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Abstract 
 

 

In recent years, the advent of high-throughput technologies enabled the investigation of complex 

biological systems at multiple molecular levels, such as the genome, transcriptome and epigenome. 

During my PhD experience, I worked at two main projects, which involved the integration and 

interpretation of multiple omics data sources in order to elucidate the gene regulatory mechanisms 

driving both pathological – cancer – and physiological – stem cell differentiation – phenotypes. 

 

I. Identification of altered biological processes in heterogeneous cohorts by discretization of 

expression profiles 

Heterogeneity is a fundamental feature of complex phenotypes. So far, genomic screenings have 

profiled thousands of samples providing insights into the transcriptome of the cell. However, 

disentangling the heterogeneity of these transcriptomic Big Data to identify defective biological 

processes remains challenging. Genomic studies have shown that distinct genes sharing common 

biological functions or involved in the same biological process (i.e. gene sets) can be altered in 

different patients affected by same condition. In this context, the gene set analysis (GSA) aims at 

identifying groups of genes whose cumulative expression is altered in the phenotype of interest. 

Although widely used, conventional GSA algorithms have been developed to treat microarray data 

of small-sized case-control studies. Therefore, their application is not suitable to RNA-sequencing 

profiles of large heterogeneous cohorts. During the first part of my PhD, my work has been focused 

on the development and testing of a new GSA algorithm, namely GSECA (Gene Set Enrichment 

Class Analysis), that employs a model-based data discretization approach to exploit the specific 

bimodal behaviour of RNA-sequencing profiles and increase signal-to-noise ratio in 

heterogeneous high-volume datasets. Using simulated and experimental RNA-sequencing data 

sets, we showed that GSECA provides higher performances than other available algorithms in 

detecting truly altered biological processes in large cohorts. Applied to 5941 samples from 14 

different cancer types, GSECA correctly identified the alteration of the PI3K/AKT signaling 

pathway driven by the somatic loss of PTEN and verified the emerging role of PTEN in modulating 

immune-related processes. In particular, we showed that, in prostate cancer, PTEN loss appears to 

establish an immunosuppressive tumor microenvironment through the activation of STAT3, and 

low PTEN expression levels have a detrimental impact on patient disease-free survival. 
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II. Dissecting the functional role of de novo DNA methylation during embryonic lineage 

specification 

The correct establishment of DNA methylation patterns is essential for cell fate specification in 

the developing embryo. However, the molecular targets as well as the mechanisms that determine 

the specificity of the de novo methylation machinery during differentiation are not completely 

elucidated. In the second part of my PhD, we investigated the role of the de novo DNA 

methyltransferases in controlling lineage-fate decision during mouse early development. Using a 

combination of in vitro stem cell differentiation models, loss of function experiments and high-

throughput multi-omics approaches – WGBS, ChIP-, bulk-, and single-cell-RNA sequencing -, we 

demonstrated that Dnmt3b-dependent methylation is essential for the correct specification of the 

meso-endodermal lineages. Our results showed that, in the transition from the pre- (Embryonic 

Stem Cells) to the early post-implantation embryo (Epiblast Stem Cells), Dnmt3b activity is 

directed towards regulatory regions associated with key developmental transcription factors, acting 

as an epigenetic priming that ensures flawless commitment at later stages. We found that the 

differentiation into meso-endodermal progenitors is impaired in Dnm3b knockout (3BKO) cells, 

which are redirected towards neuro-ectodermal lineages. Finally, we demonstrated that the 

impaired meso-endodermal induction of 3BKO cells can be rescued by silencing Sox2, a master 

regulator of neuronal differentiation. 
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Chapter 0 
 

Multi-omics data analysis 
 

 

Over the past decades, the advent of Next Generation Sequencing (NGS) technologies opened the 

gates of a new era in molecular biology, promoting a huge improvement towards the understanding 

of complex biological systems. Technological advances in NGS-based functional genomics assays 

- like RNA sequencing (RNA-seq), chromatin immunoprecipitation followed by sequencing 

(ChIP-seq), sequencing of bisulfite-converted DNA (BS-seq) – enhanced the possibilities of 

biological investigations by querying multiple molecular sources of information, such as the DNA, 

RNA, proteins and their related biochemical modifications – known as the epigenome. The 

simultaneous investigation of these molecular profiles, as well as the integration of other data 

sources like clinical data, provided new insights into the mechanistic understanding of complex 

diseases, such as cancer. The increasing availability and cost-efficiency of sequencing platforms 

promoted an explosion of large-scale biomedical screening projects, fostering collaboration of 

research groups in large genomics consortia and leading to the development of public repositories 

hosting multi-omics ‘Big Data’ (e.g. the ENCODE consortium or The Cancer Genome Atlas). 

More recently, the advent of single-cell sequencing technologies enabled genome-wide profiling 

of cell molecular components at individual cell resolution, opening the possibility to answer new 

question about cell states and cell-to-cell heterogeneity with unprecedent detail. These techniques 

enlightened the study of processes like cell differentiation during development, enabling the 

possibility to track the trajectory crossed by each individual cell type and understand the molecular 

players as well as the regulatory mechanisms that drive cell decisions. 

The interpretability of multi-omics data is challenged by the great complexity and heterogeneity 

proper of genomics Big Data. As a consequence, their understanding requires tailored 

computational analysis techniques, coupling traditional bioinformatics tools with new data science 

methodologies, in order to properly exploit the multiple interconnected layers of biological 

information and acquire a system-level knowledge of the regulatory processes responsible for the 

phenotype of interest. In this dissertation, two main works are reported, covering most of the 

research activity carried out over the three years of my PhD experience. Both projects were 

characterized by the integrative analysis and interpretation of multiple omics data sources, in order 

to elucidate the gene regulatory mechanisms driving both pathological – cancer – and 

physiological – stem cell differentiation – phenotypes. In the first work, we focused on the 
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development of a new data mining algorithm to perform gene set enrichment analysis in RNA-seq 

experiments, with applications to the analysis of cancer transcriptomics data available from The 

Cancer Genome Atlas (TCGA). In the second work, in joint efforts between the experimental and 

computational side of the lab, we analyzed the role played by de novo DNA methylation in the 

regulation of cell differentiation during the early stages of mouse embryonic development, 

exploiting a combination of in vitro stem cell differentiation models, loss-of-function experiments 

and high-throughput approaches – i.e. WGBS, ChIP-, bulk-, and single-cell-RNA sequencing.  
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Chapter 1 

 

Introduction I 

 

1.1 Gene expression 

The central dogma of molecular biology, established by Francis Crick in 1958, explains the transfer 

of sequence information between information-carrying biopolymers in living organisms. DNA is 

the biomolecule that stores the genetic information necessary to the functioning, growth, 

development and reproduction of all known living organisms. These instructions are organized 

into smaller pieces of genetic material, called genes. In order to be used, they have to be transcribed 

into a RNA molecule (transcript). This can then be translated into a protein (in the case of protein-

coding genes), or, for the non-coding genes, it can carry out other functional roles in the cell (e.g. 

post-transcriptional regulation, ribosomal RNA etc.). This entire process is called gene expression, 

and transcription represents its first step. The central dogma describes the flow of genetic 

information associated with gene expression as a general information transfer mechanism (i.e. 

believed to occur normally in most cells) being unidirectional from DNA into RNA and into 

protein as the final functional product, but never from protein to nucleic acids (1). A wide range 

of mechanisms can be used by the cells to turn genes on and off if necessary, modulating any step 

of the gene expression chain, including transcription – a process known as transcriptional 

regulation. 

1.2 Transcriptomics technologies 

The transcriptome is the complete set of transcripts in cells, for a specific tissue, developmental 

stage or condition. Understanding the transcriptome is essential for interpreting the functional 

elements of the genome and revealing the molecular constituents of cells and tissues, and also for 

understanding development and disease. The key aims of transcriptomics are: to catalogue all 

species of transcript, including mRNAs, non-coding RNAs and small RNAs; to determine the 

transcriptional structure of genes, in terms of their start sites, 5′ and 3′ ends, splicing patterns and 

other post-transcriptional modifications; and to quantify the changing expression levels of each 

transcript during development and under different conditions, in order to assess the differential 

expression of genes at the bases of distinct phenotypes.  



 16 

Different experimental techniques have been developed in order to measure and quantify the 

transcriptome. Popular choices before the introduction of Next Generation Sequencing (NGS) 

based tools were given by hybridization methods, based on DNA microarrays (2). With the 

emergence of NGS technologies, sequence-based approaches have become the gold-standard for 

transcriptome profiling experiments. RNA sequencing (RNA-seq) is most often used for analysing 

differential gene expression (3). The standard workflow begins with RNA extraction and 

purification, followed by mRNA enrichment or ribosomal RNA depletion. The remaining RNA is 

then fragmented and reverse transcribed into cDNA molecules. sequence adaptors are ligated and, 

after the selection of fragment sizes, the ends of cDNAs are sequenced on a high-throughput 

platform – typically, Illumina -, producing many short reads. Then follows the computational 

analysis: the short reads are pre-processed by removing low-quality read, artefacts or sequence 

errors. The pre-processed reads are aligned and/or assembled to a transcriptome, and the 

gene/transcript expression levels are estimated by quantifying reads that overlap transcripts. The 

last steps for differential expression analysis involve filtering and normalizing between samples, 

and statistical modelling of significant changes in the expression levels of individual genes and/or 

transcripts between sample groups (2,3) (Figure 1.1).  

RNA-seq offers several advantages in comparison to hybridization methods. First, it is not limited 

to detecting transcripts that correspond to known genomic sequence. Furthermore, it has a very 

low background noise since the cDNA sequences can be unambiguously mapped to unique regions 

of the genome. 

 

 
I - Figure 1. 1: RNA-seq experimental workflow. Schematic representation of the workflow of a typical 
RNA-seq experiment. – Adapted from (2) 
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Moreover, RNA-seq does not have an upper limit for quantification, so it has a high dynamic range 

and it is also able to capture transcripts that are expressed at very low levels. By contrast, DNA 

microarrays lack sensitivity for genes that are expressed at both high or low levels. Additionally, 

the results of RNA-seq show high levels of reproducibility(2). Nowadays, RNA-seq from bulk 

tissues and cells remains the conventional approach to measure gene expression; however, it 

provides an average reading of the transcriptome across cell populations, thus not preserving 

single-cell specific information. Single-cell laboratory and analysis methods enabled to move 

beyond bulk analysis and are rapidly being adopted by the research community (3). 

1.3 Gene Set Analysis 

In recent years, genomic screenings, powered by the improvements of NGS technologies, have 

studied RNA-seq expression profiles of large cohorts to gain insights into complex phenotypes, 

including cancer. Despite the fact that transcriptomic analyses are a well-established practice in 

biomedical research, the biological interpretation of the gene expression profiles coming from 

high-throughput screenings is still a major challenge. In addition to the intrinsic complexity of the 

biological mechanisms, a major hurdle is the presence of inter-sample heterogeneity (IH), or the 

variable expression of genes across samples due to genetic, environmental, demographic, and 

technical factors (4). A typical approach to the interpretation of the transcriptome profiles is the 

differential expression analysis. It consists on determining the list of differentially expressed genes 

between different collections of samples associated with a treatment condition or belonging to 

distinct phenotypes (5,6). One can then focus on a small number of “most” differentially expressed 

genes to discern important mechanisms related with the studied phenotype. This approach is based 

on single-gene level analysis and, although it gives us relevant biological information, it has some 

limitations. In fact, cellular processes often do not rely on the action of a single gene, but are 

complex mechanisms involving the interaction of multiple genes acting together. Therefore, 

single-gene level analysis may miss important effect on pathways. Moreover, considering the 

emerging heterogeneity of samples coming from high-throughput screenings, it becomes difficult 

to associate the effect of a single or few differentially expressed genes with a given phenotype. For 

these reasons, instead of focusing on single-gene level analysis, useful biological insights can be 

obtained by investigating the expression profiles at the level of gene sets.  

Gene sets are groups of genes that share a particular property, such as the involvement in a 

biological process or the association with the same disease. They are defined based on prior 

biological knowledge, which comes from previous studies concerning molecular interactions in 

pathways or co-expression of genes. Hence, the gene-set analysis (GSA) aims at identifying gene 

sets whose cumulative expression is altered in the phenotype of interest (7,8). The gene-set 

approach has two major advantages over single-gene differential expression analysis. On one hand, 

GSA reduces the potentially large list of differentially expressed genes into a smaller list of altered 
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gene sets (AGS) - which include biological processes, molecular functions or biological pathways 

- that can give a “snapshot” of what happens to the phenotype under study at the system-level; on 

the other hand, considering the combined changes in the expression levels of multiple genes, GSA 

may identify gene set that are associated with a phenotype even when differential expression 

cannot be claimed with usual criteria, exploiting the fact that many genes in the gene set undergo 

subtle changes(9). In addition to that, the gene-set perspective makes it possible to deal with the 

heterogeneity of samples. Indeed, for a particular phenotype of interest, different functionally-

related genes can be deregulated among different samples. By treating them as a gene set, it is still 

possible to associate their deregulation with the condition under study, considering the combined 

effect of different genes in different samples. Therefore, GSA is a powerful technique for 

interpreting transcriptome profiling experiments. 

1.4 Features of GSA methodologies 

Since the first appearance of the gene-set approach for the interpretation of gene expression 

profiles, a certain number of different gene set analysis methods has been proposed. The basic 

assumption among all proposed methods is that when a gene set is relevant to a phenotype, a 

considerable fraction of its gene will show a certain degree of differential expression between the 

two cohorts in either one or both direction (upregulated or down-regulated). Nonetheless, the 

different methods often rely on different formulations of the null hypothesis and test statistics. 

 

All existent methods can be roughly classified into three main categories(9): 

• Over-representation analysis (ORA): this is the earliest approach to gene set analysis. 

This class of methods rely on a contingency table analysis testing for the association 

between the Differential Expression (DE) status of a gene (DE or not) and its membership 

to a given gene set. That is, the contingency table tests if the genes of a particular gene 

set are over-represented in the list of differentially expressed genes, with a 

hypergeometric or chi-square (𝜒") distribution. However, ORA methods cannot be 

applied if no DE are found, and their results are heavily dependent on the threshold used 

to select significantly DE genes. 

• Functional class scoring (FCS): this second class of methods overcome the need of 

selecting differentially expressed genes in the first place. They derive an enrichment score 

for all the genes of a given gene set regardless of whether or not they are differentially 

expressed. Typically, the genes are ranked according to their expression value, using some 

consistent statistics (e.g. fold change, p-value from DE analysis, signal-to-noise ratio (7)). 

Then, an enrichment score is defined for a gene set, based on the distance of its genes in 

the ranked gene list. Such methods include GSEA (Gene Set Enrichment Analysis)(7) , 

one of the most cited and used GSA methods. 
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• Single-Sample (SS): this third class of methods is similar to FCS, but they compute a gene 

set score in each individual sample from the observed gene expression levels. 

 

Among all these methods, an important distinction is given by the formulation of the null 

hypothesis tested (10). In particular, GSA algorithms can be divided into ‘self-contained’ and 

‘competitive’ algorithms depending on whether they identify altered gene sets (AGSs) while 

ignoring or not genes that are outside the gene set of interest: 

• Competitive tests: a competitive test compares differential expression of the gene set to a 

standard defined by the complement of that gene set. This is the case of ORA methods. 

The competitive null hypothesis to be tested is: 

•  H0 = “The genes in G are at most as often differentially expressed as the genes 

in Gc” 

where G is the gene set of interest and Gc its complement. 

• Self-contained tests: a self-contained test compares the gene set to a fixed standard that 

does not depend on the measurement of genes outside the gene sets. FCS and Single-

Sample methods fall in this category. The self-contained null hypothesis is: 

• H0 = “No genes in G are differentially expressed” 

 

The self-contained null hypothesis is more restrictive than the competitive null hypothesis. From 

a practical viewpoint, the competitive methods can be applied even with one sample per cohort as 

they rely on genes as sampling unit. However, they cannot work if no genes outside the gene set 

are measured. On the other hand, the self-contained methods use the subjects as the sampling unit 

and hence require several samples per group to infer significance of the gene sets. Unlike the 

competitive methods, some of the self-contained methods can be applied even when only the genes 

in the gene set are profiled (11). 

1.5 Limitations of existing GSA tools 

Although GSA is a widely-employed technique in gene expression studies, most existing GSA 

methods suffer a few marked limitations (9,10,12). Firstly, GSA algorithms have been designed to 

handle microarray expression data and subsequently adopted to handle RNA-seq data (7,13). 

RNA-seq gene expression profiles are characterized by a bimodal behavior reflecting the presence 

of two major subpopulations of genes in cells (i.e. lowly and highly expressed genes) (14). This 

behavior is not observable using low-sensitive microarray experiments (15), and to date it has not 

been taken into account by existing GSA methods. Thus, their application to RNA-seq expression 

profiles may not be efficient (13). Secondly, GSA methods have been developed to handle 

experimental conditions in the absence of IH (i.e. altered genes are concordantly activated or 

repressed in the cohort of interest) (9). As a consequence, biological processes composed of genes 
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that exhibit a significant excess of coordinated variability (i.e. activated or repressed in different 

subpopulations) cannot be detected by conventional GSA methods (9). Finally, most existing GSA 

methods have been designed to assess gene expression of case–control studies with limited sample 

size and, thus, characterized by a negligible IH and high signal-to-noise ratio (13). These 

limitations become crucial in the analysis of RNA-seq datasets of large-scale screening projects 

that are characterized by a high IH. Therefore, GSA algorithms that are able to handle IH are 

needed. 

1.6 Aim of the project 

In this work, we addressed the aforementioned limitations, developing a new approach to the gene 

set analysis called ‘Gene Set Enrichment Class Analysis’ (GSECA), whose purpose is the 

identification of AGSs in heterogeneous high-volume RNA-seq datasets. GSECA implements a 

sample-specific finite mixture modeling (FMM) approach to assess the bimodal distribution of 

each RNA-seq profile followed by a model-based data discretization (DD) process to increase the 

signal-to-noise ratio. Discretized data are then evaluated in a statistical framework to detect AGSs 

between two groups of samples. We showed that GSECA has the highest sensitivity and specificity 

in detecting AGSs as compared to other ‘state-of-the-art’ GSA algorithms in the presence of IH 

on both simulated and real RNA-seq data.  

We next used our approach to identify the biologically relevant gene sets that are altered upon the 

somatic loss of PTEN, and the subsequent alteration of the PI3K/AKT signaling cascade, in 14 

different cancer types, verifying the emerging role of PTEN in modulating immune-related 

processes. In particular, we showed that, in prostate cancer, PTEN loss appears to establish an 

immunosuppressive tumor microenvironment through the activation of STAT3, and low PTEN 

expression levels have a detrimental impact on patient disease-free survival.  

We implemented the method as R software (https://www.r-project.org/), and it is freely available 

from GitHub (https://github.com/matteocereda/GSECA). It can be run from the command line, 

within R, or with a GUI in a user-friendly R/Shiny application. 
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Chapter 2 
Gene Set Enrichment Class Analysis 

 

Results 

 

2.1 Method overview 

The key idea of the Gene Set Enrichment Class Analysis (GSECA) is the definition of classes of 

gene expression levels, in which all the quantified transcripts are grouped, as a means to increase 

statistical power of GSA in presence of IH. To achieve this, we implemented a ‘model-based’ data 

discretization (MDD) procedure fulfilling both a biological and a ‘statistical’ requirement. First, 

we required that the division of expression values into expression classes (ECs) must resemble the 

presence of two major subpopulations of lowly and highly expressed genes in the cells (14) (i.e. 

biological requirement). Second, we considered that the discretization process must provide an 

adequate distribution of genes among classes and, thus, ensure a similar degree of statistical power 

for the subsequent tests performed for all ECs (i.e. statistical requirement).  

2.1.1 GSECA algorithm 

To identify AGSs in a list of gene sets 𝐺 = 	 {𝐺', … , 𝐺*} between two cohorts 𝐴 = 	 {𝑎', … , 𝑎*} and 

𝐵 = 	 {𝑏', … , 𝑏*} of heterogeneous RNA-seq expression profiles, the algorithm runs through three 

sequential steps (Figure 2.1):  

1. The sample-specific FMM of gene expression levels distributions (Figure 2.1, Step 1). Given 

the bimodal behavior of the gene expression levels distributions of each sample (i.e. the two 

subpopulations of lowly and highly expressed genes in the cell), we adopted a FMM approach 

to model the RNA-seq expression profiles of all protein coding genes in each sample. FMM 

are defined as a convex combination of a finite number of probability density functions (pdfs). 

Therefore, by combining the properties of the individual pdfs, they are able to approximate 

any arbitrary distribution, thus offering a powerful and flexible tool to model complex data 

(16). In particular, GSECA models the bimodal distribution of RNA-seq expression profile x 

of a given sample i as a mixture of two Gaussian pdfs 𝛷, as previously proposed (14): 

𝑓 x3 = 	 λ'Φ 	x3; 	µ', σ' + 	λ"Φ 	x3; 	µ", σ" 	 1  

where λ is the mixing proportion, µ and σ are the mean and the standard deviation, respectively 

(16). To estimate the parameters µ and σ of the two components the method applies the 
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Expectation–Maximization (EM) algorithm (16,17). The algorithm runs iteratively until the 

maximum likelihood of the parameters of the two components is reached.  

To ensure a consistent subdivision with the overall expression profile, we implemented an 

additional heuristic step. In particular, GSECA requires the mean of the first component (i.e. 

highly expressed genes) to be greater than the mean of the second one (i.e. lowly expressed 

genes). The EM step is repeated until the condition is satisfied. Besides providing an estimate 

of the Gaussian components, the mixture model calculates the posterior probabilities of the 

component membership of the mixture (16). Thus, GSECA measures the probabilities t1 and 

t2 of each gene to belong to the two distributions defined by the two components. Therefore, 

the FMM step of the algorithm accounts for the biological requirement of taking into account 

the bimodality of transcript populations in cells to the aim of GSA. Gene expression levels are 

assumed to be normalized prior to the FMM procedures with any of the suitable methods 

available for RNA-seq  - from simple library size and transcript length accounting methods 

like Transcripts per Millions (TPM) or Fragments per Kilobase per Millions (FPKM), to more 

sophisticated ones accounting for RNA composition biases like Trimmed Mean of M-values 

(TMM) or Relative Log-Expression (RLE) (18). Moreover, the data are log-transformed in 

order to be variance-stabilized.  

 

2. The DD of expression values into ECs (Figure 2.1, Step 2). To increase the signal-to-noise 

ratio GSECA converts the continuous measurements of expression level into discrete values.  

It has been recently shown that the application of DD procedures (i.e. the division of 

numerical features into a limited number of non-overlapped intervals) improves the accuracy 

of machine learning algorithms for Big Data analysis (19,20). Using the information derived 

from the FMM, GSECA defines seven categorical ECs and assigns each gene to the 

corresponding EC. Seven is the minimum number of classes that (i) ensures the minimal 

information loss between the discrete and the continuous expression profiles and (ii) provides 

an adequate distribution of genes among classes. For each sample, genes are considered as (i) 

not expressed (NE), or not detected, if their expression level (e.g. FPKM) is smaller than 0.01; 

(ii) lowly expressed (LE) if the probability t2 of belonging to the second component of the 

mixture is greater than 0.9; (iii) highly expressed (HE) if the probability t1 of belonging to the 

first component is greater than 0.9; or (iv) medium expressed (ME) if both the probabilities 

t1 and t2 are <0.9. To ensure an adequate distribution of genes among expression classes 

(ECs), thus a similar degree of statistical power for the subsequent tests performed for all 

classes, and retain as much information from the original continuous attribute as possible, HE 

genes are further divided accordingly to the percentiles of the expression level distribution 

defined by the first Gaussian component. In particular, for each sample, HE genes were 

assigned to (i) the first class of high expression (HE1) if their expression level is less than or 
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equal to the 25th percentile of the distribution of HE genes; (ii) the second class of high 

expression (HE2) if their expression level ranges between the 25th and the 50th percentile; 

(iii) the third class of high expression (HE3) if their expression level falls between the 50th 

and the 75th percentile; or (iv) the fourth class of high expression (HE4) if their expression 

level is greater than or equal to the 75th percentile. In this way, the DD step satisfies the 

statistical requirement of providing an equal degree of statistical power to the ECs. 

 

I - Figure 2. 1: Schematic representation of GSECA algorithm. GSECA requires as input normalized 
gene expression data of two groups of samples A= {a1, . . . , an} and B = {b1, . . . , bn}, and a list 
of gene sets G = {G1, . . . , Gn }. The algorithm proceeds through three sequential steps: (i) the 
sample-specific finite mixture modeling of gene expression distribution; (ii) the sample-specific 
discretization of expression values into seven categorical expression classes and (iii) the statistical 
identification of altered gene sets (AGSs) obtained by comparing the cumulative proportion of 
genes of a gene set in each EC between the two cohorts using a Fisher’s exact test. The expression 
perturbation is summarized into an association score (AS), corrected with two bootstrapping 
procedures for false discoveries (empirical P-value) and different sample sizes of the cohorts 
(success rate, SR). The AGSs are visualized as EC maps. The EC maps display the difference of 
the cumulative proportion of the genes of a gene set in the seven ECs between the two cohorts as 
triangles, whose sizes are proportional to such difference. The upper and the lower vertex of the 
triangles represent enrichment and depletion in cohort A as compared to B, respectively. ECmaps 
depict the proportion N of genes in the gene set in each EC as grey bars. GSECA orders AGSs 
accordingly to their AS, thus obtaining the list of the most altered processes associated with the 
phenotype of interest. 
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3. The statistical framework for the identification of AGSs (Figure 2.1, Step 3). The statistical 

analysis is thus shifted from a gene-perspective to a class-perspective: the algorithm evaluates 

whether the expression pattern of the genes in a gene set shows a significant displacement 

across the ECs in the samples of interest as compared to controls, thus suggesting a causal 

relationship between the condition and the phenotype.  

Given two cohorts A and B, for each gene g and each EC c, the number of samples in which 

g is and is not assigned to the class c, n and r, respectively, are calculated for the two cohorts: 

∀𝑔	and	𝑐,			𝑛B,C = 	 𝑔 ∈ 𝑐
E

	 ; 				𝑟B,C = 	 𝑔 ∉ 𝑐
E

	 ; 2  

where i are the samples in cohorts A and B. For each gene set 𝐺 = 	 {𝑔', … , 𝑔*}, the cumulative 

number of samples with genes of G that are and are not in each expression class across 

samples of A and B, N and R, respectively, are computed as follows: 

 

∀𝐺	and	𝑐,			𝑁J,C = 	 𝑛B,C
B∈J

	; 				𝑅J,C = 	 𝑟B,C
B∈J

	; 3  

To determine whether cohort A is enriched or depleted of genes of a gene set G in an EC c as 

compared to cohort B, GSECA implements a two-tailed Fisher’s Exact test. In particular, 

GSECA tests the null hypothesis that the cumulative proportions of genes of a gene set in 

each EC across samples are not different between A and B: 

∀𝐺	and	𝑐,			𝐻N	:		(𝑁J,C; 𝑅J,C)R = 		 (𝑁J,C; 𝑅J,C)S 4 	

As a result, all seven ECs are characterized by a P-value representing the alterations (i.e. 

enrichment or depletion) of expression in the gene set. Given the contingency table defined 

by N and R for the two cohorts, the algorithm simulates the table under two independent 

binomial distributions and performs a two-tailed Fisher’s Exact test. RG, c is evaluated 

considering all genes in the gene set that are not in the EC, regardless their class membership. 

Therefore, all statistical tests perform independent evaluations of the null hypothesis. In the 

case of multiple gene sets, the P-value of each comparison is corrected for false discoveries 

using either the Bonferroni or the Benjamini & Hochberg method, respectively, as defined by 

the user. 

Since GSECA tests the overrepresentation of genes in each EC independently from the other 

ECs , to quantify the degree of expression perturbation in each gene set G between the two 

cohorts A and B, the P-values of the seven expression classes are combined using the Fisher’s 

method into one goodness-of-fit (c2) statistic, to obtain the Association Score (AS) (21): 

Ψ = 	−2 log 𝑝 𝑐
C

5  

 

𝐴𝑆	 𝐺 = 𝑃C^_` = 1.0	– 𝑃defe Ψ 	 6  
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where y is the combined test statistic and 𝜒"h"  is a Chi-squared distribution with 2k degrees 

of freedom (k = number of ECs), P is the P-value and c is the expression class. 

To calculate the significance level of the AS a bootstrapping procedure (random sampling 

with replacement) is implemented as previously described (22)(29). For 1,000 times, sample 

labels are shuffled and the AS is calculated for all gene sets. At the end of all iterations, for 

each gene set, the empirical P-value (pemp) is measured as the number of times the AS is 

smaller than the observed one: 

𝑝i_j 𝐴𝑆J = 	
1 + 𝐴𝑆J,E < 𝐴𝑆JE

1 + #𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
	 7  

Finally, in case the sample sizes differ substantially between cohort A and B, a bootstrapping 

procedure (random sampling with replacement) is implemented to measure the success rate 

(SR). The algorithm down-samples the larger cohort to reach the sample size of the smaller 

cohort randomly 1,000 times and repeats the analysis at each iteration. At the end of all 

iterations, for each AS, the SR, or the proportion of significant enrichments (P-value < 0.01, 

two-tailed Fisher’s Exact Test) over the total number of comparisons is calculated, as 

previously described in (23). 

At the end of the procedure, GSECA summarizes the results for the identified AGSs in both tabular 

form and graphically as a heatmap, namely expression class maps (i.e. EC maps), providing an 

overview of the variation of expression of each gene set across the seven classes between the two 

cohorts (Figure 2.1). 

2.2 Performance evaluation 

Once the method was designed, we proceeded to assess its performance in detecting AGSs in 

comparison with other available GSA algorithms, employing both simulated and real data sets 

(which will be described in Chapter 3). In real-life systems, genes are differentially expressed with 

a certain degree of fold change (FC) (i.e. amplitude in up-/down-regulation) and dispersion (i.e. a 

measure of within-group variability, or IH) between two groups of samples (24). GSECA has been 

developed to dissect the contribution of IH, and thus of dispersion, in large cohorts of samples and 

detect the truly AGSs. To understand how well our method achieves this goal, we performed an 

extensive evaluation of GSECA in comparison to the others GSA methods, estimating both type I 

error rate and statistical power by means of in silico simulations. 

2.2.1 GSA algorithms for comparative tests 

For each analysis, we compared GSECA results with those of seven different ‘state-of-art’ 

methods: GSEA (7), GSVA (12), ssGSEA (25), Z-Score (26), PLAGE (27), ROAST (28)and 

Globaltest (29). We run the GSEA algorithm the using GSEA.1.0.R script available from the Broad 
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Institute website (http://www.broadinstitute.org/gsea). Implementations of GSVA, Z-Score, 

PLAGE, and ssGSEA methods were available in the R package GSVA. We run all four methods 

as previously described in (12), using a Poisson kernel to fit RNA-seq expression data. data. 

Implementations of Globaltest and ROAST were available from the R/Bioconductor package 

EnrichmentBrowser (30), and we run them using the sbea function with default parameters. We 

considered gene sets with corrected P-value ≤0.1 as significantly associated with the phenotype of 

interest.  

To correct for false discoveries due to an unbalanced sample size of the cohorts, we implemented 

a measure of the SR for each comparison in a similar fashion to GSECA (see paragraph 2.2.1):  

• For each method, the larger cohort is down-sampled to reach the sample size of the smaller 

cohort randomly 1,000 times and the analysis is repeated at each iteration. At the end of 

all iterations, for each comparison, the proportion of significant enrichments (P-value < 

0.05) over the total comparisons is calculated. 

2.2.2 Simulated RNA-seq data 

We generated in silico random read counts using a Negative Binomial (NB) distribution. This 

model has been shown to reasonably capture biological and technical variability of RNA-seq 

experiments (6,31). Specifically, we modelled the number of raw reads of a gene i in a sample j as 

random variable 𝑌Es with NB distribution: 

𝑌Es	~	𝑁𝐵 𝑚𝑒𝑎𝑛 = 𝜇Es, 𝑠𝑖𝑧𝑒 = 𝑟Es 	 8  

with 

𝐸 𝑌Es = 𝜇Es; 𝑉𝑎𝑟 𝑌Es = 𝜇Es 1 +
𝜇Es
𝑟Es

	 9  

where 𝜇Es and 𝜙Es =
'
~��

 are respectively the mean count and dispersion parameter of gene i in 

sample j. Dispersion describes how much the variance deviates from the mean of the read count 

of a gene across samples.  

We derived parameters of the NB distribution from real data (specifically, from the 498 samples 

of the TCGA Prostate Cancer dataset, which will be extensively described in the following 

chapters) using the edgeR R package (31). To avoid confounding effects due to possible outliers 

while estimating the mean and dispersion parameters, we excluded samples with library size 

smaller than 40 million reads and genes not detected in all samples. We then reduced library size 

of all samples to that of the sample with minimum library size by binomial thinning and estimated 

dispersion parameter of each gene by an empirical Bayes method based on weighted conditional 

maximum likelihood (estimateDisp function in edgeR) (31). 
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2.2.3 Type I error rate estimation  

In statistical hypothesis testing, type I error is the incorrect rejection of a true null hypothesis (often 

referred to as “false positive” finding). To measure the type I error rate, we generated read counts 

for N samples and 1000 gene sets of equal size P in the condition of no differential expression, as 

previously proposed in (32). Then, for each gene set, we tested the null hypothesis of no difference 

between the two cohorts, and we computed the type I error rate as the fraction of false positive 

predictions (P-value < 0.05) over the total number of gene sets tested. To examine the effects of 

sample and gene set sizes, we defined two tunable parameters: 

1) N = sample size; 

2) P = gene set size. 

We ran the analysis under different parameter settings of N (60, 150, 300, 500) and P (25, 50, 100, 

300), repeating each simulation ten times to obtain more stable results. GSECA resulted in being 

the most conservative approach, with the lowest type I error rate (average median = 0.002) as 

compared to the other approaches (average median = 0.05, Figure 2.2).  

The conservativeness of GSECA is due to the conservativeness of the Fisher’s Exact test (FET) 

(33) that are combined into the AS. Each FET depends on to the cumulative number of genes in 

the gene set in the EC across samples of the cohorts (see paragraph 2.2.1). As the sample size 

grows, the ability of the test to detect a small variation with high specificity and sensitivity 

increases. As a consequence, combining conservative FET P-values using a logarithmic scale (i.e. 

Fisher’s Method) results in small ASs. For this reason, GSECA accounts for false positives better 

than the other GSA algorithms. Furthermore, GSECA specificity was not influenced by the sample 

and gene set sizes, remaining constant even in case of large cohorts and large gene sets (Figure 

2.2). 

2.2.4 Statistical power evaluation 

The statistical power of a hypothesis test is the probability that the test rejects a false null 

hypothesis when the alternative is true: it is a measure of the probability to avoid type II errors 

(often referred to as “false negative” findings).  To assess the statistical power of each GSA 

algorithm (i.e. the probability to detect an AGS when the gene set is truly altered), we tuned the 

parameters of the NB distribution to model several controlled settings of differential gene set 

expression between two cohorts A and B. To do so, besides the varying sample (N) and gene set 

(P) sizes, we introduced four additional tunable parameters, as previously proposed in (32): 

1) b = the proportion of gene sets that contains truly differentially expressed (DE) genes; 

2) g = the percentage of genes that are truly DE in each gene set; 

3) FC = the fold change in gene counts between the two cohorts; 

4) D = scaling factor controlling the estimated dispersion parameter of the NB distribution. 
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By means of adjusting this set of parameters, we implemented two kinds of simulations: 

1.1 The FC study (Figure 2.3, 2.5), which models the contribution of fold changes in differential 

gene set expression between two cohorts A and B by tuning of the FC parameter, with no 

changes in the estimated dispersion (D =1): 

• 𝑐𝑜ℎ𝑜𝑟𝑡	𝐴:					𝑁𝐵 𝐹𝐶 ∙ 𝜇E; 𝜑E 														𝑐𝑜ℎ𝑜𝑟𝑡	𝐵:				𝑁𝐵 𝜇E; 𝜑E   

We used different parameter settings for relatively small and large gene sets for cohorts of 

an increasing size. In particular, we varied the set of parameters as follows: 

1) 𝛽 = 0.05, 0.25  

2) 𝛾 = {0.25, 0.5} 

3) 𝐹𝐶 = {1.5, 2, 2.5, 3} 

for varying sample (N) and gene set sizes (P): 

1) 𝑁 = {60, 150, 300, 500} 

2) 𝑃 = {25, 100} 

 

 

I - Figure 2. 2: Type I error rate estimation. Boxplots depicting the type I error rates for GSA 
methods evaluated for different settings of sample (N) and gene set sizes (P) on ten replicates. Red 
and blue dashed lines show the nominal a values of 0.01 and 0.05, respectively. 
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For all simulations, we generated S = 1,000 gene sets (median pairwise overlap of gene 

list < 1%) as previously proposed in (32). Briefly, we divided the N samples in two groups 

corresponding to distinct phenotypes A and B. Then, for each of the (1 − 𝛽) 	 ∙ 𝑆 non-DE 

gene sets, we generated read counts by sampling P random realizations of 𝑁𝐵 𝜇E; 𝜑E , 

where 1 ≤ 𝑖 ≤ 𝑃 for both cohort A and B. Conversely, for each of the 𝛽 ∙ 𝑆 gene sets 

having truly DE genes, we sampled: 

• �
"
 random realizations of 𝑁𝐵 𝜇E; 𝜑E  and 𝑁𝐵 𝐹𝐶 ∙ 𝜇E; 𝜑E  under cohort A and B 

respectively, for 1 ≤ 𝑖 ≤ 𝛾 ∙ �
"
 

• �
"
 random realizations of and 𝑁𝐵 𝐹𝐶 ∙ 𝜇E; 𝜑E  and 𝑁𝐵 𝜇E; 𝜑E  under cohort A and 

B respectively, for 𝛾 ∙ �
"
< 𝑖 ≤ �

"
 

In this way, half of the 𝛾 ∙ 𝑃 DE genes in each gene set are up-regulated and half are down 

regulated between the two cohorts.  

For each gene set, we assessed power by testing the null hypothesis of no differential 

expression between cohorts for all methods: 

• 𝑛𝑢𝑙𝑙	𝐻N: 𝐹R = 𝐹S    𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝐻': 𝐹R ≠ 𝐹S 

Moreover, to account for the different specificity of GSA methods, we measured the F1 score, 

a performance evaluation metric that provides a harmonic mean of the precision and recall 

(34). F1 score takes both false positives and false negatives into account and it is more useful 

than accuracy in case of an uneven class distribution (i.e. truly AGSs and invariant gene sets, 

respectively) (34). For each method and simulation, we calculated precision (or positive 

predicted value) and recall (or sensitivity) as the fraction of true AGSs over the total amount 

of correctly predicted gene sets and the fraction of true AGSs over the total number of AGSs, 

respectively.  

The FC study modeled the condition of having homogeneous expression changes across 

samples, driven by the degree of FC in gene set expression. In this condition, the power of 

GSECA increased with sample size (N) and FC values, while was not affected by the gene set 

size (P) and changes in the percentage of DE genes in the gene set (b and g), as reported in 

Figure 2.3 and Figure 2.4.  In particular, GSECA showed a power, or sensitivity, higher than 

70% for medium and large sample sizes (N ≥ 150) under different parameter settings, similar 

to those of the other self-contained approaches (Figure 2.3A and 2.5A). Conversely, for small 

sample size (N = 60), other GSA methods showed a higher power than GSECA. Overall, we 

noticed that GSECA predictions showed a better trade-off between precision and sensitivity 

(F1 score > 0.7) than all other methods even for subtle changes in gene expression for small 

gene set sizes (i.e.  = 0.05 and P = 25, Figure 2.3A and 2.3B), reflecting the high specificity of 

GSECA in detecting truly AGSs. 
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I - Figure 2. 3: The FC simulation study. A. Scatter plots depicting the statistical power of each 
GSA algorithm at the increase of FC between cohorts for different settings of sample size N, 
gene set size P, the proportion of gene sets containing differentially expressed genes b, the 
percentage of DE genes in each gene set g. B. Scatter plots depicting the F1 score of each GSA 
algorithm at the increase of FC between cohorts for different settings of sample size N, gene set 
size P, the proportion of gene sets containing differentially expressed genes b, the percentage of 
DE genes in each gene set g. 

 

1.2 The dispersion study (Figure 2.4-2.5), which models the contribution of IH, or within-group 

variability, in differential gene set expression between two cohorts A and B by fixing a small 

or no FC parameter and tuning the D parameter: 

• 𝑐𝑜ℎ𝑜𝑟𝑡	𝐴:					𝑁𝐵 𝐹𝐶 ∙ 𝜇E; 𝐷 ∙ 𝜑E 														𝑐𝑜ℎ𝑜𝑟𝑡	𝐵:				𝑁𝐵 𝜇E; 𝜑E   

Again, we varied the parameter settings as follows: 

1) 𝛽 = 0.05, 0.25  

2) 𝛾 = {0.25, 0.5} 

3) 𝐹𝐶 = {1, 1.1, 1.25} 

4) 𝐷 = {1.5, 2, 3, 5, 7, 10} 

for varying sample (N) and gene set sizes (P): 

1) 𝑁 = {60, 150, 300, 500} 

2) 𝑃 = {25, 100} 

A
 

B
. 

A
. 



 31 

For all simulations, we generated S = 1,000 non-overlapping gene sets. We divided the N 

samples in two cohorts A and B. Then, for each of the (1 − 𝛽) 	 ∙ 𝑆 non-DE gene sets, we 

generated read counts by sampling P random realizations of 𝑁𝐵 𝜇E; 𝜑E , where 1 ≤ 𝑖 ≤

𝑃 under both cohorts. In contrast, for each of the 𝛽 ∙ 𝑆 gene sets having truly DE genes, 

we sampled P random realization of 𝑁𝐵 𝜇E; 𝜑E  and 𝑁𝐵 𝐹𝐶 ∙ 𝜇E; 𝐷 ∙ 𝜑E  under cohort A 

and B respectively, for 1 ≤ 𝑖 ≤ 𝛾 ∙ 𝑃 (32). For each gene set, we assessed power by testing 

the null hypothesis of no differential expression between cohorts for all methods, and 

measured the F1 score. 

The dispersion study modeled the effect of having heterogeneous expression changes 

across samples, driven by the degree of dispersion (D), or IH. In this condition, GSECA 

outperformed the other GSA methods, with an exponential-like grow of its statistical 

power at the increase of the D parameter (Figure 2.4A). Moreover, the power of GSECA 

increased with sample size (N), while the other methods were not affected. Even to a lesser 

extent, ssGSEA performed similarly to GSECA in handling heterogeneity (Figure 2.4A). 

Comparably to GSECA DD approach, ssGSEA brings expression profiles to a common 

scale collapsing the range of possible gene expression (32). In doing so, ssGSEA reduces 

the noise of IH (i.e. genes with similar expression levels will have the same rank), 

increasing its power to detect truly AGSs. 

GSECA achieved the highest F1 scores, underlining its high sensitivity and specificity in 

case of heterogeneous gene expression (Figure 2.4B). These results did not considerably 

change for small variation of FC values or with gene set sizes (Figure 2.6 and Figure 2.7) 

 

 

Taken together the results of the in-silico simulations for FC and dispersion studies, we can 

conclude that: 

• GSECA has a high sensitivity, proper of self-contained tests (32), of identifying truly 

AGSs in presence of FC variations between cohorts (Figure 2.5A).  Moreover, compared 

to the other GSA approaches, GSECA has the best balance between sensitivity and 

specificity, showing the highest F1 score (Figure 2.5B).  

• GSECA is the most powerful GSA approach, among the tested ones, to treat dispersion, 

and thus IH, in gene expression between phenotypes (Figure 2.5A). The results of the 

simulation studies show that the performances of GSECA are enhanced in case of large 

cohorts (i.e. N ≥ 150, Figure 2.5B).  
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I - Figure 2. 4: The dispersion study. A. Scatter plots depicting the statistical power of each GSA 
algorithm at the increase of dispersion factor D at a fixed FC of 1.1 between cohorts for different 
settings of sample size N, gene set size P, the proportion of gene sets containing differentially 
expressed genes b, the percentage of DE genes in each gene set g. B. Scatter plots depicting the F1 
score of each GSA algorithm at the increase of dispersion factor D at a fixed FC of 1.1 between 
cohorts for different settings of sample size N, gene set size P, the proportion of gene sets 
containing differentially expressed genes b, the percentage of DE genes in each gene set g. 

 

In both FC and dispersion studies, the statistical power of GSECA increased with sample size. 

This is a consequence of the DD process, where it is expected that small sample sizes might be not 

sufficient to estimate the correct distribution of data (34). When the IH noise between cohorts is 

negligible and the cohort size is small, GSECA requires strong FC differences to reach adequate 

power. In contrast, when IH noise between cohorts is relevant, GSECA performs better than any 

of the tested GSA methods in terms of both sensitivity and specificity, thus being the most 

powerful approach for detecting truly AGSs in presence of heterogeneous gene expression 

changes. 

B
. 

A
. 
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I - Figure 2. 5: Performance summary of GSA methods. A. Bar plots representing the median values 
of statistical power and F1 score measured for all GSA methods in all simulations for the FC and 
dispersion studies. Grey and purple dashed lines represent values of 0.7 and 0.9, respectively. 
Black error bars depict standard errors. B. Bar plots representing the median values of statistical 
power and F1 score measured for all GSA methods in all simulations for the FC and dispersion 
studies for sample sizes greater than 150. Grey and purple dashed lines represent values of 0.7 and 
0.9, respectively. Black error bars depict standard errors. 

 

 

I - Figure 2. 6: Performance of GSECA in the dispersion study simulations. Scatter plot showing 
GSECA statistical power at increasing values of dispersion parameter D at for different settings of 
FC, sample size N, gene set size P, the proportion of gene sets containing differentially expressed 
genes b, the percentage of DE genes in each gene set g. 
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I - Figure 2. 7: Dispersion study simulations. Scatter plots depicting the statistical power and the 
F1 score of each GSA algorithm at the increase of dispersion factor D for increasing sample size 
N (left-to-right) and increasing FC, gene set size P, proportion of gene sets containing differentially 
expressed genes b,  percentage of DE genes in each gene set g (top-to-bottom).  
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Chapter 3 
Identification of altered biological processes in  

PTEN loss prostate adenocarcinoma 
 

Results 

 

3.1 The prostate cancer dataset 

To assess the performance of GSECA in detecting AGSs on real datasets, we looked for a condition 

in which the alteration of a known biological process was expected. To this aim, we chose the 

Prostate Adenocarcinoma (PRAD) cancer type, available from The Cancer Genome Atlas (TCGA, 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga), as a case 

study. A frequent event in prostate cancer is the somatic loss of the tumor suppressor gene PTEN 

(35,36), which encodes for the  phosphatase and tensin homolog protein. Through its lipid 

phosphatase activity, the PTEN protein governs a plethora of cellular processes, including survival, 

proliferation, energy metabolism and cellular architecture (37). As tumour suppressor gene, PTEN 

acts as a negative regulator of the PI3K/AKT pathway, which is a signal transduction pathway that 

promotes survival and growth in response to extracellular signals. The somatic loss of PTEN 

results in the alteration of the PI3K/AKT signaling pathway (38) and promotes oncogenic 

programs (37).  

To deeper characterize the relationship between PTEN and the PI3K/AKT signaling pathway, we 

retrieved the PTEN protein-protein interaction (PPI) network from STRING (39) (http://string-

db.org) (using  sources as ‘textmining’, ‘experiment’ and ‘databases’ as a type of evidence to 

measure the interactions between PTEN and other proteins). Interestingly, among the first ten top-

ranked primary interactors (interaction score ≥ 0.9) of PTEN, nine genes are involved in the 

PI3K/AKT signaling pathway accordingly to the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Figure 3.1). Moreover, functional analysis of the PTEN interactors revealed a significant 

enrichment of genes in PI3K/AKT signaling pathway (𝐹𝐷𝑅 ≤ 0.05).  

Given these considerations, we hypothesized that stratifying human prostate adenocarcinomas 

(PRADs) accordingly to the somatic loss of PTEN could reveal the altered modulation of the 

PI3K/AKT signaling pathway, providing us the framework to test the performance of GSECA on 

real data, in comparison with the other selected GSA algorithms. 
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I - Figure 3. 1: The PTEN PPI network from STRING.  First 10 top-ranked primary interactors of 
PTEN in the STRING PPI network. 

3.1.1 Identification of PTEN loss samples 

We collected genomic data for 498 PRAD samples available from TCGA. In particular, we 

downloaded data for somatic mutations (i.e. single nucleotide variants and small 

insertion/deletions (InDels)), copy number alterations (CNVs), RNA sequencing, protein 

expression and phosphorylation from the TCGA Data Matrix portal (Level 3, https://tcga-

data.nci.nih.gov/tcga/dataAccessMatrix.htm).  

We next processed the data as previously described in (40). In particular, we considered PTEN as 

somatically lost in presence of at least one of the following loss of function alterations:  

• Homozygous/heterozygous gene deletions: loss of both or single allele, assigning the copy 

number status as previously reported in (40). 

• Truncating mutations: point mutations in DNA sequence resulting in a truncated, 

incomplete and non-functional protein product (i.e. stopgain, stoploss, frameshift indels). 

• Damaging mutations: single nucleotide change resulting in a codon that codes for a 

different amino acid, with predicted damaging effects on the encoded protein. We defined 

damaging alterations as missense and splicing (i.e. up to two nucleotides surrounding the 

splice sites) mutations. Specifically, we considered missense mutations as damaging if 

supported by at least five out of eight function-based scores (SIFT (41), PolyPhen-2 HDIV 

and HVAR (42), MutationTaster (43), MutationAssessor (44), LTR (45) and FATHMM 

(46)) or two out of three conservation-based scores (PhyloP (47), GERP++ RS (48), SiPhy 

(49)). Similarly, we defined splicing mutations as damaging if supported by at least one 

ensemble score of dbscSNV (50). 

According to these criteria, we stratified the 498 PRAD samples in two cohorts: 75 PTEN loss 

(PTEN-loss) and 423 PTEN wild type (PTEN-wt) tumors (i.e. patients without PTEN alterations). 

Using RNA-seq and protein data, we observed a significant lower expression of PTEN in PTEN-

loss samples as compared to PTEN-wt ones (P-value < 10-16, two-tailed Wilcoxon test, Figure 

3.3A). Moreover, we confirmed the alteration of PI3K/AKT genes by measuring their cumulative 

expression levels, with a significant increase in PTEN-loss tumors (P-value = 0.004, two-tailed 
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Wilcoxon test, Figure 3.3B). Furthermore, we observed a significantly higher phosphorylation 

level of AKT1 in PTEN-loss tumours as compared to wild-type samples (P-value = 0.006, two-

tailed Wilcoxon test, Figure 3.3C). These results show that our sample stratification, based on 

alterations that occur at the DNA level, produced a broad, unbalanced and heterogeneous 

expression dataset containing a significantly different regulation of the PI3K/AKT signaling 

pathway. 

 

 
I - Figure 3. 2: Somatic alterations in PTEN loss samples. Somatic alterations (i.e. mutations and/or 
copy number alterations (CNVs)) affecting PTEN in the 75 PTEN loss samples. 

 

 

I - Figure 3. 3: Effect of PTEN-loss sample stratification on PTEN and PI3K/AKT pathway. A. 
Boxplot distributions of PTEN normalized expression levels (i.e. FPKM) for PTEN-loss and 
PTEN-wt samples. B. Cumulative expression levels of genes involved in the PI3K/AKT signaling 
pathway for PTEN-loss and PTEN-wt samples. C. Boxplot distributions of the relative level of 
AKT phosphorylation, for PTEN loss and PTEN-wt samples. 

A. B. C. 
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3.1.2 Characterization of IH in PTEN-loss tumors 

We next evaluated the level of IH of the cohorts reflected in the RNA-seq data. We first did it by 

correlation analyses, measuring the pairwise Pearson’s correlation coefficient of the gene 

expression profiles and taking the average for each sample as a similarity measure. Interestingly, 

we found that 64% of samples had a low similarity of expression patterns with the others 

(Pearson’s R < 0.75, Figure 3.4A and B), confirming the presence of IH in the dataset. We further 

characterized IH by performing differential gene expression analysis (with the DESeq2 R package 

(24), using default settings and filtering out genes with read counts equal to zero in all samples) 

between PTEN-loss and PTEN-wt cohorts and measuring the FC and dispersion of FPKM values 

for 19,663 protein coding genes (Figure 3.5A). We found that 56% of genes showed a reduced 

expression upon PTEN loss, which was reflected in the higher number of down-regulated genes 

(n = 631, 𝑙𝑜𝑔𝐹𝐶 ≤ −1 and 𝐹𝐷𝑅 ≤ 0.1) than up-regulated ones (n = 325, 𝑙𝑜𝑔𝐹𝐶 ≥ 1 and 𝐹𝐷𝑅 ≤

0.1). Furthermore, out of 4830 genes with a high level of dispersion (i.e. ≥75th percentile of the 

dispersion distribution), 29% were activated (i.e. FC ≥ 75th percentile of the FC distribution) and 

48% repressed (i.e. FC ≤ 25th percentile of the FC distribution). These findings highlight a general 

reduction of expression characterized by IH in the PTEN-loss cohort. This might be a possible 

consequence of the role of PTEN in regulating basal transcription through histones and chromatin 

remodelling (51). 

 

 

I - Figure 3. 4: Correlation analysis of PRAD dataset. Histogram showing the distributions of mean 
Pearson’s Correlation of pairwise comparisons, for all samples (A.) and for PTEN-loss and PTEN-
wt samples, respectively (B.). Blue rectangle indicates R smaller than 0.75. 

 
In order to perform the GSA between the two cohorts, we collected the list of 158 human gene sets 
of the KEGG database (52) (https://www.genome.jp/kegg/), available from MSigDb35 (version 5, 

A. 

B. 
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https://software.broadinstitute.org/gsea/msigdb/). This manually curated collection of human gene 
sets represents the current knowledge on molecular reaction and interaction networks for a wide 
range of biological processes and metabolic pathways. By inspecting the FC and dispersion 
landscape of the gene sets list between PTEN-loss and PTEN-wt tumors, we observed that the 
highest proportion of genes was repressed and dispersed (Figure 3.5B, TL). In particular, 15% of 
genes in PI3K/AKT signaling pathway were repressed and highly dispersed, suggesting a variable 
repression of PI3K/AKT genes across samples upon the somatic loss of PTEN (Figure 3.5B, red 
dots).  

 

 

I - Figure 3. 5: The FC and dispersion landscape between PTEN-loss and PTEN-wt tumors. A. 
Scatter plot showing the log2 fold change (FC) and dispersion (D) values of all genes between 
PTEN-loss and PTEN wt samples. Grey lines represent the median values of FC and D. Dashed 
grey lines show the 25th and 75th percentile of the FC and D distributions and define four regions 
of expression changes (TL = top-left; TR = top-right; BL = bottom-left; BR = bottom-right). B. 
Boxplots depicting the percentage of genes of each KEGG gene set in the four regions of 
expression changes. Red dots represent genes in PI3K/AKT signaling pathway. 

3.2 GSECA results on PTEN-loss PRAD tumors 

We applied GSECA to the PRAD dataset, testing the 158 KEGG gene sets between PTEN-loss 
and PTEN-wt tumors. The first step of GSECA is the sample-specific FMM of gene expression 
levels distributions to identify the two subpopulations of lowly (first component of the mixture) 
and highly (second component of the mixture) expressed genes (Figure 3.6A, see Chapter 2, 
paragraph 2.2.1).  To understand whether the FMM step captured the observed IH of the PRAD 
dataset (paragraph 3.1.2), we inspected the component parameters (i.e. mean µ, standard deviation 
s and mixing proportion l) obtained for the two cohorts (Figure 3.6B). We observed that, even if 
showing the same µ, the average s of the first component (i.e. lowly expressed genes) was 
significantly higher in PTEN-loss samples as compared to PTEN-wt ones (P-value = 0.031, two-
tailed Student’s t-test), suggesting that PTEN-loss are more heterogeneous at low levels of 
expression as compared to PTEN-wt samples. Moreover, analyzing the second component, we 
found that the average µ was significantly higher in the PTEN-loss cohort (P-value = 0.003, two-
tailed Student’s t-test), with no differences in the s parameter. Finally, comparing the mixing 
proportions l, we observed a significantly lower number of genes assigned to the second 
component for PTEN-loss samples as compared to PTEN-wt ones (hence, a higher number was 

A. B. 
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assigned to the first component). The results of this analysis showed that the FMM step of GSECA 
correctly described the gene expression landscape of the PTEN-loss PRAD dataset, capturing the 
higher degree of IH for lowly expressed genes in PTEN-loss tumors (as previously observed in 
paragraph 3.1.2). 
The second step of GSECA is the DD process, which groups the gene expression values into seven 
discrete ECs. To assess whether the DD step preserved the structure of the PRAD PTEN-loss 
dataset, we compared the distributions of the proportion of genes in each and expression class 
between PTEN-loss and PTEN-wt tumors. We found a significant increase of genes in the LE class 
(Bonferroni adjusted P-value = 0.016, two-sided Wilcoxon rank sum test) and reduction of genes 
in the four HE classes (Bonferroni adjusted P-value = 0.021, two-sided Wilcoxon rank sum test) 
for PTEN-loss as compared to PTEN-wt tumors. This result reflects the reduction of l for PTEN-
loss cohort detected by the FMM step, thus confirming the accuracy of the DD step in not altering 
the observed features of the original data. 
 

 
I - Figure 3. 6: GSECA FMM and DD steps on the PRAD PTEN loss dataset. A. Kernel density 
distributions of the two-component Gaussian mixtures obtained from the FMM step, for PTEN-
loss and PTEN-wt tumors. B. Comparison of the component parameters (i.e. mean µ, standard 
deviation s and mixing proportion l) defined by the FMM between PTEN-loss and PTEN-wt 
tumors. Barplots depict the mean and standard deviation of each parameter, for PTEN-loss and 
PTEN-wt samples. Statistical test with a P-value < 0.05 are considered as significant (*, Student’s 
t-test). C. Boxplot distributions representing the number of genes in each EC for PTEN-loss and 
PTEN-wt samples. Statistical test with a Bonferroni adjusted P-value < 0.05 are considered as 
significant (*, two-tailed Wilcoxon rank sum test).  

A. 

B. C. 
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The final step of GSECA is the statistical framework for the identification of AGSs (see Chapter 
2, paragraph 2.2.1). For each of the 158 KEGG gene sets, GSECA compared the fraction of genes 
in each EC between PTEN-loss and PTEN-wt tumors, determining their enrichment or depletion, 
and summarized the results in the AS, providing for each gene set the empirical P-value (pemp) and 
SR in order to avoid false discoveries and correct for unbalanced sample sizes. We found that 21 
out of the 158 KEGG gene sets were significantly altered in PTEN-loss as compared to PTEN-wt 
samples (𝐴𝑆 ≤ 0.01,  𝑝i_j ≤ 0.001 and 𝑆𝑅 ≥ 0.9 ). The resulting AGSs were ranked on the basis 

of three significance metrics (i.e. AS, pemp and SR) and reported in the EC map (Figure 3.7). 
Remarkably, GSECA identified the PI3K/AKT signaling pathway as the second top-ranked AGS, 
showing a significant increase in the LE, ME and HE1 classes and a significant decrease in the 
HE2 and HE3 classes (FDR < 0.1), thus supporting the presence of high IH for PI3K/AKT genes 
at low levels of expression (Figure 3.5B).  
Among the remaining AGSs, GSECA identified five gene sets of signal transduction (i.e. calcium 

signaling, cytokine-cytokine receptor interaction, cell adhesion molecules (CAMs), MAPK and 

WNT signaling pathway) that are tightly connected with PI3K/AKT signaling pathway. In 

particular, PTEN silencing, and the subsequent alteration of PI3K/AKT pathway, impairs calcium 

signaling (53), alters epithelial CAMs and focal adhesion gene expression in prostate (54), alters 

MAPK (55) and WNT signaling cascade (56). Furthermore, GSECA detected the alteration of five 

immune-related processes (i.e. hematopoietic cell lineage, chemokine signaling pathway, B and T 

cell receptor signaling, FC gamma R mediated phagocytosis), supporting the role of PTEN in 

regulating the proliferation and differentiation of hematopoietic stem cell (57), controlling 

signaling and homeostasis in both B and T cells (58,59), and inhibiting FC gamma receptor 

signaling (60), as well as the role of PI3K/AKT pathway in the regulation of chemokine signaling 

during prostate tumorigenesis (61). Finally, GSECA highlighted the alteration of nine metabolic 

pathways, underlining the contribution of PTEN in metabolism control (62). GSECA also 

identified the alteration of cardiac muscle contraction and aldosterone-regulated sodium 

reabsorption gene sets. It is worth noting that the down-regulation of PTEN decreases heart muscle 

contractility (63) and the activation of PI3K/AKT pathway might be responsible for the alteration 

of aldosterone-mediated sodium transport in epithelial cells (64).  

These results indicate that our method can successfully identify the alteration of biological 

processes (i.e. the expected alteration of PI3K/AKT signaling and related pathways) on real RNA-

seq data characterized by a high degree of IH, as shown for the PTEN-loss PRAD dataset. 
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I - Figure 3. 7: GSECA results on the PRAD PTEN loss dataset. EC map for the AGSs identified 
by GSECA in PTEN-loss prostate adenocarcinoma. Triangles report the significant alteration of 
ECs. Direction of triangle depict enrichment (up) or depletion (down). Size of the triangles 
represent the proportion differences (%), colour report the FDR. Barplots on the right-side report 
AS and SR values, used to rank the AGSs. 

3.3 Comparison with available GSA algorithms 

We next compared the results of GSECA on the PRAD PTEN loss dataset with those of the 

selected GSA algorithms available from the bioinformatics community (see Chapter 2, paragraph 

2.2.1). We found that Z-Score, PLAGE, ssGSEA identified an average of 20 AGSs, comparably 

to GSECA, whereas GSVA identified 41 AGSs and ROAST and GSEA detected only 1 AGS 

(adjusted P-value < 0.1, SR > 0.9, Figure 3.8A). To evaluate the concordance of results among 

methods, we measured the Jaccard Coefficient (JC, Figure 3.8B) between any couple of 

algorithms. 
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I - Figure 3. 8: Similarity of GSA methods’ result on the PRAD PTEN-loss dataset. A. Overlap of 
AGSs in PRAD PTEN-loss samples identified by the GSA algorithms. B. Similarity matrix based 
on the Jaccard Coefficient (JC) of AGSs in PRAD PTEN-loss samples identified by the GSA 
algorithms. 

 

We observed that the overall similarity among methods was low (mean JC = 12%) and that GSECA 

showed the highest agreement with ssGSEA (JC = 19 %). The poor concordance of the results of 

GSA methods has been previously reported as a consequence of the distinct statistical assumptions 

of each method (9). Hence, the number and type of algorithm-specific AGSs might reflect the 

ability of a method to handle the IH proper of the PRAD dataset.  

Nevertheless, given this weak similarity, we validated the results obtained from each method using 

orthogonal analysis approaches (Figure 3.9). To do so, we first selected the ten top-ranked AGS 

identified by each method and hierarchically clustered their rankings. Next, for each gene set, we 

compared the GSA results with those obtained from three different analyses: 

• Gene ontology (GO) analysis on the PTEN PPI interaction network retrieved from 

STRING(39). 

• GO analysis on the list of differentially expressed genes between PTEN-loss and PTEN-

wt samples, obtained with DESeq2 (24). 

A. B. 
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• Literature-based text mining analysis on published journal articles - available at the 

National Center for Biotechnology Information (NCBI) PubMed database 

(https://pubmed.ncbi.nlm.nih.gov/) - exploring the connection between PTEN and the 

identified AGSs. To do so, for each KEGG gene set, we inspected abstracts of published 

articles for the co-occurrence of keywords such as PTEN and the gene set nomenclature, 

using the R package RISMed (https://cran.r-project.org/web/packages/RISmed). 

 

The hierarchical clustering of the top-ranked AGSs revealed the presence of five clusters, 

composed by three gene sets groups based on the methods of origin (Figure 3.9): 

• G1: mainly GSECA and Globaltest; 

• G2: generally resulting from all methods; 

• G3: only GSA methods other than GSECA. 

 

Notably, GSECA was the only method identifying the PI3K/AKT signaling pathway – i.e. an 

expected alteration in the PTEN-loss cohort, see paragraph 3.1 - among the top-ten AGSs. 

Moreover, we observed that the G1 group contains 75% of genes enriched from the STRING PPI 

gene ontology, and that five out of the eight gene sets enriched in the list of differentially expressed 

genes were found as significantly altered by GSECA (Figure 3.9). The GO analysis revealed 

enrichment of PI3K/AKT genes only when we considered significantly activated and repressed 

genes. The fact that GSECA was the only algorithm able to identify this gene set as top-ranked 

AGSs suggests its ability in identifying processes where genes are significantly altered in both 

directions rather than being either activated or repressed. Finally, four out of the ten top-ranked 

GSECA AGSs showed published evidence (≥9) for the interaction of PTEN with the gene set, with 

the highest number of articles (n = 499) supporting PTEN regulation of PI3K/AKT signaling 

pathway. In contrast, for the AGS identified by the other methods, we observed poor support from 

literature (mean publications = 4) and GO analysis, with no support from any of the three validation 

analyses for the G3 group (i.e., gene sets exclusively picked by methods other than GSECA). 

To gain further insights into the reasons why GSECA outperformed the other algorithms in 

detecting the alteration of PI3K/AKT signaling pathway upon PTEN loss, we analyzed the gene 

expression levels of the 20 top-ranked gene sets of each method independently from their statistical 

significance. As previously pointed out, a substantial fraction of PI3K/AKT genes is 

downregulated in a highly variable manner (see paragraph 3.1.2 and Figure 3.5B). Therefore, to 

detect its significant alteration, GSA methods must handle coordinated expression changes (i.e. 

activation or repression) of distinct genes in different samples even if they result in small FC 

differences in the whole population. 

To evaluate this capability, we investigated the FC and dispersion (D) profile of the genes 

belonging to the selected gene sets (Figure 3.10A). In particular, for both FC and D, we calculated 
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the mean and standard deviation on the PRAD dataset, and next averaged them across genes. 

Moreover, to obtain a measure of the coordinated variability depicted by each GSA method, we 

calculated the proportion of gene sets composed by genes that were both significantly activated 

and repressed with a high degree of dispersion across samples (i.e. ≥ 75th percentile of the 

dispersion distribution, Figure 3.10B). 

 

 
I - Figure 3. 9: Evaluation of the AGSs identified by the GSA methods on the PRAD PTEN-loss 
dataset. Hierarchical clustering of the first ten top-ranked AGSs in PRAD PTEN-loss detected by 
GSA algorithms. Each cell reports the rank of the gene set of a specific method. The ranks of the 
top ten ranked gene sets are reported in black. Annotation heatmap (right) depicts gene sets 
identified by GO analysis performed considering the STRING PPI network and differentially 
expressed genes (i.e. DEG) in black and (ii) evidence coming from literature text mining in color 
key of blues. 
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I - Figure 3. 10: GSECA handles coordinated variability in AGSs. A. Scatter plot of the mean 
absolute FC (Abs. FC), and D averaged on the 20 top-ranked gene sets detected by each method. 
Dot size represents the average standard deviation (s) of D for the 20 top-ranked gene sets. Color 
key depicts the percentage of the 20 top-ranked gene sets that contain both activated and repressed 
gene sets, namely coordinated variability. B. Bar plot depicting the percentage of the top 20 ranked 
gene set containing both activated (A) and repressed (R) genes with dispersion greater than the 
75th percentile of the dispersion distribution. 

 

We found that, overall, GSECA showed the best performance in characterizing gene sets that are 

more intensively activated or repressed (i.e. intensity and % of coordinated variability, Figure 

3.10A-B) at all levels in a heterogeneous manner across samples (i.e. heterogeneity, Figure 3.10A). 

For this reason, GSECA was able to detect the altered modulation of PI3K/AKT signaling pathway 

that is composed of genes that are expressed at different levels (i.e. low and high) and are distinctly 

activated or repressed in different samples upon PTEN loss. The second best-method in this 

comparison was Globaltest. However, the highest type I error rate showed in simulation studies 

(see Chapter 2, paragraph 2.2.3), which resulted in a high number of significantly AGSs identified 

in the PRAD dataset (119 AGSs out of 158, Figure 3.8A), confers less robustness to its results. 

Remarkably, the remaining methods showed poor performance in handling datasets characterized 

by high degree of IH (Figure 3.10A). 

Taken together, these results show that GSECA can detect functionally relevant altered biological 

processes under a phenotype of interest when considering more heterogeneous cohorts in contrast 

to other available methods. 

  

A. B. 
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Chapter 4 
Pancancer analysis of PTEN somatic loss 

 

Results 

 

4.1 The pancancer dataset 

Somatic inactivation of PTEN occurs in a wide range of human cancers with various effects on 

each tissue (65). Therefore, we used GSECA to perform a comprehensive analysis of biological 

processes that are altered upon the somatic loss of PTEN across cancer types. To do so, we 

collected genomic data for 9944 samples of 31 cancer types available from TCGA. In particular, 

we downloaded data for somatic alterations and transcriptome profiling from the TCGA Data 

Matrix portal (Level 3, https://tcgadata.nci.nih.gov/tcga/dataAccessMatrix.htm). We identified 

samples harbouring PTEN somatic loss as described for the PRAD dataset (see Chapter 3, 

paragraph 3.1). Together with PRAD, we retained for subsequent analysis 13 cancer types for 

which we could identify at least 30 samples with somatic alterations of PTEN. As expected, we 

observed a significant reduction in the expression levels in PTEN-loss samples as compared to 

PTEN-wt ones for all cancer types (P-value < 0.05, one-tailed Wilcoxon rank sum test, Figure 

4.1A). This lead to a significant alteration of the cumulative expression of PI3K/AKT signaling 

genes in 4 cancer types (P-value < 0.05, one-tailed Wilcoxon rank sum test, Figure 4.1B): low 

grade glioma (LGG), sarcoma (SARC), skin cutaneous melanoma (SKCM) and corpus 

endometrial carcinoma (UCEC). 

4.2 GSECA results on pancancer PTEN-loss tumors 

We next applied GSECA to the pancancer PTEN-loss dataset, testing the 158 KEGG human gene 

sets as described for the PRAD dataset (see Chapter 3, paragraph 3.1-2). We found that 10 out 13 

cancer types showed at least one AGS (AS ≤ 0.05, pemp ≤ 0.05 and SR ≥ 0.7). Notably, six cancer 

types showed the significant alteration of the PI3K/AKT signaling pathway expression patterns 

(Figure 4.2): UCEC, LGG, HNSC, SARC, PRAD and breast cancer (BRCA). Indeed, GSECA AS 

showed a significant positive correlation with the extent of PI3K/AKT signaling pathway 

alteration, which was measured as the statistical difference in the cumulative expression of 

PI3K/AKT related genes in PTEN-loss tumors as compared to wild type samples (two-tailed 

Wilcoxon rank sum test, Figure 4.3A). To further assess whether the AS exploits the alteration of 
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PI3K/AKT signaling pathway, we employed a linear regression approach. In particular, for each 

of the 158 KEGG gene sets, we modeled the distribution of the AS (summarized by the median 

and inter-quartile range) as a function of six regressors given by a linear combination of the 

following variables: 

1) the number of PTEN-loss and PTEN-wt samples; 
2) the median Pearson’s correlation coefficient of pairwise comparison of expression 

profiles in the two cohorts; 
3) the statistically significant difference of PTEN expression levels between PTEN-loss and 

PTEN-wt tumors (i.e. one-tailed Wilcoxon rank sum P-value); 
4) the statistically significant difference of PI3K/AKT signaling pathway cumulative 

expression levels between PTEN-loss and PTEN-wt tumors (i.e. two-tailed Wilcoxon 
rank sum P-value). 

 

 

I - Figure 4. 1: The Pancancer PTEN loss dataset. A. Boxplot distributions showing PTEN 
normalized gene expression levels for PTEN-loss and PTEN-wt stratification in each of 13 cancer 
type for which at least 30 samples with somatic alterations of PTEN were found. B. Boxplot 
distribution showing the cumulative expression levels of genes in the PI3K/AKT signaling 
pathway for PTEN-loss and PTEN-wt samples in each of the 13 analyzed caner types. 

A
. 

B
. 
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I - Figure 4. 2: Pancancer alteration of PI3K/AKT signaling pathway identified by GSECA. GSECA 
EC map showing the pancancer alteration of PI3K/AKT signaling pathway in tumors harbouring 
somatic loss of PTEN. 

 
We then performed an exhaustive search for the best subsets of regressors for predicting the 
variability of the AS distributions using a branch-and-bound algorithm (66), as implemented in the 
regsubsets function of the R ‘leaps’ package (https://cran.r-project.org/web/packages/leaps/), 
using different number of variables (from 1 to 6) and reporting the best model in terms of 
coefficient of determination R2. Finally, we calculated the relative importance of the model 
variables by splitting the coefficient of determination R2 into the contribution of each regressor 
with the average over ordering method (67), as implemented in the R ‘relaimpo’ package 
(https://cran.r-project.org/web/packages/relaimpo/). We found that the alteration of PI3K/AKT 
signaling pathway gave the best fitting of the AS distributions in terms of coefficient of 
determination when using one predictor (R2 = 0.81, Figure 4.3B).  Increasing the model 
complexity led to a closer fitting between the AS and the predictors (Figure 4.3B). Moreover, 
considering the relative importance of the regressors, we found that the alteration of the cumulative 
expression of PI3K/AKT signaling was the most critical regressor in all the linear models, 
accounting for 80 % of explained variance when considering all variables (i.e. n = 6, P-value = 
0.009, Figure 4.3B). These results indicate that the GSECA AS consistently recapitulates the extent 
of PI3K/AKT signaling cascade alteration.  
In addition to this, GSECA identified PI3K/AKT signaling pathway as altered in two cancer types 

(i.e. UCEC and LGG) for which the alteration of PI3K/AKT signature is known to impact on 

patient survival in positive and negative way (68,69). To state the validity of this result, we 

performed survival analysis on UCEC and LGG, comparing the disease-free survival probabilities 
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of PTEN-loss and PTEN-wt tumors. To do so, we downloaded clinical data from the GDC data 

portal (https://gdc.cancer.gov/) and defined disease-free survival time as the interval between the 

date of treatment and disease progression, as defined by biochemical or clinical recurrence, or until 

the end of follow-up (70). 

 

 

I - Figure 4. 3: Correlation between the AS and the extent of PI3K/AKT signaling pathway alteration 
across cancer types. A. Scatter plot showing the correlation of GSECA AS (i.e. -10*log10(AS)) 
and the alteration of PI3K/AKT signaling pathway in PTEN-loss as compared to PTEN-wt tumors 
measured in terms of the adjusted P-value (i.e. -10*log10(FDR)) across cancer types. The size of 
the colored circles shows the number of samples, while the inner white circles the number of PTEN 
loss samples. B. Coefficients of determination (R2) of the linear regression model at the increasing 
of model complexity (i.e. the number of regressors in the model). PI=PI3K/AKT signaling 
pathway alteration; PT=PTEN downregulation; N=number of samples; RCS=correlation of 
PTEN-loss samples; RCN=correlation of PTEN-wt samples. Bar plots in red show the relative 
importance of each predictor to the R2 measured by the linear regression model of all variables. 

 

We performed Kaplan–Meier estimation of the survival probabilities for the two groups of samples 

(i.e. PTEN-loss and PTEN-wt) and compared the resulting survival curves using the log-rank test 

(as implemented in the ggsurvplot function of the R ‘survminer’ package https://cran.r-

project.org/web/packages/survminer, Figure 4.4). As expected, we observed a significant 

reduction of the disease-free survival probability for PTEN-loss LGG tumors as compared to 

PTEN-wt ones (P-value < 0.0001, log-rank test, Figure 4.4), and a significant increase of the 

disease-free survival probability for PTEN-loss LGG tumors as compared to PTEN-wt ones (P-

value = 0.012, log-rank test, Figure 4.4). This result reinforced the robustness of GSECA 

predictions. 

A. 

B. 
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I - Figure 4. 4: Survival analysis of PTEN-loss LGG and UCEC tumors. Kaplan-Meier overall 
survival curves with the ‘number at risk’ table for LGG and UCEC PTEN-loss and PTEN-wt 
samples. 

4.3 The somatic loss of PTEN impacts on immune-related processes 

To gain functional insights on the cancer-specific regulation of PTEN, we next inspected the 10 

top-ranked AGSs in each cancer type and hierarchically clustered them at an intermediate KEGG 

gene set category level (52) (Figure 4.5). We found that:  

1) gene sets associated with metabolic pathways were distinctly altered across cancer types 

(Figure 4.5, bottom cluster); 

2) information-processing gene sets (e.g. cell signaling activity) were altered in several 

cancer types (Figure 4.5, middle cluster); 

3) immune system gene sets were altered in the majority of tissues (Figure 4.5, top cluster). 

In particular, SARC, KICH and SKCM showed the highest number of immune-related AGSs, 

being hematopoietic cell lineage, chemokine and T cell receptor signaling pathways the most 

altered gene sets across cancer types. These results highlight the association between the loss of 

PTEN and the alteration of immune cell infiltrates, which has been recently noted (71). Given 

these observations, we further investigated the relationship between PTEN-loss and the immune-

related transcriptional response across cancer types by integrating the results from two distinct 

analyses (Figure 4.6A): 

• Comparison of the immune-related AGSs identified by the other selected GSA algorithms 

(see Chapter 2, paragraph 2.2.1). 

• Evaluation of changes in the tumor immune microenvironment (TIME): we collected data 

about cellular composition of the immune infiltrates for TCGA tumors of 14 cancer types, 

available from (72), using the relative number of immune cells (73) as a measure of 

immune composition. To evaluate whether the composition of each immune cell type was 

altered upon somatic loss of PTEN across cancer types, we employed a Student’s t-test to 
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compare cell fractions between PTEN-loss and PTEN-wt samples, adjusting for multiple 

hypothesis testing with the Benjamini & Hochberg procedure. Finally, to summarize the 

degree of perturbation of immune cells, we combined, for each cancer type, the resulting 

P-values into an immune score (IS) using Fisher’s method (21) (Figure 4.6B, see Chapter 

2, paragraph 2.1.1). 

 

 

I - Figure 4. 5: Pancancer summary of AGSs.  Heatmap showing hierarchical clustering of the 
altered classes of gene sets across cancer types. Classes are defined accordingly to intermediate 
the KEGG category (52). Each cell reports the number of AGSs. The annotation heatmap indicates 
the KEGG superclass of biological processes. 

 
Compared to the other GSA methods, GSECA detected the highest number of cancer types with a 

significant alteration of immune cell fractions (Figure 4.6A, left panel). Moreover, GSECA 

showed the highest positive correlation between the number of immune-related AGSs and the IS 

across GSA methods (Pearson’s correlation coefficient R = 0.77, P-value = 0.003, Figure 4.6A, 

right panel). In particular, the AS resulted significantly positively correlated with the IS, 

highlighting the accuracy of GSECA results (Figure 4.6C). Taken together, these results indicate 

that GSECA was the most robust approach to highlight the link between PTEN loss and alteration 

of immune regulation by detecting the highest number of immune-related AGSs in the vast 

majority of cancer types with statistically significant changes in TIME composition. 

4.4  Impact of PTEN loss on TIME of prostate adenocarcinoma 

Emerging evidence has suggested that PTEN loss is an immunosuppressive event in prostate 

tumors (74). However, the connection between PTEN and the immune system is complex and 

involves both pro- and anti-tumorigenic immune responses depending on the cellular phenotype 
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and the TIME (75). To assess the general applicability of GSECA we finally sought to investigate 

the impact of PTEN loss on TIME of PRAD samples. 

  

 

I - Figure 4. 6: Impact of PTEN loss on immune-related processes across cancer types. A. Heatmap 
on the left panel shows the number of immune-related gene sets that are altered upon the loss of 
PTEN across cancer types accordingly to GSECA and the other GSA methods. On the right panel, 
EC map-like heatmap depicts the statistically significant alteration of the immune cell population 
(i.e., TIME) across cancer types. The size of triangles the relative change of the percentage of 
tumor immune infiltrates between PTEN-loss and wild-type samples. Upper/lower vertexes of the 
triangles represent the increase/decrease of immune cells in PTEN-loss samples as compared to 
PTEN-wt tumors. The bar plot reports the IS for each cancer type. B. Evaluation of the immune 
score (IS). C. Pearson correlation coefficient of the AS measured for PI3K/AKT signaling pathway 
and the IS measured for all cancer types. 

 

To do so, we ran GSECA on a collection of 102 expression signatures representative of different 

immune cell activities, states, and modes in tumor tissues (72). We found that 15 immune 

signatures were significantly altered upon PTEN loss (AS ≤ 0.05, pemp ≤ 0.01 and SR ≥ 0.7). Six of 

A
. 

B
. 

C
. 
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the top ten AGSs characterized the state and activity of T and B cells, showing a general reduction 

of gene expression in the highly-expressed classes, and a reciprocal increase of genes in lowly 

expressed classed (Figure 4.7). These observations are consistent with previous data suggesting 

that PTEN loss prostate cancers are non-T cell inflamed, or ‘cold’, tumors (76). In particular, 

GSECA identified the decreased expression of genes representative of CD8 T cells, which was 

supported by the results of the TIME analysis (Figure 4.6D), as previously reported (74). 

Interestingly, the two top-ranked AGSs contained markers of lymphocyte activation (i.e. Module4 

T/B cells) and cell proliferation (i.e. Module11 Proliferation), respectively. The combination of 

the down-regulation of the T/B cell module and the upregulation of the proliferation module has 

been strongly associated with decreased disease-free survival (DFS) in breast cancer patients (77). 

Since GSECA identified this same pattern, showing a reduction of genes in HE classes for the T/B 

cell module and an increase for the proliferation module (Figure 4.7), we assessed the impact of 

PTEN loss on DFS in prostate cancer patients by performing survival analysis (as described in 

4.2). Remarkably, we observed a statistically significant reduction of DFS in PTEN loss patients 

as compared to PTEN-wt ones in the first 24 months from the treatment (P-value = 0.012, log-rank 

test, Figure 4.8A). 

 
I - Figure 4. 7: GSECA analysis of TIME gene signatures in PTEN loss PRAD. GSECA EC map 
showing the altered immune expression signatures as a consequence of the somatic loss of PTEN 
in PRAD 
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I - Figure 4. 8: Impact of PTEN loss on DFS of PRAD patients. A. Disease-free survival (DFS) 
Kaplan-Mayer curves for PTEN-loss and PTEN-wt patients. B. DSF Kaplan-Mayer curves 
measured stratifying PRAD patients on the optimal PTEN expression level (i.e. TPM=3.56, 
maximally selected rank statistics=2.34) within two years from the initial treatment. C. DSF 
Kaplan-Mayer curves measured stratifying PRAD patients on the optimal PTEN expression level 
within three years from the initial treatment. 

 

These data confirm the detrimental impact of PTEN loss on prostate cancer disease phenotype. 

Furthermore, since PTEN status determination impact on therapy management of prostate cancer 

patients (75), we wondered whether absolute PTEN expression levels could be prognostic of a 

shorter DFS. Using the maximally selected rank statistics approach (78), we found that patients 

with PTEN expression levels lower than 3.58 TPM had a statistically significant shorter DFS time 

in the first two years (Figure 4.8B), as well as three years (Figure 4.8C), from the initial treatment. 

These results highlight that not only the genomic status but also the expression levels of PTEN are 

associated with poor outcomes in patients with prostate cancer. 

It has been shown that in Pten-null mice the activation of the Stat3 establishes an 

immunosuppressive TIME that contributes to tumor growth and chemoresistance (79). Therefore, 

to finally validate GSECA results, we compared the expression levels of STAT3 in PRAD PTEN 

loss tumors as compared to controls. We also evaluated the expression of the inhibitory immune 

checkpoint molecule PD-L1 and PD-L2 and the immune inhibitor VEGFA (72). We found that 

PRAD PTEN loss tumors significantly expressed STAT3 at higher levels and PD-L1 and PD-L2 

at lower levels than PRAD PTEN wild-type samples (Figure 5A). Moreover, the level of 

phosphorylation of STAT3 was significantly higher in PRAD PTEN loss tumors as compared to 

controls (Figure 5B). These data support the establishment of an immunosuppressive TIME in 

human prostate cancers, which could be driven by the activation of STAT3, and validate the 

statistically significant associations found by GSECA. 

  

A. B. C. 
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I - Figure 4. 9: Immunosuppressive TIME in PTEN loss PRAD tumors. A. Boxplots showing 
expression distributions of PTEN normalized expression levels for PTEN-loss and PTEN-wt 
samples of four immune-response related genes. B. Boxplot distributions of the relative level of 
STAT3 phosphorylation for PTEN-loss and PTEN-wt PRAD samples. 

 

Taken together, these results show the general applicability of GSECA in detecting biological 

processes that are altered in high-volume heterogeneous data sets. In particular, GSECA has 

proved highly accurate in associating the loss of PTEN to the alteration of PI3K/AKT signaling 

pathway and to the different regulation of immune-related processes across cancer types. In 

prostate cancer, GSECA detected the detrimental impact of PTEN loss on DFS of patients and the 

establishment of a ‘cold’ TIME through the down-regulation of lymphocytes signatures. Hence, 

our results support the emerging role of PTEN in immune system and therapy resistance (71,80,81)  

B. A. 
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Chapter 5 

 

Discussion I 

 

5.1 A novel approach to the GSA 

In this work, we concentrated our efforts on extracting valuable biological knowledge from the 

huge amounts of genomic data that are now available to the scientific community. In particular, 

we focused on transcriptome profiling data and exploited computational techniques to resolve their 

high degree heterogeneity and complexity. Heterogeneity is a fundamental feature of information 

associated with complex phenotypes, which can arise from the subtle alterations of distinct genes 

in different patients rather than of a single gene (7), and IH affects the power of computational 

tools for the GSA in detecting these subtle changes.  

With this in mind, we developed a novel approach to the GSA implemented in the GSECA 

algorithm. Starting from the global distribution of gene expression profiles coming from RNA-seq 

experiments, GSECA implements FMM to interpret their bimodality, which reflects the presence 

of two major subpopulations of transcripts in cells (14), and employs a DD procedure to reduce 

the gene expression measurements into a small list of categorical values, an approach that has been 

recently exploited in Big Data analysis to increase signal-to-noise ratio and improve the accuracy 

of machine learning algorithms (20,82,83). Finally, using these discretised expression values, 

GSECA implements a statistical procedure based on combined Fisher’s exact tests to identify the 

relevant altered biological processes for the phenotype of interest. 

5.2 GSECA best handles IH in both simulated and real data 

To evaluate the performance of our method as compared to existing GSA tools, we employed both 

the controlled setting of in silico simulations as well as real high-volume RNA-seq datasets. In 

simulations, we modeled several conditions of differential gene expression, with a focus on the 

capability of handling IH. We observed that, compared to other seven ‘state-of-art’ algorithms, 

GSECA showed the lowest overall type I error rate and a high statistical power in detecting AGS, 

outperforming the other methods in treating heterogeneous RNA-seq data. Most importantly, 

GSECA displayed the highest F1 score – i.e. the best trade-off between sensitivity and specificity- 

among all methods to detect truly AGSs in the presence of IH in gene expression between samples, 
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as shown in the ‘dispersion’ simulation study (see Chapter 2). Therefore, GSECA can identify a 

smaller number of AGSs as compared to other GSA methods but with a higher sensitivity.  

The predictions of GSECA were the most accurate ones when treating heterogeneous samples 

suggesting that its framework enhances the signal-to-noise ratio, and thus data interpretation. 

Interestingly, among the other methods, ssGSEA showed similar performance to GSECA in 

handling heterogeneity. Comparably to GSECA, this method treats each sample individually and 

collapses gene expression levels to a common scale using ranks (25). This finding confirms that 

the reduction of the large set of expression levels into a smaller range of values increases the power 

to detect truly AGSs in the presence of IH.  

On real data, we used out method to identify the biologically relevant gene sets that are altered 

upon the somatic loss of PTEN, and the subsequent alteration of the PI3K/AKT signaling cascade 

in prostate cancer. GSECA correctly detected the alteration of the PI3K/AKT signaling pathway 

and related signal transduction gene sets, such as calcium signaling (53), epithelial CAMs (54), 

MAPK (55) and WNT signaling pathways (56). Interestingly, the FMM and the DD approaches 

captured the heterogeneity among the cohorts revealing a general decreased and widespread gene 

expression in prostate cancer due to the loss of PTEN that might underline the role of PTEN in 

regulating basal transcription through histones and chromatin remodelling (51). The comparative 

performance analysis of GSA methods in detecting the effect of PTEN silencing shows that 

GSECA was the only algorithm able to reveal the expected altered modulation of PI3K/AKT 

signaling pathway. Moreover, GSECA detected the altered regulation of processes where genes 

directly interact with PTEN and, thus, are influenced by the somatic loss of their interactor. This 

result indicates the ability of the method to spot functionally related AGSs. Importantly, GSECA 

highlights the alteration of gene sets composed by genes that are coordinately and heterogeneously 

modulated rather than being uniformly activated or repressed at different levels (i.e. low and high) 

in distinct samples (see Chapter 3), whereas other methods might suffer from this limitation. 

Together, these results indicate that GSECA boosts the signal-to-noise ratio in heterogeneous 

datasets, thus enabling the identification of the general biological mechanisms that are altered 

across samples. 

5.3 PTEN and the immune system in cancer 

The pancancer analysis of the effect of PTEN somatic loss generated a comprehensive assessment 

of its regulation across tissues. PTEN critically interconnects the canonical PI3K/AKT and the 

RAS/MEK/ERK pathway, which are the two dominant tumorigenic gene sets controlling cell 

survival and proliferation (65). Our data shows that the impact of PTEN silencing on cellular 

program regulation is proportional to the impaired modulation of the PI3K/AKT signaling cascade, 

with the stronger effect of gliomas, endometrial, head and neck, breast carcinomas, melanomas, 

and sarcomas. GSECA revealed a tissue-specific control of PTEN on metabolic processes, whereas 
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information-related processes, such as signal transduction, are more uniformly affected across 

tissues. Most importantly, GSECA correctly highlighted the role of PTEN in controlling immune-

related processes in the majority of cancer types, particularly in those showing a significant 

alteration of the TIME composition. These data support the importance of PTEN in modulating 

the immune system (80) and therapy resistance. Using additional immune expression signatures, 

GSECA correctly highlights the immunosuppressive TIME of PTEN-loss prostate tumors (75), 

which could be driven by the significant activation of STAT3. Furthermore, GSECA results were 

pivotal to show the shorter of disease-free survival of these patients and to underline the biomarker 

potential of PTEN expression levels. These results validate previous findings in prostate mouse 

models (79), melanoma (81), breast (77) and provide indications that might be important for the 

clinical management of prostate cancer patients. 

5.4 Conclusions and perspectives 

In conclusion, our findings concordantly indicate that GSECA can improve the comprehensive 

identification of relevant biological processes that are altered in complex phenotypes. In particular, 

GSECA can detect functionally related and relevant altered cell mechanisms in a condition of 

interest considering more heterogeneous cohorts as compared to other available methods. By 

boosting signal-to-noise ratio, GSECA can successfully manage the heterogeneity of thousands of 

samples and provides useful insights on clinical and biological patterns proper of a phenotype. 

This encourages, as future work direction, its application to single-cell RNA-sequencing datasets, 

which typically consist in high-volume and intrinsically heterogeneous data (84).   

5.5 Software availability 

GSECA software is written in the R programming language. In order to facilitate its usage, GSECA 

is implemented as an R/Shiny application with a dedicated graphical interface, which is freely 

available from GitHub (https://github.com/matteocereda/GSECA). Pre-processed gene sets of 

biological pathways (7,52) and diseases (40) are provided. 
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I - Figure 5. 1: GSECA R/Shiny application. View of GSECA R/Shiny application. The input 
consists in two files: (i) Expression Matrix, which is the file containing the expression levels of 
each RNA-seq experiment. It is a tab-separated file arranged in matrix form, where rows are genes 
and columns are samples. The gene ID can be provided as HUGO symbol or ENSEMBL gene ID. 
(ii) Phenotype labels, which is the file containing the phenotype labels assigned to the samples in 
the Expression Matrix. It consists in an ordered list of labels and is provided as a tab-separated 
file. The output panel of GSECA app contains the results of the results of the analysis in tabular 
form and the EC map. 
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Chapter 1 
 

Introduction II 
 

 

1.1 The epigenetic landscape 

Cell differentiation during embryogenesis is a delicate process in which transcription and 

repression of specific genes must be tightly regulated. Embryonic stem cells (ESCs) are pluripotent 

cells derived from the inner cell mass (ICM) of the blastocyst that have the capacity to self-renew 

indefinitely (85) (86). Under proper stimuli, ESCs can differentiate into three primary germ layers 

- ectoderm, mesoderm and endoderm –, mimicking the process of gastrulation (87), and develop 

potentially into different tissues and organs (88-90) (Figure 1.1). The process of going from a 

pluripotent toward a differentiated state during embryonic development was firstly described with 

the metaphor of the epigenetic landscape by Conrad Hal Waddington (91). In this representation, 

pluripotent cells are depicted as balls rolling down a hill, which can run across specific allowed 

trajectories in order to reach their differentiated state and final tissue type. Hence, at various 

branching point, cells must take decisions about their fate, activating the expression of specific 

genes while repressing others (Figure 1.2). During this process, several coordinated molecular 

actors come into play, shaping the propagation of the epigenetic information – i.e. information 

responsible for stable and heritable changes in gene expression or cellular phenotype that is not 

propagated through the DNA sequence (92,93). The maintenance and self-renewal of the 

pluripotent ESC state requires a core network of transcription factors (TFs), including Oct4, Sox2, 

Nanog and Klf4 among others (94,95), which is deconstructed and rewired in presence of 

differentiation stimuli to activate lineage-specific genes (93,94). Along with this, the chromatin – 

which represents the template for epigenetic regulation (93) -  is extensively remodelled during 

development, involving the acquisition of biochemical modifications in its constituents – i.e. DNA 

methylation and histone protein modifications – as well as changes in the overall three-dimensional 

conformation, which result in the promotion of specific transcriptional programs at the time of 

lineage commitment (93).  
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II - Figure 1. 1: In vitro Embryonic Stem Cells differentiation. Schematic representation of the 
different stages of mouse embryonic development - from the zygote stage to gastrulation -  and in 
vitro differentiation of pluripotent ESC derived from the ICM into progenitors of the three primary 
germ layers. – Adapted from (87,96,97). 

 

Such different layers of epigenetic modifications are deeply interconnected and dynamically 

regulated, thus conferring plasticity to the cells in response to external stimuli which can be 

inherited by cell progeny (93). 

 

  

 
II - Figure 1. 2: The Epigenetic Landscape. Conrad Hal Waddington’s view of the epigenetic 
landscape as a metaphor for embryonic development. To go from a pluripotent toward a 
differentiated state, cells (balls rolling down the valley) must take decisions about their fate at key 
branching point of their trajectories.  - Adapted from (91). 
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1.2 DNA methylation machinery and mechanisms 

DNA methylation (DNAme) is one of the best studied epigenetic modifications. It consists in the 

covalent modification of DNA by methylation of the fifth position of cytosine (5mC) (Figure 1.3). 

Appeared firstly in bacteria, it is fairly well conserved across species, including many plant, animal 

and fungal models (98), even though it has been lost in several eukaryotic lineages (e.g. the 

common model organism Drosophila melanogaster presents no 5mC) (99). In fact, in mammals, 

cytosine methylation occurs mainly at symmetrical CpG dinucleotides (i.e. Cytosine-phosphate-

Guanine). As a consequence, mammalian genomes are CpG-depleted due to the intrinsic 

mutagenic properties of 5mC, which can spontaneously deaminate, yielding a C to T transition. 

This kind of mutations appear to be the most abundant point mutations in humans (100), and the 

evolutionary instability of CpG is confirmed by the fact that mammals have 4-to-5 fold 

underrepresentation of CpG dinucleotides than expected by their genome composition (99). 

Nevertheless, mammalian genomes are pervasively methylated: 70-80 % of all CpG sites exhibits 

5mC in somatic tissues, and dysregulation of the DNAme landscape is typical of human cancers 

as well as many other diseases (71,100). The advent of new NGS-based technologies, such as 

whole-genome bisulfite sequencing (WGBS), enabled genome-wide profiling of DNAme at single 

base resolutions across organisms and cell types. Results from DNAme mapping studies revealed 

the presence of high 5mC levels in repetitive elements, pericentromeric satellite repeats, non-

repetitive intergenic DNA sites and gene bodies (99,100).  

  

 

II - Figure 1. 3: Cytosine methylation in DNA. Covalent modification of DNA cytosine residues by 
addition of a methyl group (CH3) in the fifth position of the pyrimidine ring – Adapted from (100) 

 

Exceptions to this global trend of methylations of mammalian genomes is represented by GC-rich 

regions called CpG islands (CGIs). CGIs are genomic regions of ~ 1kb - accounting for less than 

10% of all CpG sites - that are refractory to DNAme. Around 60 % of all human promoters have 

CGIs, and these are particularly enriched at transcription start sites of housekeeping and 

developmental regulator genes (98).  
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The whole process of DNAme consists of three phases: establishment, maintenance and erasure 

(Figure 1.4). Each of these steps involves a set of writer and eraser proteins (99): 

• Establishment. During mammalian development, dynamic changes of DNAme are 

observed. Following fertilization, the genome undergoes genome-wide DNA 

demethylation, and the acquisition of de novo DNAme occurs next at the time of embryo 

implantation (100). Three major DNA methyltransferases (DNMTs) are responsible for 

the establishment of de novo DNAme patterns: DNMT3A, DNMT3B and DNMT3L. 

DNMT3A and DNMT3B both possess a highly conserved catalytic domain (MTase 

domain) and two conserved chromatin reading domains, namely the ATRX-DNMT3-

DNMT3L (ADD) and the “proline-tryptophan-tryptophan-proline” (PWWP) domains, 

which accomplish distinct functions (99,100). Conversely, DNMT3L is catalytically 

inactive and acts in complex with DNMT3A/B to stimulate their activity, with peculiar 

roles in germ cells (101). 

• Maintenance. Historically, DNAme has been viewed as the archetypal mechanism of cell 

memory and epigenetic inheritance given its stability and propagation through multiple 

cell division (100,102). In fact, the patterns of 5mC are inherited by cell progeny through 

replication via the activity of the DNA methyltransferase DNMT1 in concert with two 

core proteins, the proliferating cell nuclear antigen (PCNA) and the E3 ubiquitin-protein 

ligase UHRF1 (99). During DNA replication, UHRF1 recognizes hemi-methylated CpGs 

at replication fork, binding specifically to the methylated strand, and recruits DNMT1 to 

methylate the daughter strand (98), thus ensuring the re-establishment of symmetrical CpG 

methylation after mitosis.  

• Erasure. The two waves of global DNA demethylation that occur in germline and early 

embryogenesis are driven by both passive and active processes (100). Passive 

demethylation occurs due to the lack of DNAme maintenance through cell replication, in 

absence or inhibition of DNMT1 activity. This leads to replication-dependent dilution of 

5mC levels, as observed post-fertilization to the zygote maternal genome (100). 

Conversely, active demethylation is mediated by the activity of the ten-eleven 

translocation (TET) methylcytosine dioxygenases family of enzymes (TET1, TET2 and 

TET3), which can iteratively oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formyl 

cytosine (5fC) and 5-carboxylcytosine (5caC) (100). The conversion of 5mC to 5hmC 

blocks the DNAme maintenance mechanism, given that 5hmC is no more recognized by 

DNMT1/UHRF1 during DNA replication, thus leading to loss of the modification in cell 

progeny. Moreover, the subsequent oxidative products 5fC and 5caC can be recognized 

and cleaved by thymine DNA glycosylase (TDG), followed by correct base-pair 

restoration by the base-excision repair (BER) pathway (100). 
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II - Figure 1. 4: DNAme machinery. The establishment of de novo 5mC patterns is mediated by 
DNMT3A and DNMT3B alone or in complex with DNMT3L, while DNMT1 is responsible for 
DNAme maintenance through cell replication. Demethylation can occur in both passive and active 
ways. Passive dilution happens when 5mC is not maintained through cell division, while active 
demethylation is mediated by the TET methylcytosine dioxygenases family of enzymes – TET1, 
TET2 and TET3, which convert 5mC to 5hmC, 5fC and 5caC, leading to both dilution across cell 
replication and demethylation by TDG and base-excision repair system. - Adapted from (100).  

1.3 DNA methylation in the regulation of gene expression 

Since its discovery, DNA methylation has been associated with transcriptional repression, 

observed as a negative correlation between 5mC levels at promoters and the transcription of related 

genes (100). However, the underlying molecular mechanisms that lead to gene silencing are not 

obvious and not yet completely clarified, and the modification might serve distinct functions at 

different genomic regions.  

The deposition of 5mC by the DNMT3 family is mediated by the interaction with histone 

modifications (Figure 1.5). Specifically, in promoters of actively transcribed genes, the enrichment 

of tri-methylation marks on histone H3 Lys4 (H3K4) prevents the binding of de novo 

methyltransferases via their ADD domain, which additionally auto-inhibits the de novo 

methylation activity by binding the MTase domain (Figure 1.5A). Conversely, in absence of 

H3K4me3, the ADD domain can bind H3K4 tails, thus allowing the MTase domain to deposit new 
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5mC marks (Figure 1.5A) (99). DNA methylation at promoter elements can block gene activation 

in different ways (99). The presence of the 5mC mark interferes with the binding of several 

transcription factors that are sensitive to CpG-containing sequence motifs, thus preventing the 

activation of their target genes (99,100). Moreover, promoter silencing can be mediated by the 

recruitment by the DNMTs of chromatin remodelling complexes that promote heterochromatin 

formation (99). This can either occur via the interaction of de novo DNMTs with such complexes 

(e.g. the chromatin remodelling protein LSH (103) and  histone H3K9 methyltransferase complex 

G9A (104)), or via the recognition of 5mC-containg sequences by the methyl-CpG-biding (MDB) 

family of proteins, which directly interact with histone deacetylase (HDAC) and nucleosome 

remodelling (NuRD) complexes to promote transcriptional repression (99,100). The involvement 

of DNAme in promoting stable transcriptional repression regulates various cellular processes in 

somatic tissues, such as the X chromosome inactivation, genomic imprinting, repression of 

germline-specific genes and of transposable elements, all of which occurring by 5mC silencing of 

their associated CpG-rich promoters and/or CGI (99).  

In contrast to promoter elements, the gene bodies of actively transcribed genes show enrichment 

for 5mC marks (99). The deposition of intragenic DNAme is mediated by an epigenetic crosstalk 

mechanism involving DNMT3B, the histone methyltransferase SETD2 and the trimethylation of 

lysine 36 on histone H3 (H3K36me3) (105,106). Specifically, during transcriptional elongation, 

SETD2 is recruited by the RNA polymerase II (Pol II) for the deposition of H3K36me3 marks, 

which subsequently enable the recruitment of DNMT3B via the PWWP domain (105) (Figure 

1.5B). The positive correlation between transcription and gene body DNAme has been linked to 

the involvement of 5mC in the regulation of co-transcriptional alternative splicing events (107) 

and, more recently,  in agreement with the repressive nature of the 5mC mark, to the inhibition of 

intragenic cryptic promoters in cooperation with H3K36me3 and SETD2, thus ensuring the fidelity 

of the transcriptional machinery (106). 

 

 
II - Figure 1. 5: Molecular mechanisms of de novo DNAme. Models of the molecular interactions 
related to the deposition of de novo 5mC marks at promoters (A) and gene bodies (B). – Adapted 
from (99).  

A. B. 
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1.4 Epigenetic reprogramming during development 

There are two major waves of epigenetic reprogramming occurring during development: following 

fertilization and during the development of germline progenitors (primordial germ cells – PGCs) 

(99). Early embryonic and germline DNA demethylation is established genome-wide in two 

phases, involving both active mechanisms, via the activity of the TET family of enzymes, and 

passive replication-dependent dilution (Figure 1.6) (99). In the germline, passive demethylation is 

followed by TET1 and TET2 hydroxylation activity, mostly targeting imprinting and germ cell 

identity genes. In post-fertilization embryo, the genome undergoes gamete-specific loss of 

DNAme, with the paternal genome being rapidly demethylated by TET3 in the first place, followed 

by replication-dependent dilution of both parental genomes until the blastocyst stage (even though 

evidences have been found for active TET3-mediated demethylation also for the maternal genome, 

to a lower extent) (99,100). However, in both embryonic and germline reprogramming, a small but 

relevant portion of DNA escapes the global DNA demethylation process. In the early embryo, this 

notoriously happens to genomic regions known as imprinting control regions (ICR), in which 

parent-of-origin DNAme patterns are retained to force allele-specific expression of related genes 

(i.e. the inheritance process of genomic imprinting) (99). These regions are able to resist 

reprogramming thanks to the sequence specific recruitment of KAP1, which protects the locus 

from DNA demethylation (99). Besides classical stable imprinting of ICR, recent evidences 

showed transient imprinting phenomena in early embryo for various loci, which mostly maintain 

maternal patterns of DNAme until the blastocyst stage, that, even if lost following implantation, 

can have a lifelong impact (99,108). In addition to genomic imprinting, the remaining portion of 

CpGs that escapes DNAme reprogramming is related to repeats - especially evolutionary young 

and potentially active families of transposons -, both in pre-implantation embryos and germline 

development (in which genomic imprinting does not occur in order to allow the subsequent 

establishment of sex-specific patterns of DNAme) (99,100). 

Following the reprogramming process, de novo patterns of DNAme are established via the activity 

of the de novo DNA methyltransferases (Figure 1.6). In PGCs, sex-specific patterns of DNAme 

are established mostly by DNMT3A in cooperation with DNMT3L, which is essential for 

gametogenesis (101). In the developing embryo, during the transition from the pre-implantation 

blastocyst stage (E3.5) – where the ICM is composed by naïve pluripotent stem cells – to the post-

implantation embryo (E6.5) – where most of the ICM is composed by epiblast stem cells – an 

strong increase in the expression levels of DNMT3A and DNMT3B is observed, together with a 

rapid increase in the global levels of 5mC, which here are established at levels that will eventually 

persist in somatic tissues (99). Epiblast stem cells are still pluripotent, thus the establishment of de 

novo DNAme patterns at this stage could act as a mechanism of epigenetic memory that ‘primes’ 

epiblast cells and, following the exit from pluripotency, is propagated through later developmental 

stages until somatic tissue differentiation, thus playing a fundamental role in the regulation of cell 
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fate specification. Hence, the epiblast stage represents a critical window in which most of de novo 

DNAme occurs, highlighting a crucial function for the de novo DNA methyltransferases at this 

specific stage.  

1.5 Aim of the project 

Over the past decades, the results of several studies have shown that the correct establishment of 

de novo DNAme patterns is essential for mammalian development (108-111). In mouse, Dnmt3a 

knockout results in postnatal lethality, while Dnmt3b knockout results in embryonic lethality, 

indicating distinct biological functions played by the de novo DNMTs (112,113). Biochemical and 

structural evidence indicated that DNMT3A and DNMT3B exhibit preferences for flanking 

sequences (114). In ESCs DNMT3A has been shown mainly to methylate shores of bivalent CpG 

island canyons (115,116), while DNMT3B preferentially binds to the gene body of active genes 

(105,106). However, the molecular targets and the mechanisms that determine the specificity of 

the de novo DNAme machinery during cell fate specification are not yet completely elucidated. 

 

 

II - Figure 1. 6: Epigenetic reprogramming during development. Schematic representation of the 
waves of DNAme reprogramming happening in the developing embryo and during the 
establishment of PGCs and gametogenesis – Adapted from (99). 

 

In this work, we investigated the role of the de novo DNMTs in controlling lineage-fate decision 

during mouse early development. Using a combination of in vitro stem cell differentiation models, 

loss of function experiments and high-throughput multi-omics approaches – WGBS, ChIP-, bulk-, 

and single-cell-RNA sequencing -, we demonstrated that DNMT3B, but not DNMT3A, dependent 

methylation is essential for the correct specification of the meso-endodermal lineages. Our results 

showed that, in the transition from the naïve to primed pluripotency, DNMT3B activity is directed 
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towards regulatory regions associated with key developmental transcription factors, acting as an 

epigenetic priming that ensures flawless commitment at later stages. We found that the 

differentiation into meso-endodermal progenitors is impaired in DNMT3B knockout (3BKO) 

cells, which are redirected towards neuro-ectodermal lineages. Finally, we demonstrated that the 

impaired meso-endodermal induction of 3BKO cells can be rescued by silencing Sox2, a master 

regulator of neuronal differentiation.  
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Chapter 2 
 

Lack of Dnmt3b impairs meso-endodermal lineage 
commitment in Embryoid Bodies 

 
Results 

 

 

2.1 Differentiation of mESC in Embryoid Bodies 

To dissect the function of de novo DNAme in early stages of development, we took advantage of 

previously generated Dnmt3a and Dnmt3b homozygous knockout cell lines from mouse 

embryonic stem cell (ESCs) line E14 (106). We maintained ESC in the undifferentiated and 

pluripotent state by means of culture medium supplemented with leukemia inhibitory factor (LIF) 

(85,86).  To study early stages of development as well as to investigate the impact of a gene 

knockout in vitro, we differentiated Dnmt3a -/- (3AKO), Dnmt3b -/- (3BKO) and wild type (WT) 

ESCs into three-dimensional aggregates of cells called embryoid bodies (EBs) through a 

withdrawal of LIF (see Chapter 7, paragraph 7.1.3). ESCs within EBs spontaneously undergo 

differentiation and cell specification along the three primary germ layer lineages, reproducing in 

vitro the process of gastrulation and the molecular events associated with early embryogenesis 

(101,117). In fact, upon LIF withdrawal - and in agreement with what happens in vivo during 

gastrulation -, Dnmt3a and Dnmt3b show an increase in their expression levels (EBs 3d), which 

remain high until 9 days of EBs differentiation (EBs 9d), after which they start to decrease (101). 

Therefore, EBs differentiation of mouse ESCs represent a suitable in vitro model for the 

investigation of the regulatory role played by de novo DNAme in the control of embryonic lineage 

fate decisions. 

2.2 Single-cell RNA-seq profiling of differentiating EBs 

ESCs differentiating into EBs are a heterogeneous system in which individual cells make decisions 

about their fate. Therefore, they lend themselves to single-cell transcriptomics analyses to 

understand their biology and dissect the molecular events underpinning lineage fate choices that 

happen along their differentiation path (118). To this aim, we collected a total of 550 cells at two 

time points – day 3 and day 9 of EBs differentiation – from both WT and mutant differentiating 
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ESCs and performed single-cell RNA-sequencing (scRNA-seq, Smart-seq2 protocol, Figure 2.1, 

see Chapter 7, paragraph 7.1.20) to profile gene expression. After quality controls and filtering of 

low quality cells (see Chapter 7, paragraph 7.2.1), we retained a total of 465 high-quality cells for 

downstream analysis, with a median of > 200,000 reads per cell assigned to annotated transcripts. 

 

 
II - Figure 2. 1: Single-cell RNA-seq profiling of differentiating EBs. Schematic representation of 
EBs differentiation of mouse ESC. We differentiated WT, 3AKO and 3BKO ESC in EBs through 
LIF withdrawal and collected cells after 3 and 9 days of differentiation, for a total of 550 cells 
profiled by single-cell RNA-sequencing. 

2.2.1 Cluster analysis of cell types 

As first exploratory data analysis step, we performed dimensionality reduction of the single-cell 

gene expression profiles, in order to visualize in the reduced space the structure of our high-

dimensional dataset. To do so, we initially performed a feature selection step to discard 

uninteresting or noisy features/genes, selecting the top 2000 highly-variable genes for the 

following analysis steps (Figure 2.2, see Chapter 7, paragraph 7.2.1).  

Next, we reduced the dimensionality of our dataset using Principal Component Analysis (PCA) 

followed by t-distributed Stochastic Neighbor Embedding (t-SNE) (Figure 2.3A, see Chapter 7, 

paragraph 7.2.1). Interestingly, the two first t-SNE components separated the two stages of 

differentiation and showed different patterns of segregation between WT and mutant cells (Figure 

2.3): at day 3 of differentiation, the three populations are equally distributed in the 2D-reduced 

space, likely representing a more uniform cell state. In contrast, at day 9 of EBs differentiation, a 

clear separation emerges between 3AKO and 3BKO cells (Figure 2.2A, top-left panel). We next 

performed unsupervised clustering using a graph-based approach (Louvain clustering (119), see 

Chapter 7, paragraph 7.2.1) and identified six robust cell clusters (Figure 2.2A, bottom-left panel): 

three of them (i.e. cluster 1,2 and 3) were populated by cells at day 3 and three (i.e. cluster 4,5 and 

6) by cells at day 9 of EBs differentiation, respectively. To understand the meaning of the obtained 

cell clusters, we identified cluster-specific marker genes using differential expression analysis, 

testing each cluster against all the remaining others (Figure 2.3A-right, see Chapter 7, paragraph 

ESCs

LIF withdrawal

EBs 3d EBs 9d

= 550 cells

WT

3AKO

3BKO
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7.2.1). We observed that clusters at day 3 (i.e. cluster 1,2 and 3) are characterized by the expression 

of primed-pluripotency markers typical of the epiblast stage, such as Lefty1, Lefty2, Pou3f1 and 

Lef1, whereas clusters at day 9 show the expression of lineage-specific markers, such as Tubb3, 

Otx2, Sox2 (ectoderm), Sox17, Krt19 (endoderm) and T, Foxa2, Wnt8a (mesoderm). The analysis 

of cell cluster composition reflected the differentiation stage and confirmed the segregation 

between 3AKO and 3BKO at day 9 (Figure 2.3B and Figure 2.4). In particular, while WT and 

3AKO cells express markers of all lineages, the cell cluster populated by 3BKO cells (i.e. cluster 

6) show a higher expression of pluripotency-associated markers as well as markers of the 

ectodermal lineage, thus suggesting an impairment of the differentiation trajectory toward meso-

endoderm in the absence of Dnmt3b. 

 
II - Figure 2. 2: Variance modeling for feature selection. Scatter plot showing the modelling of the 
per-gene mean-variance relationship used for feature selection (see Chapter 7, paragraph 7.2.1). 
Blue dots represent highly variable genes selected for downstream analysis (i.e. dimensionality 
reduction, clustering and differentiation trajectory reconstruction). 

 

This hypothesis was further corroborated by the enrichment analysis of gene expression signatures 

for the identified clusters (Figure 2.4, see Chapter 7 paragraph 7.2.1). Indeed, we observed 

significant enrichment for gene ontology terms associated with tissues that are subsequently 

derived from mesoderm and endoderm (i.e. heart development, skeletal system development) in 

cell cluster 4, which is composed only by 3AKO and WT cells at day 9 of EBs differentiation, 

whereas cell clusters populated by 3BKO at day 9 (i.e. cell cluster 6) presented enrichment for 

pluripotency and neuro-ectodermal related GO terms, while not showing any significant 

enrichment for gene signatures related to meso-endodermal lineage commitment (Figure 2.4). The 

higher expression of pluripotency-associated genes in 3BKO cells (i.e. Nanog, Figure 2.4) is 

symptomatic of a differentiation defect associated with the loss of Dnmt3b. 
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II - Figure 2. 3: Cluster analysis of cell types. A. (left) t-SNE analysis of single-cell transcriptional 
profiles for WT, 3AKO and 3BKO cells, grouped into six cell clusters identified with the Louvain 
algorithm. (right) Gene expression levels distribution of epiblast (Pou5f1, Lefty2, Fgf15), meso-
endodermal (Chd7, Dusp6, Sfrp2) and ectodermal markers (Sox2, Otx2, Tubb3) in the six 
identified cell clusters. B. (left) t-SNE analysis of single-cell transcriptional profiles for WT, 
3AKO and 3BKO cells, grouped into six cell clusters identified with the Louvain algorithm. (right) 
Gene expression levels distribution of epiblast (Pou5f1, Lefty2, Fgf15), meso-endodermal (Chd7, 
Dusp6, Sfrp2) and ectodermal markers (Sox2, Otx2, Tubb3) in the six identified cell clusters.  

 

A. 

B. 
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II - Figure 2. 4: Gene expression signatures of cell clusters. (left) Heatmap showing expression 
patterns (scaled as Z-scores) for the top 200 marker genes identified in each cluster. (right) 
Heatmap showing enriched GO terms identified in each cluster markers list. 

 

2.3 Impairment of meso-endoderm differentiation trajectory in 3BKO cells 

2.3.1 Pseudo-temporal ordering of single-cell differentiation trajectories 

To further inspect the functional impact of the loss of Dnmt3a and Dnmt3b during EBs 

differentiation, which is more like a continuous process of cells transforming over time, we 

performed pseudo-temporal ordering of single cell differentiation trajectories using reverse graph-

embedding (119) (see Chapter 7 paragraph 7.2.1). The algorithm enabled the reconstruction of a 

tree connecting all the observed transcriptional cell states, revealing the existence of three major 

branches (A, B and C) ordered in pseudotime (Figure 2.5A top). Starting from branch A, equally 

populated by WT, 3AKO and 3BKO cells at day 3 (i.e. pluripotent/epiblast stage, Figure 2.5B), 

we observed that, at day 9, a comparable proportion of WT and 3AKO cells is found in both 

differentiation branches B and C, while the totality of 3BKO cells is redirected toward branch C 

(Figure 2.5A bottom, Figure 2.5B and Figure 2.5C). 

2.3.2 Branch-dependent analysis of gene expression 

In order to characterize the reconstructed branches, we performed branch-dependent analysis of 

gene expression (BEAM) (120) (see Chapter 7 paragraph 7.2.1) and identified 1,467 genes 

(𝐹𝐷𝑅 ≤ 0.001) whose expression is significantly dependent from the branching point (Figure 2.6-

right).  
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II - Figure 2. 5: Pseudo temporal ordering of single cell differentiation trajectories in EBs. A. 
Pseudotime analysis of cell differentiation trajectories with DDRTree (119). The analysis revealed 
3 branches (A, B and C), ordered in pseudotime. (bottom) Visualization of the reconstructed 
differentiation trajectories for each source cell type (WT, 3AKO and 3BKO). B. Cell density plots 
showing the distributions of each source cell type (i.e. WT, 3AKO and 3BKO) along the 
reconstructed pseudotransition from branch A to branch B (top) and branch A to branch C 
(bottom). The plot shows the unbalancing in cell densities of 3BKO cells, which are all redirected 
to branch C at day 9. C. (top) Pie charts representing the composition of each branch of the 
reconstructed differentiation trajectories in terms of source cell types (WT, 3AKO and 3BKO at 
3D and 9D), with respect to the total number of cells in each branch. (bottom) Bar plots depicting 
the relative proportion of WT, 3AKO and 3BKO cells from each time point (3D and 9D) found in 
each branch of the reconstructed differentiation trajectories, with respect to the total number of 
source cell type. 

 

These genes were next clustered hierarchically into four clusters, reflecting distinct dynamical 

patterns of gene expression for the reconstructed branches (Figure 2.6-right): in particular, cluster 

1 and 2 are characterized by genes that are upregulated when going from A to C and downregulated 

in the opposite branch (B), and show enrichment for gene ontology terms associated with neuro-

ectodermal lineage (Figure 2.6-right). Among them, we observe the presence of well-known 

markers of neuro-ectodermal cell identity such as Sox2, Tubb3 and Otx2 (Figure 2.7). In contrast, 

cluster 3 and 4 are composed by genes that are upregulated when going from A to B and 

downregulated in the opposite branch (C), and show enrichment for gene ontology terms 

A. 

C. 

B. 
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associated with meso-endodermal lineage (Figure 2.6-right), with the noticeable presence of 

known meso-endodermal markers such as T, Twist1 and Cdh2 (Figure 2.7). These results indicate 

that the three reconstructed branches are associated to different stages of differentiation and cell 

fates, i.e. epiblast (A), meso-endodermal (B) and ectodermal (C) (Figure 2.5A and Figure 2.7), and 

the analysis of the reconstructed trajectories of each cell population confirmed the arrest of 

differentiation toward the meso-endodermal lineages for 3BKO cells, while 3AKO cells 

differentiate in both the meso-endodermal and ectodermal cell fates (Figure 2.5, 2.6 and 2.7). 

Taken together, these data reveal that Dnmt3b-dependent methylation is essential for the correct 

specification of the meso-endodermal lineages. In contrast, 3AKO cells are still able to form all 

the three germ layers, suggesting that the loss of Dnmt3a-dependent methylation has little 

functional consequences at this early stage of differentiation. The impaired differentiation 

trajectory towards meso-endoderm that we observed for 3BKO cells suggests a peculiar role for 

Dnmt3b in the epigenetic control of this specific cell fate, which is the focus of the following 

chapters. 

 

 
II - Figure 2. 6: Branch-dependent analysis of gene expression. (left) Heatmap visualization of the 
results of BEAM (120) analysis for the 1,467 genes (FDR<0.001) whose expression is significantly 
dependent from the branching point, demonstrating the bifurcation of gene expression for the 
meso-endodermal and ectodermal lineage commitment. Columns are points in pseudotime, rows 
are genes, and the beginning of pseudotime is in the middle of the heatmap. The genes are 
hierarchically clustered into 4 clusters having similar lineage-dependent expression patterns. 
(middle) Summary plots depicting the average relative expression levels in the branched 
bifurcation for each cluster. The beginning of pseudotime is in the middle of the plot (time 0). The 
shaded area represents the interquartile range, while the top, middle and bottom lines represent the 
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first quartile, the mean and the third quartile, respectively. (right) Bar plots of selected gene 
ontology terms for enriched biological processes in each BEAM cluster.  

 

 

II - Figure 2. 7: Branch-dependent expression of lineage marker genes. Gene expression levels of 
epiblast (Nanog, Lefty1, Fgf5), meso-endodermal (T, Twist1, Cdh2) and ectodermal markers (Sox2, 
Otx2, Tubb3) as a branch-dependent (i.e. ectoderm, meso-endoderm) function of pseudotime. The 
expression patterns of well-known lineage marker genes show the arrest of differentiation towards 
meso-endoderm for 3BKO cells.  
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Chapter 3 
 

Loss of Dnmt3b does not affect the formation of EpiSCs, 
but is required for the differentiation towards meso-

endodermal progenitors  
 

Results 

 

 

3.1 Directed differentiation of ESCs towards meso-endodermal progenitors 

In light of the results of scRNA-seq profiling of EBs, which showed an impairment of meso-

endoderm differentiation for 3BKO cells (see Chapter 2), and to gain further insights into the 

functional role of Dnmt3b-dependent DNAme in resolving early lineage commitment, we switched 

to a different in vitro model involving two steps of directed differentiation (Figure 3.1A): first, 

upon Activin/Nodal pathway stimulation, ESCs are differentiated into a stable line of Epiblast Stem 

Cells (EpiSCs) (see Chapter 7, paragraph 7.1.4), reproducing the early post-implantation embryo 

state (E5.5), where most of the ICM is composed by ‘primed’ pluripotent stem cells, and a crucial 

step for the establishment of de novo DNAme patterns occurs (see Chapter 1). Next, by means of 

WNT/TGF-b  pathway activation through inhibition of Gsk3b (94), EpiSCs are committed toward 

the meso-endodermal progenitor fate (see Chapter 7, paragraph 7.1.5).  

To characterize our two-step differentiation model, we analyzed in WT cells the expression levels 

of stemness/pluripotency as well as lineage-specific marker genes by qRT-PCR. Indeed, ESCs and 

EpiSCs share key transcription factors at comparable levels, such as Pou5f1, which is instead 

downregulated upon meso-endodermal commitment (Figure 3.1B, C).  Conversely, EpiSCs show 

a strong downregulation of the pluripotency markers Zfp42, Klf4 and Esrrb, while upregulating 

transcripts like Lefty1 and Fgf5, which are markers of the primed pluripotency stage (121) (Figure 

3.1C). Moreover, as expected (121,122), the promoters of Zfp42 and Dppa3a acquire de novo 

methylation in EpiSCs, while being hypo methylated in ESCs, thus confirming the epiblast identity 

of our induced EpiSCs (Figure 3.1D). At the time of meso-endodermal induction, we can observe 

(i) an increase in the expression levels of meso-endodermal markers such as T and Pecam1 (Figure 

3.1B), (ii) the downregulation of stemness marker genes, such as Sox2 and Nanog (down-regulated 
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Figure 3.1B), and (ii) no expression of markers of the other lineages (i.e. the neuro-ectodermal 

marker Sox1, Figure 3.1B), thus confirming the accuracy of directed differentiation model. 

 

 

 

II - Figure 3. 1: Directed differentiation of ESCs towards meso-endodermal progenitors. A. 
Schematic representation of the two-step differentiation model: from ESC to EpiSC and from 
EpiSC to Meso-endodermal progenitors, indicating the time points of RNA collection and the 
molecules used for the differentiation induction. B. qRT-PCR analysis of selected markers genes 
for the ESC (Nanog, Sox2), Meso-endoderm (T, Pecam1) and Ectodermal (Sox1, Sox2) lineages. 
C. qRT-PCR analysis of selected marker genes characterizing the ESC to EpiSC transition. *** = 
p-value < 0.001, t-test. D. Bisulfite analysis of Zfp42 and Dppa3 promoters’ DNA me levels during 
the ESC to EpiSC transition. Each circle represents a CpG. White dot = unmethylated, black dot 
= methylated. The two promoters acquire de novo DNAme in EpiSC. E. Western blot analysis of 
Dnmt3a (both isoforms 1 and 2) and Dnmt3b expression during the ESC-EpiSC-Meso-endoderm 
differentiation time course. 

 

A. 

B. 

C. D. 

E. 
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Interestingly, the two de novo DNA methyltransferases display - as it is thoroughly described 

(121,122) - a significant upregulation in EpiSCs formation (Figure 3.1E), but show an opposite 

profile during meso-endoderm commitment: in fact, both Dnmt3a isoforms are rapidly 

downregulated, while Dnmt3b remains expressed (Figure 3.1E), thus supporting its observed role 

in this specific differentiation (see Chapter 2). 

3.2 Transcriptome profiling of WT and 3BKO cells in the ESC-EpiSC-Meso-
endoderm transition 

To investigate the effects of Dnmt3b loss in the transcriptional program that controls meso-

endoderm specification, we performed gene expression profiling using bulk RNA sequencing 

(RNA-seq) on WT and two independent 3BKO clones (106) committed to meso-endoderm with 

our two-step differentiation approach. This analysis revealed 4,624 differentially expressed genes 

arising over the differentiation time course (i.e. in any sample group, edgeR (31) ANOVA-like test 

for any difference, 𝑙𝑜𝑔𝐹𝐶 ≥ 1.5 and 𝐹𝐷𝑅 ≤ 0.001, see Chapter 7 paragraph 7.2.2), which we 

grouped into 4 gene clusters recapitulating distinct patterns of gene expression dynamics for WT 

and 3BKO cells (Figure 3.2). Cluster II and IV are populated by genes that show a similar 

expression pattern in both WT and 3BKO cells. In particular, cluster II is characterized by genes 

that are stably downregulated after the exit from the ESC-pluripotent state, shows enrichment for 

gene ontology terms associated with pluripotency (e.g. cellular response to LIF, Figure 3.2) and 

the presence of well-known Naïve pluripotency markers such as Nanog, Esrrb, Dppa3a and Zfp42 

(Figure 3.3). Therefore, this gene cluster defines the ESC ground state, from which both WT and 

3BKO cells are induced to exit when receiving the differentiation stimuli. Cluster IV is defined by 

genes that are upregulated at the exit from the ESC-pluripotent state, reach their peak at EpiSC 

stage and are downregulated after the meso-endodermal induction; it shows enrichment for 

signaling pathways associated with the epiblast stage (e.g. positive regulation of epithelial cell 

migration, Figure 3.2) as well as the presence of primed pluripotency markers such as Fgf5, Lefty1, 

Otx2 and Fgf15 (121) (Figure 3.3). Thus, this gene cluster defines the EpiSC stage, where both 

WT and 3BKO cells express key epiblast markers and TFs at comparable levels (Figure 3.2-3.3, 

see paragraph 3). 

On the other hand, cluster I and III are populated by genes that show a divergent expression pattern 

between WT and 3BKO cells. Specifically, cluster I is composed by genes that are upregulated in 

WT cells after meso-endodermal commitment and downregulated in 3BKO cells with respect to 

WT, and it shows enrichment for gene ontology terms associated with mesoderm formation (e.g. 

somite development, mesoderm formation, Figure 3.2) as well as the presence of key mesoderm 

(T, Msgn1, Snai1, Hand1, Figure 3.3) and endoderm (Sox17, Krt19, Foxa1, Figure 3.3) marker 

genes. Cluster III is composed by genes that are upregulated in 3BKO cells with respect to WT 

after meso-endodermal commitment, and it shows enrichment for gene ontology terms associated 
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with ectodermal commitment and neuronal development (e.g. regulation of neuron differentiation, 

axon development, Figure 3.2) and the presence of known ectodermal markers such as Sox1, Pax6, 

Tubb3 and Pou3f1 (Figure 3.3). 

 

 

II - Figure 3. 2: Transcriptome profiling of WT and 3BKO cells in the ESC-EpiSC-Meso-endoderm 
differentiation. A. (left) RNA-seq heatmap showing the results of gene expression profiles 
clustering with K-means for WT and 3BKO cells during the complete differentiation time course 
(ESC-EpiSC-Meso-endoderm). Differentially expressed genes arising during the differentiation 
time course in any group were identified by ANOVA-like test with edgeR (31) ( 𝑙𝑜𝑔𝐹𝐶 ≥ 1.5 
and 𝐹𝐷𝑅 ≤ 0.05). Rows are genes, columns are samples and the scaled expression level (Z-score) 
is plotted. (right) Heatmap showing selected gene ontology terms for enriched biological processes 
in each cluster. B. WT vs 3BKO gene expression dynamics for each of the reconstructed gene 
clusters over the differentiation time course. Boxplot show the gene expression levels distribution 
(Z-scores) at each time point. Line plots show the median trend. 

A. 

B. 
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II - Figure 3. 3: Gene expression time-course of stage specific marker genes. RNA-seq gene 
expression time-course for stage-specific pluripotency (Naïve, Primed) and germ layers 
(Mesoderm, Endoderm, Ectoderm) markers genes. Dots represent normalized RPKM values, 
averaged by replicates/condition. Error bars represent standard errors. The analysis showed that 
both WT and 3BKO cells, upon differentiation induction, downregulate naïve pluripotency 
markers and upregulate primed pluripotency markers, thus reaching the epiblast stage. In contrast, 
a divergent trajectory emerges for WT and 3BKO cells once committed to meso-endodermal 
progenitors, with the redirection of 3BKO cells towards the neuro-ectodermal transcriptional 
program. 

 

Overall, this analysis recapitulates the results obtained in the EBs differentiation model (see 

Chapter 2), confirming that 3BKO cells compared to WT show an impaired expression of meso-

endodermal genes (cluster II) and are redirected towards a neuro-ectodermal-like transcriptional 

program (cluster III).  
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3.3 Loss of Dnmt3b does not affect the induction of EpiSCs, while impairs the 
formation of meso-endodermal progenitors 

In order to deeply understand the previous result, we analyzed separately the two-step 

differentiation. Despite RNA seq analyses of ESCs-EpiSCs transition identified 906 genes 

upregulated and 426 downregulated between WT and 3BKO, we observed a similar expression of 

core (e.g. Pou5f1, Nanog, Sox2), naive (e.g. Klf4, Dppa3, Prdm14) and primed (e.g. Otx2, Lefty1, 

Dnmt3a) pluripotency genes (Figure 3.4A), with no morphological major changes between WT 

and mutant cells at the EpiSC stage. Thus, even in presence of a significant transcriptional 

response, the loss of Dnmt3b-dependent de novo DNAme has a minor impact in the formation of 

the epiblast-like phenotype. These results were confirmed at the protein level by western blot 

analysis of Otx2 (Figure 3.4D) and immunofluorescence of Lefty1 epiblast marker genes (88,121) 

(Figure 3.4B-C), which are expressed at comparable levels in both WT and 3BKO cells. 

 

 

II - Figure 3. 4: Loss of Dnmt3b does not affect the induction of EpiSCs. A. RNA-seq heatmap 
showing the expression (Z-scores) of selected pluripotency marker genes during the transition from 
ESC to EpiSC for WT and 3BKO cells. Core and naïve pluripotency markers are downregulated, 
while primed pluripotency markers are upregulated in both WT and 3BKO cells. B. Representative 

A. B. 

C. 

D. 
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IF images of WT and 3BKO cells with the primed pluripotency marker Lefty1. C. Quantification 
of Lefty1+ cells as percentages of DAPI for both WT and 3BKO cells. D. Western blot analysis of 
the primed pluripotency markers Lefty1 and Otx2 during the ESC to EpiSC transition for WT and 
3BKO cells. 

 

 

II - Figure 3. 5: Lack of Dnmt3b impairs the formation of meso-endodermal progenitors. A. RNA-
seq heatmap showing the expression (Z-scores) of selected pluripotency and differentiation 
(mesoderm, endoderm and ectoderm) marker genes during the transition from EpiSC to Meso-
endodermal progenitors for WT and 3BKO cells. Meso-endodermal markers are upregulated in 
WT cells and downregulated in 3BKO cells, which instead show higher expression of ectodermal 
markers. Primed pluripotency markers are downregulated in both WT and 3BKO cells. B. 
Representative IF images of WT and 3BKO cells with Dnmt3b and the meso-endodermal marker 
Flk1/Kdr. C. FACS analysis of the mesodermal surface marker CD31 in both WT and 3BKO cells. 
** = p-value < 0.05, t-test. 

A. 

B. 

C. 
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In contrast, the analysis of the expression of well-known lineage marker genes confirmed the 

divergent differentiation trajectory between WT and 3BKO cells after meso-endodermal 

commitment (Figure 3.5). Specifically, while prime pluripotency marker genes such as Lefty1, 

Fgf5 and Nanog are downregulated in both WT and 3BKO cells, only WT cells show the induction 

of key mesoderm (T, Snai1, Eomes) and endoderm (Sox17, Foxa2) marker genes and TFs, while 

3BKO cells upregulate markers of ectodermal lineage commitment (Sox1, Sox2, Tubb3, Pax6) (94) 

(Figure 3.5A). These results were confirmed by IF analysis of the mesoderm marker Flk1/Kdr, 

which is expressed only in WT cells at 48 hours of meso-endoderm induction (Figure 3.5B), as 

well as by FACS analysis of the mesoderm surface marker CD31/Pecam1, which showed a 

significant reduction of CD31+ cells in 3BKO samples as compared to WT ones (Figure 3.5C). 

Taken together, these data show that the Dnmt3b-dependent de novo DNAme does not affect the 

differentiation of ESC in EpiSC, but is required for the correct specification of the meso-

endodermal progenitors at the time of gastrulation, thus corroborating also in a directed 

differentiation model the phenotype observed in EBs (see Chapter 2). 
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Chapter 4 
 

Dnmt3b-dependent de novo DNAme primes EpiSCs for 
lineage commitment at later stages 

  

 

Results 

 

 

4.1 Methylome profiling by Whole Genome Bisulfite Sequencing 

In order to obtain a detailed map of the DNAme landscape set up during the transition from naïve 

to primed pluripotency, as well as to investigate the effects of Dnmt3b loss on the establishment 

of de novo DNAme, we generated deep whole genome bisulfite sequencing (WGBS) data in WT 

and 3BKO cells at the two corresponding time points (i.e. ESC and EpiSC stage, two biological 

replicates for each condition, Pearson’s 𝑟 ≥ 0.89 for all replicates, Figure 4.1 A, B, C), obtaining 

on average 450 millions paired-end reads and a mean coverage depth of ~ 23x per sample (see 

Chapter 7, paragraph 7.1.19 and 7.2.4), and covering a total of ~20 millions CpG sites in the mouse 

genome (minimum depth > 5x). The analysis of global DNAme levels showed a significant 

increase in DNA methylation in EpiSC as compared to ESC, recapitulating the in vivo dynamics, 

that is impaired in 3BKO cells (Figure 4.1 D, E). In fact, we identified a significant loss of global 

DNAme levels in 3BKO cells with respect WT at both the ESC and EpiSC stages (Figure 4.1D). 

Moreover, by PCA (Figure 4.1A) and clustering analysis of global methylation levels (hierarchical 

clustering by Pearson’s correlation, Figure 4.1B), we observed a clear separation between 3BKO 

and WT cells, with a stronger effect visible at the EpiSC stage, where 3BKO cells fail to acquire 

proper de novo methylation, keeping their global DNAme levels close to the ones of naïve ESC 

(Figure 4.1D, E) 

4.2 Lack of Dnmt3b impairs the de novo DNAme dynamics in EpiSCs 

We next focused on the analysis of genomic regions with a dynamic DNAme sate during this 

transition. To do so, we performed differential methylation analysis and identified 63,651 

differentially methylated regions (DMRs) that arise over the ESCs to EpiSCs induction 
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(𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ≥ 20%, 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑝. 𝑣𝑎𝑙𝑢𝑒 ≤ 0.05, see Chapter 7, paragraph 7.2.4), 

containing a total of 1,565,007 differentially methylated CpG loci (DML). The DMRs were next 

grouped into 4 major clusters showing distinct patterns of DNAme for WT and 3BKO cells (Figure 

4.2A, see Chapter 7, paragraph 7.2.4). Interestingly, besides differences in basal levels of DNAme 

at the ESC stage, cluster I, II and IV – which account for ~ 93% of all the identified DMRs - are 

composed by regions that exhibit a gain of DNAme moving from the ESCs to the EpiSCs stage in 

WT cells, but fail to get properly methylated in 3BKO cells: therefore, these DMRs are de novo 

methylated by Dnmt3b during the ESCs to EpiSCs transition. 

 

  

 

II - Figure 4. 1: Methylome profiling by Whole Genome Bisulfite Sequencing (WGBS). A. PCA of 
DNA methylome profiles obtained by WGBS, showing clustering of profiled samples by condition 
(3BKO, WT) and differentiation stage (ESC, EpiSC). B. Heatmap showing clustering of WGBS 
samples by Pearson correlation of single-base resolution CpG methylation levels. C. Density plot 
showing pairwise Pearson correlation between WGBS sample replicates for DNA methylation 
scores calculated in 500bp genomic windows. D. Bar plot showing global average CpG 
methylation levels in each sample group. E. Bar plot showing distribution of CpG methylation 
levels in each sample group. 

A. B. C. 

D. 

E. 

F. 
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II - Figure 4. 2: Identification of Dnmt3b-target DMRs in the transition from ESC to EpiSC. A.  
(left) WGBS heatmap showing DMRs arising during the transition from ESC to EpiSC in WT and 
3BKO cells, clustered by K-means. Each cluster shows a distinct pattern of DNA methylation 
levels and dynamics. (right) Boxplot distributions of the DNA methylation levels for the 
differentially methylated CpG loci (DML) present in each DMR cluster (the total number in cluster 
is reported on top of each plot facet). B. Annotation of all identified DMRs to distinct genomic 
features. Pie chart shows the fraction of DMRs overlapping each feature. C. Annotation of DMRs 
to distinct genomic features, reported as (left) the percentage of DMRs overlapping each feature 
and (right) the log2-enrichment for each feature, calculated with the Genomic Association Test 
(GAT) software (123). D. Heatmap showing selected gene ontology terms for enriched biological 
processes in each cluster. Gene set over-representation analysis was performed for genes 
associated with DMRs overlapping putative regulatory regions. 

 

In contrast, cluster III is composed by a small set of regions (~ 6% of the total number of DMRs) 

that are demethylated moving from ESC to EpiSC, in both WT and 3BKO cells. Thus, these 

regions are likely related to the epiblast identity, which is not impaired upon Dnmt3b-loss (see 

Chapter 3).  

The genomic distribution of DMRs showed a significant over-representation at promoters (3.7 % 

of nucleotide overlap), CpG Islands (1.8 %) and exons (9.6 %) (Figure 4.2B, Q-value < 1e-4 as 

calculated by the GAT tool (123), as well as a high number of intronic (55.18 %) and intergenic 

(33.03 %) regions. 

A. B. 

C. 

D. 
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II - Figure 4. 3: Identification of differentiation-associated enhancers. A. Heatmaps showing 
H3K27ac ChIP-seq signals for WT cells over the differentiation time course, clustered in stage-
specific or shared-by-stage regions, for typical (top) and super enhancer (bottom) regions. B. 
Ranking plots of H3K27ac ChIP-seq signals for WT cells at each time point of differentiation 
obtained from ROSE (124) (see Chapter 7, paragraph 7.2.3). Inflection points of the curves 
represent the cut-off for super enhancer definition. C. Bar plots representing the number of DMRs 
overlapping with either stage-specific or shared-by-stage (common) typical and super enhancer 
regions.  

 

The elevated fraction of intergenic and intronic DMRs suggested a possible role for Dnmt3b-

dependent de novo DNAme in regulating the activity of enhancer elements associated with 

differentiation. To assess this hypothesis, we took advantage of publicly available and newly 

generated ChIP-seq data for the histone marks H3K4me3, H3K4me1, and H3K27ac, to define a 
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complete set of putative regulatory elements arising over the differentiation time course (Figure 

4.2C and Figure 4.3-4, see Chapter 7, paragraph 7.2.3). We found that 19,213 DMRs (30 % of 

total number of DMRs) overlapped with regulatory regions, either promoters or enhancers, that 

are active (H3K27ac) in any of the three stages of the differentiation (ESCs, EpiSCs or meso-

endoderm) (Figure 4.2C and Figure 4.3C), with a significant enrichment at both typical (13.57 % 

of nucleotide overlap, log2[Obs./Exp.] ratio > 2 and Q-value < 1e-4) and super enhancer (14 % of 

nucleotide overlap, log2[Obs./Exp.] ratio > 3 and Q-value < 1e-4)  elements (Figure 4.2B). Indeed, 

these were the two genomic features displaying the strongest changes overall in DNAme levels 

during the ESC to EpiSC transition (Figure 4.1F). Functional enrichment analysis of genes 

associated with each DMR cluster revealed a significant enrichment for gene ontology terms 

related to development and cell proliferation (i.e. anatomical structure development, regulation of 

cell proliferation), as well as for pathways associated with cell differentiation (i.e. cellular 

response to LIF, WNT signaling pathways, cell differentiation) (Figure 4.2D), in all the Dnmt3b 

target DMR clusters (i.e. cluster I, II, IV), thus confirming the crucial role played by Dnmt3b-

dependent de novo DNAme in these early stages of embryonic development.  

 

 

 
II - Figure 4. 4 Chromatin features predictive of DMRs occurrence. A. Schematic representation of the ML 
classification workflow employed to characterize chromatin features predictive of the occurrence of DMRs. 
B. Receiving Operating Characteristic (ROC) curves for the three trained ML models (LogReg=Logistic 
Regression; LogReg ElasticNet=Logistic Regression with Elastic Net regularization; SVM Linear=Support 
Vector Machine with Linear Kernel). AUC=Area Under the ROC Curve. C. Performance metrics for the 
three trained ML models, as calculated by the confusionMatrix function in the caret R packge (125). D. 
Chromatin feature importance (scaled in the range 0-100) for the prediction of DMRs occurrence according 
to the three trained ML models, reported for each differentiation stage (ESC, EpiSC, Meso-endoderm at 
48h). 
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To further characterize the association between the identified DMRs and the chromatin context in 

which they emerge, we employed a machine learning (ML) classification approach, modeling the 

genomic occurrence of DMR as a function of various chromatin features obtained at different 

stages of differentiation (ESC, EpiSC and Meso-endoderm after 48h of differentiation, see Chapter 

7 paragraph 7.2.5) (Figure 4.4A). Specifically, we used DNase hypersensitivity data mapping open 

chromatin regions and ChIP-seq data of histone modifications, both publicly available (for the 

ESC stage, retrieving ES-E14 data from ENCODE database) and in-house generated (H3K27ac, 

H3K4me1 and H3K4me3 for the EpiSC and Meso-endoderm differentiation). We trained three 

different ML classifiers (Logistic Regression, Elastic Net regularized Logistic Regression, Support 

Vector Machines with Linear Kernel), obtaining comparable predictive performances (computed 

using 10-fold cross validation, Figure 4.4B-C). The analysis of the most influential features 

predictive of DMRs occurrence revealed the H3K4me1 histone mark at the ESC stage as the most 

important variable overall for all the three classifiers (Figure 4.4D).  Moreover, H3K4me1 was the 

most influential feature also at later stages of differentiation (Figure 4.4D). H3K4me1 defines both 

active and primed enhancer elements (126). Hence, this result confirms that the dynamic regulation 

of DNAme patterns at enhancers is of paramount importance at this developmental stage. 

4.3 Dnmt3b-dependent DNAme acts as an epigenetic priming for lineage 
commitment 

To identify the genes that are directly targeted by Dnmt3b during the ESC to EpiSC transition and, 

thus, responsible for the impaired meso-endodermal differentiation of 3BKO cells, we integrated 

the results from the joint multi-omics profiling of gene expression (RNA-seq), DNAme (WGBS) 

and histone modifications associated to active or primed regulatory regions (ChIP-seq of 

H3K4me1-me3, H3K27ac). We obtained a list of 532 Dnmt3b target genes, defined by (i) having 

at least one associated DMR directly targeted by Dnmt3b in EpiSC that overlaps a putative 

regulatory region and (ii) upregulation in gene expression upon meso-endodermal induction in 

3BKO cells with respect to WT (Figure 4.5A). Remarkably, the identified list of targets showed 

significant enrichment for gene sets involved in neuro-ectodermal lineage commitment (Figure 

4.5B), including key neuronal markers and TFs such as Sox1, Sox2, Tubb3 and Olig3 (94). This 

result suggests that the impairment of the DNAme landscape at the primed pluripotency stage is 

directly responsible for the neuro-ectodermal transcriptional program observed in 3BKO cells 

when committed to differentiation, and that Dnmt3b controls the correct formation of meso-

endodermal lineages by silencing both promoters and enhancers of key neuro-ectodermal genes.  

The neuro-ectodermal related genes need to be switched off in order to ensure the proper 

transcription of meso-endodermal genes at the time of lineage commitment. Therefore, at the 

primed pluripotency stage, the Dnmt3b-dependent DNAme acts as an epigenetic priming that 

ensures the proper establishment of lineage differentiation programs at the time of gastrulation.  
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II - Figure 4. 5: Dnmt3b-dependent DMRs overlapping putative regulatory regions. Genome 
browser view of WGBS data for four representative loci displaying Dnmt3b-dependent de novo 
methylation activity during the transition from ESC to EpiSC in enhancers (A) and promoter (B) 
elements. Typical and Super enhancer regions arising over the differentiation time course were 
defined using ROSE on H3K27ac signal (see Chapter 7, paragraph 7.2.3). 

 

 

II - Figure 4. 6: Integrated analysis reveals key Dnmt3b-targeted transcription factors associated 
with neuro-ectodermal lineage commitment. A. Integrated RNA-seq, WGBS and regulatory 
regions heatmaps for Dnmt3b target genes. Dnmt3b target genes are defined as upregulated genes 
in 3BKO with respect to WT cells during meso-endodermal induction that have a Dnmt3b-target 
DMR within 100kb of their TSS overlapping a regulatory region (annotated promoters and/or 
enhancers defined by H3K27ac signal during the differentiation time course). B. Bar plots of top 
gene ontology terms for enriched biological processes in Dnmt3b target genes. 

 

A. 

B. 

A. B. 
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Chapter 5 
 

Silencing the master regulator Sox2 rescues the impaired 
meso-endodermal induction of 3BKO cells 

 

 

Results 

 

 

5.1 Reconstruction of the Dnmt3b-dependent regulatory network 

To further investigate the molecular targets of Dnmt3b that play a role in regulating the correct cell 

fate specification of EpiSC, we reconstructed the Dnmt3b-dependent network of transcription 

factors (TFs) that are dysregulated in meso-endodermal differentiation upon Dnmt3b loss. To do 

so, we exploited the results of our multi-omics integrated analysis (see Chapter 4) and combined 

them with known information about TFs targets publicly available from TRRUSTv2 (127) and 

ChEA3 (128) databases. (Figure 4.1A, see Chapter 7, paragraph 7.2.5). The network is composed 

by 231 nodes and 10,290 edges that summarize the regulatory interactions between TFs that are 

either (i) directly targeted by Dnmt3b or (ii) downstream regulated by Dnmt3b direct target TFs. 

Network’s node prioritization by out-degree centrality (i.e. how many TFs are regulated by each 

TF) revealed the presence of Sox2 - as direct target of Dnmt3b - among the top 2% central nodes 

(Figure 5.1B). Sox2, besides playing a role as a core pluripotency factor (95), is a well-known 

master regulator of neuronal differentiation (94), and results from previous studies showed its 

antagonistic activity with the mesodermal master regulator T/Brachyury to control neuronal-

mesodermal lineage switching (89). For these reasons, it may be a crucial player that acts upstream 

of the regulatory cascade responsible for the observed neuro-ectodermal transcriptional phenotype 

in 3BKO cells. 
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II - Figure 5. 1: Dnmt3b-dependent regulatory network. A. Dnmt3b-dependent regulatory network 
of transcription factors. Nodes are all the differentially expressed transcription factors between 
3BKO and WT cells during meso-endodermal commitment. Yellow nodes are Dnmt3b direct 
target nodes, while blue nodes are indirect. Evidence of regulation between transcription factors 
was retrieved from TRRUSTv2 and ChEA3 databases. B. Node ranking on the basis of their out-
degree centrality (i.e. number of target factors). Red dots represent the top 2%. 

 

5.2 Silencing Sox2 rescues the meso-endodermal phenotype in 3BKO cells 

Once stated the evidence of Sox2 as a direct Dnmt3b target upstream of the regulatory cascade that 

controls the aberrant neuro-ectodermal transcriptional program in 3BKO cells once committed to 

meso-endoderm (Figure 5A), and given its established role as a master regulator of neuronal 

differentiation, we asked whether its silencing could rescue the meso-endodermal phenotype in 

3BKO cells. The Sox2-associated DMRs targeted by Dnmt3b are within 2 different enhancer loci 

located respectively at ~4 kb and ~12kb of Sox2 TSS (Figure 5.2A, Figure 5.3), both of them 

overlapping the broad Sox2 super-enhancer locus. Moreover, results from recent studies 

demonstrated the presence of a distal enhancer cluster, located at ~100kb of Sox2 TSS, responsible 

for the regulation of Sox2 expression specifically in mouse ESC (129). Hence, in addition to the 

proximal regions, we observed significant reduced DNAme levels in 3BKO cells at the EpiSC 

stage also at the distal Sox2 control region (SCR), even if with a smaller effect size as compared 

to the DNAme loss observed in the distinct subunits of the proximal super-enhancer locus (Figure 

5.3). 

The hypo methylated state of the proximal regions in 3BKO cells at the EpiSC stage was confirmed 

by targeted bisulfite analysis, showing loss of methylation in majority of their CpG sites. The lack 

of de novo DNAme at these key Sox2-associated regulatory regions results in aberrant Sox2 

expression in 3BKO cells (Figure 5.2). Indeed, the upregulation of Sox2 is observed at 48 hours of 

meso-endodermal induction, as shown by both RNA-seq and IF (Figure 5.2B-C). 

A. B. 
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To achieve depletion of Sox2 expression during meso-endoderm induction, we took advantage of 

RNA interference techniques. At the EpiSC stage, we double-transfected 3BKO cells with 2 

independent shRNA constructs against Sox2 (shSox2-1, shSox2-2) and a scramble (sh-pLKO) 

shRNA for 6 hours, after which we induced meso-endoderm (Figure 5.3A, see Chapter 7 paragraph 

7.1.8). Following 48h of differentiation, we observed a significant downregulation of Sox2 

expression for both Sox2- targeting constructs with respect to sh-pLKO at both the RNA (~ 50 % 

reduction observed by qRT-PCR) and the protein level by western blot analysis (in both 3BKO 

clones, Figure 5.3B, D).  

 

 

II - Figure 5. 2: Aberrant Sox2 methylation and expression in 3BKO cells. A. Genome browser view 
of the Sox2 locus showing (i) the DNA methylation profiles obtained by WGBS in WT and 3BKO 
cells at the ESC and EpiSC stage, and (ii) H3K27ac ChIP-seq signals in the WT differentiation 
time-course (ESC, EpiSC, Meso-endoderm at 48 hours), which define the Sox2 super-enhancers 
locus. Distinct Dnmt3b target DMRs are present in distinct subunits of the super-enhancer locus, 
which are de novo methylated in the ESC to EpiSC transition, but remain hypo-methylated in 
3BKO cells. B. Gene expression levels of Sox2 for WT and 3BKO over the differentiation time-
course, obtained from RNA-seq and reported as normalized RPKM values. Significant up-
regulation in 3BKO with respect to WT is observed at 48h of meso-endodermal induction (p-value 
from differential expression analysis, see Chapter 3). C. Representative ICC images of Sox2 
(green) protein expression in WT, 3BKO#1 and 3BKO#2 in EpiSCs (Top) and meso-endoderm 
(bottom) induced cells, nuclei stained by DAPI (blue). Scale bar 25 mm.  

A. 

B. C. 
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II - Figure 5. 3 Dnmt3b target Sox2 DMRs. Genome browser view of the DMRs associated to Sox2 
during the ESC to EpiSC transition. Dnmt3b-target loci emerge in both the proximal (< 100 kb 
from TSS) super-enhancer region and distal (>100 kb from TSS) Sox2 control region (SCR), as 
defined by Zhou et. al (129). Boxplots show distributions of methylation levels measured at 
individual CpG sites in each Sox2-related Dnmt3b-target DMR. 

 

We next analysed by qRT-PCR the expression of selected meso-endoderm markers, observing a 

significant upregulation of T (mesoderm) and Gata4 (endoderm) in Sox2-silenced 3BKO cells 

(Figure 5.3C, E), thus demonstrating a partial rescue of the meso-endodermal transcriptional 

program. Taken together, these results demonstrate the key role played by the down-modulation 

of Sox2, mediated by Dnmt3b-dependent methylation of its super-enhancer locus, for the proper 

establishment of the meso-endodermal fate at the time of lineage commitment. 

 

SCR (Zhou et al., 2014)

34,760 kb 34,770 kb

133 kb
chr3

Sox2ot
Sox2

34,660 kb34,650 kb 34,670 kb 34,680 kb

Super Enhancer

DMR
Dnmt3b-target DMR

Dnmt3b−target Sox2 DMRs

Proximal (< 100 kb) Distal (> 100 kb)

A

B C

*
*

****
****

****
****

****
****

*
*

****
****

****
****

****
****

*
*

chr3: 34662436−34663945 chr3: 34671789−34672866 chr3: 34679286−34680022

chr3: 34656344−34657752 chr3: 34660055−34660424 chr3: 34660918−34662039

chr3: 34642340−34642464 chr3: 34643552−34644550 chr3: 34654535−34655975

ESC−W
T

ESC−3
BKO

EpiS
C−W

T

EpiS
C−3

BKO

ESC−W
T

ESC−3
BKO

EpiS
C−W

T

EpiS
C−3

BKO

ESC−W
T

ESC−3
BKO

EpiS
C−W

T

EpiS
C−3

BKO

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

M
et

hy
la

tio
n 

[%
]

M
et

hy
la

tio
n 

[%
] ****

****
****

****
chr3: 34753571−34756436 chr3: 34758723−34765646

ESC−W
T

ESC−3
BKO

EpiS
C−W

T

EpiS
C−3

BKO

ESC−W
T

ESC−3
BKO

EpiS
C−W

T

EpiS
C−3

BKO

0
20
40
60
80

100

Sh
 p

LK
O

Sh
1 

So
x2

Sh
2 

So
x2

3BKO #2
3BKO #2

Sox2

Vinculin

Sox2 T Gata4
0

1

2

3

4

5

Fo
ld

in
du

ct
io

n
/s

h
pL

KO

sh pLKO
sh1 Sox2
sh2 Sox2

*
*

*

*

*

**



 99 

 

II - Figure 5. 4: Silencing the master regulator Sox2 rescues the impaired meso-endodermal 
induction of 3BKO cells. A. Scheme of meso-endoderm rescue experiment by silencing Sox2.  WB 
analysis of 3BKO#1 (B) and 3BKO#2 (D) cells silenced with two different shRNAs against Sox2. 
qRT-PCR analyses for ectoderm (Sox2), mesoderm (T) and endoderm (Gata4) genes in Sox2 
silenced 3BKO#1 (C) and #2 (E) cells. Error bars represent standard deviation between three 
biological replicates (* = p-value < 0.05, ** = p-value < 0.01, t-test).  

  

A. 

B. C. 

D. 
E. 
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Chapter 6 
 

 

 

Discussion II 

 

6.1 The specificity of DNMT3B in early embryonic development  

The establishment of de novo DNAme patterns at the exit from pluripotency is crucial for cell fate 

specification during early mammalian development (112,113). In this work, we dissected the 

specific contribution of the de novo DNMTs -  DNMT3A and DNMT3B - in controlling lineage 

fate decisions during mouse early embryonic development, showing a predominant role for 

DNMT3B at this early developmental stage. The single cell transcriptomic analysis of the 

differentiation trajectories in EBs, a 3-dimensional unbiased differentiation model that 

recapitulates in vitro the lineage specification toward progenitors of the three primary germ layers, 

showed that the commitment toward the meso-endodermal fate is specifically impaired in 3BKO 

cells, whereas 3AKO knockout cells could differentiate in both ectoderm and meso-endoderm cells 

(Chapter 2). Our results are concordant with previously published in vivo studies showing that 

mice lacking either Dnmt3a or Dnmt3b manifest distinct defects and die at different stages of 

development (112,113). In particular, they showed that Dnmt3b mutant mice manifest early 

embryonic lethality, while Dnmt3a knock-out mice die after birth (112). Moreover, a more recent 

study has shown that, in humans, DNMT3A-dependent de novo DNAme is essential for the correct 

formation of motor neuron (111), which are terminally differentiated somatic cells formed later on 

during development and derived from ectoderm. Therefore, in agreement with our results, these 

data indicate that Dnmt3b-dependent de novo DNAme plays a more important role in the regulation 

of early embryonic development, while Dnmt3a targets are crucial for late development or after 

birth. 

6.2 Target genomic loci of DNMT3B at the primed pluripotency stage 

To further characterize the functional role of DNMT3B in resolving early lineage commitment, 

we induced the formation of in vitro EpiSCs, which resemble the primed pluripotent state of the 

early post-implantation embryo, and further differentiated them toward the meso-endodermal 

lineage. Remarkably, the lack of Dnmt3b does not affect the formation of EpiSCs, but prevents 

their subsequent commitment to meso-endodermal progenitors (Chapter 3).  By WGBS profiling, 
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we demonstrated that Dnmt3b loss results in failures in the acquisition of de novo DNAme in a 

huge fraction of DMR established during the ESCs to EpiSCs transition, mostly targeting 

regulatory regions associated with key developmental genes (Chapter 4). The results from the 

multi-modal integrated analysis of WGBS, ChIP-seq of histone marks and RNA-seq, revealed that 

the activity of Dnmt3b in epiblast is responsible for the silencing of a number of regulatory regions 

associated with neuro-ectodermal marker genes, which need to be switched off to ensure proper 

differentiation into meso-endoderm cells, in agreement with recent findings obtained in vivo 

stating the ectodermal path as the default route of lineage differentiation (130). Therefore, the 

Dnmt3b-dependent de novo methylation participates in priming the epiblast to ensure flawless 

commitment at later stages of embryonic development. 

6.3 DNMT3B ensures meso-endodermal specification by regulating Sox2 

The reconstruction of the Dnmt3b-dependent network of TFs during this process highlighted the 

presence of Sox2 as a direct target of Dnmt3b in epiblast stage (Chapter 5). Sox2 is a well-known 

master regulator of neuronal differentiation, which competes with the mesoderm marker 

T/Brachyury for neural/mesodermal lineage switching (89). Indeed, we observed that 3BKO 

EpiSCs show a significant reduction of methylation at their super-enhancer region, which should 

be decommissioned in the cells primed to differentiate into meso-endoderm (129,131). In 

agreement with these observations, we found that Sox2 silencing in 3BKO at the EpiSC stage 

restores the expression of the meso-endoderm markers upon their further differentiation, thus 

rescuing the impaired meso-endodermal transcriptional program. In conclusion, our data provide 

a functional characterization of DNMT3B and its role in the regulation of cell differentiation 

during early stages of mouse embryonic development, demonstrating that the specific activity of 

DNMT3B is necessary to prime EpiSCs for their further differentiation into the meso-endodermal 

lineages, thus establishing the epigenetic inheritance needed for the selective activation of specific 

transcriptional programs at the time of lineage commitment.     
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Chapter 7 
 

 
 

Materials and methods 
 

 

 

7.1 Experimental procedures 

7.1.1 Cell culture 

Embryonic stem cells were generated and cultured as described previously (106). E14 mouse WT, 

DNMT3B -/- (cl.B77) and DNMT3B -/-  (cl.B126) ES cells were cultivated in high-glucose DMEM 

(Euroclone) supplemented with 15% FBS (Millipore Corp., Billerica, MA, USA), 0.1 mmol/l 

nonessential amino acids (Invitrogen), 1 mmol/l sodium pyruvate (Invitrogen), 0.1 mmol/l β-

mercaptoethanol, 1500 U/ml Leukemia Inhibitory Factor (LIF; Millipore), 25 U/ml penicillin, and 

25 µg/ml streptomycin. 

7.1.2 Dnmt3a -/- and Dnmt3b -/- generation 

Dnmt3a-/- and Dnmt3b-/- ESCs generation were performed taking advantage from TALEN and 

CRISP-R/Cas9 technologies, respectively, as described in (106) and (132) 

7.1.3 Embryoid body formation 

To induce formation of EBs, ES cells were transferred using trypsin to low-attachment plates 

(CORNING) in Alpha-MEM (BE02-002F LONZA) supplemented with 10% KOSR (10828-028 

GIBCO), 5% FBS (Millipore), 1% nonessential amino acids (Invitrogen), 1% sodium pyruvate 

(Invitrogen), 0.1 mmol/l β-mercaptoethanol, 25 U/ml penicillin and 25 µg/ml streptomycin. 

Medium was changed every 3 days. 

7.1.4 EpiSCs induction from ESCs 

Epiblast (EpiSCs) induction was modified from (88). Briefly, a single-cell suspension was seeded 

onto Geltrex (A1413202 GIBCO)-coated plates at a density of 10,000 cells cm-2 in N2B27 
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medium supplemented with 20ng/ml ActivinA (PHC9564 GIBCO) and 12 ng/ml bFGF (PHG0026 

GIBCO). The cells were passaged 1:3 as small clumps using Collagenase IV (17104019 GIBCO). 

EpiSCs were collected for DNA and RNA analyses after 14 days of induction followed by daily 

medium changes. 

N2B27 medium is composed by 50% advanced DMEM/F12 (12634028 GIBCO) and 50% 

Neurobasal medium (21103049 GIBCO), supplemented with 0.5% N2 Supplement (17502048 

GIBCO), 1% B27 Supplement (17504044 GIBCO), 0.033% BSA solution (A9647 SIGMA), 50 

uM β-mercaptoethanol (M3148 Sigma), 2mM Glutamax (35050038 GIBCO), 100U/ml penicillin 

and 100 ug/ml streptomycin (DE17-602E LONZA).  

7.1.5 EpiSCs differentiation towards meso-endoderm (ME) lineage 

For ME lineage specific differentiation, EpiSCs were plated as small clumps onto Geltrex-coated 

plates in EpiSCs medium for 24 hours. The day after, medium was replaced with N2NB27 medium 

consisted of 50% advanced DMEM/F12 (12634028 GIBCO) and 50% Neurobasal medium 

(21103049 GIBCO), supplemented with 0.5% N2 Supplement (17502048 GIBCO), 1% B27 

supplement minus Vitamin A (12587010 GIBCO) and 3 uM iGSK3β (CHIR99021 SIGMA). Cells 

were fed daily until the end of differentiation. 

7.1.6 FACS analysis 

After 48 hours of differentiation toward ME lineage cells were dissociated. 1*10^6 cells were 

analysed for Annexin V-kit (Miltenyi Biotec) following the manufacturer’s instruction. Shortly 

cells were wash twice in the Annexin Buffer and then incubated with Annexin V-FITC for 15’ in 

the dark at room temperature. After that cells were washed once in Annexin Buffer and, 

immediately before FACS acquisition, PI was added. 

7.1.7 Protein extraction and Western blotting 

For total cell extracts, cells were resuspended in F-buffer (10mM TRIS-HCl pH 7.0, 50mM NaCl, 

30mM Na-pyrophosphate, 50mM NaF, 1% Triton X-100, anti-proteases) and sonicated for 3 

pulses. Extracts were quantified using bicinchoninic acid (BCA) assay (BCA protein assay kit; 

catalog no. 23225; Pierce) and were run on SDS-polyacrylamide gels at different percentages, 

transferred to nitrocellulose membranes and incubated with specific primary antibodies overnight. 

7.1.8 shRNA Constructs 

Custom shRNAs against Sox2 were constructed using the TRC hairpin design tool 

(http://www.broadinstitute.org/rnai/public/seq/search), and designed to target the following 

sequences: 
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• 5′-ACCAATCCCATCCAAATTAAC-3′ (shRNA1) 

• 5′-GCACAGTTTGAGATAAATAAA-3′ (shRNA2) 

Hairpins were cloned into pLKO.1 vector (Addgene: 10878) and each construct was verified by 

sequencing. 

7.1.9 Transfections 

Transfections of mouse EpiSCs were performed using Lipofectamine 2000 Transfection Reagent 

(INVITROGEN) in accordance with the manufacturer’s protocol using equal amounts of each 

plasmid in multiple transfections. For Sox2 knockdown, cells were transfected twice with 5 µg of 

the specific shRNA construct, and maintained in growth medium for 48 h. 

7.1.10 Alkaline phosphatase (AP) staining and Immunostaining 

ES cells and EpiSCs were fixed with 4% paraformaldehyde for 2 min and then stained with 

Vector® Red alkaline phosphatase substrate kit (SK-5100) according to the manufacturer’s 

protocol. For immunostaining, cells were fixed with 4% paraformaldehyde for 10 min at room 

temperature. Permeabilization was performed in 0.1% Triton X-100 in PBS for 15 min, and then 

the cells were blocked in 2% BSA in PBS at room temperature for 2 hours. Cells were stained with 

primary antibodies at 4 °C overnight. Secondary antibody was applied for 1 hour at room 

temperature. Nuclei were stained with DAPI (D21490 INVITROGEN). Images were acquired 

using a Leica TCS SP5 Confocal microscope and LAS AF Lite software. 

7.1.11 Antibodies 

The following antibodies were used for western blotting: Dnmt3a (sc-365769, Santa Cruz), 

Dnmt3b (ab122932, Abcam), Dnmt3l (provided by Dr. S. Yamanaka, Kyoto University, Japan), 

Lefty1 (ab22569, Abcam), Otx2 (ab21990, Abcam), Sox2 (sc-365823, Santa Cruz), Prdm14 

(MAB6175, R&D systems), Vinculin (SAB4200080, Sigma), β-Actin (A5441, Sigma). The 

following antibodies were used for immunostaining: Dnmt3b (ab122932, Abcam), Lefty1 

(ab22569, Abcam), Sox2 (sc-365823, Santa Cruz), Flk1 (sc-6251, Santa Cruz). 

7.1.12 Immunoprecipitation (IP) 

Nuclear proteins from about 10 * 106 cells were incubated with 3 m g of specific antibody overnight 

at 4° C. Immunocomplexes were incubated with protein-G- conjugated magnetic beads (DYNAL, 

Invitrogen) for 2 hours at 4° C. Samples were washed four times with digestion buffer 

supplemented with 0.1% NP-40 at RT. Proteins were eluted by incubating with 0.4M NaCl TE 

buffer for 30 min and were analyzed by western blotting. 
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7.1.13 Chromatin Immunoprecipitation (ChIP) assay 

For ChIP experiments, approximately 2*107 cells were cross-linked by addition of formaldehyde 

to 1% for 10 min at RT, quenched with 0.125 M glycine for 5 min at RT, and then washed twice 

in cold PBS. The cells were resuspended in Lysis Buffer 1 (50 mM Hepes-KOH pH 7.5, 140mM 

NaCl, 1mM EDTA, 10% Glycerol, 0.5% NP-40, 0.25% Triton X-100 and protease inhibitor) to 

disrupt the cell membrane and in Lysis Buffer 2 (10 mM Tris-HCl pH8.0, 200 mM NaCl, 1mM 

EDTA, 0.5 mM EGTA and protease inhibitor) to isolate nuclei. The isolated nuclei were then 

resuspended in SDS ChIP Buffer (20 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS and protease 

inhibitors). Extracts were sonicated using the BioruptorH Twin (Diagenode) for 2 runs of 10 cycles 

[30 sec ‘‘ON’’, 30 sec ‘‘OFF’’] at high power setting. Cell lysate was centrifuged at 12,000 g for 

10 min at 4°C. The supernatant was diluted with ChIP Dilution Buffer (20 mM Tris-HCl pH 8.0, 

150 mM NaCl, 2 mM EDTA, 1% Triton) before immunoprecipitation step. Streptavidin beads 

(Dynabeads®Protein G, Life Technologies) were saturated with PBS/1% BSA and the samples 

were incubated with 2 ug of antibody overnight at 4°C on a rotator.  Next day samples were 

incubated with saturated beads for two hours at 4°C on a rotator. Successively immunoprecipitated 

complexes were washed five times with RIPA buffer (50 mM Hepes-KOH pH7.6, 500mM LiCl, 

1mM EDTA, 1% NP-40, 0,7% Na-Deoxycholate) at 4°C for 5 minutes each on a rotator. Elution 

Buffer was added and incubated at 65°C for 15 minutes. The de-crosslinking was performed at 

65°C overnight. De-crosslinked DNA was purified using QIAQuick PCR Purification Kit 

(QIAGEN) according to the manufacturer’s instruction. 

7.1.14 DNA extraction.  

Genomic DNA was extracted from cells using the DNeasy Blood and Tissue kit (QIAGEN, 69506) 

following the manufacturer’s instructions. 

7.1.15 DNA methylation analysis.  

For DNA methylation analysis, 1 µg of genomic DNA was used for bisulfite conversion by using 

the EpiTect Conversion Kit (QIAGEN, 59104) according to the manufacturer's protocol. 

Converted DNA was eluted in 20 µl and 3 µl of converted DNA was used in a 50 µL PCR reaction 

(INVITROGEN, 12346). PCR products were purified and cloned into TOPO-TA vector 

(Invitrogen 450030), and positive clones were verified by sequencing. The bisulfite sequencing 

analysis of CpG methylation was performed using QUMA (http://quma.cdb.riken.jp/), as 

described in (133). 
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7.1.16 RNA qRT-PCR analysis 

RNA was extracted using TRIzol reagent (Invitrogen), according to the manufacturer’s protocol. 

Real-time PCR was performed using the SuperScript III Platinum One-Step Quantitative RT-PCR 

System (Invitrogen, cat.11732-020) following the manufacturer’s instructions.  

7.1.17 RNA-seq library preparation 

Total RNA was isolated using TRIzol reagent (Invitrogen), according to the manufacturer’s 

protocol. Quantity and quality of the starting RNA were checked by Qubit and Bioanalyzer 

(Agilent). 1 µg of total RNA was subjected to poly(A) selection, and libraries were prepared using 

the TruSeq RNA Sample Prep Kit (Illumina) following the manufacturer’s instructions. Libraries 

were sequenced on Illumina NextSeq 500 System (single-end 75 bp reads).. 

7.1.18 ChIP-seq library preparation 

Starting from 10 ng of ChIP eluted sample, the library was produced for the genome wide analysis 

following the NEBNext® ChIP-Seq Library Prep Reagent Set for Illumina® (E 6240L NEB) 

manufacturer’s instructions. Libraries were sequenced on Illumina NextSeq 500 System (single-

end 75 bp reads).  

7.1.19 Whole genome bisulfite-seq library preparation 

The whole-genome Bisulfite-seq library was prepared starting from 5 µg of sonicated genomic 

DNA for 2 runs of 10 cycles [30 sec ‘‘ON’’, 30 sec ‘‘OFF’’]. In order to obtain 200 nt fragments. 

Sonicated DNA was then end-repaired twice, dA-tailed, and ligated to adapters, using the Illumina 

TruSeq DNA Sample Prep Kit, following manufacturer’s instructions. Adapter-ligated DNA was 

loaded on an EGel Size select 2% agarose pre-cast gel (Invitrogen), and a fraction corresponding 

to fragments ranging from 25 0bp to 350bp was recovered. Purified DNA was then subjected to 

bisulfite conversion using the EpiTect Bisulfite Kit (QIAGEN) following the manufacturer’s 

instruction except for the double desulfonation after the conversion. Bisulfite-converted DNA was 

finally enriched by 15 cycles of PCR using Pfu Turbo Cx. HotStart Taq (Agilent). Libraries were 

sequenced on Illumina Novaseq 6000 System, generating an average of 500 million 100bp paired-

end reads and an average coverage depth of 30x per sample. 

7.1.20 Single cell RNA-seq library preparation and sequencing 

Full length single cell RNA-seq was performed using a modified version of the Smart-seq2 

protocol (134). Briefly, individual cells are sorted into 96 well plates containing lysis buffer in 

presence of RNase inhibitor, dNTPs and OligodT. Reverse transcription of the polyadenylated 
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RNA will be performed with SuperScriptII and Template Switching Oligos. The resulting cDNA 

will be amplified with 25 cycles of PCR and libraries will be prepared for sequencing with standard 

NexteraXT Illumina protocol. Libraries were sequenced on Illumina NextSeq 500 System (single-

end 75bp reads), reaching a median of ~ 578,000 generated reads per cell. 

7.2 Bioinformatics data analysis 

7.2.1 Single cell RNA-seq data analysis 

Following quality controls (performed with FastQC v0.11.2), sequencing reads were processed 

with Trim Galore! v0.5.0 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore) to 

perform quality and adapter trimming (parameters: --stringency 3 –q 20). Trimmed reads were 

next aligned to the mouse reference genome (UCSC mm9/NCBIm37) using HiSat2 v2.2.1 (135) 

with options: -N 1 -L 20 -i S,1,0.5 -D 25 -R 5 --pen-noncansplice 20 --mp 1,0 --sp 3,0 and providing 

a list of known splice sites extracted from GENCODE (release M1 – NCBIM37 

https://www.gencodegenes.org/mouse/release_M1.html  and hisat2_extract_splice_sites.py 

script). Gene expression levels were quantified with featureCounts v1.6.1(136) (options: -t exon -

g gene_name) using the GENCODE release M1 annotation. 

The following criteria were applied to exclude low-quality cells from subsequent analyses: 

• less than 100,000 assigned reads; 

•  less than 2,000 detected genes; 

• more than 25% of reads assigned to mitochondrial genes 

resulting in a total of 465 high-quality cells. 

Gene expression counts were next analysed using Monocle2 (119). Only protein-coding genes 

were considered for downstream analysis. Read counts were size factors adjusted 

(estimateSizeFactors function), log-transformed and batch corrected (parameter 

residualModelFormulaStr=”~batch” in the relevant Monocle2 functions). Variance modelling for 

feature selection was carried out using the scran R package (trendVar function, parameters: 

parametric=T, method=“loess” and decomposeVar function). Dimensionality reduction (PCA + 

t-SNE) was next performed with the reduceDimension Monocle2 function, using the top 2,000 

variable genes, the top 25 principal components and setting the perplexity equal to 20 (parameters: 

max_components=2, reduction_method=”tSNE”, norm_method=”log”, num_dim=25, 

perplexity=20, residualModelFormulaStr=“~batch”). 

Cell clustering was performed with the Louvain method implemented in the clusterCells Monocle2 

function (parameters: method=”louvain”). Cluster marker genes were identified by differential 

expression analysis, looking for upregulated genes in each cluster against the remaining cells with 

the differentialGeneTest function (𝑙𝑜𝑔𝐹𝐶 ≥ 0.5 and 𝐹𝐷𝑅 ≤ 0.01). Gene set over-representation 
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analysis was performed for the top markers (logFC>0.8) list of each cluster with the gProfileR 

package (gprofiler function, parameters: max_set_size=750). 

Pseudotime analysis was carried out using the DDRTree (119) algorithm, using the top 2,500 

variable genes (reduceDimension function, parameters: max_components=2, 

reduction_method=”DDRTree”,norm_method=”'log”,residualModelFormulaStr=“~batch” and 

orderCells function). Branch-dependent analysis of gene expression was performed with the 

BEAM (120) methodology (BEAM function, parameters: branch_point = 1, branch_states = 

c("B","C"). The smoothed relative expression in each branch for the significantly branch-

dependent genes (𝑞𝑣𝑎𝑙 ≤ 0.001) was hierarchically clustered (n=4) and visualized used the 

plot_genes_branched_heatmap function (parameters: num_clusters = 4, branch_states = 

c("B","C")) and as line plots using custom functions. Gene set over-representation analysis for 

each BEAM cluster was performed with the clusterProfiler R package. 

7.2.2 RNA-seq data analysis 

Following quality controls (performed with FastQC v0.11.2), sequencing reads were aligned to the 

mouse reference genome (mm10/GRCm38 Ensembl release 84) using HiSat2 v2.2.1 (135) with 

options: -N 1 -L 20 -i S,1,0.5 -D 25 -R 5 --pen-noncansplice 20 --mp 1,0 --sp 3,0. Pre-built indexes 

based on the Ensembl transcript annotation (release 84) for guided alignment to transcriptome 

were retrieved from the HiSat2 web site 

( https://cloud.biohpc.swmed.edu/index.php/s/grcm38_tran/download ). Gene expression levels 

were quantified with featureCounts v1.6.1 (136) ( options: -t exon -g gene_name ) using the 

Ensembl release 84 transcript annotation (ftp://ftp.ensembl.org/pub/release-

84/gtf/mus_musculus/Mus_musculus.GRCm38.84.gtf.gz). Multi-mapped reads were excluded 

from quantification. 

Gene expression counts were next analysed using the edgeR (31) R package. Lowly 

expressed/detected genes (i.e. 1 RPKM in less than 2 samples) were filtered out, obtaining a total 

of 16,755 expressed genes for downstream analysis. Normalization factors were calculated using 

the trimmed mean of M-values (TMM) method (implemented in the calcNormFactors function) 

and RPKM were computed using normalized library sizes and gene lengths from the Ensembl 

release 84 annotation (rpkm function). Principal Component Analysis (PCA) was performed using 

the prcomp R function (parameters: scale.=TRUE, center=TRUE), using the top 2500 variable 

genes. Following dispersion estimation (estimateDisp function, robust=TRUE), an ANOVA-like 

test was implemented by fitting a Generalized Linear Model (GLM) to all sample groups (glmFit 

function) and performing Quasi-Likelihood F-test (glmQLFTest function) in order to identify the 

genes that were significantly varying during the differentiation time course (i.e. differentially 

expressed genes in any of the sample groups during the time course, using the ESC-WT condition 

as baseline in the design matrix formula). The resulting 4,624 genes ( 𝑙𝑜𝑔𝐹𝐶 ≥ 1 and 𝐹𝐷𝑅 ≤
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0.001) were used for clustering of gene expression profiles with K-means (kmeans R function, 

parameters: centers=4, iter.max=25, nstart=100) followed by hierarchical clustering (parameters: 

method=”single”, distance=“euclidean”). RPKM values were scaled as Z-scores across samples 

before computing distances. The optimal number of K-means clusters (n=4) was estimated using 

the within-cluster sum of squares methodology (fviz_nbclust function from the factoextra R 

package). Gene expression heatmaps were generated using the ComplexHeatmap R package. Gene 

set over-representation analysis was performed for each cluster with the gProfileR package 

(gprofiler function, parameters: max_set_size=750), using all the expressed genes as background.  

Differentially expressed genes between WT and 3BKO cells at each time point were obtained from 

the same GLM, comparing each contrast with the Quasi-Likelihood F-test ( 𝑙𝑜𝑔𝐹𝐶 ≥ 1 and 

𝐹𝐷𝑅 ≤ 0.05). 

7.2.3 ChIP-seq data analysis 

Following quality controls (performed with FastQC v0.11.2), sequencing reads were aligned to 

mouse reference genome (mm10/GRCm38) using Bowtie v2.3.4.1(137)  (options: -q --local). 

Duplicated alignments (identified by Picard MarkDuplicates, 

https://broadinstitute.github.io/picard) and low-quality alignments/multi-mapping reads were 

excluded using SAMtools (138) (command: samtools view –F1804 –q 30). Coverage tracks were 

generated from filtered alignments using the deepTools (139) bamCoverage utility. IP and 

corresponding control (Input DNA) datasets were treated identically. Peak calling was performed 

using MACS v2.1.1 (140) (options: callpeak -t=<IP> -c=<Input> -g mm --nomodel –

extsize=<ES> --broad –q 0.05 --broad-cutoff 0.05 --fe-cutoff 1). The read extension size (ES) was 

estimated by cross-correlation using the phantompeakqualtools package. Input-normalized ChIP-

seq signals were obtained using the deepTools (139) bamCompare utility (options: --

extendReads=<ES> --scaleFactorsMethod readCount --binSize 10 --operation log2). These 

processing steps were applied to all sample groups.  

Identification of typical and super enhancer regions arising over the differentiation time course 

was performed with ROSE (141)  (https://bitbucket.org/young_computation/rose.git), using 

H3K27ac signals and their Input DNA as control (ROSE_main.py script, parameters: -g MM10 –t 

2500). Common and time-point specific differentiation enhancers were obtained using the 

mergePeaks utility from the HOMER suite (http://homer.ucsd.edu/homer). Signal profiles over 

peaks/genomic regions were obtained using the deepTools (139) computeMatrix utility and 

visualized using the plotHeatmap utility and/or custom R scripts.  
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7.2.4 WGBS data analysis 

Following quality controls, sequencing reads were processed with Trim Galore! v0.5.0 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore) to perform quality and adapter 

trimming (parameters: --stringency 3 –q 20 --paired). Trimmed reads were next aligned to the 

mouse reference genome (UCSC mm10/GRCm38) using Bismark v0.22.3 (142). The bisulfite-

converted genome was created using the bismark_genome_preparation utility (parameters: --

genomic_composition --bowtie2). Read mapping was performed with the bismark command 

(parameters: --nucleotide_coverage). Duplicated alignments were removed with the 

deduplicate_bismark utility and methylation calling was carried out using the 

bismark_methylation_extractor utility (parameters: --ignore 1 --bedGraph --counts --gzip). 

Genome-wide cytosine methylation reports with the top and bottom strand methylation evidence 

pooled into a single CpG dinucleotide entity were obtained using the coverage2cytosine utility 

(parameters: --zero_based --gzip --merge_CpG). 

DMRs were identified using the DSS (143) R package, performing all pairwise comparisons 

between ESC and EpiSC for both WT and 3BKO samples, and between WT and 3BKO at 

matching time points. For each comparison, the DMLtest function was first run (parameters: 

equal.disp=FALSE, smoothing=TRUE, smoothing.span=500); next, differentially methylated loci 

were identified with the callDML function (parameters: delta=0.1, p.threshold=0.001); finally, 

DMRs were called using the callDMR function (parameters: delta=0.2, p.threshold =0.05, 

minCG=5, dis.merge=100). The resulting list of DMRs was combined into one DMR set, 

collapsing overlapping regions into a single DMR using BEDTools (144) 

For further analysis, only CpG sites with coverage ≥ 5𝑥 in all samples were retained, and average 

DNA methylation levels for each DMR was calculated using the methylKit package (regionCounts 

and percMethylation functions). DMRs clustering was next performed using K-means, scaling 

region methylation scores as Z-scores before computing distances. The optimal number of K-

means clusters (n=4) was estimated using the Gap Statistics methodology (fviz_nbclust function 

from the factoextra R package). DMRs annotation to genomic features and closest TSS was carried 

out using the annotatePeaks.pl script from the HOMER suite (parameters: mm10 -annStats). Gene 

set over-representation analysis was performed for DMR overlapping putative regulatory regions 

(defined by their H3K27ac signature) using the gProfileR package (gprofiler function, parameters: 

max_set_size=750). 

7.2.5 ML classification analysis 

To analyze the chromatin features predictive of DMRs, the genomic occurrence of DMRs was 
modelled as a function of various chromatin features. Specifically, the features in each DMR were 
considered to have a binary state defined by overlapping peaks in that region (0=no peak overlap; 
1=peak overlap). As negative set, a random set of genomic regions was considered, matching the 
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size of the DMRs set (n=63,651) and excluding gaps and the DMRs set itself. Three ML algorithms 
were trained (Logistic Regression, Logistic Regression with Elastic Net regularization, Support 
Vector Machine with Linear Kernel) using the caret R package (125). To control for unbalanced 
sets, a down-sampling procedure was applied during training. Models performance was assessed 
using 10-fold cross validation. For Support Vector Machines, hyper-parameters tuning was 
performed, reporting the set of parameters with highest performance. 

7.2.6 Integrated analysis 

The Dnmt3b-target genes were defined by associating the Dnmt3b-target DMRs (within 100kb 

from the closest TSS and overlapping a putative regulatory region) to differentially expressed 

genes arising between 3BKO and WT samples during Meso-endoderm differentiation. The 

Dnmt3b-dependent transcription factors network was built integrating target-binding evidences 

from TRRUSTv2 (127) (https://www.grnpedia.org/trrust) and ChEA3 (128) 

(https://maayanlab.cloud/chea3, sets ARCHS4_Coexpression.gmt, ENCODE_ChIP-seq.gmt, 

Literature_ChIP-seq.gmt, ReMap_ChIP-seq.gmt, Enrichr_Queries.gmt, 

GTEx_Coexpression.gmt) and all the differentially expressed transcription factors arising between 

3BKO and WT samples during Meso-endoderm differentiation, classifying nodes as direct or 

indirect Dnmt3b-target. Network metrics calculation and visualization was performed with the 

igraph R package (https://cran.r-project.org/web/packages/igraph/) (degree and plot.igraph 

functions). 

7.2.7 Data availability 

H3K27ac ChIP-seq for ESC were obtained from ENCODE (ENCFF001KFR, ENCFF001KFX, 

ENCFF001MXK, ENCFF001MXM, ENCFF001NNN, ENCFF001NNP). The datasets reported in 

this study are available in the Gene Expression Omnibus database with accession code GSEXXX. 
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