagate
in both directions, a new AP cannot be triggered in refractory membrane area.

NV sensors may therefore have a huge impact on these applications: nan-
odiamonds can be targeted on the membrane surface or, alternatively, cells
can be plated and cultured on a bulk diamond [123]. Indeed, taking advantage
of diamond biocompatibility and the exceptional spatial resolution displayed
by color centers in diamonds , it will be worth exploiting these properties for
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a timely reconstruction of the AP dynamics. Furthermore, the possibility of
positioning them adjacent to the cell membrane has the advantage of experi-
encing stronger magnetic fields. However, since neuronal magnetic fields are
extremely weak (≃ pT ), their detection appears to be challenging even for
NV-based sensors, at least for mammalian cells, while measurements have
been performed on giant neurons of invertebrates [113].

To predict the electromagnetic fields intensity created by the AP, and
therefore to understand what sensitivity of the NV sensors is needed to sense
it, it is necessary to model how the AP develops and propagates.

Hodgkin-Huxley model [124, 125, 126, 127] allows estimating the ionic
current flowing through the neuron membrane (when the ion channels are
open). For the human neuron, the total estimated ionic current, sum of the
single channels contribution Iion is:

I⊥ =
∑

Iion ≃ 2 pA µm−2

and the current pulse typically lasts ∆t ≃ 1 ms. Each Iion generates a
magnetic field (see Figure 6.1a)), which can be estimated by means of the
Biot-Savart law:

∮
C

⃗B ion · l⃗ = µ0Iion. However, the resulting amplitude of
these fields depends on the channels density, which largely varies depending

on the axon area being considered. Furthermore, we note that the B⃗
tot

ion field,
sum of the contributions of the field produced by the various channels, can
be vanishingly small on average, because of the different fields directions. To
this purpose, channel clustering may be very significant [128, 129]. Assuming
a current of 100 pA/µm2 and considering that the NV sensor positioned at an
average distance of few nanometers (by selective targeting the channel using
functionalized NDs [130, 131]), a magnetic field of about 0.1− 5 nT (or even
higher) could probably be sensed. This hypothesis is now under experimental
analysis.
Current flowing through the membrane is not limited to the charge flow
through ion channels, as longitudinal currents, but one should also consider
the flow along the neuron axis, that is responsible for the AP propagation.
These currents also generate a magnetic field, around the neuron (see Figure
6.1a)). Both the axial current and the corresponding magnetic field have been
estimated [132, 133, 134]. In particular, Ref.[132] goes beyond the simplifi-
cation of the Hodgkin-Huxley model, introducing the spatial and temporal
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progression of the AP along the various neuronal compartments, into which
they have divided the axon. The theoretical prediction is a maximum field
Baxial ≃ 3 pT on the external membrane near the Ranvier node and a field
Baxial ≃ 2.3 pT on the myelin sheath external surface in those regions where
the axon is wrapped by it.
The maximummagnetic field was also calculated by Isakovic et al. in Ref.[132]
for the nerve composed of 100 axons, obtaining only Baxial ≃ 6 pT. This is
due to the cancellation of the magnetic field component, caused by different
axons within the same nerve, bringing opposite directional currents. This
estimated magnetic fields, in reality, are compatible with the fields detected
by magnetoencephalography (MEG). MEG is able to detect fields if the order
of 10−15 T because of the distance from the source [135].

Considering these values, a NV sensor positioned on the neuron surface or a
few micrometers from it, should have a temporal resolution of about 0.1 ms (in
order to be able to trace the time variation), and spatial resolution of about
10 µm3 (which would allows a good reconstruction of the AP propagation,
being the axon length ranging from 0.1 µm to 1 m). Thus, the NV sensor
should have a minimum sensitivity of [136]:

η = δBmin

√
∆t ≃ 3 pT

√
0.1ms ≃ 30 fT Hz−1/2 (6.1)

The NV sensor optimal sensitivity is in principle limited by the quantum
projection noise. This fundamental sensitivity limit for spin-based magne-
tometers is given by [137]:

ηq =
1

γe

1√
nT ∗

2

(6.2)

Where γe is the magnetic coupling coefficient (Table 4.1), n represents the
number of NV centers and T ∗

2 their characteristic dephasing time. It is im-
portant to underline that the number of NV centers n refers to the sensing
volume. As mentioned, for the single PA detection the sensing volume should
be around 10 µm3, the size of the cell.
In the Ref.[113], the estimation of the parameters n ≃ 3 · 106 cm−3 and T ∗

2 ≃
450 ns determines a spin projection noise value of ηq ≃ 30 pT Hz−1/2 for the
sensing volume of 10 µm3 (the experimental sensitivity reached is instead η ≃
15 pT Hz−1/2 for the sensing volume of 5 · 106 µm3). This value is still 1000
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times larger than the sensitivity required for the detection of a single AP.
However, as will be discussed in chapter 8, it is possible to optimize both the
above mentioned parameters to improve the performances.

Once the biomagnetic field B⃗(x⃗ , t) has been measured, to reconstruct the
unknown currents generating it, one should solve an inversion problem. In
general, its solution is not unique, due to the existence of the so-called ”mag-
netically silent” currents (i.e. the ones producing magnetic fields that almost
cancel each others) and due to the fact that the magnetic field can be influ-
enced by the electric field [138, 139]. However, in the single axon case, it can
be uniquely resolved. On the contrary, in the biological tissue case and in the
3D structures case, that cannot be traced back to standard models (such as
a spherically symmetrical conductor or a horizontally layered medium), the
solution is not unique. In some cases this is resolved by the knowledge of the
electric field on the conductor surface [138].

6.2.2 NV center as sensor for cardiac signals

The human (and animal) heart generates the body’s most intense electro-
magnetic field. In particular, by comparing measurements performed exter-
nally to the human body, the electric field generated by the heart, measured
through the electrocardiogram (ECG) is about 60 times stronger than that
the one of the brain, recorded by an electroencephalogram (EEG). In addi-
tion, the heart magnetic field detected by the magnetocardiogram (MCG) is
about 5000 times higher than the neuronal magnetic field detected by magne-
toencephalography (MEG): 0,05 nT (heart) vs 1 fT (neuron). Thus, ODMR
based on NV sensors can also find very significant applications in studying
cardiac cells and tissues. To achieve a first qualitative estimation of the mag-
nitude of the magnetic field in this case, one can start from a very simplified
model: the spherical heart [140]. Although this model is not physiologically
accurate, it allows to extrapolate analytical solutions.
In a more recent work [141], is proposed a further assumption concerning the
origin of the currents. There are two currents sources in the heart: the first
consists of intracellular currents, the second is given by the anisotropy of the
tissue [142]. Regarding the first current contribution, the authors consider
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a spherical shell of cardiac tissue, which covers a blood cavity and is sur-
rounded by an external bath of unlimited electrical conduction. The heart
fibers propagate in the z direction and a variation of the membrane potential
Vm is assumed following the activation of the action potential (AP), started
at θ = 90° (see Figure 6.2a)).
In this work the electric field is evaluated using the bidomain model [140] and
considering a situation of quasi-stationarity (although Vm depends on time
due to the action potential propagation, it is assumed that, given a certain
Vm(t0), one can derive current and magnetic field in a quasistatic way).
Thus, the electric potential is obtained, using the continuity equations and
the boundary conditions [143, 144], the current density distribution is ob-
tained using Ohm’s law and finally the magnetic field using Biot-Savart’s
law. Considering the anisotropic electrical conductance data [145], the Vm

values and typical heart dimensions [140], it turns out that the magnetic field
is stronger near the internal and external surfaces tissue while it is weaker
in the heart wall. The peak value of the magnetic field is around 14 nT (see
Figure 6.2b)).

At the heart center, instead, the magnetic field reduces to B = 2 nT [146].
This is due to the fact that intracellular and extracellular currents are in
opposite directions with almost the same magnitudes in the depths of the
tissue and, therefore, the corresponding magnetic fields essentially cancel
each other.
Considering a planar cardiac tissue sample, the spherical shell method is no
longer valid. In this last case it has been found that the magnetic field reaches
a peak value B = 1 nT [147].

The heart AP is about ∆t = 300÷500 ms long, however for some cardiac
cells, such as ventricular or rapid response cells, the AP rapid rise occurs
in 1 ms, as in the neuronal case. Considering a human heart, a NV sensor
positioned on the heart surface should be sensitive to magnetic field B =
14 nT, with a temporal resolution of about 0.1 ms (in order to be able to
trace the time variation ∆t even in the case of the AP rapid rise), and a
spatial resolution of about 10 µm3 (which would allow a good reconstruction
of the PA propagation, being the heart radius of about 40 mm [140]). This
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corresponds to a minimum sensitivity:

η = δBmin

√
∆t ≃ 14nT

√
0.1ms ≃ 140 pT Hz−1/2 (6.3)

This value can be considered a useful intermediate step for the application
of the actual NV− based biosensing technologies, with the aim of reaching
sensitivity that allows the detection on neuronal signals.

a) b)

Figure 6.2: a) The model of a spherical heart, taken from the reference [141]. Part of the
spherical shell has been cut out to show the heart wall. The black curves indicate the fiber
orientation. The pink tissue has a transmembrane potential of 20mV, and the blue tissue
has a transmembrane potential of −80mV. The green curve shows the magnetic field. The
endocardial (inner) surface has radius r1, and the epicardial (outer) surface has radius r2. b)
The magnetic field over a cross section of the heart. The dashed curves indicate the heart
inner and outer surfaces. An area 40mm by 40mm is shown.

6.3 NV sensors for bio-termometry

Temperature is one of the most relevant parameters for the regulation of in-
tracellular processes. Measuring localized subcellular temperature gradients
is fundamental for a deeper understanding of cell function, such as the genesis
of action potentials, and cell metabolism. Notwithstanding several proposed
techniques, at the moment detection of temperature fluctuations at the sub-
cellular level still represents an ongoing challenge. On the one side, tempera-
ture regulates the speed of ion channel opening [1], the pattern activity of a
firing neuron [2] and the vesicular dynamics at the presynaptic terminal [3],

108



on the other side, intracellular temperature is affected by a variety of bio-
chemical reactions occurring during cell activity. Pioneering findings dating
back to the late 70’s [148, 149] associated temperature increases to the im-
pulse propagation in non-myelinated fibers of the olfactory nerve and, more
recently, a theoretical explanation about the heat production and absorption
by neurons during nervous conduction has been formulated [150]. Intracellu-
lar temperature variations have been probed to detect the phases of cell-cycle
division [151] and the mitochondrial activity [152]. In the brain, temperature
fluctuations are likely associated with changes in neuronal functions such as
the genesis of action potentials, secretion at the level of synaptic terminals,
or transmembrane ion transports [153, 154, 155]. Variation of intracellu-
lar temperature is also related to changes in cell metabolism, as observed
through positron emission tomography (PET) and functional magnetic reso-
nance imaging (fMRI) [156]. Besides its fundamental role in cell physiology,
the temperature may be altered under pathological conditions, such as in
cancerous cells [157], which display higher metabolic activity, in neurodegen-
eration, such as Parkinson’s or Alzheimer’s diseases, where the process of
abnormal protein aggregation is temperature-dependent [158], or during the
onset of malignant hyperthermia, a pathology that causes rapid temperature
increases following excessive muscle contraction [159]. Furthermore, an in-
crease in local temperature, up to a few Celsius degrees, has been detected
as triggered by laser heating [160], calcium stress [103], direct electric stim-
ulation [161] or using drugs that increase the heat produced during cellular
respiration [160, 161, 162]. These results, in particular the ones related to the
highest temperature variations, stimulated a debate since the power needed
to justify this temperature growth has been calculated to exceed a few or-
ders of magnitude what is expected by thermodynamic considerations in a
model where thermal diffusion is characterized by conductive regime [163].
Nonetheless, other authors [164, 165] suggested that, by taking into account
the inhomogeneity of the cells, this gap can be strongly reduced. However,
detection of temperature fluctuations at the subcellular level still represents
an ongoing challenge and several intracellular thermometry techniques are
reported in the literature, ranging from fluorescent molecular thermometers
[166], quantum dots [167] or rare-earth nanoparticles [168]. Compared to
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the above-mentioned methods, nanodiamonds (ND) show a better biocom-
patibility [169, 12], insensitivity to biological environment [170], more stable
photoluminescence (PL) and a lower noise floor [171]. All-optical temperature
measurement methods, based on the temperature-dependent shift of the lu-
minescence spectra of color centers in diamond such as silicon-vacancy (SiV),
germanium vacancy (GeV), and tin vacancy (SnV) with strong zero-phonon
line (ZPL), can be used [172]. These methods are promising, but for the mo-
ment, apart from one very invasive experiment [173], there are few reported
biosensing applications. For instance, in a notable experiment [174], gold
nanorod–fluorescent ND hybrids were used as nanoheater/nanothermometer
for studying living human embryonic kidney cells. In this case the NDs regis-
tered the temperature variation associated with the heating obtained by local
laser irradiation of the nanorods. In another recent experiment [175], SiV in
NDs were used to for imaging and temperature measurement in HeLa cells,
even if only the average temperature of the bath (by controlling the incu-
bator temperature) was measured, without single-cell resolution. It must be
stressed anyway that, in both the above mentioned works, the temperature
variation was induced by the experimenters (i.e. via laser irradiation or by
changing the incubator temperature) and no authentic biological phenomenon
was measured. Notwithstanding the undoubted promising perspective of all-
optical methods, currently the most promising approach exploits nitrogen-
vacancy (NV) centers [171]. For these reasons, NV color centers in ND com-
bined with Optically Detected Magnetic Resonance (ODMR) technique can
assume a dominating position in thermometry [176] for biological applica-
tion [151, 177]. Nevertheless, ODMR measurements protocols are based on
microwave irradiation of the samples, which makes this technique more elabo-
rated and requires awareness on the exploitable optical and microwave power
providing the required sensitivity without damaging the cells. ND was used
for the first time in in vitro [115] measurements (of a heated gold nanoparti-
cle inside a cell). Subsequently, an in vivo experiment was performed inside
Caenorhabditis elegans worms, reaching a sensitivity as low as 1.4 °C/Hz−1/2.
In the same experiment, thermogenic responses have been monitored during
the chemical stimuli of mitochondrial uncouplers [160]. Temperature gradi-
ents have been mapped at the subcellular level into a single human embry-
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onic fibroblast [151]; intracellular temperature mapping has been performed
also in cultured primary cortical neurons, employing microelectrode arrays
(MEAs) to demonstrate that the presence of NDs in primary cortical neu-
rons does not elicit a neurotoxic response [87], in good agreement with our
previous findings [169]. Finally, heterogeneous temperature variations have
been coupled with Ca2+ increases in HeLa cells [178].
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Chapter 7

Nanodiamonds quantum sensors
experimental results: thermal
biosensing in living cells

This chapter summarizes one of the more relevant experimental results ob-
tained during the PhD activity. For the first time, we quantify the direct
correlation of intracellular temperature variations with the modulation of
neuronal activity. We demonstrate that sensors based on NV centers in
nanodiamonds, interrogated via ODMR techniques, reveal up to 1 °C tem-
perature variation when the spontaneous firing of hippocampal neurons is
potentiated by picrotoxin or the 0.5 °C temperature decrease when the neu-
ronal activity is silenced by a solution containing tetrodotoxin and cadmium
chloride.

In the next sections the nanodiamonds and the cells sample used are ex-
plained in detail. Then, the necessary preliminary studies are discussed. The
first of these studies highlights how the measurement carried out using the
ODMR technique is biocompatible and therefore does not alter the cells vi-
tality. The second one shows, through a firing measurement, how neuronal
cells react to the chemical substances perfusion. Then the temperature mea-
surement is presented performed on neuronal cells during the perfusion of
picrotoxin and of the solution composed of tetratoxin and cadmium.
The content of this chapter is taken from the published article, see ref.[179].
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7.1 Nanodiamonds

The nanodiamonds were supplied by Microdiamant Switzerland (MSY 0–0.25,
containing approximately 100–200 ppm of natural nitrogen impurities).
The nanodiamonds were subsequently treated and irradiated by the col-
leagues of the Institute of Organic Chemistry and Biochemistry of the Czech
Academy of Sciences. The preparation steps are summarized below. The
NDs were oxidized by air oxygen at 510 °C for 5 h and then wet oxidized in a
HF:HNO3 2:1 v/v stirred mixture at 160 °C for 2 days in a PTFE container.
The acids were removed using consecutive centrifugation/washing and the
resulting pure oxidized NDs were lyophilized. The monodisperse NDs (hy-
drodynamic diameter 205 nm) were isolated.
A total of 330 mg of the monodisperse ND was irradiated at 870 °C in an
external target for 80 h with a 15.7 MeV electron beam (2.5·1019 particles
cm−2)[131]. After irradiation, the NDs (315 mg) were annealed at 900 °C
for 1 h under argon atmosphere and subsequently oxidized in air for 5 h at
510 °C. The resulting FNDs were wet oxidized using a 2:1 (v/v) mixture of
HF:HNO3, washed and lyophilized, providing 212 mg of NDs with NV cen-
ters (yield 64 %). Before use, the lyophilized NDs were redispersed in MiliQ
water using cup horn sonication to concentration 1.0 mg/ml.

7.1.1 Nanodiamond characterization

In order to use nanodiamonds as sensors, it is necessary to know their charac-
teristics in advance. In particular, it is necessary to know the nanodiamonds
coupling constant ∂Dgs/∂T with respect to thermal variations and the mea-
surement technique sensitivity.
The coupling constant links the shift of the resonance frequency, measurable
through the ODMR graph (see Figure 7.1 for a resonance frequency shift ex-
ample), with the thermal variation that has occurred. From the knowledge of
this parameter (that varies in the different nanodiamonds batches) is possible
to trace an indirect temperature measurement.
The thermal sensitivity is a figure of merit and it represents the minimum
temperature variation that can be measured in a single second. Once this
value is known, it is possible to design a measurement integration time suit-
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able for particular thermal variation detection.

Figure 7.1: Example of ODMR and differential ODMR spectra at two different temperatures.

7.1.1.1 Estimation of ∂Dgs/∂T

Under ambient conditions the coupling constant ∂Dgs/∂T is estimated as
75 kHz/°C for a bulk diamond [60, 61]. For NDs this constant varies due
to the different strain splitting and, in principle, should be calibrated. The
method to obtain ∂Dgs/∂T was the same adopted for the cell temperature
measurement, with the difference that in this case ∆T was not induced by a
substance perfusion but forced by the incubator chamber’s heater, and that
∆T is measured by a thermocouple. The procedure was the following. The
NDs were placed on the Petri dish with distilled water. The ODMR spectrum
was acquired and so was the differential spectrum by post-processing the data,
see above. The linear region slope of the differential spectrum was obtained
by performing a linear regression. The microwave generator was set at the
resonant frequency Dgs,T0

that occurred in the initial temperature condition
reached in the incubator chamber, at which the differential spectrum signal
F̃ was zero. The incubator temperature was varied, recording it with the
thermocouple. The new value of the differential signal was read. Finally, ∆F̃
was plotted as a function of the temperature increase ∆T recorded by the
thermocouple. Through a linear regression the constant of proportionality
b was evaluated, i.e. the quantities mentioned obey the following physical
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relationship:

∆F̃ = b ·∆T (7.1)

where:

b = slope · ∂Dgs/∂T (7.2)

By inverting the last equation, the quantity ∂Dgs/∂T was estimated. The
results are shown in Table 1. Both the arithmetic mean and the weighted
mean coincide: ∂Dgs/∂T = (−76± 4) kHz/°C. We used this estimated value
for and the associated uncertainty in our data analysis.

∂Dgs

∂T [kHz
◦C ]

79 ± 6
63 ± 9
76 ± 12
86 ± 12
72 ± 8
81 ± 10

Table 7.1: Summary of NDs (N=6) coupling evaluations and their associated uncertainty,
obtaining through the uncertainty propagation.

7.1.1.2 Temperature Sensitivity

In order to evaluate the sensitivity of our ND-based sensors, a control cal-
ibration test was performed. The NDs were deposited on a glass slide and
inserted into the temperature chamber of the single-photon confocal micro-
scope. The differential signal was evaluated (10 measurements with duration
60 s) at three different temperatures and then compared with the readout of
a standard thermocouple. Figure 7.2 shows the response of the ND sensor to
a thermal cycle with steps 0.5 °C, 1.2 °C (chamber temperature stability 0.1
°C). The average values are shown in the figure next to each dataset. The
results are in agreement with the bath temperature recorded by the thermo-
couple, shown in the legend box. This control test highlights the sensitivity of
the measurement method, capable of discriminating a variation of 0.5 °C. Our
sensitivity is about 3 °C/

√
Hz and is estimated according to the following
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equation:

η =
σF̃ ·

√
∆t

slope · γT
(7.3)

where σF̃ represents the standard error of the mean of the variation of the
differential counts and ∆t represents the measurement time.

Figure 7.2: Validation of temperature detection by ND sensor. The legend box shows the
temperature values recorded by the thermocouple. The box plot shows the temperature
values recorded by the ND sensor. The mean and its uncertainty (standard deviation divided
by the square root of repeated measurements) are reported as horizontal lines in each data set
(N = 10, 60 s acquisition). The starting point is highlighted as an asterisk. The incubator
temperature at the end of the cycle is consistent with the initial temperature within the
incubator stability (0.1 °C).

7.2 Cell sample

Mouse neuronal cortex cells were used for this experiment. The cell sample
was supplied by the Department of Drug and Science Technology - University
of Torino.
The steps of the preparation are summarized below. Hippocampal neurons
were obtained from C57BL/6 16-day embryos. Hippocampus was rapidly dis-
sected under sterile conditions, kept in cold HBSS (4 °C) with high glucose,
and then digested with papain (0.5 mg/ml) dissolved in HBSS plus DNAse
(0.1 mg/ml). Isolated cells were plated at density of 1200 cells/mm2 onto
the MEA and 1000 cells/mm2 onto the glass Petry dishes. Both the MEAs
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and the dishes were previously coated with poly-DL-lysine and laminin, this
allowed the neurons to adhere to the center of the device by using a ring
made of Sylgard 184 (Dow Corning), which was removed after 4 h. The cell
medium is composed of 1% penicillin/streptomycin, 1% glutamax, 2.5% fetal
bovine serum, 2% B-27 supplemented neurobasal medium.

In our laboratory the neurons were incubated in a humidified 5% CO2 at-
mosphere at 37 °C. Recordings were carried out at 10-12 days in Vitro
(DIV). The initial ND solution (1 mg/ml, MiliQ water) was sonicated for
5-10 minutes (100 W power, 80 kHz frequency), in order to separate diamond
particle clusters into single NDs. After sonication, the 60 µl of solution was
diluted with 1 ml of Tyroide to obtain a final ND concentration of 0.6 µg/ml
which was poured into the Petri dish. The dish was exposed to NDs for 5
hours in order to allow NDs internalization. It is important to underline that
this concentration is far below the cytotoxicity threshold (<250µg/ml), as
demonstrated in a previous work of our group [169] and by [180].
Once the dish was extracted from the incubator, the cell medium was re-
moved and replaced with 2 ml of Tyrode solution. The sample is so ready
for the measurement.

7.2.1 Cell survival and biocompatibility study with MEAs

Multisite extracellular recordings were performed using the MEA-system,
purchased from Multi-Channel Systems (Reutlingen, Germany), see section
5.2.2 for working principles details.
Experiments were performed in a non-humidified incubator at 37 °C and with
5 % CO2, maintaining the culture medium. Before starting the experiments,
cells were allowed to stabilize in the non-humidified incubator for 5 minutes;
recording of the spontaneous activity was then carried out for 120 s. Mean
frequency has been evaluated over 120 s recording. The data are analyzed
using Neuroexplorer software (Nex Technologies, Littleton, MA, USA) after
spike sorting operations.

Before measuring the chemical-induced temperature change that can occur
in neuronal cells, it is essential to assess the biocompatibility of the measure-
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ment technique. For this purpose, neuronal firing was measured before and
after cell exposure to the ODMR technique. In particular it has been tested
whether the laser exposure, microwave radiation and incubation with NDs
could affect the spontaneous firing activity of hippocampal neurons during
ODMR measurement protocol. As shown in Figure 7.3c, both the sponta-
neous firing rate and the action potential waveform were not significantly
altered by laser and ND exposure, confirming that cell excitability and ion
channel functioning are preserved, in good agreement with our previous find-
ings [169].

7.2.2 Correlation between neuronal firing and substance (picro-
toxin and tetratoxin-cadmium) perfusion study with the
MEA

Finally, in parallel with the thermometry experiment, the effect of GABAA
receptor blockade on burst-firing of hippocampal neurons was assessed by
comparing the spontaneous burst ratio of cells responses before and after
application of picrotoxin. These recordings have been performed by means
of conventional MEAs (MCS, multichannel system). An expected significant
increase of the spontaneous activity [181] (from 2.1 ± 0.3 Hz to 3.4 ± 0.3
Hz), which is associated to disinhibition of GABAA receptors (Figure 7.3a),
and a complete silencing of the network in the presence of the Na+ and Ca2+

voltage-dependent channel blockers TTX and Cd was observed. The pre-
sented data allowed to conclude that the increase in temperature recorded in
the experiment is directly related to the altered firing activity of hippocampal
neurons.
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Figure 7.3: Laser exposure does not affect the hippocampal neurons. a) Modulation of the
firing activity by PICRO (MEA recordings): representative traces from the same electrode
under control condition, + PICRO. Insets: higher magnification of single spikes and bursts.
b) Histogram of mean frequency in the different experimental conditions. The statistical
difference of PICRO respect to other conditions is indicated (p<0.05, *) c) Left: Represen-
tative traces in control condition and after laser irradiation and (right) corresponding raster
plot. In the raster plot, 7 representative channels (ch1÷ch7) are shown.

7.3 Temperature variation induces by picrotoxin and

tetratoxin-cadmium perfusion measurement

This section illustrates the main part of the experiment conducted. After the
explanation of the experimental measurement technique, the data obtained
and finally their statistical analysis are presented.

7.3.1 Experimental procedure

The thermometric apparatus used for the experiment was based on a single-
photon-sensitive confocal microscope compatible with ODMR measurement.
A simplified scheme of the apparatus is shown in the section 5.2.1. The opti-
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cal excitation power provided by a CW 532-nm laser (Coherent Prometheus
100NE, Relative Intensity Noise <-90 dB/Hz, 2nd harmonics) was <1mW
and the acquisition time of all PL measurements was 60 s. These values were
chosen as a trade-off between the fast measurement and the precise temper-
ature estimation. We underline that our choice guarantees cell viability (see
section 7.2.1).

The experimental procedure for detecting temperature variation using NV
centers in NDs was the following. A Petri dish containing cultured hippocam-
pal neurons (10 DIV), previously exposed to NDs, was positioned inside the
single-photon confocal microscope incubation chamber. Using the motorized
stage, the sample was scanned by incident laser (P < 1 mW, RIN < -90
dB/Hz) in order to select a single ND inside a cell. The ODMR spectrum
was acquired for 60 s and the data was post-processed to create the differ-
ential graph (see section 4.1.2). Then, the microwave frequency was set in
accordance with the minimum of the ODMR spectrum (zero of the differen-
tial spectrum). The differential signal of luminescence at this frequency was
acquired for 60 s. The microwave field before and after data acquisition was
always turned on to avoid possible heating transient processes. In a succes-
sive step, solutions containing 100 µM picrotoxin and then 300 nM TTX +
200 µM CdCl2 were added to the medium (where M=mol/L is the molarity).
The measurement of the differential signal was repeated at the same resonant
frequency as in the previous step. Finally, the ODMR spectrum was reac-
quired for 400 s, recreating a new differential spectrum in order to improve
the statistics and to evaluate the linear region slope with lower uncertainty.
The temperature variation ∆T was evaluated through a direct PL change
measurement according to equation:

∆F̃ = slope · ∂Dgs/∂T ·∆T (7.4)

Here ∆F̃ represents the differential signal variation (difference in the photon
counting rates), evaluated at the linear region of the differential spectrum
and associated with a temperature variation ∆T . The slope represents the
constant of proportionality that connects ∆F̃ to the resonance frequency shift
∆Dgs. Finally, ∂Dgs/∂T represents the coupling constant.
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7.3.2 Experimental data

To detect the temperature variations associated with different patterns of
neuronal activity, recordings were performed in three conditions (Figure 7.4):
(i) in the presence of external Tyrode solution (CTRL), since in this condition
the hippocampal network was spontaneously firing [170], (ii) after addition
of 100 µM of picrotoxin, a selective GABAA inhibitor, which is known to
drastically potentiate the neuronal firing activity [182], (iii) after subsequent
addition of 0.3 µM tetrodotoxin (TTX) and 500 µM cadmium chloride (Cd),
to inhibit the spontaneous firing.
Bath temperature was kept at 37 °C and the photocounting rate was per-
formed from internalized NDs. With reference to the above conditions, a
more detailed account of the three measurements condition follows hereby.
-Condition (i): To exclude that the perfusion system could induce some tem-
perature variations, the photocounting rate from an internalized ND was
measured before and after perfusing the cells with Tyrode solution (CTRL,
in Figure 7.4d). From the photoluminescence difference , the temperature
variation was estimated according to Equation 7.5. In these conditions we
revealed an average temperature variation ∆T = (0.05 ± 0.15) °C (weighted
average evaluated on a sample with a numerosity N = 11), proving that no
significant temperature variations are associated with thermal exchanges of
the perfusion system.
After this preliminary test, the next step was to assess whether changes in
neuronal firing could be associated to temperature variations.
-Condition (ii): ∆T was estimated by comparing before and after perfusing
the cells with a picrotoxin-enriched Tyrode solution. The addition of the
GABAA inhibitor caused a significant temperature increase, ∆T = (1.02 ±
0.24) °C (N=10), associated with the increased firing rate (Figure 7.4a)). As
a more quantitative corroboration of our conclusions, a thorough statisti-
cal uncertainty analysis was performed (see next section) to confirm that a
significant localized temperature variation occurs in a neuron deriving from
sustained firing activity (1.12 · 10−8 significance in a Welch t-student test).
-Condition (iii): network activity was silenced by means of the Tyrode solu-
tion enriched with TTX+Cd. In this case, ∆T was measured by comparing
before and after perfusing the cells with picrotoxin +TTX+Cd solution. Un-
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der the latter condition, a significant temperature decrease ∆T = (-0.50 ±
0.17) °C (N = 8) was revealed (Figure 7.4d)) with a 2.21 · 10−6 significance
in a Welch t-student test (see section 7.3.3). These data demonstrate that
both potentiation and silencing of the neuronal network activity could be
assessed by temperature variations and that the hippocampal network, ex-
hibiting basal spontaneous activity, displays higher temperatures than the
completely silenced network.
Another set of experiments was carried out for measuring the average temper-
ature variation associated to non-internalized ND before and after perfusing
the cells with picrotoxin solution: in this case no significant difference with
respect to the control conditions was found: ∆T = (-0.04 ± 0.23) °C (N =
7). This crossover trial excluded that temperature variation can be due to
other external factors than the drug-potentiated neuronal activity.
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Figure 7.4: Illustration of the experiment. a) Simplified scheme of single-photon confocal
ODMR setup b) The ODMR measurements are performed under control conditions (CTRL),
after stimulation with picrotoxin and after the addition of TTX+Cd. The frequency shift
in the ODMR spectrum (dashed line) is associated with the temperature variation recorded
by the ND sensor, c) Confocal fluorescence micrograph of hippocampal neurons incubated
with 0.6 µg/ml ND for 5 hours. The cytoplasm is stained in green, the red emission is
from NDs. The entire field and cross-sections (XZ and YZ) are shown. White arrows
show one internalized ND. d) Boxplot of temperature variations with standard deviations
in the presence of saline Tyrode solution (CTRL, black circles), after addition of picrotoxin
(PICRO, red circles), after addition of tetrodotoxin and cadmium chloride (TTX+Cd, blue
circles), see text for details. Statistical difference is indicated by the asterisks (***, p<0.0001)

7.3.3 Statistical Analysis

As detailed in the main text, the experiment was repeated collecting a sam-
ple of N = 11 repeated measurements, revealing any temperature rise from a
ND inside the cell before and after Tyrode’s solution perfusion. In the main
test this is referred to as “CTRL”. In another sample of N = 10 NDs the
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temperature was probed by a ND inside the cell before and after picrotoxin
administration. This sample is referred to as “+PICRO”. Starting from this
condition, a sample of N = 8 temperature variation repeated measurements
was performed in a ND inside the cell before and after TTX and cadmium
administration. This is referred to as “+PICRO+TTX+Cd”. The tempera-
ture variation ∆T detected by the NV sensor was evaluated through a direct
fluorescence change measurement, as described before, the equation being:

∆T =
∆F̃

slope · ∂Dgs/∂T
(7.5)

For the uncertainty estimation, the error propagation of the variables that
appear in Equation (7.5) has been carried out. In the following, the in-
volved uncertainties are analyzed in detail. The term is the difference be-
tween the differential spectrum signal before and after the substance per-
fusion. The associated uncertainty is the sum in quadrature: σ(∆F̃ ) =√
[σ(F̃after)]2 + [σ(F̃before)]2. Where σ(F̃ ) is the data standard deviation di-

vided by the square root of repeated measurement (500 values in 60 s).
As well as the PL, the slope was also evaluated on every single measurement.
The associated uncertainty σ(slope) was evaluated by the linear regression of
the linear region differential spectrum. The constant ∂Dgs/∂T was evaluated
by a previous measurement, analyzing a sample of N = 6 NDs (Table 7.1) as
described in the Section “Estimation of ∂Dgs/∂T”. Unlike previous contri-
butions, its associated uncertainty acts as a B type uncertainty, intervening
only in the errors propagation on the average value estimate of each data set.
The values ∆Ti and σ(∆Ti) are shown in Table 7.2. To prove the main result
of this work it was necessary to demonstrate a significant statistical difference
between the “+PICRO” and the “CTRL” sets. This can be formalized by
evaluating the probability that ∆T+PICRO and ∆TCTRL belong to the same
population, which is the starting null hypothesis. The Welch t-student test
was performed for this purpose. The calculated values for the stochastic t
variable, the population degree of freedom and the probability of satisfying
the null hypothesis are shown in Table 7.3. The test significance obtained al-
lowed rejecting the initial null hypothesis. The two samples did not belong to
the same population and therefore the increase in temperature, recorded fol-
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lowing picrotoxin perfusion, was statistically significant. The same test was
repeated to compare the “CTRL” and “+PICRO+TTX+Cd” sets in order
to understand if the decrease in temperature recorded by the nanodiamonds
following the TTX and Cd perfusion is statistically significant. As can be
seen from Table 3, also in this case it is possible to reject the null hypothesis.
The two samples did not belong to the same population and therefore the
decrease in temperature was statistically significant.

∆T ± σ(∆T ) [°C]

CTRL +PICRO +PICRO+TTX+Cd

-0.08 ± 0.77 1.39 ± 0.76 0.18 ± 0.80
-0.27 ± 0.49 1.38 ± 1.02 0.14 ± 0.48
-0.17 ± 0.47 1.01 ± 0.90 -0.63 ± 0.29
-0.60 ± 1.23 0.65 ± 0.64 -1.46 ± 0.72
0.33 ± 0.33 1.73 ± 0.85 -0.76 ± 0.60
0.42 ± 0.88 1.04 ± 0.65 -0.92 ± 0.57
0.18 ± 0.59 1.12 ± 1.10 -0.20 ± 0.31
-0.07 ± 0.49 0.70 ± 1.06 -1.50 ± 0.77
0.29 ± 0.33 1.04 ± 0.49
-0.47 ± 0.55 0.73 ± 0.57
-0.01 ± 0.44

Table 7.2: Summary of temperature variation ∆T ± σ∆T [°C] for the three (sample size,
respectively, N=11, N=10, N=8) independent groups.

CTRL vs +PICRO

Welch’s t value 11.24
Degree of freedom 14.90
Significance Welch’s t-test 1.12 ·10−8

+PICRO vs +PICRO+TTX+Cd

Welch’s t value 7.63
Degree of freedom 14.15
Significance Welch’s t-test 2.21 ·10−6

Table 7.3: Summary of statistical parameters for Welch’s t-test.
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7.4 Conclusions

Intracellular localized temperature gradients are associated with metabolic
activity and with a variety of reactions and intracellular processes [183]. Real-
time mapping of intracellular subtle temperature gradients and event-driven
increased temperature represents a tool of the utmost interest for monitoring
the functional activity of the cells, for identifying localized signaling under
physiological conditions and for exploitation as a diagnostic tool.
Here we applied the ODMR technique to cultured hippocampal neurons
for monitoring temperature variations in different conditions of network ex-
citability. We provided evidence that a significant temperature increase can
be correlated with the altered firing activity of cultured hippocampal neu-
rons, in our case induced by picrotoxin, and that this phenomenon can be
successfully observed at the single-cell level exploiting nanosensor based on
NDs.
It is worth noting that picrotoxin-induced disinhibition primarily alters cell
excitability, but the increased action potential firing activity may in turn al-
ter intracellular pathways: since we cannot predict whether NDs are localized
at the plasma membrane or at the intracellular level, the detected temper-
ature increases are indeed induced by picrotoxin but can be associated to
membrane-delimited or intracellular processes. Interestingly, a reduction of
the network activity is detectable as a ∆T = (-0.50 ± 0.17) °C temperature
decrease. Another relevant finding is that our method is suitable to distin-
guish the basal spontaneous firing rate [169, 184, 185, 186] from the condition
in which the network activity is completely silenced.
Thus this approach may uncover different degrees of neuronal excitability.
We underline that the possibility of slightly improving the set-up and the
measurement technique (which being a first version is not yet completely
optimal) can lead to a further enhancement of the sensor sensitivity. In
perspective, it is reasonable to foresee more than a one-order of magnitude
improvement in sensitivity with respect to the current condition by account-
ing for three main improvements of the system:
1) implementing orientation tracking of NDs in order to apply transversal
bias field scheme as already demonstrated in bulk diamond [187], which al-
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lows a factor 3 of scaling in the temperature sensitivity in EM-insensitive
condition;
2) particle tracking would also allow for longer measurement time, for in-
stance an increase of the measurement time of a factor 10 would result in
another factor 3 scaling in sensitivity;
3) obtaining samples of NDs with an increased number of NV centers would
result (below saturation threshold) in a further improvement of sensitivity
(also in this case, an increase of a factor 10 in the interrogated centers would
result in a factor 3 improvement in the sensitivity).
Finally, together with the above mentioned upgrades, improving the ND fab-
rication, resulting in increased coherence, would allow further improvement
of the sensitivity, realistically rendering the system in perspective sensitive to
< 0.1 °C variations. We underline that these nanosensors, carefully prepared
and selected, are able to provide a fast temperature measurement with ex-
traordinary spatial resolution, in perspective even below the diffraction limit
[188].
The action potential generation and propagation is not the unique energy-
requiring process involved in neuronal activity, as this may also involve main-
tenance of the membrane resting potential, neurotransmitter release and up-
take, vesicular recycling and presynaptic Ca2+ currents [189]. The firing
activity is correlated with the total energy consumed by neuronal activity.
This has been calculated from anatomic and physiological data [183] and ex-
perimentally verified using fMRI techniques [190]. Thus, our results prompts
further studies to assess whether the observed temperature increase during
perfusion with picrotoxin is ascribed to sustained firing activity and/or po-
tentiated cell metabolism [181].
By means of confocal microscopy observation, we demonstrate that 5 hours
exposure to ND is enough to promote ND internalization and that action
potential waveform remains unaffected after laser and microwave irradiation,
confirming that the applied protocol for sensing temperature preserves cell
excitability and ion channel functioning [169] (with perspectives for “in vivo”
studies).
The measured temperature increases can be used to reveal the onset of differ-
ent intracellular processes other than membrane-delimited pathways, likely
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involving an altered cell metabolism as here was demonstrated with picro-
toxin. Thus, our future goals will be devoted to functionalizing NDs to sub-
cellular compartments, to detect thermogenesis at specific sub-cellular sites.
These results, backed by a thorough analysis of other possible alternative
causes of temperature variation, pave the way to a systematic study of cell
activity with impacts ranging from a better insight on current unknowns as-
sociated with cells functioning, such as e.g. the aforementioned discrepancy
between experimental data and thermal diffusion models, to the research on
specific pathologies.
Our findings also prompt further applications where ongoing advances in
microelectrode array technology (MEA), combined with quantum sensing
paves the way for experiments that take advantage from the synergy of the
two techniques, such as synchronized measurements of cellular activity with
metabolism processes or propagation of electromagnetic signals.
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Chapter 8

Bulk diamonds sensors experimental
results: sensitivity improvements for
biological applications in perspective

This chapter analyzes the experiments carried out on bulk diamond. Unlike
nanodiamonds, macroscopic diamond obviously cannot diffuse across the cell
membrane due to their size. Remaining outside the cell, not only are the
detectable biological signals weaker, but also the spatial resolution is degraded
(which for nanodiamonds is linked to the size of the latter). However, these
disadvantages can be countered by more sophisticated fabrication techniques
that allow for higher crystal quality and more refined ODMR measurement.

8.1 Technique for improve ODMR sensitivity in bio-

logical perspective

In this section some technological solutions to improve the NV-based sensors
sensitivity are discussed as well as the precautions to be taken when they are
used as a bio-sensor.
Equation (6.2) provides the ultimate sensitivity limit reachable highlighting
that the number n of NV centers and their decoherence time T ∗

2 play a key
role. To increase n, while maintaining the same spatial resolution, it is nec-
essary to have diamonds with an increased NV centers density. This can be
achieved by enhancing the number of nitrogen implanted in the diamond and
improving the N-to-NV conversion efficiency, minimizing the concentration

131



of residual paramagnetic substitutional nitrogen [71]. In parallel, to increase
T ∗
2 , it is also recommended the production of ultra-pure diamonds, with re-

duced unwanted electronic impurities (e.g. the P1 centers) and nuclear spins
impurities (e.g. the paramagnetic 13C isotopes, whose natural abundance is
about 1.1%) [191, 192, 193]. It is important to note that the NV density
increase will necessarily worsen the decoherence time of the NVs themselves,
because of their mutual interaction. Consequently, an optimal trade-off be-
tween these parameters must be sought.

In addition to the NV-density and diamond engineering, the sensitivity can be
improved by implementing specific experimental techniques, that are based
on suitably synchronized laser and microwave pulses of particular duration
[112, 194, 86].
For example, if an unknown electromagnetic field, responsible for the ODMR
resonance frequency shift, is constant or slowly varying, it is possible to adopt
the experimental pulsed ODMR protocols [195] or the Ramsey method [68]
instead of the continuous wave (CW ) ODMR [196].
The CW ODMR is the simplest and most widely employed magnetome-
try method with NV-based sensors, wherein the microwave driving and the
optical polarization and readout (laser pumping) occur simultaneously (see
section 4.1.1). Although this technique is easy to be implemented, the rel-
ative ODMR spectrum dips are affected by the broadening induced by the
continuous exposure of the laser beam and microwave field on the sample.
With pulsed ODMR techniques this broadening effect is substantially sup-
pressed, allowing to obtain narrower ODMR spectrum dips and therefore to
improve the measurement sensitivity (see section 8.2.1). This protocol uses
temporally separated optical laser initializations, π microwave control pulses,
and laser readout pulses. The π pulses is an oscillating microwave field ap-
plied for a duration such as the electronic state passes from the |ms = 0 >
state to |ms = ±1 >. The name derives from its representation of the process
on the Bloch sphere.
Ramsey ODMR spectroscopy, on the other hand, consists on in the appli-
cation of two π/2 pulses, separated by a time τ . Also the π/2 pulse is an
oscillating microwave field that brings the electronic state from the state
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|ms = 0 > to a superposition of |ms = +1 > and |ms = −1 >. By varying
the time τ , the so-called ”Ramsey fringes” are obtained, from which it is
possible to extrapolate an estimation of the magnetic fields amplitude. Also
this technique allows sensitivity improvement with respect to the CW : the
decoupling of the MW from the laser power allows increasing the MW power
while improving the contrast, without degrading the FWHM of the spectral
dip.
In the case of time-varying electromagnetic fields, there are other even more
complex microwave pulse sequences, capable of decoupling the measurement
from surrounding spin environment [197]. In this way the decoherence time of
the NV centers increases and consequently it becomes possible to interrogate
the quantum system for longer times, improving the measurement statistic
and therefore the sensitivity.
One of these experimental protocols is the Hahn Echo sequence [198, 199],
which refocuses the dephasing NVs spin, applying an additional π pulse in
the middle of Ramsey sequence. The characteristic time of the spin coherence
decay, measured with this protocol, is called T2 and it is typically one or two
orders of magnitude longer than T ∗

2 .
Even more complex dynamic decoupling sequences, which apply multiple
refocusing π pulses further improving the decoherence time T2 have been
devised [200, 201, 202, 203]. Among these, the most famous are the Carr-
Purcell-Meiboom-Gill (CPMG) [200, 201, 202, 203] and the XY8 sequences
[200, 204], which differ in the spin rotation axes: the first method applies the
pulses along the same axis, while the second chooses a different one for each
π pulses.
It is useful to underline that, although these techniques allow to extend the
coherence time of the NV centers, this time cannot be reduced beyond the
spin-lattice relaxation time T1, that for an NV spin ensemble in bulk diamond
is about 3 ms [205].
The Figure 8.1 briefly summarizes the above mentioned pulse sequences. It is
useful to underline that the sensitivity formula in Equation (6.2) describes an
idealized measurement with a perfect readout mechanism. On the contrary,
typically the readout mechanism adds noise in the measurement, that can be
described by introducing, in the previous equation, the spin-readout fidelity
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Figure 8.1: Scheme of timing and duration of laser pulses, microwave pulses and reading
sequences associated with the most common measurement protocols of the external fields for
the NV complex.

factor F [86]:

η =
1

γe
√

nT ∗
2

1

F
(8.1)

Keeping the usual optical-readout, but improving the photon collection is
expected to increase F (see ref.[206] for different methods to improve photon
collection). Ancilla-assisted repetitive readout, which is based on mapping
the NV spin state to the nuclear spin state, also improves F [86]. Finally,
in a further perspective, quantum methods of noise reduction can be applied
[207, 208, 209, 210].

When the ultimate goal is bio-sensing, some constraints rise limiting the
implementation of the above described pulse sequences. One constraint is
the frequency bandwidth. In fact, the above-mentioned dynamic decoupling
techniques are capable of measuring time-varying external fields only if this
time variation is of the order of the time interval separating the π pulses. Fur-
thermore, in order to control the system quantum state, the time between
these pulses cannot exceed the coherence of the NV center. Consequently,
the frequency of the signal to be measured must be of the order of the co-
herence time of the NV centers. In the biological case, the electromagnetic
fields pulse lasts about 1 ms. This value is very far from T2, marking a
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boundary for the use of these techniques in biological applications. Another
constraint is associated to the optical laser power. The higher the laser power
the better the sensitivity in measurements with ensembles, since it increases
the percentage of excited centers and consequently the fluorescence signal.
However precautions must be taken to avoid cells and proteins damaging.
An efficient solution can be to direct the laser beam towards the diamond at
an angle allowing total reflection (Brewster angle). In this way only the flu-
orescence emitted by the NV centers travels through the cells, placed on the
other diamond surface [113, 84]. In this case, however, precise control over
sensing volume would be lost, deteriorating spatial resolution. In a standard
configuration, where the laser impinges perpendicularly on the sample, it is
necessary to limit the optical power reaching the cells to few mW.
In the next sections some sensitivity improvement techniques are presented
for use in a biological perspective.

8.1.1 CW ODMR in the simultaneous hyperfine driving

This section presents an innovative experimental set-up to measure magnetic
fields utilizing a lock-in based ODMR technique for the optical detection of
microwave-driven spin resonances induced in NV centers. This method is
characterized by the excellent magnetic sensitivity at such small scale and
the full biocompatibility. The cellular scale is obtained using a NV-rich sens-
ing layer of 15 nm thickness along z axis and a focused laser spot of (10×10)
µm2 in x-y plane oh the bulk diamond (see section 8.2). The biocompatibility
derives from an accurate choice of the applied optical power. It is also re-
ported how the magnetic sensitivity changes for different applied laser power
and discussed the limits of the sensitivity sustainable with bio-system at such
small volume scale.

The simplest way to track the ODMR shift is to collect the photolumin-
scence signal while scanning the microwave frequency. Adopting a frequency
modulation of the microwaves can improve this method: the modulating sig-
nal is centered at the resonance dip and has an amplitude equal to the full-
width half maximum (FWHM) of the resonance dip [113, 136]. The resulting
modulated photoluminescence signal is read by a lock-in amplifier (LIA), see
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Figure 8.2a). The resulting LIA signal is a linear function of ODMR shift.
This technique has also the advantage to shift the spectrum of the signal in
a region where the technical noise is lower (see section 4.1.3).

a) b)

Figure 8.2: Lock-in spectrum with excitation of a single resonance a) and simultaneous
excitation of the three resonances separated by the hyperfine coupling b). The insets shows
the central linear zone and the value b of the slope the curve, that represents the figure
of merit of the curve. The simultaneous excitation of the three resonances results in an
improvement of b of a factor ∼ 1.5 (b = 9.97µV/Hz in the case of single resonance excitation
and b = 14.54µV/Hz in the case of three resonance excitation).

Figure 8.2a) depicts the LIA signal in function of the microwave frequency.
Three frequency ranges can be identified over which the LIA signal is directly
proportional to the resonance shift and hence to the applied field. A yellow
dashed rectangle encloses the central one. These three zones correspond to
the three dips in the ODMR spectrum due to the hyperfine coupling of the NV
electronic system with the 14N nuclear spin. The LIA signal is linear in these
zones because the LIA detection method is sensitive to the first derivative
of the ODMR spectrum. The figure of merit of the LIA detection method
is represented by the slope b of the curve in the linear zone, as reported in
Figure 8.2. In this zone, δB is related to the measured LIA signal SLIA by
[113]:

δB =
1

γe

1

b
SLIA (8.2)

Where γe is the magnetic field coupling constant. It is possible to increase
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the slope of the curve (and thus the sensitivity of the technique) by simulta-
neously addressing all the three resonances [113, 211]. To this scope, three
frequency- modulated microwave tones separated by the hyperfine splitting
A⊥ = 2.16 MHz were generated. When the center tone is at the frequency
of the center resonance, all three resonance are excited, thus enhancing the
slope of the curve. Figure 8.2b) shows an example of the LIA spectrum for
multiple frequency excitation. b is increased by a factor ≈ 1.5 compared to
single-resonance excitation. The minimum detectable magnetic field Bmin is:

Bmin =
1

γe

1

b

σS√
N

(8.3)

where we have considered N independent measurements and that SLIA is
affected by an uncertainty equals to σS. Increasing the total time of mea-
surement T leads to the usual scaling of the sensitivity η:

η = Bmin

√
T =

1

γe

1

b

σS√
N

√
T (8.4)

Figure 8.3 shows the Linear Spectral Density of the LIA noise multiplied
by the factor 1

γeb
as defined in Eq. (8.3). For the Lock-in detection scheme

described in this work, η corresponds to the low-frequency plateau in Figure
8.4. This figure also shows the shot-noise limit for the single hyperfine driving,
the Continuos Wave (CW) shot-noise limit being:

ηCW =
1

γe

√
I0

max(∂I0∂ν )
(8.5)

where I0 is the photons intensity and max(∂I0∂ν ) is the maximum slope in the
ODMR graph. As results from ODMR spectrum:

ηCW = K
1

γe

∆ν

2
√
I0C

= 12.5nT/
√
Hz (8.6)

where ∆ν = 1.072 MHz is the ODMR linewidth, C = 0.00273 the contrast
for the central dip of the hyperfine spectrum and K depends on the type of
characteristic function of the spectrum, in case the ODMR spectrum can be
interpolated with a Lorentzian function, the constant is 0.31. I0 = 3.03 ·
1010 s–1 is estimated from the optical power incident onto the photodiode W
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= 8.5 nW, considering a photon energy Eph = 2.84 · 10–19 J.
Figure 8.3 shows that simultaneous driving improves the sensitivity by a fac-
tor of ≈ 1.5 according to red and black lines.. This improvement is due to
two contributions: (i) an increase in the slope b (ii) no significant increase in
the LIA noise.

Figure 8.3: Comparison between the linear spectral densities (LSD) of the readout of the NV
sensor in single hyperfine driving regime (red line) and in the simultaneous hyperfine driving
(black line). The linear spectral density of the read-out with the detector blocked(green line),
with the input of the LIA disconnected (blue line) and the Continous Wave(CW)-shot noise
(dark green dashed line) are also shown. The value of the low-frequency plateau gives the
magnetic sensitivity of the measurement. The simultaneous hyperfine driving improvement
the sensitivity of a factor ≈ 1.5

To point out the biocompatibility of this method, we measured the mag-
netic sensitivity for different applied powers, see Fig. 8.4. The sensitivity
decreases by lowering the laser power. It is important to underline that
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we obtained a sensitivity of η = 68 ± 3nT/
√
Hz for an optical power of

80 mW: this value is beyond (or at least well comparable) with the one
obtained in previous works when the sensing volume is taken into account
[113, 133, 212, 213], see Figure 8.5.

Figure 8.4: Magnetic sensitivity for different values of the applied optical power. In the
inset, the inverse of the sensitivity is shown for the same power values. Uncertainties are
too small for being visible. The magnetic sensitivity improves increasing the applied optical
power
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Figure 8.5: The sensitivity in function of the sensing volume for the present study and
from data taken from literature [NV [68], ND 2008 [70], Fang 2013 [214], Barry 2016 [113],
Wojciechowski 2018 [215], Clevenson 2015 [213], Chatzidrosos 2017 [213]. The region of
interest for biological application is defined by the green region

It is not proved that living cells can sustain 80 mW of power radiating on
a surface of 100 µm2, even considering that we apply this power only for a
measurement time of 10 ms in a measurement cycle of 1 s. On the other
hand, living neuronal cells can surely tolerate without being affected an op-
tical power of 3 mW applied for minutes in the same optical geometry and
similar applied microwave powers of our setup [169]. Considering that we
apply the optical power only for few milliseconds, we can estimate a conser-
vative biocompatible optical power ≳ 10 mW, that results in a sensitivity
around ηbio ≲ 200nT/

√
Hz.

This magnetometric sensitivity value still needs to be increased to sense neu-
ron (or hearth cells) activity, where we expect a magnetic field of 1-10 nT
in proximity of a single ionic channel (a functionalised nanodiamond can
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in principle be targeted at nanometric distance from the channel) or when
considering tissue slices. Furthermore, ion channels clustering can further
increase the previous values.
In order to achieve accurate magnetic sensing from biological samples at the
(sub-)cellular scale, we envisage the following improvements as necessary: (i)
use of pulsed techniques (ii) use of isotopically-purified diamonds (iii) pro-
tection of the sample from the laser heating.

8.1.2 Pulsed ODMR

As described in section 8.1.1, the CW ODMR suffers from MW and optical
power broadening, degrading contrast C and linewidth FWHM of the res-
onance dip. In order to mitigate this power broadening, a pulsed ODMR
protocol uses a temporally separated laser initialization, a MW control π
pulse, and a laser readout pulse as demonstrated in Figure 8.6a)-c). This
leads to the decrease of the linewidths as shown in Figure 8.6b) with respect
to CW ODMR. Alteration of the MW power changes the duration of a π
pulse, and must be optimized to balance linewidth and contrast of ODMR
resonance features.
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Figure 8.6: a) NV Measurement Protocols. Schematic of timing and duration of laser pulses,
MW pulses, and readout sequences relative to the field being sensed for common NV diamond
protocols. b) ODMR Protocols. (A) Example CW ODMR lineshape before (blue) and after
(red) a resonance frequency shift. (B) Example pulsed ODMR lineshape before (blue) and
after (red) a resonance frequency shift. c)Pulsed ODMR representation in the Bloch sphere.

As mentioned in section 8.1, the CW-ODMR schemes is more technically
convenient for the low frequency fields (<1 kHz) or spatial field variations
over macroscopic areas because avoids the difficulty facing pulsed schemes.
The efficiency in this case is based on how large a change in fluorescence can
be generated and how small a change can be detected, for incremental reso-
nance shifts induced by an external magnetic/electric field of a temperature
variation. The challenge is thus generating the narrowest spectral linewidth
during cw-driving while ensuring that the fluorescence contrast is as high as
possible. Figure 8.7 shows the effectiveness of applying the pulsed technique
compared to the CW technique. The employed bulk diamond is described in
section 8.2.
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a) b) c)

Figure 8.7: a) ODMR graphs with three different microwave powers. b) Pulsed ODMR
graphs at different microwave powers. c) Comparison between the ODMR graph and the
Pulsed ODMR graph at the same microwave power: -15 dBm.

8.1.3 CW ODMR with orthogonal external magnetic field appli-
cation

Another method to improve the sensitivity, while maintaining the CWODMR
technique for biological temperature measurements in perspective, consists in
the application of an intermediate transverse bias magnetic field B⊥ [216].
The application of B⊥ removes the degeneration of |ms = ±1 > and therefore
improves the FWHM. The intensity and the transverse direction of that field
creates a quantum superposition of states, which is insensitive to magnetic
fields but sensitive to temperature [216]. In this configuration, the expecta-
tion value of the spin along any direction is small, implying the degeneracy
of the hyperfine structure between the levels |mI = ±1 > (except for the
quadrupole contribution Qgs, which seperates |mI = 0 > from |mI = ±1 >).
In Figure 8.8 the corresponding scheme of the spin energy levels is reported
(only the 14N isotope is considered as it is the most common). In this situa-
tion, the ODMR spectrum reduces to two dips [216] (instead of 6), providing
a substantial improvement in the signal-to-noise ratio. This particular ori-
entation of the magnetic field ensures the protection of the measurements
from the noise of other possible magnetic fields. In fact, the NV spin is non-
sensitive to the magnetic field fluctuation, because the contribution of the
magnetic component only appears at the second order in the Hamiltonian.
In this regard, Figure 8.9 shows a sensitivity curve versus the laser optical
power. The application of a transverse bias magnetic field B⊥

bias ≃ 3 mT ,
allows to improve the sensitivity of the NV-center-based thermo-sensor with
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Figure 8.8: NV ground-state 3A2 scheme, in presence of intense transverse magnetic field
B⊥.

Figure 8.9: Temperature sensitivity versus the laser excitation power at 532 nm. The inset
shows the inverse of the thermal sensitivity versus the excitation laser power.

respect to other standard techniques in CW regime. The temperature sen-
sitivity reached at laser power of 80 mW is η ≃ 8 mK/Hz1/2 in a sensing
volume of 1µm3, but this excitation power can present biocompatibility prob-
lems. However, the sensitivity obtained is even beyond the one required to
monitor biological mechanisms, that is typically of the order of 1 °C. Figure
8.9 shows that it is possible to perform the temperature measurement with
a lower laser power, finding an ideal compromise between the temperature
sensitivity and laser intensity impinging on the cell sample. Indeed, with a
power of a few mW it is already possible to discriminate biological processes
with a sensitivity of the order of a tenth of a degree.
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8.2 Diamond

To improve the sensitivity for the measurement of external fields, it is conve-
nient to interrogate several NV centers simultaneously, in a small volume to
preserve the spatial resolution. However, it is not enough to have a sample
with an high number of active centers: they must be in a crystal lattice as
pure as possible in order to avoid to be affected by the electromagnetic fields
generated by impurities.
The pristine sample was a 3×3×0.3 mm3 diamond substrate produced by
ElementSix by CVD deposition and processed by the Solid State Physics
group of the University of Turin. The sample was classified as an “optical
grade” CDV diamond for having the nominal concentration of substitutional
nitrogen and boron of <1 ppm and 0.05 ppm, respectively. The sample was
implanted with 10 keV N ions at room temperature using a low energy ion im-
planter. Implanted N ions fluence (dose) was 1·1014 cm–2. Implanted sample
was subsequently annealed for 2 hours at temperature of 950 °C. This process
resulted in the formation of NV centers with a ∼ 3 · 1019 cm–3 concentration
across a ∼15 nm thick layer at ∼10 nm from the sample surface.

8.3 Conclusion

Magnetometry in biological systems is of the utmost importance for fun-
damental biological science and medicine [12]. Mapping brain activity by
recording magnetic fields produced by the electrical currents which are nat-
urally occurring in the brain is of extreme interest [217, 218], with direct
applications in the timely detection and cure of psychic and neurodegener-
ative disorders [219, 220, 123]. Measuring the magnetic fields produced by
electrical currents in the heart is also of the utmost importance [221], since
this could lead to a new generation of non-invasive diagnostic and therapeutic
techniques [222]. Despite the substantial interest in these research areas, the
theoretical sensitivity needed to detect these very weak biological magnetic
fields is still very far from that achieved experimentally. In this chapter some
improvements that can be performed in bulk diamonds are discussed which
concern both the sensing technique and the optimization of the diamond crys-
tal growth. These results suggest a strategy for magnetic sensing at cellular
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level, contributing to paving the way to practical biological applications of
these methods.
Finally, the sensitivity obtainable with bulk diamond ideal for measuring
temperature variations is presented in section 8.1.3. Although bulk diamond
does not allow a spatial resolution comparable to nanodiamonds, the high
improvement in sensitivity arouses great interest in its application. A further
obstacle can be traced back to the high thermal conductivity of the dia-
mond, which is between 1000 and 2600 W/m ·K. Consequently, a thermal
increase localized in a few micrometres (for example in the case of a single
cell) would be quickly compensated for due to the rapid thermalization of the
diamond. These problems can be overcome by designing an experimental set
up (gradiometer) capable of performing the measurement simultaneously in
two points of the bulk diamond. Thanks to the good thermal sensitivity, a
quick measurement of the thermal gradient could be possible.
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Summary

This thesis was focused on the theoretical study and the practical implemen-
tation of the possible applications of nitrogen-vacancy (NV) color centers in
diamonds. The above studies show the enormous potential of lattice defects
not only as robust single photon sources, but also as highly sensitive nano-
scale sensors operating under ambient conditions for quantum metrology and
bio-sensing applications.
In the chapter 1 the characteristics of the diamond were stated and the sub-
ject of study was introduced, that is the NV center with its main properties.
In the chapter 2 and 3 the results obtained on single photon emitters were
reported. In chapter 2, after having stated the requirements to create ideal
single photon sources and their main fields of applications that would benefit
enormously, two mathematical functions have been introduced that allow to
identify sources of this type. The former is the generalized Glauber’s Kth-
order correlation function g(K), while the latter is a recently proposed anti-
correlation function (dubbed θ(K)). In chapter 3 the experimental proof is
described which highlights how the use of the theta parameters allow a more
precise reconstruction of the modes, especially in the presence of SPSs with
thermal and Poissonian fields, where the Glauber function alone fails. The
experimental results presented here are collected in the article [223], where
my work concerned the theoretical study of multimodal reconstruction and
the practical experimental realization. Instead, the beginning of this chapter
3 is devoted to the purely theoretical study of the statistical distribution of
photons emitted by an SPS when exposed to a continuous laser and measured
for a macroscopic time T (greater than the lifetime in the excited state of
the source). As can be seen from the calculations and simulations, when the
excitation rate and the emission rate are comparable, the number of photons
emitted is described by a sub-Poissonian statistic, the same obtained when
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the measurement times are lower than lifetime (and thus exposing the pulsed
laser source). Again, the data presented here was collected to create an arti-
cle, which however is still being written.
Chapter 4 details the spin properties of the negatively charged nitrogen-
vacancy complex (NV−), which make its energy levels sensitive to electro-
magnetic fields and temperature variations. The sensing techniques and some
variants that allow a fast and biocompatible measurement are also explained
in detail, in particular the differential ODMR technique introduced specifi-
cally for the experiments described in chapter 7 is described.
Chapter 5 analyzes the experimental apparatus I set up to conduct the exper-
iments, both by illustrating its theoretical operating principles and by listing
the various instruments I used.
Chapter 6 moves the description to biological applications by overviewing
the characteristics of the NV− center that make it a perfect sensor in the
biological field compared to other state-of-the-art candidates. It also theo-
retically analyzes the theoretical fields generated by neurons or cardiac cells.
The considerations reported in these sections are the result of a study carried
out by me, which led to the realization of the review [12].
Chapter 7 presents the most relevant result of this thesis, which led to the
article publication reported in ref.[179], in which I followed all the experi-
mental part. The experiment consists in the first measurement of thermal
variations at the sub-cellular level. The experiment was conducted by in-
cubating the nanodiamond sensors inside the mouse cerebral cortex neurons
and the temperature variation was performed following the substances per-
fusion that alter the firing and the metabolism.
Finally, chapter 8 presents the NV-based-sensing experiments realized with
bulk diamonds, some of these are in our articles, reported in refs.[12, 224].
These sensors give more possibilities for engineering, both in the diamond
production and in the sensing technique. An appropriate ODMR sequence
allows to considerably improve the sensitivity of the measurements. In this
chapter some results on technical improvements are compared, always adopt-
ing a biocompatible measurement process.

In perspective, it is planned to adopt these pulsed measurement techniques,
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more easily applicable to bulk diamonds, to perform cell thermometry mea-
surements with improved sensitivity. This would allow to reveal more imper-
ceptible thermal variations and in perspective it would guarantee a thermal
detection linked to substances that alter metabolism and firing in a less dras-
tic way than those used in chapter 7. The loss of spatial resolution due to the
high conductivity of the diamond could be restored using a gradiometer mea-
surement, thus simultaneously detecting the temperature from two distinct
diamond positions (one measurement exactly under the cell body, the second
by interrogating a region of the diamond away from the analyzed cell). At the
same time it is planned to develop the experimental improvements described
in chapter 8 also for nanodiamonds. The problems that must be overcome are
the imperfect immobility of the nanodiamonds and their rotation. For the
first problem, we are working on the nanodiamonds functionalization which,
in this way, would remain more fixed to the selected target, allowing longer
measurements over time and therefore applications of more advanced ODMR
measurement protocols. As for their rotation, a Helmoltz coil system has
already been purchased which would allow a precise and fast application of
a desired bias field in order to cause the degeneration of hyperfine levels and
improve the contrast and FWHM of the ODMR spectrum and hence the sen-
sitivity.
The successfully performed ODMR measurements demonstrate the feasibility
of cellular sensing measurements without altering its physiological functions
and these just mentioned improvements will lead to highly sensitive of tem-
perature and, in perspective, of electrical biocurrents measurements.
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Appendix A

Supplementary Material of Section 3.2

A.1 Probability generating function

This section explains the mathematical passages by which it is possible to
obtain the expression of G(t, ξ) reported in Eq.(3.13) starting from its defi-
nition. Remember that Pt(n) = Kn(t)−Kn+1(t).

G(t, ξ) =
∞∑
n=0

Pt(n) ξ
n =

∞∑
n=0

[Kn(t)−Kn+1(t)] ξ
n

= K0(t) + ξ

∞∑
n=1

Kn(t) ξ
n−1 −

∞∑
n=0

Kn+1(t) ξ
n

= K0(t) + ξ
∞∑

m=0

Km+1(t) ξ
m −

∞∑
m=0

Km+1(t) ξ
m

= 1 +
∞∑

m=0

Km+1(t)(ξ − 1) ξm = 1 +
∞∑
n=1

Kn(t)(ξ − 1) ξn−1

In the second line of the proof, the fact was exploited that G(t, 1) = K0(t)
and that, by definition, G(t, 1) =

∑∞
n=0 Pt(n) = 1.

A.2 Properties of the probability generating function

In this section the properties of the probability generating function are ob-
tained. For each proof, the starting point is always the definition of G(t, ξ).
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Proof of the property reported in Eq.(3.14):

1

n !

∂ n

∂ξn
G(t, ξ)

∣∣∣∣
ξ=0

=
1

n !

∂n

∂ξn

[ ∞∑
m=0

Pt(m) ξm
]
ξ=0

=
1

n !

∞∑
m=0

Pt(m)

[
θ(m− n)

m !

(m− n) !
ξm−n

]
ξ=0

=
∞∑

m=0

Pt(m) δm,n = Pt(n)

Proof of the property reported in Eq.(3.15):

∂

∂ξ
G(t, ξ)

∣∣∣∣
ξ=1

=
∂

∂ξ

[ ∞∑
n=0

Pt(n) ξ
n

]
ξ=1

=
∞∑
n=0

Pt(n)n ξn−1

∣∣∣∣
ξ=1

=
∞∑
n=0

nPt(n) =
〈
n
〉

Proof of the property reported in Eq.(3.16):

∂ 2

∂ξ 2
G(t, ξ)

∣∣∣∣
ξ=1

=
∂ 2

∂ξ 2

[ ∞∑
n=0

Pt(n) ξ
n

]
ξ=1

=
∞∑
n=0

Pt(n)n (n− 1) ξn−2

∣∣∣∣
ξ=1

=
∞∑
n=0

n (n− 1)Pt(n) =
〈
n(n− 1)

〉

A.3 Laplace transform of the probability generating

function

This section explains the mathematical passages by which it is possible to
obtain the expression of the Laplace transform of G(t, ξ).

G̃(s, ξ) =

∫ ∞

0

G(t, ξ)e−stdt =

∫ ∞

0

[1 +
∞∑
n=1

Kn(t)(ξ − 1) ξn−1]e−stdt

=
1

s
+

∞∑
n=1

(ξ − 1) ξn−1

∫ ∞

0

Kn(t)e
−stdt
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The integral can be rewritten by making Kn(t) explicit as follows:∫ ∞

0

Kn(t) e
−st dt =

∫ ∞

0

dt e−st

∫ t

0

fn(y) dy =

∫ ∞

0

dt e−st [Fn(t)− Fn(0)]

=

∫ ∞

0

dt e−st Fn(t) =

∫ ∞

0

dt
e−st

s

∂

∂t
Fn(t)

=
1

s

∫ ∞

0

dt e−stfn(t) =
1

s
f̃n(s)

Substituting the integral into the equation of G̃(s, ξ), is found:

G̃(s, ξ) =
1

s
+

∞∑
n=1

(ξ − 1) ξn−1 f̃n(s)

s
=

1

s
+

∞∑
n=1

(ξ − 1) ξn−1 [f̃(s)]
n

s

=
1

s

[
1 + (ξ − 1) f̃(s)

∞∑
m=0

(ξ f̃(s))m
]
=

1

s

[
1 +

(ξ − 1)f̃(s)

1− ξ f̃(s)

]
=

1

s

1− f̃(s)

1− ξ f̃(s)

Where has it been used the convolution theorem of the Laplace transform
and to the closed form of the geometric series.

A.4 Laplace transform of f (t) in the presence of optical

losses

This section explains the mathematical passages by which it is possible to
obtain the expression of the Laplace transform of f(t).

f̃ηr(s) =
∞∑
n=1

ηr (1− ηr)
n−1 f̃n(s) =

∞∑
n=1

ηr (1− ηr)
n−1

[
f̃(s)

]n
= ηrf̃(s)

∞∑
n=1

(
(1− ηr) f̃(s)

)n−1
= ηrf̃(s)

∞∑
m=0

(
(1− ηr) f̃(s)

)m
=

ηrf̃(s)

1− (1− ηr)f̃(s)

Where has it been used the fundamental formula of the integral calculus and
the closed form of the geometric series.
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A.5 Statistics in the presence of optical losses

This section explains the mathematical steps by which it is possible to obtain
the moments of the emission statistic of a generic source in the presence of
optical losses modeled in terms of efficiency ηr. In particular, Eq.(3.28) is
used to indicate the probability of detecting k photons in a time interval t in
the presence of this non-ideal element.
The derivation of the average value is shown below.

〈
k
〉
ηr
=

∞∑
k=0

k Pηr(k) =
∞∑
k=0

∞∑
n=k

k Pt(n)B(k|n, ηr)

=
∞∑
n=0

Pt(n)
n∑

k=0

k B(k|n, ηr) =
∞∑
n=0

Pt(n) ηr n = ηr
〈
n
〉

Subsequently, the mathematical passages by which the variance is obtained
are reported.

〈
k(k − 1)

〉
ηr
=

∞∑
k=0

k(k − 1)Pηr(k) =
∞∑
k=0

∞∑
n=k

k(k − 1)Pt(n)B(k|n, ηr)

=
∞∑
n=0

Pt(n)
n∑

k=0

k(k − 1)B(k|n, ηr) =
∞∑
n=0

Pt(n) η
2
r n

n−2∑
y=0

B(y| (n− 2), ηr)

= η2r

∞∑
n=0

Pt(n)n (n− 1) = η2r
〈
n(n− 1)

〉

V ar[k]ηr =
〈
k(k − 1)

〉
ηr
+
〈
k
〉
ηr
−

〈
k
〉2
ηr
= η2r

〈
n(n− 1)

〉
+ ηr

〈
n
〉
− η2r

〈
n
〉2

= η2rV ar[n] + ηr(1− ηr)
〈
n
〉
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Appendix B

Supplementary Material of Section 3.3

B.1 Characteristic function for a discrete probability

function pn of having n photons accounting effi-

ciency η

The characteristic function for a discrete probability function pn of having n
photons in the system described in the section 3.3 is:

Γ(z) =
+∞∑
m=0

p(m)zm (B.1)

Accounting for the efficiency η, the characteristic function in Eq.(B.1) be-
comes:

Γ(z) =
+∞∑
m=0

pη(m)zm =
+∞∑
m=0

+∞∑
n=0

B(m|nη) p(n)zm

=
+∞∑
n=0

p(n)
+∞∑
m=0

n!

m!(n−m)!
ηm(1− η)n−mzm

=
+∞∑
n=0

p(n)
+∞∑
m=0

n!

m!(n−m)!
(ηz)m(1− η)n−m

=
+∞∑
n=0

p(n)(1− η + zη)n =
+∞∑
n=0

[1− η(1− z)]np(n)

Where the probability pη(m) =
∑+∞

n=0 B(m|nη) p(n) is inserted.
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B.2 Reconstruction algorithm

In least square minimization function (Eq.(3.56) in section 3.3), the g
(K)
exp ’s are

calculated as the ratio between theK-fold coincidence probabilityQ(i1,...,iK)(1)
and the product of the single detection probabilities Qi1(1), ...QiK(1) of the K

SPADs involved, averaged for all possible SPADs combinations. The θ
(K)
exp ’s

are evaluated from the overall no-click probability Q(i1,...,iK)(0) and the sin-
gle branch no-click probabilities Qij(0) (ij = 1, ..., N , with j = 1, ..., K) of
the SPADs considered. As stated above, while the g(K)’s by construction do
not depend on the efficiency of the detector-tree branches involved in their
measurement, the same does not hold for the θ(K) functions, which are in-
trinsically η-dependent. For this reason, we took the efficiency unbalance
between the branches comprising our detector tree in account by computing
six different θ(2)(0) values, four θ(3)(0)’s and one θ(4)(0), each corresponding
to a different combination of the detector-tree branches.
Furthermore, Lagrange multipliers are introduced in Eq. (3.56) for both g(K)

and θ(K) functions. In particular, for each g(K) a different Lagrange multiplier
λg(K) is used according to the following rule:

λg(K) =

{
1/K! if g

(2)
exp(0) > 1

1 otherwise.
(B.2)

Whenever g
(2)
exp(0) ≤ 1, a unity Lagrange multiplier is applied to all Glauber

functions (λg(K) = 1 ∀K). Otherwise, we divide the corresponding square
difference by the value K!, accounting for the factorial growth of g(K)(0) with
K for thermal modes. In addition, the higher the order of an experimentally
measured Glauber function, the higher is the associated uncertainty. Thus,
order-dependent Lagrange multipliers reduce the impact of uncertainties for
large K’s. For all θ(K) functions, instead, we use the same Lagrange multi-
plier λθ, chosen case by case to make θ(K)’s contribution to Eq. (3.56) match
the size of the one due to the g(K) functions. To do this, we recursively
run the minimization algorithm, progressively adjusting λθ to equilibrate the
g(K) and θ(K) minima. Finally, to increase the robustness and reliability of
our reconstruction method, we exploit the single-branch no-click probabili-
ties Qi(0) as a constraint on the overall photon number distribution of the
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reconstructed photon state. Our minimization is carried on any four of nine
unknown parameters, each characterizing a different source: µ is the mean
photon number for the coherent mode, ν1, . . . , ν4 are the ones for the ther-
mal modes and p1, . . . , p4 are the emission probabilities of the single-photon
emitters for the single-photon modes.
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[39] Lukáš Lachman, Lukáš Slodička, and Radim Filip. Nonclassical light
from a large number of independent single-photon emitters. Scientific
reports, 6(1):1–8, 2016.

[40] E Moreva, P Traina, J Forneris, IP Degiovanni, S Ditalia Tchernij,
F Picollo, G Brida, P Olivero, and M Genovese. Direct experimental
observation of nonclassicality in ensembles of single-photon emitters.
Physical Review B, 96(19):195209, 2017.

165
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Christoph Becher, and Mete Atatüre. Optical signatures of silicon-
vacancy spins in diamond. Nature communications, 5(1):1–7, 2014.

[48] Carlo Bradac, Weibo Gao, Jacopo Forneris, Matthew E Trusheim, and
Igor Aharonovich. Quantum nanophotonics with group iv defects in
diamond. Nature communications, 10(1):1–13, 2019.

166



[49] Takayuki Iwasaki, Fumitaka Ishibashi, Yoshiyuki Miyamoto, Satoshi
Kobayashi, Takehide Miyazaki, Kosuke Tahara, Kay D Jahnke, Lach-
lan J Rogers, Boris Naydenov, Fedor Jelezko, et al. Germanium-vacancy
single color centers in diamond. Scientific reports, 5(1):1–7, 2015.

[50] Sviatoslav Ditalia Tchernij, T Luhmann, T Herzig, J Kupper, A Damin,
S Santonocito, Matteo Signorile, P Traina, Ekaterina Moreva, F Cel-
egato, et al. Single-photon emitters in lead-implanted single-crystal
diamond. ACS Photonics, 5(12):4864–4871, 2018.

[51] OA Shcherbina, GA Shcherbina, M Manceau, S Vezzoli, L Carbone,
M De Vittorio, A Bramati, E Giacobino, MV Chekhova, and G Leuchs.
Photon correlations for colloidal nanocrystals and their clusters. Optics
letters, 39(7):1791–1794, 2014.

[52] Chunlang Wang. A solid-state single photon source based on color cen-
ters in diamond. PhD thesis, lmu, 2007.

[53] François Treussart, Romain Alléaume, Véronique Le Floc’h, LT Xiao, J-
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[122] Milos Radivojevic, David Jäckel, Michael Altermatt, Jan Müller, Vi-
jay Viswam, Andreas Hierlemann, and Douglas J Bakkum. Electrical
identification and selective microstimulation of neuronal compartments
based on features of extracellular action potentials. Scientific reports,
6:31332, 2016.
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[163] Guillaume Baffou, Hervé Rigneault, Didier Marguet, and Ludovic Jul-
lien. A critique of methods for temperature imaging in single cells.
Nature methods, 11(9):899–901, 2014.

[164] Madoka Suzuki, Vadim Zeeb, Satoshi Arai, Kotaro Oyama, and
Shin’ichi Ishiwata. The 10 5 gap issue between calculation and mea-
surement in single-cell thermometry. Nature methods, 12(9):802–803,
2015.

[165] Madoka Suzuki and Taras Plakhotnik. The challenge of intracellular
temperature. Biophysical reviews, 12(2):593–600, 2020.

[166] D Jaque, LM Maestro, E Escudero, E Mart́ın Rodŕıguez, JA Capo-
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