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Abstract

Gene expression data is commonly used in vaccine studies to identify genes
exhibiting shifts in expression level between treatment and control cohorts.
However, group-wise analyses of perturbations on a complex system, such
as the human immune system, may not be suitable to fully characterize the
impact of a treatment, as captured by the diversity of responses exhibited
by individual subjects. Suboptimal responses from a subset of subjects may
be determined by both heritable and non-heritable influences, as well as de-
mographic and socioeconomic differences. Group-wise methods are optimal
for capturing signals that differentiate treated from non-treated subjects, but
they are not sensitive enough for detecting changes diversified across individ-
uals, where variance and noise can hide the signal. Additionally, modulations

occurring in a small proportion of subjects are also generally lost.

In this work we developed and tested an analysis framework for assess-
ing indwidual transcriptome response profiles in the context of repeated-
experiment studies (where the same subjects are repeatedly probed across
multiple time points) and benchmarked it on a non-adjuvanted HIN1 vacci-
nation dataset [1]. We built up from the work of Menche and colleagues [2],
where the authors demonstrated the feasibility of the single subject approach
in determining differentially expressed genes.

This approach succeeded in providing a higher amount of information
compared to group-wise based comparisons. We highlighted extensive het-
erogeneity in the peripheral blood transcriptional response to vaccination
and we were able to capture biologically meaningful signals despite a sig-
nificant noise component in the data. Finally, we described the individual
transcriptome response profiles via pools of vaccination-induced genes and
studied their association with functional antibody responses. Overall, we
propose a new analysis pipeline, that is generally applicable to repeated-
measure experiments, and provide evidence that it can help to generate new

and useful insights.
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1 Introduction

This chapter briefly introduces key concepts regarding the human
immune system in the context of the response to a vaccine stimu-
lus and we provide a high-level overview of the most typically ap-
plied investigative techniques. Influenza and its vaccines are also
described, with particular emphasis on the 2009 H1N1 pandemic.
We introduce the limitations of canonical group-wise studies in the
context of human immunology and strategies to overcome these
limitations to gain new insights into the mode of action of vaccines

and the vaccine-induced immunological responses.

1.1 Systems Biology

Systems Biology is the comprehensive, quantitative analysis of the multi-
ple components of a biological system, and their interactions, over time [3].
Such complex systems are characterized by emergent properties: charac-
teristics that are not reflected by the single components, nor can be appreci-
ated by the independent study of the individual components. An example of
an emergent property is the robustness of the system, which can arise from
positive and negative feedback loops and/or redundant functions (i.e. biolog-
ical pathways participating to the same biological function). The practice of
systems biology involves collection, integration and analysis of multiple sets
of biological data collected from different sources across distinct time points
and hierarchical levels. The integration of multiple datasets also enables for
a much higher flexibility, opening to numerous options for data analysis ap-
proaches and allowing to address questions that were left unanswered. This

work represents an example of this last concept.



Chapter 1. Introduction

1.2 The human immune system

The human immune system is a highly complex biological system [4]. It
encompasses multiple organs and its mechanisms of action are determined
by a number of cells and molecules which interact at different levels and
time scales. Its physiological role is the defence against exogenous molecules
and pathogens, while at the same time avoiding the insurgence of a response
against the host’s self components. The responses of the immune system
can be broadly categorized into innate and adaptive. The innate response
is non-specific and it is quickly activated upon detection of pathogens and
extraneous substances. In contrast, the adaptive response is a specific
response, tailored to a precise pathogen and enhanced by repeated exposition

to the antigen.

1.2.1 Innate immune response

The innate immunity is the host’s first line of defence against infections.
The response, quick and non-specific, is achieved through physical barriers,

specialized cells and immunoactive molecules [5].

The epithelium is the first line of defence. It acts as a passive barrier
against pathogens, but it also produces antimicrobial peptides. Its functions
are also complemented by mucus, saliva and local bacterial flora. When a
pathogen succeeds in overcoming this first barrier, it is faced by innate im-
mune cells, which are able to sense this through pattern recognition receptors
(PRRs), which recognize the evolutionarily conserved patterns of microor-

ganisms [6].

This initial recognition, mediated by mast cells and macrophages, leads
to inflammation which is characterized by the production of a variety of in-
flammatory mediators (cytokines, chemokines etc.) which lead to the recruit-
ment of leukocytes (mainly neutrophils) to the affected tissue [7]. Monocytes
are able to recognize danger signals through PRRs. They can phagocytose
and present antigens, secrete chemokines and differentiate into macrophages
and Dendritic Cells (DCs) [8]. DCs express receptors able to detect microbial
molecules and act as Antigen Presenting Cells (APCs), leading to the promo-

tion of the adaptive response (see Section 1.2.2) by interfacing the innate and

2



1.2. The human immune system

adaptive arms of immunity [9]. Some examples of mediators are the Tumor
Necrosis Factor (TNF) and components of the Interleukin-1 family, which
recruit and activate leukocytes [10] [11]. Neutrophils then kill the foreign
agents by releasing reactive oxygen species (ROS), reactive nitrogen species
and other effectors from their granules [7]. The inflammatory response then
results in the phagocytosis of infectious agents by the macrophages, the
apoptosis of compromised host cells mediated by Natural Killer (NK) cells

and the release of anti-inflammatory and reparative cytokines [12].

Another central component of the innate immune system is the comple-
ment system. It consists of a number of small proteins that circulate in the
blood as inactive precursors. Upon activation, these proteins enhance the in-
flammatory response through the production of pro-inflammatory molecules
and are involved both in lysis and phagocytosis processes due to their antigen
opsonization activities [13]. The complement system also acts as a bridge be-
tween innate and adaptive immune response by stimulating T-lymphocytes
[14].

1.2.2 Adaptive immune response

Adaptive immunity is the host’s second line of response against pathogens.
It is highly specific to given antigens, adaptable and characterized by the
development of immunological memory: such memory allows to quickly and

efficiently respond to a threat after having previously encountered it [15].

Lymphocytes B and T are the key players in this response and are
respectively responsible for humoral and cellular immunity. Naive B and
T cells develop in the bone marrow and in the thymus respectively. When
an exogenous molecule (antigen) is detected, T cells quickly migrate in sec-
ondary lymphoid organs, where they are presented with the antigen by Anti-
gen Presenting Cells (APCs: Dendritic Cells, Macrophages, B cells). Specif-
ically, the Major Histocompatibility Complex II (MHC class II) is used by
APCs to present lysosomal degradation products to CD4T T cells which
orchestrate the specific immune response [16]. Concurrently, MHC class I-
antigen complexes stimulate CD81 T cells, which are able to kill infected
cells [15]. A subset of these CD8" T cells will exhibit long-term survival:
these Memory T cells elicit an enhanced response upon subsequent en-

counters with the antigen [17].
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Naive B cells are localized in the lymph nodes’ follicles. Here, they
are activated by interactions with the T cells through the stimulation of the
CDA40 receptor (ligated by the CD40L expressed by T helper cells). Alter-
natively, the bacterial lipopolysaccharides (LPS) or repetitive bacterial anti-
gens (such as flagellin, which cross-links with the membrane-bound IgGs)
may activate the B cell [18]. In both cases, short-lived plasma cells that
produce low-affinity antibodies are generated. Additionally, if the B cells
are stimulated by a T cell, they enter the germinal centres to differentiate
into high-affinity plasma cells or Memory B cells. In the germinal centre, B
cells undergo somatic hypermutation, which can generate high or low affin-
ity antigen receptors. If a low affinity receptor can not be rescued into a
high affinity state through the affinity maturation process, the entire cell
undergoes apoptosis [19]. Subsequently, B cells with high affinity receptors
undergo class switching, which causes the expression of membrane-bound
IgGs or IgEs instead of IgMs. High-affinity plasma cells migrate in the
extrafollicular regions of secondary lymphoid organs and in the bone marrow,
where they secrete antibodies. Memory B cells survive for years, during
which they recirculate between lymph nodes and spleen and are able to elicit

a strong and efficient response to subsequent exposures to the antigen [20].

1.3 Vaccines

A vaccine is a biological preparation of a microbial antigen, often associated
to adjuvants, which is administered to induce protection against microbial
infections [21]. This protection is achieved by inducing an adaptive immune
response against the antigen, leading to the development of immunologi-
cal memory. The adjuvant’s role is instead to enhance the immunological

response. Several kinds of techniques are used to obtain different vaccine

types.

e Attenuated vaccines - They contain a live virus which through repeated
in vitro culture in sub-optimal conditions is rendered non-pathogenic
for humans. Usually they show high efficacy, there is however the
remote risk for retro-mutation into a pathogenic form in the human
host.

o [Inactivated vaccines - Composed of previously live pathogens, which
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are killed through chemical means, temperature or radiation. They
are safer than attenuated vaccines, although they produce a weaker

response.

Toxoid vaccines - These are aimed at bacterial infections where the
toxin produced by the bacteria is the main cause of pathogenicity.
Toxins themselves can be rendered harmless and administered in this

new toxoid form.

Subunit vaccines - These are composed not from an entire micro-
organism, but from antigens which best stimulate the host’s immune
system, such as proteins, extracts of infected tissues or polysaccharides.
They generally elicit a weaker response, so these are often adjuvanted.
Another method for increasing immunogenicity is to conjugate polysac-

charides to proteins.

Synthetic vaccines - The antigen is obtained not through purification,
instead recombinant DNA technologies are used to produce it in syn-

thetic form.

Viral vector vaccines - A non cytopathic virus is used for the expression
of an antigen in the subject (which is infected with the virus itself).
This induces a strong immune response, but safety concerns are still

limiting the application of this technology.

DNA waccines - These work via a plasmid which contains a ¢cDNA
that codes for an antigen. The idea is that some APC will take up
the plasmid and express the antigen themselves, causing an immune

response. However these vaccines have not demonstrated high efficacy.

Additional experimental techniques, such as RNA-based vaccines, exist.

These have shown higher immunogenicity than DNA vaccines in humans,

although proof of efficacy is still missing and non trivial side effects were

observed [22| [23] [24].

1.3.1 Vaccines development

Creating a vaccine is a long and complex process, which can take years or

even decades. However, vaccines are typically the most effective intervention
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Chapter 1. Introduction

to control infectious diseases [25]. Initially, a pre-clinical study needs to
be conducted: at this stage the vaccine is researched and developed. This
is followed by the clinical stage, composed of four main phases and an
additional fifth phase in some cases, where assessments on safety and efficacy

are conducted on volunteers [26].

e Phase I - A limited number of subjects are tested, usually in a dose
escalation study design, to establish the safety of the investigational

vaccine for use in humans.

e Phase II - several hundreds of subjects are tested to evaluate effec-
tiveness and to confirm the dosing ranges. Common short-term side

effects and risks are also evaluated.

e Phase III - several hundreds to thousands of subjects are typically
tested in these expanded trials. These studies gather additional in-
formation regarding effectiveness and safety. They are also needed to
evaluate the overall risk-benefit relationship of the vaccine. If these

studies are successful, the drug can be approved for marketing.

e Phase IV - these studies are performed after marketing approval. They
are used to elucidate the incidence of adverse effects and to determine
the drug’s effect on morbidity of mortality. These studies may also
be used to investigate a previously not described population (such as
children). They can also be market-oriented comparison studies against

competitor products.

e Phase V - some pharmaceutical companies may want to consider a
further study phase, aimed at new indications for the drug, novel for-

mulations or different dosage forms.

1.4 Influenza

Influenza is a human infectious respiratory disease primarily caused by genus
A and B influenza viruses. Symptoms, which typically resolve within a few
days, include runny nose, fever and myalgia. However the infection may also

result in more severe complications such as systemic infection, pneumonia

6
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and even death. These unfavorable outcomes are more likely in specific com-
munities, like elderly and immune compromised individuals [27] [28] [29]. All
influenza strains are enveloped, negative-sense single-strand RNA viruses. To
date, four genera of influenza virus are able to infect vertebrates: A, B, C
and D [30]. Of these, only the first three are able to infect humans, although
influenza D virus antibodies were found in humans with occupational contact
with cattle [31]. Human influenza A and B viruses cause seasonal epidemics,
while the A strains are the only influenza viruses known to cause pandemics.
A and B strains contain eight RNA segments, which in the A strain encode
11 proteins: RNA polymerase subunits, Haemagglutinin (HA, glycoprotein,
facilitates viral entry), Neuraminidase (NA, glycoprotein facilitates viral re-
lease), Nucleoprotein (NP), Matrix protein (M1), Membrane protein (M2),
Nonstructural protein (NS1) and Nuclear export protein (NEP) [27] [32].

Influenza A viruses (IAV) are divided into subtypes based on the two
surface proteins, HA and NA: the name of the A virus will be determined
by these two antigenic subtypes (i.e. HIN1, H3N2). They have a variety of
hosts. Influenza B viruses (IBV) cause symptoms similar to IAV, however
IBV exhibits limited subtype diversity and slower antigenic drift (see Sec-
tion 1.4.1), these two characteristics may be the reason for the narrower host
range of IBV, with humans acting as the primary reservoir [30]. Influenza
C virus (ICV) causes infections in children with typically mild symptoms.
ICV is much more antigenically stable than TAV and serological studies in-
dicate that humans develop antibodies against the virus during early life on

a worldwide scale [33].

1.4.1 Influenza vaccines

Influenza viruses, especially A strains, cause 3-5 million severe cases and
290.000-650.000 deaths worldwide each year, not counting the four pan-
demics occurred in the last 100 years (1918, 1957, 1968 and 2009) [34] [35]. To
date, annual vaccination represents the most effective intervention for protec-
tion against this disease [36]. However, a universal vaccine for influenza does
not exist. The mechanisms of antigenic diversity shown by the virus lead to a
persistent threat to global health: antigenic drift and antigenic shift are the
cause of seasonal and pandemic manifestations respectively [35]. Antigenic

drift is the result of point mutations in the hemagglutinin (HA) and neu-

7
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raminidase (NA) viral genes, the two immunodominant components of the
influenza virus outer envelope, leading to seasonal influenza outbreaks gen-
erally each year. Antigenic shift instead occurs unpredictably when novel
influenza A viruses, previously able to infect animals, acquire the capacity to
infect humans. This is known as a spillover event and it can happen through
spontaneous genomic mutations or genetic reassortment of an animal strain
with a human one, an event favoured by the segmented nature of the viral

genome.

Obtaining an effective seasonal vaccine is a challenge in itself: the virus
strains must be selected at least 6 months prior to commercialization since
the vast majority of doses are produced by growing the virus in eggs. In this
time frame a significant strain drift is possible, leading to antigenic mismatch
and reduced vaccine effectiveness [35]. Low effectiveness can also be caused
by the manufacturing process, since influenza can mutate during the growth

phase in the eggs [37].

1.4.2 The pandemic HIN1 2009 influenza virus

Influenza A HIN1 caused the first influenza pandemic of the 21"

century. It
was the result of re-assortment between avian, human and swine influenza
viruses and affected 214 countries in which the vast majority of the pop-
ulation had little to no immunity [38]. The seasonal influenza vaccines of
the time were also shown as non beneficial to any age group with respect
to an increase in cross-reactive antibodies, due to the antigenic distance of
the pandemic strain from the seasonal one [39]. This highlighted the need
for the development of a new ad hoc vaccine to cover this pandemic strain
and to adopt new approaches such as adjuvants and specific administra-
tion schedules with the aim of increasing the breadth of coverage [39]. In the
end, both adjuvanted and non-adjuvanted vaccines were developed. A recent
meta-analysis highlighted an overall vaccine effectiveness (adjusted against
hospitalization) of 61% (95% CI 14-82%) with higher effectiveness in lower
age groups [40], while a previous study highlighted a possible benefit to be

gained from different dosages in certain population groups [41].

Past experience highlights two fundamental concepts regarding influenza
vaccination. First, a unique vaccine formulation may not be suited for

the entire population. Second, the mechanisms through which the vaccines

8
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achieved protection are still not fully understood and further investigational
studies are desirable. There is the need for an in-depth analysis of each vac-
cinated subject in order to better understand which immunological mecha-
nisms are involved in the response to vaccination. This would be an impos-
sible task with conventional methods, but recent bioinformatic approaches
and in general the Systems Vaccinology field of research can be an important

aid to this goal.

1.5 Systems Vaccinology

In Section 1.1 we defined Systems Biology as the comprehensive, quantitative
analysis of the multiple components of a biological system, and their inter-
actions over time. Systems Vaccinology can be defined as the application
of Systems Biology methodologies to the vaccine discovery, research and de-
velopment process. The rationale behind this approach is to overcome the
hurdles posed by certain pathogens (i.e. influenza viruses), for which vaccine
design is difficult and/or improved efficacy is desired [42]. The main goal of
such approaches is the investigation of multiple immune parameters before
and following vaccination, with the aim to better understand the immune
response, gather insights into the mode of action of investigational vaccines
and guide their selection and/or improvement. Systems Vaccinology studies
involve the extensive use of omics technologies, such as sequencing of DNA
and RNA across a multitude of time points, ranging from the pre-vaccinated
state to even many months after vaccination. Typically, these data are also
integrated with information obtained from conventional immunological as-
says (i.e. neutralization assays, ELISA, ELISPOT) and/or intrinsic factors
(i.e. age, gender, population). The immune system in the context of a
vaccine study is an excellent candidate for such approaches: vaccination is
an orchestrated manipulation of the system, which can be achieved across

multiple subject without incurring into ethical problems.

A series of system biology studies have been successful in identifying
immune perturbations triggered by diverse influenza vaccine formulations
such as live attenuated influenza vaccine (LAIV [43]), trivalent inactivated
influenza vaccine (TIV [44]) and adjuvanted influenza vaccines (MF59, AS03

[45]). In addition, researchers were able to identify molecular signatures

9
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capable of predicting the serological response to influenza vaccination [46]
[47] [2].

1.5.1 Variability across individuals

The goal of many systems vaccinology studies has been that of identifying
biomarkers of vaccine-mediated protection or immunogenicity. Those are
vaccine-induced molecular or cellular signatures that are able to prospec-
tively determine if the vaccination will be successful in a given subject. The
biomarkers identified to date, however, are able to provide a limited classifi-
cation accuracy of 80-85% [48| [44] and no clear casual relationship between
innate immune activation and adaptive immune responses have been iden-
tified so far. This is, in part, due to the high heterogeneity found in the
human population, which leads to different responses to the same vaccine
[49]. Heterogeneity is explained by both heritable (genetic variation) and
non-heritable influences (such as symbiotic and pathogen microbes), the lat-
ter being the most influential factor [50]. However, the current demographic
and socioeconomic changes of the past century are diversifying humans even
more than before. We currently live in a world where age, nutritional status
and incidence of chronic infections and inflammatory disorders are influenc-

ing the vaccination response of entire populations.

Antibody levels and their functionality still represent the best indicators
of efficacy for many vaccines; systems biology had limited success in identi-
fying novel correlates of protection. It is also known that a IFN-y-mediated
transcriptional response and the presence of antigen-specific T cells can be
correlated with increased protection [51], however a clear distinction between
protected and non-protected individuals is still not achieved [49]. Peripheral
Blood Mononuclear Cells (PBMCs) are widely used in vaccinology studies,
but they represent an indirect source of information. Probing the immune
system in tissues other than blood could yield useful information. Specifi-
cally, characterization of tissue-resident memory T cells could inform about
protection, since these cells are crucial for local immunity and recall re-
sponses [52]. However these kind of studies require invasive techniques which

are harder to execute due to ethical and practical limitations.

Given the intrinsic heterogeneity of the immunological responses at the

molecular, cellular and systemic level, classical group-wise analysis may not

10
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be the most suited approach to assess the responses triggered by vaccination
in a given pool of individuals. This because group-wise methods can capture
signals that are consistently found in most of the tested subjects, while they
may not be sensitive enough for capturing subtle changes, for which variance
and noise can hide the signal. In addition, modulations occurring in a small
portion of the tested subjects could also be lost due to the nature of these

methods.

Menche and coworkers, recently published a study in which they at-
tempt an individual-subjects based analysis approach to better understand
the molecular mechanisms underlying multiple systemic diseases [2]. We
believe that the application of a similar approach to vaccine studies can im-
prove our understanding of vaccination responses. Single-subject analysis
could help overcome subject heterogeneity while being at the same time reli-
able, since the immune system is relatively stable over time within individual
subjects [50].

1.5.2 Describing subject heterogeneity (Menche et al.
2017)

In canonical case-versus-control groups transcriptional studies, the aim is
generally to obtain differentially expressed genes (DEGs) between the two
cohorts. The underlying assumption is that such genes would point to bi-
ological mechanisms which if perturbed would lead to different phenotypic
manifestations. These DEGs could then be used as biomarkers to diagnose a
disease. However, multiple sources of heterogeneity can lead to inconsisten-
cies across studies. This can be caused by intrinsic technical variability in
the analysis techniques and methods, variable gene expression levels (from
genetic factors, SNPs, copy number variations, non genetic factors etc.) and

inherent stochasticity of the biological processes.

In 2017, Menche and colleagues [2] observed that very few genes are
consistently modulated across all subjects in a specific cohort. Specifically,
the analyzed healthy and diseased cohorts for asthma, Parkinson and Hunt-
ington diseases. They devised a computational method to obtain individ-
ual subject gene expression profiles, with the goal of acquiring predictive
disease-associated gene pools. Although the observed perturbation profiles

were highly heterogeneous, a statistically significant overlap of these pools
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Chapter 1. Introduction

with the individual transcriptome profiles led Menche et al. to correctly

associate DEGs with a disease diagnosis in 80-100% of cases.

The individual perturbation expression profiles (PEEPs) were obtained
through a Z-score which captured by how many standard deviations a gene
expression level in a single diseased subject was distant from a reference dis-
tribution derived from healthy subjects. Through descriptive statistics, path-
way enrichment analyses and the generation of disease-specific gene pools,

the researchers were able to achieve the following results.

e Often DEGs were perturbed only in a small fraction of PEEPs.

e There were highly significant similarities between PEEPs of case sub-
jects, which were absent in healthy subjects. Similarity was measured
by observing how many genes were commonly modulated across pair-
wise subject combinations for each specific cohort. These similarities
could not be attributed to a few common DEGs, but were the result

of more complex patterns of pairwise overlaps.

e Pathway enrichment analysis showed a degree of homogeneity at the
pathway level, leading the researchers to conclude that different pertur-
bations within a molecular pathway could lead to similar phenotypic

outcomes.

e The PEEPs value in providing useful information was proved by classi-
fying subjects as healthy or diseased with comparable performances to
state-of-the-art machine learning approaches. The PEEP concept was
shown as complementary to these methods, being easily investigable
through techniques such as enrichment analyses. The PEEPs could

also be used as a measure of heterogeneity of the different diseases.

1.6 Aim of our work

In this work we developed and tested an analysis framework for assess-
ing individual transcriptome response profiles in the context of
repeated-experiment studies. In this type of investigation, the same
subjects are repeatedly probed across multiple time points. This is the stan-

dard approach of most Phase I vaccine clinical studies, thus we expect our

12



1.7. Main findings

method to be readily generalizable. Our method is in part based in the work
from Menche et al. (|2], see Section 1.5.2), where the authors demonstrated

the single subject approach in determining differentially expressed genes.

We examined a dataset [1] of subjects simultaneously vaccinated with
seasonal and pandemic 2009 HIN1 vaccines. We built up from the work of
Menche and colleagues [2] by implementing a set of measures to assess the ro-
bustness and increase the confidence in the results obtained. We also sought
to reduce the noise introduced by the stochasticity of biological processes.
For this reason, we generated categorical individual transcriptome response
profiles, in which the genes could only assume values of up/down modulation
or no regulation. We investigated the feasibility of such an approach and de-
veloped a novel method for pathway enrichment analysis. We also sought
to generate core gene pools which could be associated in a statistically
significant manner to the vaccination event. From these pools we sought
to determine which genes were driving the differences in the immunological

response observed across subjects.

1.7 Main findings

e Our analysis highlighted extensive heterogeneity in the peripheral blood

transcriptional response to vaccination.

e The individual transcriptome response profiles that we generated were
able to capture biologically meaningful signals despite an important

noise component in the data.

e We were able to describe the transcriptome response via pools of vac-
cination induced genes and gain information regarding the association

of such responses with functional antibody response.
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2 Dataset

In the following sections, we outline the dataset used for this study.
Data types, applied data extraction and data pre-processing tech-

niques are also presented.

2.1 Tsang et al. 2014

The dataset we used comes from a vaccination study conducted by Tsang
et al. [1], describing 63 healthy subjects (see Figure 2.1 for study outline).
Subjects were 37 females and 26 males, with a mean age of 31, ranging from
21 to 62 years old (CIQR: ! 23-38). Two non adjuvanted subunit vaccines
were concomitantly administered to each subject: the 2009 Fluvirin seasonal
influenza vaccine from Novartis and the 2009 HIN1 pandemic vaccine from
Sanofi-Aventis. The data files are deposited in NCBI’s Gene Expression
Omnibus [53] [54] and are accessible through GEO Series accession number
GSE47353.

2.1.1 Transcriptome data

The transcriptome is the ensemble of genetic code that is transcribed into
RNA molecules. By studying it, researches hope to translate genomic se-
quence information into functional biological mechanisms, with the aim of
better understanding the biological system under investigation [55]. Mi-
croarrays, initially developed for DNA mapping [56], are utilized to mea-~
sure the expression level of thousands of genes within a mRNA sample [57].
The typical use of this technology involves the comparison of different bi-

ological conditions (i.e. health vs disease). DNA hybridization is the core

! Central InterQuartile Range
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Figure 2.1: Study design of the Tsang et al. 2017 dataset indicating blood
collections and analyses performed.
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mechanism of action of microarrays: two DNA strands hybridize if they are
complementary to each other (following the Watson-Crick rules). The probes
(small sequences of DNA) are attached to the inert surface of the microarray
and these will hybridize with the target sequences obtained from the retro-
transcribed RNA sample, which are labeled (usually with a fluorescent dye).
Each probe is of known sequence and location upon the array. Subsequently,
laser-induced fluorescent imaging is used to generate an image. The amount
of fluorescence is measured at each location of the array, allowing the quan-
tification of the gene expression levels [55]. Importantly, these experiments
do not provide data on the true concentrations of RNA, but are useful to

compare expression levels among conditions and genes [57].

Transcriptome data for this work was obtained from peripheral blood
mononuclear cells (PBMCs). Fasting blood samples were drawn between 8
and 11 AM and were lysed and stored at -80°C within 30 min. Subsequently,
RNA was extracted using miRNeasy (QUIAGEN ). Samples were hybridized
to Affymetriz GeneChip Human Gene 1.0 ST Arrays. Tsang and colleagues
processed the data using APT from Affymetrix and removed batch effects

via linear modeling.
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2.1.2 Microneutralization Titer data

The Microneutralization (MN) Assay is based on the ability of serum
antibodies to prevent infection in mammalian cells in vitro [58]. It can be
used to assess baseline serostatus as well as the humoral response following
natural infection or vaccination. Cells are stained and plated on a 96 well
plate. Subsequently, in the quantitative form of the assay, serial two-fold
dilutions of the serum sample are prepared and mixed with the virus. These
dilutions are used to infect the plated cells. The neutralization titer is
typically expressed as the reciprocal of the serum dilution showing at least
50% inhibition of infection in the cell culture [59].

Tsang and colleagues obtained virus-neutralizing titers for four strains
(see Table 2.1) according to an assay based on the methods of the pandemic
influenza reference laboratories of the Centers for Disease Control and Pre-
vention described by Hancock et al. in 2009 [39]. For this specific work,
reported titers were the highest dilution that completely suppressed viral

replication.

Viral strain ‘ Description

A /California/07/Swine | HIN1 pandemic of 2009 (pdm09)
A /Brisbane/59/07 | HIN1 seasonal
A /Uruguay/716/07 | H3N2, component in seasonal flu vaccine
B/Brisbane/60/2001 | Seasonal influenza B strain

Table 2.1: Viral strains tested for pre-immunity

2.1.3 B-Cell ELISPOT assay

The enzyme-linked immunospot (ELISPOT) assay was first described
in 1983 [60], with the basic methodology only undergoing minor modifica-
tions since then. Predominantly, the B-Cell assay is applied in the detection
of B-Cell responses to infections and vaccinations [61], with the aim of de-
termining the frequency of cytokine-secreting cells. While cytokines are gen-
erally the main proteins of interest, the assay itself is suitable for almost any
secreted protein. In the assay, cells are cultured (in presence or absence of
stimuli) on a surface coated with a specific antibody. Secreted cytokines are

captured by the surface antibodies and can be detected via a detection anti-
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body which can be either biotinilated and followed by a streptavidin-enzyme
conjugate or can be directly conjugated to and enzyme. The substrate prod-
uct then precipitates, with the end result being visible spots on the surface,

each corresponding to a secreting cell.

Tsang and colleagues used the ELISPOT assay to determine total and
influenza-specific IgG /A frequencies of antibody-secreting cells, using a pro-
tocol previously described (Ho et al., 2011 [62]).
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3 Preliminary group-wise analysis for

differentially expressed genes

In this chapter we describe a preliminary group-wise analysis aimed
at uncovering differentially expressed genes (DEGs) from periph-

eral blood mononuclear cells (PBMCs) transcriptome data.

3.1 Preface on data analysis

The analyses presented in this work have been executed leveraging R, a lan-
guage and environment for statistical computing and graphics [63]. Users can
write scripts using the R programming language to add new functionalities
or, in the case of this work, to define an entire analysis pipeline. Additional
packages from the open-source, open-development software project Biocon-
ductor [64] can be used to further expand the capabilities of R. When used,

these packages will be referenced in the text.

3.2 Gene expression data pre-processing

We downloaded the gene expression dataset from a public repository (see
Section 2.1) using the GEOquery R package [65] and obtained an Expres-
sionSet object ! containing both the transcript abundance data and the
metadata describing 292 samples and 33292 probes. We annotated probes
and samples using the available metadata. Specifically, a sample is described
by its anonymized subject ID and the time point of analysis, while probes

are associated to the corresponding Gene Symbol (Entrez gene IDs). We

1One of the data classes of the Bioconductor project. Contains and combines stan-
dardized data structures from different sources to represent genomic data.
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Figure 3.1: Gene-wise Median Absolute Deviation of expression data. The
dashed line shows the cutoff at 5000 genes.

collapsed the redundant probes ? of the microarrays using the Bioconduc-
tor package limma [66]; the expression values for the collapsed probes were
computed as the geometric mean value of the individual probes’ expression
values. Since the dataset was already normalized and quality controls were

executed by Tsang and colleagues, control probes were removed.

High-dimensional data, like microarray transcriptome data, are prone
to type-I error (rejection of a true null hypothesis, or false positive). To
mitigate this phenomenon, we reduced the data dimensionality by applying
two filtering steps. First, we restricted our analysis to protein coding genes
based on the gene type definitions downloaded from the Biomart database
[67] as of Feb. 14t 2018; this reduced the dataset to 17798 transcripts. Then
we computed the median absolute deviation | MAD = median(|X; — X|) |
of the genes across all samples (see Figure 3.1) and selected the 5000 genes
with the highest MAD. These are the genes used for data analysis henceforth.
The rationale for selecting genes with the highest MAD was that these genes
display the highest variation in the expression values across the samples,
making them ideal candidates to investigate the vaccination’s effect on gene

expression.

Albeit a total of 63 healthy subjects were enrolled in the study, not

all transcriptomic sample runs were successful. This resulted in a reduced

2 Probe sets that map to different regions of the same gene.

20



3.3. Group-wise analysis for differentially expressed genes

dataset size (see Table 3.1).

Time point ‘ Available subjects

day -7 60
day 0 57
day 1 60
day 7 57
day 70 58

Table 3.1: Number of subjects with available transcriptome data

3.3 Group-wise analysis for differentially

expressed genes

As a preliminary step, we executed a group-wise analysis on transcriptome
data aimed at detecting differentially expressed genes. We considered days
1 and 7 as response time points and days -7, 0 and 70 as baselines. Day
70 was included in the baselines due to its similarity with the other two
pre-vaccination time points, as reported by Tsang and colleagues. We cal-
culated the mean differences of gene expression values for each combination
of baseline-versus-response time points. Values were tested for significance
using the Wilcoxon signed-rank test (p-value < 0.05, two-sided, paired) and
the resulting p-values were corrected for multiple testing using the Benjamini
Hochberg correction. Figure 3.2 a-d shows the result of the analysis relative
to the day 0 baseline (see Supplementary Figures A.1 and A.2 for days -7
and 70 respectively).

In Figure 3.2 e we instead report the transcript abundance values of
the CXCL10 gene for each subject in the dataset at days 0 and 1. This
chemokine, also known as interferon y-induced protein 10 (IP10) is a chemoat-
tractant molecule capable of recruiting T lymphocytes into sites of tissue
inflammation [68]. Previous vaccine studies reported CXCL10 as one of the
most strongly upregulated genes in peripheral blood following vaccination,
with a peak response typically occurring around 24 hours [69]. We also found
the CXCL10-encoding mRNA level to be significantly upregulated 24 hours
after immunization (logy fold-change = 0.96, adjusted p-value = 7.5 x 1077,
two-tailed Wilcoxon signed-rank test). Despite the robust response observed

at a group level, this gene was not modulated to an appreciable extent in
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every vaccinated subject. In half of the cases (30 out of 60), we found the
transcript abundance to fall within + one standard deviation from the av-
erage preimmune level. Conversely, for 5 subjects, CXCL10 baseline levels
exceeded the 24 hours average level. Overall, this pattern suggest a consid-
erable level of intersubject heterogeneity in the transcriptome responses

to the influenza vaccines.

Generalizing, testing post-vaccination gene expression values against the
day 0 baseline values resulted in 43 and 14 DEGs for days 1 and 7 respectively
(absolute logy fold-change from baseline > 0.5, adjusted p-value < 0.05, two-
tailed Wilcoxon signed-rank test). The assessment of transcripts abundance
levels across different subjects revealed similar levels of heterogeneity as ob-
served with CXCL10, suggesting that this characteristic is pervasive to most

modulated genes (see Supplementary Tables B.1 and B.2).

3.4 Random effect removal from dataset

In order to take into consideration subject-specific deviations in transcript
abundance levels (as opposed to vaccination-induced deviations), we applied
a linear mixed-effect model for the analysis of the transcriptome profiles.
Mixed effect modeling is a statistical procedure capable of describing the
observed variance through three different components, the fixed effect, the
random effect and the residual error. The fized effect describes the variation
induced by the treatment. The random effect describes the subject-specific
effects on the values. The residual error quantifies the unexplained variance
present in the data (noise). In the context of this study, the dataset contains
repeated measurements of the same subjects across different time points.
This characteristic is the main reason that led us to utilize a mixed effect
model; a simpler linear model for instance would be unsuitable due to one of
its assumptions being the total independence of the samples. With the ran-
dom effect component of the mixed-effect model we are able to account for
the fact that subject-specific effects are present in repeated-measurements
data. Subjects may exhibit different gene expression values due to differ-
ences between subjects themselves which are not determined by the treat-
ment. Since these subject-specific effects should be constant across all time

points, by removing this component on a subject-wise basis, we can correctly
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3.4. Random effect removal from dataset

compare gene expression values among subjects.

We used the R package 1me4 [70] to fit the model to the transcriptome
data. We defined the model using the gene expression values as the de-
pendent variable, the sample time point as the fixed effect and the subjects
as the random effect. 3 We then subtracted the random effect that was

calculated by the model from the gene expression values (see Figure 3.3).

3Model formula (in R language): lmer(values ~ days + (1|subjects), data=DF)
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4 Analytical framework for deriving
individual transcriptome response

profiles

We present an analysis framework for deriving individual tran-
scriptome response profiles in the context of repeated measures
experiment data, where the same individuals are probed repeat-
edly across multiple time points. Our approach is able to derive
individual profiles based on temporal differences in genes modula-
tion occurring within each treatment group. We also report the
exploratory results of our analysis and characterize the heterogene-

ity of the response profiles.

4.1 Framework

We developed our analytical framework using the R programming language
[63]. Our method is based on a work from Menche and colleagues (see Sec-
tion 1.5.2) and it compares the transcript abundance of each single gene,
from a single subject and a specific time point, to a number of reference
distributions generated by bootstrapping ! the pre-immunization transcript
abundance values for that same gene. Therefore, while the approach pro-
posed by Menche et al. can generate individual profiles based on the com-
parison of different cohorts (control versus disease groups), our approach is
able to derive individual profiles based on temporal differences in gene mod-

ulation occurring along time. This characteristic is particularly applicable

!Bootstrap: resampling technique used to estimate the statistics of a population by
sampling multiple times a dataset. Resampling: any technique or instance of generating
a new sample from an existing dataset.
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Figure 4.1: Framework for deriving individual transcriptome response pro-
files

in vaccine studies, where samples are usually collected and analyzed at dif-
ferent times following vaccination. Being a biological process, transcription
has a stochastic component, which translates into gene expression variance.
We devised a bootstrap approach to assess gene expression variance under
normal conditions: therefore we aggregated subjects’ data at day 0 and used
it for the bootstrap procedure, as at this time point no treatment has been
administered yet. This assessment of gene expression variance leads to more
robust results. The bootstrap approach also allows to have a measure of
confidence of the results. The main steps executed on each gene with our

technique are outlined below and shown in Figure 4.1.

e We generate n = 1000 control distributions via bootstrap from
the expression values of a single gene from pre-immunization data. n
random samples are executed to generate n control distributions. Each
of the samples occurs without replacement 2 and has size of 2/3 of the

total number of subjects available at day 0.

e For each bootstrap iteration, we derive thresholds ¢ that we use to

determine if a gene is modulated or not. The thresholds are set for

2In sampling without replacement, each unit has only one chance to be selected from
the population.
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4.2. Transcriptome responses to Influenza vaccination are highly heterogeneous

each control distribution at + 2.5 median absolute deviations (MAD,

see Equation 4.1) from the median value X (see Equation 4.2).

MAD = median(|X; — X|) (4.1)
tupregulation,downregulation = X + MAD * 2.5 (42)

o We call a gene modulated for a single subject at a specific time point if
its expression value is above (up-regulation) or below (down-regulation)

the test’s threshold value in at least 75% of the bootstrap iterations.

After these steps, we obtain individual transcriptome response pro-
files, which are arrays of categorical gene modulation data for each time
point tested. Genes can be categorized as either not modulated, up-requlated

or down-requlated and represented as 0, 1 and —1, respectively.

We applied this framework on the PBMC transcriptome data from Tsang
and coworkers (see Section 2.1.1). We used the pre-vaccination (day 0) data
to generate the control distributions and the post-vaccination time points as
test data. Day 0 data was also tested in order to provide an estimate of the

false positives rate.

4.2 Transcriptome responses to Influenza

vaccination are highly heterogeneous

Initially, we compared the individual subject transcriptome profiles with the
DEGs identified by the Wilcoxon test-based group-wise analysis (see Sec-
tion 3.3) to test if our framework captured additional genes and if individual
subjects exhibited differences in gene modulation. We also included sam-
ples from days -7 and 70 to be used as negative controls. Being collected
before (day -7) and a long time after vaccination (day 70), these samples
are expected to reflect no vaccine-specific effects and be indicative of the
false discovery rate to be expected from the analysis. Despite some overlap,
not all group-wise DEGs were found in the individual profiles (see Figure

4.2). Among the 43 DEGs found at day 1 with the group-wise analysis,
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Figure 4.2: Differentially expressed genes from group-wise analysis that are
also found within individual subject transcriptome profiles. Right y-azes:
number of DEGs from group-wise analyses found in each individual tran-
scriptome response profile. Left y-azes: percentage of DEGs from group-wise
analysis found in each individual transcriptome response profile.

an average (median) of 60% (CIQR: 3 37-77%) were also observed in the
individual profiles, while at day 7 (14 DEGs) the overlap with the individ-
ual profiles averaged at 85% (CIQR: 42-100%). These values suggest that
peripheral blood transcriptome responses to influenza vaccination
vary greatly across different subjects and that group-wise analyses ap-
proaches are not suited to accurately describe this heterogeneity. The control
time points showed an overall smaller overlap. For day -7 (11 DEGs): 18%
(CIQR: 0-36%); for day 70 (2 DEGs): 0% (CIQR: 0-38%).

4.3 Individual-subjects response profiles provide a
detailed characterization of the inter-subject

response heterogeneity

We assessed the consistency of the transcriptome responses observed after
vaccination across different individuals by comparing the individual subject

response profiles obtained with our framework.

Figure 4.3 a represents the distributions of the number of modulated
genes across different subjects and time points. Day 1 was the time point

showing the highest amount of gene responsiveness as well as the highest

3Central InterQuartile Range
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inter-subject response heterogeneity
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Figure 4.3: Heterogeneity among transcriptome profiles and quantification
of DEGs. a Number of modulated genes identified in each subject across
the different time points. b Reverse cumulative distributions of DEGs num-
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combinations calculated using individual subject transcriptome profiles. d
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31



Chapter 4. Analytical framework for deriving individual transcriptome response profiles

adjusted -logi0 adjusted
Time point p-value | p-value (BH) p-value
Day 0 VS Day 1 | 5.494e-08 5.494e-07 6.26
Day 1 VS Day 70 | 1.113e-06 5.567e-06 5.254
Day 0 VS Day 7 | 9.286e-05 3.095e-04 3.509
Day -7 VS Day 0 | 2.162e-04 5.406e-04 3.267
Day 1 VS Day 7 | 4.734e-04 9.469e-04 3.024
Day -7 VS Day 70 | 1.776e-03 2.960e-03 2.529
Day -7 VS Day 1 | 4.449e-03 6.356e-03 2.197
Day 7 VS Day 70 | 2.078e-02 2.598e-02 1.585
Day 0 VS Day 70 | 3.660e-01 4.066e-01 0.391
Day -7 VS Day 7 | 6.984e-01 6.984e-01 0.156

Table 4.1: Wilcoxon signed-rank tests of time point comparisons of individual
subject transcriptome profiles, ordered by adjusted p-value.

amount of variance across subjects. The individual profiles had an average
of 717 modulated genes, with a CIQR ranging from 531 to 1114 (see Figure
4.3 a). In general, the other time points showed a smaller variance, although
the difference between 15° and 3rd™ quartiles were still approximately two-
fold (CIQR day 7: 334-653, CIQR day -7: 340-664, CIQR day 70 256-571).
These results suggest that the transcriptome modulation across different

individuals is highly heterogeneous.

To test the sensitivity of our approach in capturing vaccine-specific sig-
nals, we compared the number of modulated genes across different time
points. The expectation is to observe fewer differences among baseline time
points (day -7 VS day 0, day 70 VS day 0) compared to time points follow-
ing the vaccination. Indeed, we found the comparisons between the baseline
time points and days 1 and 7 to be the most significant among all possible
combinations of time points (see Table 4.1). Day 1 individual profiles had
significantly more modulation when compared to other time points (Figure
4.3 b and Table 4.1, Wilcoxon signed-rank test 4 ). Contrarily to this be-
haviour, day 7 profiles demonstrated marginally superior modulation when

compared to day 70, but were not significantly different from day -7.

Additionally, a relevant information regarding individual response pro-

4Non-parametric statistical hypothesis test used to compare two related samples (in
this case the relation is due to the repeated measurements on the samples). The samples
do not need to be normally distributed. We use the test to assess whether two dependent
samples were selected from populations having the same distribution.
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inter-subject response heterogeneity

files is how frequently the various genes are found to be modulated across
different subjects. Surprisingly, this analysis revealed that no single gene was
found to be consistently modulated across every subject. This was observed
for both day 1 and day 7. At the same time, a substantial proportion of mod-
ulated genes were found to be specific to individual subjects, specifically 185
and 300 at days 1 and 7 respectively. We observed the most consistent re-
sponse to be at day 1 (see Figure 4.3 b). At this time point, for example, the
number of genes fond to be modulated across 20 or more subjects was 587.
At day 7 the same value dropped to 120 genes. Pre-vaccination time points
had 84 and 0 of these genes (days -7 and 0 respectively), while we observed
8 genes at day 70.

Next, we investigated the similarity of individual transcriptome response
profiles. Based on all possible pairwise combinations of subjects we com-
puted the Jaccard similarity coefficient (see Equation 4.3) and the number
of commonly modulated genes for each of these subject pairs (see Figure
4.3 ¢,d). The Jaccard similarity coefficient has a finite range of values:
0 < J(A,B) < 1, where 0 represents a total absence of similarity and 1

represents identical gene modulations between two subjects (see Figure 4.4).

ANB
J(A,B) = ;AUB; (4.3)

We observed a median Jaccard coefficient of 0.014 (CIQR: 0.007-0.024)
at the pre-immunization time point. These values increased 7- and 5-fold at
days 1 and 7 respectively; the day 1 median was of 0.1 (CIQR: 0.06-0.15),
while the day 7 median corresponded to 0.055 (CIQR: 0.03-0.09). The sim-
ilarity exhibited by the subject profiles at the post-vaccination time points
was significantly higher than day 0 (p-values day 1 vs day 0 and day 7 vs day
0 < 2.2 x 10716 two-sided Kolmogorov-Smirnov ® test). These small sim-
ilarities across the individual profiles confirm the substantial heterogeneity

across individual transcriptome response profiles.

To confirm that the observed signals were contributed by vaccination, as
opposed to random signals, we compared the overlap across the individual

profiles at days 0, 1 and 7, using the Fisher exact test (see Figure 4.5 and

5Non-parametric test of equality of one dimensional distributions, used to compare two
samples.

33



Chapter 4. Analytical framework for deriving individual transcriptome response profiles

Up regulation
D No modulation

No concordance Down regulation

I I | I I I | |2modu|atedgenes
| I I I I I 3 modulated genes

Partial concordance

Cﬁ A Y . A | | | | 4 modulated genes J(C,D)=|CnD|— 3 _os

_JANB| o0 _
J(AB)= R g =5 =0

A
B

EDo EDo

Dﬁ * + . * * .... + 5 modulated genes ICUD| 6
Full concordance
Ef} * + * f f ...-+ 6 modulated genes ENFl 6
J (E.F)= [EUF] =€=1

Ff} * + * * *...-* 6 modulated genes

Figure 4.4: Examples of Jaccard similarity coefficient values obtained from
pairwise subject combinations. Each square represents a gene from an indi-
vidual subject transcriptome profile.

Table 4.2). The rationale was that day 0 responses, which do not include

the vaccination effect, should display a significantly smaller overlap.

Subject A | Subject B
Non shared DEGs # #
Shared DEGs | ) | )

Table 4.2: Example of contingency table generated for each pairwise combi-
nation of subjects.

Leveraging the same pairwise combinations of subjects that we previ-
ously used to calculate the Jaccard similarity coeflicients, we computed the
contingency tables for the Fisher tests (see Table 4.2). At day 0 none of the
comparisons had significant overlap (Benjamini-Hochberg adjusted p-value
< 0.05), whereas at the post-vaccination time points (days 1 and 7) responses

were significantly associated to vaccination in 90% and 74% of the cases.

Overall, the collected evidences show that the individual response pro-
files generated using our framework were able to capture vaccination-specific
responses and provided supplemental information when compared to con-
ventional group-wise analyses. Moreover, we have observed substantial in-
tersubject heterogeneity in the peripheral blood transcriptome response to

the subunit influenza vaccines. Despite the statistically significant overlaps
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Figure 4.5: Percentages of pairwise subject combinations whose gene overlap
is statistically significant according to the Fisher exact test. We report raw
and adjusted p-values (Benjamini-Hochberg correction for multiple testing)
in black and gray respectively.

in gene modulations, the number of genes commonly modulated across indi-
viduals was generally low and no genes were found to be modulated across

all subjects at a specific time point.

4.4 Individual transcriptome response profiles are

independent from age and gender

We examined subjects’ age and gender (see Section 2.1) in order to under-
stand if individual transcriptome response profiles were influenced by these
intrinsic characteristics. To achieve this we generated networks of subjects
for days 1 and 7, where the position of subjects in the network was deter-
mined by the degree of similarity in the transcriptome response previously
measured via Jaccard similarity coefficients (i.e. subjects with similar tran-
scriptome response profiles appear to be geometrically close in the network;
see Section 4.3). The expectation is to be able to visually identify clusters
of subjects which may arise if the subject’s intrinsic characteristics influence

the transcriptome response.

We used the R package RCy3 [71| and the software Cytoscape [72] to

generate and visualize networks where nodes represent subjects, with color
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Figure 4.6: Networks for days 1 and 7 (a and b respectively). Nodes are
color-coded by gender (cyan and pink for males and females respectively) and
size-coded by age (smaller for younger). Edges are color-coded by Jaccard
similarity coefficient (higher values are darker, values below 0.1 are hidden).
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4.5. Investigation of the robustness of the observed individual subject response profiles

and size corresponding to gender and age, respectively. Edges of the graphs
were defined using the Jaccard similarity coefficient of each subject pair and
were color-coded using the value of the coefficients themselves (darker color
for higher coefficients). Nodes were spatially organized using the Perfuse

Force Directed Layout, using the Jaccard coefficients as weights.

The networks for days 1 and 7 are shown in Figure 4.6. We were unable
to visually identify subject stratification either by gender or age in rela-
tion to the similarity of the transcriptome response, in accordance to what
was already observed by Tsang and colleagues [1|. However, we previously
observed a higher similarity in subjects’ transcriptome responses at day 1
(higher Jaccard similarity coefficients of pairwise subject combinations, see
Section 4.3). This higher similarity is shown in the graphical representation
of the network by the darker color of the edges connecting the subjects and
by the tighter grouping of the nodes (see Figure 4.6).

4.5 Investigation of the robustness of the observed

individual subject response profiles

In this work we describe the results of an implementation of our framework
based on a non-parametric test for determining differentially expressed
genes from bootstrapped control distributions. The thresholds for calling a
gene modulated have been defined as £2.5% median absolute deviations from
the median value of the control distribution. However to understand the
degree of stability of the results, during development we tested a total of

four approaches.

e We compared the non-parametric test for differential expression to a
parametric one, based on t-distribution parametrization. For the
parametric test, thresholds are set to £1.96% standard deviations from

the mean gene expression value.

o We tested the influence of outlying values on determining differ-
entially expressed genes. Therefore, we repeated both the parametric

and the non-parametric tests after removing the outliers.

To determine the number of outlier genes for each subject, we counted

37



Chapter 4. Analytical framework for deriving individual transcriptome response profiles

O

Parametric test

QD

Non parametric test

50 1 501

Difference in detected genes
o
I

Difference in detected genes
o

T

Day-7 Day0 Dayl Day7 Day 70 Day-7 Day0 Dayl Day7 Day70

Figure 4.7: Difference in number of DEGs detected by our framework when
removing the subject with the highest number of outlying genes (each data
point is a subject). In a the median of the control distributions is used to
determine the thresholds for calling a gene modulated, in b the mean is used.

the occurrences of genes which exhibited a distance higher than 3 standard
deviations from the mean distribution of the gene itself across every subject
at every specific time point. For the day 0 (pre-vaccination) time point,
the number of outlier genes identified across the different subjects ranged
from 3 to 18 (median = 7), with a peak of 164 genes in a single subject.
After removing this last subject with the highest number of outlier genes,
both the parametric and the non-parametric tests for detecting differentially

expressed genes were repeated.

The number of DEGs identified by the non-parametric tests, within the
individual response profiles, remained fairly close to the original values when
outliers were removed (see Figure 4.7). Deviations from the original approach
ranged from —7 to +3 genes, with an average of —2 genes not being detected
after outlier removal. Considering the median number of DEGs detected in
an individual across all time points was 467, the 2 genes differences repre-
sents a 0.43% discrepancy. We therefore conclude that the non-parametric
approach that we adopted showed to be robust to the presence of outliers.
This was in direct contrast with the results obtained from the parametric
tests (median across time points of —13, CIQR: —27,—6). This effect was
especially evident 7 days post-vaccination: with the non-parametric test we

observed a median decrease of 6 genes (CIQR: —12,—2), while the parametric
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test resulted in an average of 40 less genes detected (CIQR: —57,—23). These
results reinforced our decision to present data coming from a non-parametric

test without exclusion of subjects from the analysis.
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59 Functional characterization of

individual subject response profiles

In this section we present the functional characterization of the
individual subject response profiles via enrichment analysis on
canonical pathways. We also present a novel computational ap-
proach aimed at understanding if the pathway enrichment is ob-

served by chance or it is caused by an underlying biological signal.

5.1 Pathway Enrichment Analysis

We wanted to understand whether, despite the heterogeneity in the transcrip-
tome response observed across subjects, there are any biological processes
being activated in a more consistent manner in response to vaccination. To
this end, we performed a pathway enrichment analysis to functionally char-

acterize each individual subject response profile.

We obtained the pathways from the Molecular Signatures Database
[73] [74] |75] by downloading the Curated gene sets (C2 collection) of Canon-
ical pathways ' (collection version 6.1, 1329 gene sets as of June 21", 2018).
Gene sets in this collection are curated from online pathway databases ? and
biomedical literature, with many sets being also contributed by individual
domain experts. We pre-processed pathway data by removing gene sym-
bols described in the pathways which were not found among the 5000 genes
that were included in our study (see Section 2.1). This led to 2369 gene

symbols in common between subject data and pathways (which originally

! available at http://software.broadinstitute.org/gsea,/msigdb/collections.jsp
2 BioCarta, KEGG, Matrisome Project, Pathway Interaction Database, Reactome,
SigmaAldrich, Signaling Gateway, SuperArray SABiosciences.
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Chapter 5. Functional characterization of individual subject response profiles

included 8904 genes). Furthermore we restricted our analysis to pathways
for which we could map between 10 and 200 genes. This led to 473 gene sets

to be tested via pathway enrichment analysis (see Table 5.1).

Database ‘ Raw ‘ Processed

Reactome | 674 231
Kegg | 186 124
PID | 196 88
Biocarta | 217 13
Others 56 17
Total | 1329 473

Table 5.1: Number of pathways from C2 collection before and after the two
pre-processing steps.

Pathway enrichment was assessed through the Fisher exact test and
applying the following threshold: p-value < 0.05, one-sided, with Benjamini
Hochberg correction for total number of tested pathways across all subjects.
The contingency matrix was designed to assess whether the number of mod-
ulated genes within a given pathway was higher than random expectation
(see Table 5.2). By observing the gene modulations of a subject in relation
to a specific pathway, we can understand if there is a significantly higher pro-
portion of modulated genes associated to a specific pathway when compared

to the total number of modulated genes within a specific subject.

‘ Pathway gene ‘ Other genes
Modulated in subject | a: common b: only subject
Not modulated in subject | c: only pathway | d: not modulated

Table 5.2: Example of contingency table generated for testing a pathway
in a single subject. a Genes modulated in the subject which belong to
the pathway. b Genes modulated in the subject which do not belong to
the pathway. ¢ Genes not modulated in the subject which belong to the
pathway. d Genes not modulated in the subject which do not belong to the
pathway.

Using this approach we could derive a list of enriched pathways for each
subject. The level of conservation of each biological function could then be
assessed as the proportion of subjects in which the relative pathways were
enriched. Figure 5.1 lists the top 10 pathways found to be enriched with the
highest frequency across time points (see Supplementary Tables B.3 - B.7
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Figure 5.1: Top ten pathways showing enrichment in the highest number
of subjects across all time points. X-azis: number of subjects in which a
pathway is significantly enriched. Days -7, 0 and 70 should be regarded as
negative controls.
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Figure 5.2: Top 30 DEGs (out of 93) of a pathway. Each row corresponds
to a gene and each column to a subject. On the right: number of gene mod-
ulations observed across all subjects. On the bottom: number of modulated
genes for each subject across the pathway.

for the complete list of all enriched pathways). Consistently with what was
observed at the gene level, also the canonical pathway activation was vari-
able across the study population. The pathway found as the most frequently
enriched at 24 hours, cytokine signaling in immune system, was enriched in
less than 50% of the subjects (28 out of 60, see Figure 5.1 ¢). Figure 5.2
represents a more detailed example of how gene modulation within a repre-

sentative pathway varied greatly across the different vaccinated subjects.

Collectively, the pattern of enrichment observed 24 hours post vacci-
nation pointed to the activation of cytokine signaling pathways, including
Interferon-y and Interleukins 12 and 6. IFN-v is both a marker of Tyl,
CD4, CD8 and Natural Killer cells and an antiviral mediator which, in the
context of influenza induces the MzA protein, an inhibitor of Influenza A
replication [76]. IL-12 is a T cell-stimulating factor and reduces the IL-4
mediated suppression of IFN-v production [77]. IL-6 is a marker and media-
tor of ongoing inflammation mediated by the innate immune cells (dendritic
cells, macrophages). In the context of an influenza A viral infection it has

been shown to be required for viral clearance [78|; and it also plays an impor-
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5.2. Evaluating pathways enrichment through a permutation test

tant role in modulating and switching the innate immune response towards
an adaptive response [79]. Seven days post vaccination, we observed less
consistent responses: pathways were found to be enriched in less than 30%
of the subjects (up to 17 out of 57). Signals pointed to B cell proliferation
signals and plasmablasts activity. B cells are key players of the cellular im-
munity and their replication leads to the generation of high-affinity plasma
cells, which secrete high-affinity antibodies, and memory B cells, which con-
fer immunological memory and strong responses to subsequent exposures to
the same antigen [18] [20]. Plasmablasts are the B-cell lineage precursors of
non-dividing plasma cells. These are antibody-secreting cells which retain

membrane bound antibodies and migratory potential [80].

5.2 Evaluating pathways enrichment through a

permutation test

We tested whether the pathway enrichment was indicative of a true biological
signal or if it was observed by chance. This could be achieved by applying

the following bootstrap-based procedure:

o We generate pairwise subject combinations to calculate the Jaccard
similarity coefficients based on the number of commonly modulated
genes between subjects. This calculation is executed including only

the n genes belonging to the pathway.

e For each subject combination, we generate 1000 Jaccard control coef-
ficients by random sampling n genes 1000 times (where n represents
the number of genes in the pathway). The bootstrap is executed on all
the genes studied in this work, excluding the genes belonging to the

pathway currently being examined (5000 — n)

e We consider a pathway as significantly enriched for a subject pair if
its Jaccard coefficient is higher than the 95% quantile of the control

values.

The rationale for this was that genes belonging to the same functional
pathway typically show more coordinated modulation when compared to

randomly assorted genes. We executed this analysis first by restricting the
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Chapter 5. Functional characterization of individual subject response profiles

subjects to those who showed enrichment in a pathway (see Figures 5.3 and
5.4 for days 1 and 7 respectively) and then including every subject in the
calculation, regardless of pathway enrichment (see Supplementary Figures
A3 and A.4).

Overall, we observed that despite the substantial response heterogeneity
across different subjects, there was a convergence towards more consistent
modulation for genes participating to biological processes involved in the
vaccination response. The Jaccard similarity coefficients generated from true
pathway data were significantly higher (above the 95% Confidence Interval
control threshold) when compared to reference control distributions gener-
ated through a permutation test. Because of this observation we regarded
the results of the pathway enrichment analysis as reliable indicators of the
underlying biological processes. As an example, the pathways which were
found as the most frequently enriched 24 hours after vaccination (Cytokine
Signaling in Immune System and Interferon Gamma Signaling) displayed
values well in excess of the 95% Confidence Interval thresholds, an obser-
vation valid not only when looking at subjects which displayed enrichment
in those pathways (see Figure 5.3), but also when considering the complete

cohort (see Supplementary Figure A.3).
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Figure 5.3: Most frequently enriched pathways within day 1 individual sub-
ject transcriptomes. The analysis is executed only on subject pairs showing
enrichment for the specific pathway. The Jaccard similarity coefficients asso-
ciated to the pathway genes are shown in red. The mean of the 1000 control
Jaccard indices obtained through the bootstrap procedure is shown in black.
The 95% quantile of the bootstrap values is shown through a dashed line.
The shadow in gray represents the 95% Confidence Interval of the bootstrap
values distribution.
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Figure 5.4: Most frequently enriched pathways within day 7 individual sub-
ject transcriptomes. The analysis is executed only on subject pairs showing
enrichment for the specific pathway. The Jaccard similarity coefficients asso-
ciated to the pathway genes are shown in red. The mean of the 1000 control
Jaccard indices obtained through the bootstrap procedure is shown in black.
The 95% quantile of the bootstrap values is shown through a dashed line.
The shadow in gray represents the 95% Confidence Interval of the bootstrap

values distribution.
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6 Characterization of vaccination-specific

modulated gene pools

In this chapter we describe our approach to obtain pools of genes
showing a consistent modulation in response to vaccination. This
is done by comparing the number of subjects in which genes are
differentially expressed with the random expectation of observing
gene modulations across the dataset. We also functionally char-
acterize these genes taking into account the seroresponse of the

subjects.

6.1 Definition of the pool of vaccination-induced

genes

With our framework we established gene modulation comparing the tran-
script abundance of individual genes against a reference distribution. As
such, this approach may be affected by type-I error, which translates into
the wrongful detection of modulated genes. To identify the pool of genes that
can be assumed to be modulated by vaccination, we computed the probabil-
ity of a modulated gene to appear in multiple subjects by random chance and
compared it to the frequencies of modulation observed in the dataset. Based
on this comparison, genes appearing with higher frequency than randomly
expected were assumed to be modulated in response to the vaccination. This
method was in part inspired by the work from Menche and colleagues (see
Section 1.5.2).

We determined the number X of subjects in which a gene must be mod-

ulated in order to be included in our vaccination-induced gene pool. To use
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X as a threshold for inclusion, we had to establish how many modulations of
the same gene can be observed across two or more subjects due to random
expectation. In the null model, each subject can show g modulated genes
drawn randomly out of G total genes. The probability for one gene to be
modulated in k£ out of n subjects can then be calculated using the binomial

distribution, where p = &

f(k;n,p) =Pr(X = k) = (:) PP —p) Tt (6.1)

Consequently, it is possible to calculate the number of subjects per gene
(and obtain the relative histogram) using the mean number of genes observed
by multiplying G x (f;n,p). Below, we outline the individual steps used to
execute this analysis in our work. The calculations are executed separately

for each time point.

e The R function rbinom(n, size, prob) is used to generate 1000 bi-

nomial distributions with the following parameters:

— the number of observations n is set to 5000 (number of genes
under examination)

— the number of trials (size) is set to the number of available sub-
jects at the specific time point under analysis

— the probability of success on each trial (prob) is set to the mean
value of modulated genes across subjects divided by the total

number of genes

e Each of the 1000 distributions is used to infer the minimum number of
subjects X, in which the number of shared modulated genes across

subjects is zero.

e The threshold X for inclusion in the vaccination-induced gene pool is
defined by selecting the 95" percentile of the computed X, values.
This allows to identify genes with a probability of being modulated

across multiple subjects of less than 5%.

The applied combinatorial method resulted in the following thresholds:
Xday 0 = 16, Xgay 1 = 25, Xqay 7 = 19, Xgay 70 = 17, meaning that to be
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6.1. Definition of the pool of vaccination-induced genes

included in the vaccination-induced gene pool, a gene must be modulated in
more than 16, 25, 19 and 17 subjects for days 0, 1, 7 and 70, respectively. A
gene exceeding these thresholds can be reasonably attributed to the vaccine-

induced gene response.

This allowed to identify a core pool of 341 genes for day 1 and 135 genes
for day 7 (see Figure 6.1 and Supplementary Tables B.8 - B.9). We applied
the same test to day O response profiles (observed before vaccine adminis-
tration) as negative control and we did not identify vaccination-associated
genes. In accordance to our previous observations, also within these gene
pools the response appeared to be more robust at day 1 compared to day
7. At day 1 we observed a median number of subjects in which a gene
was modulated of 30 (50% of the 60 subjects, CIQR: ! 27-35), whereas at
day 7 the median number was of 25 (44% of the 57 subjects, CIQR: 21-
30). In accordance with our previous observations, modulation of the two
vaccination-induced gene pools was heterogeneous across the cohort: while
some subjects displayed almost complete modulation across the pool, others

showed limited response.

24 hours post vaccination we found modulated genes which pointed to
inflammation and antiviral responses, in accordance to what we previously
observed through pathway enrichment analysis (see Section 5.1). As an ex-
ample, we observed IRF1 and STAT1 (modulated in 45 and 44 subjects out
of 60, respectively), which are involved in regulatory pathways that enhance
the expression of mononuclear chemokines [81|. IRF1 is an interferon reg-
ulatory factor which sustain transcriptional response. Its transcription is
activated both by INF-v activated STAT1 and TNF-activated NFxB, which
bind to their respective promoters of IRF1 [82]. SOCS3 was observed as
upregulated with the highest frequency across the cohort (51 subjects out of
60). It is induced by various cytokines (such as IL-6, IL-10 and INF-v) and
acts as a suppressor of cytokine signaling. It is induced during influenza in-
fection to regulate the production of pro-inflammatory cytokines. Influenza
A virus infection can also actively enhance upregulation of SOCS3, contribut-
ing to excessive production of IL-6 during infection, aiding viral replication
[78]. The previously described CXCL10 gene (see Section 3.3) was also ob-
served in the day 1 gene pool. The modulated genes found in the day 7

pool were consistent with the signals observed through pathway enrichment

! Central InterQuartile Range
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Figure 6.1: Vaccination-induced gene pool (day 7, 135 genes). Each row
corresponds to a gene and each column to a subject. On the right: number
of gene modulations observed across all subjects. On the bottom: number
of modulated genes for each subject across the gene pool.
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analysis. Briefly, we observed signals pointing to B and T cell proliferation,
plasmablasts activity and signals pointing to immunoglobulin production
(further details will be described in Section 6.3).

6.2 Classification of subjects into high- and low

responders

In line with the approach from Tsang et al. [1|, we stratified the study
subjects into high and low responders to wvaccination, based on their day
70 sera ability to neutralize the virus. This was done using the influenza
virus MicroNeutralization (MN) assay data (see Section 2.1.2). Tsang and
colleagues [1] defined high and low responders by selecting the subset of
subjects which were below the 20" and above the 80" percentile mark of
the metric. We chose to follow a different approach in order to retain the
majority of the subjects in the classification process: subjects were split into
the two classes using the median value of MN titers (3.71); subjects with MN
titers above the median value were classified as high responders, while those
with MN titers below the median were classified as low responders. Taking
into account the limited study data availability of MN titers, we could classify
and include in subsequent analyses 48 and 46 subjects from days 1 and 7
respectively, out of the 60 and 57 total subjects which we previously observed

through transcriptome and pathway enrichment analyses.

6.3 Functional analysis of the day 7

vaccination-induced gene pool

Due to previous knowledge [15] [21] [46] [1] regarding the expected time
frame of the adaptive immune responses, we focused our analysis on the
day 7 vaccination-induced gene pool and tried to identify potential genes
whose response could be predictive of the functional antibody response to
vaccination. Starting from the 135 vaccination-induced genes we were able
to identify a subpool of 66 genes that were specifically modulated in the
high responder subject class (see Supplementary Table B.8). This was done
using the Fisher exact test (one sided, p-value < 0.05, Benjamini Hochberg
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Chapter 6. Characterization of vaccination-specific modulated gene pools

correction) using the contingency Table 6.1. By observing the modulations
of a gene in relation to the subject class we can test if there is a significantly
higher proportion of modulated genes within a specific class with respect to

the total number of modulations observed across all subjects.

‘ Modulated gene ‘ Non modulated gene
High responders a c
Low responders b d

Table 6.1: Contingency table used to test for genes associated to the high
responder subject class via Fisher test. A table is generated for each of the
135 genes from the vaccination-induced day 7 gene pool. a - b Instances
in which a gene is modulated in the high or low responder subject class,
respectively. ¢ - d Instances in which a gene is not modulated in the high
or low responder subject class, respectively. The sum of a, b, ¢ and d is the
total number of subjects.

Clear transcriptional signals coherent with the immune response, specif-
ically the B-cell mediated humoral response, could be detected in the com-
plete day 7 vaccination-induced gene pool of 135 genes. We observed
upregulation of TNFRSF17 in 52 out of 57 subjects. This is known as the
B-cell maturation antigen, which is predominantly expressed on differenti-
ated B cells and mediates the survival of plasma cells involved in long-term
immunity [83]. MZB1 was also detected as positively modulated in 50 sub-
jects. This gene encodes for the protein of the same name which regulates
IgM assembly and secretion [84] [85].

Regarding the high-responder subpool of 66 genes obtained through
the Fisher test shown above, we observed up regulation of the JCHAIN gene
in 47 subjects, this encodes the joining chain of multimeric IgA and IgM [86]
and it is transcribed during B- and T-Cell lymphopoiesis [87]. Also mod-
ulated (40 subjects) is the ELL2 elongation factor for RNA polymerase II.
This factor drives the production of mRNA specific to immunoglobulin secre-
tion [88] by enhancing both polyadenylation and exon skipping in the gene
encoding the immunoglobulin heavy-chain complex [89]. We detected up
regulation of ERLEC1, an endoplasmatic reticulum lectin that functions in
N-glycan 2 recognition [90] and protects immature polypeptides from degra-
dation [91]. POU2AF1 (also positively modulated) restricts the ubiquitous

2N-linked Glycosylation: biosynthetic process that regulates the maturation of proteins
through the secretory pathway.
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6.3. Functional analysis of the day 7 vaccination-induced gene pool

activity of its promoter in B cells [92] and it is required for the VDJ recom-
bination of immunoglobulin x genes [93]. We observed both CD38 and IRF4
genes upregulated in 42 and 37 subjects respectively. The first orchestrates
Thl response, migration and survival [94], while the second sustains CD8"
T cell differentiation and cell expansion [95] and more broadly coordinates
T helper cell fate [96]. Lastly, CAV1 was up regulated in 39 subjects. In B
cells it controls the distribution of B cell antigen receptors on the cell surface
[97], while in T cells it regulates T cell receptor signal strength and T-cell

differentiation into alloreactive T cells [98].
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7  Association of transcriptome data with

humoral immune response

In this section we show how the magnitude of vaccine-induced
transcriptome modulation, defined as the proportion of modulated
genes in each subject, is associated with the seroresponse assessed
70 days after vaccination. We also provide evidences suggesting
that latent variables, like pre-existing immunity to the vaccine,
age and gender do not have a major impact on the modulation of
the peripheral blood transcriptome. Finally, we describe the con-
struction of a Machine Learning model which allowed to identify
genes that are predictive of subjects’ immune response to vaccina-

tion.

7.1 Day 7 transcriptome response is associated

with the functional antibody response

In this part of the study we investigated whether the transcriptome response
to the vaccination could be linked to subjects’ seroconversion observed 70
days post vaccination. Starting with the pools of vaccination-induced genes
(defined in Chapter 6), we tested whether the proportion of modulate genes
within each subject was correlated to the day 70 functional antibody re-
sponse. The percentage of modulated genes for each subject was used as as
predictor of the antibody response. Day 1 and day 7 transcriptome profiles
were analyzed separately. Antibody responses, defined as the Influenza Mi-
croNeutralization (MN) titers measured 70 days post vaccination, were used
to stratify the study subjects into two discrete classes: high and low respon-

ders. As outlined in Section 6.2, subjects with MN titers above the median
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Figure 7.1: a Reverse cumulative distributions of the number of subjects
showing modulation of the genes belonging to the day 1 and day 7 pools. Y-
axis: subjects in which n genes (on the X-axis) are observed. b Percentage of
modulation observed in the pools across each subject. In both plots, subjects
are ranked in a decreasing Y-axis value manner, disregarding subject identity
across time points.

value of the cohort were classified as high responders, while those with MN

titer values below the median were classified as low responders.

Figure 7.1 shows the number and percentage of genes belonging to the
vaccination-induced gene pools which were found modulated in the individ-
ual subject transcriptome profiles. Day 1 individual subject response profiles
showed an overall higher number of modulated genes compared to the day
7 transcriptome responses. The number of modulated genes, at day 1 was
of 175 (median number of genes across the individual response profiles) out
of 341 (CIQR: 123-247), whereas day 7 profiles showed a median of 54 mod-
ulated genes out of 135 (CIQR: 24-93, see Figure 7.1 a). In relative terms,
this translated in 51% modulated genes (median; CIQR: 36-72%) for day 1
and 41% modulated genes (median; CIQR: 25-68%) for day 7 (see Figure 7.1
b).

We compared the magnitude of transcriptome modulation, defined as
the percentage of differentially expressed genes in the vaccination-induced
gene pools, with the high and low responder subject classification. This
highlighted differences between day 1 and day 7 transcriptome responses;

while day 1 individual response profiles did not differ significantly between
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Figure 7.2: a-b Percentage of modulation in the day 1 and day 7 vaccination-
induced gene pools shown in relation to the immunological response classi-
fication based on day 70 Influenza MicroNeutralization titers. c-d Distribu-
tions of vaccination-induced gene pools modulation percentages grouped by
immunological response classification.
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Figure 7.3: Smoothed ROC curves of the immunological response classifica-
tion predictions inferred using the modulation percentages of the vaccination-
induced gene pools calculated from the individual subject transcriptome re-
sponse profiles.

the two subject classes, day 7 profiles showed a remarkably higher modu-
lation within the high responders subjects (see Figure 7.2). Specifically, at
day 7 the median modulation of the vaccination-induced gene pool in sub-
jects classified as high responders was 63% (CIQR: 55-86%), while in low
responders we observed a median value of 27% (CIQR: 20-45%). The dif-
ference was statistically significant (day 7 p-value = 0.002, day 1 p-value =
0.964, two-sided Kolmogorov-Smirnov tests, Benjamini-Hochberg correction
for multiple testing). This trend was not observed at day 1, in which high
responders displayed a median modulation of 49% (CIQR: 36-70%) and low
responders exhibited a similar centrality of 51% (CIQR: 41-75%).

Based on these observations, we next assessed the ability of day 7 re-
sponses to stratify the subjects into high and low responders (see Figure
7.3). We built the ROC curve ! and calculated the AUC 2 using the R pack-
age pROC [100]. The percentage of modulated genes within each individual

subject was chosen as predicting variable, while the subject class (high/low

! Receiver Operating Characteristic curve. It is a graphical representation that illus-
trates the diagnostic ability of a binary classifier [99].

2 Area Under the Curve: measure of the ability of the test to correctly discriminate
between the binary classes, with a value of 1 being a perfect classification.
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7.2. Subjects’ age, gender and pre-vaccination status have no influence on whole blood

transcriptome responses

responder) obtained from day 70 MN titer data was the target variable to
predict. We observed that day 7 transcriptome data was able to discriminate
between the high and low responder subject classes, whereas day 1 data was
not (AUCs 0.81 and 0.53 respectively). This result was in agreement with the
general notion that day 7 blood-derived signatures reflect the establishment

of the humoral immune response.

7.2 Subjects’ age, gender and pre-vaccination
status have no influence on whole blood

transcriptome responses

We investigated whether the intrinsic variables (age, gender and pre-existing
immunity) had an effect on the whole blood transcriptome response. For this
purpose, we observed the proportion of modulated genes in the vaccination-

induced gene pools 3 in relation to the data from the intrinsic variables.

We were unable to observe any relevant association between subjects’
age and the percentage of gene pool modulation, both at days 1 and 7 (p =
-0.09, -0.17; p-value = 0.49, 0.44 for days 1 and 7 respectively, Spearman’s
Rank Correlation Coefficient, see Supplementary Figure A.5 a-b). Similarly,
also subjects’ gender was found not to be associated with gene modulation
(ROC’s AUCs = 0.57, 0.62 for days 1 and 7 respectively, see Supplementary
Figure A.5 ¢). We examined pre-existing immunity (see Section 2.1.2)
in relation to the proportion of modulated genes in the vaccination-induced
gene pools. We stratified subjects based on their pre-existing immune sta-
tus using MicroNeutralization titers data. Subjects with values below the
limit of detection were defined as not pre-immunized to a viral strain and all
other subjects as pre-immunized (see Table 7.1). Throughout the data we ob-
served a prevalence of pre-existing immunity to the seasonal influenza strains
(A /Brisbane, A/Uruguay, B/Brisbane), while the majority of the subjects
did not exhibit pre-existing immunity to the pandemic strain (A /California).
We attempted to predict the pre-immunized and not pre-immunized subject
classes using the percentages of vaccination-induced gene pool modulation
at days 1 and 7 (see Supplementary Figure A.6). The percentage of pool

modulation was unable to predict the pre-immune status of the subjects:

3 See Chapter 6 for gene pool definition.
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Viral strain ‘ No ‘ Yes ‘ Day 1 AUC ‘ Day 7 AUC

A /California/07/Swine | 42 | 15 0.57 0.54
A/Brisbane/59/07 | 17 | 40 0.51 0.59

A /Uruguay/716/07 | 7 50 0.59 0.71
B/Brisbane/60/2001 | 19 | 38 0.58 0.75

Table 7.1: Pre-existing immunity to viral strains based on Microneutraliza-
tion Titer data and ROC AUCs obtained by associating the percentage of
modulation of the vaccination-induced gene pools to pre-existing immunity
data. Yes/No: presence/absence of pre-existing immunity. Day 1 AUC /
Day 7 AUC: AUCs obtained when the percentages of modulation observed
in the vaccination-induced gene pools were associated to the pre-existing
immunity.

ROCs for both days 1 and 7 exhibited AUC values between 0.51 and 0.75
(see Table 7.1 and Supplementary Figure A.6). It is important to note that
due to class imbalance 4 a high enough AUC would still not have been a

sufficient reason to claim the association between the two parameters.

7.3 Identification of candidate genes involved in

the magnitude of the immunological response

We have already described how the percentage of modulated genes which
belong to the day 7 vaccination-induced gene pool was associated with the
serological response observed 70 days post vaccination (see Section 7.1). To
further examine this association, we built a Machine Learning model. This
enabled us to test the ability of the transcriptome response to predict anti-
body response and to gather more detailed information on which genes are
the most informative. This aids the formulation of biological hypotheses

regarding the mode of action of the vaccine.

4 This occurs when the class distribution is imbalanced. To avoid many machine
learning algorithms to have low predictive accuracy for the infrequent class, a cost-
sensitive approach must be employed. In addition, undersampling/oversampling of fre-
quent/infrequent classes may be required.
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response

7.3.1 Random Forest

Random Forest (RF) is a machine learning approach based on decision tree
learning. A decision tree is a flow-chart-like structure with the following

main components:

e node: represents a test on an attribute (i.e. is a gene modulated?)

e branch: originates from the node, corresponds to the outcome of a test

on an attribute (i.e. the gene is modulated / the gene is not modulated)

e leaf: terminal node of a decision tree. It holds a class label, which is
the decision taken by the tree after executing all the tests that led to
that particular leaf (i.e. the subject is a high / low responder).

A tree is built by splitting the training data (which constitutes the root
node of the tree) into random subsets, this is called bagging. The splits of
the tree are then defined using a random subset of the classification features

(the genes in our study, see Figure 7.4 a).

The RF algorithm [101]| generates multiple individual decision trees
(the forest, see Figure 7.4 b). Each tree is generated by randomly selecting
subsets of the training data (bagging, described above). For each node of
the trees a predefined number of all predictors is randomly sampled in order
to choose the best split from among those features [102]. In doing this,
the algorithm assigns a score to the features, identifying those with higher
predictive power. This process is what defines feature importance: the
RF algorithm estimates the importance of a feature by assessing how much
prediction error increases when data for that feature is permuted, leaving all
the others unchanged [102]. In the context of this work, these scores allow

to identify those genes which higher discriminant (or predictive) power.

The multiple trees generated by the algorithm operate as an ensemble:
where a single tree would perform poorly in generalizing the classification
problem, an ensemble is able to overcome this limitation. A large number
of trees operate as a committee in the classification problem and the final
prediction of the model will be based on the majority vote obtained from the

whole forest.
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response

7.3.2 Guided Random Forest

In Guided Random Forest (GRF), first a regular RF is built. Next, an-
other run of the algorithm is executed, with the difference that the features
are weighted using the importance scores calculated for each feature by the
regular RF [103]. The features that are less important in the regular RF
are penalized in the GRF. The results from this model are expected to be
relevant for the classification problem, but not necessarily non-redundant.
Relevancy consists in the fact that the identified genes will be those able
to discriminate between subject classes. Non-redundancy stems from the
fact that two different genes might predict with the same predictive power
the subject class, but the GRF is not able to define if those genes are both
needed to predict the subject class, or if only one of them (and which one)

is needed.

7.3.3 Guided Random Forest model construction

We decided to utilize the Guided Random Forest approach due to its reported
superior performance compared to RF (|103], also observed by us). We used
the implementation found in the RRF R package [103] [104] [105]. Genes
from the individual response profiles were utilized as predictive variables by
considering their modulation status (modulated vs non modulated) and not
taking into consideration the direction of the modulation (up-regulation vs
down-regulation). The robustness of the prediction was assessed using a 5-
fold cross-validation. This was achieved by splitting the dataset into five
stratified ® subsets (with comparable proportion of high and low responders)
using the caret R package [106]. Within each cross-validation run, four
datasets were iteratively used for training the models, while the remaining

one was used for testing (see Figure 7.5).

To build the five GRF models, we initially performed a parameters
optimization procedure. Through this procedure we were able to define
the optimal number of trees needed for each GRF and the adequate number

of features (genes) to use for each split along the trees. By running a test

S5Stratified sampling: the population is divided into homogeneous subgroups before
sampling. Each subgroup is then sampled by a fraction which is proportional to that of
the total population. This allows in our case to have the same proportion of high and low
responders in each of the five splits.
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Figure 7.5: 5-fold cross-validated Guided Random Forest approach. From
the full day 7 dataset a 5-fold stratified sample is executed. The resulting
five splits are used to iteratively train and test five Random Forests. The
Guided Random Forests are then obtained by weighting the features with
the coefficients obtained from the Random Forests.

GRF we found 3 x 10% trees to be the optimal value to achieve stabilization
of the Out Of Bag (OOB) error ¢ without incurring into overfitting across all
five models. The number of features to randomly sample at each split of the
decision trees was set as the square root of the total number of features (135
genes from the day 7 vaccination-induced gene pool, mtry = /135 ~ 12).
This corresponded to the default suggested value. Subsequently, we screened
a range of these values (1 < mtry < 40) by building multiple models and
evaluating the mean OOB error. The lowest errors were observed at values
4,9 and 21 (mean OOB error of 19%, 22% and 26% respectively). In the
main text we present the results obtained with miry = 4, while the runs
with mtry = 9 and 12 are shown in the Supplementary Figures A.7 and A.8.
We obtained five GRF models with a mean classification accuracy of 80%
(100%, 80%, 78%, 67% and 78% across models, with AUCs of 100%, 72%,

50ut-of-bag error. Since during the training procedure the RF algorithm generates
each tree using a random sample of the original subjects (bagging), it is possible to test
for errors in model prediction by using the subjects which were not selected to build that
particular tree. OOB is the mean prediction error on each training sample [107].
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response

70%, 75% and 70% respectively, see Figure 7.6 a-b).

Feature selection was based on the mean decrease Gini 7 as a measure
of feature importance. 8 We calculated the median value of the mean de-
crease Gini for each gene across the five GRF models to rank the features.
To understand which genes were driving the classification of the GRFs, we
examined the top 10 informative features of each model and assessed their
stability across models (see Figure 7.6 c-d). 3 of these genes were shared
across all five models, 6 genes were observable in four out of five models and
1 was found in three models. GLDC was one of the most informative genes
in driving subject classification across models as it was consistently observed
in all GRF models. It encodes a mitochondrial glycine decarboxylase, which
confers survival advantage to T cells in hypoxic environments such as sites
of infection [109] [110]. HIST1H3G is a replication-dependent histone pro-
tein which peaks in expression during the S-phase [111] and it was found
consistently in all five models. We also observed ZBP1 (4 out of 5 GRFs), a
cytosolic DNA sensor which induces the DNA-mediated interferon response
[112] and APOBEC3B (3 out of 5 models), a cytosine deaminase induced
by viral infection [113]. Among these genes we also observed both IRF4
and POU2AF1 (4 out of 5 models, we described their functions Section 6.3).
Looking at these genes, there are evident signals pointing at B and T cell
replication and interaction in the context of an immune response to infection.
Additionally, the POU2AF1 gene is required for the VDJ recombination of
immunoglobulin x genes [92]. This could be indicative of an immunoglobu-
lin affinity maturation process which is primarily observed within the high
responders group. Overall, the results obtained through our machine learn-
ing approach suggests that the highest humoral immune response of high

responder subjects, measured 70 days post vaccination, could be the result

"The mean decrease in Gini coefficient is a way of measuring feature importance. The
more the accuracy of the random forest decreases due to random assignment (or exclusion)
of a feature, the more the feature itself is regarded as important. Features with a large
mean decrease in accuracy (higher Gini coefficients) are regarded as important for the
classification problem [108].

81t has been argued by Strobl and colleagues [108] that suboptimal predictor features
may be artificially preferred when using the Gini index as a selection criterion. This
problem occurs for features with a high number of categories when compared to other
features, with different scales of measurement and if continuous features are present (these
are preferred over the categorical features). In this study we are not concerned by these
problems because we are not using continuous features and because our number of possible
categories are all equal, since data is all discretized into 0 or 1 (absence/presence of
modulation respectively).
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of a more robust B cell activation and affinity-maturation process occurring
as early as 7 days after vaccine administration. This is in line with what has
been proposed by other independent studies [15] [21] [46] [1].
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Figure 7.6: Guided Random Forest results (mtry = 4). a Classification
accuracy of the models (percentage of correctly classified subjects). b ROC
curves and AUCs of the models. ¢ Number of occurrences across the five
models of the most informative genes. From each model, the top 10 most
informative features are reported. The y-axis indicates the number of models
in which a gene was observed in the top 10. d Top 10 most informative genes
across GRF model ordered by median of the mean decrease Gini coefficients
(higher values correspond to higher feature importance).

69






& Discussion

It is increasingly believed that group-wise analyses of perturbations on a
complex system may not be suitable to fully capture the range of responses
exhibited by individual subjects. In the context of vaccinations, suboptimal
responses from a subset of subjects may be determined by both heritable
and non-heritable influences. However, demographic and socioeconomic dif-
ferences could render age classes or even entire populations not able to gain a
suitable degree of protection from a particular vaccine formulation. Group-
wise methods are optimal for capturing signals that are consistently found in
most tested subjects, but they are not sensitive enough for detecting subtle
changes, where variance and noise can hide the signal. Additionally, modu-
lations occurring in a small proportion of tested subjects are also generally

lost.

The aim of our work was to extract, from vaccine response data, a
higher amount of information compared to canonical group-wise methods.
For this purpose, we developed a new data analysis framework for the gen-
eration and functional characterization of individual subject transcriptome
response profiles and benchmarked it on a non-adjuvanted HIN1 vaccina-
tion dataset. We were in part inspired by Menche et al. [2]|, which developed
an approach to describe subject heterogeneity among cohorts of disease-vs-
healthy subjects. In this work we instead described variability in the same
cohort across multiple time points. The individual transcriptome response
profiles resulting from our pipeline are arrays of categorical gene modulation
data and as such we believe these objects to be easily interpretable and com-
parable across not only different experimental conditions, but also distinct

studies.

As an example we have shown the CXCL10 gene, which was among the

most strongly modulated genes in response to the two subunit influenza
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vaccines, to be inconsistently modulated across subjects, a property shared
by every gene in the dataset. With our approach it was possible to accu-
rately assess its response variance as well as identify the subset of subjects
in which this gene was modulated. Generalizing, it was possible to decipher
the transcriptome response pattern of each subject and to observe

characteristics that were not captured by conventional group-wise analyses.

This result was achieved by developing a bioinformatic pipeline aimed
at deriving individual transcriptome profiles based on temporal differences
in genes’ modulation. The pipeline analyzes transcriptome data on a gene-
by-gene basis to derive which genes show a temporal behaviour indicative of
a perturbation induced by a treatment (in the context of our study, influenza
vaccine administration). By generating a control distribution of gene expres-
sion values from the whole study subjects’ data prior to vaccination, we could
assess the variance of the transcript abundance across subjects and define
threshold values which a gene should exceed in order to be considered modu-
lated by the treatment. However, gene expression is a biological process and
as such it has a degree of stochasticity associated to it. This characteristic
can lead to discover not only modulated genes, but also a number of false
positives. We compensated for this by implementing a bootstrap step in our
pipeline. The bootstrap allows to repeat the test for each gene multiple times
and provides a quantitation of how reliable the call of a modulated gene is.
After evaluating the transcriptome response as deviations from multiple ref-
erence distributions, we continued the analysis by taking into consideration
the discrete modulation status of a gene. Meaning that each gene was con-
sidered as up-regulated, down-regulated or non-modulated, without taking
into consideration the actual quantitative changes in transcript abundance
values. This allowed us to employ analysis techniques only suited for cate-
gorical data. Finally, such categorical data may be easily compared across

studies.

By analyzing the individual subject transcriptome profiles obtained
with our pipeline, we found the day 1 responses to be more consistent than
those observed at day 7, as indicated by the higher Jaccard similarity among
subjects. This temporal decrease in similarity may be interpreted as the re-
sult of cumulative differences that add up along the chain of immunological
events triggered by vaccination. Despite significant overlaps across the indi-

vidual perturbation profiles, no gene was found to be constitutively expressed
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in all vaccinated subjects. This last consideration reinforces the hypothesis
that group-wise analysis approaches may not fully capture modulations that
occur in a subset of analyzed subjects and it suggests that such events occur

regularly and, as such, should be accounted for.

We wanted to understand whether, despite the observed heterogeneity in
our transcriptome profiles, there were any biological processes being consis-
tently activated in a in response to vaccination. Thus, we examined our pro-
files in relation to metabolic molecular pathways. Menche and colleagues
[2] hypothesized that differentially expressed genes in the same biological
pathway may lead to similar phenotypical outcomes in the context of dis-
eases, regardless of the identity of the pathway’s gene. They reached this
conclusion by observing higher similarity in pathway enrichment across sub-
jects when compared to individual gene perturbations. From the results of
our work, this seems to be applicable also in the context of immune system’s
perturbations. Overall we observed that despite the substantial response het-
erogeneity across different subjects, there was a convergence towards more
consistent modulation for genes participating to biological processes involved
in the vaccination response. From this analysis we observed the activation
of cytokine signaling pathways (including INF-v, IL2 and IL6) 24 hours post
vaccination and cell proliferation and activation signals (arguably a signature

of plasmablasts activity) seven days after the vaccine administration.

Subsequently, we wanted to determine whether our gene modulation data
could be associated with the seroresponse observed through the MicroNeu-
tralization titers data obtained 70 days following vaccination. Above we have
described our supervised approach, which relied on predefined pathway an-
notations, to obtain signals that could point to the biological functions which
may have been activated by the vaccination and may lead to the develop-
ment of adaptive immunity. However, we wanted to precisely define which
genes were modulated by the vaccines, so we opted for a non-supervised ap-
proach. Genes were selected based on their behaviour within the different
time points of the study, without relying on external information. We ob-
tained vaccination-induced gene pools: groups of genes whose modula-
tion could be reasonably asserted to the vaccine-induced stimulus. We found
that the magnitude of transcriptional response (number of significantly mod-
ulated genes within the gene pool), measured 7 days post-immunization, was
associated (AUC = 0.81) with the magnitude of the humoral antibody re-
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sponse to vaccination, a property which was not shared with the day 1 gene
pool. This could be justified by the fact that at 24 hours we prevalently
observed signals from the innate immune response, whereas after a week
there were clear signals from the adaptive response, which in turn could lead
to the generation of functional antibodies. Albeit this last process might
be influenced by the innate response, we could not find any apparent link
between the two responses. As stated, the pools were generated without
a priori knowledge of gene function. Nonetheless, they included genes in-
volved in the innate and the adaptive immune responses at days 1 and 7
respectively, which reinforced our confidence in this unsupervised approach.
Some of the genes (i.e. TNFRSF17 and MZB1) were modulated across sub-
jects, whereas others (i.e. JCHAIN, ELL2, ERLEC1) showed up regulation
mainly in high responders. All subjects displayed B cell activation and anti-
body secretion signals, in addition high responders presented transcriptional
activities bound to VDJ recombination, glycan and immunoglobulin biosyn-
thesis, T cells differentiation and cell expansion. In Section 1.2.2 we outlined
the processes which are involved in the generation of an adaptive immune
response, which can lead to the development of immunological memory, the
end goal of vaccination. The signals that we observed from the day 7 vacci-
nation induced gene pool pointed exactly to these processes: Lymphocytes
B and T were activated and signs of interaction between these cells could be
observed. Such interaction can lead to the generation of high-affinity plasma
cells and memory B cells. In this study, observing such signals demonstrates
that our method correctly captured the effects of two influenza vaccines of
known efficacy. In other studies, the presence/absence of these signals could
point to the efficacy or inefficacy of a vaccine in generating immunological
memory. Additionally, in this particular study it is reasonable to assume that
low responders could be reacting less to the vaccination event due to pre-
exposition to the influenza viruses targeted. Although Tsang and colleagues
[1] specify that most of the cohort was naive for the pandemic virus, the same
could not be said for the seasonal virus. Since both vaccines for pandemic
and seasonal HIN1 viruses were administered to all study subjects, it was
not possible to discriminate between a lack of response intensity due to vac-
cine ineffectiveness, pre existing immunity or the potential cross-reactivity
of memory B cells [39] [114].

Next, we further investigated if the previously described transcriptome
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data of the day 7 vaccination-induced gene pool was able to predict the mag-
nitude of the antibody response, referred to through the categorical high and
low responder subject classes. We executed feature selection on a Machine
Learning model to determine which genes were driving the magnitude in
serological response observed 70 days post-vaccination. We observed sig-
nals pointing to B and T cell replication and interaction in the context of
viral infection as well as evidences of immunoglobulin generation, although
components of the innate response were also observed (i.e. the ZBP1 gene,
which is involved in the DNA-mediated interferon response). The identified
genes did not exhibit the highest values of Fold-Change when examined via
canonical case versus control group analysis, but rather they were mainly
(although not exclusively) modulated in high responders. Again, this high-
lighted the need to approach these kind of biological questions with methods

able to leverage individual subject data.

Finally, we tested whether latent factors like pre-vaccination serologi-
cal status, age and gender data could have an impact on individual tran-
scriptome response profiles. We were not able to identify distinct drivers
of differential vaccination response in the pre-vaccination and intrinsic
characteristics of study subjects. Gender was not a relevant factor, as well
as pre-existing immunity and age (in accordance to Tsang and colleagues [1]).
Regarding pre-existing immunity, there was a lack of ability in identifying
differences in the transcriptome responses due to the concurrent vaccination
with two distinct vaccine preparations (seasonal and pandemic HIN1 vac-
cines), as well as the possible lack of efficacy in a fraction of subjects and
potential cross-reactivity. Age is a known factor for differential vaccine re-
sponse, however this particular study was conducted on adults ranging from
21 to 62 years old, with no representatives from the most extreme age groups
(< 18 and > 65 years old).

In conclusion:

e We have developed a bioinformatic pipeline to define individual tran-
scriptome response profiles from vaccinated individuals. This approach
was successful in providing complementary information with respect to
group-wise based comparisons. Group-wise comparisons measure the
average shift of a response to a treatment, whereas our method pro-

vides a new dimension of information, represented by the frequency
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and identity of subjects in which a response occurs. Human peripheral
blood transcriptome response to influenza vaccination was found to be

highly heterogeneous.

e Despite the heterogeneity, we could identify core functional signatures
in the PBMC transcriptome data, suggesting that genes involved in
biological processes related to the response to vaccinations respond
more robustly. At day 1 we observed Cytokine signaling pathways,
including IFN-~, IL2, IL6, while seven days post vaccination we could
identify cell proliferation and activation signals (plasmablasts activ-
ity) and genes involved in VDJ recombination and immmunoglobulin

production.

e Day 7 transcriptome responses displayed B and T cell proliferation
signals, plasmablasts activity and signals pointing to immunoglobulin
production. The amount of these responses was found to be associ-
ated with functional antibody response (AUC = 81%). The GLDC
and HIST1H3G genes, respectively involved in the conferral of sur-
vival advantage to T cells in sites of infection and in cell replication,
were identified to be the most informative in the classification of high

and low responders.

The purpose of this study is to better characterize and understand hu-
man responses to vaccination and use these information to drive the im-
provement and optimization of new and established vaccines. The ability to
detect which genes are predictive of an optimal seroresponse to vaccination
and to determine the fraction of subjects in which these genes are modulated,
enables researchers to assess the fraction of subjects for which a vaccine is ex-
pected to be effective, leading to understand whether different formulations
could be more effective in distinct populations. We also envision an extension
of this methodology to multiple datasets with the aim of detecting shared
vaccination-induced signatures. This method was designed to be easily gen-
eralizable to all repeated-measure experiments and adaptable to different
omics technologies. Additionally, the approach can be deployed in cohort-
based studies with the aim of comparing the cohort-specific behaviours in
response to treatments or in the context of diseases. Our pipeline requires
little computational resources and can be fully executed on consumer grade

hardware, which is what was done during this entire work.
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Appendix A. Supplementary Figures

A.1 Group-wise analysis for DEGs (baseline: day
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Figure A.1: Mean expression level differences of genes, with differentially
expressed genes detected via group-wise analysis shown in red. The dashed
lines show the cutoffs for calling a gene differentially expressed: logs Fold
Change 0.5 (red lines), p-value < 0.05 (two-tailed, paired Wilcoxon signed-
rank test, blue line).
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A.2. Group-wise analysis for DEGs (baseline: day 70)

A.2 Group-wise analysis for DEGs (baseline: day
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Figure A.2: Mean expression level differences of genes, with differentially
expressed genes detected via group-wise analysis shown in red. The dashed
lines show the cutoffs for calling a gene differentially expressed: logs Fold
Change 0.5 (red lines), p-value < 0.05 (two-tailed, paired Wilcoxon signed-
rank test, blue line).
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Appendix A. Supplementary Figures

A.3 Permutation test on pathways (day 1)
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Figure A.3: Most frequently enriched pathways within day 1 individual
subject transcriptomes. The analysis is executed on all pairwise subject
combinations, regardless of pathway enrichment being present in the sub-
jects. The Jaccard similarity coefficients associated to the pathway genes
are shown in red. The mean of the 1000 control Jaccard indices obtained
through the bootstrap procedure is shown in black. The 95% quantile of
the bootstrap values is shown through a dashed line. The shadow in gray
represents the 95% Confidence Interval of the bootstrap values distribution.
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A.4. Permutation test on pathways (day 7)
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Figure A.4: Most frequently enriched pathways within day 7 individual

The analysis is executed on all pairwise subject

combinations, regardless of pathway enrichment being present in the sub-
jects. The Jaccard similarity coefficients associated to the pathway genes
are shown in red. The mean of the 1000 control Jaccard indices obtained
through the bootstrap procedure is shown in black. The 95% quantile of
the bootstrap values is shown through a dashed line. The shadow in gray
represents the 95% Confidence Interval of the bootstrap values distribution.
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A.5 Gene pool modulation VS intrinsic variables

a Day 1 Transcriptome b Day 7 Transcriptome
VS Age VS Age
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Figure A.5: a-b Percentages of modulated pool genes (y-axis) plotted in re-
lation to subject’s age (x-axis). Information on functional antibody response
(high/low responders) is encoded via color and shape of points. Spearman
correlation for days 1 and 7 respectively: p = -0.09, -0.11; p-value = 0.49,
0.44 ¢ ROC curve of subject’s gender inferred using the percentage of mod-
ulation of the vaccination-induced gene pools calculated from the individual
subject transcriptome response profiles.
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A.6. Gene pool modulation VS pre-vaccination MN titers

A.6 Gene pool modulation VS pre-vaccination

MN titers
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Figure A.6: ROC curves of the pre-vaccination status predictions inferred
using the percentage of modulation of the vaccination-induced gene pools
calculated from the individual subject transcriptome response profiles.
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A.7 Guided Random Forest results (mtry=9)
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Figure A.7: Guided Random Forest results (mtry = 9). a Classification
accuracy of the models (percentage of correctly classified subjects). b ROC

curves and AUCs of the models.

¢ Number of occurrences across the five

models of the most informative genes. From each model, the top 10 most
informative features are reported. The y-axis indicates the number of models
in which a gene was observed in the top 10. d Top 10 most informative genes
across GRF model ordered by median of the Mean Decrease Gini coefficients
(higher values correspond to higher feature importance).
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A.8. Guided Random Forest results (miry=12)

A.8 Guided Random Forest results (mtry=12)
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Figure A.8: Guided Random Forest results (mtry = 12). a Classification
accuracy of the models (percentage of correctly classified subjects). b ROC
¢ Number of occurrences across the five
models of the most informative genes. From each model, the top 10 most
informative features are reported. The y-axis indicates the number of models
in which a gene was observed in the top 10. d Top 10 most informative genes
across GRF model ordered by median of the Mean Decrease Gini coefficients
(higher values correspond to higher feature importance).

curves and AUCs of the models.
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Appendix B. Supplementary Tables

B.1 DEGs from group-wise analysis (day 1)

o |oo|fcl2s

= s@ | B R

S |gm|BF|SE

O Ly |EZ &7

Genes | T % | B° |85
S | g2|2a|27

= |28 L0 %E
§TC|EES

ANKRD22 | 1.437 | 6.284 | 25 2
HBEGF | 1.258 | 6.775 | 9 5
G0S2 | 1.077 | 6.985 | 11 2
IL1B | 1.047 | 5.768 | 18 6
CXCL10 | 0.962 | 6.124 | 30 5
PTGS2 | 0.884 | 6.183 | 19 7
SERPINGI | 0.862 | 6.585 | 22 2
SOCS3 | 0.789 | 6.985 | 10 3
NR4A3 | 0.74 | 6.337 | 13 5
B3GNT5 | 0.728 | 6.124 | 23 9
OSM | 0.723 | 6.562 | 8 0
IDO1 | 0.709 | 5.733 | 28 2
IFIT2 | 0.704 | 6.523 | 29 6
NR4A2 | 0.695 | 6.072 | 19 8
AREG | 0.657 | 3.027 | 34 | 15
RGS1 | 0.657 | 5.341 | 27 | 8
PLK2 | 0.657 | 5.396 | 16 | 4
CD83 | 0.654 | 6.341 | 11 5
FOSB | 0.619 | 5.477 | 28 6
JUN | 0.619 | 6.985 | 24 5
CAl | 0.607 | 5.706 | 42 | 14
GBP4 | 0.604 | 6.284 | 18 2

KLF4 | 0.596 | 6.985 | 15
FFAR2 | 0.596 | 6.29 | 27

FOS | 0.580 | 6.985 | 15 4
CXCL8 | 0.571 | 3.917 | 32 | 13

continued ...
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B.1. DEGs from group-wise analysis (day 1)

. £ |5g

g gm|E° &8

g |Zgm || S8

O (79 |8g@ | g~

Ad | 2w |2

Genes | T o | 8°|® &

IS} == || ”T

- X5 | —=wm | O g

= - & TR

-t

=

PFKFB3 | 0.562 | 5.765 18 8
STAT1 | 0.558 | 6.747 18 2
LAP3 | 0.555 | 6.57 23 3
NAMPT | 0.552 | 6.178 22 8
ATF3 | 0.552 | 6.985 10 0
CLECG6A | 0.541 | 5.706 27 11
TRIB1 | 0.539 | 6.127 20 7
EPSTI1 | 0.534 | 6.415 28 7
RIPK2 | 0.52 | 6.777 10 2
CCL2 | 0.512 | 5.429 36 9
EREG | 0.507 | 5.234 27 8
CCDCh9 | 0.506 | 6.471 27 6
HCAR3 | 0.504 | 4.794 25 9
PMAIP1 | 0.503 | 6.172 12 2
NFIL3 | 0.502 | 5.879 19 7
EGR2 | 0.501 | 3.555 35 11
DDIT3 | 0.501 | 6.65 13 2

Table B.1: Differentially expressed genes identified from group-wise analysis

(day 1 / day 0).
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B.2 DEGs from group-wise analysis (day 7)

o = g o

P lep|E°|BE
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e} - = ° o) e

PR
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TNFRSF17 | 1.387 | 5.078 17 1
GPRC5D | 1.054 | 4.91 20 3
JCHAIN | 0.979 | 5.078 16 1
MZB1 | 0.733 | 5.078 18 1
CD38 | 0.676 | 4.958 22 2
APOBEC3B | 0.674 | 5.078 29 3
ITM2C | 0.649 | 4.959 22 1
CAV1 | 0.616 | 4.935 26 1
DENNDS5B | 0.547 | 4.388 29 3
KLHL14 | 0.546 | 3.972 27 4
ELL2 | 0.534 | 4.904 23 1
NT5DC2 | 0.531 | 4.796 | 26 2
MYBL2 | 0.528 | 4.959 | 29 2
HIST1H3B | 0.51 | 3.961 30 6

Table B.2: Differentially expressed genes identified from group-wise analysis
(day 7 / day 0).
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B.3. Enriched pathways (day -7)

B.3 Enriched pathways (day -7)

Pathway name Count
KEGG taste transduction )
REACTOME cell cycle 5
REACTOME rna pol i transcription 5
REACTOME chromosome maintenance 5
REACTOME rna pol i promoter opening 5
REACTOME meiotic recombination )
REACTOME meiotic synapsis )
REACTOME amyloids 5
KEGG systemic lupus erythematosus 4
PID apl pathway 4
REACTOME meiosis 4
REACTOME generic transcription pathway 4
REACTOME rna pol i rna pol iii and mitochondrial transcription 4
REACTOME deposition of new cenpa containing nucleosomes at 4
the centromere

REACTOME packaging of telomere ends 4
REACTOME telomere maintenance 4
PID nfat tfpathway 3
PID atf2 pathway 3
PID hifl tfpathway 3
REACTOME cell cycle mitotic 3

Table B.3: Pathways observed as significantly enriched (Fisher exact test
p < 0.05, one-sided, with Benjamini Hochberg correction for total number
of tested pathways across all subjects), alongside the number of subjects in

which this observation was made.
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B.4 Enriched pathways (day 0)

Pathway name Count

REACTOME olfactory signaling pathway 4

REACTOME amyloids

REACTOME packaging of telomere ends

KEGG focal adhesion

Q| W |

REACTOME deposition of new cenpa containing nucleosomes at
the centromere

REACTOME rna pol i promoter opening

REACTOME interferon alpha beta signaling

KEGG ribosome

KEGG olfactory transduction

KEGG asthma

KEGG systemic lupus erythematosus

REACTOME meiosis

NN NN LW wW

REACTOME immunoregulatory interactions between a lym-
phoid and a non lymphoid cell

\)

REACTOME srp dependent cotranslational protein targeting to
membrane

REACTOME mbhc class ii antigen presentation

REACTOME ter signaling

REACTOME generation of second messenger molecules

REACTOME generic transcription pathway

REACTOME rna pol i transcription

NN DN DN

REACTOME transcription

Table B.4: Pathways observed as significantly enriched (Fisher exact test
p < 0.05, one-sided, with Benjamini Hochberg correction for total number
of tested pathways across all subjects), alongside the number of subjects in
which this observation was made.
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B.5. Enriched pathways (day 1)

B.5 Enriched pathways (day 1)

Pathway name Count

DN
co

REACTOME cytokine signaling in immune system

REACTOME interferon gamma signaling

DO
-3

REACTOME interferon signaling

[\)
D

REACTOME interferon alpha beta signaling

DO
o

PID il12 2pathway

—_
Ne

REACTOME adaptive immune system

[
—_

PID atf2 pathway

PID apl pathway

PID il6 7 pathway

KEGG graft versus host disease

REACTOME ter signaling

PID il23 pathway

REACTOME activation of nf kappab in b cells

REACTOME signaling by the b cell receptor ber

REACTOME regulation of ornithine decarboxylase odc

REACTOME p53 dependent gl dna damage response

1| 3| 3| 1| ~1| ~1| oo 00| 0| o] ©

REACTOME apc ¢ cdhl mediated degradation of cdc20 and
other apc ¢ cdhl targeted proteins in late mitosis early gl
REACTOME scf beta trcp mediated degradation of emil
KEGG proteasome 6
PID reg gr pathway 6

N

Table B.5: Pathways observed as significantly enriched (Fisher exact test
p < 0.05, one-sided, with Benjamini Hochberg correction for total number
of tested pathways across all subjects), alongside the number of subjects in
which this observation was made.
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B.6 Enriched pathways (day 7)

Pathway name Count
REACTOME cell cycle 17
REACTOME rna pol i promoter opening 17
REACTOME amyloids 17
KEGG systemic lupus erythematosus 16
REACTOME meiotic recombination 16
REACTOME rna pol i transcription 15
REACTOME packaging of telomere ends 15
REACTOME meiosis 14
REACTOME rna pol i rna pol iii and mitochondrial transcription 14
REACTOME deposition of new cenpa containing nucleosomes at 14
the centromere

REACTOME telomere maintenance 14
PID e2f pathway 13
REACTOME cell cycle mitotic 12
REACTOME transcription 12
REACTOME g0 and early gl 11
REACTOME meiotic synapsis 11
REACTOME chromosome maintenance 9
REACTOME asparagine n linked glycosylation 8
REACTOME mitotic gl gl s phases 6
REACTOME dna replication 6

Table B.6: Pathways observed as significantly enriched (Fisher exact test
p < 0.05, one-sided, with Benjamini Hochberg correction for total number
of tested pathways across all subjects), alongside the number of subjects in
which this observation was made.
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B.7. Enriched pathways (day 70)

B.7 Enriched pathways (day 70)

Pathway name Count
KEGG taste transduction 7
KEGG systemic lupus erythematosus )
REACTOME cell cycle 5
REACTOME transcription 5
REACTOME rna pol i promoter opening 5
REACTOME amyloids )
PID e2f pathway 4
REACTOME meiosis 4
REACTOME rna pol i transcription 4
REACTOME cell cycle mitotic 4
REACTOME gl s transition 4
REACTOME mitotic gl gl s phases 4
REACTOME rna pol i rna pol iii and mitochondrial transcription 4
REACTOME chromosome maintenance 4
REACTOME deposition of new cenpa containing nucleosomes at 4
the centromere

REACTOME meiotic recombination 4
REACTOME meiotic synapsis 4
REACTOME packaging of telomere ends 4
REACTOME telomere maintenance 4
KEGG cell cycle 3

Table B.7: Pathways observed as significantly enriched (Fisher exact test
p < 0.05, one-sided, with Benjamini Hochberg correction for total number
of tested pathways across all subjects), alongside the number of subjects in
which this observation was made.
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B.8 Vaccination-induced gene pool (day 1)

Gene Symbol and number of modulations across subjects are reported.

SOCs3
HBEGF
HAUS3
NPC1
RIPK2
SAT1
ANKRD22
SERPING1
TUBA1A
DDIT3
CA5B
STAT1
ATP2B4
ICAM1
MTHFD2
CCNL1
IRF1
CDKN1A
IFRD1
ATF3
HIST2H2BE
EPSTI1
PSME2
WARS
OosM
ODF3B
KLF4
NLRP3
GBP4
PSTPIP2

FFAR2

112

51

51

49

48

48
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47

46

46

46

46

45

44

44

44

44

44

44

44

43

43

43

43

43

43

43

43

42

42

42

42

PFKFB3

DDX21

RAB20

PPP1R15A

GZF1

SIDT1

CBLB

PIGA

PYHIN1

IFIT2

FBXO033

Cc2

NR4A3

YOD1

SCO2

B3GNT5

VEGFA

RNF19B

GBP2

UBE2D1

IFITS5

DET1

LGALS3BP

IKZF2

NFKBIZ

LAP3

GK3P

GO0S2

CD84

FCMR

OTUD1

41

41

41

41

41

41

41

41

40

40

40

40

40

39

39

39

39

38

38

38

38

38

38

38

38

38

38

37

37

37

37

PPIF

RCN1

OAS3

CD69

COQ10B

APOL4

BCL6

STX11

SNX10

RANBP6

PTCH1

SLC25A33

FAMI159A

IDI1

IFITM3

CXCL10

LMNB1

ATP1B1

ZNF124

EPB41L3

FFAR3

PLAUR

BHLHE40

FLNB

PLK2

ETF1

IER3

TWISTNB

PLEKHF2

TOX

CTSL

37

37

37

37

37

37

37

37

37

37

37

36

36

36

36

36

36

35

35

35

35

35

35

35

35

35

35

FRMD3

KLHL15

NAP1L3

PLEKHO1

SDC3

DUSP10

NR4A1

PSMC1

FAM103A1

BCL2A1

SECTM1

GADD45B

DYSF

HLA-DQB2

ARL4A

KLF10

DNAJA1

NFIL3

PDE4B

SLAMF8

RHOU

PRKCQ

KLRD1

ERP27

TMEM116

ABHD13

C150rf39

B3GNT2

PLEK

KREMEN1

YPEL1

35

35

35

34

34

34

34

34

34

34

34

34

34

34

34

34

34
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33

33

33

33

33

33

33

33

33

33
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B.8. Vaccination-induced gene pool (day 1)

CMTM6

PARP9

EREG

ITK

ING3

IDO1

SLA

RPF1

ELL2

DUSP5

OAT

TMEM45B

KLRG1

KLRC4-KLRK1 32

FOSs

LACTB

MT2A

SLFN13

SNRPD1

PTPN4

ZC3H15

MRPL44

TGM2

TCN2

TYMP

KBTBDS8

EOMES

PSMD6

PAIP1

SBDS

GBP5

PDGFD

OLR1

KLRC2

CCDC59

33

33

33

33

33

33

33

32
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32

32

32

32

32

32

32

32

32

32
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32
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32

32

32

32

32

32

31

31

31

31

31

KIAA1143

RIOK3

ZFP36

GNB4

CXCL11

SERINC5

DUSP1

CYP51A1

uGcaG

FRMPD3

TENM1

NAMPT

PRF1

MYOF

RBM4B

TWF1

UCHL3

ADGRGS5

JMJID6

RMNDS5A

IL1B

PARP14

LAMP3

DTHD1

CENPU

ACSL1

GMPR

HLA-DRB1

CAPZA2

ALDHI1A1

GAB3

TAF13

DENND2D

FCRL3

PPA1

31

31

31

31

31

31

31

31

31

31

31

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

29

29

29

29

SMNDC1

DENR

PTGDR

TBX21

SEC11C

PMAIP1

BCL2L11

CSRNP1

COMMDS

SNCA

IL7R

CD83

SOD2

AGPAT4

DNAJB9

PNPLAS

TRIB1

NCALD

ATP6AP2

HPRT1

RNF11

IFI44L

LGR6

DBT

PRRG4

CWCl15

CLEC6A

DRAM1

UFM1

SAV1

THBS1

MAPKG6

ADGRG1

CCRT7

ADNP2

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

ICOSs

CMPK2

EPHA4

SMOX

IGF2BP2

HERCS5

LAMTORS3

PHAX

TMEM167A

DEK

CCT6A

RRS1

AAED1

EIF1AX

SETSIP

DNTTIP2

NET1

TFAM

IFIT3

HBD

SLC15A3

CCDCe65

SLC2A14

KLRC3

POPDC2

ZBTB1

TNFAIP2

CFL2

PSMA4

CENPN

IFI35

BECN1

PTPN2

BCL3

LBH

CDC25B

28

28

28

28

28

28

28

28

28

28

28

28

28

27

27

27

27

27

27

27

27

27

27

27

27

27

27

27

27

27

27

27

27

27

27

27
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APOL1
THOCT
GOLIM4
PTGER4
SYNE1
BPGM
TMEM140
MYBL1
JAK2
SCML1
UBXN10
CLIC4
OR2W3
TMEMG63A
FAS
FAM204A
PRDX3
SMCO4

CLSTN3

114

27

27

27

27

27

27

27

27

27

27

26

26

26

26

26

26

26

26

26

STAT?2

NAPI1L1

DNAJC3

EPB42

C160rf87

SLFN14

DUSP3

ITGA2B

LILRA3

ASAP2

PDCL3

MGAT4A

DIP2A

SAMSN1

ZBTB21

IL2RB

ZNF589

CNBP

SPCS3

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

LTV1

PPP1R10

BLVRA

DOCK4

NDUFAS5

HOOKS3

HEMGN

Cc1QB

RGS1

SYF2

SLC30A1

SHTN1

RBM7

LRRK2

YBX3

TAS2R19

RFC3

SPRY2

MT1G

26

26

26

26

26

26

26

25

25

25

25

25

25

25

25

25

25

SKAP1

ACP1

PI3

DTX3L

CACNA2D2

ENOPH1

CXCL9

SCARB2

RASGEF1B

DNAJC21

RUNX2

SCML4

SGK1

AUTS2

FGL2

MSR1

TIP2

CEP78

ALAS2

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25
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B.9. Vaccination-induced gene pool (day 7)

B.9 Vaccination-induced gene pool (day 7)

Gene Symbol and number of modulations across subjects are reported.

TNFRSF17

MZB1

JCHAIN

NUGGC

GPRC5D

BHLHE41

DENND5B

ITM2C

MYBL2

CD38

ELL2

APOBEC3B

NT5DC2

PARM1

CAV1

IRF4

LMAN1

POU2AF1

GLDC

NUSAP1

SHCBP1

BUB1

LGMN

CD27

MYO1D

PLPP5

FCRL5

DLGAPS5

CCNB2

SEL1L3

SLAMF7

BLNK

CHAC2

CPNES5

53

50

47

45

44

43

42

42

42

42

41

40

39

39

39

38

37

36

36

34

34

34

33

32

32

32

31

31

31

31

30

30

30

30

MOXD1
DTL
ALG14
MKI67
HRASLS2
RRM2
SGPP2
CCNA2
HIST1H3G
HIST1H1B
LAMC1
KIF11
SPATS2
SEC11C
MAN1A1
CDCsé
SKA1
EAF2
TMEM156
HIST1H3J
AQP3
HIST2H4A
RGS13
DENNDI1B
C1l1lorf80
TOP2A
KLHL14
COBLL1
DERL3
PDIAS5
ESCO2
FBXO16
CXCR3

FAM46C

30

29

29

29

29

29

29

29

29

29

28

28

28

28
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Appendix B. Supplementary Tables

B.10 Genes specific for high responder subject
class (day 7)

Gene ‘ p value Gene | p value
APOBEC3B 0.001 UGT2B17 0.011
IRF4 | 0.001 HIST1H2AM | 0.011
HIST1H3G 0.001 MANI1A1 0.014
GLDC | 0.001 JCHAIN | 0.017
MKI67 0.002 CDK1 0.018
POU2AF1 | 0.002 LMANI | 0.018
TOP2A 0.002 SLAME7 0.022
TYMS | 0.002 LAMC1 | 0.022
NT5DC2 0.002 DTL 0.022
CD38 | 0.002 HRASLS2 | 0.022
CCNA2 0.002 DENNDS5B 0.022
CPNES5 0.002 CCNB2 0.022
ITM2C | 0.003 KLHL14 | 0.022
CHAC2 0.004 ERLEC1 0.022
SEC11C | 0.004 PDIA6 | 0.022
ZBP1 0.005 DERL3 0.022
HIST2H3D | 0.006 MANEA | 0.022
ELL2 0.006 HIST1H1B 0.022
KIF11 | 0.006 MOXD1 | 0.022
DLGAP5 | 0.006 PNOC | 0.022
SHCBP1 | 0.006 GGH | 0.022
MYO1D 0.006 MYBL2 0.027
RRM2 | 0.006 PHGDH | 0.037
SEL1L3 | 0.006 LAX1 | 0.037
HIST1H2BM | 0.006 ASPM | 0.037
HIST1H3B | 0.006 KNL1 | 0.037
HIST1H3F | 0.006 LARP1IB | 0.037
HIST1H3J | 0.006 FAM46C | 0.039
ESCO2 | 0.006 SLC35F2 | 0.039
GPRC5D | 0.009 CDC6 | 0.039
CAV1 | 0.009 COBLL1 | 0.039
BUB1 | 0.011 FBXO16 | 0.039
TPX2 | 0.011 BHLHE41 | 0.048

Table B.8: Subpool of 66 genes specifically modulated in the high responder
subject class. P-values are calculated via Fisher exact test, one sided, with
Benjamini Hochberg correction for multiple testing.
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