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Abstract

Background: The most used protein sources in ruminant nutrition are considered as having negative impacts in
terms of environmental sustainability and competition with human nutrition. Therefore, the investigation of alterna-
tive and sustainable feedstuffs is becoming a priority in ruminant production systems.

Results: This trial was designed to evaluate eight full-fat insect meals (Acheta domesticus — ACD; Alphitobius dia-
perinus — ALD; Blatta lateralis — BL; Gryllus bimaculatus — GB; Grylloides sygillatus — GS; Hermetia illucens — HI; Musca
domestica — MD; and Tenebrio molitor — TM) as potential protein and lipid sources in ruminant nutrition. Fermentation
parameters and fatty acids (FA) of rumen digesta after 24-h in vitro ruminal incubation of the tested insect meals were
measured and compared with those of three plant-based meals (soybean meal, rapeseed meal and sunflower meal)
and fishmeal (FM). Similarly to FM, the insect meals led to a significantly lower total gas production (on average, 1.75
vs. 4.64 mmol/g dry matter—DM), methane production (on average, 0.33 vs. 0.91 mmol/g DM), volatile FA produc-
tion (on average, 4.12 vs. 7.53 mmol/g DM), and in vitro organic matter disappearance (on average, 0.32 vs. 0.59 g/g)
than those observed for the plant meals. The insect meals also led to lower ammonia of rumen fluid, when expressed
as a proportion of total N (on average, 0.74 vs. 0.52 for the plant and insect meals, respectively), which could be an
advantage provided that intestinal digestibility is high. Differences in ruminal fermentation parameters between the
insect meals could be partially explained by their chitin, crude protein and ether extract contents, as well as by their
FA profile. In particular, high content of polyunsaturated FA, or C12:0 (in HI), seems to partially inhibit the ruminal
fermentations.

Conclusions: The tested full-fat insect meals appear to be potentially an interesting protein and lipid source for
ruminants, alternative to the less sustainable and commonly used ones of plant origin. The FA profile of the rumen
digesta of ACD, ALD, GB, GS and TM, being rich in n-6 polyunsaturated FA, could be interesting to improve the quality
of ruminant-derived food products.
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Background

Soybean meal (SBM) represents the most used protein
source in livestock production. However, it is consid-
ered as having a huge impact in terms of environmental
sustainability [1] and competition with human nutri-
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sustainable feeds has become a priority in ruminant
production systems [4].

Insects are considered as very promising innovative
feedstuffs [5]. Advantages are related to their valuable
chemical composition: being rich primarily in proteins
and secondly in lipids, they can be used as protein and
energy source in diet formulations [6]. Moreover, insects
are also considered as more sustainable, when compared
to other commodities, as they can be reared on substrates
non otherwise valorised, such as organic waste [7],
reducing the environmental impact of feed production.

The use of insects for monogastric feeding is increasing
worldwide [5]. Even if their use for ruminant nutrition
is limited in some countries due to the potential risk of
Transmissible Spongiform Encephalopathies for humans
[8], the interest in their use is growing up, as they are
seen as promising alternative protein sources [9].

Literature on insect meals has been mainly devoted
to monogastric species. Generally speaking, the insect
meals used were able to sustain growth and performance
parameters of fish, crustaceans [10] and poultry species
[11]. Similar findings were observed in pigs, when par-
tially or totally substituting fishmeal (FM) or SBM in the
diet [12, 13]. In all farmed species, several publications
reported positive health impacts of the dietary inclusion
of insect meals due to bioactive compounds able to boost
the immune system or to modulate the animal microbi-
ota towards beneficial bacteria [14—16].

Considering that the expected population increase will
be predominant in emerging countries [17], where the
use of processed animal proteins for ruminant feeds is
allowed, research on this topic is of outmost relevance.
Research on the use of insects for ruminant feeds is still
at an infant stage, with only few articles that have been
published to date. Original research primarily focused on
the assessment of in vitro fermentation parameters (e.g.,
[9, 18, 19]). Only two in vivo studies have been performed
so far, evaluating the performance and physiological sta-
tus of goat kids fed cricket meal [20] and the suitability
of black soldier fly larvae as protein supplement to beef
steers consuming low-quality forages [21]. In these stud-
ies, only SBM or soybean oil were used as reference feed-
stuff and the assessment regarded a limited number of
insect species in each trial. Moreover, very limited infor-
mation is available concerning lipid ruminal biohydro-
genation, useful to give supplementary information for
the comprehension of ruminal fermentation dynamics, as
only insect oils from few species were tested so far [22].

Considering the above-mentioned gaps, the aims of this
trial were to investigate the in vitro rumen fermentation
characteristics and lipid biohydrogenation of eight full-
fat insect meals (some of them being never tested before
for ruminant or even monogastric animals), as potential
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protein sources for ruminant nutrition, comparing them
to three different plant-based meals commonly used as
protein source in ruminant nutrition and with FM as ani-
mal-based reference protein source.

Methods

The experimental procedures were conducted in accord-
ance with the European Union Directive 2010/63/EU,
reviewed by the French local ethics committee (C2E2A,
“Comité d’Ethique pour I'Expérimentation Animale en
Auvergne”) and authorised by the French Ministry for
Research (no. 7138-2016092709177605v6).

Insect and control meals

Eight full-fat insect meals, deriving from different insect
species (Acheta domesticus L. — ACD; Alphitobius dia-
perinus Panzer — ALD; Blatta lateralis Walker — BL;
Grylloides sigillatus Walker — GS; Gryllus bimaculatus
De Geer — GB; Hermetia illucens L. — HL; Musca domes-
tica L. — MD; and Tenebrio molitor L. — TM) were used
in this study. Due to differences in the life cycle of the dif-
ferent orders of the Insecta class, the ALD, HI, MD and
TM meals were obtained from the larval stage, BL meal
was obtained from the subadult stage, and the ACD, GB
and GS meals were obtained from the adult stage. The
insect meals were provided by different suppliers. In
details, ACD, GS and GB were provided by Prof. Attawit
Kovithvadi (Kasetsart University, Bangkok, Thailand),
ALD meal was purchased from Protifarm (Ermelo, The
Netherlands), HI meal was obtained from EntoFood
(Kuala Lumpur, Malaysia), TM meal was sourced from
the National Research Council (Sassari, Italy) after being
processed at Porto Conte Ricerche (Sassari, Italy), while
BL and MD were raised at the experimental facility of the
Department of Agricultural, Forest and Food Sciences
(DISAFA) of the University of Turin (Carmagnola (TO),
Italy). All the insects were raised on vegetable by-prod-
ucts. No specific indications were provided for HI, TM,
ALD, ACD, GB and GS meals regarding the technologi-
cal processes applied to obtain insect-derived processed
animal proteins, as such information is covered by intel-
lectual properties.

Soybean meal, rapeseed meal (RPM) and sunflower
meal (SFM) (purchased from Elli Borello S.r.l., Bra (CN),
Italy) were chosen as plant-derived control meals, due to
their large use as protein sources in ruminant nutrition
[23]. Fishmeal (purchased from NaturAlleva, Cologna
Veneta (VR), Italy) was chosen as animal-derived control
meal, as it is the reference animal-derived protein source
to which insects are usually compared for monogastric
animals [6].
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In vitro fermentation

In vitro fermentations were performed using a batch
technique, which consists in the incubation of the sub-
strate with rumen fluid and buffer in a vessel placed in
water batch. Rumen fluid was collected from four cannu-
lated sheep (Texel, adult castrated males, 64.6+7.10 kg
of body weight) housed indoors at the INRAE research
farm (INRAE Herbipdle, 63,122 Saint-Genés-Champan-
elle, France). The sheep were fed permanent grassland
hay (840 g dry matter (DM)/head/d) and concentrate
(360 g DM/head/d), in two equal meals at 08:30 h and
16:00 h, starting 15 d before the beginning of the trial.
The animals had free access to fresh water and miner-
als. Four independent incubation runs of 24 h (statisti-
cal replications) were performed over two consecutive
weeks. In each incubation run, all the meal samples (the
8 insect meals and the 4 control meals) were incubated
using the rumen fluid from one sheep. A pre-test enabled
us to verify that a 24-h incubation time can discrimi-
nate the meals and allow interpreting reliable results.
On each day of incubation, a sample of the solid frac-
tion of the rumen content from the sheep was collected
from the rumen cannula immediately before the morn-
ing meal, transferred in less than 10 min to the laboratory
into a Thermos flask and then squeezed through a layer
of nylon cloth to obtain the rumen fluid to be used as an
inoculum in the in vitro incubations. Rumen fluid was
diluted 1:2 (v/v) in anaerobic phosphate:carbonate buffer
solution prepared as described by Goering and Van Soest
[24] modified by Mould et al. [25] and Niderkorn et al.
[26] with the following modifications: no NH,HCO; was
used in the preparation of the bicarbonate buffer, which
consisted entirely of NaHCOg4 MgSO, was substituted by
MgCl,. This formula enabled to optimize use of N from
substrate by rumen microbes. For each incubation, a
subsample of 600+ 0.5 mg DM of each meal sample was
individually placed in a 120-mL serum bottle (two bottles
per meal sample; i.e., technical replication), pre-warmed
at 39 °C and flushed with N,. A total volume of 40 mL
of buffered rumen fluid was then added. The bottle was
sealed hermetically with a butyl rubber stopper and an
aluminium crimp seal and immediately manually shaken.
All the bottles were incubated in a water bath at 39 °C for
24 h. Blank bottles containing only buffered rumen fluid
were incubated simultaneously. Bottles were manually
shaken 1 h 30 min, 3 h, 5 h, 7 h and 23 h 30 min after the
beginning of the fermentation. Gas production in each
bottle was recorded after 3 h and 24 h by using the pres-
sure transducer technique [27]. A gas sample was also
taken from the headspace of each serum bottle at 24 h,
by using a syringe equipped with a two ways-stopcock.
Gas composition was measured immediately after sam-
pling. Fermentation was stopped after 24 h and the bottle
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contents were transferred to a pre-weighed 50 mL flat-
cap conical polypropylene centrifuge tube. The pH was
immediately measured, and the tube was centrifuged at
3000 x g for 10 min at 4 °C. An aliquot of the supernatant
(1.6 mL) was transferred to a polypropylene tube con-
taining 0.16 mL of H;PO, 5% (v/v) and frozen at —20 °C
for ammonia analysis. A second aliquot of superna-
tant (0.8 mL) was transferred to a microtube containing
0.5 mL of deproteinising solution (crotonic acid 0.4% w/v,
metaphosphoric acid 2% w/v, in HCI 0.5 mol/L). The mix-
ture was cooled at 4 °C for 2 h, centrifuged at 16,500 x g
for 10 min at 4 °C, and the resulting supernatant was fro-
zen at —20 °C for volatile fatty acid (VFA) analysis. The
pellet containing non-degraded particles resulting from
the first centrifugation was washed two times with 10 mL
of distilled water, centrifuged at 3000 x g for 10 min at
4 °C to eliminate the supernatant, and then dried at 60 °C
for 48 h.

Four additional incubation runs were performed to
determine the fatty acid (FA) composition of the non-
degraded particles residues. These incubation runs were
carried out following the previously described procedure.
The residues were freeze-dried and ground in a micro
hammer mill through a 1-mm sieve for FA determination.

Laboratory analysis

Chemical composition of insect and control meals

The insect and control meals were ground using a knife
mill (Grindomix GM200, Retsch GmbH, Haan, Germany;
final fineness <300 pm). AOAC International [28] proce-
dures were used to determine DM (method no. 930.15),
ash (method no. 942.05), crude protein (CP, method no.
984.13), acid detergent fibre and acid detergent lignin
(ADF and ADL, method no. 973.18). The CP content
of the insect meals was calculated using the nitrogen to
protein (N:P) conversion factor of 4.67 for HI meal, 4.75
for TM meal, 4.86 for ALD and 4.76 for MD [29]. Follow-
ing the findings of Ritvanen et al. [30], the N:P conver-
sion factors of 5.09 and 5.00 were used for ACD meal
and GB meal, respectively. As no specific N:P conver-
sion factor can be found in literature for GS and BL, we
decided to use the value 5.00 for both meals, considering
that (i) similarly to ACD and GB, GS belongs to the order
Orthoptera, family Gryllidae, subfamily Gryllinae, and
(ii) BL does not present a larval stage. The CP content of
the control meals was calculated using the conventional
N:P conversion factor of 6.25. Ether extract (EE, method
no. 2003.05) was analysed according to AOAC Interna-
tional [31]. Neutral detergent fibre (NDF) was analysed
according to Mertens [32]; a-amylase (Merck, Darm-
stadt, Germany) and sodium sulphite (Merck, Darm-
stadt, Germany) were added, and results were corrected
for residual ash content. Neutral-detergent insoluble
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nitrogen (NDIN) and acid-detergent insoluble nitrogen
(ADIN) were determined according to Licitra et al. [33].

Chitin was estimated according to Finke [34] by correc-
tion considering the amino acid content of the ADF frac-
tion and assuming the remainder of the ADF fraction is
chitin. The proximate composition of the insect and con-
trol meals was expressed as g/kg DM.

The FA composition of the insect and control meals
was assessed as reported in Renna et al. [35]. A combined
direct transesterification and solid-phase extraction
method was used [36]. Fatty acid methyl esters were sep-
arated and quantified by a high-resolution gas chromato-
graph (Shimadzu GC 2010 Plus; Shimadzu, Kyoto, Japan)
equipped with a flame-ionisation detector, and a CP-Sil
88 capillary column (100 m x 0.25 mm ID, 0.20 pm film
thickness; Varian Inc., Palo Alto, CA, USA). Injections
were made in on-column mode and the injection vol-
ume was 0.5 puL. The temperatures of the injector and the
flame-ionisation detector were maintained at 250 and
280 °C, respectively. The column temperature was held at
45 °C for 5 min, then raised 20 °C/min up to 195 °C and
maintained for 65 min. Peaks identification and quantifi-
cation were performed as reported by Renna et al. [37].
The results were expressed as g/100 g total FA, except for
total FA which were expressed as g/kg DM.

Chemical composition of rumen content

Volatile fatty acids were determined by gas chroma-
tography (Perkin Elmer Clarus 580 GC, Perkin Elmer,
Waltham, MA, USA, equipped with an Agilent column
CP-WAX 58 FFAP 25 m x 0.25 mm, Agilent, Santa Clara,
CA, USA) according to Jouany [38]. Ammonia was meas-
ured using the Berthelot reaction [39]. The composition
of fermentation gases (CH,, CO, and H,) was deter-
mined by gas chromatography (MicroGC Fusion, Inficon,
East Syracuse, NY, USA) as detailed in Macheboeuf et al.
[40]. The residue containing non-degraded particles was
oven-dried at 60 °C for 48 h, weighed and then inciner-
ated at 550 °C to determine the organic matter content.
This procedure allowed the calculation of in vitro organic
matter disappearance (IVOMD).

The FA composition of the rumen content was deter-
mined as detailed in Alves et al. [41]. The samples were
then analysed using a high-resolution gas chromato-
graph (Shimadzu GC 2010 Plus; Shimadzu, Kyoto, Japan)
equipped with a flame-ionisation detector and a CP-Sil
88 capillary column (100 m x 0.25 mm ID, 0.20 pm film
thickness; Varian Inc., Palo Alto, CA, USA). The tem-
peratures of the injector and the flame-ionisation detec-
tor were maintained at 250 and 280 °C, respectively. The
column temperature was held at 100 °C for 1 min, then
raised 50 °C/min up to 150 °C and maintained for 20 min,
then raised 1 °C/min up to 190 °C for 5 min and, at the
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end, raised 1 °C/min up to 200 °C for 35 min. Peaks were
identified by comparing the retention times to pure
standards (Restek Corporation, Bellefonte, PA, USA;
Supelco Inc., Bellefonte, PA, USA; Matreya LLC, Pleasant
Gap, PA, USA) and by comparison with published chro-
matograms [41]. The results were expressed as g/100 g
total FA.

Calculations and statistical analyses

For the in vitro fermentations, the total number of obser-
vations was 96 (12 meals x 4 incubation runs (statisti-
cal replications) x 2 technical replications (two bottles
per sample and per incubation run). The results of the
two technical repetitions were averaged for statistical
analyses.

By subtracting the results from blank cultures (ruminal
buffered fluid without meal samples), the amount of feed
degraded and the net production of fermentation end-
products (VFA and ammonia) at the end of each incuba-
tion period were calculated.

All data from the in vitro fermentation and rumen con-
tent were analysed by a GLM ANOVA procedure in SPSS
(version 27.0 for Windows; SPSS Inc., Chicago, IL, USA).
Data normality was verified using the Shapiro—Wilk test,
while homogeneity of variances was visually verified with
graphics of the residuals. The model included meal type
(12 levels) as fixed effect and incubation run (4 levels) as
random effect. Least squares means were reported with
the pooled standard error of the mean derived from the
model. Differences among the means were adjusted for
multiple comparisons using Tukey—Kramer’s method
and were declared significant at P-values<0.05. 0.05
< P values < 0.10 were interpreted as a trend toward
significance.

No statistical analysis was conducted to compare the
chemical composition of the tested meals as each meal
derived from a single commercial batch.

Results

Chemical composition and fatty acid profile of the meals
All the insect meals contained high CP content (Table 1),
which ranged from 339 g/kg DM for TM to 505 g/kg DM
for GS; HI, BL and MD had a CP content ranging from
351 to 408 g/kg DM, while in ALD, GB and ACD the CP
content ranged from 457 to 496 g/kg DM. Regarding the
control meals, the CP content ranged from 324 to 748 g/
kg DM in SFM and EM, respectively. The insect meals
had a high EE content (above 200 g/kg DM) when com-
pared to the other meals (lower than 100 g/kg DM). The
fibre contents evaluated with NDF concentrations were
high for SEFM and RPM (equal than or above 306 g/kg
DM). The insect meals had NDF contents ranging from
225 to 282 g/kg DM, while SBM showed about half NDF
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Table 1 Chemical composition (g/kg DM, unless otherwise stated) of the insect and control meals
Item Meals

Full-fat insect meals Control meals

ACD ALD BL GB GS HI MD ™ SBM RPM SFM FM
DM, g/kg 934 941 930 912 927 953 937 940 881 903 894 915
oM 939 951 961 951 951 91 931 961 922 928 922 848
(@ 496 457 402 483 505 351 408 339 559 407 324 748
EE 207 245 319 203 205 269 238 392 6 28 17 99
NDF 254 246 250 260 260 282 280 225 113 306 381 0
ADF 84 58 83 93 77 79 70 82 68 199 273 0
ADL 18 12 20 8 7 15 13 20 2 70 79 0
NDIN 36 24 35 40 30 31 29 35 24 44 46 0
ADIN 33 21 31 37 23 26 24 32 18 21 31 0
Chitin 67 54 78 59 63 52 61 51 n.a. n.a. n.a. n.a.

Abbreviations: DM Dry matter, ACD Acheta domesticus, ALD Alphitobius diaperinus, BL Blatta lateralis, GB Gryllus bimaculatus, GS Grylloides sigillatus, Hl Hermetia illucens,
MD Musca domestica, TM Tenebrio molitor, SBM Soybean meal, RPM Rapeseed meal, SFM Sunflower meal, FM Fishmeal, OM Organic matter, CP Crude protein, EE Ether
extract, NDF Neutral detergent fibre, ADF Acid detergent fibre, ADL Acid detergent lignin, NDIN Neutral detergent insoluble nitrogen, ADIN Acid detergent insoluble

nitrogen, n.a. not analysed

content than the insect meals. Fishmeal did not contain
fibre. The average estimated chitin content in the insect
meals was 61 g/kg DM, with values ranging from 51 g/kg
DM for TM to 78 g/kg DM for BL.

The total FA content (Table 2) in the insect meals was
higher than 144 g/kg DM, with 317 g/kg DM in TM,
whereas in the control meals it ranged from 6 g/kg DM in
SBM to 68 g/kg DM in FM. The proportion of saturated
fatty acids (SFA) in the insect meals (except for TM) and
EM was equal or higher than 29 g/100 g FA, with BL and
HI having values higher than 50 g/100 g FA, whereas SFA
proportion was equal or lower than 27 g/100 g FA in the
plant meals and in TM. The HI meal showed high pro-
portions of C12:0 and C14:0, and the BL showed high
proportions of C16:0 and C18:0. Both GB and TM con-
tained mainly C18:1 ¢9. The main FA in ACD, ALD, GS
and MD were C16:0, C18:1 ¢9 and C18:2 n-6. The insect
meals contained very low proportions of n-3 polyunsatu-
rated fatty acids (PUFA). Rapeseed meal and SFM were
mainly composed by C18:1 ¢9 and C18:2 n-6, whereas the
main FA in SBM were C16:0 and C18:2 n-6. The main FA
in FM was C16:0 and it was rich in long-chain n-3 FA,
their sum reaching about one third of total detected FA.

In vitro rumen fermentation parameters
The fermentation characteristics obtained after 24 h of
fermentation varied with the meals for all the evaluated
parameters (Table 3).

The total gas production after 24 h of incubation was
significantly higher for the plant meals than for the insect
meals (on average+2.89 mmol/g DM). The lowest total

gas production value was obtained for FM (-0.65 mmol/g
DM on average, compared to insect meals).

The quantity of methane produced after 24 h was sig-
nificantly higher for the plant meals than for both the
insect meals and FM (on average,+0.65 mmol/g DM).
The BL and ALD showed significantly higher values of
methane than those obtained for the other insect meals
(+0.19 mmol/g DM), with BL showing the absolute high-
est value. When expressed as mmol per mmol of total
gas, methane was the highest for SBM and BL (in both
cases equal to 0.21 and not significantly different from
ALD) and the lowest for GB and HI (0.16), the other
meals showing intermediate values.

The insect meals and FM led to a significantly higher
final rumen pH than that observed for the plant meals
(on average 7.0 vs. 6.7, respectively).

The plant meals showed significantly higher total VFA
concentration at the end of the incubation period than
the other meals (on average + 3.40 mmol/g DM). The BL
and ALD showed higher total VFA values than the other
tested insect meals (on average + 1.55 and + 0.88 mmol/g
DM, respectively), with BL even showing a higher value
when compared to ALD. The proportion of acetate on
total VFA was the greatest for SFM (61.3 g/100 g VFA)
and the lowest for FM (53.4 g/100 g VFA); the insect
meals showed values ranging from 53.5 to 58.0 g/100 g
VFA in BL and GS, respectively. The fermentation of
plant meals resulted in a higher propionate proportion
than the other meals (on average higher than 22.0 g/100 g
VEA vs. lower than 18.3 g/100 g VFA). Among the insect
meals, the fermentation of GB, TM, MD and HI resulted
in higher propionate proportion when compared to ALD,
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Table 2 Fatty acid composition of the insect and control meals (g/100 g FA, unless otherwise stated)
Item Meals

Full-fat insect meals Control meals

ACD ALD BL GB GS Hi MD ™ SBM RPM SFM FM
C10:0 034 042 0.44 0.17 034 0.26 033 0.22 279 1.88 263 0.79
C12:0 0.07 0.03 0.11 0.18 0.13 26.8 0.10 0.30 0.03 0.02 0.02 0.10
C14.0 053 0.78 0.99 143 0.71 6.08 2.32 3.10 0.19 0.18 0.10 6.75
C16.0 254 293 318 215 257 20.0 224 17.2 18.6 8.69 8.05 225
C16:1 9 0.70 032 1.01 172 145 1.70 11.1 163 0.15 1.32 0.13 8.06
180 9.28 9.11 15.8 511 7.89 297 446 290 5.09 1.73 346 6.64
C18:1¢9 255 356 24.3 486 276 10.8 258 43.2 13 425 537 10.2
C182n-6 346 205 216 154 320 24.5 19.3 28.0 519 254 280 147
C183n-3 0.90 0.76 043 297 0.77 2.01 1.90 142 7.19 445 1.48 0.58
C183 n-6 0 0.01 0.01 0.03 0.04 0.01 0.07 0.01 0.06 0.06 0 0.21
C20:.0 0.56 0.56 1.02 0.28 0.81 0.12 0.20 0.19 0.27 0.44 045 033
C22:0 0.13 0.25 0.21 0.11 0.14 0.24 0.14 0.04 0.35 027 0.69 0.14
C20:5n-3 0.12 0 0.24 0.05 0.08 0 033 0 0 0 0 144
C22:5n-3 0 0 0 0 0 0 0 0 0 0 0 2.06
C22:6 n-3 0 0 0 0 0 0 0 0 0 0 0 139
Other! 1.86 238 2.05 251 229 458 11.55 1.79 2.10 13.0 132 11.9
Total SFA 364 40.7 506 29.0 359 56.8 31.1 24.1 274 134 15.5 379
Total BCFA? 057 0.81 0.65 0.66 0.89 0.90 572 0.78 0 0 0 1.27
Total MUFA 27.0 37.3 26.5 514 30.2 14.0 40.7 457 134 56.6 550 24.8
Total PUFA 36.0 213 223 189 330 283 225 295 59.2 30.0 29.5 36.1
Total FA, g/kg DM 168 155 144 203 163 209 194 317 6 27 17 68

Abbreviations: FA Fatty acids, ACD Acheta domesticus, ALD Alphitobius diaperinus, BL Blatta lateralis, GB Gryllus bimaculatus, GS Grylloides sigillatus, Hl Hermetia illucens,
MD Musca domestica, TM Tenebrio molitor, SBM Soybean meal, RPM Rapeseed meal, SFM Sunflower meal, FM Fishmeal, c: cis, SFA Saturated fatty acids, BCFA Branched-
chain fatty acids, MUFA Monounsaturated fatty acids, PUFA Polyunsaturated fatty acids, DM Dry matter

! Other: C14:1 9+ C15:0+C15 iso+C15 aiso+C16 iso+C17:1 <94 C17 iso+C17 aiso+>C18:1 t+C18:1 c114+C18:1 124 C18:1 c144C18:1 t16 4 C20:1 c9 + C20:1

¢11+4C20:2 n-6 + C20:3 n-6 + C22:1 n-9+ C20:3 n-3 + C20:4 n-6
2Total BCFA: C15 iso+C15 aiso+C16 iso+C17 iso+C17 aiso

BL and GS (on average+ 3.5 g/100 g VFA). The propor-
tion of butyrate was the greatest for HI (12.1 g/100 g
VFA) and the lowest for SFM (6.9 g/100 g VFA).

The fermentation of plant meals resulted in a higher
IVOMD when compared to FM (on average+0.27 g/g)
or insect meals (on average+0.30 g/g), except for BL
which showed comparable value to that of SEM.

The total ammonia production was the greatest for BL,
followed by SBM (4.96 and 4.48 mmol/g DM, respec-
tively). The incubation of HI, TM, MD and SEM resulted
in less than 3 mmol/g DM of total ammonia. When
ammonia was expressed as a proportion of total N, it
was the highest for SFM (0.87), followed by BL (0.77)
and SBM (0.70). Intermediate values were observed for
RPM (0.66) and ALD (0.58), whereas all the other meals
showed values lower than 0.50 mg/mg total N.

Fatty acid profile of rumen digesta
The results for the FA of rumen digesta after 24 h of
incubation for each of the meal tested in this study are

reported in Table 4, and the coelution or separation of
C18:1 19, t10 and ¢11 isomers is given in Additional File 1.

The proportion of total SFA in the rumen digesta
ranged from 37.0 (TM) to 65.1 (HI) g/100 g FA, with
no clear differences recorded when comparing the con-
trol (plant meals and FM) and insect meals. However,
some meals showed different concentrations of some
specific individual SFA. The HI rumen digesta con-
tained the highest proportion of C12:0 (20.4 g/100 g
FA), strongly differing from all the other meals (less than
1.5% of FA). The proportion of C14:0 in rumen digesta
was the highest for FM (9.23 g/100 g FA), followed by HI
(6.97 g/100 g FA), whereas the other meals showed val-
ues lower than 4.5 g/100 g FA. The proportion of C16:0
was the highest in GS (38.0 g/100 g FA) and the lowest
in TM (23.2 g/100 g FA), the latter being not statistically
different from SFM. The proportion of C18:0 was higher
in ACD, BL, GS, and GB than in HI and TM (on aver-
age+6.03 g/100 g FA), while the other meals showed
intermediate values.
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The proportion of total monounsaturated fatty
acids (MUFA) was the lowest when SBM was incu-
bated (9.8 g/100 g FA) and noticeably varied among
the tested insect meals (up to 2.6-fold variations, from
14.9 to 39.3 g/100 g FA in HI and BL, respectively).
The proportion of C18:1 £9-11 were the highest for
GB, MD and BL (>4.36 g/100 g FA) and was the lowest
for FM (1.33 g/100 g FA). The proportion of C18:1 ¢9
(+¢c10+¢£15) was the highest for BL (31.3 g/100 g FA),
followed by TM and ALD (>22 g/100 g FA); HI and FM
showed the lowest proportions of C18:1 ¢9 (on average
8 g/100 g FA).

The proportion of total PUFA was the highest for
ACD (26.3 g/100 g FA; being not statistically differ-
ent from TM) and the lowest for BL and RPM (9.4
and 10.2 g/100 g FA, respectively); as for total SFA, no
clear differences were found when comparing the con-
trol and insect meals. However, when considering indi-
vidual PUFA, the proportion of C18:2 n-6 for ACD
rumen digesta (22.7 g/100 g FA) was the highest; and
values>10 g/100 g FA were detected also for ALD, GB,
GS and TM. The highest proportions of C18:3 n-3 in the
rumen digesta were found for plant meals (>1.6 g/100 g
FA). The proportions of C20:5 n-3 and C22:6 n-3 were
the highest for FM.

The proportion of branched-chain fatty acids was
higher when the plant meals (20.0 to 22.9 g/100 g FA)
rather than the insect meals or FM (<8 g/100 g FA) were
incubated.

Discussion

Chemical composition and fatty acid profile of the meals
The chemical composition of the tested insect meals fell
within the wide ranges reported in currently available
reviews and research articles [42].

The full-fat insect meals used in this study showed a
CP content comparable to that found in plant protein
sources used in ruminant nutrition [6, 43]. The observed
differences in the CP content among the insect meals
could also be partially the consequence of variations in
the nutritional quality of the rearing substrate, develop-
mental stage of insects and industrial processing (e.g.,
drying) [44, 45]. Indeed, the tested insect meals were
provided by different suppliers, the insects being raised
and further processed under different conditions. Even
though, the CP content of our samples were in line with
those published in literature on the same species [42, 46].
When comparing the CP values of insect meals with pub-
lished literature, the N:P conversion factor used for CP
calculation must be considered [9]. When using the con-
ventional N:P conversion factor of 6.25, it is assumed that
the matrix under analysis contains 160 g N/kg CP, and
that all N is of protein origin. However, in insects, part
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of the N is embedded in chitin; this N is also extracted
when analysing proteins with the classical Kjeldahl meth-
odology, leading to an overestimation of the real CP
content [29]. For instance, when comparing the CP val-
ues of the ACD and GB meals used in our trial with the
values obtained for other ACD and GB meals by Ahmed
et al. [8], our values seem lower, but result similar when
using the same N:P conversion factors [30] (49.9 and
45.2 g/100 g DM for ACD and GB, respectively).

Common as well as alternative protein feeds used in
ruminant nutrition are naturally characterized by low
amounts of fat or they are by-products of lipid extrac-
tion [23]. The tested insect meals were instead rich in EE
(>200 g/kg DM). Such values were consistent with data
reported for full-fat meals obtained from the same insect
species by other authors (e.g., [42, 46, 47]).

The FA profiles differed between the meals and were
consistent with published data [43, 48]. Many insects can
endogenously synthesize medium- and long-chain SFA,
such as C14:0, C16:0 and C18:0 [49]. The general high
proportion of SFA in insect meals could pose concerns
due to the expected negative impacts on the nutraceuti-
cal quality of ruminant-derived food products [50], as
already observed in food products from monogastric ani-
mals when including insect meals other than TM in their
diet [51, 52]. The presence of the enzyme A9-desaturase
(already described in Dipteran species such as Dros-
ophila melanogaster and M. domestica, and recently
hypothesised also for H. illucens) would enable the con-
version of these SFA into the respective cis9-MUFA, jus-
tifying the high levels of C18:1 ¢9 found in all the insect
meals in the current study [53]. The high proportion
of SFA, and especially C12:0, observed in HI was also
observed by Jayanegara et al. [18] and Ahmed et al. [8].
This peculiar characteristic is most probably the conse-
quence of the subtropical origin of this species. In fact,
it has been hypothesised that the high melting point of
SFA could enable HI to prevent lipid oxidation and to
survive at the typical high temperatures of subtropical
areas [54]. The main FA found in GB, TM, MD and ACD
meals agreed with the findings of other authors [18, 55,
56]. Consistently with the results obtained in our study,
Oonincx et al. [57] showed that the main individual FA
in full-fat ALD larvae were C16:0, C18:1 n-9 and C18:2
n-6, while only low levels of C18:3 n-3 are typically found
in this species. The high C18:2 n-6 content in ACD is
most probably the consequence of the presence of a A12-
desaturase in this species [55]. Data about the FA profile
of BL quite differed from the findings of Kulma et al. [46],
who reported higher MUFA and lower PUFA propor-
tions (42.2 and 9.6 g/100 g total FA, respectively) for BL
subadults when compared to our results. Such differ-
ences are most probably imputable to the insect rearing
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substrate: Kulma et al. [46] fed BL with dog granules and
old bread ad libitum, with an additional daily provision of
slices of fresh vegetables and fruits, which differed from
the rearing substrate (mainly a mixture of vegetables and
fruits, added with old bread, breadsticks and brioches)
used to raise BL in our trial.

In vitro rumen fermentation parameters

In our study, the incubation of insect meals resulted in
lower gas and VFA production than did that of the plant
meals. Previous studies [19, 58] also observed a reduc-
tion in gas and VFA production with different insect
meals when compared to SBM. These reductions could
be, first, explained by the chemical composition of the
insect meals, as they contained high CP and EE contents.
Protein and fat contribute little to gas and VFA produc-
tion [59] and could even alter the ruminal fermentations.
Indeed, negative effect of CP on fermentation is attrib-
uted to the buffer capacity of proteins, whereas a high fat
content may lead to inhibition of rumen microbes and
decreases in carbohydrates digestibility [60]. The high
final pH observed with insect meals is typical of high
CP and EE contents and low gas production. Because
of the low gas and VFA production, poor IVOMD val-
ues were obtained in our study for the insect meals.
Jayanegara et al. [58] suggested that the chitin content
could also explain the low gas and VFA production with
insect meals, as chitin would not be degraded by rumi-
nal microorganism. When using insect meals in animal
nutrition, it has been shown that chitin can depress diet
digestibility, as some animal species do not contain chi-
tinase activity [14]. Tabata et al. [61] showed that the
levels of acidic chitinase mRNA in the bovine stomach
tissues are very low; however, the same authors hypoth-
esised that chitinases may be provided by the bacteria
populating the gastrointestinal tract of ruminants, thus
playing a possible role in chitin digestion. Indeed, chi-
tinase activity has been described in some rumen bacte-
ria and protozoa [62] and Fadel El-Seed et al. [63], using
the in situ technique, observed that chitin was degraded
in the rumen of sheep but at a very low rate of degrada-
tion. Indeed, the fermentation parameters were higher
for BL in comparison to the other insect meals despite BL
had the highest chitin content and a very high EE con-
tent. This suggests that other factors could explain the
low gas and VFA production and IVOMD with insect
meals. The BL meal was the only produced from subadult
insects, and the developmental stage of the insects is
known to affect their chemical composition and fermen-
tation parameters. Indeed, Jayanegara et al. [58] observed
differences in gas (- 34 mL/g DM after 24 h incubation)
and VFA production (- 66.5 mmol/L) and in IVOMD (-
0.07 g/g) between HI meals at 1 week or 2 weeks larval
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stage. The exoskeleton of BL might be more degradable
than those of the other insect larvae used in this study;
such a hypothesis needs further investigations. The low
unsaturated FA (UFA) concentration in BL meal com-
pared to the other tested insect meals could also have less
inhibited the rumen fermentations [64], being BL meal
characterised by high SFA, and particularly rich in C16:0.
However, HI was also characterised by high SFA content
(mainly C12:0) but resulted in low gas and VFA pro-
duction. Hristov et al. [65] observed a depressive effect
in VFA production with the inclusion of C12:0 in the
rumen. This suggest that chitin, CP and EE contents, as
well the lipids FA composition may interact in determin-
ing the ruminal degradation process of different insect
meals.

Methane production

Compared to plant meals, methane production was
reduced with insect meals due to a reduction in gas pro-
duction. However, a decrease in the proportion of meth-
ane in total gas for GB, HI, MD and ACD meals was
observed as well, suggesting a specific effect on methano-
genesis. Ahmed et al. [8] reported also a potential direct
inhibition of methanogenesis by GB. The ACD, GB and
MD meals had a high content of UFA, which are known
to contribute to methane reduction through a toxic effect
on microbial populations [64]. The HI meal contained
mainly C12:0 and C14:0, and some oils rich in C12:0 and
C14:0 have also been suggested to reduce ruminal meth-
ane production [66].

Jayanagera et al. [19, 58] suggested that chitin and its
derivative chitosan may play a role in methane reduction,
but this hypothesis seems not confirmed by our data. The
effects of chitin and chitosan on rumen methanogen-
esis have been limitedly investigated to date and recent
publications [18, 67] have shown a lack of agreement on
the effects of chitin and chitosan on methane mitigation
potential.

Ammonia production and protein value of insect meals

High ammonia production was related to higher CP
content except for FM. However, when ammonia was
expressed as proportion of total N, insect meals had
lower ammonia production than plant meals (except BL),
meaning that protein from insects would be less degra-
dable. Toral et al. [9] also reported a lower ruminal pro-
tein degradation for four different insect meals (TM,
Zophobas morio, ALD and ACD) when compared to
SBM. Fishmeal, which is known to be mainly a source of
undegradable protein [68], had one of the lowest ammo-
nia productions. Low protein degradation with insect
meals could be explained by an important proportion
of protein associated to chitin and chemically linked to
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the exoskeleton of insects [69]. The BL meal had higher
ammonia production than the other insect meals, mean-
ing that protein from BL would be more degraded in
the rumen, confirming the high ruminal degradation
deduced through gas and VFA production.

A low protein ruminal degradation enables to
increase the intestinal protein flow, which can be
favorable for animal production provided that intes-
tinal digestibility is high. Our results suggested that
insect meals, except BL, would be sources of rumen
undegradable proteins (RUP). It is likely that part of the
RUP from insect meals would be non-digestible pro-
teins associated to chitin, especially considering that
Tabata et al. [61] measured a low level of acidic chi-
tinase mRNA in bovine abomasum compared to other
animal species. Moreover, a high fat content can also
reduce protein intestinal digestibility. Toral et al. [9]
measured high and similar in vitro intestinal digest-
ibility of the non-degraded ruminal proteins from TM,
ACD and ALD (between 0.64 g/g and 0.78 g/g) as SBM
(0.68 g/g), whereas Ioselevich et al. [70] measured a
lower protein intestinal digestibility (0.53 g/g) for Bom-
byx mori pupae. The lack of available data on rumi-
nal degradation and intestinal digestibility of proteins
from insect meals and the inconsistent available results
underline the need of further protein evaluation studies
to better assess this process.

Fatty acid profile of rumen digesta

Thanks to their high EE content, full-fat insect meals
may represent a potential source of lipids, alternative
to plant oils, to increase the energy density of diets
and/or to improve the FA profile of animal-derived
food products [71, 72]. This last point could be inter-
esting, as most of the insect species we studied resulted
rich in UFA. The ACD, TM, GB, GS, and ALD kept
indeed higher concentration of C18:2 n-6 and other
FA with potential health-promoting effects (e.g., C18:1
t11 or CLA ¢9¢11; [73]) than plant meals as unaltered
after ruminal biohydrogenation. The low biohydrogen-
ation of PUFA from insect meals can be explained by a
possible inhibitory effect of the high amount of fat (the
total FA content in the tested insect meals was on aver-
age 10 times higher than that of the tested plant meals)
on ruminal microbial populations [73]. This can also
be the explanation for the much higher total branched-
chain fatty acids content found in the ruminal digesta
when the plant meals rather than the insect meals were
incubated [74]. However, the EE content alone would
not be sufficient to justify the low ruminal biohydro-
genation of PUFA from insect meals, as for BL and TM
the C18:2 n-6 biohydrogenation rate was high even if
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such meals showed high EE content. Besides the EE
content, the FA composition and unsaturation can also
explain the protection of PUFA from in vitro ruminal
biohydrogenation. The protective effect was impor-
tant only for insect meals rich in PUFA (ACD, TM,
GS), whereas when the EE had SFA or medium-chain
MUFA as main constituents (as for BL, HI and MD),
the degree of PUFA biohydrogenation was similar to
that of the plant meals. The inhibitory effect of dietary
PUFA on ruminal microbial population responsible
for their biohydrogenation is well known and docu-
mented in literature for lipid supplements of plant ori-
gin [75, 76]. Our results are also in agreement with the
low biohydrogenation rate of insect oil PUFA recently
observed by Hervis et al. [22].

In terms of the potential beneficial effects on ani-
mal product quality, the HI meal seems to be the less
attracting, as its rumen digesta was rich in SFA, and in
particular in C12:0 and C14:0, which are transferred to
milk and meat without being further modified [65, 76].
When dealing with full-fat insect meals, a higher total
SFA concentration should be expected in the rumen
digesta when compared to the same for plant meals,
due to their noticeable differences in terms of total
lipid content. This aspect should also be considered
when hypothesizing the use of full-fat insect meals
to improve the lipid quality of ruminant-derived food
products.

Conclusion

In conclusion, to the best of our knowledge, this is the
first article presenting data on the in vitro ruminal digest-
ibility of BL, GS and MD meals. Whatever the insect spe-
cies, the full-fat insect meals appear to be potentially an
interesting feed source, alternative to the most common
ones of plant origin. The in vitro organic matter disap-
pearannce of the tested insect meals was lower than that
of plant meals, probably because of their high fat content
and its FA composition. Chitin may also have played a
role. The observed lower ammonia content of rumen
fluid for the insect meals when compared to that of the
plant meals could be an advantage, provided that intes-
tinal digestibility is high. Further studies are required to
better explore the intestinal digestibility of insect meals
and the technological solutions to increase their overall
digestibility. The FA profile of rumen digesta of ACD,
ALD, GB, GS and TM, being rich in n-6 PUFA, could be
interesting to potentially improve the quality of derived
ruminant products. This research suggests that these
innovative feedstuffs could have a potential interest as
substitutes for more conventional protein and fat sources
in ruminant diets.
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