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1. General introduction  

 

Hazelnut and chestnut are two of the most important tree nuts in Italy, 

especially in the Piedmont Region (Botta et al., 2019). Thanks to the 

valuable healthy nuts, they are commonly used in the human food diet and 

commercialized, raw or processed, all over the world.  

Nuts are nutrient-rich foods, source of proteins, fibres, polyphenols and 

phytosterols, unsaturated fatty acids, minerals and vitamins; a diet 

enriched with the consumption of nuts can decrease cardiometabolic 

diseases and the level of mortality (Martini et al., 2021; Micek et al., 

2021). 

In spite of the growing demand for nuts by the confectionery industry 

(hazelnut and chestnut) and the fresh market (chestnut) growing, there are 

constrains that hinder the renewal and the new planting of orchards in 

many areas. In the case of hazelnut, only a small pool of cultivated 

varieties with excellent traits are available, and this does not provide 

sufficient diversity for the cultivation in the different environments.  In the 

case of chestnut, the species is still affected by serious biotic adversities 

that compromise yield and, often, the plant survival. 

The Corylus avellana species shows the sporophytic self-incompatibility, 

the high emission of suckers, the later production and the tendency to 

produce blank nuts. The Castanea sativa species shows high susceptibility 

to pathogens. For both species it is necessary to improve nut yield, quality 

and resistance to pests and diseases (Botta et al., 2019).  

For these reasons, nowadays, there is a growing interest in developing 

breeding programs to provide improved cultivars that increase yield and 
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nut quality, with a better adaptability to climate change and tolerance to 

pathogens and pests.  

Woody species have long generation times and, in many cases, show high 

heterozygosity level due to self-incompatibility systems; in this condition, 

traditional breeding does not represent an efficient strategy to improve 

cultivars because it is an intensive, expensive and time-consuming process 

(Limera et al., 2017). 

For this reason, molecular biology, genome sequencing and genetic 

engineering, offers innovative strategies to improve plant knowledge and 

confer valuable genetic traits to elite genotipes in order to overcome the 

challenges of the XXI century: to produce more with less, overcome the 

risk of food reduction due to climate change, yield in a sustainable manner 

(Ahmar et al., 2020). 

 

2. Hazelnut 

Hazelnut (Corylus avellana L.) is a woody species that belongs to the 

Fagales order, Betulaceae family, Coryloideae subfamily and Corylus 

genus which includes Corylus avellana L., C. maxima Mill., C. chinensis 

Franch., C. sieboldiana Bl., C. colurna L. In Europe, there are two species 

of Corylus: C. avellana L., the European hazel, and C. colurna L. the 

Turkish hazelnut (Kasapligil, 1972). The European hazelnut C. avellana 

has a wide geographical distribution: it is widespread from the European 

continent to the Caucasus mountains (Boccacci and Botta, 2009), and it is 

absent only in peripheral regions of Europe, in Iceland and some 

Mediterranean islands (Palmè and Vendramin, 2002). 
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The average annual world production is 939,927 t (2015–2019) of in-shell 

hazelnuts, and the total harvested area is 1,000,231 ha (2019). Turkey is 

the first hazelnut producing country with 606,409 t (means 2015-2019), 

representing 65% of the world’s production.  Italy is the second producer 

with 116,945 t (means 2015-2019) (FAOSTAT 2021).  

In Italy, cultivated germplasm accounts some 30 cultivars (Baratta et al., 

2016), but only 6 of them are major cultivars still planted in orchards: 

‘Tonda Gentile delle Langhe’, ‘Tonda Gentile Romana’, ‘Tonda di 

Giffoni’, ‘Nocchione’ (syn. ‘Mansa’), ‘Mortarella’ and ‘S. Giovanni’. 

The cultivar ‘Tonda Gentile delle Langhe’ (‘TGdL’; syn ‘Tonda Gentile’; 

‘Tonda Gentile Trilobata’), grown in Piedmont, represents an excellence 

for the Italian economy thanks to the valuable nuts, highly appreciated and 

used in the food sector. Since December 1993, the productions of ‘TGdL’ 

grown in Piedmont can be protected under the Protected Geographical 

Indication (PGI) designation “Nocciola Piemonte”. 

Corylus avellana plants are shrubs, 3-7 meters tall, characterized by a var-

iable number of stems generated by the sucker emission. 

Hazelnut is an anemophilous, monoecious plant that exhibits a sporophytic 

self-incompatibility system. The female flowers are grouped in inflores-

cences and inserted in mixed vegetative buds. The male flowers are orga-

nized in cylindrical inflorescences, the catkins, and become visible during 

the summer period. Anthesis takes place during the winter period from 

December to March, depending on climate conditions.  

The fruit is an indehiscent nut surrounded by an herbaceous involucre 

(Botta et al., 2019). 
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2.1 Genomic resources and hazelnut breeding 

Plant Breeding is a discipline focused on obtaining new valuable cultivars, 

increasing resistance to pathogens and adaptability to climate change 

(Botta et al., 2019). 

Hazelnut breeding started in the 1960s in Italy, France and USA and in 

1980s in China and Turkey. Breeding programs were focused on 

increasing yield and nut quality and resistance to diseases. These programs 

use the traditional technique of controlled crossing between two selected 

cultivars chosen for their valuable traits. In Italy the University of Torino 

released 4 hybrids (Daria, UNITO 101, UNITO 119 and UNITO 3L) 

originated by the crosses between ‘Cosford’ X ‘Tonda Gentile delle 

Langhe’ and one hybrid (UNITO G1) from ‘Payrone’ X ‘Tonda Romana’ 

(Valentini and Me, 1999). 

UNITO L35 (‘Tonda Gentile delle Langhe’ X ‘Lansing’) (Valentini et al., 

2001a) was released for the in-shell market. In addition, four clones 

(UNITO-AD17, UNITO-MT4, UNITO-MT5, and UNITO-PD6) of 

‘Tonda Gentile delle Langhe’ were selected to be used in new orchards. 

The University of Tuscia (Viterbo) developed ‘Madonnella’ and 

‘Romanella’, two selections with high quality kernel (Tombesi et al., 

2017), while the University of Perugia released two cultivars originated 

from ‘Tonda Romana’ X ‘Tonda di Giffoni’ crosses, four selections from 

open pollination of ‘Tonda Romana’ or ‘Tonda di Giffoni’ (Volumnia I, 

II, III, IV; Tombesi et al., 2017). 

Since the conventional breeding of woody species is limited due to the 

long generation times (Limera et al., 2017), in recent years, thanks to the 

introduction of bioinformatics techniques, capable of relating molecular 
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data and field observations, breeding has achieved many advances. Despite 

this, there is a large gap between the resources available for the other 

woody fruit species and the current information on hazelnut. 

Hazelnut is a diploid species with eleven pairs of homologous 

chromosomes (2n = 2x = 22). Its genome size is estimated to be around 

378 Mbp (https://www.cavellanagenomeportal.com). 

The genomic resources available for hazelnut consist of two de novo 

assemblies:  the cultivar 'Jefferson' genome (Rowley et al., 2018) and the 

chromosome-scale genome of the Turkish ‘Tombul’ cultivar (Lucas et al., 

2021).  

Rowley and co-authors (2012; 2018) developed transcriptomes starting 

from four different 'Jefferson' plant materials (leaves, catkins, bark and 

whole young seedlings) and the re-sequencing of seven European culti-

vars. Recently, the C. heterophylla Fisch. (Chen et al., 2014) and C. 

mandshurica Maxim. (Ma et al., 2013) transcriptome sequences were 

made available. 

A high-density genetic map (Mehlenbacher et al., 2006), was constructed 

using Random Amplified Polymorphic DNA (RAPD) and Simple Se-

quence Repeats (SSR) markers, and subsequently optimized using further 

SSR markers (Gürcan and Mehlenbacher, 2010; Gürcan et al., 2010; Col-

burn et al., 2017; Bhattarai and Mehlenbacher, 2017). Two other genetic 

maps available are those developed by Beltramo et al. (2016) and Ozturk 

et al. (2017): Quantitative Trait Loci (QTL) associated with phenotypic 

traits were identified in these maps. Torello Marinoni et al. (2018) con-

structed a genetic map based on SNP marker based using a progeny 

‘TGdL’ X ‘Merveille de Bollwiller’ and revealed the QTL regions associ-

ated with the time of leaf budburst. Finally Valentini et al., 2021, based on 
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the same genetic map, revealed the QTL regions associated with flowering 

time, dichogamy and nut maturity time.   

 

3. Chestnut 
The Castanea genus belongs to the Fagaceae family that comprises six 

genera: Castanea, Castanopsis, Fagus, Lithocarpus, Nothofagus and 

Quercus. It is widespread in the boreal hemisphere and includes 12 or 13 

species (depending on the classification), among which the most 

economically important are the European chestnut Castanea sativa 

(Miller), the Japanese chestnut Castanea crenata (Siebold and Zuccarini), 

the Chinese chestnut Castanea mollissima (Blume) and the American 

chestnut Castanea dentata (Bork) (Beccaro et al., 2020).  

The European chestnut (Castanea sativa Mill.) is a multipurpose tree, 

appreciated worldwide for timber and nut production (Fernandes et al., 

2020). The European chestnut offers a wide range of secondary products 

and ecosystem services and is recognised wordwide for the excellent nuts 

quality.  

Chestnut wood, thanks to the high tannin content, is highly appreciated for 

outdoor uses. Chestnuts have been widely used in the human diet and 

consumed in different ways: roasted, candied, boiled, dried, or transformed 

into flour (Conedera et al., 2016).  

The European chestnut is a vigorous 30-35 m height tree that can exceed 

400 years of age. The leaves are deciduous, oblong-lanceolate with a 

crenate margin and with a lighter green abaxial leaf surface. 

It is a species that prefers temperate climates but also tolerates intense cold 

winters. 
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Chestnut is a monoecious species with staminate and pistillate flowers 

arranged in male and androgynous catkins.  The male flowers are disposed 

in a spiral along the catkin axis, while the female flowers are grouped in 

globose inflorescences at the base of bisexual catkins (Beccaro et al., 

2020). Sprouting occurs in late March, vegetative activity lasts until 

November, while anthesis takes place from mid-June to mid-July, 

depending on cultivar type and environmental conditions (Freitas et al., 

2021). 

Fruits are nuts protected by the burr, a spiny involucre that opens at 

maturity.  

The Italian cultivated germplasm accounts for over 300 cultivars (Barrel 

et al., 2016), many of which endangered. The cultivar ‘Marrone’ is 

appreciated worldwide for its fine taste and is found from North to Central 

Italy. In Piedmont, the cultivar ‘Garrone Rosso’ is grown in the Cuneo 

province where it represents most of the production. It is appreciated for 

external traits and the excellent organoleptic qualities; it is mainly used for 

fresh consumption and in the confectionery industry.   

 

3.1 Chestnut breeding and diseases 

Chestnut breeding has focused on obtaining cultivars with higher yield and 

nut and timber quality (large nut size, high peeling and good wood quality, 

fast growth), increasing the resistance to biotic and abiotic stresses. 

Another breeding objective has been the selection of rootstocks compatible 

with C. sativa (Beccaro et al., 2019) and tolerant to root pathogens.  

One of the main chestnut coltural problem is the high susceptibility to two 

severe diseases that threaten its survival: i) ink disease caused by the 
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oomycete Phytophthora spp. and ii) chestnut blight caused by the fungus 

Cryphonectria parasitica.  

In addition, chestnut is affected by the Asian gall wasp Dryocosmus 

kuriphilus Yasumatsu (Hymenoptera Cynipidae), an invasive insect that 

causes gall formation (Torello Marinoni et al., 2020), and by the nut rot 

and canker agent Gnomoniopsis castaneae G. Tamietti (Lione et al., 

2020). 

i) Ink disease is caused by soil organisms belonging to Phytophthora genus 

with includes P. cambivora and P. cinnamomi. The pathogen spread is 

favoured by movements of agricultural vehicles, cars, people and water. 

Infection occurs through wounds localized at the plant collar or at root 

level (Dilzahan et al., 2021) and the typical symptoms are flame-shaped 

necrosis at the base of the trunk with the appearance of ink-blue exudate. 

Other symptoms are foliage yellowing and microfilias, branch dieback, 

until the death of the plant and the complete loss of suckering capability 

(Jung et al., 2018).   

Among chestnut species, C. mollissima and C. crenata are tolerant to 

Phytophthora spp (Fernandes et al., 2021) and have been used to obtain 

hybrids bearing the trait. Breeding programs carried out at INRA, crossing 

C. sativa and C. crenata, produced a set of hybrid selections with a higher 

tolerance to Phytophthora that are currently used as rootstocks and as 

direct producers, despite the lower quality of nuts (Serrazina et al., 2015; 

Santos et al., 2015).  

ii) The second disease, chestnut blight, is caused by the fungus 

Cryphonectria parasitica. All the organs of the plant, except roots, are 

susceptible to the disease. The fungus causes tissue necrosis and the 

appearance of red coloured spots.  
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The necrotic areas, subjected to strong tensions, cause the appearance of 

the cankers characterized by the presence of yellow-orange fungus fruiting 

papules (Lione et al., 2020). In addition to active cankers, more superficial 

and healed cankers caused by hypovirulent strains of C. parasitica were 

detected in chestnut. In this case, the chestnut plant reacts by healing the 

tissues and producing new healthy tissues (Muñoz-Adalia et al., 2021). 

The hypovirulent strains are used in the biological control of virulent C. 

parasitica by inoculation close to active cankers (Milgroom and Cortesi, 

2004; Rigling and Prospero, 2018). An alternative to biological control can 

be the remotion of active cankers, taking care to remove the infected 

material to prevent a subsequent infection. At the moment, there are not 

breeding programs aimed at obtaining resistance or increasing tolerance to 

canker blight in the European chestnut. On the contrary, a large breeding 

program has been carried out in the USA to restore the species C. dentata 

by introgressing resistance genes from C. mollissima. 

 

4. New plant breeding techniques 
In 2050, the world population is expected to increase to  over 9 billions 

people and the harvest needed will be 60% higher than today's production. 

For this reason, new strategies are necessary to achieve plant resilience to 

climate change, higher yields and nutritional quality (Tilman et al., 2011).  

The traditional breeding, as previously described, doesn’t represent a valid 

strategy for the development of new improved woody fruit and nut species.  

For this reason, New Plant Breeding Techniques (NPBTs) can be a 

powerful tool to improve plant breeding in a short time and economic way 

(Osakabe et al., 2018).  
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Currently, the CRISPR/Cas9 (Clustered Regularly Interspaced Short 

Palindromic Repeats-Cas9) technique is considered one of the most 

effective low-cost tool for plant genetic engineering among NPBTs.  

The CRISPR/Cas9 technology system is based on a guide RNA sequence 

(gRNA) complementary designed to a target genome site. The gRNA 

identifies the target gene and then the Cas9 nuclease provokes a DNA 

double-strand break, promoting the insertion, deletion, or single nucleotide 

modifications through two mechanisms, non-homologous end joining 

(NHEJ) and homology-directed recombination (HDR).  

Genetic engineering using the CRISPR/Cas9 editing system has been 

efficiently adopted in several plant species, such as Arabidopsis, tobacco, 

rice, wheat, maize, soybean, tomato, poplar and citrus (Osakabe et al., 

2018). There is a growing interest in applying CRISPR/Cas9 system on 

woody plants in order to generate rapidly ideal cultivars deprived of 

negative genetic undesired traits (Scintilla et al., 2021).  

In woody plants, genetic engineering is still limited due to regeneration 

recalcitrance and low transformation efficiency. Currently, there is a 

growing amount of work aimed at better understanding these biological 

processes and detecting genes able to promote in vitro regeneration. 

CRISPR/Cas9 complex is usually delivered using Agrobacterium tumefa-

ciens strain or through particle bombardment; the complex can be thus in-

tegrated into the plant genome with the drawback that both the Cas9 en-

zyme and the gRNA can remain active for a long time causing off -target 

events. 

Since GMOs in Europe are subjected to strict government restrictions 

(Woo et al., 2015) and the public opinion throws doubts on the safety of 

the GMO products (Chen et al., 2019), researchers are searching for new 
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OGM-free strategies, without transgene integration. To avoid this event, 

the CRISPR/Cas9 construct can be introduced as ribonucleoprotein (RNP), 

a form that avoids the introgression of exogenous DNA (GMO-free). 

The RNP-based system is efficient because immediately acts on the target 

site without requiring the activation of the transcription process, being the 

RNP assembled in vitro and delivered directly into the cell; then the 

ribonucleoprotein complex is rapidly degraded (Chen et al., 2019) thanks 

to the natural cellular mechanisms of protein and RNA turnover. The 

regeneration from a single cell allows to maintain genetic uniformity. 

The major limit of this technology is that woody species are characterized 

by low editing efficiencies and low regeneration rates (Corredoira et al., 

2019).  

The development of a gene editing protocol using CRISPR/Cas9 precise 

editing and in addition the RNP delivery can be a useful tool to improve 

and accelerate chestnut breeding of elite cultivars.
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Aim and thesis structure 
 

Since the chestnut and hazelnut industries are two very important crops for 

Italy and for the Piedmont region, the purpose of the thesis is to increase 

the genetic knowledge on these species and make this knowledge available 

for developing strategies of targeted breeding programs. The thesis is 

divided into 4 chapters, the first one focused on hazelnut (Chapter I) and 

the following 3 chapters focused on chestnut (Chapter II, Chapter III and 

Chapter IV). 

 

Chapter I “Whole-genome assembly of Corylus avellana cv ‘Tonda 

Gentile delle Langhe’ using linked-reads (10X Genomics)”, presents 

the genome sequencing and assembly of the C. avellana cultivar ‘Tonda 

Gentile delle Langhe’, which represents an excellence for the Italian 

economy and is highly used in the food sector.  

The availability of a chromosome scale genome sequence of this cultivar 

would allow to increase the genetic knowledge of the species. The 

identification of genes involved in several biological processes, such as 

sporophytic incompatibility and host-pathogen interaction mechanisms, 

could be useful for genome editing programs.  

Moreover, since hazelnut shows an in vitro recalcitrant response (Contessa 

et al., 2011), detecting genes related to the regeneration process can be of 

interest to increase in vitro plant production.  
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The availability of a complete genome would also be a powerful tool for 

SNP markers detection, to be used in cultivar identification programs in 

hazelnut-based food products, to prevent or reveal commercial fraud. 

A paper has already been published (https://doi.org/10.1093/g3jour-

nal/jkab152). 

 

Chapter II “Identification of susceptibility genes in Castanea sativa 

and their transcription dynamics following pathogen infection” 

presents the first example of identification and characterization of 

susceptibility genes involved in plant-pathogen interaction in chestnut. It 

was demonstrated in several species that the knock out of these genes 

reduces the ability of the pathogen to infect the host and induces plant 

tolerance. In this chapter the involvement of susceptibility genes is 

demonstrated in Castanea sativa and Castanea crenata response to 

Cryphonectria parasitica and Phytophthora cinnamomi infections. The 

selected candidate genes, involved in the infection process, can be tested 

in future targeted genome editing programs.  

A paper has already been published 

(https://doi.org/10.3390/plants10050913). 

 

 

Chapter III “First Report of CRISPR/Cas9 Gene Editing in Castanea 

sativa Mill” presents the results of the first experiment of CRISPR-Cas9 

genetic transformation in C. sativa, since no evidence of CRISPR-Cas9 

genetic transformation in C. sativa is present in literature so far. The target 

chosen for this editing experiment was the phytoene desaturase (pds) gene 

https://doi.org/10.1093/g3journal/jkab152
https://doi.org/10.1093/g3journal/jkab152
https://doi.org/10.3390/plants10050913
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involved in chlorophyll biosynthesis; its mutation causes an albino 

phenotype. For this reason, pds is usually used as a visual marker to test 

the effectiveness of a new technique. 

A paper has already been published 

(https://doi.org/10.3389/fpls.2021.728516). 

 

Chapter IV “First protoplasts isolation and transformation protocol 

in C. sativa Mill.” presents the first protoplasts isolation protocol and set 

up starting from zygotic embryos ever reported in C. sativa. Protoplasts 

were afterward transformed using the Green Fluorescence Protein (GFP) 

reporter gene to test the transformation success. 

 

https://doi.org/10.3389/fpls.2021.728516


 
  

 Chapter I 

15 
 

 

Chapter I 
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Abstract 
The European hazelnut (Corylus avellana L.; 2n=2x=22) is a worldwide 

economically important tree nut that is cross-pollinated due to sporophytic 

incompatibility. Therefore, any individual plant is highly heterozygous. 

Cultivars are clonally propagated using mound layering, rooted suckers 
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and micropropagation. In recent years, the interest in this crop has 

increased, due to a growing demand related to the recognized health 

benefits of nut consumption. C. avellana cv ‘Tonda Gentile delle Langhe’ 

(‘TGdL’) is well-known for its high kernel quality, and the premium price 

paid for this cultivar is an economic benefit for producers in northern Italy. 

Assembly of a high-quality genome is a difficult task in many plant species 

because of the high level of heterozygosity. We assembled a chromosome-

level genome sequence of 'TGdL' with a two-step approach. First, 10X 

Genomics Chromium Technology was used to create a high-quality 

sequence, which was then assembled into scaffolds with cv 'Tombul' 

genome as the reference. 

Eleven pseudomolecules were obtained, corresponding to 11 

chromosomes. A total of 11,046 scaffolds remained unplaced, representing 

11% of the genome (46,504,161 bp). Gene prediction, performed with 

Maker-P software, identified 27,791 genes (AED ≤ 0.4 and 92% of 

BUSCO completeness), whose function was analysed with BlastP and 

InterProScan software. To characterise ‘TGdL’ specific genetic 

mechanisms, Orthofinder was used to detect orthologs between hazelnut 

and closely related species. The ‘TGdL’ genome sequence is expected to 

be a powerful tool to understand hazelnut genetics and allow the detection 

of markers/genes for important traits to be used in targeted breeding 

programs. 

 

Keywords: genomics, NGS, 10X genomics, hazelnut 
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Introduction 
The European hazelnut (Corylus avellana L.) is a woody species 

belonging to the Betulaceae family. It is an economically important tree 

nut whose production is mostly destined to the confectionery industry with 

a demand that has rapidly increased (Molnar, 2011). As a consequence, 

hazelnut harvested areas showed a 58% increase in 2019 (1,000,231 ha) 

compared to 2014 (FAOSTAT, 2019). Hazelnut is cultivated in many 

countries, including Turkey (65% World production), Italy (12.5%), 

Azerbaijan (4.6%), USA (3.9%), Chile, China, and Georgia (Botta et al., 

2019). In the Piedmont Region of Italy, hazelnut production is mainly 

based on the cultivar ‘Tonda Gentile delle Langhe’ (syn. ‘Tonda Gentile’, 

‘Tonda Gentile Trilobata’, hereafter ‘TGdL’), a small-sized and trilobate 

shaped kernels command a premium price due to their high quality, 

especially after roasting (Valentini et al., 2014). In December 1993, the 

European Union recognized the Protected Geographical Indication (PGI) 

“Nocciola Piemonte” to ‘TGdL’ produced in the piedmont areas of 

northern Italy (https://eur-lex.europa.eu). ‘TGdL’ is considered to have a 

monoclonal origin and it is clonally propagated by mound layering, rooted 

suckers and micropropagation (Valentini et al., 2014). 

High-quality genome assembly in many fruit tree species is a difficult task 

due to their high heterozygosity and thus haploid or doubled haploid plants 

have been often used to accomplish this goal (Jaillo et al., 2007) or 

genomes have been assembled with specialized algorithms (e.g. Platanus, 

Kajitani et al., 2014). Recently, long-read sequencing technologies, such 

as single-molecule real-time sequencing (SMRT, Pacific Biosciences) or 

https://eur-lex.europa.eu/
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nanopore sequencing (Oxford Nanopore Technologies) have been adopted 

to face this task. Moreover, scaffolding-like technologies such as optical 

mapping (Bionano Genomics, Barchi et al., 2019), proximity ligation 

methods (Hi-C, Dovetail Genomics, Acquadro et al., 2020b) and linked-

reads (10X Genomics, Hulse-Kemp, 2018) are generally used as 

companion strategies. The latter, a low-cost approach, can also be used to 

improve assembly metrics and to reconstruct long-range haplotypes. The 

10X Linked-Reads technique amplifies the potential of short-read 

sequencing to achieve a much more complete genomic analysis. Using this 

technology, it is possible to discriminate the two haplotypes and also to 

analyze regions with high repetitiveness. 

European hazelnut is a diploid species with 11 chromosomes (2n=2x=22), 

with an estimated genome content (1C) of 0.43 pg (Pustahija et al, 2013). 

Being an outbred species (Beltramo et al., 2016) hazelnut shows a high 

level of heterozygosity. In 2009, a draft genome of the European hazelnut 

cultivar ‘Jefferson’ was released 

(https://www.cavellanagenomeportal.com/), while a chromosome-scale 

assembly of the Turkish cv. 'Tombul' was recently reported (Lucas et al., 

2020). Rowley et al. (2012, 2018) studied the cv ‘Jefferson’ transcriptome 

(4 tissues), and re-sequenced seven European cultivars (~20x coverage). 

More recently, transcriptome sequences were obtained for C. 

heterophylla Fisch. (Chen et al., 2014) and C. mandshurica Maxim. 

(Ma et al., 2013). Mehlenbacher et al. (2006) constructed a genetic linkage 

map of C. avellana based on RAPD and SSR markers, while Torello 

Marinoni et al. (2018) developed SNP-based genetic maps for ‘TGdL’ x 

‘Merveille de Bollwiller’ and detected QTL regions associated with time 

https://www.cavellanagenomeportal.com/
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of leaf budburst. Many studies in addition to Öztürk et al. (2018) have used 

SSR markers to study diversity sequencing/assembly.  

There is a large gap between the tools available for other fruit species and 

the existing knowledge on hazelnut. This work aims to fill this gap, 

considering that hazelnut is a strategic crop for Italy. The European 

hazelnut genome sequencing will allow the study of the Corylus pan-

genome, the identification of variants for traceability or the 

implementation of genome wide association studies. 

For this reason, here we report the chromosome-scale assembly of the 

European hazelnut cultivar ‘TGdL’ established through a two-tiered 

approach: i) 10X Genomics sequencing/assembling and ii) scaffolding 

using the RaGOO pipeline (Alonge et al., 2019) and the ‘Tombul’ genome 

as a guide.  

 

Materials and methods 

Plant materials and DNA sequencing 

Young fresh leaves were collected from the ‘TGdL’ UNITO-AD17 clone. 

DNA extraction was performed by Novogene (Genome Sequencing 

Company, Hong Kong) and used to construct 10X Genomics Chromium 

technology (Weisenfeld et al., 2017) libraries. Sequencing was then 

performed on an Illumina NovaSeq 6000 System. 

 

De novo genome assembly and reference-guided scaffolding 

The ’TGdL’ genome was de novo assembled using Supernova Assembler 

v 2.1.1 (Weisenfeld et al., 2017) software (10X Genomics) using 10X 
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linked-reads as input. The Supernova Assembler was run directly on raw 

data derived from the sequencing process without any read cleaning 

process. The output format chosen for the subsequent analyses was 

“pseudohap”. The gap-closing process was performed using GapCloser 

script from SOAPdenovo2 pipeline (Luo et al., 2012).  

The reference-guided scaffolding was performed using the RaGOO v1.1 

(Alonge et al., 2019) scaffolder with the ‘Tombul’ genome as reference 

(PRJEB31933, https://www.ebi.ac.uk/ena/), with default parameters. The 

gap-closing process was repeated to further decrease the rate of 

indeterminate bases (N). Quality assessment of the genome assemblies 

was obtained using the QUAST tool (http://quast.sourceforge.net/).  

SNP/Indels were counted and analyzed using custom bash scripts. The 

estimation of the genome heterozygosity level was calculated by 

considering the ratio between the number of SNP/Indels (called in 

heterozygous state) and the size of the assembled genome after removal of 

Ns (404.097.498 bp) as previously reported (Acquadro et al., 2020a). 

 

Genome annotation, integrity and completeness 

The de novo assembly was masked using RepeatMasker (Smit et al., 2013–

2015) and the gene prediction used Maker-P (Campbell et al., 2014). The 

prediction process was made using Augustus (Stanke et al., 2006) Hidden 

Markov Models and SNAP (Bromberg and Rost, 2007) algorithms aided 

by a set of NCBI available hazelnut proteins and transcripts. All the genes 

detected were evaluated considering AED values and only genes with 

AED ≤ 0.4 were maintained. The AED values measure the concordance 

between the predicted gene and a transcript, mRNA-seq and protein 

https://www.ebi.ac.uk/ena/
http://quast.sourceforge.net/


 
  

 Chapter I 

21 
 

homology library data. In a case of perfect concordance, the score is 0, in 

the opposite case 1. To measure the quality and completeness of the 

predicted proteomes, a quantitative assessment was carried out based on 

evolutionary informed expectations of gene content known as 

Benchmarking Universal Single-Copy Orthologs (BUSCO89 v3.0.2., 

Embryophyta odb 10). 

Gene function was attributed using BLASTP (Altschul et al., 1990) 

comparing data with the Uniprot/Swissprot Viridiplantae database. 

Default parameters, except for the e-value (<1e-5) were applied. 

InterProScan (v. 5.33-72.0; Jones et al., 2014) was also introduced for 

domain inspection using all the available databases (ProSitePro les-

20.119, PANTHER-10.0, Coils-2.2.1, PIRSF-3.01, Hamap-201511.02, 

Pfam29.0, ProSitePatterns - 20.119, SUPERFAMILY-1.75, ProDom-

2006.1, SMART-7.1, Gene3D-3.5.0 and TIGRFAM-15.0). 
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OrthoFinder 

OrthoFinder software was used for the detection of putative orthologs and 

orthology groups. The comparisons were made among three C. avellana 

cultivars (‘TGdL’, ‘Jefferson’, ‘Tombul’), Quercus suber, Betula pendula 

and Carpinus fangiana. Gene ontology (GO) term enrichment was carried 

out with AGRIGOv2 (http://systemsbiology.cau.edu.cn/agriGOv2/) to 

find a representative subset of the GO terms previously identified with the 

Interproscan pipeline. 

 

Resistance genes analogs (RGA) 

Candidate resistance genes were identified using RGAugury (Li et al., 

2016). RGA candidates were classified into four major families based on 

the presence of combinations of these RGA domains and motifs: NBS-

encoding (subsequently divided in subgroups according to their domain 

architecture, namely NBS (NBS domain), CNL (CC-NBS-LRR domains), 

TNL (TIR-NBS-LRR), TN (TIR-NBS), CN (CC-NBS), NL (NBS-LRR), 

TX (TIR-unknown domain and other), TM-CC, and membrane associated 

RLP and RLK. MAFFT v7.450 (https://mafft.cbrc.jp/) was used for 

protein alignment with the following parameters: –ep 0 –reorder –

maxiterate 1000 –genafpair. Genetic relationships were described by 

constructing a phylogenetic tree by maximum likelihood by using the IQ-

TREE software (v.1.6.12, http://www.iqtree.org/); branch supports were 

obtained with the ultrafast bootstrap with 1000 replicates. Trees were 

visualized using interactive Tree of Life (iTOL v3, https://itol.embl.de/). 

 

http://systemsbiology.cau.edu.cn/agriGOv2/
https://mafft.cbrc.jp/
http://www.iqtree.org/
https://itol.embl.de/
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Data availability 

Raw reads are publicly available in the NCBI sequence read archive under 

the bioproject: PRJNA694440. The reference assembly and annotation 

data are also available for downloading from https://zenodo.org/de-

posit/4454484/. Supplementary material is available at figshare: 

https://doi.org/10.25387/g3.14502048/. 
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Results and discussion  

Genome sequencing and assembly 

The chromosome-scale ‘TGdL’ genome was developed using two-tiered 

approach. The 10X Genomics Chromium Technology was firstly used to 

obtain a high-quality preliminary assembly. Reference-guided scaffolding 

was then implemented using the ‘Tombul’ genome as the reference. The 

10X genomic library was sequenced with Illumina technology and 138.56 

million raw pair-end reads were generated (52X coverage). The average 

read length was 138.50 bp, with 86.06% of them having Q>30. These data 

are comparable to the optimal standard values suggested by Supernova 

Assembler software manufacturer (Table 1). In details, Supernova 

assembled 47,216 scaffolds having a total length of 414.38 Mb and an N50 

of 51,567 bp. The results were similar (Table 2) to the other genome 

assemblies at a contig level (‘Jefferson’, Rowley et al., 2018; ‘Tombul’, 

Lucas et al., 2020; Table 2). A single library (10X Genomics Chromium 

Technology) produces a more optimized ‘TGdL’ genome assembly 

compared to the ‘Jefferson’ assembly (Table 2), the latter being obtained 

using three different Illumina libraries, 250-bp and 350-bp Illumina 

paired-end (PE) libraries and a 4.5-Kb mate-pair (MP) library. Moreover, 

the 10X strategy proved to be a cost-effective route being the ‘TGdL’ 

assembly highly comparable to the ‘Tombul’ (contigs) draft made with a 

higher coverage (108X, short reads) and 9.3X of long Nanopore reads 

(Figure 1) prior to scaffolding.  

The reference guided scaffolding was made using the RaGOO pipeline, 

which was able to optimize the ‘TGdL’ assembly (contigs) adopting the 

‘Tombul’ genome (PRJEB31933), previously obtained with proximity 
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ligation technology (Dovetail Genomics using Chicago & HiC protocols), 

as reference. It produced 11 pseudomolecules (11 chromosomes) and 

11,046 scaffolds belonging to chromosome 0, which represent 11% of the 

genome (46,504,161 bp). The resulting assembly was a complete ‘TGdL’ 

chromosome-scale genome (Table 2), whose total length (without chr0) 

resembled that on the ‘Tombul’ assembly. Following the scaffolding 

process, we renamed the super scaffolds based on Torello Marinoni et al. 

(2018) linkage groups (Table 3).  

The rate of heterozygosity of the hazelnut genome was calculated as 0.84% 

and was similar for all the pseudomolecules, ranging from 0.91% 

(chromosome 6) to 0.82% (chromosome 7). Unplaced scaffolds showed a 

lower rate of heterozygosity (0.60%). These data were expected due to the 

allogamous behavior of hazelnut and are comparable to those of other 

outbred species (~1%; Acquadro et al., 2017, Velasco et al., 2007), and 

higher than the ones obtained in inbred species (~0.1%; Barchi et al., 2019, 

Acquadro et al., 2020a).  

 

Table 1: Summary of the metrics of the ‘TGdL’ 10X Genomics Chromium 

Technology  

 

 ‘TGdL’ Results  Optimal standard 

values 

Reads number 138.56 M - 

Reads average length 138.50 bp 140 bp 

Coverage 52X 56X 

% reads with Q30 quality 86.06 75-85% 
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Table 2: Metrics of the genome assemblies of the ‘TGdL’, ‘Tombul’ and 

‘Jefferson’ cultivar. 

  

‘TGdL’ 
‘Tombul’ 

(contigs) 
‘Jefferson’ ‘TGdL’ ‘Tombul’ 

 (contigs) 

Scaffold 

number (#) 
47,216 12,557 36,641 11,059 2,207 

Total 

Length 

(Mb) 
414.38 383.1 345.54 419.46 384.2 

N50  51,567 1,299 21,508 35,598,485 36,653,616 

L50  1,457 78,800 4,253 5 5 

Largest 
contig (bp) 

1,152,936 - 274,525 53,036,447 50,950,907 

# N’s/ 

100 Kb 
3,811.59 180 12,054.75 3,514.85 468.09 

GC (%) 36.87 - 36.3 36.84 35.91 
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Figure 1: Contiguity statistics performed on ‘TGdL’ (contigs), ‘TGdL’ 

(pseudomolecules plus unplaced scaffolds), ‘Tombul’ (pseudomolecules) and 

‘Jefferson’ genomes. Left picture: Nx statistics (Nx is the largest contig length, 

L, such that using contigs of length ≥ L accounts for at least x% of the bases of 

the assembly) with x varying between 1 and 100. Right picture represents the 

cumulative length increment of the genome through the scaffold/contig addition. 
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Table 3: Pseudomolecules reconstructed in ‘TGdL’ and nomenclature according 

to the genetic map by Torello Marinoni et al., 2018. The nomenclature of 

‘Tombul’ pseudomolecules is reported as in Lucas et al (2020). Observed 

SNP/indel in heterozygous state and their frequency are calculated using the size 

of the assembled genome, after removal of Ns (404,097,498 bp). 

‘TGdL’  

pseudomolecules 

‘Tombul’ 
Nomencla-

ture 
size (bp) Ns 

SNP/ 

indels 

SNP/ 
indels  

frequency  

1 1 53,036,447 2,194,688 430,039 0.85% 

2 2 48,611,531 1,656,681 390,798 0.83% 

3 8 25,054,957 974,784 216,892 0.90% 

4 3 39,027,746 1,377,931 322,996 0.86% 

5 5 35,598,485 1,323,708 299,132 0.87% 

6 10 24,339,126 955,975 211,629 0.91% 

7 6 30,979,729 1,185,588 244,134 0.82% 

8 11 22,131,124 858,998 182,492 0.86% 

9 4 37,785,217 1,350,719 299,648 0.82% 

10 9 25,093,934 1,084,840 201,790 0.84% 

11 7 31,441,515 1,359,091 262,222 0.87% 
unplaced  

scaffolds 
- 45,736,493 415,803 272,272 0.60% 

Whole genome - 418,836,304 14,738,806 3,334,091   

 

 

Genome annotation and Orthofinder analysis 

Globally, ~41.5% of the assembled genome were repeated, 17% of which 

consisted of LTR elements (Table 4). The assembled genome was then 

structurally annotated with the Maker-P suite and the total number of genes 

identified was 27,791 (AED 0.4). The proteome was validated using 

BUSCO; overall, more than 92% of 1,614 expected embryophyta genes 
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were identified in the ‘TGdL’ genome annotations as the complete and 

partial BUSCO profiles. The number of predicted genes is similar to the 

one predicted in ‘Tombul’ (27,270) and in ‘Jefferson’ (28,167); a similar 

number of genes were also identified in the close species Carpinus 

fangiana (27,384) and Betula pendula (28,153), while fewer genes were 

predicted in Quercus suber (25,808). 

The function attributed to each predicted protein was based on the results 

of the BLASTP (SwissProt) and the InterProScan domain inspection. 

InterProScan analyses highlighted about 80% of the predicted proteins 

with at least one IPR domain. Among the top 20 SUPERFAMILY domains 

(Table 5), the most abundant in all the genomes was SSF56112 (protein 

Kinase-like domain), which acts on signalling and regulatory processes in 

the eukaryotic cell. The other most abundant Superfamilies were: 

SSF52540 (P-loop containing nucleoside triphosphate hydrolase), which 

is involved in several UniPathways, including chlorophyll or coenzyme A 

biosynthesis and SSF52058 (Leucine-rich repeat domain, L domain-like), 

which is related to resistance to pathogens.  

Clustering by Orthofinder the proteomes (164,573 sequences) of the three 

hazelnut genomes together with the ones from Betula pendula, Carpinus 

fangiana and Quercus suber, produced a set of 21,239 gene families (plus 

24,639 unassigned genes), of which 5,892 (including 59,597 genes) were 

shared (Figure 2). Focusing on hazelnut, the ‘Jefferson’ proteome showed 

the highest percentage of unassigned genes (41.6%), presumably due to 

the fragmented assembly which limited the annotation procedure. On the 

other hand, the ‘TGdL’ and ‘Tombul’ assemblies showed a high 

percentage of assigned genes to orthogroups (93.1% and 96.3% 
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respectively). The ‘TGdL’ proteome contained 388 genome-specific 

orthogroups (1,279 genes), while 732 (with 2,040 genes) were shared 

between ‘TGdL’ and ‘Tombul’, but not the other genomes. For the former, 

the analysis revealed significant gene enrichment for some GO terms 

(Table S1), including GO:0042908 (xenobiotic transport) as well as GO 

terms related to nuclease activity (GO:0016891 (endoribonuclease 

activity, producing 5'-phosphomonoesters), GO:0004540 (ribonuclease 

activity)) and transport (GO:0008559 (xenobiotic-transporting ATPase 

activity) and GO:0090484 (drug transporter activity)). For genes shared by 

‘TGdL’ and ‘Tombul’, enriched GO terms included GO:0044092 

(negative regulation of molecular function), GO:0043086 (negative 

regulation of catalytic activity) and GO:0050790 (regulation of catalytic 

activity), as well as several nuclease related terms (as GO:0004523 (RNA-

DNA hybrid ribonuclease activity) GO:0004521 (endoribonuclease 

activity) and GO:0004540 (ribonuclease activity) (Table S2). 
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Table 4: Masking statistics for the ‘TGdL’ hazelnut genome.  
 

Class Superfamily Count 
Masked 

(bp) 

Masked 

(%) 

DNA -- -- --  

 hAT  46,506 9,536,392 2.30% 

 CACTA 66,513 10,364,758 2.50% 

 PIF/Harbinger 33,649 5,713,915 1.38% 

 Mutator 208,743 34,956,690 8.43% 

 Tcl/Mariner 9,668 1,607,102 0.39% 

 Helitron 71,851 14,190,408 3.42% 

LTR -- -- --  

 Copia 46,495 19,214,573 4.63% 

 Gypsy 48,852 26,434,445 6.37% 

 unknown 95,170 26,065,393 6.28% 

MITE -- -- --  

 hAT  9,724 1,295,113 0.31% 

 CACTA 1,080 128,610 0.03% 

 PIF/Harbinger 10,503 1,717,093 0.41% 

 Mutator 60,562 6,926,393 1.67% 

 Tcl/Mariner 388 33,917 0.01% 

Unspecified   22,038 4,627,197 1.12% 

 
total  

interspersed 
731,742 162,811,999 39.24% 

Low_complexity  30,853 1,453,286 0.35% 

Simple_repeat  224,449 7,743,022 1.87% 

Total   987,044 172,008,307 41.46% 
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Table 5: Top 20 SUPERFAMILY domains in the ‘TGdL’ hazelnut genome 

Superfamily Description Count 

SSF56112 Protein kinase-like domain 1577 

SSF52540 P-loop containing nucleoside triphosphate hydrolase 1565 

SSF52058 L domain-like 935 

SSF51735 NAD(P)-binding domain 484 

SSF57850 RING/U-box 468 

SSF48371 Armadillo-type fold 428 

SSF48452 Tetratricopeptide-like helical domain 413 

SSF57889 Cysteine-rich domain 409 

SSF52047 RNI-like 380 

SSF48264 Cytochrome P450 376 

SSF53474 Alpha/Beta hydrolase fold 362 

SSF53756 UDP-Glycosyltransferase/glycogen phosphorylase 362 

SSF46689 Homeobox-like domain 336 

SSF53335 
S-adenosyl-L-methionine-dependent methyltransfer-
ase 335 

SSF48403 Ankyrin repeat-containing domain 324 

SSF81383 F-box-like domain 322 

SSF54928 RNA-binding domain 321 

SSF51445 Glycoside hydrolase 313 

SSF50978 WD40-repeat-containing domain 291 
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Figure 2: Orthofinder analysis performed using ‘TGdL’, ‘Jefferson’, ‘Tombul’, 

Carpinus fangiana, Betula pendula and Quercus suber genomes.  

 

Resistance genes 

Many plant-pathogen interactions are determined by the presence of 

resistance (R) genes/alleles, which enable plants to recognize pathogen 

effectors and subsequently activate effector-triggered immunity (ETI) 

(Sekhwal et al., 2015), followed by a defense response often leading to 

cell death or a hypersensitive response (HR) (Zaidi et al., 2018). Most 

intracellular immune receptors in plants belong to the nucleotide-binding 

site and leucine-rich repeat (NLR, also known as NB-LRR) superfamilies 
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(Eitas et al., 2010; Lee et al., 2015). The NLR superfamily proteins include 

two classes on the basis of the presence of a toll and interleukin-1 receptor 

domain in the N-terminus (TIR-NLR or TNL) or its absence (non-TIR-

NLR or non-TNL). Some non-TNL proteins have a coiled-coil motif (CC-

NLR or CNL). 

The RGAugury pipeline detected between 86 and 2,017 resistance gene 

analogues (RGAs) among the species/genotypes analysed (Table 6). The 

highest percentage of RGAs compared to the total number of genes was 

found in Quercus suber (7.82%), while the lowest was detected in 

‘Jefferson’ (0.31%, presumably as a consequence of the low quality 

genome annotation) and Carpinus (1.91). In the ‘TGdL’ assembly we 

identified a total of 810 RGAs. Furthermore, clustering of RLKs, RLPs, 

NBS-encoding and TM-CC genes in some chromosomes were detected 

(Table 7), in agreement with classical genetics and analysis from large 

scale sequencing data in plant genomes (Rody et al., 2019). The chr. 2 was 

the richest in RGAs followed by 5, 3 and 4, while chr. 10 was the poorest. 

The majority of RLK genes was found on chrs. 2, 5, and 6, while the 

majority of RLP on chr. 2, 9, and 7. 

The majority of RGAs were receptor like kinases (RLKs), followed by 

receptor like proteins (RLP), while only few RGAs contain at least one 

NB-ARC domain. Similarly, in other members of the order Fagales, i.e. 

Juglans microcarpa and  J. regia, the most represented RGAs belong to 

RLK while few TNLs were identified (Zhu et al., 2019). Comparable 

results have been obtained in other non-woody species, like Solanaceae 

species such as Capsicum annuum, Solanum melongena, Solanum 

lycopersicum and Solanum tuberosum (Barchi et al., 2019 and Acquadro 
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et al., 2020a). Furthermore, Kim et al., 2012 highlighted that some 

Asterids contain functional TNLs, whereas others do not. This resulted in 

the identification of only 19 and 13 full length CNLs in sunflower and 

lettuce respectively, but no full length TNLs. Recently, Acquadro et al. 

(2017) reported that in the Cynara cardunculus genome, the RGAs belong 

almost exclusively to the RLK/RLP families, while no TNLs and few 

CNLs were identified. This species-specific RGAs distribution was also 

observed in Brassica oleracea, B. rapa, Arabidopsis and Theobroma 

cacao, where the number of TNL was higher than CNL, while an opposite 

situation was found for Populus trichocarpa, Vitis vinifera and Medicago 

truncatula (Yu et al., 2014).  

The alignments of the amino acid sequences and subsequent IQ-TREE 

analyses generated phylogenetic trees for CNL-TNL, RLP and RLK RGA 

classes (Figure S1 3a-3c).  

It has been reported that several R-genes (Triticum aestivum Pm3, 

Arabidopsis thaliana RPP13, Linum usitatissimum and Capsicum annuum 

eIF4E) seem to have evolved following a co-evolutionary relationship 

with pathogens and thus environment. The difference in terms of number 

and phylogenetic relationship represent a valuable information for 

conducting future in-depth studies on particular genes that are associated 

with their local environment (Charron et al., 2008; Rose et al., 2004). 
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Table 6: Resistance (R) genes in the ‘TGdL’ hazelnut genome compared with the genomes of ‘Jefferson’ and ‘Tombul’ and those of Betula pendula, Carpinus 

fangiana and Quercus suber. For each resistance gene class, the number as well as the percentage over the total number of genes is reported. Resistance genes 

abbreviations (from Li et al. 2016): NBS: nucleotide-binding site; CNL: CC (coiled-coil)-NBS-LRR; TNL: TIR (Toll/Interleukin-1 receptor)-NBS-LRR; CN: CC-

NBS; TN: TIR-NBS; NL: NBS-LRR; TX: TIR-unknown domain; RLK: receptor like kinase; RLP: receptor like protein; TM (transmembrane)-CC.  

Species/ 

Genotype 
NBS CNL TNL CN TN NL TX Others RLP RLK TM-CC Total 

‘TGdL’ 

 

18 

(0.06%) 

 

32 

(0.12%) 

1  

(0%) 

23 

(0.08%) 

1 

(0%) 

33 

(0.12%) 

6  

(0.02%) 

1  

(0%) 

93 

(0.33%) 

547 

(1.97%) 
55 (0.2%) 

810 

(2,91%) 

‘Jefferson’ 
2 

(0.01%) 

0  

(0%) 

0  

(0%) 

1  

(0%) 

0 

(0%) 

2  

(0.01%) 

2  

(0.01%) 

0 

(0%) 

11 

(0.04%) 

67 

(0.24%) 
1 (0%) 86 (0,31%) 

‘Tombul’ 
14 
(0.05%) 

43 
(0.15%) 

14 
(0.05%) 

12 
(0.04%) 

5 
(0.02%) 

28 (0.1%) 
23 
(0.08%) 

6 
(0.02%) 

123 
(0.44%) 

673 
(2.42%) 

190 
(0.68%) 

1131 
(4,07%) 

Betula pendula 
20 

(0.07%) 

10 

(0.04%) 

48 

(0.17%) 

0  

(0%) 

16 

(0.06%) 

31 

(0.11%) 

70 

(0.25%) 

5 

(0.02%) 

30 

(0.11%) 

662 

(2.38%) 

50 

(0.18%) 

942 

(3,39%) 
Carpinus 

fangiana  

3 

(0.01%) 

23 

(0.08%) 

0  

(0%) 

4 

(0.01%) 

1  

(0%) 

30 

(0.11%) 

4  

(0.01%) 

0 

(0%) 

55  

(0.2%) 

291 

(1.05%) 

51 

(0.18%) 

462 

(1,66%) 

Quercus suber 
47 

(0.17%) 

240 

(0.86%) 

174 

(0.63%) 

30 

(0.11%) 

16 

(0.06%) 

309 

(1.11%) 

118 

(0.42%) 

26 

(0.09%) 

286 

(1.03%) 

736 

(2.65%) 

35 

(0.13%) 

2017 

(7,26%) 
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Table 7: Distribution of the resistance R genes among the 11 pseudomolecules of the ‘TGdL’ hazelnut genome 

‘TGdL’ 

pseudomol-

ecules 

CN CNL NBS NL other RLK RLP 
TM-

CC 
TN TNL TX Total 

1 - 1 - - - 45 10 7 - - - 63 

2 6 9 9 18 - 96 18 2 - - 3 161 

3 2 4 2 3 - 51 9 12 1 - 1 85 

4 2 3 - 2 1 53 8 6 - 1 - 76 

5 1 5 - - - 67 4 7 - - 2 86 

6 1 - - 4 - 58 6 - - - - 69 

7 - 2 1 1 - 44 9 8 - - - 65 

8 9 4 3 1 - 33 7 3 - - - 60 

9 - 1 - 2 - 31 11 2 - - - 47 

10 1 3 2 2 - 20 5 1 - - - 34 

11 - - - - - 43 5 4 - - - 52 

unplaced  

scaffolds 
1 - 1 - - 6 1 3 - - - 12 

Total 23 32 18 33 1 547 93 55 1 1 6 810 
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Conclusions 

We performed a whole-genome assembly, using a combination of 10X 

Chromium linked-read technology and accurate 150 bp paired-end short-

read Illumina sequencing, to generate the genome of the European 

hazelnut cv. ‘TGdL’, one of the best cultivars for processing due to its high 

kernel quality. A chromosome-scale assembly of ‘TGdL’ was built and 

will facilitate the detection of genomic variants, including copy number 

variations and large insertions/deletions. About 28.000 genes were 

identified and annotated with known homology. Since the European 

hazelnut ‘TGdL’ has excellent kernel quality and its genome sequences 

will be useful for studying important traits, predicting genes, and 

developing markers for use in breeding programs.  
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Abstract 

Castanea sativa is one of the main multipurpose tree species valued for its 

timber and nuts. This species is susceptible to two major diseases,  ink 

disease and chestnut blight, caused by Phytophthora 

spp. and Cryphonectria parasitica, respectively. The loss-of-function 

mutations of genes required for the onset of pathogenesis, referred to as 

plant susceptibility (S) genes, are one mechanism of plant resistance 

against pathogens. On the basis of sequence homology, functional domain 

identification, and phylogenetic analyses, we report for the first time on 

mailto:andrea.moglia@unito.it
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the identification of S-genes (mlo1, dmr6, dnd1, and pmr4) in the 

Castanea genus. The expression dynamics of S-genes were assessed in    

C. sativa and C. crenata plants inoculated with P. 

cinnamomi and C. parasitica. Our results highlighted the upregulation of 

pmr4 and dmr6 in response to pathogen infection. Pmr4 was strongly 

expressed at early infection phases of both pathogens in C. sativa, whereas 

in C. crenata, no significant upregulation was observed. The infection 

of P. cinnamomi led to a higher increase in the transcript level of  dmr6 in 

C. sativa compared to C. crenata-infected samples. For a better 

understanding of plant responses, the transcript levels of defence genes 

gluB and chi3 were also analysed. 

 

Keywords: chestnut, susceptibility genes, Phytophthora cinnamomi, 

Cryphonectria parasitica  

 

Introduction 

The Castanea genus belongs to the Fagaceae family and includes four 

major species of commercial and ecosystemic interest: Castanea sativa 

Mill. (European chestnut), Castanea crenata Sieb. et Zucc. (Japanese 

chestnut), Castanea mollissima Bl. (Chinese chestnut), and Castanea 

dentata Borkh (American chestnut). C. sativa is a woody species common 

in all Mediterranean countries and Asia Minor. It has been widely used 

since ancient times, not only for the consumption of its edible nuts, but 

also for wood and the products of its ecosystem, such as mushrooms and 

honey. It is a forest tree, relevant for landscape ecology and biodiversity 

of mountain and rural areas [1]. 
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Over the last century, the number of chestnut trees decreased in growing 

areas in Europe due to the depopulation of mountains, climate change, and 

the spread of two severe diseases: ink disease and chestnut blight [2,3]. Ink 

disease is caused by the Oomycete Phytophthora 

cinnamomi and Phytophthora cambivora. Both species are pathogenic 

to C. sativa, although P. cinnamomi generally displays greater virulence 

than P. cambivora [4,5]. Among Castanea species, only C. crenata 

exhibits high tolerance to P. cinnamomi [6]. The disease, which affects 

both young and old trees, leads to subcortical necrosis of the root system 

and the basal part of the stem; this is followed by the appearance of wasting 

symptoms in the foliage until the total desiccation and death of the plant 

occur [7,8,9,10]. These pathogens spread mainly through the movement of 

soil harboring inoculum and the dissemination of asexual flagellated 

spores (i.e., zoospores) that can actively travel short distances or passively 

travel long distances in flowing water [10,11]. The use of resistant 

rootstocks represents one possible solution to protect against these 

pathogens, although, at present, only tolerant selections obtained 

from hybridization between C. sativa and C. crenata are available [12]. 

Chestnut blight stands among the most destructive fungal tree diseases 

ever [10,13]. The causal agent, Cryphonectria parasitica, infects trees 

through dead plant tissue and wounds, including those caused by pruning, 

graft, and hail [13,14]. The symptoms involve bark cankers that can 

develop on suckers, young branches, and adult branches and trunks [15]. 

Chestnut blight was one of the causes of the abandonment of chestnut 

orchards in Europe until the end of the 1970s, when the natural spread of 

the hypovirulent form of the fungus favored a slow but progressive 
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recovery of chestnut orchards and coppices. However, the fungus still 

represents a relevant problem in many areas of Europe. It is very harmful 

to young grafted trees in particular, hampering the establishment of new 

orchards in many areas [10,13].  

C. dentata forests in Eastern North America were wiped out by C. 

parasitica in the early 20th century [16]. Extensive studies and breeding 

activities have been carried out to restore the American chestnut species 

introgressing resistance genes of C. mollissima [17,18]. More recently, 

researchers discovered that the onset of the disease is associated with the 

release of oxalic acid by the pathogen during infection. Blight-resistant C. 

dentata trees were obtained by transferring a wheat gene that encodes 

oxalate oxidase [19]. 

Recently, a new interest and sensitivity towards the preservation of the 

local landscape generated a growing interest in silviculture and chestnut 

trees [20]. Moreover, the market demand for chestnuts in European 

countries has been strong in the last two decades and has often been 

supplied by importations. This has been due in part to the gall wasp 

(Dryocosmus kuriphilus Yasumatsu) infestation, which only recently has 

been controlled effectively [1,21], and to the general difficulty of 

developing a modern chestnut industry based on quality cultivars of C. 

sativa that are more tolerant to pathogens. The elucidation of the genetic 

mechanism behind host–pathogen interaction could thus be useful for the 

development of novel breeding strategies aimed at achieving resistance or 

higher tolerance to these pathogens.  

Plants take advantage of different defense mechanisms during pathogen 

attack, and pathogens trigger counter-defense mechanisms. Plants carry 
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pattern recognition receptors (PRRs) able to perceive pathogen-associated 

molecular patterns (PAMPs); this perception leads to intracellular signal 

transduction culminating in PAMP-triggered immunity (PTI). PTI is 

characterized by the production of reactive oxygen species (ROS), the 

secretion of antimicrobial compounds, and hydrolytic enzymes targeting 

the pathogen cell wall (chitinase and glucanase) and local cell wall 

fortifications (through callose deposition) [22]. 

To suppress PTI, pathogens developed effector molecules able to facilitate 

pathogen infection by manipulating the host response to support 

compatibility. Plant resistance (R) genes can detect effectors and trigger 

effector-triggered immunity (ETI) [23]. The recognition between R genes 

and effectors causes a cascade of responses involving jasmonic acid (JA) 

and salicylic acid (SA), culminating in a hypersensitive response (HR) 

[24]. 

Most pathogens require the cooperation of the host to establish a 

compatible interaction. Plant genes supporting compatibility and 

facilitating infection are called susceptibility (S) genes. S-genes can be 

divided into three main classes: a) genes required for the early pathogen 

infection step (basic compatibility); b) genes encoding negative regulators 

of plant immunity; c) genes necessary for pathogen proliferation (sustained 

compatibility) [22]. 

The mutation or loss of an S-gene can thus limit the ability of the pathogen 

to infect the host and the spread of the disease. The resistance mediated by 

the S-gene mutation can be pathogen-specific or broad-spectrum. In the 

former case, the pathway can be implicated in the penetration phase; in the 

latter, one of the target genes can be involved in constitutive defense 
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responses [22]. Resistance due to the loss of S-genes is generally recessive, 

differing from the generally dominant resistance mediated by R genes.  

Among the S-genes, Mildew resistance locus O (mlo1), Powdery mildew 

resistance 4 (pmr4), Downy Mildew Resistance 6 (dmr6), and Defense no 

death (dnd1) have been characterized in many plant species. The Mlo gene 

family, encoding seven transmembrane domain proteins, has been 

characterized in many plant species [25]. Some mlo homologs act as PM 

susceptibility factors, as their loss of function results in a distinguished 

type of resistance known as mlo resistance. Originally discovered in barley 

(Hordeum vulgare L.), mlo resistance was later shown to occur in several 

monocot and eudicot species, namely Arabidopsis, tomato (Solanum 

lycopersicum L.), pea (Pisum sativum L.), pepper (Capsicum annum L.), 

tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.) [26,27] 

plants. The callose synthase encoded by pmr4 is responsible for the 

production of callose in response to biotic and abiotic stresses. In tomato 

and potato plants the knockout and silencing of pmr4 led to Oidium 

neolycopersici and Phytophthora infestans tolerance [28,29]. Dmr6 is 

involved in the conversion of salicylic acid (SA) to 2,3-dihydroxybenzoic 

acid (2,3-DHBA) and negatively regulates defense gene expression [30]. 

Its silencing caused resistance to hemi-biotrophic Phythophthora capsici, 

Hyaloperonospora arabidopsidis, and Pseudomonas syringae [31]. 

Mutants of dnd1, encoding for a cyclic nucleotide-gated cation channel, 

showed P. infestans resistance [29]. 

At the moment, studies on S-genes in woody plant species have been 

carried out only for mlo genes in rubber trees [32], poplar trees [33], apple 

trees, and grapevines [34]. In our work, we report on the S-genes 
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identification and characterization in C. sativa on the basis of sequence 

homology, functional domain detection and phylogenetic relationships. In 

addition, the expression dynamics of S-genes were assessed in C. sativa 

and C. crenata plants inoculated with the two pathogens, P. cinnamomi 

and C. parasitica, belonging to different kingdoms. Using the same plant 

material, the transcription levels of key genes involved in pathogen 

resistance, chi3 (acidic 26 kDa endochitinase) and gluB (glucan endo-1,3-

beta- glucosidase), were also determined (S1 File). Our analysis revealed 

the strong activation of pmr4 and dmr6 genes in response to infection by 

both P. cinnamomi and C. parasitica. 

 

Results 

Genes identification and structure 

Chestnut susceptible (S) genes were identified in the C. mollissima v1.1 

reference genome using available coding sequences of gene orthologs as a 

query (S2 File). Based on the blastn survey, four loci with high similarity 

were identified and attributed to different subclasses of S-genes due to the 

presence of specific domains: mlo1, dmr6, dnd1, and pmr4 (Fig. 1). The 

coding sequence length of mlo1 is 1425 bp (composed of 13 exons); the 

protein size is 474 amino acids (aa) (Table 1). A single Mlo domain 

(PF03094) is present within the protein sequence. The Dmr6 gene, whose 

coding sequence is 1128 bp, contains four exons and is translated into a 

375 aa protein (Table 1). Two specific domains are characterized: 2OG-

FeII_Oxy and DIOX_N (PF03171; PF14226). Dnd1 is 1407 bp in length, 

codes for 468 aa proteins, and is composed of six exons. Two structural 

domains, cNMP_binding and Ion_trans, were highlighted (PF00027; 



 
  

 Chapter II 

53 
 

PF00520) (Fig 1; Table 1). The Pmr4 gene is characterized by one single 

5346 bp exon. The protein size is 1781 aa, and the structural domains are 

FKS1 dom1 and Glucan_synthase (PF14288; PF02364) (Table 1). 

 

 

 

 

 

Figure 1. Chestnut S-genes and their protein structures. The graphical 

representations of gene exon/intron structures were generated using the 

http://wormweb.org/exonintron/  tool and are shown in the left panel. The exons 

are indicated with black boxes, whereas introns are shown with lines. In the right 

panel, the protein structural domains are displayed 

 

 

 

 

 

 

http://wormweb.org/exonintron/
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Table 1. S-genes detected in the C. mollissima v1.1 genome and protein domain 

annotations.  

Gene 

Name 
Scaffold 

ORF 

length 

(bp) 

N°  

Exons 

Size 

(aa) 
Domains 

PFAM 

 DOMAINS 

MLO1 
Scaffold 

00101 
1425 13 474 Mlo PF03094 

DMR6 
Scaffold 

02358 
1128 4 375 

2OG-

FeII_Oxy; 

DIOX_N 

PF03171;PF14226 

DND1 
Scaffold 

00410 
1407 6 468 

cNMP_bind-

ing; Ion_trans 
PF00027;PF00520 

PMR4 
Scaffold 

00300 
5346 1 1781 

FKS1_dom1; 

Glucan_syn-

thase 

PF14288;PF02364 

 

Phylogenetic and modelling analysis  

Available full-length NCBI S-gene coding sequence orthologues (S3 File) 

were used for phylogenetic tree construction. The resulting unrooted 

maximum-likelihood trees are shown in Fig. 2, and all the phylogenetic 

trees are available separately in the S4 File. 
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Figure 2. Phylogenetic analysis of the S-genes. The 4 phylogenetic trees of mlo1 

(A), dnd1 (B), pmr4 (C), and dmr6 (D) were constructed using MEGAX software 

by aligning chestnut S-gene coding sequences with NCBI S-gene ortholog coding 

sequences (available in file S3). The colors indicate the main clades detected, and 

the arrows underline the location of C. mollissima. To visualize details, all the 

phylogenetic trees are available in file S4.  

 

 

The mlo1 tree was grouped into three clades (blue, green, red) with 100% 

bootstrap value. The monocot proteins formed a separate clade (blue) with 

respect to those of the dicotyledonous species. CmMlo1 is located in the 

red clade with Vitis vinifera and Hevea brasiliensis orthologs (Fig. 
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2A). The 17 dnd1 coding sequences were divided into two subclades; no 

monocotyledon genes were included. CmDnd1 is in the violet subclade, 

phylogenetically close to Quercus robur ortholog (Fig. 2B). For the 

construction of pmr4 and dmr6 trees, a greater number of coding sequences 

were available: 40 and 115, respectively. The Pmr4 phylogenetic tree 

showed the division in three main clades, with monocots in the green clade 

intermixed with dicots. CmPmr4 is located in the orange clade and clusters 

together with Quercus lobata and Quercus spp. orthologs (Fig. 2C). The 

Dmr6 tree is divided into three clades intermixed with monocot/dicot 

proteins. CmDmr6 is in the yellow clade, phylogenetically close to 

the Juglans regia ortholog gene (99% bootstrap value) (Fig. 2D).  

By comparing the 3D protein structure model of C. mollissima DMR6 with 

Arabidopsis thaliana DMR6 via Modeller software, a high degree of 

structural conservation was observed (Fig. 3). DMR6 is a putative 

oxygenase involved in the conversion of salicylic acid (SA) to 2,3-

dihydroxybenzoic acid (2,3-DHBA), and its catalytic activity is probably 

necessary to suppress plant immunity. The catalytic triad that binds the 

iron atom (grey sphere) is made by two histidines (H212 and H269), and 

an aspartic acid residue (D214). Zeilmaker et al. [31] demonstrated, by 

removing the histidines, that these residues were fundamental for the 

catalytic activity of DMR6, as well as for its role in immune suppression.  
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Figure 3. The DMR6 3D protein model created using Modeller software and 

visualized using Ccp4mg software. The C. mollissima (Cm) DMR6 (blue) protein 

and A. thaliana (At) DMR6 (yellow) protein are shown.  

 

Transcriptional profiling in response to P. cinnamomi infection 

S-genes are genes related to plant–pathogen interaction and are supposed 

to be activated during the early stages of infection before symptoms 

emerge. The susceptible species C. sativa was used as a reference to define 

the onset of symptoms due to P. cinnamomi inoculation on the stem. Five 

days after inoculation, lesions [35] were observed, followed by total leaf 
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desiccation. Based on the evidence from the preliminary inoculation tests, 

C. sativa and C. crenata species inoculated with P. cinnamomi and 

samples were collected at 0, 3, 6, 12, 24, 48, and 72 hours post-inoculation 

(hpi). The wound area left a lesion of 0.5 cm2. C. sativa plants inoculated 

with P. cinnamomi showed an enlargement of the lesion of 0.6 cm2 at 24, 

48, and 72 hpi compared to the initial area of the lesion at time 0 (control). 

No visible enlargement of lesions was recorded in the case of C. crenata. 

Quantitative PCR from infected stem tissues was applied to quantify P. 

cinnamomi and the assay confirmed a higher amount of the pathogen in 

plant tissues at 72 hpi (Fig. 4). C. crenata showed a lower abundance of 

the pathogen compared to C. sativa at all tested experimental time points. 

S-gene expression was analysed using the same time points (Fig. 5A). 

Mlo1 was mainly expressed at early infection phases, peaking at 6 and 3 

hpi in C. sativa and C. crenata, respectively. Dnd1 showed an analogous 

trend in both plant species, and its transcription was strongest at 6 hpi. 

Regarding pmr4, a differential transcript regulation in response to P. 

cinnamomi infection was highlighted in C. sativa and C. crenata. In C. 

sativa, pmr4 was strongly expressed at 3 and 6 hpi, with transcript level 

around 6-fold higher compared to 0 hpi. On the contrary, the expression of 

pmr4 remained very limited in C. crenata infected tissues, and a significant 

downregulation at 48 and 72 hpi was observed. Significant increases in the 

transcript level of dmr6 were observed only at 12 hpi (for C. crenata) and 

at 3 and 12 hpi (for C. sativa). For a better understanding of the plant 

response against P. cinnamomi, genes coding for pathogenesis-related 

(PR) proteins, chi3 and gluB, were analysed (Fig. 5B). Chi3 peaked at 6 

hpi both in C. sativa and in C. crenata, but the increment was higher in the 
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former species (~3 fold vs ~2 fold). GluB increased with the progression 

of infection in C. sativa, whereas a higher upregulation was observed 

during the early infection phases (at 3 and 6 hpi) in C. crenata. 

 

 

 

Figure 4. qRT-PCR pathogen DNA quantification after P. cinnamomi 

inoculation. Data were quantified using the 2- ΔΔCt method based on the Ct values 

of pathogen genes (ypt and mf1) and actin-7 as a housekeeping gene. Data are 

the means of three biological replicates ± SE. C. sativa data are normalized with 

C. sativa 0 hpi control; C. crenata data are normalized with C. crenata 0 hpi 

control. Different letters associated with the set of means indicate a significant 

difference based on Tukey's HSD test (P ≤ 0.05). 
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Figure 5. qRT-PCR-based transcription profiling after P. cinnamomi inoculation. 

A) The S-gene transcription profiles in C. sativa (blue) and C. crenata (green) 

chestnut species. B) The expression analysis of genes coding for several 

pathogenesis-related (PR) proteins in C. sativa (blue) and C. crenata (green) 

species. In all analyses, Cm7-actin was used as a housekeeping gene. Data are the 

means of three biological replicates ± SE. C. sativa data are normalized with C. 

sativa 0 hpi control; C. crenata data are normalized with C. crenata 0 hpi control. 

Different letters associated with the set of means indicate a significant difference 

based on Tukey's HSD test (P ≤ 0.05). 

 

 

 

A

B
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Transcriptional profiling in response to C. parasitica infection 

As described for P. cinnamomi, a preliminary stem inoculation assay on 

C. sativa plants was done with C. parasitica. Seven days after inoculation, 

a necrotic lesion around the inoculation point and orange fruiting bodies 

were observed in C. sativa. Based on the results of the preliminary 

inoculation test, C. sativa and C. crenata plants were inoculated and 

sampled at 0, 12, 24, 48, 72, 96, and 120 hpi. The size of the wound area 

was 0.5 cm2. C. sativa plants inoculated with C. parasitica showed 

enlargements of the lesion of 0.5 cm2 (at 48 and 120 hpi) and of 1 cm2 (at 

96 hpi) compared to the initial wound area at 0 hpi. No visible enlargement 

of the inoculation lesions was recorded in C. crenata at 72 and 120 hpi, 

and a limited enlargement of 0.5 cm2 was observed at 96 hpi.  

In C. sativa, qPCR analysis showed an increase in the abundance of 

pathogen inoculum with time elapsing from infection, peaking at 72 hpi. 

In C. crenata, no statistical differences were observed among the different 

experimental times (from 72 to 120 hpi) (Fig. 6). The transcript levels of 

S-genes were analysed using the same time points (Fig. 7A). Mlo1 was 

mainly expressed at 24 hpi in C. sativa. No significant upregulation of 

mlo1 was observed in C. crenata-infected tissues. An upregulation of dnd1 

was detected at 24 hpi in C. sativa infected tissues. In C. sativa, pmr4 was 

strongly expressed at the early infection phases (12 and 24 hpi), with 

transcript levels around 3-fold higher as compared with the level at 0 hpi. 

On the contrary, pmr4 was downregulated at all experimental times in 

inoculated C. crenata plants. A significant upregulation of dmr6 was 

observed only at late infection phases, 48 hpi in C. crenata and 24 hpi in 
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C. sativa. The transcription of chi3 was strongest at 96 hpi in C. sativa and 

at 48 hpi in C. crenata. The transcript level of gluB increased until reaching 

96 hpi in C. sativa and 24 hpi in C. crenata (Fig. 7B).  

 

 

Figure 6. qRT-PCR pathogen DNA quantification after C. parasitica inoculation. 

Data were quantified using the 2- ΔΔCt method based on the Ct values of fungal 

genes (ypt and mf1) with actin-7 as a housekeeping gene. Data are the means of 

three biological replicates ± SE. C. sativa data are normalized with the C. sativa 

0 hpi control; C. crenata data are normalized with C. crenata 0 hpi control. 

Different letters associated with the set of means indicate a significant difference 

based on Tukey's HSD test (P ≤ 0.05). 
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Figure 7. qRT-PCR-based transcription profiling after C. parasitica inoculation. 

A) The S-gene transcription profile in C. sativa (blue) and C. crenata (green) 

chestnut species. B) The expression analysis of genes coding for several 

pathogenesis-related (PR) proteins of C. sativa (blue) and C. crenata (green) 

species. In all the analyses, Cm7-actin was used as the housekeeping gene. The 

data are the means of three biological replicates ± SE. C. sativa data are 

normalized with C. sativa 0 hpi control; C. crenata data are normalized with C. 

A

B
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crenata 0 hpi control. Different letters associated with the set of means indicate 

a significant difference based on Tukey's HSD test (P ≤ 0.05). 

 

 

 

Discussion 

C. sativa is a European woody tree species commonly used across the 

globe in the food and timber industries. This chestnut species is susceptible 

to the two major pathogens, P. cinnamomi and C. parasitica [10,36]. In 

contrast, the Asian chestnut species C. crenata and C. mollissima exhibit 

higher tolerance to P. cinnamomi and C. parasitica [6,39,42,50]. 

Achieving tolerance or resistance to pathogens is the major aim of 

rootstock breeding. Blight-resistant trees were obtained through backcross 

breeding of introgression genes from Asian species into American chestnut 

trees.  [37]. However, this approach, although successful in developing 

blight-resistant American chestnut selections has been slowed by a lack of 

genetic tools. In Europe, ink disease tolerant hybrids were obtained 

through interspecific crosses between C. sativa and C. crenata, although 

the nut quality produced by these hybrids is below current market 

standards [38,39]. 

It has long been recognized that a deep understanding of a pathogen’s 

biology, host–pathogen interactions, and the resistance mechanisms are 

fundamental to improving breeding programs. Genomic and 

transcriptomic analyses have provided the first genetic insights into 

mechanisms underlying susceptible and resistant chestnut species 

responses to P. cinnamomi and C. parasitica [37,38,40,41,42]. Santos et 
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al. [40] reported the upregulation of a set of candidate genes (e.g., 

Cast_Gnk2-like and Calcium-dependent protein kinase) after P. 

cinnamomi infection, which may trigger HR-like cell death in C. crenata 

cells. A significant number of genes involved in the defence against 

chestnut blight were identified. [37].  

Traditionally, the introduction of resistance gene analogues into plants was 

the most promising approach to facilitate the acquisition of resistance. 

However, it did not prove to be durable enough because the widespread 

use of R genes caused the selection of pathogens capable of overcoming 

them [24]. Susceptibility (S) genes can be interesting candidates to be used 

in target breeding programs [22,23,24]. Furthermore, on the basis of 

previous studies, it was highlighted that the disabling of susceptibility 

genes may facilitate durable resistance since the pathogen needs to gain a 

new function to replace the lost host factor it was exploiting [43].  

In woody species, the investigation of S-genes has been performed only 

for MLO genes in rubber trees [32], poplar trees [33], apple trees, and 

grapevines [34,44]. Due to the absence of a C. sativa genome, highly 

similar S-genes were selected using the C. mollissima v 1.1 genome. Based 

on the blastn survey, four loci with high similarity were identified in the 

C. mollissima genome and attributed to different subclasses of S-genes 

[31,45,46,47] due to the presence of specific domains: mlo1, dmr6, dnd1 

and pmr4 (Fig. 1, Table 1). As previously observed [31], in the 

phylogenetic trees, monocot proteins formed a separate clade with respect 

to those of dicotyledonous species, supporting the hypothesis that an 

independent evolution occurred for these genes (Fig. 2). Quantitative PCR 

analysis has been carried out to identify the differential expression of 
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candidate S-genes in response to P. cinnamomi and C. parasitica in the 

stems of a susceptible species, C. sativa, and of a tolerant one, C. crenata. 

Lesion analysis and DNA quantification of the pathogen (Fig. 4; Fig. 6) 

confirmed the higher tolerance level of C. crenata in response to both P. 

cinnamomi and C. parasitica infection. Our qPCR results highlighted the 

main upregulation of pmr4 and dmr6 in response to infection by both P. 

cinnamomi and C. parasitica. As expected, a greater increase in the 

transcription of these susceptibility genes was observed in the susceptible 

species C. sativa. Remarkably, pmr4 was strongly expressed at early 

infection phases of both pathogens in C. sativa; in the tolerant C. crenata, 

significant upregulation was observed (Fig. 5; Fig. 7). Pmr4 codifies for a 

callose synthase, which is necessary to create a physical barrier to avoid 

pathogen penetration and is also implicated in plant-triggered immunity 

suppression. Pmr4 is thus not only involved in the synthesis of callose, but 

it also acts as a negative regulator of the salicylic acid pathway [28]. 

Huibers et al. [48] demonstrated that resistance due to the silencing of 

Pmr4 is associated with salicylic acid (SA) accumulation rather than with 

the callose deposition absence. Salicylic acid signalling plays a key role 

protecting against biotrophic pathogens through the establishment of a 

hypersensitive response (HR). Saiz-Fernandez et al. [49] revealed the 

increment of SA levels in P. cinnamomi inoculated stems, indicating that 

P. cinnamomi activates a defence response similar to that triggered by 

biotrophic pathogens. Inoculation with both virulent and hypovirulent 

strains of C. parasitica led to SA accumulation in European chestnut 

plantlets that were grown in vitro [50]. Transcriptome analyses carried out 
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in both C. dentata and C. mollissima highlighted activation of salicylic-

acid-related genes in canker tissues [37].  

In chestnut trees, callose deposition around P. cinnamomi hyphae was 

detected early in the infection process; however, it does not seem to play a 

key role in the associated interactions since the pathogen can reach the 

vascular cylinder in both susceptible and resistant plant genotypes [51]. 

This result was validated by transcriptomes analyses of C. sativa and C. 

crenata, in which no overexpression of Callose synthases after P. 

cinnamomi infection was observed [38].  

Based on our results and the literature, we can hypothesize that callose 

accumulation due to the pmr4 upregulation in inoculated C. sativa lines 

may not be responsible for controlling P. cinnamomi colonization. We 

suggest that the upregulation of pmr4 could lead to a negative regulation 

of the SA pathway that in turn provokes the susceptibility of C. sativa to 

both P. cinnamomi and C. parasitica. A clear link with SA pathway has 

emerged even with the other chestnut gene candidate dmr6 (downy mildew 

resistance 6). The mutation of Arabidopsis dmr6 gene, associated with 

salicylic acid (SA) homeostasis [31], results in the generation of plants that 

are resistant to bacteria and oomycetes. Dmr6 is involved in the conversion 

of salicylic acid (SA) to 2,3-dihydroxybenzoic acid (2,3-DHBA) and 

negatively regulates the expression of defence genes (PR-1, PR-2, and PR-

5) [30]. 

The expression trend of the Dmr6 gene in response to P. cinnamomi 

infection turned out to be similar to the profile of pmr4. Indeed, dmr6 was 

strongly expressed at early infection phases of P. cinnamomi in C. sativa; 

in C. crenata no significant upregulation was detected (Fig. 5). No 
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upregulation of dmr6 in response to C. parasitica was highlighted in both 

plant species (Fig. 7). We can thus hypothesize that dmr6 upregulation 

observed in C. sativa could negatively regulate defence gene expression, 

leading to susceptibility to P. cinnamomi. 

Plants produce a variety of hydrolytic defence enzymes against pathogens, 

including chitinases, proteases, and also glucanases [52]. The genes coding 

for several pathogenesis-related (PR) proteins, Acidic 26 kDa 

endochitinase gene (chi3) and Glucan endo-1,3-beta-glucosidase B gene 

(gluB), were selected in our analysis because they are considered as 

responsive to SA-dependent signalling [53,54]. Chi3 and gluB are 

enzymes that cause the lysis of hyphae of various pathogens, resulting in 

growth inhibition [55,56,57]. 

In both C. sativa and C. crenata plants inoculated with C. parasitica, chi3 

and gluB were significantly upregulated. The transcription of chi3 was 

higher in C. crenata than in C. sativa, presumably as a consequence of the 

improved defence mechanism against C. parasitica. Our results are in 

agreement with Shain et al. [58], who demonstrated the involvement of b-

1,3-glucanase and chitinase in chestnut species affected by C. parasitica. 

Studies on the role of chitinase in blight infection mostly involved C. 

sativa as a model system [50,59]. In both C. dentata and C. mollissima, 

transcripts of several compounds expressing chitinase accumulated more 

in canker tissues than healthy stem tissues [37]. In order to obtain chestnut 

plants with potentially increased resistance/tolerance to chestnut blight, the 

endogenous Ch3gene encoding a chitinase-like protein was over-

expressed in the European chestnut through Agrobacterium-mediated 

transformation [60]. 
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The emergent CRISPR/Cas9 technology is expected to play a key role in 

future crop breeding as it allows highly efficient gene editing and generates 

genetic changes indistinguishable from those arising spontaneously in 

nature or through conventional breeding [61]. Several examples of edited 

plants resistant to fungal pathogens have been described [62,63]. For 

example, genome editing was successfully applied to knock out mlo S-

genes, leading to Powdery mildew (PM) resistance [44,64,65,66]. Pmr4 

and dmr6 loss-of-function through CRISPR/Cas reduced the susceptibility 

to PM in tomato plants [28,67]. In our laboratory we are setting up a 

CRISPR/Cas9 transformation protocol in Castanea sativa. Our future goal 

will be to perform the functional characterization using the CRISPR/Cas9 

approach of the two candidate genes (dmr6 and pmr4), while checking if 

the two genes may also play a role in the interaction between C. sativa and 

the emergent nut rot and canker agent Gnomoniopsis castaneae [68].  

 

Materials and Methods 

 

Identification of chestnut S-genes orthologues  

S-gene sequences (S2 File), available in the NCBI database 

(https://www.ncbi.nlm.nih.gov/, accessed on 31 March 2021), were used 

as a query in the BLAST+ program (blastn task) against Castanea 

mollissima v1.1 reference genome 

(https://www.hardwoodgenomics.org/Genome-assembly/1962958/, 

accessed on 31 March 2021) to find chestnut S-gene orthologs. Hits were 

filtered using the e-value cut-off of 1e-5.  

https://www.ncbi.nlm.nih.gov/
https://www.hardwoodgenomics.org/Genome-assembly/1962958/
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The domain structures of chestnut S-genes were predicted using Pfam 

(pfam.xfam.org/, accessed on 31 March 2021) and Uniprot 

(https://www.uniprot.org/, accessed on 31 March 2021) databases. The 

graphical gene structure with exons/introns representation was realized 

using the script accessible at http://wormweb.org/exonintron/ (accessed on 

31 March 2021). 

 

Phylogenetic analysis 

The alignment of chestnut S-gene coding sequences (mlo, pmr4, dmr6 and 

dnd1) and of known related S-genes in other plant species were generated 

via multiple sequence alignment using the ClustalW algorithm 

(http://www.clustal.org/ , accessed on 31 March 2021). All the sequences 

used for tree construction are accessible in file S3. MEGAX software 

(https://www.megasoftware.net/ , accessed on 31 March 2021) was used 

for phylogenetic tree construction, applying maximum likelihood 

algorithms. To obtain a confidence level for each branch, bootstrap 

analysis was performed with 1000 iterations. All the phylogenetic trees are 

available in file S4. 

 

 Protein modeling 

The Modeller (https://salilab.org/modeller/, accessed on 31 March 2021) 

software was applied to generate 3-D protein structure models. The 

Modeller software generates the 3D structure of a given target protein 

sequence based on its alignment with a known protein structure 

(templates) [69]. 

https://www.uniprot.org/
http://wormweb.org/exonintron/
http://www.clustal.org/
https://www.megasoftware.net/
https://salilab.org/modeller/
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The alignment file of Arabidopsis thaliana (Q9FL0) and C. mollissima 

protein sequences was obtained using the Emboss Needle online tool 

(https://www.ebi.ac.uk/Tools/psa/emboss_needle/, accessed on 31 March 

2021). The 3D model was developed with an automodel class using the 3D 

A. thaliana model and the alignment file. Ccp4mg software 

(www.ccp4.ac.uk/, accessed on 31 March 2021) was used for protein 3D 

structure visualization, which is useful for studies of catalytic and 

regulatory domain conservation/divergence.  

 

Pathogen’s inoculation and samples collection 

P. cinnamomi (ID_C4) and C. parasitica (ID_5183 L2d) isolates used in 

the experiment were originally isolated from symptomatic C. sativa trees 

in Piedmont and Aosta Valley, northwestern Italy, respectively, and 

preserved in the plant pathogen culture collection at DISAFA (University 

of Turin). Isolates were subcultured in Potato Dextrose Agar (PDA) before 

inoculations. The inoculation trial was carried out on Castanea 

sativa and Castanea crenata plants (1-year-old) grafted on C. sativa and 

C. sativa x C. crenata rootstocks, respectively. Plants were grown in pots 

under greenhouse conditions. The identity of the plant material was 

preliminary checked through marker analysis using 10 SSR loci from 

Marinoni et al. [70] Plants were 80-100 cm high and 0.9-1.5 cm in diameter 

at the collar.  

Plants were inoculated 20 cm above the collar by placing a colonized plug 

of PDA (0.5 cm diameter) in a slit, superficially cleaned with 70% ethanol, 

obtained by excising a small portion of the bark with a sterile scalpel 

according to the methods described by Zampieri et al. [71]. After the 

https://www.ebi.ac.uk/Tools/psa/emboss_needle/
http://www.ccp4.ac.uk/
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inoculation process, the inoculation point was wrapped with parafilm to 

prevent tissue dryness and external contamination [71,72,73]. As negative 

controls (0 hpi), plants were wounded in the same way but inoculated with 

a sterile PDA plug. Plants were incubated in greenhouse conditions at 28 

± 2 °C with a 16-h photoperiod.  

S-genes are genes related to plant-pathogen interaction and are expressed 

during the first step of inoculation, before symptoms manifest. The time 

points used in our analysis were selected using the susceptible C. sativa as 

a reference on the basis of the onset of evident symptoms, i.e., bark 

necrosis and leaf dryness/browning, on C. sativa reference plants 

inoculated with each pathogen. The selected time points were 5 days after 

inoculation for P. cinnamomi and 7 days after inoculation for C. 

parasitica. Three biological replicates for seven experimental time points, 

including 0 hpi (control), were tested both for Castanea sativa and 

Castanea crenata and for the two pathogens (84 plants in total). 

Plant material was harvested at 0, 3, 6, 12, 24, 48, 72 hours after P. 

cinnamomi inoculation. For the C. parasitica experiment, material was 

collected at 0, 12, 24, 48, 72, 96, and 120 hours after inoculation. For each 

time point, two disks of the stem were cut 0.5 cm above and below the 

wound. Bark was then removed to reduce the polyphenol contamination of 

RNA, and samples were frozen in liquid nitrogen to preserve RNA 

integrity. All samples were stored at -80 °C before RNA extraction. 

 

RNA extraction and Real-Time qPCR quantification 

RNA was extracted from both inoculated and control (0 hpi) samples. A 

total of 0.1 g of frozen tissue was manually ground into a fine powder and 
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liquid nitrogen was added. RNA was extracted using Spectrum Plant Total 

RNA Kit (Sigma-Aldrich) following the manufacturer's protocol. 

Extracted RNA was treated with DNase I (Thermo Fisher Scientific) 

following the manufacturer's instructions.  

RNA was quantified by a NanoDrop spectrophotometer (Thermo 

Scientific, Hudson, NH, USA). cDNA was synthesized from 2 µg RNA 

using the High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher 

Scientific, USA). Primer sequences for candidate S-genes were designed 

using the Primer3 online tool (https://primer3.ut.ee/, accessed on 31 March 

2021) and are available in file S5. All primers were in silico tested through 

Primer-BLAST program (https://www.ncbi.nlm.nih.gov/tools/primer-

blast/, accessed on 31 March 2021) 

Chi3 and gluB genes, coding for several pathogenesis-related (PR) 

proteins, were also analysed in order to observe their role in the defence 

response of chestnut trees [74]. Transcript abundance was quantified in 

three biological replicates by the StepOnePlus Real-Time PCR System 

(Applied Biosystems). Real-Time qPCR was performed using the Power 

SYBR® Green Master Mix added with Bovine Serum Albumin (BSA) to 

reduce the action of PCR inhibitors. The amplification protocol included 

an initial denaturation step at 95 °C for 5min, followed by 40 cycles of 95 

°C/5s and 60 °C/1min. Data were quantified using the 2- ΔΔCt method based 

on Ct values of candidate genes and actin (as a housekeeping gene) [38]. 

IBM SPSS statistical software was used to carry out a one-way analysis of 

variance test (ANOVA). Each value represented the mean of three 

biological replicates, which were compared using Tukey’s HSD Test (P ≤ 

0.05).  

https://primer3.ut.ee/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Pathogen quantification  

Samples inoculated with P. cinnamomi (24, 48, 72 hours) and C. parasitica 

(72, 96, 120 hours) were used for DNA extraction and pathogen 

quantification. Plants were debarked and the necrotic area in the cambium 

layer was measured using ImageJ v. 1.8.0 software.  

The DNA extraction was performed using an E.Z.N.A.® Stool DNA Kit 

following the manufacturer's protocol. Standard curves were prepared for 

the quantification of DNAs by qPCR using primers designed as follows: 

7-actin for chestnut DNA, the ypt gene for P. cinnamomi DNA, and the 

mf1 species-specific gene for C. parasitica DNA [75] (S5 file). All the 

inoculated and control (0 hpi) samples were analysed through real-time 

qPCR both with pathogens genes (ypt and mf1) and with 7-actin. The 

results, normalized by standard curves, were used for the calculation of the 

ratio of DNA fungus/plant DNA. Real-Time qPCR was performed using 

the experimental conditions previously described: initial denaturation step 

at 95 °C for 5min, followed by 40 cycles at 95 °C/5s and 60 °C/1min. Data 

were quantified through the 2- ΔΔCt method based on Ct values of pathogen 

genes and actin-7 as a housekeeping gene [38] 

IBM SPSS statistical software was applied to perform a one-way analysis 

of variance test (ANOVA). Each value represented the mean of three 

biological replicates compared using Tukey’s HSD Test (P ≤ 0.05). 
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Supplementary materials 

The following are available online at https://www.mdpi.com/arti-

cle/10.3390/plants10050913/s1. S1 File: experiments pipeline, S2 File: S-

gene coding sequences available in the NCBI database 

(https://www.ncbi.nlm.nih.gov/, accessed on 31 March 2021) used for S-

gene detection in the C. mollissima genome, S3 File: S-gene coding se-

quences used for tree construction, S4 File: phylogenetic trees, S5 File: 

primer sequences 
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Abstract 

CRISPR/Cas9 has emerged as the most important tool for genome 

engineering due to its simplicity, design flexibility, and high efficiency. 

This technology makes it possible to induce point mutations in one or some 

target sequences simultaneously, as well as to introduce new genetic 

variants by homology-directed recombination. However, this approach 
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remains largely unexplored in forest species. Here, we report the first 

example on CRISPR/Cas9-mediated gene editing in Castanea genus. As a 

proof of concept, we targeted the gene encoding phytoene desaturase 

(pds), whose mutation disrupts chlorophyll biosynthesis allowing for 

visual assessment of knockout efficiency. Globular and early torpedo-

stage somatic embryos of C. sativa (European chestnut) were co-cultured 

for 5 days with a CRISPR/Cas9 construct targeting two conserved gene 

regions of pds and subsequently cultured on selection medium with 

kanamycin. After eight weeks of subculture on selection medium, 4 

kanamycin resistant embryogenetic lines were isolated. Genotyping of 

these lines through target Sanger sequencing of amplicons revealed the 

successful gene editing. Cotyledonary somatic embryos were maturated on 

maltose 3% and cold-stored at 4ºC for 2 months. Subsequently, embryos 

were subjected to the germination process to produce albino plants. This 

work opens the way to the use of the CRISPR/Cas9 system in European 

chestnut for biotechnological applications. 

 

Keywords: European chestnut, Agrobacterium-mediated transformation, 

phytoene desaturase, somatic embryos, targeted mutagenesis, gene 

knockout.  
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Introduction 

European chestnut or sweet chestnut (Castanea sativa Mill.) is a 

worldwide widely distributed tree species with an important economic role 

in Spain and Italy. It is highly appreciated for both timber and fruit 

production (Conedera et al., 2004; Conedera et al., 2016). In addition to 

its main productive role, European chestnut may also play a key role in 

wildlife and landscape conservation, rural tourism, recreation and 

protection from erosion (Merkle et al., 2020). However, European chestnut 

populations are seriously threatened for two severe diseases: ink disease 

mainly caused by the oomycete Phytophthora cinnamomi and chestnut 

blight provoked by the fungus Cryphonectria parasitica. During the first 

third of the 20th, the crossings between European chestnut and Asian 

tolerant species (C. crenata and C. mollissima) were the only valid option 

to deal with the ink disease. Although the hybrids obtained showed 

tolerance to P. cinnamomi, their nut quality was lower when compared to 

the European chestnut cultivars. The spread of hypovirulence has reduced 

the impact of canker blight in Europe but the disease is still a threat in 

orchards and young plantings, since extensive breeding of C. sativa for 

resistance to C. parasitica has not been carried out yet.  

Biotechnological methods, such as genetic transformation, can represent 

an interesting alternative to traditional breeding of chestnut and could 

contribute to overcome the disease issue, a major limiting factor for the 

expansion of modern orchard planting. A prerequisite for transformation 

is the availability of an adequate in vitro plant regeneration procedure. 

Somatic embryos are considered the best explant to be used as a target in 
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the transformation systems (Corredoira et al., 2019), due to the higher 

transformation rate than other regeneration methods and to the reduced 

number of escapes and chimeric plants. In recent years, several procedures 

have been reported for the establishment of European chestnut somatic 

embryos lines from zygotic embryos, and from shoot apices and leaves 

isolated from axillary shoot cultures (Corredoira et al., 2006; Merkle et al., 

2020). Using these embryogenic systems, efficient protocols of genetic 

transformation were set up; chestnuts were transformed introducing both 

marker genes (Corredoira et al., 2004) and genes coding for pathogenesis 

related proteins such as thaumatin-like proteins and chitinases, in order to 

confer tolerance against ink and blight diseases, respectively (Corredoira 

et al., 2012; 2016). 

Targeted genome editing allows the introduction of precise modifications 

directly into a commercial cultivar, offering a viable alternative to 

traditional breeding methods. The 2020 Nobel Prize CRISPR/Cas9 

technology (www.nobelprize.org/prizes/chemistry/2020/ ) has shown high 

efficiency in the knock out, insertion and correction of genes, and has 

sparked great enthusiasm in the scientific community being expected to 

play a key role in future efforts to improve crop traits.  This technology 

makes it possible to induce point mutations in one or some target 

sequences simultaneously, as well as to introduce new genetic variants by 

homology directed recombination (HDR) or to target and modify the 

transcription. In addition, CRISPR/Cas9 is inexpensive, simple and highly 

flexible allowing the rapid target plant genome editing (Walawage et al., 

2019). The development of new genome editing technologies in plant 

breeding fostered a growing interest for in vitro culture and regeneration 

http://www.nobelprize.org/prizes/chemistry/2020/
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protocols, which represent a major bottleneck in the application of these 

techniques in many plant species of agricultural and industrial interest. 

So far, reports of genome editing in tree species are still limited (Bewg et 

al., 2018). Nowadays, gene editing has been only reported in a few fruit 

tree species such as coffee (Breitler et al., 2018), apple (Nishitani et al., 

2016), grape (Wang et al., 2018), cocoa (Fister et al., 2018) and walnut 

(Walawage et al., 2019), while in forest species, gene editing has been only 

achieved in poplar (Fan et al., 2015). 

Phytoene desaturase (pds) gene plays a central role in chlorophyll 

biosynthesis and is considered a popular marker for CRISPR/Cas9 editing 

since its knockout leads to an albino phenotype (Qin et al., 2007). For this 

reason, pds gene is used as endogenous reporter gene for proof-of-concept 

gene editing in plants (Odipio et al., 2017; Shan et al., 2018; Bernard et 

al., 2019; Charrier et al., 2019; Ma et al., 2019; Wilson et al., 2019).  

In this study we reported, for the first time, the establishment of a 

CRISPR/Cas9-based transformation protocol in Castanea sativa using 

somatic embryos.  Our results demonstrated that genome editing through 

CRISPR/Cas9 can be efficiently applied for chestnut genome 

modification.  
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Materials and Methods  

 

Plant material 

The embryogenic line CI-3 initiated from zygotic embryos of Castanea 

sativa Mill. (Corredoira et al., 2006) was used for gene editing 

experiments. This embryogenic line was maintained by secondary 

embryogenesis with sequential subcultures at 5/6 weeks intervals onto a 

multiplication medium consisting of MS (Murashige and Skoog, 1962) 

mineral salts (half-strength macronutrients; ½ MS) and vitamins, 3 mM 

glutamine, 0.1 mg/L benzyladenine (BA), 0.1 mg/L 1-naphthaleneacetic 

acid (NAA), 3% sucrose (w/v), and 0.7% Sigma-agar (w/v). The pH was 

adjusted to 5.6-5.7, and the medium was autoclaved at 115ºC for 20 min. 

Cultures were incubated under a 16-h photoperiod (provided by cool-white 

fluorescent lamps at a photon flux density of 50-60 µmol m-2 s-1) and 25ºC 

light/20ºC dark temperatures (standard conditions). 

 

Mining of pds in the C. sativa transcriptome and phylogenetic analysis  

C. sativa pds (Cspds) gene sequence was kindly provided by Dr. Susana 

Serrazina, from the C. sativa transcriptome database (Serrazina et al., 

2015). Cspds gene was analysed using Prosite (https://prosite.expasy.org/, 

accessed number 01-01-2021) to annotate functional domains.  

The alignment of the Cspds gene sequence together with 44 other plant pds 

coding sequences, available on NCBI database (accessed number 01-01-

2021), was performed via multiple sequence alignment using the ClustalW 

algorithm (http://www.clustal.org/, accessed number 01-01-2021). 

https://prosite.expasy.org/
http://www.clustal.org/,
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MEGAX software (https://www.megasoftware.net/ ,  accessed number 01-

01-2021) was adopted to generate the phylogenetic tree, by applying 

maximum likelihood algorithm. The individual branch statistical 

significance was assessed by bootstrap analysis with 1,000 iterations.  

 

Vector design 

The two gRNAs were designed on the Cspds sequence using CRISPR-P 

2.0 (http://crispr.hzau.edu.cn/CRISPR2/, accessed number 01-01-2021) 

(Supplementary File 1). Putative off-target sites were identified with the 

CRISPOR software (http://crispor.tefor.net/crispor.py/), using the 

Castanea mollissima genome as reference. The gRNAs were assembled 

into a CRISPR/Cas9 vector carrying the hCas9 and the nptII gene for 

kanamycin (kan) resistance, using the GoldenBraid (GB) assembly system 

and following GB software-directed procedures (https://gbcloning.upv.es/,  

accessed number 01-01-2021). CaMV 35S promoter and AtU6-26 RNA 

PolIII promoter were used to drive the hCas9 and gRNA expression, 

respectively.  

The final vector named nptII_Cas9_pds_gRNA1_gRNA2 (Supplementary 

File 2) was transferred into Agrobacterium tumefaciens strain EHA105 

(Hood et al., 1993) by using the freeze/thaw method (Xu and Li, 2008).  

 

Somatic embryo genetic transformation 

Cultures of EHA105-nptII_Cas9_pds_gRNA1_gRNA2 for 

transformation experiments were prepared according to Corredoira et 

al. (2015). A single colony was inoculated in 2 mL of LB medium 

(Sambroock et al., 1989) supplemented with 50 mg/L kan and the 

https://www.megasoftware.net/
http://crispr.hzau.edu.cn/CRISPR2/
http://crispor.tefor.net/crispor.py/
https://gbcloning.upv.es/
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culture was grown overnight at 28ºC with shaking (200 rpm) in 

darkness. One mL of this bacterial suspension was added into 600 mL 

of LB liquid medium added with 50 mg/L kan and was grown at 28ºC 

at 100 rpm in darkness until the attainment of an OD600= 0.6. Bacteria 

were recovered by centrifugation (6500 rpm for 10 min at 10ºC), and 

the pellet was resuspended in 200 mL of MS liquid medium 

supplemented with 5% sucrose (w/v) (infection medium). 

For transformation, clumps of 2-3 somatic embryos at globular or early 

torpedo stage were employed as target explants. Somatic embryos were 

pre-cultured on free growth plant regulators multiplication medium for one 

day before the transformation trial. The explants were immersed during 30 

min in the infection medium and transferred to multiplication medium for 

co-cultivation in dark at 25ºC. After 5 days of co-cultivation, explants were 

washed for 30 min with sterilized water with 500 mg/L cefotaxime and 

subsequently somatic embryo groups were transferred to multiplication 

medium supplemented with carbenicillin (300 mg/L), cefotaxime (200 

mg/L) and kanamycin (150 mg/L) (selection medium) and cultured under 

standard conditions. In this experiment, 60 explants (6 Petri dishes with 10 

explants per dish) were transformed. In addition, 10 clumps of somatic 

embryos transformed with the nptII / Cas9 vector (gRNA-free control) and 

20 groups of un-infected embryos were cultured to be used as negative and 

positive control, respectively (Figure 1).  

After 8 weeks on selection medium, kanamycin-resistant embryos were 

detected and transferred to fresh selection medium to establish the 

different mutated lines. These transformed lines were routinely maintained 

by secondary embryogenesis with sequential subcultures at 6-week 
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intervals on selection medium according to Corredoira et al. (2015). The 

multiplication capacity of two transformed/mutated lines was evaluated by 

recording the number of somatic embryos produced by explant and 

compared with those of the control embryogenic line. 

 

Plant regeneration  

Plant regeneration was performed according to Corredoira et al. (2008). 

Cotyledonary somatic embryos (>5 mm) were isolated and cultured on 

maturation medium consisting of ½ MS medium supplemented with 3% 

maltose (w/v) and 0.8% Sigma-agar (w/v). After 4 weeks of culture on 

maturation medium at standard conditions, somatic embryos were 

transferred to empty Petri dishes and stored at 4ºC. After 2 months, somatic 

embryos were cultured on germination medium consisting of ½MS 

supplemented with 0.1 mg/L BA, 0.1 mg/L indole-3-butyric acid (IBA), 

glutamine (200 mg/L) and 0.7% Sigma-agar (w/v). After 8 weeks at 

standard conditions, the percentage of regenerated plants/ shoot 

development was evaluated.  

 

Molecular analysis of kanamycin-resistant embryos 

Genomic DNA was extracted from 0.1 g of white kanamycin-resistant 

embryos (obtained through transformation with 

nptII_Cas9_pds_gRNA1_gRNA2) and from nptII_Cas9 control using the 

Qiagen DNeasy Plant Pro Kit. The transgene integration was investigated 

through hCas9 gene amplification (in three technical replicates) using 

SYBR Green PCR Master Mix (Applied Biosystems) and the following 
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PCR program: 95°C/10 min, followed by 40 cycles of 95°C/15 s and 

60°C/1 min cycle. All primer sequences are available in Supplementary 

File 3.  

Mutation frequencies at the target sites were evaluated through PCR 

amplification using primers designed on gRNAs flanking regions 

(Supplementary File 3). DNA was amplified using KAPA HIFI Taq and 

the following PCR program:  95°C/3 min, followed by 30 cycles of 98°C/ 

20 sec, 60°C/ 20 sec, 72°C/45 sec and 72°C/3 min. The PCR products were 

purified using DNA/RNA Clean Up E.Z.N.A.® kit. Samples were 

sequenced using the Sanger method and the chromatograms obtained were 

analyzed using the TIDE online software (https://tide.deskgen.com; 

accessed number 01-01-2021).  

 

Statistical analysis 

The influence of mutation on somatic embryo proliferation (Table 1) was 

evaluated by one-way factorial analysis of variance (ANOVA I) applying 

SPSS for Windows (version 26.0, Chicago, USA). 

 

 

 

 

 

 

 

 

 

https://tide.deskgen.com/
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Results and discussion 

 

Gene structure and phylogenetic analysis 

The pds gene sequence is 1498 bp long and the protein size is 472 amino 

acids (aa). A single amino_oxidase domain (PF01593) is present within 

the protein sequence (Figure 2). Available full-length NCBI pds coding 

sequence orthologues (Supplementary File 4) were used for phylogenetic 

tree construction. The resulting unrooted maximum-likelihood tree is 

shown in Figure 2. 

Underlined in yellow a sub-clade containing Cspds together with gene 

sequences closely related from Quercus spp. and Juglans regia (100% 

bootstrap value) is reported. Both are nut species belonging to the Fagales 

order (Bernard et al., 2018). Castanea and Quercus genus belong to the 

same Fagaceae family while Juglans to Juglandaceae family. This result 

suggests the common origin of chestnut, oak and walnut pds gene. The 

phylogenetic relationship of gene sequences from Quercus, Juglans and 

Castanea was also confirmed in Pavese et al. (2021). 

https://pfam.xfam.org/family/PF01593


 
  

 Chapter III 

100 
 

 

Figure 1. Flow chart of the chestnut somatic embryo transformation protocol 

using EHA105-nptII_Cas9_pds_gRNA1_gRNA2 construct. The putative 

transformed lines were analysed at DNA level through the amplification of the 

Cas9 gene and Sanger sequencing. 
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Table 1. Secondary embryogenesis ability of non-transgenic line (CI-3-wt) and 

two mutated lines (W1, W2).  

Embryogenic 

Embryo-stage   Line 

  

  

Globular-

torpedo 
Cotyledonary Total no of somatic 

embryos/explant 
 

no/explant no/explant 

     

CI-3-wt  7.0 ± 0.9 8.5 ± 0.9 15.5 ± 0.8  

W1 6.2 ± 1.2 4.8 ± 0.8 11.0 ± 0.8  

W2 7.5 ± 0.7 5.3 ± 0.7 12.8 ± 1.0  

     

ANOVA I Ns p≤0.05 p≤0.05  

The data show the total number of somatic embryos per explant and the number of embryos 

per developmental stage, recorded after 6 weeks of culture in selection medium. Values 

are means ± SE of 6 Petri dishes with 8 explants each. ANOVA I significances are shown 

for each parameter. ns, not significant. 
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Figure 2. A) Structural domains of Cspds. The amino_oxidase domain 

(PF01593) ranges from 71 to 467 amino acids. B) Phylogenetic analysis of pds 

gene. The phylogenetic tree was constructed using MEGAX software by aligning 

chestnut pds coding sequences with NCBI S-gene ortholog coding sequences. 

The yellow colour indicates the C. sativa clade. The C. sativa sequence is 

highlighted in red colour. 

 

CRISPR/Cas9 mediated transformation of somatic embryos 

The main problems in the application of genome editing technologies in 

woody species include low transformation efficiency, recalcitrance to 

transformation and difficulties in plant regeneration. Moreover, the 

predominantly outcrossing nature of trees and highly heterozygous 

genomes represent additional challenges. The limited number of whole 

genome sequences available hamper the design of effective sgRNA and 

the reduction of off-target effects. 

A B

https://pfam.xfam.org/family/PF01593
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To determine whether the CRISPR/Cas9 system may be suitable for gene 

editing in C. sativa, we used as a target the pds gene. As this gene is related 

to chlorophyll biosynthesis (Walawage et al., 2019; Wang et al., 2020), an 

albino phenotype of somatic embryos is expected, which would allow 

easier discrimination of mutated embryos. This visual marker has also 

been applied in defining editing methods in other woody species such as 

cassava (Odiplo et al., 2017), coffee (Breitler et al., 2018) and walnut 

(Walawage et al., 2019). Besides proof-of-concept studies, the 

CRISPR/Cas9 system has been applied to obtain disease resistant fruit 

trees (Bewg et al., 2018). 

Two unique gRNAs were designed, directed at the coding sequences of 

pds gene. One gRNA targeted the Amino_oxidase domain, while the other 

was chosen to be as close as possible to the 5’ end of the coding sequence, 

in order to ensure that mutations would affect the protein translation. No 

loci were found in the Castanea genome which could be considered as a 

likely source of off-target gene editing. Each gRNA was put under the 

control of the Arabidopsis U6-26 promoter. The transcription efficiency of 

sgRNA is pivotal for an efficient CRISPR/Cas9 genome editing.  Both 

endogenous and exogenous and U6 promoters have been successfully 

deployed for controlling sgRNA transcription in plants. The AtU6 

promoter was used in poplar (Fan et al., 2015), apple (Nishitani et al., 

2016) and grape (Wang et al., 2018). 

GoldenBraid (GB) cloning system, suited for gene editing experiments, 

was previously used (Maioli et al., 2020; Vazquez-Vilar et al., 2016). We 

adopted a dual sgRNA construct in order to increase the genome editing 

efficiency either by increasing the possibility that at least one gRNA will 
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be active for mutagenesis or deleting large gene fragments, in case double 

strand break are simultaneous (Supplementary File 5) (Pauwels et al., 

2018; Xie et al., 2015).  

Somatic embryos at the globular or torpedo stage were transformed with 

EHA105- nptII_Cas9_pds_gRNA1_gRNA2, by applying the previously 

defined protocol (Corredoira et al., 2012; 2016). Since many hardwood 

species are recalcitrant to in vitro regeneration by organogenesis, somatic 

embryogenesis (SE) is considered one of the best methods of producing 

modified plants by genetic engineering (Peña and Séguin, 2001; 

Corredoira et al., 2019). When somatic embryos are used as target explants 

an important factor to achieve a successful genetic transformation is the 

election of the most suitable embryo developmental stage. It is known that 

in somatic embryos at early developmental stage many cells are 

undergoing active cell division, and Agrobacterium infection is therefore 

more feasible (Corredoira et al., 2007). In the present study, using globular 

and or torpedo stage embryos 6.6% of kanamycin-resistant explants were 

obtained after 5 days of co-cultivation with Agrobacterium and 8 weeks 

on selection medium. This rate is similar to those reported in  previous 

studies, in which the same embryogenic lines were transformed with a 

thaumatin-like gene (Corredoira et al., 2012) or a chitinase gene 

(Corredoira et al., 2016). In addition, visual evidence of altered pds 

function was given in all kanamycin-resistant explants by producing albino 

somatic embryos (Figure 3A, B). By contrast, white somatic embryos were 

not detected in the nptII/Cas9 control (Figure 3C).  
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Figure 3. Gene editing of somatic embryos of European chestnut. A, B) White 

transgenic somatic embryos at different developmental stages formed after 12 

weeks on selection medium. C)  nptII/Cas9 control. D) Secondary embryos of 

W1 line generated following 6 weeks of culture on selection medium. Bar: 1mm. 

 

 

Somatic embryo proliferation, maturation and germination process 

One somatic embryo was isolated from each kanamycin-resistant explant 

and independently cultured to establish four different embryogenetic lines: 

W1, W2, W3 and W4. These mutated lines were successfully multiplied 

by secondary embryogenesis on selection medium (Figure 3D) in order to 

produce enough material for both maturation and germination steps and 

for molecular mutation screening. To ascertain whether the multiplication 
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ability is affected by the transformation, the number of secondary somatic 

embryos of lines W1 and W2 relative to the non-transgenic line was deter-

mined after 6 weeks of culture on selective medium (Table 1). The mutated 

lines produced significantly fewer somatic embryos (11.0-12.8) than the 

non-transgenic line (15.5). Regarding the number of somatic embryos in 

relation to the developmental stage, we did not find any differences in the 

number of globular-torpedo developmental stage; however, the number of 

cotyledonary embryos was significantly higher in the non-transgenic line 

(p≤0.05), which limited the subsequent maturation step (Table 1). 

Mutated cotyledonary embryos were allowed to mature on maltose 

medium followed by 2 months cold storage period. Only 50% embryos of 

W1 line, 30 % of W2 line, 13 % of W3 line and 6 % of W4 line survived 

to cold period. Surviving explants were transferred to  germination 

medium. Only shoot development was observed (13% of W1 line, 3% of 

W2 line, 7% of W3 and 2% of W4 line). The low plant regeneration rate 

of somatic embryos is a common problem in SE systems in hardwoods 

(Corredoira et al., 2019). This problem has also been reported in European 

chestnut, especially in transgenic somatic embryos in which simultaneous 

development of shoot and root is occasionally observed (Corredoira et al., 

2004; 2012; 2015). Moreover, it is known that the mutation of pds gene 

negatively affects to plant conversion; Breitler et al. (2018) pointed out 

that the loss of function of pds gene causes a reduction of photosynthetic 

pigments that provoke the low germination rates. Similarly, Walawage et 

al. (2019) found in walnut that pds gene is essential for proper plant 

growth. As expected, chestnut transformed somatic embryos showed 

shoots displaying the typical albino phenotype, but a stunted phenotype 
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with shorter internodes and small leaves was also observed (Figure 4A, B). 

Similar phenotypic aberrations were described in rice, apple, sweet orange, 

and poplar (Odipio et al., 2017). In Arabidopsis the alteration of pds gene 

function causes dwarfism and albino phenotypes due to impaired 

chlorophyll, gibberellin and carotenoid biosynthesis (Breitler et al., 2018).  

 

 

Figure 4. (A) Green plant regenerated from an untransformed somatic embryo. 

(B) Albino shoot originated from a germinated somatic embryo of transgenic line 

W1, showing a stunted morphology with shorter internodes and small leaves.  

 

Somatic embryogenesis mutation screening  

The qPCR analysis using Cas9 gene-specific primers revealed genomic 

integration of the construct in W1-W4 embryo lines (Supplementary File 

6). In order to detect pds gene editing efficiency and the types of 

mutations, the Sanger sequencing was used in association with TIDE 

software (Table 2). The average gene editing efficiency was 61% for 

gRNA1 and 56% for gRNA2. Although the editing efficiency was 

different between the two gRNAs, it was not possible to attribute this 
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dissimilarity to the different GC content of target sequences, or to the 

sgRNA secondary structure, or to the promoters that direct Cas9 and 

gRNAs expression (Ma et al., 2015). This reinforces the importance of 

assuring efficient knock-out by employing different gRNAs. 

Molecular data demonstrated a higher editing efficiency in W1 and W2 

lines than in W3 and W4 lines for both gRNAs tested. W1 showed the 

greatest editing efficiency, i.e. 94% for gRNA1 and 80% for gRNA2 

(Figure 5, 6, 7, 8). In the case of gRNA1, three lines were heterozygous 

and one chimeric; in the case of gRNA2, two lines were chimeric and two 

heterozygous mutants. Our results are in contrast with what was observed 

in other woody plants (grape, pear, apple, or poplar) showing high level of 

homologous and biallelic mutants in their T0 generation (Dai et al., 2021).   

The obtaining of chimeric genotypes by transgenic protocols or genome 

editing is a very challenging problem (Ding et al., 2020). Self-pollination 

is usually used in most model and crop plants to obtain homozygous 

individuals from heterozygous transgenic or gene edited plants. However, 

it is difficult to obtain homozygous mutants by this method in woody trees 

that have long vegetative period and are often self-incompatible. A recent 

study has reported that a second round of shoot regeneration as well as a 

further selection with kanamycin can produce homozygous mutant shoots 

at a high frequency in poplar (Ding et al., 2020).  

The most common mutations in our T0 chestnut plantlets were represented 

by a single nucleotide insertion followed by deletions of 1, 2, 4 and 10 

nucleotides. Previous observations showed that small indels are the 

predominant mutations introduced in plants by gene editing, with 1 bp 

insertions, especially +T and +A, predominant in most cases (Bortesi et 
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al., 2016). However, considerable variations in type and size of mutations 

are reported in literature (Jacobs et al., 2015; Xu et al., 2015), highlighting 

a possible influence of target site sequences and/or of their genomic 

contexts. 

 

 

 

Table 2. Genotyping of targeted gene mutations induced by CRISPR/Cas9 in the 

T0 generations in the four edited lines. Editing efficiency, allelic asset 

(heterozygous (HE) and chimeric (CH)) and allele frequency are indicated.  

Sample -10 -4 -3 -2 -1 0 1 Efficiency R2 Zygosity  
 

W1_gRNA1    2.8 5.4 2.8 85.9 94.30% 0.97 CH 
 

W2_gRNA1      19.1 76.5 77.70% 0.97 HE 
 

W3_gRNA1      61.2 35.3 35.40% 0.97 HE 
 

W4_gRNA1      59.2 36.8 36.80% 0.96 HE 
 

W1_gRNA2    21.8 37.9  18.4 80.40% 0.8 CH 
 

W2_gRNA2 10.9 15.8  8.3 30.7  14.1 79.80% 0.8 CH 
 

W3_gRNA2      54.2 26.8 27.60% 0.82 HE 
 

W4_gRNA2         35.4 48.7   36.10% 0.85 HE 
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Figure 5. Example of genotyping of targeted gene mutations induced by 

CRISPR/Cas9 in the W1 line. The blue box underlines the gRNAs sequences. As 

compared to nptII/Cas9 control, the W1 line showed a nucleotide insertion at 

gRNA1 level and a nucleotide deletion at gRNA2 level. 

 

 

 

Figure 6. Genotyping of targeted gene mutations induced by CRISPR/Cas9 on 

gRNA1 in the transformed lines (W1-W4). Editing efficiency and mutagenesis 

frequencies are reported. 
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Figure 7. Genotyping of targeted gene mutations induced by CRISPR/Cas9 on 

gRNA2 in the transformed lines (W1-W4). Editing efficiency and mutagenesis 

frequencies are reported. 
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Figure 8. Genotyping of targeted gene mutations induced by CRISPR/Cas9 on 

gRNA1 and gRNA2 in the transformed lines (W1-W4). 

 

 

Conclusions 

In conclusion, we report for the first time the application of CRISPR/Cas9 

technology in Castanea genus. Our system, based on the use of somatic 

embryos and two guide RNAs directed simultaneously at pds locus 

demonstrated to be specific for the target gene. Non-pigmented “albino” 

shoots obtained from in vitro cultures were associated with the successful 

editing of this gene. Since the antibiotics reduced the percentage and 

efficiency of regeneration, it will be interesting to optimize the 

transformation protocol trying to minimize the effect of these substances 

on the regeneration process. 
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The presence of an effective gene editing method will facilitate the 

chestnut breeding improvement, acting on genes responsible for pathogen 

resistance/susceptibility, such as the two candidate S genes (pmr4 and 

dmr6) potentially involved in C. sativa susceptibility to C. parasitica and 

P. cinnamomi (Pavese et al., 2021). 

However, a further step of the research may consider the development of 

genome-editing tools that do not require integration of the CRISPR/Cas9 

cassette. An efficient DNA-free genome editing system was developed 

using in vitro assembled Cas9/sgRNA ribonucleoproteins (RNPs), that are 

delivered in plant protoplasts using polyethylene glycol-mediated 

transfection (Woo et al., 2015; Malnoy et al., 2016).  
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Chapter IV 

 

First protoplasts isolation and transformation protocol in C. sativa 

Mill. 

 

Introduction 
CRISPR-Cas9 machinery can be delivered to the cell both as nucleic acid 

form and as RNPs complex. DNA can be integrated into the host genome 

while RNP complex can be delivered directly to the cell, causing a stable 

mutation and then being rapidly degraded without leaving exogenous 

DNA traces (Woo et al., 2015).  

Since in Chapter III, an efficient CRISPR/Cas9 protocol in chestnut has 

been firstly developed, ongoing research is focused on developing DNA-

free transformation gene editing methods in chestnut. 

In this case, the components of the CRISPR/Cas9 system are in vitro 

synthesized, pre-assembled and then delivered to the plant cell protoplasts 

as RNP (Bernard et al., 2019). 

A protoplast is a plant cell without a wall, removed through enzymatic or 

mechanical processes. The wall removal releases spherical osmotically 

fragile protoplasts, characterized by only a cell membrane able to isolate 

the cytoplasm from the external environment.  

Since the cell wall is no longer present, protoplasts are a useful tool for 

genetic transformation due to their permeability to exogenous DNA 
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molecules. Furthermore, if the plant is regenerated starting from a single 

edited cell, its genetic homogeneity is guaranteed (Scintilla et al., 2021). 

The major problem related to the woody plant genetic transformation is 

the difficulty to develop an efficient regeneration protocol due to the 

release of phenolic compounds in the culture medium (Bertini et al., 2019; 

Osakabe et al., 2020). 

Protoplasts can be directly transformed through the electroporation and 

PEG-mediated transformation techniques; the particle bombardment and 

Agrobacterium-mediated transformations can be also adopted but remain 

mainly used on walled plant cells (Scintilla et al., 2021). 

Since there is no evidence of published protocols for protoplasts isolation 

and transformation in C. sativa, here we present the first results of a 

protocol for obtaining transformed protoplasts of chestnut, using the Green 

Fluorescent Protein (GFP) as a marker gene to test the transformation 

capacity. Once the effectiveness of the transformation is validated the 

future goal will be the protoplasts transformation using RNPs. 

 

Material and Methods 

Plant material  

The isolation and the genetic transformation of C. sativa protoplasts were 

performed following Osakabe et al. (2018), making appropriate changes 

to better adapt the method to chestnut plants. 

The explants used for the protoplast’s isolation were C. sativa 

embryogenic calli. Embryogenic cultures were induced following 

Corredoira et al., 2005 from immature seeds grown on MS medium 

supplemented with 2,4-D (0.5 mg / L) and BAP (1 mg / L). The seeds were 
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incubated for two months in dark conditions and then transferred to MS 

medium containing a reduced concentration of BAP (0.1 mg / L) and kept 

in the growth chamber with a 16/8-hour photoperiod. After 3 months the 

embryogenic cultures were obtained (Corredoira et al., 2005) and used as 

starting materials for protoplasts isolation.  

 

Protoplast isolation 

C. sativa embryogenic calli (0.1 g) were used as starting materials. 

Calli were dissected into small clumps and immersed in cell-wall digestion 

enzyme solution (0.5% Macerozyme R-10 and 1% Cellulase R-10). These 

enzymes degrade the cell wall to release the protoplasts. Explants were 

subjected to a 4-hour digestion on a rotary shaker. 

After digestion, the protoplasts were filtered using a nylon mesh (100 μM) 

to remove cell wall residues and WS solution (Washing Solution, Osakabe 

et al., 2018) was added to maintain the osmolarity. 

Protoplasts were centrifuged at 50 g for 5’ and supernatant was discarded. 

The protoplast pellet was slowly resuspended in WS solution, transferred 

to 5 ml of 21% (wt/vol) sucrose solution and then centrifuged at 50 g for 

5’.  

The ring of viable protoplasts was detected in the interface layer; it was 

aspirated using a Pasteur pipette and resuspended in WS solution. 

Protoplasts were centrifuged at 50 g for 5’ and the pellet was resuspended 

in 200 µL of MMG solution (Osakabe et al., 2018). Protoplast’s viability 

was tested using Fluorescein diacetate (FDA; Sigma, St. Louis, MO, USA) 

test (green cells/ total cells × 100%). 



 
  

 Chapter IV 

126 
 

Viable protoplasts were counted using a hemacytometer and diluted to 

obtain a concentration of 2 × 105 in 200 µL and then were stored at 4°C 

overnight. 

 

 GFP vector design 

The plasmid pAVA393 (Ochatt et al., 2005), containing the ampicillin 

resistance gene and the gene coding for GFP, under the control of the 

35SCaMV promoter and the Nos terminator was used for the first 

transformation process. 

The plasmid was cloned in Escherichia coli DH5α competent cells. 

Positive colonies were grown in LB liquid medium and then Miniprep 

(l’E.Z.N.A.® Plasmid Mini Kit I, Omega Bio-tek) was used to achieve 

high quality plasmid DNA concentration, tested using Qubit® 2.0 

fluorimeter (ThermoFisher Scientific). 

 

Protoplast transformation using PEG transfection system  

One aliquot of 200 µL of concentrated protoplast was used for pAVA393 

transformation experiment. Protoplasts were slowly mixed with 5 μg of 

pAVA393 plasmid and then 200 μL of PEG 4000 was added. The solution 

was slowly mixed and incubated for 10’ at room temperature.  Two WS 

washing rinses were performed, and the pellet was resuspended in WS 

solution and then maintained overnight in dark conditions. 

After overnight incubation, the solution appeared divided into two layers. 

The lower layer was picked up and the viable protoplasts were counted 

using a hemacytometer and diluted to a final 1x106 protoplasts/ml.  
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Transformation efficiency 

The protoplasts transformation efficiency for pAVA393 plasmid was 

evaluated using a fluorescence microscope (Nikon Eclipse Ti2), 40x 

objective, 5 days after the inoculation process. The excitation was 

produced by a LED fluorescent source (λ = 470 nm) and the GFP emission 

was collected at 516 nm. 

Regeneration  

Three regeneration media (C1, C2, C3) were tested (Table 1). The 

protoplasts, after being incorporated in the regeneration media, were 

incubated in dark conditions at 24°C. Protoplast growth was monitored 

weekly using a Leica-Wild Heerbrugg M8 stereoscope. 

 

Table 1: Composition of the 3 regeneration media tested.  

Medium C1 C2  C3  

NAA 1 mg/L 1 mg/L \ 

BAP 0.5 mg/L 0.5 mg/L 0.2 mg/L 

2,4-D \ \ 2 mg/L 

Sucrose 30 g/L 5 g/L 5 g/L 

Mannitol \ 30 g/L 30 g/L 

Glucose 50 g/L 50 g/L 50 g/L 

MS \ \ 4.4 g/L 

Nitsch Medium \ 2.2 g/L \ 

Agar 6 g/L 6 g/L 6 g/L 
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Results and Discussion 

Genome editing may represent the future of breeding in woody species 

which present a high genome complexity and a long juvenile phase. 

Thanks to genome editing techniques it is possible to perform target mu-

tations in short time. Despite this, since part of the construct may be inte-

grated into the host genome, the edited plants in many countries, including 

EU, are considered GMO and subjected to strict rules.  

For this reason, researchers are trying to develop new strategies to circum-

vent DNA integration, like the CRISPR/Cas9 delivery using RNPs 

(Poovaiah et al., 2021), a complex consisting of the recombinant Cas9 nu-

clease and the gRNA transcribed in vitro. 

 

Protoplast isolation 

Protoplasts were isolated from C. sativa embryogenic calli using an enzy-

matic digestion mixture which involved the use of Cellulase R-10 (1%) 

and Macerozyme R-10 (0.5%). The final yield of the protoplasts, evaluated 

by counting the cells with a hemacytometer, was 4,500,000 protoplasts/mL 

(Figure 1). The number of isolated protoplasts is comparable to data by 

Bertini et al. (2019) and Malnoy et al. (2016).  The protoplasts observed 

under the microscope were vital (91%) and intact, with a spherical shape 

and a 20-70 μm diameter.  

It is necessary to evaluate several parameters during the protoplast isola-

tion: the starting plant material, the enzymes concentration and the incu-

bation time in the enzymatic mixture (Shen et al., 2014). Embryogenic 

calli are an excellent starting material, as previously confirmed by Bertini 
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et al. 2019 and Malnoy et al. 2016. Being a very friable matrix, they are 

easily disaggregated into small pieces, unlike the leaf tissue which has a 

higher level of cellulose and lignin that reduce the digestion capacity 

(Kuzminsky et al., 2016; Brandt et al., 2020).  

The enzymatic solution recipe and the incubation times adopted for chest-

nut embryogenic calli were also effective, in fact, the protoplasts obtained 

showed a perfect spherical shape and no aggregates of undigested cells 

were detected.  

 

 

 

 

 

 

 

 

 

Figure 1: Protoplasts isolated from C. sativa embryogenic calli observed under 

an optical microscope (Bresser TFM 201/301). Scale bar = 100 µm 

 

Protoplast transformation  

Protoplasts were transformed with GFP marker, to test the protoplast trans-

fection efficiency. The protoplast transformation capacity allows the future 

protoplast transformation using RNPs.  
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The plasmid DNA penetrates directly into the protoplast cell by direct ab-

sorption, thanks to the PEG action, which makes the cell membranes per-

meable to DNA. PEG-mediated transformation technique, thanks to its 

simplicity and low cost application, has been used in several plant species 

(Shen et al., 2014; Yoo et al., 2007; Ohnuma et al., 2008).  

The plasmid pAVA393, containing the gene coding for the GFP synthesis, 

was selected as the candidate vector. This fluorescent protein is an excel-

lent marker to test the transformation efficiency for the first time in a new 

species. Several species have been transformed using GFP marker, includ-

ing Elaeis guineensis (Masani et al., 2014), Brassica oleracea (Sun et al., 

2019) and Cucumis sativus (Huang et al., 2013). 

The GFP transformation efficiency was evaluated 5 days after the trans-

fection process using the fluorescence microscope. The results revealed a 

good protoplasts conservation, which are intact and spherical even after 5 

days from the transfection event; 51% of the protoplasts showed GFP ex-

pression, highlighting the protoplasts transformation capacity (Figure 2).  

  

 

 

 

 

 

 

 

Figure 2: protoplast transformed with the pAVA393 plasmid observed with (a) 

blue light, (b) white light and (c) fusion of the two images, 5 days after transfec-

tion. Scale bar = 100 µm 
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Regeneration  

The transformed protoplasts with pAVA393 plasmid were incubated in 

three different regeneration media.  

The first cell divisions occurred after ten days and the microcolonies for-

mation was observed after 30 days on the C2 medium (Figure 3). Figure 4 

shows the embryogenic callus obtained three (a) and four (b) months on 

C2 medium. The embryogenic callus shows a white aspect with a size that 

in one month increased from 1 mm to about 3 mm. 

 

. 
 

  

 

 

 

 

 

 

Figure 3: (a) Cellular divisions observed after 10 days; (b) Microcolony observed 

30 days after insertion in C2 medium. Scale bar = 200 µm 
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Figure 4: Embryogenic callus of C. sativa developed from protoplasts after three 

months of culture in C2 medium (a) and after four months (b). Observations made 

under the stereo microscope (Leica-Wild Heerbrugg M8). Scale bar = 1 mm 

 

 

Conclusions 

 

In conclusion, here we report the first protocol for C. sativa protoplasts 

isolation and transformation with GFP gene, starting from C. sativa 

embryogenic lines.  

This protocol needs further improvements to increase the transformation 

efficiency. In addition, since the starting material for the experiments were 

embryos originated from seed that do not genetically match the cultivar of 

origin, the future work will consist in the development of a protoplast’s 

isolation protocol from in vitro somatic explants such as leaves and young 

stems. Since it was possible to transform chestnut protoplasts, the future 

main goal will be to the protoplast transformation using RNP. 
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Final considerations and future perspectives 

 

In this thesis, hazelnut and chestnut biotechnological studies have been 

carried out to increase the knowledge on genetic resources and innovative 

tools available for hazelnut and chestnut plant breeding.  

In the Chapter I, we report the first whole-genome sequencing and 

assembly of Corylus avellana cultivar ‘Tonda Gentile delle Langhe’. The 

10X Genomics Chromium Technology was firstly applied to obtain an 

high-quality sequence of the genome; then, the scaffolding process was 

generated using the cultivar 'Tombul' genome as a reference guide. The 

genome was assembled at chromosome-scale level with only 11% of 

sequences corresponding to unplaced scaffolds. Gene prediction and gene 

function detected 27,791 genes with an AED ≤ 0.4 and 92% of BUSCO 

completeness. This high-quality genome represents a valid resource for 

further hazelnut genetic studies to understand better the unclear genetic 

processes, such as self-incompatibility and recalcitrance to regeneration. 

Detecting genes involved in these processes will be useful for target gene-

editing programs.  

The Chapter II represents the first example of a study on S-genes 

(mlo1, dmr6, dnd1, and pmr4) in C. sativa and C. crenata following the 

infection by P. cinnamomi and C. parasitica.  

Among S-genes, only the mlo gene was previously studied in woody 

plants, including rubber, poplar, apple, and grapevine (Liyanage et al., 

2020; Filiz et al., 2018; Pessina et al., 2016). No previous evidence of S-

genes studies is found in the Castanea genus. 
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This work highlights the involvement of both pmr4 and dmr6 genes in the 

infection process; pmr4 was observed to be over-expressed in the 

infections of both pathogens but only in C. sativa plants, which are highly 

susceptible. Dmr6 was principally expressed, during P. cinnamomi 

infection, in C. sativa plants. 

Since it has been observed that the S-genes silencing allows for greater 

disease tolerance (Santillán Martínez et al., 2020; Sun et al., 2016), pmr4 

and dmr6 are two new possible candidates to be used in target gene editing 

programs, to increase chestnut tolerance to diseases.  

The discovery of genes to be used in transformation programs, yet, is not 

useful without an efficient transformation protocol.  

For this reason, Chapter III and Chapter IV are focused on optimizing the 

first CRISPR/Cas9 transformation protocol (III) and protoplast isolation 

and transformation (IV) in the Castanea genus. 

In the Chapter III, the pds gene was selected for the first editing experiment 

in C. sativa. The silencing of pds causes an albino phenotype (Pan et al., 

2016; Qin et al., 2007) and is commonly induced to validate 

transformation efficiency of a protocol.  It allows to visually detect the 

explants successfully edited, which indeed show a white phenotype. The 

success of the C. sativa somatic embryo transformation opens the way to 

further genetic transformations using target genes involved in interesting 

biological processes or related to pathogen infection. Future perspectives 

will be the application of CRISPR/Cas9 on the new candidate S-genes, 

studied in Chapter II.  

Chapter IV is the logical continuation of the research of Chapter III. 

Protoplasts are an excellent target for obtaining GMO-free plants. 
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Chestnut is a recalcitrant plant with a high level of polyphenols content; 

obtaining a good transformation protocol is very important goal for the 

future of chestnut breeding.   

The ongoing research is further developing the results obtained 

transforming the protoplasts with RNP targeted on pds and on the 

susceptibility genes.  
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