
Scheduling on single and parallel machines with

constrained resources: batching or shared memory

environments

Alessandro Druetto

September 18, 2023

Università degli Studi di Torino

Dipartimento di Informatica

PhD in Computer Science
UniTO Doctoral School

Doctoral Thesis

Scheduling on single and parallel machines
with constrained resources: batching or shared

memory environments

Alessandro Druetto

Supervisors Andrea Cesare Grosso
Università degli Studi di Torino

Enrico Bini
Università degli Studi di Torino

Reviewers Alessandro Agnetis
Università degli Studi di Siena

Jean-Charles Billaut
Ecole Polytechnique de l’Université de Tours

September 18, 2023

Alessandro Druetto

Scheduling on single and parallel machines with constrained resources: batching or shared

memory environments

Doctoral Thesis – September 18, 2023

Reviewers: Alessandro Agnetis and Jean-Charles Billaut

Committee: Pontus Ekberg, Luca Roversi and Vincent T’kindt

Supervisors: Andrea Cesare Grosso and Enrico Bini

Università degli Studi di Torino

UniTO Doctoral School – PhD in Computer Science

Dipartimento di Informatica

Corso Svizzera, 185

10149 – Torino (Italy)

Acknowledgments

Firstly, the biggest thanks goes to my two PhD supervisors, Andrea Cesare Grosso
and Enrico Bini, who supported and guided me during the entirety of my PhD,
looking forward to what my career will be after these three years. I really appreciate
their efforts in stimulating my curiosity, always proposing new challenging problems
trusting my ideas and my work, and always deeply analyzing my methods to aim
for the best possible results. My time spent doing research with both of them was
excellent, because of their high scientific and human value; they succeded in sharing
with me their passion for research.

Among the people I have met in the Computer Science department, I want to thank
Roberto Aringhieri, Rossella Cancelliere and Davide Cavagnino in particular. They
got me involved in research projects in which I was able to contribute in parallel to
my PhD, in the fields of vehicle routing, machine learning and computer vision.

Along this journey, I was exposed by the Huawei Pisa Research Center to a problem
that is very central in the embedded systems design: the joint mapping of tasks to
cores and variables to memory. I learned a lot during this collaboration and would
like to thank Marco Di Natale, Stefano Puri and Silvio Bacci of the Modeling Team in
Pisa.

I would thank the reviewers Alessandro Agnetis and Jean-Charles Billaut for the
precious time they spent on my doctoral thesis and for their remarks that allowed
me to improve my work and suggested new developments.

Huge thanks to all my family as well, for all their essential support, and for their
neverending trust in my aspirations; even when I decided to abandon my old job
to go back to University and continue my studies. Last but not least, special thanks
goes to Anna, my significant other (and her parents), who supports me everyday
and in every possible way. With her, every moment is brighter.

Alessandro Druetto

Torino – September 18, 2023

v

Contents

1 Introduction 1
1.1 Research motivations . 2

1.1.1 Flow models for parallel batching 2
1.1.2 Process scheduling in embedded systems 3

1.2 Thesis outline . 4

2 Literature review 7
2.1 Flow models for parallel batching . 7

2.1.1 Polynomially solvable problems 9
2.1.2 Minimizing the maximum completion time 10
2.1.3 Minimizing the maximum lateness 11
2.1.4 Minimizing the (weighted) total completion time 12
2.1.5 Minimizing the (weighted) number of tardy jobs 13
2.1.6 Minimizing the (weighted) total tardiness 13
2.1.7 Other objective functions . 14
2.1.8 Contribution of this work . 14

2.2 Process scheduling in embedded systems 15
2.2.1 Metaheuristic techniques . 15
2.2.2 Direct Acyclic Graphs . 16
2.2.3 Specific environments . 17
2.2.4 Generalization of memory hierarchy 18
2.2.5 Related patents . 19
2.2.6 Contribution of this work . 20

vii

I Flow models for parallel batching 21

3 Problem description 23

3.1 Unweighted total completion time: exact approach and parallel ma-
chines . 24

3.2 Weighted total completion time: heuristics for the single machine case 24

3.3 Unweighted total completion time: heuristics for multi-size jobs and
incompatibility families . 25

3.4 Unweighted total completion time: analysis of two polynomial-size
models . 25

4 Unweighted total completion time: exact approach and parallel machines 27

4.1 Single-machine models . 28

4.1.1 A new problem formulation 29

4.1.2 Continuous relaxation for the new graph-based formulation:
Column Generation . 33

4.1.3 Heuristic procedure: Price-and-Branch 36

4.1.4 Exact approach: Branch-and-Price 36

4.2 Parallel-machines models . 38

4.3 Computational results . 43

4.3.1 Evaluation of the heuristic algorithms 44

4.3.2 Evaluation of the exact approach 50

4.4 Final remarks . 54

5 Weighted total completion time: single machine and heuristics 57

5.1 Column Generation models . 58

5.1.1 The graph-based model . 58

5.1.2 An arc-based flow model . 62

5.1.3 A path-based model . 67

5.2 Upper bounding: heuristics . 70

5.2.1 Variable Rounding Upper Bound 70

5.2.2 Early Rounding Upper Bound 71

5.3 Computational results . 72

5.3.1 Performance of basic models 73

5.3.2 Generating feasible solutions by rounding 74

5.4 Final remarks . 78

6 Unweighted total completion time: heuristics for multi-size jobs and
incompatibility families 81

6.1 Multiple sizes and incompatible families 82

6.2 Column Generation-based heuristics 83

6.2.1 The CG-LB Column Generation algorithm 83

6.2.2 The CG-UB and VR-UB heuristic procedures 86

viii

6.3 Computational results . 87
6.3.1 Standard instances (bi = 10) 88
6.3.2 Extra instances (bi = 50) . 93

6.4 Final remarks . 95

7 Unweighted total completion time: analysis of two polynomial-size
models 97
7.1 Models description . 97

7.1.1 Arc-flow models . 98
7.1.2 A polynomial-size flow-based model 98
7.1.3 A stronger model . 99

7.2 Variable Rounding heuristic . 100
7.2.1 Variable Rounding for the 7.1.3 model 101
7.2.2 Variable Rounding for the 7.1.2 model 101

7.3 Computational results . 102
7.3.1 Testing environment . 102
7.3.2 Results for the 7.1.2 model 103
7.3.3 Results for the 7.1.3 model 104

7.4 Final remarks . 106

ix

II Process scheduling in embedded systems 109

8 Process scheduling and memory mapping: multi-step optimization ap-
proach 111
8.1 CPUs and memories in NUMA . 113
8.2 System model . 114

8.2.1 Hardware model . 114
8.2.2 Software model . 115

8.3 Problem description . 116
8.4 Binding labels to runnables . 118

8.4.1 Polynomial-time algorithms 120
8.5 Mapping runnables to CPUs . 121

8.5.1 Hierarchical Clustering . 125
8.6 Aggregation of runnables into tasks 127
8.7 Assigning priorities to tasks . 128
8.8 Experiments . 130

8.8.1 The use case . 130
8.8.2 A Simulated Annealing approach 132
8.8.3 Setup for our approach . 133
8.8.4 Computational results . 134

8.9 Final remarks . 136

x

9 Conclusions 137
9.1 Flow models for parallel batching . 137

9.1.1 Time-indexed formulation for exponential-size models 137
9.1.2 Application of Column Generation to polynomial-size models 138
9.1.3 Flow formulations for Common Server problems 139

9.2 Process scheduling in embedded systems 139
9.2.1 Handle modifications over runnables 139
9.2.2 Application to different architectures 140

Bibliography 141

List of Publications 151

List of Acronyms (Part I) 153

List of Acronyms (Part II) 155

List of Figures 157

List of Tables 159

xi

1Introduction

„There cannot be a crisis next week.
My schedule is already full.

— Henry Alfred Kissinger
(1973 Nobel Peace Prize)

S
CHEDULING is everywhere. From business management to industrial ma-
chinery, passing through multi-processor computers, finding the optimal
sequence of actions to be undertaken in order to maximize the profit (or

minimize the cost) under resource constraints is an always appealing and often
difficult goal to achieve.

Furthermore, having a good scheduling plan makes every system more robust
towards unexpected events that could arise. If all jobs to be manufactured by
machines in some interconnected industrial process are perfectly scheduled to meet
their delivery dates with a good margin, if something goes wrong with a job or on a
particular machine one can often recover from the issue without compromising the
production chain. When all tasks to be run in a complicated software system over
multiple processors are tightly scheduled, that leaves room for eventual new and
urgent tasks that could spawn and require computational power without having to
stop some of the tasks.

During my PhD in Computer Science I decided to dedicate myself to the study of
hard scheduling problems in contexts with constrained resources. In some industrial
processes the jobs needs to be processed in batches with limited size, the processing
time required by a batch depends on the individual processing times of contained
jobs, and having each one of the batches to end their processing as soon as possible
is difficult to achieve. In embedded multi-processor systems the tasks have to be
partitioned between all processors aiming at maximizing the free computational
time still available on them. However, high-bandwidth memory cannot typically host
all variables; it is then necessary to store some of them in the global low-bandwidth
memory, with a negative impact over computational times. This fact could result in
situations of unfeasibility.

The principal trend of my research has been, in fact, the following: scheduling with
constrained resources. In particular the investigation has been focused on two lines:

• the study of a complicate family of parallel batch scheduling problems and the
development of efficient algorithms for several variants of the problem;

1

• the development and subsequent application of ad-hoc assignment and schedul-
ing algorithms for specific problems that arise in automotive embedded sys-
tems.

Apart from this principal trend, other problems have been addressed during my PhD,
but are out of the scope of this thesis and will not be discussed here.

1.1 Research motivations
Next two sections report a brief introduction over the two lines of investigations I
decided to pursue during my PhD:

• Section 1.1.1 is about the analysis done over a family of parallel batch schedul-
ing problems;

• Section 1.1.2 relates to specific problems that arise in automotive embedded
systems.

1.1.1 Flow models for parallel batching

In manufacturing system management, capacity is a key factor to have supply
matching demand, that is, to have a system able to produce what is needed to satisfy
customer demand.

Several are the factors negatively impacting the system capacity. The most studied
ones are those related to system balancing and to part batching when setup times
are present, as severe bottlenecks and/or small batches can substantially reduce the
system capacity, thus leading to the incapacity of the manufacturing system to timely
respond to the market demand (Cachon and Terwiesch [14]).

Batches induced by setup times are called serial batches and, although they are
very important in manufacturing systems, they are not the only type of batches that
can be present in the shop floor. Transfer batches and parallel batches can also
be found in manufacturing systems, the first being related to the capacity of the
material handling resources and the second, as the serial ones, to the capacity of the
machines.

Although both serial and parallel batches are related to and affect machine capacity,
their nature is very different. Serial batches are due to the presence of setup
times, while parallel batches stem from the ability of machines to accommodate
and manufacture several jobs at the same time. They are less studied than serial
and transfer batches, because they are less frequent; however, they are not less
important.

2 Chapter 1 Introduction

Specifically, parallel batches can be found in many manufacturing processes where
heating operations are necessary, such as in mould manufacturing (Liu et al. [44])
and semiconductor industry (Mönch et al. [51]), or when there are sterilization
phases (Ozturk et al. [57]), just to cite a few examples.

In all these cases, operations take a quite long time and the machines usually are
batch machines that can accommodate several parts and process them simultaneously,
exactly to virtually share the long processing time among all the parts processed at
the same time. Each part has an individual size and batch machines (that is, batch
oven for heating treatments or autoclaves for sterilization operations) have a limited
capacity; therefore, the number of parts that can be in a single batch is limited.

Due to the limited capacity of the batch machine, and then to the limited number of
parts that can be accommodated in it, when several jobs have to be processed on the
batch machine, they have to be partitioned in several batches. When batches have
been created, their processing has to be scheduled on the machine, and this decision
is obviously intertwined with batch creation. Moreover, the two decisions (how to
create batches and how to sequence them on the batch machines) strictly depend
on the objective the shop floor manager aims at (that is, minimizing the number of
tardy jobs, minimizing the maximum delay, reducing the total flow time, maximizing
the machine utilization, etc).

1.1.2 Process scheduling in embedded systems

In many embedded systems, including most of automotive real-time controls, the
fundamental problems for designers are:

• the definition of the task model from the set of functions that need to be
executed;

• the allocation of those tasks to all Central Processing Units (CPUs);

• the mapping of data onto memory, including all variables shared among
functions.

In automotive systems, the application definition is in most cases formalized by the
AUTomotive Open System ARchitecture (AUTOSAR) standard (Fürst et al. [93]), in
which a system is defined as a collection of components with a well defined data
and operation interface. The internal behavior of each component consists of a set
of runnables (functions) activated in response to events. The situation is the same
in control applications developed according to other paradigms, such as the code
generated by Simulink.

For example, when generating code for Simulink subsystems, the code generator
creates from two to four functions for each subsystem, one of which needs to be

1.1 Research motivations 3

called at system initialization, one (optional) at termination, and one or two usually
periodically with the same rate of the subsystem. These functions are in every means
equivalent to the AUTOSAR runnables, and their task implementation and mapping
on CPUs is formulated in the same way.

In both use cases, and also when the application is coded manually, the problem
input consists of a set of runnables to be executed according to some specified event
(periodic, upon the completion of another one, upon receiving some input or call
request). A set of tasks needs to be defined to execute these runnables. These
tasks need to have an activation pattern that is consistent with the ones of the
functions executed by them, need to be allocated to a CPU, and the data (including
the program and communication variables) needs to be allocated in memory.

Solving this problem is not easy and is key to achieve good performance of the
application. It is the concern of most designers how Non-Uniform Memory Access
(NUMA) architectures (Lameter [102]) can result in a large variation in the execution
times if the memory allocation is not carefully managed. Similarly, with the advent of
platforms with more CPUs, the problem becomes highly combinatorial and unlikely
to be solved in an effective way by a human designer without automation support.

The problem has been investigated along several lines by the research commu-
nity. However, the delivered performance and insights of current methodologies
accounting for the memory allocation are not fully satisfactory.

1.2 Thesis outline
This thesis is divided in two parts, that corresponds to the two principal lines of
investigation I followed during my PhD. Those two topics were already very briefly
described in Section 1.1.1 and Section 1.1.2.

First, in Chapter 2 is found a broad and (to the author’s knowledge) as complete
as possible literature review over relevant works, for both parts (Section 2.1 and
Section 2.2) in which the thesis is divided.

Part I contains the analysis over a family of parallel batch scheduling problems
(Chapter 3) with complicating constraints, that resulted in the development of
new state-of-the-art bounds, efficient heuristics and exact methods. Chapter 4
defines the innovative approach for this problem family while providing both very
strict bounds and an exact approach. Chapter 5 studies the weighted variant of
the problem and introduces new heuristics that are both fast and of high quality.
Chapter 6 considers variants with more strict constrains (that is, multiple sizes and
incompatibilities) combining bounds and heuristics described in the previous chapter
with good results. Chapter 7 defines another approach for this problem family, giving

4 Chapter 1 Introduction

two modeling strategies able to produce relatively small-sized models that can be
efficiently processed by a commercial solver.

Part II contains a specific case study over a memory mapping, task scheduling,
and priority assignment problem that arises in embedded systems for automotive
applications, that resulted in the development of an efficient and adaptable ad-hoc
approach. Chapter 8 describes in detail this multi-step optimization approach in
application to the considered use case with excellent results, that resulted in a patent
application.

Finally, in Chapter 9 is found a brief conclusion with the description of future works
and research directions that are currently being undertaken, both relevant to parallel
batching (Section 9.1) and to process sheduling (Section 9.2).

1.2 Thesis outline 5

2Literature review

T
HIS chapter illustrates a broad review upon related works about the topics
discussed in my PhD thesis, subdivided in two sections as the entire thesis is
also split in two parts. Section 2.1 contains the literature review pertinent

to Part I, while in Section 2.2 it is present the literature review relevant for Part II.

2.1 Flow models for parallel batching
The batch scheduling problem, addressed in the first part of the thesis, has been
studied for a few years by many researchers (Ikura and Gimple [33]) because of its
many fields of application.

We consider batching problems where a set N = {1, 2, . . . , n} of n jobs have to be
scheduled in several batches. Each batch has a capacity which limits the maximum
number of jobs that can be contained. We define a capacity b, typically < n, which
can be measured as the maximum number of jobs that can be batched together or to
the size of the batch. The second case is a generalization and reduces to the first
when all jobs have equal size.

A solution to the problem is made by a batch schedule, that is a sequence of batches
S = (B1, . . . , Bk). This schedule must be feasible with respect to the maximum batch
capacity allowed for the specific instance.

In a parallel batch scheduling problem, all jobs in a batch are processed simultane-
ously and the processing time pB of a batch equals the longest processing time of all
contained jobs. Also, a job is completed when all other jobs in the same batch are
completed, hence the completion time Cj of each job j equals the completion time
of the batch that contains it.

At the time of writing, the broadest survey available for problems with batching,
from an algorithmic point of view, is still the one by Potts and Kovalyov [59],
although followed by Mathirajan and Sivakumar [46], Mönch et al. [50] and Fowler
and Mönch [28]. This absolutely does not mean that there is no recent literature
about batching problems; on the contrary the big picture about batching problems
seems to have become extremely varied and complex, where each work focuses on
very specific technological constraints, that often change the mathematics of the
models.

7

The literature review is structured as follows. After a brief look at polynomially
solvable problems, the subsequent sections give a panoramic view over complexity
and heuristics for a selection of relevant problem families, grouped by the different
types of considered objective function.

Graham notation

Reviewed problems are referred to following the classical three-field standard nota-
tion α|β|γ by Graham et al. [31], to distinguish between different machine scheduling
problems, in which a set of tasks has to be sequenced and assigned to one or more
machines.

The α field represents the machine environment, where a value specifies the number
of available machines and a letter indicates the processing category in which those
machines belong. The β field indicates whether the problem has some specific
characteristics or constraints. Finally, the γ field specifies the objective function to
be optimized.

In Tab. 2.1 is listed a brief, and non-exhaustive, summary of various options that can
be used in Graham’s three-field notation to characterize a specific problem.

Tab. 2.1: Graham three-field notation: explanation of various fields.

α description

1 a single machine
Pm environment with m identical parallel machines
Rm environment with m unrelated parallel machines
Om open shop with m machines
Fm flow shop with m machines
Jm job shop with m machines

β description

p−batch all jobs in a batch are processed in parallel
batch{AM} batches are processed by an Additive Manufacturing machine

b, bm the batch capacity, eventually different on each machine m
rj each job j has a release date
σj each job j has a size

pj = p all jobs have equal processing times
dj = d all jobs have equal due dates
incomp incompatibilities exist between jobs from different families
prec precedence relations exist between jobs
s each batch has a constant setup time
sf each batch with jobs from family f has a different setup time

γ description

Cmax minimize the maximum completion time among jobs∑
(wj)Cj minimize the (weighted) total completion time
Lmax minimize the maximum lateness among jobs∑
(wj)Tj minimize the (weighted) total tardiness∑
(wj)Uj minimize the (weighted) number of tardy jobs

8 Chapter 2 Literature review

Jobs can have several parameters, such as:

• weight, a penalty factor that impacts the objective function;

• release date, the point in time on which a job is available for processing;

• size, a physical dimension that have effect on several constraints;

• processing time, the time required for a job to be succesfully processed;

• due date, the point in time before which a job must have been processed;

• there can be incompatibilities between jobs, that is, jobs that cannot be pro-
cessed in the same batch;

• there can be precedence relations between jobs, that is, jobs that must end their
processing before the start of other jobs.

With regard to the objective function, several job properties can be considered as the
optimization focus, such as:

• Cj is the completion time of job j, the point in time on which a job ends its
processing;

• Lj is the lateness of job j, defined as Lj = Cj − dj , the difference between
completion time and due date;

• Tj is the tardiness of job j, defined as max{Lj , 0};

• Uj indicates if job j is tardy or not, its value is 1 if Lj > 0 and 0 otherwise.

2.1.1 Polynomially solvable problems
There are few problems that are known to be solvable by polynomial or pseudo-
polynomial algorithms.

Single machine

A first case is the restricted batch size problem 1|p−batch, b|
∑
Cj , with b, the max-

imum number of jobs per batch, fixed; Brucker et al. [11] developed a polyno-
mial Dynamic Programming (DP) algorithm to solve this problem. The variant of
1|p−batch, b|

∑
Cj where jobs have q distinct processing times was solved in the

most efficient way by Brucker et al. [11] in O(b2q22q) time.

Lee et al. [40] considered the maximum lateness and the sum of tardy jobs as
performance measures for problems taking in account jobs with agreeable release
dates and due dates. Agreeable release dates were considered such that if di ≤ dj ,
then ri ≤ rj; agreeable due dates were considered such that if pi ≤ pj , then di ≤ dj .
From the work of Lageweg et al. [38], they deduced the polynomial time complexity

2.1 Flow models for parallel batching 9

of the following problems: 1|p−batch, b, rj , pj = p|Lmax with agreeable release
dates, 1|p−batch, b|Lmax with agreeable due dates, 1|p−batch, b, rj , pj = p|

∑
Uj

with agreeable release dates and 1|p−batch, b|
∑
Uj with agreeable due dates.

Baptiste [7] extended complexity results on polynomial solvable problems for the
case 1|p−batch, b, rj , pj = p|F , where F ∈ {

∑
wjUj ,

∑
wjCj ,

∑
Tj , Lmax}.

Multiple machines

For identical parallel machines, results on the unrestricted batch size problem are
generalized by Brucker et al. [11] and show that algorithms can be adapted to
the case of m identical parallel machines returning optimal solutions in pseudo-
polynomial time.

Complexity of open shops, flow shops and job shops were considered by Potts
and Kovalyov [59] with the makespan minimization as objective function. The
unrestricted case in all scenarios is shown to be polynomially solvable. Also, the
F2|p−batch, b1 = 1|Cmax and the J2|p−batch, b1 = 1|Cmax problems are solved by
them with polynomial algorithms.

2.1.2 Minimizing the maximum completion time

Single machine

Large part of the literature on parallel batching is devoted to the minimization
of the maximum completion time, also called makespan, criterion: see Dupont
and Dhaenens-Flipo [24], Damodaran et al. [15], Rafiee Parsa et al. [60], Li [42]
and Muter [54].

Uzsoy et al. [70] first proved the NP-hardness of the single batching machine schedul-
ing problem with batch capacity constraint and jobs with different sizes. The problem
1|p−batch, b, σj |Cmax is shown to be NP-hard even in the case with equal processing
times, hence for the problem 1|p−batch, b, σj , pj = p|Cmax. They formulated some
heuristics and a lower bound to run computational experiments. Melouk et al. [48]
formulated a Mixed-Integer Program (MIP) and developed a Simulated Annealing al-
gorithm for the problem. Rafiee Parsa et al. [60] later formulated the problem using
Dantzig-Wolfe decomposition as a set partitioning problem to obtain tighter lower
bounds through Column Generation (CG) and to develop a Branch-and-Price (B&P)
algorithm. Muter [54] presented a cut and CG method, which integrates the batch
generation and machine schedule generation in a single pricing subproblem. An
original arc-flow MIP is proposed by Trindade et al. [67] for makespan minimization,
leading to excellent computational results on very large instances.

Boudhar [10] considered the problem 1|p−batch, b, incomp|Cmax with unit size jobs,
where incompatibilities between jobs exist; such relations are represented through

10 Chapter 2 Literature review

a compatibility graph, which is split to minimize the makespan graph. While the
problem for b = 2 is polynomial, the authors show the NP-hardness for greater batch
capacity. Online algorithms for the problem are considered by Bellanger et al. [8]
and Fu et al. [29].

A batch scheduling problem that specifically refers to the additive manufacturing
context is addressed by Kucukkoc [37]: the problem 1|batch{AM}|Cmax, where
jobs processing times are a function of jobs, material and process characteristics.
Constant setups are also considered and included in the processing time of each
batch. The author formulates a MIP, where the processing machine is treated as a
batch and its area defines the constraint on the number of jobs that can be processed
together.

Multiple machines

Lee et al. [40] define the P |p−batch, b|Cmax problem to be NP-hard by extending the
complexity result of the P ||Cmax problem obtained by Lageweg et al. [38]. They
then derive the worst-case performance of some ordering scheduling algorithms for
the batching problem.

Results and algorithms developed for the single machine environment are ex-
tended to the parallel machines problem P |p−batch, σj |Cmax by Melouk et al. [48]
and Muter [54]. Referring to the additive manufacturing context and related both
to identical and non-identical parallel machines, are the P |batch{AM}|Cmax and
R|batch{AM}|Cmax problems, extended by Kucukkoc [37]. Trindade et al. [68] im-
proved existing formulations of the problem and incorporated release times. Ozturk
et al. [56] addressed a variation of this problem where all jobs exhibit unit sizes,
developing a Branch-and-Bound (B&B) algorithm.

Unrelated parallel machines are tackled by Arroyo and Leung [4] that also consider
different release dates; the problem is solved by means of some heuristics.

2.1.3 Minimizing the maximum lateness

Single machine

The single machine batching problem 1|p−batch, b|Lmax that minimizes the maxi-
mum lateness was proved to be NP-hard by Brucker et al. [11]. As already mentioned,
few exceptions of polynomially solvable are presented in Li and Lee [41], consid-
ering the special case of 1|p−batch, b|Lmax with agreeable due dates, di ≤ dj if
pi ≤ pj , and developing a polynomial algorithm. They also consider the case
1|p−batch, b, pj = p, rj |Lmax with agreeable release times, ri ≤ rj if di ≤ dj , also
showing its polynomial complexity.

2.1 Flow models for parallel batching 11

Malapert et al. [45] addressed the problem 1|p−batch, b, σj |Lmax with non-identical
job sizes by means of a constraint programming approach. Zhou et al. [72] in-
corporated release dates and developed for the 1|p−batch, b, rj , σj |Lmax problem a
modified particle swarm optimization. The algorithm is also shown to be competitive
with others from the literature for the case without release dates.

Cabo et al. [13] develop in their work a split-merge neighborhood of exponential size
that can be searched in polynomial time by DP for the 1|p−batch, b|Lmax problem.
In Cabo et al. [12], in order to consider a bi-objective minimization of both the
maximum lateness and the number of batches, authors introduce a MIP formulation
that takes in account both objectives and apply the epsilon-constraint method and a
biased random key genetic algorithm to solve the problem. Emde et al. [25] tackled
in their work the more general case 1|p−batch, b, prec, incomp|Lmax, that considers
incompatibilities and precedence relations between jobs. A MIP is formulated and
a logic-based Benders decomposition (Benders [9]) developed, which is shown to
optimally solve even most of 100 jobs instances and to outperform existing exact
methods for the specific case without incompatibilities and precedence relations.

2.1.4 Minimizing the (weighted) total completion time

Single machine

The total completion time problems, also called total flow time, have been less
studied than the makespan ones: see Jolai Ghazvini and Dupont [35] and Rafiee
Parsa et al. [61]. The work in Jolai Ghazvini and Dupont [35] and a modified version
of the genetic algorithm presented by Damodaran et al. [15] have been used as
benchmark procedures to the hybrid max-min ant system presented by Rafiee Parsa
et al. [61].

Uzsoy [69] proved the NP-hardness for the 1|p−batch, b, σj |
∑
Cj problem, where

jobs have different sizes; this result holds even if all jobs have equal processing
times.1 In this work are provided some heuristics and a branch and bound procedure
to solve the problem. For the case of jobs having unitary size, DP algorithms were
developed for the problem 1|p−batch, b|

∑
Cj in the case of arbitrary or q distinct

processing times. The most efficient implementations are presented by Brucker et al.
[11] and work respectively in O(nb(b−1)) and O(b2q22q) time.

Azizoglu and Webster [5] generalized the model of Uzsoy [69] to the case with both
arbitrary job sizes and weights, 1|p−batch, b, σj |

∑
wjCj . They extended the branch

and bound procedure to this case and exploited some dominance property.

1Note that, despite Uzsoy [69] being from 1994, Brucker et al. [11] in 1998 cast the problem as still
open; also the review by Potts and Kovalyov [59], published in 2000, does not cite this paper at
all. Only the review by Fowler and Mönch [28], published in 2022, correctly cites this paper. The
discrepancy may be due to the fact that Uzsoy [69] was published online only in 2007. See the
paper and its details here: https://doi.org/10.1080/00207549408957026

12 Chapter 2 Literature review

https://doi.org/10.1080/00207549408957026

In Azizoglu and Webster [6] the same authors adapted the procedure also to the prob-
lem with incompatible job families, 1|p−batch, b, σj , incomp|

∑
wjCj , where jobs in

the same family have equal processing times. Heuristics are provided by Dobson and
Nambimadom [19] for the aforementioned problem.

Multiple machines

For the multiple machines case, there is a CG method based approach, studied
in Ozturk [55], that considers identical parallel machines. The problem is here
decomposed in two stages: firstly CG is used to generate batches and these are then
scheduled on machines in a second stage, using a MIP solver.

2.1.5 Minimizing the (weighted) number of tardy jobs

Single machine

Brucker et al. [11] first proved that the batching problem with restricted batch size
that minimizes the sum of tardy jobs 1|p−batch, b|

∑
Uj is NP-hard, excluding as we

mentioned before few exceptions that were proven to be solvable in polynomial
time.

Jolai [34] studied the problem 1|p−batch, b, incomp|
∑
Uj , where jobs are parti-

tioned into m incompatible families and cannot be processed in the same batch
when belonging to the same family. The problem is also shown to be NP-hard and it
is solved through DP, which is polynomial for fixed m and b. The case where all jobs
from the same family share a common due date is also considered and solved by a
pseudo-polynomial time procedure.

Dauzère-Pérès and Mönch [16] presented two MIP position-based formulations for
the weighted case with incompatible job families, 1|p−batch, b, incomp|

∑
wjUj . The

two models are compared and a random key genetic algorithm is developed to solve
the problem.

2.1.6 Minimizing the (weighted) total tardiness

Single machine

The 1|p−batch, b|
∑
Tj is another NP-hard problem. In Lawler [39] was shown that

even the single machine weighted total tardiness without batching 1||
∑
wjTj is

NP-hard; later, the unweighted version of the problem 1||
∑
Tj was proven to be

NP-hard as well by Du and Leung [23].

For the 1|p−batch, b, incomp|
∑
wjTj problem, considering incompatible job families,

heuristics were developed by Perez et al. [58].

2.1 Flow models for parallel batching 13

Multiple machines

There are some studies on multiple machine environments. Mönch et al. [49]
addressed the minimization of the total weighted tardiness for parallel machines,
when incompatible job families exist. The P |p−batch, b, incomp|

∑
wjTj problem is

solved by means of a genetic algorithm that assigns batches to machines and each of
them is then scheduled as a single machine.

Mathirajan et al. [47] studied a specific case, P |p−batch, b, σj , incomp|
∑
wjTj , com-

ing from the steel casting industries with dynamic jobs arrival, weighted jobs,
non-identical jobs sizes, incompatible families and different jobs priorities. Greedy
heuristics are proposed to solve the problem.

Tan et al. [66] studied a two stages flow shop, where the batch capacity depends
on the stage. Jobs have different weights, different release times and there ex-
ists incompatibilities between job families; the problem can be categorized as
F2|p−batch, bm, rj , incomp|

∑
wjTj . A MIP formulation is presented and a hybrid

stage-based decomposition approach is developed and compared with simpler heuris-
tics.

2.1.7 Other objective functions
Fan et al. [26] addressed a batch scheduling problem where two agents have to
schedule their jobs on a common batching machine. They consider two cases: the
first where jobs are compatible, meaning that jobs of both agents can be processed
together; the second where this is not possible, meaning that there is incompatibility
between jobs of different agents. The objective is to have a schedule that is globally
optimal. Both Cmax and

∑
Cj objectives are considered and complexity results are

given.

Shahidi-Zadeh et al. [63] considered the scheduling of unrelated parallel machines
with a bi-objective performance criterion that minimizes Cmax and penalties for both
earliness and tardiness, plus the purchasing cost.

In Shahvari and Logendran [64] a bi-objective batch processing problem with dual
resources on unrelated parallel machines is addressed. A mathematical programming
model and particle swarm optimization algorithms are proposed for minimizing the
production cost including total cost of tardy and early jobs (E-T) along with total
batch processing cost, as well as the makespan (Cmax) with dual resources.

2.1.8 Contribution of this work
In Alfieri et al. [2] we formulated a new MIP for the 1|p−batch, b, σj |

∑
Cj problem

based on a graph model, where the nodes of the graph represent jobs positions and
arcs represent batches. The proposed model considered both arbitrary job processing

14 Chapter 2 Literature review

times and sizes, is solved by means of a CG technique and allows to compute effective
lower bounds and heuristics.

After that, we developed further on this approach, leading us to a complete B&P
exact procedure (Alfieri et al. [3]), to address the Pm|p−batch, b, σj |

∑
Cj problem

considering multiple parallel machines (Alfieri et al. [3]), to address the weighted
version 1|p−batch, b, σj |

∑
wjCj of the problem (Druetto and Grosso [20]) with

arbitrary job weights, and to consider combinations of constraints like incompatibility
families and presence of multi-size jobs, 1|p−batch, b, σij , incomp|

∑
Cj (Druetto

et al. [22]).

In our current last work on this topic (Druetto and Grosso [21]) we formulated two
innovative MIP for the 1|p−batch, b, σj |

∑
Cj problem that are polynomial in the

number of variables, and that can be directly solved without having to implement
the aforementioned CG. In addition to that, the more efficient of the two models
was further improved with the rounding heuristic developed for Druetto and Grosso
[20]. Although this approach is not as efficient as the approach previosly developed
for Alfieri et al. [3], it proves that such a difficult problem can be solved even
without relying on complicated techniques. To the writer’s knowledge, this is the
first MIP formulation for the 1|p−batch, b, σj |

∑
Cj problem that can be handled by

a commercial solver in a reasonable amount of time.

2.2 Process scheduling in embedded systems
The problem addressed in the second part of the thesis, and its numerous variants, are
at the merger of several technologies and domains of interest. Also, the techniques
exploited to address the different challenges imposed by these problems are very
different; in the following a complete (to the writer’s knowledge) summary of related
works is given.

This literature review is organized by grouping together works that employ similar op-
timization techniques and/or deal with similar problem variants; a last section high-
lights our contribution especially in comparison with those existing approaches.

2.2.1 Metaheuristic techniques
A large number of previous works makes use of stochastic optimization techniques.

In McLean et al. [111] a Simulated Annealing (SA) algorithm is employed to assign
tasks to CPUs and to generate a static schedule of tasks per CPU that is compatible
with the communication pattern. An algorithm based on SA was also proposed
by Fauberteau and Midonnet [90] to partition non-independent tasks over a multi-
core platform and assign them a priority value. Similar to our case, the objective
of the mapping is to maximize the robustness of the application against execution

2.2 Process scheduling in embedded systems 15

overruns, computed as the time units the execution time of each task can be inflated
while still retaining the schedulability of the whole taskset. However, the approach
does not address the problem of mapping runnables to tasks and labels to memory.

Genetic Algorithms (GAs) were also used to map tasks over heterogeneous proces-
sors (Alexandrescu et al. [74]), though ignoring the placement of shared labels.
The combination of eight selected heuristics combined with GAs minimizing the
makespan was proposed in Page et al. [116]. Such a goal, however, does not capture
the requirements of real-time workloads. GAs are also applied in the context of
mapping tasks over virtual machines (Chen et al. [82]).

Among the meta-heuristics, Systematic Memory-based SA was also used to partition
AUTOSAR applications (Faragardi et al. [89]). In the context of the AMALTHEA
Projects (Wolff et al. [130]), GAs were also proposed to solve the mapping problem
(Cuadra et al. [84]). Finally, Bouaziz et al. [80] proposed a Multi-Objective Evolu-
tionary Algorithm to find the Pareto front of the runnables to tasks mapping, whereas
in Ferrandi et al. [92] is proposed an ant-colony approach to the problem of mapping
both tasks and communication messages over an heterogeneous architecture.

In all of these papers, not only the optimization engine is different. Also, the impact
of label allocation on the execution time of runnables is either modeled as a generic
communication cost to be minimized (with an extremely simplified representation
of the memory accesses overheads and their dependency on the memory structure),
or ignored altogether.

Based on past experience and our own, we claim that stochastic optimization methods
are in general unfit for the whole mapping problem, since it is very difficult to select
the right set of transitions (or mutation/crossover) operators to escape from local
optima. Consequently, the quality of the found solution is extremely difficult to
evaluate. To support this claim, in our work we developed a SA solver and tried
several variants without achieving the same quality of the solution found through
the proposed Integer Program (IP) formulation developed during my PhD. In fact,
our SA alternate solver remained stuck at a local minimum despite executing for
more than 20 hours.

2.2.2 Direct Acyclic Graphs

In a significant portion of related literature, applications composed by runnable
sharing data are modeled by Direct Acyclic Graphs (DAGs) (Pathan et al. [117]).

Lumpp et al. [108] implemented a mapping and scheduling algorithm for an image
processing application and measured the achieved average performance. In Senapati
et al. [123] is proposed a Constraint Satisfaction Problem (CSP) formulation to find
the mapping and the static schedule that minimizes the makespan of a DAG. The size

16 Chapter 2 Literature review

of their use cases is, however, two orders of magnitude smaller than our automotive
one. While this is suitable whenever a runnable is triggered by the completion of
others, models based upon DAGs are not well suited for shared memory applications
which are targeted by this research.

A few interesting ideas were published in the context of distributed systems. Two new
algorithms are presented by Topcuoglu et al. [126], Heterogeneous Earliest-Finish-
Time (HEFT) and Critical-Path-on-a-Processor (CPOP), to schedule non-preemptively
DAGs over heterogeneous processors, accounting for communication costs and
minimizing the makespan. In a similar context, which is more applicable to the
cloud computing context, several heuristics based on list scheduling were proposed
(Shirvani and Talouki [124]).

The contribution that is closest to our work is probably the one by Höttger et al. [99],
in which the partitioning of automotive applications is addressed by:

1. allocating runnables into tasks based on their activation pattern;

2. creating DAGs based on the shared labels;

3. mapping DAGs finally onto the CPUs.

Performing such a grouping of runnables based on the activation pattern, however,
does not necessarily lead to a lower resource utilization. Also, mapping DAGs
injects an unnecessary level of complexity which prevents the applicability to large
applications.

2.2.3 Specific environments

Other methods presented in the past operate in the context of specific architectures
or programming paradigms.

Kobayashi et al. [100] proposed the Model-Based Parallelizer (MBP), which maps
C applications generated by Simulink’s Embedded Coder onto Kalray’s MPPA2-256,
which is composed by 16 clusters of 16 cores. Such a parallel architecture, however,
poses different challenges than the ones arising from the heterogeneous multicore
architectures normally used in the automotive context, such as Infineon’s TriCore.

In Becker et al. [77] is proposed to partition memories into banks and to schedule
accesses to the same bank at different instants. Pazzaglia et al. [119] implemented a
partitioning scheme that includes memory allocation using the Logical Execution
Time (LET) paradigm. In the LET paradigm, tasks have to meet intermediate
deadline at which the communication between tasks happens. The same paradigm
was previously proposed by Henzinger et al. [98].

2.2 Process scheduling in embedded systems 17

Methods that use Constraint Programming have been proposed, without exploring
the complex dimension of the mapping of the variables to memory. Perret et al.
[120] proposed a Constraint Programming approach to map a large application
over a massively parallel architecture. An IP formulation of the runnable-to-task-
to-core mapping was proposed by Saidi et al. [122]. However, the addressed use
case was two orders of magnitude smaller than our target automotive application.
Optimal partitioning and priority assignment using mathematical optimization is
also proposed by Zhao and Zeng [132] and by Casini et al. [81].

Methods to adapt the application partitioning to dynamic workload do exist (Paul
et al. [118]). Fernandez et al. [91] identified the “cyclic dependency” between the
execution cycles of tasks and their partitioning (later represented in Fig. 8.3) as one
of the main challenges. They proposed to break this dependency by establishing
ties between tasks of varying strength. However, none of these works explored the
mapping of labels with awareness of NUMA.

Voronov et al. [127] considered the analysis of applications over heterogeneous
platforms including hardware accelerators; however, the mapping was not addressed.
In Wang et al. [128] is addressed the full “V-cycle” of the development of automotive
applications. Still, the partitioning of runnables and labels is performed through
metaheuristics.

Partitioning automotive applications onto multicore platforms implicitly assumes
that the size of the largest runnable is small enough to fit any core. However, as
cores are growing in number but getting smaller and smaller, while runnables are
growing in complexity, we can imagine a scenario in which single runnables may
need to be split. In Lowinski et al. [107] this problem is addressed.

The problem of priority assignment was also addressed in the literature. Mancuso
et al. [109] developed an efficient B&B algorithm for assigning priority to tasks.
However, their proposed model was customized for control applications without
shared data.

2.2.4 Generalization of memory hierarchy

An efficient memory hierarchy and interconnection is crucial in multicore architec-
tures. The necessity of this efficiency has lead to the growth of non-standardized
architectures in which every vendor proposes a custom solution. The formulation
of the optimal placement of embedded applications in presence of non-standard
hardware platforms is not ideal as it would require to re-do part of the modeling
every time the architecture changes.

18 Chapter 2 Literature review

In the attempt to generalize typical memory hierarchies, Hamann et al. [95] proposed
a memory model split into Local RAM (LRAM) and Global RAM (GRAM) with access
times as follows:

• one cycle from a core to its own LRAM;

• nine cycles from a core to other cores’ LRAM;

• nine cycles from any core to GRAM.

At hardware level, due to the complexity of COTS (Commercial, Off-The-Shelf)
Dynamic Random Access Memory (DRAM) controllers, a significant effort was made
to make predictable DRAM controllers.

• Reineke et al. [121] proposed to partition memory banks among the requesting
tasks to avoid “by construction” conflicts and then unpredictable interference.

• Time-Division Multiplexing is also a technique used to guarantee predictability
of memory accesses. To mitigate the poor worst-case performance of TDM,
Hebbache et al. [97] proposed a dynamic arbitration scheme that improves
memory utilization, still keeping the worst-case guarantees of TDM.

The proliferation of various memory controllers challenged a comparison among
the different approaches. For this reason, MCsim was proposed (Mirosanlou et al.
[112]), an extensible cycle-accurate DRAM memory controller simulator. MCsim is
able to run as a trace-based simulator as well as provide an interface to connect with
external CPU and memory device simulators.

2.2.5 Related patents

Commercially, there are patents that cover some of the steps that are needed for
optimization, but in very general terms and not with a realistic modeling of the
memory costs. The patents apply to a specific method for allocating tasks to cores,
which does not control over the use of the memory resources (and therefore the
actual runnable execution time); see, for example, Noriaki et al. [115] and Guan
and Tong [94].

Other methods consider the optimization of the memory allocation of data and code
(Maspoli et al. [110], Liping [104]) by assuming a given assignment of runnables
to tasks and tasks to CPUs. Instead, the originality of our contribution is in the
capacity to address all dimensions of the mapping (both runnables and labels) and
to achieve superior results with a run-time orders of magnitude smaller than existing
meta-heuristic-based approaches.

2.2 Process scheduling in embedded systems 19

2.2.6 Contribution of this work
Summarizing, the large majority of related works have ignored the impact of the
placement of shared variables over the NUMA architectures. The few works which
have considered this additional dimension, have proposed a GA formulation. GAs,
however, ignore the peculiarities of the mapping of embedded applications and
then hinder a full understanding of the role played by the many available tuning
parameters of the model.

Hence, to the writer’s knowledge, our IP approach is the first one proposing a
tractable problem formulation that wholly addresses the mapping of the runnables
over the available cores, the mapping of the labels over the NUMA architecture, the
aggregation of runnables into tasks, and the assignment of priority to tasks. Com-
pared to GA formulations, our approach has the advantage of being computationally
more efficient and more transparent to the designer, and it enables interactive design
space exploration through the linear constraints and cost which can be tuned at
design time.

This work, published as Druetto et al. [87], has been presented to the 31st Interna-
tional Conference on Real-Time Networks and Systems (RTNS), held in June 2023.
Also, a patent (International Patent Application PCT/EP2022/063829) is pending
over the developed technique, named SOFTWARE OPTIMIZATION METHOD AND
DEVICE FOR NUMA ARCHITECTURE.

20 Chapter 2 Literature review

Part I

Flow models for parallel batching

3Problem description

T
HE first part of my PhD was dedicated to the study of a difficult family of
parallel batch scheduling problems and to the development of efficient
algorithms that are able to deliver the new state-of-the-art bounds, very

tight heuristics and even an exact approach for the simpler version of the problem.

Here follows a recap on the notation that will be used throughout this entire part.

Tab. 3.1: Notation summary for Parallel Batching.

term description

n number of jobs
m number of machines
nf number of families
b (bi) batch capacity (i-th capacity)
N = {1, 2, . . . , n} set of n jobs to be scheduled
pj processing time of job j
sj (sij) size of job j (i-th size of job j)
wj weight of job j

S = (B1, B2, . . . , Bt) batch sequence of t batches
pB = max{pj : j ∈ B} processing time of batch B
CBk =

∑k
l=1 pBl completion time of k-th batch

Cj = CB, ∀j ∈ B completion time of job j

The considered objective funcion is the total completion time, also called total flow
time, described in Section 2.1.4. This calls to minimize

∑
Cj , the sum of completion

times for all jobs j, considering that a job is completed when the containing batch
completes, the processing time for each batch equals to the maximum processing
time among all contained jobs, and completion time for a batch must consider all
preceding batches in the sequence.

No assumptions are made on the value of size, weight and processing time pa-
rameters for each job. Nevertheless, following what has already been done in the
literature, these values are sampled from various distributions and potentially differ-
ent across all jobs. The only fixed values between different problem categories are
the maximum batch capacity and the number of machines (where applicable); both
values are, like the others before, taken from the literature. Details on the specific
values of these parameter will be given during the tractation of relative chapters.

23

3.1 Unweighted total completion time: exact
approach and parallel machines

Chapter 4 deals with the 1|p−batch, b, σj |
∑
Cj scheduling problem, where jobs are

scheduled in batches on a single machine in order to minimize the total completion
time. A size is given for each job, such that the total size of each batch cannot exceed
a fixed capacity b.

A graph-based model is proposed for computing a very effective lower bound
based on linear programming; the model, with an exponential number of vari-
ables, is solved by Column Generation (CG), and embedded into both a heuris-
tic Price-and-Branch (P&B) algorithm and an exact Branch-and-Price (B&P) algo-
rithm. The same model is able to handle efficiently parallel machine problems like
Pm|p−batch, b, σj |

∑
Cj .

Computational results show that the new lower bound strongly dominates the
bounds currently available in the literature, and the proposed heuristic algorithm is
able to achieve high quality solutions on large problems in a reasonable computation
time. For the single-machine case, the exact B&P algorithm is able to solve all the
tested instances with 30 jobs, and a good amount of 40-jobs examples.

3.2 Weighted total completion time: heuristics for
the single machine case

Chapter 5, extending the work described in Chapter 4, deals with the single-machine,
parallel batching, total weighted completion time scheduling problem; that is,
problem 1|p−batch, b, σj |

∑
wjCj .

A new graph-based formulation of the problem is proposed, where such graph has an
exponential number of nodes and arcs. The problem is modeled as a Mixed-Integer
Program (MIP) on this graph, combining features of a minimum cost flow problem
and features of a set-partition problem as well. The continuous relaxation of this
integer problem is solved via CG, providing a very tight lower bound. Two different
flavors of CG are tested, leading to two models with identical performances in terms
of bound tightness but in practice very different in terms of running time.

A simple and effective rounding strategy applied to the faster model allows to
generate heuristic solutions with values within a few percentage points from the
optimum. Two different variants of the heuristic rounding procedure are tested; one
allows to certify the optimality gap, while the other trades the ability to certify the
gap with a greater computational speed.

24 Chapter 3 Problem description

3.3 Unweighted total completion time: heuristics for
multi-size jobs and incompatibility families

Chapter 6, extending in another direction the work described in Chapter 4, deals with
the single-machine, parallel batching, total completion time scheduling problem,
in the presence of multi-size jobs and incompatibility families; that is, problem
1|p−batch, bi, σij , incomp|

∑
Cj .

Parallel batch scheduling has many applications in the industrial sector, like in
material and chemical treatments, mold manufacturing and so on. The number of
jobs that can be processed on a machine mostly depends on the shape and size of
the jobs and of the machine.

This work investigates the problem of batching jobs with multiple sizes and multiple
incompatible families. A flow formulation of the problem is exploited to solve it
through two CG heuristics. First, the CG finds the optimal solution of the continuous
relaxation, then two heuristics are proposed to move from the continuous to the
integer solution of the problem: one is based on the P&B heuristic, the other on a
variable rounding procedure.

Experiments with several combinations of parameters are provided to show the
impact of the number of sizes and families on computation times and quality of
solutions.

3.4 Unweighted total completion time: analysis of
two polynomial-size models

Chapter 7 presents a different modeling approach to the 1|p−batch, b, σj |
∑
Cj prob-

lem already tackled in Chapter 4, with the development and analysis of two MIP
formulations.

In this work, we present two new integer linear formulations for the problem of
minimizing the total completion time on a single parallel-batching machine. One
of the two new formulations is strong (in the sense that it delivers a sharp lower
bound) and compact (that is, polynomial in size), contrasted to recent successful
models (see Chapter 4 and Chapter 5) for the same problem that have exponential
size and require to be handled by CG techniques.

The new model is promising: combined with a rounding procedure, it allows to
deliver good solutions with small, certified optimality gaps for instances with up to
50 jobs, and we believe it is susceptible of further improvements.

3.3 Unweighted total completion time: heuristics for multi-size jobs and incompatibility
families 25

4Unweighted total completion time:
exact approach and parallel
machines

I
N this chapter, the parallel batching problem with single and multiple par-
allel machines is considered. Specifically, given a set of jobs all available
at the same time, how to partition them in batches and how to sequence

batches on machines is addressed with the objective of minimizing the total comple-
tion time.

With respect to the current literature, the problem addressed in the paper is the same
problem as Rafiee Parsa et al. [61] with the main difference that it is extended to
the parallel machines case. Following the three field notation by Graham et al. [31]
described in Tab. 2.1, the problems studied in this chapter are 1|p−batch, b, σj |

∑
Cj

and Pm|p−batch, b, σj |
∑
Cj .

The contribution of this chapter is threefold.

• A new graph-based model for 1|p−batch, b, σj |
∑
Cj problem is developed;

such model induces a very large Linear Program (LP) with an exponential num-
ber of variables, which can be handled by Column Generation (CG) techniques.
The pricing step is efficiently solved by Dynamic Programming (DP). The new
model provides the strongest linear relaxation currently available in literature
for the studied problem.

• A heuristic procedure of the so-called Price-and-Branch (P&B) type, following
the terminology of Desrosiers and Lübbecke [18], relying on the graph model
is developed. Such procedure allows to generate high quality solutions (with
certified optimality gaps) for fairly large instances in short computation times.
The CG procedure is also embedded in an exact Branch-and-Price (B&P)
procedure that is able to deliver optimal solutions for considered instances
with up to 40 jobs. Previous state-of-the-art results in Azizoglu and Webster
[5] were limited to 25 jobs.

• The graph-based model and the related CG procedure and heuristic are ex-
tended also to the Pm|p−batch, b, σj |

∑
Cj problem, in an environment with

multiple parallel machines. Computational experience shows that heuristic
solutions for up to 5 machines and 100 jobs can be easily obtained by the

27

proposed approach with no significant loss of solution quality with respect to
the single machine case.

4.1 Single-machine models
This section deals with the single-machine problem. Recalling the notation intro-
duced in Chapter 3, we define N = {1, 2, . . . , n} as the set of jobs to be scheduled;
for each job j ∈ N , its processing time pj and its size sj , both integers, are given.
The machine has a given integer capacity denoted by b. When a subset of jobs is
packed in a batch B, pB = max{pj : j ∈ B} is used to indicate the batch processing
time. Every batch B is required to have

∑
j∈B sj ≤ b. The machine processes

the jobs in a batch sequence S = (B1, B2, . . . , Bt), where each job j in the k-th
batch Bk shares the batch completion time: Cj = CBk =

∑k
l=1 pBl , ∀j ∈ Bk. The

1|p−batch, b, σj |
∑
Cj problem calls for creating the batches and sequencing them in

order to minimize f(S) =
∑
j∈N Cj .

A Mixed-Integer Program (MIP) model for this problem, as given by Rafiee Parsa
et al. [61], is the following, where variable xjk = 1 iff job j is scheduled in the k-th
batch; the model always arranges the jobs in n batches (B1, B2, . . . , Bn) some of
which can be empty. Other variables of the model are: the completion time CBk of
the k-th batch (note that the model allows for empty batches); the variable pBk that
represents the processing time of the k-th batch; the variable Cj corresponding to
the completion time of job j.

minimize
n∑
j=1

Cj (4.1)

subject to
n∑
k=1

xjk = 1 j = 1, . . . , n (4.2)

n∑
j=1

sjxjk ≤ b k = 1, . . . , n (4.3)

pBk ≥ pjxjk j = 1, . . . , n, k = 1, . . . , n (4.4)

CB1 ≥ pB1 (4.5)

CBk ≥ CBk−1 + pBk k = 2, . . . , n (4.6)

Cj ≥ CBk −M (1− xjk) j = 1, . . . , n, k = 1, . . . , n (4.7)

pBk , CBk , Cj ≥ 0 j = 1, . . . , n, k = 1, . . . , n (4.8)

xjk ∈ {0, 1} j = 1, . . . , n, k = 1, . . . , n (4.9)

The total completion time is expressed by (4.1). Constraint set (4.2) ensures that
each job is assigned exactly to one batch and, since all the jobs assigned to a batch

28 Chapter 4 Unweighted total completion time: exact approach and parallel machines

cannot exceed the batch capacity, constraint set (4.3) has to be defined. Constraint
set (4.4) represents the fact that the processing time of a batch is the maximum
processing time of all the contained jobs. The completion time for the first batch
is simply its processing time since it is the first to be processed by the machine, as
stated in constraint (4.5). Constraint set (4.6), instead, ensures that the completion
time for all the other batches is evaluated as the sum of its processing time and
the completion time of the previous batch. Constraint set (4.7) specifies that the
completion time of a job must be the completion time of the corresponding batch
(the constant M must be very large).

Model (4.1)–(4.9) is known to be very weak. A state-of-the-art solver like CPLEX
can waste hours over 15-jobs instances, with optimality gaps of 100% at the root
branching node.

4.1.1 A new problem formulation

In our work, we propose a new model where a batch sequence is represented as
a path on a graph. Let B = {B ⊆ N :

∑
j∈B sj ≤ b} be the set of all the possible

batches. Define a multi-graph G(V,A) with vertex and arc sets as follows:

V = {1, 2, . . . , n+ 1}, (4.10)

A = {(i, k, B) : i, k ∈ V ; i < k; B ∈ B; |B| = k − i} . (4.11)

Each arc in A is a triple (i, k, B) with head k and tail i and an associated batch
B with (k − i) jobs; it will represent the batch B scheduled in a batch sequence
such that exactly n − i + 1 jobs are scheduled from batch B up to the end of the
sequence. For each arc (i, k, B), a cost is defined as cikB = (n − i + 1)pB with
pB = max{pj : j ∈ B}, and where the (n− i+ 1) factor precisely models the above
mentioned (n− i+ 1) jobs to the end of the sequence. Note that, in G, a path

P = [(i1, k1, B1), (i2, k2, B2), . . . , (ir, kr, Br)] (i` = k`−1)

connecting nodes from i1 to kr has the following property:

r∑
`=1
|B`| =

r∑
`=1

(k` − i`) =
r∑
`=1

k` −
r∑
`=1

i`

=
r∑
`=1

k` −
r∑
`=2

k`−1 − i1 = kr − i1.
(4.12)

Property 1 highlights the relationship between feasible batches and paths of the
above defined graph.

4.1 Single-machine models 29

Property 1. Each feasible batch sequence S corresponds to a path P in G(V,A) from
1 to n + 1 such that the set of jobs N is partitioned over the arcs in P , and f(S) =∑
{cikB : (i, k, B) ∈ P}.

Proof. Refer to Fig. 4.1 to illustrate the idea. The one-to-one mapping of batch
sequences to paths is easily established. Given a batch sequence S = (B1, B2, . . . , Bt),
the path

P = [(i1, k1, B1), (i2, k2, B2), . . . , (it, kt, Bt)] (4.13)

can be built from arcs of G, choosing the arcs from the arc set of G as follows:

i1 = 1, k1 = i1 + |B1|

i` = k`−1, k` = i` + |B`| (` = 2, . . . , t).
(4.14)

Note that kt − i1 =
∑t
`=1 |B`| = n, hence kt = n+ 1, and P is a path from 1 to n+ 1

in G; the job set N is guaranteed to be partitioned over the arcs of P because it is
partitioned in the batches of S by hypothesis.

Vice versa, given a path P like (4.13) from node 1 to node n + 1 of G, such that
{B : (i, k, B) ∈ P} forms a partition of N , it can be easily seen that the arcs of P
satisfy (4.14) by connectivity of the path, and every

∑
j∈B sj ≤ b for all (i, k, B) ∈ P

by definition of the arc set A. Hence, S = (B1, B2, . . . , Bt) with the B1, . . . , Bt

defined by the arc-batches of P is a feasible batch sequence.

It remains to prove that f(S) =
∑

(i,k,B)∈P cikB. For an arc (iq, kq, Bq) in position q
on P , the number of jobs scheduled from Bq to Bt is

∑t
`=q |B`| = kt−iq = (n+1−iq).

The objective function for the batch sequence is

f(S) =
n∑
j=1

Cj =
t∑

`=1
CB` |B`| =

t∑
`=1

[(∑̀
κ=1

pBκ

)
|B`|

]

= |B1|pB1 +
|B2|pB1 + |B2|pB2 +
|B3|pB1 + |B3|pB2 + |B3|pB3 +
. .

|Bt|pB1 + |Bt|pB2 + |Bt|pB3 + . . . + |Bt|pBt .

Adding by column, it can be rewritten as:

f(S) = pB1

t∑
`=1
|B`|+ pB2

t∑
`=2
|B`|+ pB3

t∑
`=3
|B`|+ . . .+ pBt |Bt|

=
t∑

q=1
pBq(n− iq + 1) =

∑
(i,k,B)∈P

cikB.

30 Chapter 4 Unweighted total completion time: exact approach and parallel machines

V 1 2 3 4 5 6 7 8 9 10 11

B1 = {5, 6, 8}

B2 = {3, 4, 10}

B3 = {1, 2}

B4 = {7, 9}

N = {1, 2, . . . , 10}

P = [(1, 4, B1), (4, 7, B2), (7, 9, B3), (9, 11, B4)] ⇐⇒ S = (B1, B2, B3, B4)

10∑
j=1

Cj(S) =
4∑

κ=1
CBκ(S)|Bκ|

=|B1|pB1+
|B2|(pB1 + pB2)+
|B3|(pB1 + pB2 + pB3)+
|B4|(pB1 + pB2 + pB3 + pB4)

=10pB1 + 7pB2 + 4pB3 + 2pB4 =
∑

(i,k,B)∈P
(n− i+ 1)pB =

∑
(i,k,B)∈P

cikB

Fig. 4.1: Batch sequence as a path on a graph. The job set N is partitioned over the arcs
of P . Cj(S) is the completion time of job j induced by sequence S. The path
provides information about partitioning the jobs into batches B1, B2, B3, B4 and
their ordered sequence.

Fig. 4.2: Example of a full graph with b = 10 and 4 jobs. Job sizes are s1 = 3, s2 = 4, s3 =
6, s4 = 8.

4.1 Single-machine models 31

Example

Fig. 4.2 shows an example of a full graph with all the possible batches. In this small
4-jobs example, p1, . . . , p4 = 42, 37, 21, 16, s1, . . . , s4 = 3, 4, 6, 8 and b = 10; batches
can contain 1 or 2 jobs at most. Note how the graph size is already quite large, even
for this small example.

A path from node 1 to node 5 in this graph represents a feasible schedule if the
job set {1, 2, 3, 4} is partitioned over the arcs of the path. For example, the path
P = [(1, 2, {4}), (2, 4, {1, 3}), (4, 5, {2})] represents the feasible batch sequence S =
({4}, {1, 3}, {2}). In such sequence, the reader can easily compute that C4 = 16,
C1 = C3 = 58, C2 = 95, and C1 + C2 + C3 + C4 = 227; in the path P , the arc costs
are, by definition, c(1,2,{4}) = 4p4 = 64, c(2,4,{1,3}) = 3p1 = 126, c(4,5,{2}) = p2 = 37;
the total cost of P is c(1,2,{4}) + c(2,4,{1,3}) + c(4,5,{2}) = 227.

On the other hand, a path like P ′ = [(1, 2, {3}), (2, 4, {1, 3}), (4, 5, {3})] does not
represent a feasible batch sequence since it fails to partition the job set {1, 2, 3, 4}
over its arcs.

Model

By Property 1, then, an optimal solution for the 1|p−batch, b, σj |
∑
Cj problem can

be computed by identifying on the very large graph G(V,A) a minimum-cost path
from node 1 to node n+ 1 such that the job set N is exactly partitioned over the “B”
components of the arcs in that path. This problem can be modeled by a very large
LP that includes features of a shortest path / minimum cost flow model as well as
partition constraints, as follows. Let aB ∈ {0, 1}n be the incidence column-vector
of job set B, whose j−th component (aB)j = 1 iff j ∈ B, and let 1 = (1, 1, . . . , 1)ᵀ

be an all-ones column-vector with exactly n components. Define binary decision
variables xikB for each (i, k, B) ∈ A, so that xikB = 1 iff arc (i, k, B) is on the optimal
path from 1 to (n+ 1). The LP is written as follows.

minimize
∑

(i,k,B)∈A
cikBxikB (4.15)

subject to
∑

(k,B):
(i,k,B)∈A

xikB −
∑

(k,B):
(k,i,B)∈A

xkiB =

1 i = 1

0 i = 2, . . . , n

−1 i = n+ 1

(4.16)

∑
(i,k,B)∈A

aBxikB = 1 (4.17)

xikB ∈ {0, 1} (i, k, B) ∈ A (4.18)

32 Chapter 4 Unweighted total completion time: exact approach and parallel machines

The objective function (4.15) together with the flow conservation constraints (4.16)
are a classical formulation of the shortest path problem as a special case of single-
source single-sink minimum-cost flow LP; see for example Ahuja et al. [1]. The vector
expression of constraint (4.17) represents a group of n set-partitioning constraints
on the job set N = {1, 2, . . . , n}, enforcing the requirement that the job set is exactly
partitioned over the arcs selected to be in the path. In scalar form, these constraints
are:

∑
(i,k,B)∈A(aB)jxikB = 1, ∀j ∈ N .

4.1.2 Continuous relaxation for the new graph-based
formulation: Column Generation

The continuous relaxation of (4.15)–(4.18), where the integrality constraints (4.18)
are relaxed to

xikB ≥ 0 (i, k, B) ∈ A, (4.19)

is solved by means of a CG procedure. More details on CG can be found in Sec-
tion 5.1.1.

Model (4.15)–(4.19) is the master problem: a Restricted Master Problem (RMP)
is made of a subset A′ ⊂ A of arcs. Introducing dual variables u1, u2, . . . , un+1 for
constraints (4.16) and v1, . . . , vn for constraints (4.17), the dual of (4.15)–(4.19)
is

maximize u1 − un+1 +
n∑
j=1

vj (4.20)

subject to ui − uk +
∑
j∈B

vj ≤ cikB (i, k, B) ∈ A. (4.21)

Solving the RMP leads to a basic feasible solution for the master problem and
values for dual variables/simplex multipliers u and v. Pricing the arcs (i, k, B) ∈ A
corresponds to finding the most violated dual constraints (4.21). The strategy
developed in this paper is to price the arcs separately for each pair of indices i, k
with i < k, therefore determining minimum (possibly negative) reduced costs

c̄ikB∗ = min
B

{
cikB − (ui − uk)−

∑
j∈B

vj :
∑
j∈B

sj ≤ b, |B| = k − i
}

= min
B

{
pB(n− i+ 1)−

∑
j∈B

vj :
∑
j∈B

sj ≤ b, |B| = k − i
}
− (ui − uk).

(4.22)
For fixed indices i, k with i < k, the (ui − uk) part of (4.22) is constant, and the
cardinality of B is also fixed at |B| = k − i.

Finding the batch B that minimizes (4.22), for each given pair of indices i, k with
i < k and given batch processing time pB, can be done by exploiting the DP

4.1 Single-machine models 33

state space of a family of cardinality-constrained knapsack problems where items
correspond to jobs. Assume that the jobs are indexed by Longest Processing Time
(LPT) order, so that

p1 ≥ p2 ≥ . . . ≥ pn.

Define, for r = 1, . . . , n,

gr(τ, `) = max
{

n∑
j=r

vjyj :
n∑
j=r

sjyj ≤ τ,
n∑
j=r

yj = `, yj ∈ {0, 1}
}
,

where gr(τ, `) is the optimal value of a knapsack with profits vj and sizes sj , limited
to items/jobs r, r + 1, . . . , n, total size ≤ τ and cardinality exactly `. Variable yj is
set to 1, then yj = 1, iff item/job j is included in the solution.

Optimal values for gr(τ, `) can be recursively computed (see Kellerer et al. [36]) as

gr(τ, `) = max

gr+1(τ − sr, `− 1) + vr (yr = 1)

gr+1(τ, `) (yr = 0)

with boundary conditions

gr(τ, 1) =

vr if sr ≤ τ (yr = 1)

0 otherwise (yr = 0)
r = 1, . . . , n, τ = 0, . . . , b

gr(τ, 0) = 0 r = 1, . . . , n, τ = 0, . . . , b

gr(τ, `) = −∞ if ` > n− r + 1 or τ < 0.

The corresponding optimal job sets are denoted byBr(τ, `); such sets can be retrieved
by backtracking. The following property establishes that the state space gr(τ, `) is
sufficient for pricing all the relevant arcs.

Property 2. Let L = {1} ∪ {j > 1 : pj < pj−1}. For any given pair of indices i, k with
i < k, an arc with minimum reduced cost (i, k, B∗) is one of

(i, k, Br(b, k − i)) r ∈ L. (4.23)

Proof. Every arc (i, k, B) can be shown to have a reduced cost not less than some of
the arcs in (4.23). Let c̄ikB = (n−i+1)pB−

∑
j∈B vj−(ui−uk) be the reduced cost of

an arc (i, k, B). Recall that |B| = k− i, and the jobs are numbered in non-increasing
order of processing times. Choose r as the smallest job index such that pr = pB.
Note that B ⊆ {r, r + 1, . . . , n} and r ∈ L. Consider knapsack gr(b, k − i) and the
associated optimal subset Br = Br(b, k − i). The batch B is a feasible solution for

34 Chapter 4 Unweighted total completion time: exact approach and parallel machines

knapsack gr(b, k − i), hence
∑
j∈B vj ≤ gr(b, k − i); also, because of the choice of r,

pBr ≤ pr = pB. Thus,

c̄ikB = (n− i+ 1)pB −
∑
j∈B

vj − (ui − uk) ≥

≥ (n− i+ 1)pBr − gr(b, k − i)− (ui − uk) = c̄ikBr .

All the relevant arcs with minimum reduced cost can be generated by the procedure
reported in Algorithm 1 (NEWCOLS).

Algorithm 1 Pricing procedure.
1: function NEWCOLS(N , b, u, v) . u,v = vectors of multipliers
2: Sort and renumber jobs in N such that p1 ≥ p2 ≥ . . . ≥ pn;
3: Set H := ∅; . set of negative-reduced cost arcs
4: for ` = 1, . . . , n do
5: Set r := 1, done := false;
6: while not done do
7: Retrieve gr(b, `) and set B := Br(b, `);
8: for i = 1, . . . , n− `+ 1 do
9: Set k := i+ `;

10: Compute c̄ikB = pB(n− i+ 1)− (ui − uk)− gr(b, `);
11: if c̄ikB < 0 then
12: Set H := H ∪ {(i, k, B)};
13: end if
14: end for
15: Set r := min{j : pj < pr};
16: If no such index exists, set done := true;
17: end while
18: end for
19: return H;
20: end function

The size of the state space required for the pricing is bounded by O(n2b), while the
pricing procedure can have two bottlenecks.

• The O(n3) effort due to the three nested loops on line 4, line 6, and line 8.
The while loop on line 6 can be executed n times in the worst case.

• Filling the state space gr(τ, `), which requires at most O(n2b) arithmetic op-
erations. A memoized DP table is used, so that the execution of the top-down
recursion for computing an entry gr(τ, `) is deferred until the first time the
value is queried. Then, the value is kept in storage and accessed in O(1) time
if it is queried again.

Because of these two possible bottlenecks, the running time of NEWCOLS is bounded
from above by O(max(n3, n2b)).

4.1 Single-machine models 35

4.1.3 Heuristic procedure: Price-and-Branch

The CG described in the previous section is used to solve the continuous relaxation
of the master problem; once the relaxed optimum has been found, the resulting
RMP is taken, the variables are set to binary type and the resulting MIP is solved by
using CPLEX in order to get a heuristic solution for the master. This is often called
Price-and-Branch (P&B), as opposed to the exact approach of Branch-and-Price
(B&P).

In order to generate the initial column set, the jobs are sorted in Shortest Processing
Time (SPT) order and all the possible arcs with feasible batches made of consecutive
jobs are generated. This procedure is reported in Algorithm 2 (INITCOLS).

Algorithm 2 Generation of initial arcs.
1: function INITCOLS(N , b)
2: Sort and renumber jobs in N such that p1 ≤ p2 ≤ . . . ≤ pn;
3: Set H := ∅; . set of initial arcs
4: for j = 1, . . . , n do
5: Set B := {j};
6: for h = j + 1, . . . , n do
7: if

∑
j∈B sj + sh ≤ b then

8: Set B := B ∪ {h};
9: Set H := H ∪ {(i, i+ |B|, B) : i = 1, . . . , n− |B|+ 1};

10: end if
11: end for
12: end for
13: return H;
14: end function

The complete P&B heuristic procedure then is able to deliver a lower bound, called
Column Generation Lower Bound (CG-LB), and an upper bound, called Column
Generation Upper Bound (CG-UB). A sketch of this procedure can be read in Algo-
rithm 3.

4.1.4 Exact approach: Branch-and-Price

Given the strong relaxation from the CG procedure, a natural step is trying to embed
it in an exact B&P algorithm. The main issue in this step is to be able to preserve the
pricing problem structure at every node in the search tree. Trying to use the classical
branching scheme from Foster and Ryan [27], which leverages the partitioning
constraints forcing pairs of jobs to be batched always together/never together, would
require to handle disjunctive constraints in the pricing problem. This would make
the latter a strongly NP-hard disjunctive knapsack problem, ruling out the possibility
of using the DP procedure of Algorithm 1 (unless P = NP).

36 Chapter 4 Unweighted total completion time: exact approach and parallel machines

Algorithm 3 P&B procedure.
1: A′ ← INITCOLS(N, b);
2: G(V,A′)← Restricted Master Problem (RMP);
3: while true do
4: z ← continuous optimum of G(V,A′);
5: u,v ← optimal dual multipliers;
6: H ← NEWCOLS(N, b,u,v);
7: if |H| = 0 then
8: CG-LB← z — continuous optimum, lower bound
9: CG-UB← CPLEX(G(V,A′)) — integer solution, upper bound

10: break
11: end if
12: A′ ← A′ ∪H
13: end while

Still, branching can be performed on a compact formulation of the problem, building
the batch sequence by scheduling one job at a time starting from the first position on.
The basic branching mechanism adopted here is the same described in Uzsoy [69]
and Azizoglu and Webster [5]. Let S = (B1, B2, . . . , Bt) be a partial (possibly empty)
batch sequence built at the current search node, and N̂ = N \ (B1 ∪B2 ∪ · · · ∪Bt)
the set of unscheduled jobs at such node. If the node is not fathomed by bound, two
types of branch can take place.

I A new unscheduled job j ∈ N̂ is added to Bt, provided that there is still
available space, and

∑
i∈Bt si + sj ≤ b.

II Batch Bt is closed and a new one Bt+1 is started, choosing its longest job
among the j ∈ N̂ .

New jobs are added to the open batch in non-increasing order of processing time;
hence, if a job j has been added to Bt no other job j′ with pj′ > pj will enter the
same batch in successive branches. Also, the batch Bt is closed only if it is maximal:
as far jobs can be added to Bt without exceeding the capacity b, this will prevent
type II branches from the current node.

The CG based relaxation is solved at each node of the search tree; batches from
the partial batch sequence (B1, B2, . . . , Bt−1) correspond, in the relaxation, to arc-
variables fixed at 1. At non-root nodes, the “open” batch Bt at the end of the partial
sequence is handled by imposing constraints on the state space to be searched in the
pricing step. Three things can be noticed.

• Only items corresponding to jobs in j ∈ N̂ concur to form the state space.

• For pricing arcs (i, k, B) with i =
∑t−1
κ=1 |Bκ|, B ⊇ Bt (these are arcs extending

the “open” batch at the tail of the partial sequence) the items in Bt are

4.1 Single-machine models 37

preloaded in the knapsack; hence, only states gr(τ, `) with capacity τ ≤ (b−∑
i∈Bt si) and index r > max{i : i ∈ Bt} are solved.

• For all the other arcs, a pricing with full capacity b is performed.

The nodes in the search tree are expanded in depth-first order. Feasible solutions
are generated at the root node by running the P&B procedure in Algorithm 3, and
at the leaves of the search tree when the batch sequence is completed. Although
Algorithm 3 implies running a potentially heavy exact procedure over a MIP, it is
very fast for the tested problem sizes, and allows to achieve the highest-quality
feasible solutions. Running quick-and-dirty heuristics at the intermediate nodes did
not significantly improve the performances during preliminary testing.

4.2 Parallel-machines models
Model (4.15)–(4.18) is readily extended to parallel machines cases. Consider the
fairly general Rm|p−batch, b, σj |

∑
Cj problem with m parallel unrelated machines.

Let pjh be the processing time of job j on machine h. A special type of arcs with
empty batches is added to the graph developed for the single machine case, using
the arc set

A = {(i, k, B) : i, k ∈ V ; i < k;B ∈ B; |B| = (k − i)}∪

∪ {(1, k, ∅) : k = 2, . . . , n+ 1} .

Arcs (i, k, B) ∈ A are given machine-dependent costs chikB = pBh(n − i + 1), with
pBh = max{pjh : j ∈ B}. Empty arcs (1, k, ∅) are given costs ch1k∅ = 0, for all
k = 2, . . . , n+ 1 and all h = 1, . . . ,m.

Now equation (4.12) holds, in G, only for paths of non-empty arcs connecting nodes
from i1 to kr; that is, for

P = [(i1, k1, B1), (i2, k2, B2), . . . , (ir, kr, Br)] B1 6= ∅

the equation
∑r
l=1 |Bl| = kr − i1 holds. Note that at most the first arc in a path can

be empty: only if i1 = 1 and B1 = ∅.

Empty arcs are all added to the RMP from the beginning, so that they do not need to
be considered in the DP pricing procedure. A feasible solution is made of m batch
sequences

Sh = (Bh
1 , . . . , B

h
th

) h = 1, . . . ,m (4.24)

processed by the m machines. Such batch sequences correspond to m paths (one
path for each machine) from 1 to n+ 1 on the non-empty arcs of which the set of
jobs is exactly partitioned. Such paths will have an empty arc as first arc. Note that,

38 Chapter 4 Unweighted total completion time: exact approach and parallel machines

if (i, k, B) is on the h-th path, this means that n− i+ 1 jobs will be scheduled from
B to the end of the h-th batch sequence.

Property 1 can be easily extended to the multi-machine case. Fig. 4.3 reports a
sketch of the proof with m = 2, where the empty arcs act as placeholders. The
following Property 3 then formalizes the idea.

V 1 2 3 4 5 6 7 8 9 10 11

∅ B1 B2

∅
B3 B4

N = {1, 2, . . . , 10}
S1 = (B1, B2)
S2 = (B3, B4)
B1 = {5, 6, 8}
B2 = {3, 4, 10}
B3 = {1, 2}
B4 = {7, 9}

P1 =[(1, 5, ∅), (5, 8, B1), (8, 11, B2)]
P2 =[(1, 7, ∅), (7, 9, B3), (9, 11, B4)]

10∑
j=1

Cj =
2∑

h=1

∑
B∈Sh

|B|CB

=|B1|pB1,1+
|B2|(pB1,1 + pB2,1)+
|B3|pB3,2+
|B4|(pB3,2 + pB4,2)

= 6pB1,1 + 3pB2,1︸ ︷︷ ︸
c1

5,8,B1
+ c1

8,11,B2

+ 4pB3,2 + 2pB4,2︸ ︷︷ ︸
c2

7,9,B3
+ c2

9,11,B4

=
∑

(i,k,B)∈P1

c1
ikB +

∑
(i,k,B)∈P2

c2
ikB

Fig. 4.3: Batch sequences on two machines as a collection of two paths on a graph. The
job set N is partitioned into B1, B2, B3, B4. The two paths provide a partition into
batches and sequencing information.

Property 3. Each feasible set of batch sequences {Sh}mh=1 corresponds to a set of paths
{Ph}mh=1 such that the job set N is partitioned over the non-empty arcs of {Ph}mh=1, and

∑
j∈N

Cj(S1, . . . , Sm) =
m∑
h=1

∑
(i,k,B)∈Ph

chikB.

Proof. A one-to-one mapping between feasible solutions {Sh}mh=1 and collections of
paths {Ph}mh=1 is quickly established.

Suppose that a feasible collection of batch sequences S1, . . . , Sm is given. Take a
machine h and its batch sequence Sh = (B1, . . . , Bt); note that the dependence on h

4.2 Parallel-machines models 39

is dropped from the batch notation in order to keep it simple. The batch sequence
Sh can be empty (the solution leaves machine h idle) or not.

If Sh = ∅, define Ph = [(1, n+ 1, ∅)] with a single empty arc. If Sh 6= ∅, by definition
of the arc set A, the following arcs belong to the graph G:

(it, kt, Bt) kt = n+ 1, it = kt − |Bt|

(i`, k`, B`) k` = i`+1, i` = k` − |B`| ` = t− 1, . . . , 1

(i0, k0, ∅) k0 = i1, i0 = 1 i1 > 1.

If i1 = 1, arc (i0, k0, ∅) is omitted. The arcs are chosen so that k` = i`+1, kt = n+ 1
and the first arc has tail in node 1.

In both the cases addressed above, Ph identifies a path from node 1 to node n+ 1.
Repeat the construction for each machine h = 1, . . . ,m to get the collection of paths
P1, . . . , Pm; the partition of the job set over the nonempty chosen arcs is guaranteed
by the fact that the batches in {Sh}mh=1 already form a partition of N by hypothesis.

Vice versa, given a collection of paths P1, . . . , Pm, all connecting node 1 to node
n+ 1, with the job set N partitioned over the non-empty arcs of such collection, take
a machine index h, and let Ph = [(i0, k0, B0), (i1, k1, B1), . . . , (it, kt, Bt)]. The batch
sequence Sh is defined by Sh = (B1, . . . , Bt) if B0 = ∅, else Sh = (B0, . . . , Bt). Note
that, by definition of the arc set A, at most B0 can be empty. If Ph = [(1, n+ 1, ∅)],
Sh = ∅ and machine h is left idle. Repeat for each machine h = 1, . . . ,m in order to
get a batch sequence for each machine. The feasibility of S1, . . . , Sm is guaranteed
by the fact that by hypothesis the job set N is partitioned over the set of non-empty
arcs of P1, . . . , Pm.

It remains to prove that
∑n
j=1Cj(S1, . . . , Sm) =

∑m
h=1

∑
(i,k,B)∈Ph c

h
ikB. To this aim,

it is sufficient to prove that on each machine h,

∑
B∈Sh

∑
j∈B

Cj =
∑

(ikB)∈Ph

cikB,

then
∑
j∈N Cj =

∑m
h=1

∑
B∈Sh

∑
j∈B Cj and the result follows.

Consider machine h and sequence Sh with the correspongin path

Ph = [(i0, k0, B0), (i1, k1, B1), . . . , (it, kt, Bt)],

where i0 = 1 and kt = n+ 1. For the first arc (i0, k0, B0), either B0 = ∅ or B0 6= ∅.

Assume B0 = ∅. Let pB`,h be the processing time of batch B` on machine h. The
algebraic manipulations proceed similarly to the proof of Property 1.

40 Chapter 4 Unweighted total completion time: exact approach and parallel machines

Then, we have the following:

∑
B∈Sh

∑
j∈B

Cj =
t∑

q=1
|Bq|CBq

= |B1|pB1,h +
|B2|pB1,h + |B2|pB2,h +
|B3|pB1,h + |B3|pB2,h + |B3|pB3,h +
. .

|Bt|pB1,h + |Bt|pB2,h + |Bt|pB3,h + . . . + |Bt|pBt,h

= pB1,h

t∑
`=1
|B`|+ pB2,h

t∑
`=2
|B`|+ pB3,h

t∑
`=3
|B`|+ . . .+ pBt,h|Bt|

=
t∑

q=1
pBq ,h(n− iq + 1) =

t∑
q=1

chiqkqBq =
∑

(i,k,B)∈Ph

chikB,

where the last sum can be extended to all the arcs in Ph since for the first arc
(1, k0, ∅) ∈ Ph, ch1,i1,∅ = 0.

If B0 6= ∅ then, by equation (4.12),
∑n
`=0 |B`| = kt − i0 = n; hence, all the jobs

of the problem are scheduled on machine h while the other machines must be left
idle. The analysis is reduced to a single machine case and Property 1 ensures that∑
B∈Sh

∑
j∈B Cj =

∑
(i,k,B)∈Ph c

h
ikB.

Model

The model (4.15)–(4.18) can be extended to the parallel machine case using multi-
commodity flow constraints.

minimize
m∑
h=1

∑
(i,k,B)∈A

chikBx
h
ikB (4.25)

subject to
∑

(k,B):
(i,k,B)∈A

xhikB −
∑

(k,B):
(k,i,B)∈A

xhkiB =

1 i = 1

0 i = 2, . . . , n

−1 i = n+ 1

h = 1, . . . ,m

(4.26)
m∑
h=1

∑
(i,k,B)∈A

aBx
h
ikB = 1 (4.27)

xhikB ∈ {0, 1} (i, k, B) ∈ A, h = 1, . . . ,m (4.28)

Here xhikB = 1 iff batch B is on the h-th path. Flow conservation constraints (4.26)
require that one unit of each commodity is routed from node 1 to node n + 1.

4.2 Parallel-machines models 41

Constraints (4.27) enforce the exact partition of the whole job set across the arcs
belonging to the m paths.

In the CG framework, with each RMP optimum, constraint multipliers are com-
puted:

uh1 , u
h
2 , . . . , u

h
n+1 for constraints (4.26), h = 1, . . . ,m,

v1, v2, . . . , vn for constraints (4.27).

The reduced cost is then separately minimized for each combination of pair of indices
i, k with i < k and machine h, searching for arcs (i, k, B) with reduced costs

c̄hikB∗ = min
B

{
pBh(n− i+ 1)−

∑
j∈B

vj :
∑
j∈B

sj ≤ b, |B| = k − i
}
− (uhi − uhk).

This requires calling Algorithm 1 NEWCOLS m times, once per machine, since the LPT
ordering on each machine is different and, then, is the state space gr(τ, `). Hence,
the running time for pricing raises to O(mmax(n3, n2b)).

Identical parallel machines

A somewhat better situation arises in the case of identical parallel machines, with
problem Pm|p−batch, b, σj |

∑
Cj . Since each job j has the same processing time

pj on every machine, the state space gr(τ, `) used for pricing is common to all the
machines, and a slightly modified version of NEWCOLS can do the entire pricing,
still keeping the running time within O(max(n3, n2b)). The procedure is reported in
Algorithm 4.

The key observation is that the pB and
∑
j∈B vj components of the reduced costs chikB

are machine-independent, whereas only the largest difference ∆uik = maxh{(uhi −
uhk)} is strictly needed in order to compute minimum reduced costs. Such largest
differences are precomputed in time O(mn2) on line 3. For any (i, k, B), let r be the
smallest index such that pr = pB, and let Br = Br(b, k − i); then, similarly to what
proved in Property 2:

c̄hikB = (n− i+ 1)pB −
∑
j∈B

vj − (uhi − uhk) ≥

≥ (n− i+ 1)pBr − gr(b, k − i)− (uhi − uhk) ≥

≥ (n− i+ 1)pBr − gr(b, k − i)−∆uik.

Finally, note that also taking into account different capacities for each machine, or
even different job sizes on each machine, simply requires to specialize the used
knapsack family. Details are omitted for the sake of conciseness.

42 Chapter 4 Unweighted total completion time: exact approach and parallel machines

Algorithm 4 Pricing procedure for identical parallel machines.
1: function NEWCOLS(N , b, u, v) . u,v = vectors of multipliers
2: Sort and renumber jobs in N such that p1 ≥ p2 ≥ . . . ≥ pn;
3: Set ∆uik := maxh{uhi − uhk} for 1 ≤ i < k ≤ n+ 1; . O(mn2) time
4: Set H := ∅; . set of negative-reduced cost arcs
5: for ` = 1, . . . , n do
6: Set r := 1, done := false;
7: while not done do
8: Retrieve gr(b, `) and set B := Br(b, `);
9: for i = 1, . . . , n− `+ 1 do

10: Set k := i+ `;
11: Compute c̄ikB = pB(n− i+ 1)−∆uik − gr(b, `);
12: if c̄ikB < 0 then
13: Set H := H ∪ {(i, k, B)};
14: end if
15: end for
16: Set r := min{j : pj < pr};
17: If no such index exists, set done := true;
18: end while
19: end for
20: return H;
21: end function

4.3 Computational results

The proposed algorithms, discussed in the previous sections, have been tested on
randomly generated instances. For generating all job data, the same approach
as Uzsoy [69] and Rafiee Parsa et al. [61] has been used. Specifically, all the
job processing times are drawn from a uniform distribution pj ∈ [1, 100], while
job sizes sj are drawn from four possible uniform distributions, labeled by σ ∈
{σ1, σ2, σ3, σ4}:

σ1 : sj ∈ [1, 10] σ3 : sj ∈ [3, 10]

σ2 : sj ∈ [2, 8] σ4 : sj ∈ [1, 5].

Following the approach of both Uzsoy [69] and Rafiee Parsa et al. [61], the machine
capacity is fixed at b = 10.

Since the pricing procedure of the P&B heuristic has a pseudopolynomial running
time, instances with b = 30 and b = 50 have been also generated in order to
assess how the procedure behaves with a larger capacity. Single-machine instances
have been generated with n ∈ {20, 40, 60, 80, 100}, and with all the four σ size
distributions. For each n, σ and b combinations, 10 random instances have been
generated.

4.3 Computational results 43

With the same job data, the corresponding instances of the parallel machines problem
Pm|p−batch, b, σj |

∑
Cj have been solved for m = 2, 3, 5 identical machines. For

testing the heuristics in the parallel-machines case and the B&P exact approach for
the single-machine, only the b = 10 instances have been used.

All the tests ran in a Linux environment equipped with Intel Core i7-6500U CPU
@ 2.50GHz processor; C++ language has been used for coding the algorithms, and
CPLEX 12.8, called directly from C++ environment using CPLEX callable libraries, has
been used to solve relaxed and mixed-integer programs.

Results for the P&B heuristic, in the single-machine and parallel-machines cases as
well are discussed in Section 4.3.1 whereas Section 4.3.2 deals with the results of
the exact B&P procedure in the single-machine case.

4.3.1 Evaluation of the heuristic algorithms

Both the CG based lower bound CG-LB and the objective value of the heuristic
solution CG-UB have been evaluated. As far as the quality of the lower bound
is concerned, the continuous relaxation of model (4.1)–(4.9) is not a significant
competitor, zero being the typical value found by CPLEX at the root branching
node. A more meaningful comparison can be performed against the combinatorial
lower bound proposed by Uzsoy [69]. Such bound is based on a relaxation of
1|p−batch, b, σj |

∑
Cj to a preemptive problem on b parallel machines; this lower

bound is referred to as Parallel Relaxation (PR) in the following.

As far as the evaluation of CG-UB is concerned, it was difficult to compare the
obtained results with the known literature as neither the test instances nor the
computer codes used by Uzsoy [69] and Rafiee Parsa et al. [61] have been made
available. Hence, some comparison have been made with the results of Rafiee Parsa
et al. [61], using instances of the same type, but, for this reason, the comparison has
to be taken with some care. On the other hand, when CPLEX is fed with model (4.1)–
(4.9) and given some time, its internal heuristics do generate a number of heuristic
solutions, although it has no chance of certifying optimality. Hence, CPLEX has been
run on some set of instances in order to get heuristic solutions with a time limit of
300 seconds.

The times required to compute CG-LB and CG-UB are separately reported. The gap
between CG-LB and CG-UB is evaluated as

Gap (%) = CG-UB− CG-LB
CG-UB

· 100%.

44 Chapter 4 Unweighted total completion time: exact approach and parallel machines

Single-machine

Tab. 4.1, Tab. 4.2 and Tab. 4.3 show the results over an increasing number of jobs
with batch capacity b = 10, b = 30 and b = 50, respectively; the CG-UB was computed
using CPLEX with a time limit of 60 seconds. Values are shown as average over each
10-instance group for the time, and as average, maximum (worst) and minimum
(best) over each 10-instance group for the gap. Column “opt” reports the number of
instances (out of 10) in which the solution can be certified to be the optimum, that
is, in which CG-UB is equal to (the rounded up value of) CG-LB. The comparison
between the CG-LB value and PR lower bound is also reported, computing the
average, minimum (worst) and maximum (best) over each 10-instance group of the
ratio CG-LB

PR .

Tab. 4.1: Results for CG-UB and CG-LB with b = 10.

Param Times (s) Gap (%) CG-LB
PR

n σ CG-LB CG-UB avg worst best avg min max opt

20 σ1 0.01 0.04 1.30 3.20 0.00 1.25 1.19 1.31 2
σ2 0.01 0.03 1.55 3.63 0.00 1.22 1.20 1.27 2
σ3 0.01 0.03 0.63 3.30 0.00 1.19 1.15 1.21 7
σ4 0.01 0.09 2.15 4.63 0.82 1.29 1.23 1.37 0

40 σ1 0.03 0.58 1.30 2.34 0.20 1.20 1.16 1.25 0
σ2 0.03 0.39 1.17 2.14 0.24 1.16 1.13 1.19 0
σ3 0.02 0.18 0.89 1.87 0.00 1.18 1.13 1.27 1
σ4 0.07 1.89 2.61 4.03 0.45 1.19 1.15 1.22 0

60 σ1 0.14 8.34 0.91 2.03 0.23 1.17 1.12 1.21 0
σ2 0.12 1.62 0.98 1.90 0.34 1.13 1.10 1.15 0
σ3 0.05 0.44 0.49 1.09 0.00 1.16 1.13 1.20 1
σ4 0.39 30.41 2.57 3.97 0.94 1.14 1.12 1.16 0

80 σ1 0.41 7.96 0.74 1.88 0.28 1.14 1.11 1.17 0
σ2 0.36 24.06 0.82 1.40 0.07 1.11 1.09 1.13 0
σ3 0.19 1.89 0.47 0.85 0.17 1.15 1.12 1.19 0
σ4 0.88 limit 5.78 10.77 2.20 1.11 1.10 1.12 0

100 σ1 0.73 8.76 0.46 0.82 0.06 1.13 1.11 1.14 0
σ2 0.45 4.03 0.41 0.75 0.14 1.14 1.11 1.16 0
σ3 0.32 0.81 0.17 0.68 0.00 1.15 1.12 1.20 2
σ4 1.61 limit 4.44 7.66 1.34 1.09 1.08 1.10 0

In Tab. 4.1, it can be seen that, with b = 10, the computation of CG-LB is very fast
with average CPU time less than 1 second in almost all the cases (with any number
of jobs). The σ4 instances are the most time demanding, with the only average
computation time above 1 second. This is due to the fact that a larger set of columns
is usually generated on such instances.

The computation of CG-UB is, as expected, the heaviest part of the procedure, with
larger CPU time. However, only in the cases n = 80, 100 and σ = σ4 CPLEX time
limit is reached. Again, σ4 instances were the most CPU time demanding, because

4.3 Computational results 45

of the larger set of columns to be handled. The certified solution quality was very
good, with an average optimality gap usually below 1.5%, and only one case (n = 80,
σ = σ4) above 5%.

Tab. 4.2: Results for CG-UB and CG-LB with b = 30.

Param Times (s) Gap (%) CG-LB
PR

n σ CG-LB CG-UB avg worst best avg min max opt

20 σ1 0.02 0.07 1.03 3.69 0.00 1.46 1.36 1.66 3
σ2 0.02 0.08 1.28 3.77 0.00 1.39 1.29 1.49 5
σ3 0.01 0.05 1.10 5.46 0.00 1.35 1.30 1.40 4
σ4 0.02 0.09 0.00 0.00 0.00 1.81 1.62 2.11 10

40 σ1 0.21 3.11 3.13 6.43 0.21 1.30 1.23 1.39 0
σ2 0.18 1.72 3.83 5.62 2.33 1.27 1.21 1.33 0
σ3 0.10 2.95 4.37 6.29 2.98 1.20 1.17 1.26 0
σ4 0.71 2.19 1.18 5.13 0.07 1.51 1.41 1.60 0

60 σ1 0.77 limit 6.78 10.27 3.51 1.22 1.18 1.27 0
σ2 0.72 37.44 5.21 8.46 1.88 1.20 1.17 1.22 0
σ3 0.42 30.35 3.74 5.79 1.44 1.15 1.13 1.18 0
σ4 2.38 10.59 2.28 4.24 0.05 1.36 1.31 1.41 0

80 σ1 1.68 limit 11.05 17.40 3.40 1.21 1.16 1.23 0
σ2 1.41 limit 11.68 41.32 2.65 1.16 1.13 1.20 0
σ3 0.88 limit 7.94 12.24 3.53 1.12 1.11 1.13 0
σ4 4.75 limit 7.01 18.67 2.41 1.29 1.27 1.32 0

100 σ1 3.27 limit 15.43 18.54 12.12 1.16 1.13 1.19 0
σ2 2.87 limit 9.23 11.46 3.08 1.13 1.12 1.14 0
σ3 1.79 limit 11.66 15.45 8.87 1.10 1.09 1.11 0
σ4 8.85 limit 6.38 9.54 3.32 1.26 1.23 1.29 0

From Tab. 4.2, it can be noticed that CPU time for CG-LB increases; this is expected,
since a larger number of possible batches are generated with an increased capacity.
The larger RMP obviously affect also the computation of CG-UB, which reaches the
time limit in all the cases for n = 80, 100. The average optimality gaps worsen, but
the largest increase is not found on σ4 instances; instead, it affects more heavily σ1

instances, especially for large n.

Overall, increasing capacity also increments the distance between the two lower
bounds CG-LB and PR; the former performs better in every combination, ranging
from an average 10% gain when b = 30, n = 100, and σ = σ3 to an average 81%
when b = 30, n = 20, and σ = σ4. This is reasonable since PR is based on a
preemptive relaxation to b parallel machines and allowing to split jobs on more
machines weakens the relaxation.

Tab. 4.3 shows the results of the tests with capacity b = 50 that confirm the impact of
b. The instances belonging to class σ4 are still the most computationally demanding,
both for lower bounding and heuristic solution. Instances with σ = σ1 are the
worse in terms of solution quality (with the exception of small 20 job instances) but,

46 Chapter 4 Unweighted total completion time: exact approach and parallel machines

Tab. 4.3: Results for CG-UB and CG-LB with b = 50.

Param Times (s) Gap (%) CG-LB
PR

n σ CG-LB CG-UB avg worst best avg min max opt

20 σ1 0.02 0.09 0.00 0.00 0.00 1.70 1.48 1.94 10
σ2 0.02 0.09 0.10 0.38 0.00 1.65 1.53 1.77 7
σ3 0.02 0.08 0.28 2.66 0.00 1.52 1.35 1.62 7
σ4 0.02 0.10 0.00 0.00 0.00 2.13 1.90 2.39 10

40 σ1 0.35 1.29 1.58 3.58 0.00 1.44 1.38 1.51 2
σ2 0.44 1.31 1.78 3.16 0.35 1.41 1.34 1.54 0
σ3 0.30 1.09 2.24 4.82 0.00 1.34 1.29 1.40 1
σ4 0.75 2.45 0.11 0.81 0.00 1.80 1.67 1.87 8

60 σ1 1.39 23.59 4.47 6.64 1.24 1.38 1.30 1.44 0
σ2 1.45 8.38 2.54 5.54 0.08 1.32 1.29 1.37 0
σ3 0.76 13.37 4.30 6.65 1.81 1.23 1.20 1.27 0
σ4 6.72 12.56 1.25 2.73 0.00 1.52 1.43 1.64 3

80 σ1 3.43 limit 7.40 10.26 3.17 1.32 1.27 1.38 0
σ2 3.71 limit 3.95 4.64 2.63 1.26 1.24 1.27 0
σ3 1.93 limit 4.94 10.32 2.00 1.19 1.17 1.20 0
σ4 18.34 limit 1.90 4.85 0.11 1.46 1.42 1.51 0

100 σ1 7.09 limit 15.66 58.23 8.14 1.23 1.19 1.27 0
σ2 7.04 limit 7.19 10.33 4.27 1.21 1.19 1.23 0
σ3 3.50 limit 7.86 11.47 3.51 1.15 1.14 1.17 0
σ4 38.65 limit 3.26 5.70 0.84 1.39 1.35 1.47 0

curiously, the gap lowers on n = 80 instances when passing from b = 30 to b = 50.
The worst average gap, 15.66%, is reached with n = 100 and σ = σ1; also, compared
to the previous case, PR worsens considerably with respect to CG-LB.

Rafiee Parsa et al. [61] provide a Hybrid Max-Min Ant System (HMMAS) that is, to
the writer’s knowledge, a state-of-the-art heuristic. A recent paper from the same
authors has been published on the same problem (Rafiee Parsa et al. [62]) where
a new Heuristic Neural Network approach, called HNN, is proposed. In this new
paper, a comparison with HMMAS is presented and, as in the previous case, only
capacity b = 10 is considered; a statistical analysis is also performed. This paper
shows that results quality of the new procedure HNN is not better than HMMAS; on
the contrary, apparently the average quality appears to be slightly worse.

Neither the source code nor the tested instances appear to be currently available;
hence, an attempt to compare CG-UB with HMMAS has been made by testing CG-UB
on generated instances of the same type and size as those used in Rafiee Parsa
et al. [61]. Moreover, as in Rafiee Parsa et al. [61] only the capacity b = 10 was
investigated, the performed comparison is limited to such value. Besides that, they
do not even provide a new lower bound; in fact, they used the previously mentioned
PR described in Uzsoy [69]. The reader being warned of the difficulty of such
comparison, Tab. 4.4 points to the following situation: the results show that the

4.3 Computational results 47

Tab. 4.4: Comparison between HMMAS (values from Rafiee Parsa et al. [61]) and CG-UB
algorithms.

Param Heuristic
PR

n σ HMMAS CG-UB CG-UB
CG-LB

20 σ1 1.25 1.27 1.01
σ2 1.25 1.24 1.02
σ3 1.21 1.20 1.01
σ4 1.28 1.31 1.02

40 σ1 1.19 1.21 1.01
σ2 1.19 1.18 1.01
σ3 1.18 1.19 1.01
σ4 1.20 1.22 1.03

60 σ1 1.17 1.18 1.01
σ2 1.16 1.14 1.01
σ3 1.18 1.17 1.01
σ4 1.18 1.17 1.03

80 σ1 1.16 1.15 1.01
σ2 1.16 1.12 1.01
σ3 1.16 1.15 1.01
σ4 1.16 1.18 1.06

100 σ1 1.16 1.13 1.01
σ2 1.15 1.14 1.01
σ3 1.15 1.16 1.01
σ4 1.15 1.14 1.05

performance of CG-UB, evaluated against PR lower bound, seems to be very similar
to that of HMMAS. Thus, it can be speculated that the two algorithms could give
similar results for the upper bound, when they are run on the same instance set.

On the other hand, the availability of CG-LB allows to certify a narrower optimality
gap for CG-UB. Considering the CG-LB lower bound, differences appear, as it can
be noticed from the last column of the table. In fact, the use of CG-LB certifies
that our found upper bounds CG-UB are very close to the integer optima for all
the combinations (maximum gap is around 6%). This last consideration even more
certifies that CG-LB is a better approximation of the integer optimum than the
previously known PR.

It must be stressed, however, that, as the instances of Rafiee Parsa et al. [61] were
not available, the optimality gap of their results against a strong lower bound is
unknown. Thus, even if the results seem to suggest that the upper bounds are
comparable, the algorithm quality cannot be directly benchmarked.

The quality of CG-UB has been compared to the quality of the heuristic solu-
tion reached by CPLEX, called CPLEX-UB, after 300 seconds of computation using
model (4.1)–(4.9). The optimality gap of CPLEX-UB is most of the times well above
90% because the lower bound is zero or almost zero. Anyway, using the proposed

48 Chapter 4 Unweighted total completion time: exact approach and parallel machines

Tab. 4.5: Comparison between CPLEX-UB (300 seconds) and CG-UB.

Param CPLEX-UB Gap (%) CG-UB Gap (%)

n σ avg worst best #win avg worst best #win

20 σ1 1.15 3.73 0.00 8 1.31 3.27 0.00 6
σ2 1.17 3.58 0.00 7 1.56 3.73 0.00 7
σ3 0.69 3.30 0.00 8 0.63 3.30 0.00 10
σ4 3.51 7.14 0.82 4 2.15 4.63 0.82 9

40 σ1 9.60 14.63 5.97 0 1.30 2.34 0.20 10
σ2 9.34 16.02 5.43 0 1.17 2.14 0.24 10
σ3 4.41 8.13 2.34 0 0.89 1.87 0.00 10
σ4 12.03 18.16 9.09 0 2.61 4.03 0.45 10

60 σ1 49.28 77.33 38.61 0 0.91 2.03 0.23 10
σ2 48.86 59.69 33.98 0 0.98 1.90 0.34 10
σ3 33.78 41.74 22.84 0 0.49 1.09 0.00 10
σ4 45.86 66.77 24.59 0 2.57 3.97 0.94 10

80 σ1 73.77 88.55 59.86 0 0.74 1.88 0.28 10
σ2 66.12 77.45 53.45 0 0.82 1.40 0.07 10
σ3 52.79 73.82 38.40 0 0.47 0.85 0.17 10
σ4 84.09 102.96 62.95 0 5.78 10.77 2.20 10

stronger lower bound, a more realistic optimality gap can be computed for CPLEX-UB
as

CPLEX-UB− CG-LB
UB∗

· 100% with UB∗ = min{CPLEX-UB,CG-UB}.

The gap for CG-UB is recomputed as CG-UB−CG-LB
UB∗ · 100% for uniformity.

The comparison is reported in Tab. 4.5, in terms of average, worst and best gap,
as done in previous comparison. Column “#win” counts the number of instances
(out of 10) for which each algorithm achieves the best solution; in the case of a
draw, a “#win” is counted for both, so the two columns can sum to more than 10.
Instances with n = 20, 40, 60, 80 and b = 10 have been tested. CPLEX ran for the
full 300 seconds on all the instances, without proving optimality for any of them;
CG-UB on the other hand ran with the same 60 seconds time limit as in Tab. 4.1.
Basically, except for the small n = 20 instances, CPLEX solution is consistently worse
than CG-UB.

Parallel-machines

With the same data, the Pm|p−batch, b, σj |
∑
Cj problem has been solved with

m = 2, 3, 5 identical machines. The tests have been limited to the case b = 10, and
time limit for the branching phase of the heuristic was raised to 180 seconds.

The results are reported in Tab. 4.6, Tab. 4.7 and Tab. 4.8. Apparently, increasing the
number of machines has a very mild impact on the CPU time needed for computing
the lower bound. The growth of the computational cost is much higher for the
branching phase, but with a certain variability on the four classes of instances, with

4.3 Computational results 49

classes σ1 and σ4 exhibiting the largest growth. Again, class σ4 broke the time limit
in all the instances. The quality of the solution, as measured by the percentage
gap, does not suffer seriously, except for the case n = 100, m = 5, σ = σ4. The
worst average gap of 14.09% is caused by one single instance with a very large gap
of 81.62%; if a larger but still acceptable time limit of 300 seconds is allowed, the
average gap for this class decreases to 4.63% with a max gap of 12.56%.

The lower bound by Uzsoy [69] is easily extended to the parallel machines case
allowing a relaxation to mb parallel machines. Tab. 4.6, Tab. 4.7 and Tab. 4.8 also
compare CG-LB with PR extended to the parallel machine case. The ratio between
the two bounds is apparently unaffected by the growth of m.

Tab. 4.6: Results for CG-UB and CG-LB with b = 10 and 2 parallel machines.

Param Times (s) Gap (%) CG-LB
PR

n σ CG-LB CG-UB avg worst best avg min max opt

20 σ1 0.03 0.12 0.78 2.00 0.00 1.24 1.18 1.29 2
σ2 0.03 0.09 1.43 4.78 0.00 1.21 1.19 1.25 2
σ3 0.02 0.07 0.57 3.04 0.00 1.18 1.14 1.19 7
σ4 0.04 0.22 2.08 4.11 0.00 1.28 1.22 1.35 1

40 σ1 0.06 0.82 1.14 2.28 0.01 1.19 1.16 1.24 0
σ2 0.05 0.90 1.08 1.73 0.23 1.16 1.13 1.18 0
σ3 0.03 0.22 0.75 1.39 0.00 1.18 1.13 1.26 1
σ4 0.13 5.01 2.07 3.73 0.37 1.18 1.15 1.22 0

60 σ1 0.25 10.22 0.83 1.64 0.23 1.16 1.12 1.20 0
σ2 0.21 1.72 0.90 1.56 0.32 1.12 1.10 1.15 0
σ3 0.13 0.60 0.38 1.00 0.01 1.16 1.13 1.20 0
σ4 0.49 76.71 2.35 3.72 1.69 1.14 1.12 1.16 0

80 σ1 0.62 45.96 0.76 1.94 0.21 1.14 1.10 1.17 0
σ2 0.54 40.97 0.71 1.00 0.08 1.11 1.09 1.13 0
σ3 0.35 3.29 0.46 0.76 0.18 1.14 1.12 1.18 0
σ4 1.30 limit 5.65 10.31 1.33 1.11 1.10 1.12 0

100 σ1 1.08 19.16 0.44 0.77 0.07 1.13 1.11 1.14 0
σ2 0.79 3.66 0.41 0.73 0.12 1.13 1.11 1.16 0
σ3 0.59 1.63 0.21 0.66 0.00 1.15 1.11 1.20 2
σ4 2.25 limit 7.19 26.27 1.08 1.09 1.08 1.10 0

4.3.2 Evaluation of the exact approach

The B&P exact algorithm has been tested on the single machine b = 10 generated
instances.

The reference algorithm for the exact approches on 1|p−batch, b, σj |
∑
Cj is the

Branch-and-Bound (B&B) of Azizoglu and Webster [5], which was developed for the
weighted version 1|p−batch, b, σj |

∑
wjCj but the authors also reported results for

the unweighted version. In the latter case, the lower bound by Azizoglu and Webster
[5] reduces to the one by Uzsoy [69]. The B&P procedure presented in Section 4.1.4

50 Chapter 4 Unweighted total completion time: exact approach and parallel machines

Tab. 4.7: Results for CG-UB and CG-LB with b = 10 and 3 parallel machines.

Param Times (s) Gap (%) CG-LB
PR

n σ CG-LB CG-UB avg worst best avg min max opt

20 σ1 0.03 0.13 0.52 1.29 0.00 1.24 1.18 1.29 3
σ2 0.03 0.10 1.15 2.90 0.00 1.21 1.19 1.25 2
σ3 0.03 0.08 0.45 2.49 0.00 1.18 1.14 1.19 7
σ4 0.05 0.30 1.77 3.61 0.00 1.30 1.23 1.36 1

40 σ1 0.12 1.68 1.11 2.02 0.00 1.19 1.16 1.24 1
σ2 0.09 1.00 0.88 1.38 0.00 1.16 1.13 1.18 1
σ3 0.06 0.43 0.80 1.64 0.00 1.17 1.12 1.25 1
σ4 0.19 4.81 1.76 3.37 0.19 1.19 1.16 1.22 0

60 σ1 0.35 3.89 0.73 1.54 0.24 1.16 1.12 1.20 0
σ2 0.32 3.47 0.86 1.50 0.29 1.12 1.10 1.15 0
σ3 0.24 1.09 0.38 1.12 0.00 1.15 1.13 1.19 1
σ4 0.62 76.82 2.00 3.92 1.01 1.15 1.12 1.16 0

80 σ1 1.04 16.93 0.62 1.57 0.18 1.14 1.10 1.16 0
σ2 0.75 47.57 0.71 1.12 0.08 1.11 1.09 1.12 0
σ3 0.58 3.99 0.47 0.72 0.19 1.14 1.12 1.18 0
σ4 1.49 limit 5.23 13.93 1.20 1.12 1.10 1.13 0

100 σ1 1.99 20.33 0.44 0.73 0.07 1.12 1.11 1.14 0
σ2 1.12 4.92 0.39 0.69 0.12 1.13 1.10 1.16 0
σ3 1.18 2.83 0.17 0.65 0.00 1.15 1.11 1.20 2
σ4 3.09 limit 5.44 19.24 1.58 1.09 1.08 1.10 0

is based on the same branching scheme as the one in Azizoglu and Webster [5], with
the same dominance conditions.

The results are reported in Tab. 4.9 for instances with up to 40 jobs. Cumulative
results for all the 40 instances have been reported by number of jobs, across job
size distributions. For times, nodes, and gap, the average value is reported; for the
number of found optima, the total sum over the 40 instances is reported.

The comparison considered here is between these two approaches.

• The B&P equipped with the proposed lower bound CG-LB obtained by CG and
the CG-UB heuristic for the root node upper bound.

• The B&B based on the same branching scheme, with the same dominance
conditions, equipped with:

– an evaluation of two different lower bounds of increasing complexity as
described in Section 3 of Azizoglu and Webster [5], using the best one for
the actual lower bound;

– the procedure described in Section 2.4 of Azizoglu and Webster [5] for the
root node upper bound and evaluated at every non-leaf node to further
improve the quality of the upper bound.

4.3 Computational results 51

Tab. 4.8: Results for CG-UB and CG-LB with b = 10 and 5 parallel machines.

Param Times (s) Gap (%) CG-LB
PR

n σ CG-LB CG-UB avg worst best avg min max opt

20 σ1 0.05 0.20 0.47 1.95 0.00 1.27 1.18 1.30 2
σ2 0.05 0.16 0.84 1.77 0.00 1.22 1.20 1.24 3
σ3 0.05 0.10 0.30 1.57 0.00 1.19 1.15 1.20 7
σ4 0.05 0.26 0.83 2.20 0.00 1.36 1.27 1.44 2

40 σ1 0.23 1.94 0.91 1.59 0.24 1.19 1.17 1.23 0
σ2 0.18 1.62 0.71 1.25 0.00 1.16 1.14 1.19 1
σ3 0.15 0.68 0.72 1.79 0.02 1.17 1.13 1.24 0
σ4 0.27 6.02 1.28 2.43 0.32 1.21 1.17 1.26 0

60 σ1 0.53 5.34 0.70 1.25 0.25 1.16 1.13 1.20 0
σ2 0.55 7.23 0.81 1.78 0.34 1.12 1.10 1.15 0
σ3 0.45 2.17 0.36 0.89 0.00 1.15 1.13 1.19 1
σ4 0.69 89.00 1.65 3.14 0.37 1.16 1.13 1.18 0

80 σ1 1.33 17.41 0.61 1.56 0.11 1.14 1.11 1.16 0
σ2 0.93 38.02 0.62 0.99 0.01 1.11 1.09 1.12 0
σ3 0.78 4.37 0.39 0.60 0.16 1.14 1.12 1.17 0
σ4 1.53 limit 2.50 4.57 1.27 1.13 1.11 1.14 0

100 σ1 2.76 20.14 0.43 0.79 0.05 1.12 1.11 1.14 0
σ2 1.41 6.34 0.38 0.61 0.12 1.13 1.10 1.15 0
σ3 1.54 3.50 0.16 0.63 0.00 1.14 1.11 1.19 2
σ4 3.22 limit 14.09 81.62 0.87 1.10 1.09 1.11 0

• The node exploration policy in both algorithms was kept depth-first.

Both exact methods were run with a 900 seconds time limit. The table compares
the CPU time and the number of open nodes; column “opt” counts the number of
certified optima obtained within the time limit. On the left part of the table, the
results for the B&P equipped with CG-LB and CG-UB are reported; on the right side,
there are th results for the B&B equipped with lower bound and heuristic by Azizoglu
and Webster [5].

By allowing the B&P to run without time limit, all the optimal values of the 40-jobs
instances were also collected, even if a few instances required several hours of
computation; hence, the “Gap” columns report the percentage gap UB−OPT

OPT · 100%
between the best upper bound UB obtained within the time limit and the exact
optimum OPT for both algorithms.

The B&B has an impressively fast node processing, since the lower bound by Uzsoy
[69] has a very cheap running time. As the number of jobs increases, however,
the more accurate lower bound obtained by CG allows the branch and price to
outperform the competitor. The latter algorithm is able to optimally solve all the
instances with up to 30 jobs and more than a half of the 40-jobs instances, with
optimality gaps mostly below 1%.

52 Chapter 4 Unweighted total completion time: exact approach and parallel machines

Ta
b.

4.
9:

C
om

pa
ri

so
n

of
ex

ac
t

ap
pr

oa
ch

es
.

B
ra

nc
h-

an
d-

Pr
ic

e
(C

G
-L

B
an

d
C

G
-U

B
)

B
ra

nc
h-

an
d-

B
ou

nd
(d

ep
th

-fi
rs

t)
Pa

ra
m

Ti
m

es
(s

)
N

od
es

G
ap

(%
)

Ti
m

es
(s

)
N

od
es

G
ap

(%
)

n
σ

av
g

m
ax

av
g

m
ax

av
g

m
ax

op
t

av
g

m
ax

av
g

m
ax

av
g

m
ax

op
t

10
σ

1
0.

06
0.

48
4.

2
32

0.
00

0.
00

10
0.

01
0.

01
12

66
.3

22
22

0.
00

0.
00

10
σ

2
0.

02
0.

08
15

.6
14

7
0.

00
0.

00
10

0.
01

0.
01

95
3.

0
19

10
0.

00
0.

00
10

σ
3

0.
01

0.
05

5.
4

54
0.

00
0.

00
10

0.
01

0.
01

51
4.

9
12

44
0.

00
0.

00
10

σ
4

0.
03

0.
05

21
.5

56
0.

00
0.

00
10

0.
01

0.
01

18
95

.6
31

19
0.

00
0.

00
10

10
0.

03
0.

48
12

.7
14

7
0.

00
0.

00
40

0.
01

0.
01

11
57

.4
31

19
0.

00
0.

00
40

20
σ

1
1.

64
4.

27
82

4.
0

26
58

0.
00

0.
00

10
35

.5
5

67
.1

4
95

56
52

7.
9

18
52

26
44

0.
00

0.
00

10
σ

2
2.

84
19

.9
9

16
39

.6
11

82
0

0.
00

0.
00

10
14

.0
7

34
.6

9
35

53
62

8.
2

90
94

59
9

0.
00

0.
00

10
σ

3
4.

38
38

.0
5

35
08

.0
31

38
9

0.
00

0.
00

10
5.

95
16

.5
6

12
76

56
0.

2
37

45
56

7
0.

00
0.

00
10

σ
4

3.
59

13
.3

0
98

5.
1

33
51

0.
00

0.
00

10
30

.6
4

56
.1

4
74

39
53

8.
0

14
48

40
92

0.
00

0.
00

10

20
3.

11
38

.0
5

17
39

.2
31

38
9

0.
00

0.
00

40
21

.5
5

67
.1

4
54

56
56

3.
6

18
52

26
44

0.
00

0.
00

40

30
σ

1
3.

83
19

.0
5

71
5.

9
42

12
0.

00
0.

00
10

90
0.

00
90

0.
00

13
36

16
54

0.
3

16
76

62
46

1
1.

45
4.

91
0

σ
2

82
.6

5
65

5.
98

50
28

1.
3

46
79

06
0.

00
0.

00
10

90
0.

00
90

0.
00

13
33

04
71

7.
2

14
44

52
85

1
1.

27
3.

58
0

σ
3

16
.0

6
13

6.
41

73
53

.7
67

29
0

0.
00

0.
00

10
90

0.
00

90
0.

00
12

96
37

40
9.

5
14

53
58

43
5

0.
14

1.
05

0
σ

4
90

.9
0

30
7.

28
11

25
5.

6
35

88
1

0.
00

0.
00

10
90

0.
00

90
0.

00
12

63
62

35
3.

9
13

93
69

51
6

2.
16

5.
35

0

30
48

.3
6

65
5.

98
17

40
1.

6
46

79
06

0.
00

0.
00

40
90

0.
00

90
0.

00
13

07
30

25
5.

2
16

76
62

46
1

1.
26

5.
35

0

40
σ

1
61

9.
85

90
1.

11
40

82
4.

5
71

26
8

0.
13

0.
63

6
90

0.
00

90
0.

00
10

02
00

93
1.

0
12

19
47

52
6

5.
83

9.
06

0
σ

2
54

7.
41

90
0.

93
52

10
5.

6
15

18
57

0.
18

0.
99

6
90

0.
00

90
0.

00
82

96
27

83
.4

89
45

49
46

4.
25

8.
09

0
σ

3
49

9.
44

90
0.

19
80

44
4.

0
16

51
96

0.
08

0.
51

7
90

0.
00

90
0.

00
88

66
17

88
.3

96
75

02
60

2.
18

4.
75

0
σ

4
84

1.
06

90
5.

80
25

94
3.

0
53

93
3

0.
93

3.
11

5
90

0.
00

90
0.

00
83

03
38

65
.0

96
50

29
79

5.
04

8.
44

0

40
62

6.
94

90
5.

80
49

82
9.

3
16

51
96

0.
33

3.
11

22
90

0.
00

90
0.

00
88

71
48

41
.9

12
19

47
52

6
4.

33
9.

06
0

4.3 Computational results 53

4.4 Final remarks
In this work, CG techniques for solving problem 1|p−batch, b, σj |

∑
Cj have been

explored, generalizing such techniques to problems with parallel machines. The
exponential size model (4.15)–(4.18), handled by means of CG, allows to find (to
the writer’s knowledge) the tightest known lower bound for 1|p−batch, b, σj |

∑
Cj .

Embedded in a simple P&B approach, it achieves high-quality solutions for instances
up to 100 jobs in size, with certified optimality gaps.

Thus it can be claimed that model (4.15)–(4.18) is strong: its relaxation gives a
sharp bound, and the generated columns can be effectively composed into high-
quality feasible solutions. The comparison with state-of-the-art (meta)heuristics like
HMMAS is admittedly problematic because of lack of available code and instances,
but the P&B heuristic is, in the writer’s view, at least as accurate as the state-of-the-art
heuristics, faster and simpler, since it mostly relies on a MIP solver, with the addition
of some ad-hoc code.

Tab. 4.10: Comparison between CG-UB and real optima with b = 10.

Param Gap (%)

n σ avg worst best

10 σ1 0.00 0.00 0.00
σ2 0.39 3.89 0.00
σ3 0.00 0.00 0.00
σ4 0.22 1.13 0.00

10 0.15 3.89 0.00

20 σ1 0.26 0.63 0.00
σ2 0.44 1.54 0.00
σ3 0.01 0.14 0.00
σ4 0.74 3.12 0.00

20 0.36 3.12 0.00

30 σ1 0.08 0.73 0.00
σ2 0.16 0.68 0.00
σ3 0.01 0.03 0.00
σ4 0.78 2.11 0.00

30 0.26 2.11 0.00

40 σ1 0.30 0.92 0.01
σ2 0.33 0.99 0.00
σ3 0.11 0.51 0.00
σ4 1.32 3.11 0.25

40 0.51 3.11 0.00

Embedded in an exact algorithm, the new lower bound allows to extend the size of
solvable 1|p−batch, b, σj |

∑
Cj instances towards 40 jobs. Having available all the

optimal solutions for the single machine problems up to 40-jobs instances, the actual
relative error of the CG-UB heuristic on such instances can be seen to be even lower

54 Chapter 4 Unweighted total completion time: exact approach and parallel machines

than the figures estimated in the experiments of Section 4.3.1; see Tab. 4.10, where
a comparison between CG-UB and the real optima is performed, evaluating the gap
as UB−OPT

OPT · 100%.

Athough all the random distributions for job data mentioned in literature have been
used in the tests, the interested reader might be worried about the relatively narrow
distributions for job sizes given in classes σ1, . . . , σ4. Hence some tests have been
performed with capacity b = 50 and a new class σ5, with a wider distribution of
sj ∈ [1, 50]. The results of CG-UB on such instances, for the single and parallel
machines cases as well, are summarized in Tab. 4.11, showing that CG-UB still
handles such instances within practical time limits, guaranteeing narrow optimality
gaps.

Tab. 4.11: Results for CG-UB and CG-LB with b = 50 and σ = σ5 consideringm = {1, 2, 3, 5}
parallel machines. Time limit for CG-UB set to 60 seconds for the single machine
case, and to 180 seconds for the multiple machines cases.

Param Times (s) Gap (%) CG-LB
PR

n m CG-LB CG-UB avg worst best avg min max opt

20 1 0.01 0.03 0.88 3.19 0.00 1.27 1.16 1.39 2
2 0.01 0.04 0.66 2.95 0.00 1.26 1.15 1.36 4
3 0.01 0.11 0.70 3.20 0.00 1.26 1.16 1.34 4
5 0.02 0.12 0.50 1.51 0.00 1.28 1.18 1.36 4

40 1 0.04 0.52 0.90 1.51 0.00 1.23 1.19 1.29 1
2 0.05 0.56 0.74 1.50 0.00 1.22 1.19 1.27 1
3 0.11 0.97 0.64 1.39 0.00 1.22 1.18 1.26 1
5 0.21 1.32 0.55 1.26 0.00 1.22 1.18 1.25 2

60 1 0.16 3.30 0.77 1.35 0.10 1.19 1.16 1.22 0
2 0.26 1.58 0.51 0.90 0.12 1.18 1.16 1.21 0
3 0.43 3.75 0.54 1.24 0.08 1.18 1.16 1.21 0
5 0.83 4.79 0.46 0.79 0.07 1.18 1.15 1.21 0

80 1 0.57 19.06 0.61 1.15 0.18 1.17 1.15 1.20 0
2 0.79 17.68 0.53 1.10 0.19 1.17 1.15 1.20 0
3 1.15 33.10 0.50 0.97 0.15 1.17 1.15 1.19 0
5 1.53 23.49 0.52 0.98 0.19 1.17 1.15 1.19 0

100 1 1.20 22.58 0.54 0.86 0.34 1.16 1.12 1.19 0
2 1.64 48.68 0.50 0.81 0.30 1.16 1.12 1.18 0
3 2.92 41.17 0.45 0.79 0.26 1.15 1.12 1.18 0
5 3.54 64.40 0.47 0.82 0.25 1.15 1.12 1.18 0

The new model relies on Property 1 in order to express the linear objective function
by means of “positional” coefficients. Property 2 is crucial in order to develop an
efficient pricing procedure. The approach is flexible enough to be extended to
problems with parallel machines with a very limited effort, and while it is not simple
to address weighted

∑
wjCj objectives, the next chapter shows in detail how this

successful approach can be extended to the 1|p−batch, b, σj |
∑
wjCj problem.

4.4 Final remarks 55

5Weighted total completion time:
single machine and heuristics

W
E now consider the single-machine scheduling problem of minimizing the
total weighted completion time (also called total weighted flow time) in
a parallel-batching environment. Recalling the notation introduced in

Chapter 3, a set of jobs N = {1, 2, . . . , n} is to be partitioned into batches and
processed on a single machine. Each job j ∈ N has a given processing time pj , a
weight wj and a size sj; jobs are partitioned and processed without interruptions
in a batch sequence S = (B1, B2, . . . , Bt), and each batch Bk in S must satisfy∑
j∈B sj ≤ b, where b is the machine capacity. The jobs in a same batch Bk are

processed simultaneously, with the longest job determining the processing time for
the whole batch, having that pB = max{pj : j ∈ B}. All the jobs in the same batch
Bk share the same completion time, that is Cj = CBk =

∑k
l=1 pBl . The considered

problem calls for finding S that minimizes f(S) =
∑
j∈N wjCj .

This problem can be denoted as 1|p−batch, b, σj |
∑
wjCj in the classical three-fields

notation by Graham et al. [31].

Recently, new interest has grown about batching problems, since additive manufac-
turing often requires a batch production to optimize the chamber space (Zhang et al.
[71]). However, processing times depend on different factors than those of conven-
tional production and there are typically more size constraints to be addressed.

The contribution of this chapter is twofold.

• Working along the lines of Alfieri et al. [2] and Alfieri et al. [3], a strong
lower bound for the 1|p−batch, b, σj |

∑
wjCj problem is developed. The lower

bound is based on the continuous relaxation of a very large integer Linear
Program (LP) solved by means of Column Generation (CG) techniques. The
LP does not rely on time-indexing, instead it uses a graph-based formulation
based on peculiarities of the

∑
wjCj objective. The lower bound given by this

formulation is stronger than any other currently available bound.

• The lower bound delivered by CG is sharp but still too computationally heavy
for supporting an exact Branch-and-Price (B&P) procedure. Anyway, simple but
effective rounding heuristics applied to the relaxed problem allow to quickly
derive feasible solutions whose cost is within a few percentage points from the
optimum.

57

5.1 Column Generation models

5.1.1 The graph-based model

For the 1|p−batch, b, σj |
∑
wjCj problem, we consider two distinct (but equivalent)

CG models; both are based on a very large (multi)graph specified as follows. Re-
calling the notation introduced in Chapter 3, and following the definition (4.11)
given in Section 4.1, let B = {B ⊆ N :

∑
j∈B sj ≤ b} be the set of all the possible

batches.

The graph G(V,A) is made of a set of vertices and arcs as follows:

V = {1, 2, . . . ,W + 1}, W =
n∑
j=1

wj ,

A =

(i, k, B) : 1 ≤ i < k ≤W + 1; B ∈ B;
∑
j∈B

wj = k − i

Every arc (i, k, B) ∈ A connects two nodes i, k and is associated to a possible batch
B. Each arc is given a cost cikB = (W−i+1)pB, with pB = max{pj : j ∈ B}. We call
a path P from node 1 to node W + 1 a partition path if the sets {B : (i, k, B) ∈ P}
form a partition of N . Feasible batch sequences are mapped onto partition paths and
vice versa, as established by the following Property 4, written following the lines
of Property 1.

Property 4. S = (B1, B2, . . . , Bt) is a feasible batch sequence iff

P = [(i1, k1, B1), (i2, k2, B2), . . . , (it, kt, Bt)] (i1 = 1, kt = W + 1)

is a partition path 1→W + 1 in G(V,A), and f(S) =
∑
{cikB : (i, k, B) ∈ P}.

Proof. The one-to-one mapping of batch sequences to paths is easily established.
Given a batch sequence S = (B1, B2, . . . , Bt), the path

P = [(i1, k1, B1), (i2, k2, B2), . . . , (it, kt, Bt)] (5.1)

can be built from arcs of G, choosing them from the arc set as follows:

i1 = 1, k1 = i1 + wB1

i` = k`−1, k` = i` + wB` (` = 2, . . . , t).
(5.2)

Note that kt − i1 =
∑t
`=1wB` = W , hence kt = W + 1, and P is a path 1→ W + 1

in G; the job set N is guaranteed to be partitioned over the arcs of P because it is
partitioned in the batches of S by hypothesis.

58 Chapter 5 Weighted total completion time: single machine and heuristics

Vice versa, given a path P like (5.1) from node 1 to node W + 1 of G, such that the
set {B : (i, k, B) ∈ P} forms a partition of N , it can be easily seen that the arcs of P
satisfy the connectivity of the path by (5.2), and by definition of the arc set A every∑
j∈B sj ≤ b for all (i, k, B) ∈ P . Hence, S = (B1, B2, . . . , Bt) with the B1, . . . , Bt

defined by the arc-batches of P is a feasible batch sequence.

It remains to prove that f(S) =
∑

(i,k,B)∈P cikB. The objective function for the batch
sequence is:

f(S) =
n∑
j=1

wjCj =
t∑

`=1
CB`wB` =

t∑
`=1

[(∑̀
k=1

pBk

)
wB`

]
=

= wB1pB1 +
wB2pB1 + wB2pB2 +
wB3pB1 + wB3pB2 + wB3pB3 +
. .

wBtpB1 + wBtpB2 + wBtpB3 + . . . + wBtpBt .

Adding by column, it can be rewritten as:

f(S) = pB1

t∑
`=1

wB` + pB2

t∑
`=2

wB` + pB3

t∑
`=3

wB` + · · ·+ pBtwBt

=
t∑

q=1

[
pBq

t∑
`=1

wB`

]
.

Now, in every path P like (5.1) it holds that, for an arc (iq, kq, Bq) in position q on
P , the total weight of jobs scheduled from Bq to Bt is

t∑
`=q

wB` =
t∑
`=q

(k` − i`) =
t−1∑
`=q

i`+1 + (W + 1)−
t∑
`=q

i` = (W + 1− iq);

hence,

f(S) =
t∑

q=1
pBq(W + 1− iq) =

∑
(i,k,B)∈P

cikB.

5.1 Column Generation models 59

V
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

B
1

=
{1
,3
,4
}

B
2

=
{2
,6
}

B
3

=
{5
}

B
4

=
{7
}

B
′ 1

=
{2
,4
}

B
′ 2

=
{3
,7
}

B
′ 3

=
{1
,5
}

B
′ 4

=
{6
}

c (
1,

9,
B

1
)

=
p
B

1
(W

+
1
−

1)
=

12
·1

6
=

19
2

c (
9,

14
,B

2
)

=
p
B

2
(W

+
1
−

9)
=

10
·8

=
80

c (
14
,1

5,
B

3
)

=
p
B

3
(W

+
1
−

14
)=

6
·3

=
18

c (
15
,1

7,
B

4
)

=
p
B

4
(W

+
1
−

15
)=

3
·2

=
6

c (
1,

6,
B
′ 1
)

=
p
B
′ 1
(W

+
1
−

1)
=

10
·1

6
=

16
0

c (
6,

12
,B
′ 2
)

=
p
B
′ 2
(W

+
1
−

6)
=

8
·1

1
=

88
c (

12
,1

5,
B
′ 3
)

=
p
B
′ 3
(W

+
1
−

12
)=

12
·5

=
60

c (
15
,1

7,
B
′ 4
)

=
p
B
′ 4
(W

+
1
−

15
)=

4
·2

=
8

Fi
g.

5.
1:

Ex
am

pl
e

of
pa

rt
it

io
n

pa
th

s.
B

at
ch

se
qu

en
ce
S

=
(B

1,
B

2,
B

3,
B

4)
co

rr
es

po
nd

s
to

pa
rt

it
io

n
pa

th
P

=
[(1
,9
,B

1)
,(

9,
14
,B

2)
,(

14
,1

5,
B

3)
,(

15
,1

7,
B

4)
]

(c
on

ti
nu

ou
s

lin
es

).
B

at
ch

se
qu

en
ce
S

′
=

(B
′ 1,
B

′ 2,
B

′ 3,
B

′ 4)
co

rr
es

po
nd

s
to

pa
rt

it
io

n
pa

th
P

′
=

[(1
,6
,B

′ 1)
,(

6,
12
,B

′ 2)
,(

12
,1

5,
B

′ 3)
,(

15
,1

7,
B

′ 4)
] (

da
sh

ed
lin

es
).

60 Chapter 5 Weighted total completion time: single machine and heuristics

Example

As an example for Property 4, consider a 7-jobs instance with machine capacity
b = 10, job set N = {1, 2, . . . , 7} and:

p1, . . . , p7 = 12, 10, 8, 8, 6, 4, 3;

s1, . . . , s7 = 3, 3, 3, 4, 4, 7, 7;

w1, . . . , w7 = 2, 3, 4, 2, 1, 2, 2; (W = 16).

The graph G(V,A) is made on node set V = {1, 2, . . . , 17}; referring to Fig. 5.1,
it is not practical to show all the arcs even for this small instance. For example
between node 1 and 5 all the arcs (1, 5, {3}), (1, 5, {1, 4}), (1, 5, {1, 6}), (1, 5, {2, 5}),
etc., hence all batches B with

∑
j∈B wj = 5− 1 = 4, should appear; the same arcs

should appear between node 2 and node 6, and so on.

In Fig. 5.1 two examples of partition paths, P and P ′, are sketched. Path P cor-
responds to the batch sequence S = (B1, B2, B3, B4); note how B1, B2, B3, B4

form a partition of the job set N . Obviously CB1 = pB1 = p1 = 12, CB2 =
pB1 + pB2 = p1 + p2 = 22, CB3 = pB1 + pB2 + pB3 = p1 + p2 + p5 = 28,
CB4 = pB1 + pB2 + pB3 + pB4 = p1 + p2 + p5 + p7 = 31, and wB1 = w1 +w3 +w4 = 8,
wB2 = w2 +w6 = 5, wB3 = w5 = 1, wB4 = w7 = 2. The objective function computed
for S is

f(S) = wB1CB1 + wB2CB2 + wB3CB3 + wB4CB4

= 8 · 12 + 5 · 22 + 1 · 28 + 2 · 31 = 296,

but also

f(S) = pB1wB1 +
pB1wB2 + pB2wB2 +
pB1wB3 + pB2wB3 + pB3wB3 +
pB1wB4 + pB2wB4 + pB3wB4 + pB4wB4 =

= pB1 · 16 + pB2 · 8 + pB3 · 3 + pB4 · 2 =
= c(1,9,B1) + c(9,14,B2) + c(14,15,B3) + c(15,17,B4) =

f(S) = c(P) = 192 + 80 + 18 + 6 = 296

Similarly, the reader can verify that for S′ and P ′, f(S′) = wB′1CB′1 + wB′2CB′2 +
wB′3CB′3 + wB′4CB′4 = 316 and c(P ′) = 316.

Column Generation

Determining an optimal batch sequence amounts to computing a minimum cost
1→W + 1 partition path on G; the huge number of arcs involved in such problem

5.1 Column Generation models 61

can be handled by means of CG techniques. In general, CG techniques apply the
simplex method to very large LP models like

min
{∑
i∈S

cixi : aixi = b, xi ≥ 0, i ∈ S
}

(ai ∈ Rm) (5.3)

where the number of variables xi and columns ai, for i ∈ S, is so large that the
whole program cannot be kept in memory. In the main iteration of a CG procedure,
the master problem in (5.3) is solved on a restricted set S ′ ⊂ S. The solution of such
Restricted Master Problem (RMP) is then proved (or disproved) optimal for (5.3) by
identifying columns having minimum reduced cost; this is done using the simplex
multipliers/dual variables η ∈ Rm associated with the optimal basis of the RMP,
computing

r∗ = min{ri = ci − ηᵀai : i ∈ S}. (5.4)

If r∗ < 0, one or more columns with reduced cost ri < 0 are found and they are
added to the restricted set S ′ for a new iteration; otherwise, optimality of the current
solution is proved. The whole CG procedure can usually be made computationally
efficient if the pricing problem (5.4) presents a suitable combinatorial structure. A
broad presentation of CG can be found, for example, in Desrosiers and Lübbecke
[17].

Two “natural” procedures arise for solving the (continuous relaxation of the) problem
of computing a minimum-cost partition path by means of CG techniques, leading
to different master programs and pricing problems. The first one relies on a master
problem which combines characteristics of an arc-based minimum cost flow problem
formulation with additional set-partitioning constraints. The second one relies
on a path-based minimum cost flow formulation with additional set-partitioning
constraints. In both cases, a crucial step for the pricing procedure consists in solving a
cardinality-constrained knapsack problem that is handled by Dynamic Programming
(DP).

5.1.2 An arc-based flow model

Master problem

The problem of finding a minimum-cost 1→W +1 partition path can be represented
by a very large binary LP. For a batch B, we denote by aB ∈ {0, 1}n the incidence
vector of set B, where each of the n components aB,j = 1 iff j ∈ B; also, let us
introduce a vector constant 1 = (1, 1, . . . , 1)ᵀ. As control variables we define binaries
xikB = 1 iff arc (i, k, B) ∈ A is used in the minimum cost 1→W + 1 path. The LP
for finding the best 1→W + 1 partition path, very similar to the one (4.15)–(4.18)
previously described for the unweighted case, writes out as follows.

62 Chapter 5 Weighted total completion time: single machine and heuristics

minimize
∑

(i,k,B)∈A
cikBxikB (5.5)

subject to
∑

(k,B):
(i,k,B)∈A

xikB −
∑

(k,B):
(k,i,B)∈A

xkiB =

1 i = 1

0 i = 2, . . . ,W

−1 i = W + 1

(5.6)

∑
(i,k,B)∈A

aBxikB = 1 (5.7)

xikB ∈ {0, 1} (i, k, B) ∈ A (5.8)

The objective function (5.5) and constraints (5.6) require a unit of integer flow to
be pushed along a 1 → W + 1 path at minimum total cost: constraints (5.6) are
flow conservation constraints written for nodes i = 1, . . . ,W + 1, with source 1 and
sink W + 1. This a well known (Ahuja et al. [1]) LP formulation of a shortest path
problem.

The vector constraint (5.7) subsumes n scalar constraints requiring that the path is
actually a partition path, that is, the job set N = {1, 2, . . . , n} is exactly partitioned
over the arcs (i, k, B) with xikB = 1. A lower bound for this integer program is
immediately obtained by replacing (5.8) with

xikB ≥ 0 (i, k, B) ∈ A. (5.9)

The dual of (5.5)–(5.9) is the following, with dual variables u1, . . . , uW+1 and
v1, . . . , vn.

maximize u1 − uW+1 +
n∑
j=1

vj (5.10)

subject to ui − uk +
∑
j∈B

vj ≤ cikB (i, k, B) ∈ A (5.11)

The number of constraints in program (5.5)–(5.9) is n+W + 1, which can be quite
large but is still manageable on most instances, up to a reasonable number of jobs;
also, the columns of constraints (5.6) and constraints (5.7) are rather sparse. On the
other hand, the number of variables xikB is too high, and requires a CG approach.
We consider a subset A′ ⊂ A of arcs/variables and formulate a RMP like (5.5)–(5.9)
over the arcs in A′ only.

5.1 Column Generation models 63

Pricing

Following the lines of what we did in Section 4.1.2, now we illustrate how new arcs
can be added.

The dual of the RMP is (5.10)–(5.11) with constraints restricted to the set A′. Once
the RMP is solved, the optimal dual variables for the restricted dual are also available:
u1, . . . , uW+1 from the simplex multipliers of constraints (5.6) and v1, . . . , vn from
the simplex multipliers of constraints (5.7). Such values are used to formulate a
pricing problem.

For a fixed pair of node indices 1 ≤ i < k ≤W + 1, an arc with minimum reduced
cost c̄ikB∗ must satisfy

c̄ikB∗ = min
B

cikB − (ui − uk)−
∑
j∈B

vj :
∑
j∈B

sj ≤ b, wB = k − i

 =

= min
B

pB(W − i+ 1)−
∑
j∈B

vj :
∑
j∈B

sj ≤ b, wB = k − i

− (ui − uk).

(5.12)
Note that fixing i, k determines the required weight for the batch B∗. Finding the
batch B∗ that minimizes this equation, for each given pair of indices 1 ≤ i < k ≤
W + 1 and given batch processing time pB∗ , can be done by exploiting the DP state
space of a family of knapsack problems, where items correspond to jobs and an
additional constraint must be enforced on the total weight packed into the batch.
Assume that the jobs are indexed by Longest Processing Time (LPT) order, so that
p1 ≥ p2 ≥ · · · ≥ pn.

We define, for r = 1, . . . , n, the following problem:

gr(τ, `) = max

n∑
j=r

vjyj :
n∑
j=r

sjyj ≤ τ,
n∑
j=r

wjyj = `, yj ∈ {0, 1}

 .
In this, gr(τ, `) is the optimal value of a knapsack with profits vj and sizes sj , limited
to jobs r, r + 1, . . . , n, total size ≤ τ and total weight equal to `. Variable yj is set to
1, that is, yj = 1, iff job j is included in the solution.

Optimal values for gr(τ, `) can be recursively computed as

gr(τ, `) = max

gr+1(τ − sr, `− wr) + vr (yr = 1)

gr+1(τ, `) (yr = 0)

64 Chapter 5 Weighted total completion time: single machine and heuristics

with boundary conditions

gr(τ, wr) =

vr ifsr ≤ τ (yr = 1)

0 otherwise (yr = 0)
r = 1, . . . , n, τ = 0, . . . , b

gr(τ, 0) = 0 r = 1, . . . , n, τ = 0, . . . , b

gr(τ, `) = −∞ if ` >
n∑
i=r

wi or ` < 0 or τ < 0.

The corresponding optimal job sets are denoted byBr(τ, `); such sets can be retrieved
by backtracking. Extending Property 2, the following Property 5 establishes that the
state space gr(τ, `) for r ∈ L is sufficient for pricing all the relevant arcs.

Property 5. Consider the subset of jobs L = {1}∪{j > 1 : pj < pj−1} which holds one
job, with index as small as possible, for each processing time represented in the problem.
For any given pair of indices i < k, an arc with minimum reduced cost (i, k, B∗) is one
of

(i, k, Br(b, k − i)) r ∈ L. (5.13)

Proof. Every arc (i, k, B) can be shown to have a reduced cost not less than some of
the arcs in (5.13). Let c̄ikB = (W − i+ 1)pB −

∑
j∈B vj − (ui − uk) be the reduced

cost of an arc (i, k, B). Recall that wB = k − i, and the jobs are numbered in non-
increasing order of processing times. Choose r as the smallest job index such that
pr = pB. Note that B ⊆ {r, r + 1, . . . , n} and r ∈ L. Consider knapsack gr(b, k − i)
and the associated optimal subset B∗r = Br(b, k − i). The batch B is a feasible
solution for knapsack gr(b, k − i), hence

∑
j∈B vj ≤ gr(b, k − i); also, because of the

choice of r, pB∗r ≤ pr = pB. Thus:

c̄ikB = (W − i+ 1)pB −
∑
j∈B

vj − (ui − uk) ≥

≥ (W − i+ 1)pB∗r − gr(b, k − i)− (ui − uk) = c̄ikB∗r

(5.14)

Given the optimal multipliers from the RMP, Algorithm 5 (NEWCOLSW) generates a
set of arcs with negative reduced cost, if some exist, or certifies optimality for (5.5)–
(5.9) if none is found. It is worth noting that this algorithm is adapted from the
previous Algorithm 1 developed for the unweighted version of the problem.

The size of the state space required for the pricing is bounded by O(nWb). A
memoized CG table is used, so that the execution of the top-down recursion for
computing an entry gr(τ, `) is deferred until the first time the value is queried.

5.1 Column Generation models 65

Algorithm 5 Pricing procedure (weighted).
1: function NEWCOLSW(N , b, u, v) . u,v = vectors of multipliers
2: Sort and renumber jobs in N such that p1 ≥ p2 ≥ . . . ≥ pn;
3: Set H := ∅; . set of negative-reduced cost arcs
4: Set W :=

∑N
j=1wj;

5: for ` = 1, . . . ,W do . for each weight
6: for r = 1, . . . , n do . for each job index
7: Retrieve gr(b, `) and set B := Br(b, `);
8: for i = 1, . . . ,W − `+ 1 do . for each position
9: Set k := i+ `;

10: Compute c̄ikB = pB(W − i+ 1)− (ui − uk)− gr(b, `);
11: if c̄ikB < 0 then . if the reduced cost is negative. . .
12: Set H := H ∪ {(i, k, B)}; add the corresponding arc
13: end if
14: end for
15: end for
16: end for
17: return H;
18: end function

Algorithm 6 Generation of initial arcs (weighted).
1: function INITCOLSW(N , b)
2: Sort and renumber jobs in N such that p1 ≤ p2 ≤ . . . ≤ pn;
3: Set H := ∅; . set of initial arcs
4: Set W :=

∑N
j=1wj;

5: for i = 1, . . . ,W do . for each starting position
6: for ` = 1, . . . , n do . for each job index
7: Set B := ∅;
8: for j = `, . . . , 0 do . for every previous job
9: if

∑
h∈B sh + sj ≤ b then . add this job only if it fits

10: Set B := B ∪ {j};
11: Set k := i+

∑
h∈B wh;

12: Set H := H ∪ {(i, k, B)};
13: end if
14: end for
15: end for
16: end for
17: return H;
18: end function

66 Chapter 5 Weighted total completion time: single machine and heuristics

Then, the value is kept in storage and accessed in O(1) time if it is queried again.
NEWCOLSW exhibits three nested loops that account for a O(nW 2) complexity;
taking into account the filling (memoized or not) of the DP table, the running time
of the pricing procedure is bounded from above by O(max(nW 2, nWb)).

A minimal subset of starting columns is required to evaluate the first optimal multi-
pliers and start generating new columns. To populate in a meaningful way the RMP,
we order all jobs j in a non-decreasing order with regard to the processing time
pj and generate all possible batches, made by grouping subsequent jobs together,
starting from every job in the sequence. These batches B are then added at the
problem as new columns in every possible position (i, k, B) where k − i =

∑
j∈B wj

as shown in Algorithm 6 (INITCOLSW), derived from the one developed for the
unweighted version of the problem, Algorithm 2.

These INITCOLSW and NEWCOLSW algorithms can then be combined in a procedure
for solving program (5.5)–(5.9) by CG; this continuous optimum is a lower bound
for the original program (5.5)–(5.8), and will be called Column Generation Lower
Bound (CG-LB) from now on. We note that this procedure is the same as the one
described in Section 4.1.3 to obtain the lower bound for the unweighted version of
the problem.

5.1.3 A path-based model

Master problem

Program (5.5)–(5.8) is basically made of a “flow” section (constraints (5.6)) and a
“partition” section (constraints (5.7)). The flow section carries along with it some
features of flow models, among them the presence of heavily degenerate bases in
cases (like this) with a single source and a single sink. This can (possibly, but not
certainly) lead to stalling/slow convergence behaviors.

In (5.5)–(5.8) the flow moves along arcs in the graph. Moving the flow on whole
paths can be seen as a workaround for the problems stemming from degenerate
bases. We consider the set P of all possible paths 1 → W + 1 and define binary
variables xP for each P ∈ P. Let us introduce a vector aP ∈ Nn where each
component aPj counts the number of times that job j appears in the batches B of
the arcs (i, k, B) ∈ P ; we stress that here generally P is not necessarily a partition
path, so more than one batch on the path might contain the same job j, or some job
j can even fail to appear on the path P . The search for a minimum cost partition
path is then captured by the following program, where cP =

∑
(ikB)∈P cikB.

5.1 Column Generation models 67

minimize
∑
P∈P

cPxP (5.15)

subject to
∑
P∈P

xP = 1 (5.16)

∑
P∈P

aPxP = 1 (5.17)

xP ∈ {0, 1} P ∈ P (5.18)

We replace (5.18) with

xP ≥ 0 P ∈ P (5.19)

when considering the continuous relaxation. Constraint (5.16) forces the integer
flow to move along a single path. The vector constraint (5.17) forces the selected
path to be a partition-path: actually (5.17) subsumes n scalar constraints enforcing
that each job j ∈ {1, 2, . . . , n} is counted exactly once in the selected path. If the
continuous relaxation is considered, constraints (5.17) requires that summing up
the number of times that each job is used over all the paths P with xP > 0 must
exactly add up to 1, for each job. We remind the reader that while only one path can
take xP = 1 in the solution of the binary program, the continuous relaxation can in
general have several xP > 0.

The dual of (5.15)–(5.19) is the following, with dual variables µ for constraint (5.16)
and λ1, . . . , λn for the n scalar constraints from (5.17).

maximize µ+
∑
j∈N

λj

subject to µ+
n∑
j=1

aPjλj ≤ cP P ∈ P

Pricing

Given optimal multipliers/dual variables µ, λ1, . . . , λn, a path P ∗ with minimum
reduced cost must satisfy

c̄P ∗ = min
P∈P

cP − µ−
n∑
j=1

aPjλj

 = min
P∈P

 ∑
(ikB)∈P

cikB −∑
j∈B

λj

− µ. (5.20)

68 Chapter 5 Weighted total completion time: single machine and heuristics

The problem in equation (5.20) amounts to determine a minimum cost path 1 →
W + 1 on the very large graph G, using arcs with modified costs

cikB = pB(W − i+ 1)−
∑
j∈B

λj .

Graph G is naturally layered, only arcs (i, k, B) with i < k are present, and a
minimum cost path 1→W+1 onG can be computed basically by an implementation
of the shortest path algorithm by Gondran et al. [30]. Given a node k and a
predecessor i < k, the cheapest arc from i to k must be associated with a batch B
such that

ĉikB = min
B

pB(W − i+ 1)−
∑
j∈B

λj :
∑
j∈B

sj ≤ b, wB = k − i

 . (5.21)

Equation (5.21) is completely analogous to (5.12), and can be solved by relying on
a DP table similar to the one described for the arc-based model:

gr(τ, `) = max

n∑
j=r

λjyj :
n∑
j=r

sjyj ≤ τ,
n∑
j=r

wjyj = `, yj ∈ {0, 1}

 .

Given such table, whose size is limited by O(nWb), the computation of a path with
minimum reduced cost is done by Algorithm 7 (MINIMUMCOSTPATH) in a running
time bounded by O(nW 2).

Algorithm 7 Minimum cost path procedure.
1: function MINIMUMCOSTPATH(µ, λ1, . . . , λn)
2: Set Π1 := 0, Πk :=∞ for k = 2, . . . ,W + 1;
3: for i = 0, . . . ,W do . for each starting position
4: for k = i+ 1, . . . ,W + 1 do . for each ending position
5: for r ∈ N do . for each job
6: Set Πk := min{Πk,Πi + pr(W − i+ 1)− gr(b, k − i)}
7: end for
8: end for
9: end for

10: return ΠW+1 − µ;
11: end function

Again, a minimal subset of starting columns (paths in this case) is required to
evaluate the first optimal multipliers and start generating new columns. To populate
in a meaningful way the RMP, we first add to the problem the path corresponding
to Azizoglu and Webster [5] heuristic. Then, we order all jobs j in a non-decreasing
order with regard to the processing time pj and partition them in batches, creating
a new batch when the previous is full (that is, adding the next job in the previous
batch would invalidate max capacity constraint), adding the resulting path to the

5.1 Column Generation models 69

RMP. Finally, we generate a number of random sequences and partition them in
batches again as we do with the ordered sequence.

5.2 Upper bounding: heuristics
This section outlines simple but effective rounding strategies for generating integer
solutions from the fractional optimal solution of the relaxed model. The focus is kept
on the arc-based model, because the arc-based model is especially well-suited for a
strategy where one arc at a time is rounded to an integral flow value in order to build
a partition path. Rounding a single (or few) arc variables in program (5.5)–(5.9)
is easily managed in the LP solver, while partially rounding a path-variable in a
program like (5.15)–(5.19) would require a trickier handling of the residual problem.
Also, despite of the attractive feature of having a reduced number of constraints in
the master problem, the path-based model turned out to be computationally heavier
than the arc-based model (see Section 5.3 ahead).

Once program (5.5)–(5.9) has been solved, a lower bound is available; a minimal-
effort strategy for getting an upper bound could be setting all variables back to the
binary type and solve the integer version of the RMP by Branch-and-Bound (B&B),
possibly truncating the process when a limit on computation time and/or processed
branch nodes is reached. This approach, also called Price-and-Branch (P&B) as
opposed to the exact B&P approach, was pursued in Alfieri et al. [2] and Alfieri et al.
[3] for the special case of the problem where wj = 1 for all j ∈ N . For the general
1|p−batch, b, σj |

∑
wjCj problem anyway, the large size of the involved LP models

involved makes using a B&B impractical, especially for large instances.

We investigated simple strategies based on rounding fractional variables in order
to generate feasible solutions within shorter computation times. This approach is
inspired by Mourgaya and Vanderbeck [53] where rounding heuristics are applied
to vehicle routing problems.

5.2.1 Variable Rounding Upper Bound

In the basic rounding approach, we build a partition path by rounding flow values,
starting from the source and moving towards the sink node. Given the optimal
fractional flow on the final RMP, we search for the arc (i, k, B) with maximal
nonzero flow that lies as near as possible to the source, and round its flow value to 1.
If the previous value of the flow on (i, k, B) was less than 1, the RMP is reoptimized,
possibly adding other columns in the reoptimization process.

Note that rounding a fractional variable to 1 could in principle make the RMP
unfeasible; such an event cannot happen in our implementation, because of how
the initial set of columns is generated by Algorithm 6 (INITCOLSW); in particular, it

70 Chapter 5 Weighted total completion time: single machine and heuristics

is worth noting that a partition path made of single-job arcs is always available in
order to build a (possibly bad) feasible solution for the residual problem.

We then iterate this rounding step until an arc reaching the sink node W + 1 is fixed,
thus completing a feasible solution. The value of such solution is called Variable
Rounding Upper Bound (VR-UB) in the following, and Algorithm 8 sketches the
procedure.

Algorithm 8 Variable Rounding Upper Bound (VR-UB) procedure.
1: G(V,A′)← optimum solution of the RMP;
2: x← {xikB : (i, k, B) ∈ A′}; . set of all RMP variables
3: i← 1;
4: while i < W + 1 do
5: (i, k, B)← arg max{xik′B′ : (i, k′, B′) ∈ A′}; . arc with maximum flow
6: if xikB = 1 then . if maximum flow is integral, no need to reoptimize
7: Fix variable xikB to 1;
8: else . if maximum flow is not integral, reoptimize
9: Fix variable xikB to 1;

10: G(V,A′)← optimum solution of the RMP;
11: x← {xikB : (i, k, B) ∈ A′}; . set of all RMP variables
12: end if
13: i← k;
14: end while
15: VR-UB← optimum solution of the RMP; . integral solution

5.2.2 Early Rounding Upper Bound
The CG-LB plus VR-UB procedure delivers in a relatively short time both a lower and
an upper bound for the 1|p−batch, b, σj |

∑
wjCj problem, but for larger instances

(for example, more than 50 jobs) and some size distributions the execution could go
on for a considerable amount of time (more than 3 minutes for 60 jobs, more than
30 minutes for 100 jobs).

In order to speed up the construction of a partition path without losing too much of
the quality of our bounds, a possible strategy consists of trusting the information
gathered in the solution of the continuous relaxation before (sometimes even well
before) convergence to the relaxed optimum is achieved, and proceeding to round
variables anyway. This strategy is called early rounding in what follows. After a cer-
tain number of “unfruitful” iterations of CG exhibiting only a small improvement in
objective function, an arc variable (i, k, B) with i as small as possible and maximum
flow value is fixed to 1, by a logic analogous to the one used in Algorithm 8.

This obviously prevents the delivery of a valid lower bound at the end, offering
in exchange a faster shrinking of the residual problems to be optimized in the
next iterations. This tradeoff turns out to be practically advantageous, allowing
to consistently reduce computation times without giving up much of the solution

5.2 Upper bounding: heuristics 71

quality. The procedure is summarized in Algorithm 9, where threshold and steps are
parameters determining respectively the minimum relative improvement in objective
function below which the iteration is considered unfruitful, and the maximum
number of unfruitful iterations to be tolerated before a rounding is performed. The
value of the resulting solution is called Early Rounding Upper Bound (ER-UB).

Algorithm 9 Early Rounding Upper Bound (ER-UB) procedure.
1: A′ ← INITCOLSW(N, b);
2: W ←

∑n
j=1wj , k ← 1, s← 0;

3: z,u,v ← optimum of G(V,A′); . evaluating to obtain duals
4: while i < W + 1 do
5: A′ ← A′ ∪ NEWCOLSW(N, b,u,v); . generating new columns
6: z′,u,v ← optimum of G(V,A′); . evaluating new optimum
7: if (z − z′)/z < threshold then . if difference is less than threshold. . .
8: s← s+ 1; count an “unfruitful” iteration
9: else

10: s← 0;
11: end if
12: if s ≥ steps then
13: (i, k, B)← arg max{xik′B′ : (i, k′, B′) ∈ A′}; . arc with maximum flow
14: Fix variable xikB to 1;
15: i← k; . new starting position is old ending position
16: s← 0; . reset “unfruitful” counter
17: z,u,v ← optimum of G(V,A′); . evaluating to obtain duals
18: end if
19: end while
20: ER-UB← z; . integral solution

5.3 Computational results

All the tests ran in a Linux environment equipped with Intel Core i7-6500U CPU
@ 2.50GHz processor; all algorithms have been implemented in D (using a language
subset that practically guarantees C-like performances); the LP solver used was
CPLEX 12.8.

A number of test instances were generated following the de-facto standard for this
type of parallel batching problems; this is the same scheme used for tests presented
in Section 4.3 with the addition of the job weights.

• The machine capacity was fixed to b = 10.

• The processing times pj were randomly drawn from the uniform discrete
distribution [1, 100].

72 Chapter 5 Weighted total completion time: single machine and heuristics

• The job sizes sj were randomly drawn from four possible uniform discrete
distributions, labeled by σ ∈ {σ1, σ2, σ3, σ4}:

σ1 : sj ∈ [1, 10] σ3 : sj ∈ [3, 10]

σ2 : sj ∈ [2, 8] σ4 : sj ∈ [1, 5].

• The job weights wj were drawn from the uniform discrete distribution [1, 50].

A batch with ten instances for each σ class was generated, plus a larger batch with
twenty-five examples for each σ for more extensive testing; the latter is named
“Extended Set” in the following.

Tab. 5.1: CPU times and RMP size for arc-based model vs path-based model.

Param Arc-based Path-based

n σ Time (s) Columns Time (s) Columns

10 σ1 0.05 2096 1.26 76
σ2 0.05 2017 0.89 85
σ3 0.03 1955 0.75 79
σ4 0.07 2344 1.55 90

20 σ1 1.33 9215 118.24 459
σ2 0.98 8686 53.37 367
σ3 0.59 8487 92.74 667
σ4 3.30 13592 112.50 295

30 σ1 9.90 23944 912.98 965
σ2 5.67 22907 664.42 1013
σ3 2.70 21858 605.11 1322
σ4 24.30 33242 1670.77 828

5.3.1 Performance of basic models
The first tests compared the performances of the arc-based model against the path-
based model. Both models were run on the same set of instances in order to compute
the continuous lower bound. The path-based model proved to be unable to handle
instances with more than 30 jobs within reasonable computation times; detailed
results are given in Tab. 5.1. The lower bound is (as expected by the theory) the
same for both models, even if the computation times are heavily different.

Profiling the algorithms allows to observe that the solution processes for the two
models have different bottlenecks.

• For the arc-based model, most of the CPU time is spent in the solution of
the RMP; the typical basis in the master problem is quite degenerate, often
exhibiting more than 80% of basic variables fixed to zero. On the other hand, a
very short time is spent in the pricing routine: despite of the pseudopolynomial
worst-case time complexity, thanks to the memoization approach usually a

5.3 Computational results 73

small portion of the DP state space actually need to be exploited, and time
measures (omitted in table for conciseness) show that usually about 15 % of
the CPU time is spent generating new columns.

• For the path-based model, the basis is still heavily degenerate (apparently
only slightly less than in the arc-based model); the size of the RMP (both
in rows and columns) is considerably smaller than for the arc-based model,
and the time spent solving the master is proportionally smaller. Anyway, a
more efficient method for generating columns is required in order to make
the path-based model competitive. The overall complexity of the pricing
procedure in Algorithm 7 is comparable with that of Algorithm 5 used for
the arc-based model, but whereas Algorithm 5 can generate a set of columns
to be added to the RMP, only one column at a time will emerge from the
application of Algorithm 7. This usually results in a snap reoptimization of
the heavily degenerate RMP with only a small (or even null) decrease in the
objective value and a new call to the pricing phase. The number of calls to the
pricing procedure for the path-based model is so high that more than 90% of
the computation time is spent in the pricing procedure, with a much higher
number of iterations required to reach convergence.

In view of this, the use of arc-based models has been pursued in this work. The
path-based model still remains interesting because of the smaller size of the RMP,
but some more research effort has to be devoted to enhancing the pricing phase.

5.3.2 Generating feasible solutions by rounding

From now on, the arc-based continuous relaxation (5.5)–(5.9) is considered. Results
with the basic variable rounding heuristic are presented first. In this approach, once
convergence has been reached for the continuous relaxation, Algorithm 8 is applied,
iteratively selecting an arc carrying a fractional flow and rounding it to 1.

Very few heuristics and/or relaxations are available in literature for this problem,
among them are both a relaxation and a greedy heuristic developed by Azizoglu and
Webster [5] in the context of a B&B algorithm for 1|p−batch, b, σj |

∑
wjCj . Such

procedures are labeled AW-LB and AW-UB respectively.

All gaps in the following tables are evaluated by the relative difference between
upper bound and lower bound, using the formula

Gap (%) = UB− LB
UB

· 100%

where LB is CG-LB in all cases, and UB is VR-UB for Tab. 5.2. In Tab. 5.3, Tab. 5.4
and Tab. 5.5 both VR-UB and ER-UB are considered as UB, depending on the column
sets. Average, highest and lowest gap values are presented. In Tab. 5.3, Tab. 5.4

74 Chapter 5 Weighted total completion time: single machine and heuristics

and Tab. 5.5 the values highlighted in bold refer to the best performing algorithm,
VR-UB or ER-UB, considering execution time and gap quality.

“LB” and “UB” columns in Tab. 5.2 give a comparison between our lower/upper
bounds and the lower/upper bounds by Azizoglu and Webster [5]. In “LB”, the
higher is the value the better is the result for CG-LB; in “UB”, the lower is the value
the better is the result for VR-UB. Finally, the “opt” column in Tab. 5.2 shows how
many optima (amongst the 10 instances of the test set) the combination of CG-LB
and VR-UB have certified; this happens when CG-LB equals VR-UB and the lower
bound has zero variables with fractional value.

Tab. 5.2: Results for CG-LB and VR-UB on the weighted model. The third-to-last and
second-to-last columns compare CG-LB and VR-UB with Azizoglu & Webster’s
lower (AW-LB) and upper (AW-UB) bounds.

Param Times (s) Gap (%) LB UB

n σ CG-LB VR-UB avg worst best CG-LB
AW-LB

VR-UB
AW-UB opt

10 σ1 0.05 0.07 0.33 3.33 0.00 1.39 0.83 9
σ2 0.05 0.06 0.04 0.40 0.00 1.31 0.94 9
σ3 0.03 0.04 0.08 0.80 0.00 1.27 0.97 9
σ4 0.07 0.08 0.02 0.18 0.00 1.41 0.82 9

20 σ1 1.33 1.55 0.46 3.84 0.00 1.29 0.87 3
σ2 0.98 1.18 0.39 2.11 0.00 1.25 0.86 6
σ3 0.59 0.82 0.31 2.24 0.00 1.21 0.94 7
σ4 3.30 4.05 1.09 2.53 0.00 1.35 0.78 2

30 σ1 9.90 11.25 0.72 1.73 0.00 1.18 0.81 3
σ2 5.67 7.62 0.69 3.63 0.00 1.21 0.86 1
σ3 2.70 4.01 0.48 2.25 0.00 1.18 0.95 5
σ4 24.30 31.10 1.25 4.03 0.00 1.27 0.73 2

40 σ1 28.09 41.38 0.74 2.38 0.00 1.20 0.76 3
σ2 33.26 46.61 0.42 1.19 0.00 1.17 0.83 3
σ3 17.50 24.18 0.80 2.13 0.00 1.18 0.87 4
σ4 64.58 107.58 1.30 2.14 0.13 1.21 0.78 0

50 σ1 43.05 62.84 0.30 0.87 0.00 1.15 0.73 1
σ2 40.43 55.88 0.41 1.37 0.00 1.16 0.84 2
σ3 19.55 25.37 0.28 1.50 0.00 1.19 0.94 6
σ4 128.90 203.24 1.10 2.25 0.00 1.18 0.76 1

60 σ1 127.81 205.69 0.61 1.54 0.00 1.17 0.72 1
σ2 117.85 202.06 1.04 1.86 0.22 1.13 0.79 0
σ3 59.00 92.81 0.70 1.57 0.01 1.17 0.88 0
σ4 234.28 418.74 1.42 2.68 0.49 1.18 0.77 0

80 σ1 244.65 478.08 0.95 2.02 0.25 1.14 0.71 0
σ2 289.18 570.80 0.48 1.43 0.07 1.11 0.78 0
σ3 197.93 278.11 0.34 1.04 0.00 1.15 0.85 2
σ4 563.20 1249.07 1.29 2.55 0.47 1.15 0.75 0

100 σ1 625.20 1363.70 0.44 1.34 0.06 1.11 0.76 0
σ2 499.86 938.33 0.53 1.33 0.00 1.13 0.83 1
σ3 291.80 408.78 0.22 0.46 0.00 1.16 0.93 1
σ4 1245.92 2916.67 1.26 2.02 0.61 1.11 0.73 0

5.3 Computational results 75

Table 5.2 points to the performance comparison between CG-LB + VR-UB and AW-LB
+ AW-UB. The “Times (s)” columns report the average CPU times for computing the
CG based lower bound (CG-LB) and the time needed to reach a completely integral
solution by the rounding/fixing procedure (VR-UB), including both computational
times. Instances from classes σ1, σ4 turn out to be computationally harder than the
easy σ3 instances, with σ2 somehow in the middle; this conforms to what is reported
in literature about similar problems. From the point of view of solution quality, both
CG-LB and VR-UB strongly dominate AW-LB and AW-UB: our lower bound is 10%
to 40% higher the one by Azizoglu & Webster, whereas our upper bound improves
up to 25% over their. This does not come as a surprise, since AW-LB and AW-UB are
cheap, quick-and-dirty components for a more complex B&B method. What really
points to the added value of CG-LB + VR-UB is the very narrow optimality gap that
can be certified for instances up to n = 100 jobs; such gap in no case raised above
5%, usually being much smaller. On the other hand the computation time required
by such procedures is probably not acceptable for a heuristic algorithm on large (say
n > 50 jobs) instances.

Tab. 5.3: Comparison between VR-UB and ER-UB on the weighted model. Reference lower
bound for gap evaluation is CG-LB in both cases.

Param Times (s) VR-UB Gap (%) ER-UB Gap (%)

n σ VR-UB ER-UB avg worst best avg worst best

20 σ1 1.55 0.90 0.46 3.84 0.00 0.82 3.70 0.00
σ2 1.18 0.83 0.39 2.11 0.00 1.29 3.49 0.00
σ3 0.82 0.60 0.31 2.24 0.00 0.42 2.52 0.00
σ4 4.05 1.30 1.09 2.53 0.00 1.04 2.50 0.00

40 σ1 41.38 14.67 0.74 2.38 0.00 1.79 3.79 0.20
σ2 46.61 13.75 0.42 1.19 0.00 1.62 2.85 0.62
σ3 24.18 12.40 0.80 2.13 0.00 0.88 2.58 0.08
σ4 107.58 15.84 1.30 2.14 0.13 1.81 3.44 0.94

60 σ1 205.69 48.54 0.61 1.54 0.00 1.21 3.01 0.31
σ2 202.06 47.67 1.04 1.86 0.22 1.59 3.13 0.35
σ3 92.81 45.19 0.70 1.57 0.01 0.84 2.45 0.10
σ4 418.74 56.35 1.42 2.68 0.49 2.34 3.82 1.62

80 σ1 478.08 129.63 0.95 2.02 0.25 1.02 1.93 0.35
σ2 570.80 116.23 0.48 1.43 0.07 1.31 2.17 0.33
σ3 278.11 112.99 0.34 1.04 0.00 0.53 1.12 0.12
σ4 1249.07 148.11 1.29 2.55 0.47 2.50 3.05 1.21

100 σ1 1363.70 282.04 0.44 1.34 0.06 0.89 2.24 0.14
σ2 938.33 280.70 0.53 1.33 0.00 0.59 1.15 0.13
σ3 408.78 260.11 0.22 0.46 0.00 0.21 0.54 0.02
σ4 2916.67 302.78 1.26 2.02 0.61 1.89 3.07 1.27

Algorithm 9 (ER-UB) is specifically considered in order to overcome this performance
issue; as explained in Section 5.2.2 the price to pay is that of no longer having a
valid lower bound at the end of the computation. The experimental results show
that solutions delivered by ER-UB retain most of the high-quality features of the

76 Chapter 5 Weighted total completion time: single machine and heuristics

solutions delivered by VR-UB, while leading to drastic savings in computation times.
This means that the (relaxation of the) RMP can provide valuable information for
building a good feasible solution from the very first stages of the optimization. In the
tests, the algorithm parameters were set to steps = 3 and threshold = 0.001 after a
few sample trials, without attempting a fine calibration. In Tab. 5.3, where the gaps
are evaluated against CG-LB, is shown that such gaps for ER-UB are generally not
unacceptably higher than those of VR-UB, with much smaller CPU times.

Tab. 5.4: Comparison between VR-UB and ER-UB on the weighted model over the Extended
Set. Reference lower bound for gap evaluation is CG-LB in both cases.

Param Times (s) VR-UB Gap (%) ER-UB Gap (%)

n σ VR-UB ER-UB avg worst best avg worst best

20 σ1 1.81 1.23 0.49 2.61 0.00 2.02 9.61 0.00
σ2 2.60 1.61 0.79 5.82 0.00 1.96 6.19 0.00
σ3 1.59 1.17 0.56 4.61 0.00 0.90 4.79 0.00
σ4 5.42 1.77 1.07 4.67 0.00 1.64 6.52 0.00

40 σ1 37.44 12.81 0.89 2.82 0.00 1.37 4.03 0.20
σ2 48.32 15.03 0.77 3.54 0.00 1.55 3.69 0.22
σ3 17.88 12.04 0.55 2.85 0.00 0.83 3.27 0.00
σ4 86.01 15.34 1.52 3.51 0.01 2.62 6.81 0.54

60 σ1 176.55 52.82 0.80 2.26 0.00 1.04 2.36 0.34
σ2 163.18 50.68 0.56 1.35 0.00 1.21 3.57 0.30
σ3 98.46 50.03 0.60 2.16 0.00 0.66 1.74 0.00
σ4 407.89 60.13 1.58 4.11 0.67 2.34 3.90 1.25

80 σ1 627.62 147.53 0.72 2.11 0.10 1.02 2.57 0.13
σ2 522.87 145.79 0.65 2.31 0.00 0.85 1.58 0.23
σ3 269.40 128.21 0.43 1.51 0.00 0.53 1.53 0.01
σ4 1127.97 155.38 1.21 2.55 0.17 2.21 4.18 0.75

100 σ1 1536.97 354.50 0.54 1.17 0.17 0.79 1.47 0.27
σ2 1128.45 280.00 0.52 1.12 0.02 0.81 1.76 0.21
σ3 680.02 277.80 0.37 1.27 0.00 0.35 1.10 0.00
σ4 2399.67 465.23 1.20 2.21 0.37 1.92 3.15 0.91

Results for VR-UB and ER-UB on an Extended Set of instances (25 per each σ

class instead of 10) are reported in Tab. 5.4. This further analysis certifies, on a
bigger instance pool, what already happened in Tab. 5.3: algorithm ER-UB runs in
significantly smaller CPU times, while algorithm VR-UB gives slightly more accurate
gaps. It is worth noting that, especially with the increase in number of jobs n,
the percentage difference in gaps between VR-UB and ER-UB always remains very
small.

In Tab. 5.5 a new job size distribution, σ5 : sj ∈ [1, 50], and a new batch capacity,
b = 50, are introduced. The (σ5, b = 50) combination is very similar to the (σ1, b =
10) one, because it can be seen as a “rescaling” of values over two different ranges
(remember that σ1 : sj ∈ [1, 10]). Obviously this increase in job size granularity and
in max capacity has an impact over time/space complexity of the algorithm, but it is

5.3 Computational results 77

Tab. 5.5: Comparison between VR-UB and ER-UB on the weighted model over the Extended
Set, considering job size distribution σ1 : sj ∈ [1, 10] with batch capacity b = 10
and job distribution σ5 : sj ∈ [1, 50] with batch capacity b = 50. Reference lower
bound for gap evaluation is CG-LB in both cases.

Param Times (s) VR-UB Gap (%) ER-UB Gap (%)

n b σ VR-UB ER-UB avg worst best avg worst best

20 10 σ1 1.81 1.23 0.49 2.61 0.00 2.02 9.61 0.00
50 σ5 2.98 1.62 0.54 4.70 0.00 1.41 7.28 0.00

40 10 σ1 37.44 12.81 0.89 2.82 0.00 1.37 4.03 0.20
50 σ5 52.64 18.03 0.72 2.86 0.00 1.47 3.26 0.22

60 10 σ1 176.55 52.82 0.80 2.26 0.00 1.04 2.36 0.34
50 σ5 321.99 70.51 0.94 2.15 0.00 1.29 3.80 0.23

80 10 σ1 627.62 147.53 0.72 2.11 0.10 1.02 2.57 0.13
50 σ5 817.38 184.49 0.77 2.74 0.00 0.95 1.88 0.20

100 10 σ1 1536.97 354.50 0.54 1.17 0.17 0.79 1.47 0.27
50 σ5 1684.46 372.23 0.71 1.88 0.09 1.04 2.43 0.33

not as high as one could have feared. For example in the case n = 100 the average
time increase of VR-UB is 9.6% and of ER-UB is 5.0%. On the other hand, the gap
quality of the two algorithms seems to not suffer much from the change in values of
σ and b, especially with increasing number n of jobs. This is probably due to the fact
that the two combinations are very similar except a “rescaling” of values.

5.4 Final remarks

The 1|p−batch, b, σj |
∑
wjCj problem can be effectively tackled by means of CG

techniques. The CG-LB lower bound obtained by solving the relaxed arc-based
model (5.5)–(5.9) is, to the writer’s knowledge, the sharpest bound currently avail-
able for this problem. The proposed bounding procedure generates arcs (columns)
to be added to a RMP via DP. The resulting RMP are large but still manageable by an
LP solver like CPLEX. The same bound could be obtained using a path-based model
for the problem, like (5.15)–(5.19), resulting in a more compact RMP; anyway some
more efficient pricing procedure is needed in order to speed up the optimization for
such model.

The computation time required for computing CG-LB is still too high for using it
into a B&P exact procedure, but a simple rounding strategy turns out to be quite
effective in building heuristic solutions whose value are within a few percentage
points from the optimum, with optimality gap certified by CG-LB. In order to speed
up the heuristic procedure, variable rounding can be performed well before complete
convergence to the relaxed optimum of the RMP. This looses the availability of a valid
lower bound at the end of the heuristic procedure, but computational experience

78 Chapter 5 Weighted total completion time: single machine and heuristics

shows that in practice the quality of the heuristic solution is not severely affected by
this early rounding.

Whereas the arc-based CG model allows to generate good heuristic solutions in
reasonable computation times, it seems unlikely that, with the current performances,
it can be embedded into an exact B&P procedure: computing CG-LB is still compu-
tationally heavy for that kind of application. Some directions for future research
are currently under consideration. Among others, the INITCOLSW procedure for
initializing the column set in the RMP is not very sophisticated; significant speedups
could be obtained being more aggressive in generating “good” columns in this startup
phase. Also, an enhanced (exact or heuristic) pricing procedure for the path-based
model could pave the way for interesting developments.

5.4 Final remarks 79

6Unweighted total completion time:
heuristics for multi-size jobs and
incompatibility families

T
HIS chapter addresses another variant of the parallel batch scheduling
problem. We recall that jobs in each batch are processed in parallel, so the
processing time of the whole batch is equal to the maximum processing

time amongst the jobs that compose it. We also recall that the objective is to compose
the batches and to sequence them, in order to optimize a performance measure.

Usually, batches have a maximum size, depending on the technological characteristics
of the process (Potts and Kovalyov [59]); for instance, the batch might have a
maximum weight, or a maximum volume. Thus, to form the batches, the size
constraint must be taken into account.

The batch scheduling problem is typical of semiconductor industries, mold manufac-
turing (Liu et al. [44]), medical device sterilization (Ozturk et al. [57]), heat-treating
ovens (Mönch and Unbehaun [52]), chemical processes in tanks or kilns (Takamatsu
et al. [65]), semiconductor and wafer fabrication industries (Mönch et al. [51]), and
testing of electrical circuits (Hulett et al. [32]). Also additive manufacturing often
requires batch production to optimize the chamber space, see for example the work
by Zhang et al. [71]. However, here the processing times depend on different factors
than those of conventional production, and the resulting scheduling problem could
be different.

Sometimes, batch production needs to address multiple sizes in composing the
batches; for instance, in additive manufacturing, chambers can produce various
parts simultaneously, either by placing products in the 2-dimensional space or by
stacking products and hence using the 3-dimensional space of the chamber. Thus,
when creating the batches, constraints on several dimensions must be considered;
for instance, if the additive manufacturing technology in use is able to stack parts
in the chamber, then there is a maximum vertical span (height) and a maximum
horizontal area that cannot be exceeded. These dimensions (height, horizontal area)
will be called sizes in the following. Similarly, other industries could have the same
batch requirements.

Moreover, for technological reasons, in shop floors where various product families
are produced, batches must be composed of jobs of the same family. This is the case
for families that need different manufacturing operations.

81

Due to the current industrial challenges, this chapter addresses the single machine
batch scheduling problem with multiple sizes and incompatible job families. The
aim is to find the batch schedule that minimizes the total completion time; thus,
with the three-field standard notation by Graham et al. [31], the addressed problem
is defined as 1|p−batch, bi, σij , incomp|

∑
Cj , where p−batch defines the parallel

batching, σij ≤ bi the multiple sizes, and incomp the incompatible job families.

To the writer’s knowledge, this is the first attempt to address the batch scheduling
problem with total completion time minimization, and jobs with multiple sizes and
incompatible families. As the problem is NP-hard, a flow formulation is exploited to
solve it through two Column Generation (CG) heuristics. The CG finds a continuous-
relaxed solution, then two different heuristics from the literature are used to move
from the continuous to the integer solution of the problem: the first is based on the
so-called Price-and-Branch (P&B) heuristic (Alfieri et al. [3]) like the one used in
Chapter 4, the other on a variable rounding procedure (Druetto and Grosso [20])
akin to the one presented in Chapter 5.

An extensive experimental campaign was run to compare the two heuristics, which
both prove to be very effective for this scheduling problem. As the results will show,
variable rounding is the most effective both in terms of computation time and quality
of solution. Other useful insights for practical applications will be derived from the
results.

6.1 Multiple sizes and incompatible families
Recalling the notation introduced in Chapter 3, a set of jobs N = {1, 2, . . . , n} must
be grouped in batches, and the batches must be scheduled on the machine. Setup
times between batches are assumed to be negligible and are not considered.

The machine processes jobs in batches, and batches must respect physical constraints,
such as maximum height, volume, weight, and so on. Let d be the number of different
sizes to be addressed (that is, d = 3 if the physical constraints imply maximum
height, volume and weight), and bi be the batch capacity associated to the size i
(with i = 1, . . . , d). Each job j has a processing time pj , and d size values sij , with
i = 1, . . . , d. For instance, if batches must respect a maximum volume (b1) and a
maximum height (b2), then each job j will be characterized by its own volume s1j

and its own height s2j .

In the machine, jobs must be clustered in batches, such that the sum of job sizes sij
of all jobs in a batch does not exceed the batch dimension bi (with i = 1, . . . , d). In
addition, jobs are grouped into families that represent different process requirements.
Hence, jobs from different families must be processed in different batches. There are
nf families, and each job j belongs to a family f , hence f = 1, . . . , nf .

82 Chapter 6 Unweighted total completion time: heuristics for multi-size jobs and

incompatibility families

A solution to the problem is made by a batch schedule, that is, a sequence of feasible
batches S = B1, . . . , BnB . The total number of batches nB is not known a priori,
but it depends on how jobs are clustered in each solution. However, the number of
batches nB must be in the range between nf and n, as there should exist at least
one batch for each family, and there are at maximum n batches each composed of
one single job.

All jobs in a batch B are assumed to be processed simultaneously and the processing
time pB of batch B equals the longest processing time of jobs contained in it; that
is, pB = max{pj : j ∈ B, j = 1, . . . , n}. Also, a job is completed when all other
jobs in the same batch are completed, that is, the completion time Cj of each job
equals the completion time of the batch it belongs to. The aim is to find the sequence
S = B1, . . . , BnB that minimizes the total completion time.

In this work, the three combinations of constraints will be considered; not only the
full problem 1|p−batch, bi, σij , incomp|

∑
Cj with multi-size jobs and incompatible

families, but also the multi-size problem without families 1|p−batch, bi, σij |
∑
Cj ,

and the family problem with single size-jobs 1|p−batch, b, σj , incomp|
∑
Cj .

6.2 Column Generation-based heuristics
The flow model described in Chapter 4 (Alfieri et al. [3]) is exploited and adapted to
the problem at hand to develop two heuristic algorithms. The flow model considers
the feasible batches as binary variables and associates a cost to each of them, whose
sum is to be minimized in the objective function. Usual flow constraints guarantee
the flow preservation from a source node to the last and a second set of constraints
guarantee that each job is scheduled exactly once; for the details on the flow
formulation, refer to Section 4.1.

Some modifications in the underlying Dynamic Programming (DP) structure of
the flow model are made, and two heuristics are used to solve the problem. Both
heuristics rely on an initial CG algorithm, which solves the continuous relaxation
of the flow model. Then, the heuristics use different techniques to move from the
continuous solution found by CG to the final integer solution of the problem, as will
be explained in the following.

6.2.1 The CG-LB Column Generation algorithm

The CG starts from a restricted formulation of the relaxed continuous flow model
and iteratively selects promising variables (that is, promising batches) through a
so-called pricing procedure. The CG finds as an output the optimal solution of the
continuous relaxation of the flow model. This solution is then used as a starting
point to find the integer solution of the initial problem in the heuristics. The details

6.2 Column Generation-based heuristics 83

of the CG are explained in the following; refer to Section 4.1.2 for more details,
since this section is an adaption to the approach previously described.

Initialization

First, an initialization phase is needed: we adapted the procedure INITCOLS described
in Algorithm 2 to handle multiple sizes and families. Jobs are first sorted according to
the Shortest Processing Time (SPT) rule; then, some feasible batches are generated
by clustering together the sorted jobs until one of the maximum batch dimensions is
reached, or until a job belonging to a different family is selected. When the batch
is closed, it is placed on all possible schedule positions, and then, a new batch is
developed with the same rule. The final output of the initialization is the set H,
which contains a set of feasible batches.

The set H is set as the initial column set in the CG, which is used to solve the
continuous relaxation of the flow model. The algorithm iterates between solving
the Restricted Master Problem (RMP) (that is, the problem with only a subset of
variables) and the pricing problem (the problem of selecting new columns to be
added to the RMP) until the continuous optimum is found.

Pricing

In the pricing procedure, the dual multipliers associated with the RMP are computed
to find the most promising variables, that is, those with the most negative reduced
cost, to be included in the next iteration of the RMP. This procedure is an adaption
of the NEWCOLS one described in Algorithm 1, with only a modification in the DP
state space, as we are going to see in the following.

The pricing problem searches for the minimum reduced cost c̄ikB∗ associated to arc
(i, k, B∗), among all arcs (i, k, B) that correspond to feasible batches. Let vj be the
dual multiplier corresponding to the constraints that guarantee that all jobs are
included in the final schedule, and let ui, uk be the dual multipliers corresponding to
the flow maintenance constraints. Recall that each job j belongs to a family fj and
has d different sizes shj (h ∈ {1, . . . , d}), corresponding to the d batch capacities bh;
furthermore, the batch cardinality |B| must be equal to (k − i). Then, the problem
can be formulated as follows:

c̄ikB∗ = min
B

cikB −
∑
j∈B vj :∑

j∈B shj ≤ bh ∀h ∈ {1, . . . , d},
fj = fj′ ∀j, j′ ∈ B,
|B| = (k − i)

− (ui − uk). (6.1)

For each new possible feasible batch B, the evaluation of the corresponding reduced
cost depends on the position in the sequence, on the processing time and on the

84 Chapter 6 Unweighted total completion time: heuristics for multi-size jobs and

incompatibility families

jobs included in the batch. By isolating the parts depending on the position in an
external loop that considers every i, k with k > i, the problem at hand is reduced to
the computation of the feasible batch containing k − i jobs with maximum value.
This problem can be formulated as a cardinality-constrained multi-weight knapsack,
which has to be solved for every starting and ending position. Indeed, jobs are the
items, their dual multipliers are profits, and their sizes are the weights.

The solution space of the multi-weight knapsack problem with cardinality constraint
is explored via a DP algorithm. Specifically, for every pair of i, k with k > i,
and for each job r = 1, . . . , n, let gr(τ1, . . . , τd, `) be the optimal knapsack with
capacities τh for all h ∈ {1, . . . , d}, cardinality ` = k− i, and that considers only jobs
r, r + 1, . . . , n. The binary variable yj ∈ {0, 1} equals 1 if job j is selected for the
knapsack, 0 otherwise. Then, the algorithm searches for:

gr(τ1, . . . , τd, `) = max

∑n
j=r vjyj :∑n

j=r s1jyj ≤ τ1, . . . ,
∑n
j=r sdjyj ≤ τd,∑n

j=r yj = `, fj = fr, yj ∈ {0, 1}

 ;

this can be computed (Kellerer et al. [36]) with the following recursion

gr(τ1, . . . , τd, `) = max

gr′

 τ1 − s1r, . . . , τd − sdr,

`− 1

+ vr (yr = 1)

gr′(τ1, . . . , τd, `) (yr = 0)

where r′ is the next job in the Longest Processing Time (LPT) ordering that be-
longs to the same family of the job that started the recursion; in this way, family
incompatibilities are addressed. The boundary conditions are as follows:

gr(τ1, . . . , τd, 1) =

vr if shr ≤ τh (yr = 1)

0 otherwise (yr = 0)
r = 1, . . . , n, τh = 0, . . . , bh (6.2)

gr(τ1, . . . , τd, 0) = 0 r = 1, . . . , n, τh = 0, . . . , bh (6.3)

gr(τ1, . . . , τd, `) = −∞ if ` > n− r + 1 or τh < 0. (6.4)

Equations (6.2)–(6.4) hold for all h ∈ {1, . . . , d} since all sizes must be considered.
It is worth noting that the DP state space increases of one dimension for every size
of the jobs.

The variables with negative reduced cost found through this pricing procedure are
added to the RMP, and the procedure is repeated until no negative reduced costs
are found. The final solution of the CG is the optimum for the continuous problem,
and a lower bound for the integer problem, called Column Generation Lower Bound
(CG-LB) in the following.

6.2 Column Generation-based heuristics 85

6.2.2 The CG-UB and VR-UB heuristic procedures

Two heuristics are proposed to find an integer solution for the problem, and both
starts from the lower bound given by CG-LB.

The first heuristic is called Column Generation Upper Bound (CG-UB), and it is the
same P&B approach described in Section 4.1.3 (Alfieri et al. [3]); refer to Algorithm 3
for more details. Once the continuous optimum CG-UB is found, the variable domain
of the problem is changed from continuous to binary, and the Mixed-Integer Program
(MIP) is solved to get a heuristic integer solution, namely CG-UB. This evaluation
can be quite slow, especially when the number of jobs increases: solving such a MIP
to the optimum is NP-hard, indeed. Some strategies to speed up the evaluation could
include stopping the evaluation after a fixed number of open nodes (but that amount
should increase with the number of considered jobs), or after a certain time limit has
been reached (but it can lead to large CG-UB over CG-LB gaps), or after a certain
gap is reached (but the timing to reach such a gap could be too slow again). A time
limit will be set for the numerical results of CG-UB.

The second heuristic is the Variable Rounding Upper Bound (VR-UB), and consists
in the variable rounding procedure already described in Section 5.2.1 (Druetto and
Grosso [20]). Differently from CG-UB, this approach generates good upper bounds
within shorter computation times. Promising variables are sequentially fixed to 1,
that is, a batch is forced to be included in the solution. Then, the leftover part of
the RMP is re-optimized with continuous variables, up to the point when the entire
sequence is established. By doing so, there is no need to solve a model with integer
variables since they are selected manually, and only the continuous relaxation of the
MIP is solved (which is way faster than solving the integer version).

The detailed variable rounding procedure can be seen in Algorithm 8, and it works
as follows. First, CG-LB is computed and the RMP is populated; then, among all
columns that start from i = 1, that is, all batches in the first position of the sequence,
the one whose flow value is the closest to 1 is selected and enforced to be part of the
solution. Also, no other columns can start from the same position. The procedure is
repeated on the remaining part of the problem, by keeping all the already generated
columns; then, again, a new selection is made among all columns that start from
i = k, where k was the ending position of the column fixed in the previous step.
The CG and variable rounding procedures are iterated until the value i = |N |+ 1 is
reached, that is, when there exist a sequence of batches from 1 to |N |+ 1, where all
non-zero flow variables are equal to 1; this is the heuristic solution VR-UB for the
original problem.

It is worth noting that Algorithm 8, implemented for the weighted version of the
problem 1|p−batch, b, σj |

∑
wjCj , can seamlessly run over all unweighted versions

86 Chapter 6 Unweighted total completion time: heuristics for multi-size jobs and

incompatibility families

of the problem such as 1|p−batch, bi, σij , incomp|
∑
Cj by changing only the while

condition in line 4 from i < W + 1 to i < |N |+ 1.

The VR-UB procedure, as the numerical results will show, is substantially faster than
CG-UB and gives gaps of almost the same quality.

6.3 Computational results
Random instances are generated to test the proposed algorithm. The generation
approach (Alfieri et al. [3], Druetto and Grosso [20]) already used in Section 4.3
and Section 5.3, with the addition of job families and considering jobs with more
than one size, is here replicated.

In the experiment, some factors are varied to test the proposed approach in various
scenarios. Specifically, the larger is the number of jobs n, the more complex is
the problem to be solved; hence, n has been varied in n = {20, 40, 60, 80, 100, 200}.
Jobs have various sizes, and each size can be sampled from two different uniform
distributions: σ10 : sij ∈ [1, 10] and σ5 : sij ∈ [1, 5]; the results should confirm that
smaller intervals make the problem more complex, as more feasible batches can
be created. The evaluated numbers of sizes per job are d = {1, 2, 3}, to test the
efficiency of the approach in the multi-size cases. For each size, a distribution must be
chosen between σ10 and σ5 and, for each value of d, all possible combinations of σ10

and σ5 are evaluated. Last, the tested numbers of families are nf = {1, 3, 5, 7, 10}, to
address the case of incompatible job families. Some system characteristics have been
fixed as parameters in all the instances. Specifically, for each job, the processing
time is sampled from a uniform distribution pj ∈ [1, 100]. If more than one family is
considered, the family is randomly assigned to every job with equal probability. Also,
for each size, the batch capacity bi is fixed to 10, as commonly used in the literature
(Azizoglu and Webster [6]).

All in all, 174 combinations of factors are tested. For each combination, 10 instances
are solved, thus leading to 1740 experiments. For conciseness purposes, only results
for n = {20, 60, 100, 200} are shown below; the trend highlighted by this subset of
experiments is confirmed by the experiments on the other sizes. Beside the instances
generated as mentioned above, additional tests are run with bi = 50 and with size
distribution σ50 : sij ∈ [1, 50]. The aim is to test the algorithm performance in the
case where jobs have sizes with higher granularity.

Two heuristic algorithms are compared: the CG combined with the MIP solver
(CG-UB), and the CG with the variable rounding procedure (VR-UB). The proposed
methods are developed in C++, and the optimization procedure is done by calling
the CPLEX solver, version 12.9. Tests are run on a computer having a Intel Core
i7 CPU @ 3.70GHz with 32 GB of RAM.

6.3 Computational results 87

In all the tables, each row reports various statistics for a single combination of factors
(grouping together the 10 instances) on the performance of CPLEX integer solution
(CG-UB) and of the variable rounding procedure (VR-UB). Specifically, each row is
characterized by:

• the number of jobs n;

• the distributions for each size (columns s1, s2, s3 contain respectively the
distribution of size 1, 2 or 3, if jobs have one; else − is displayed);

• the number of incompatible families nf ;

• the number of reached optima (opt), knowing that the optimum is reached
when CG-LB is equal to CG-UB and/or VR-UB;

• the average computational time (Time (s)) over all the 10 instances, expressed
in seconds;

• the average percentage gap (Gap (%)) over all the 10 instances.

Percentage gaps between heuristics (CG-UB, VR-UB) and the lower bound (CG-LB)
are evaluated as

CG-UB Gap (%) = CG-UB− CG-LB
CG-UB

· 100%,

VR-UB Gap (%) = VR-UB− CG-LB
VR-UB

· 100%.

The CG procedure that generates promising batches and builds a fractional solution
works very fast. Finding the optimal integer solution using those batches is instead a
time consuming issue for large instances. For this reason, a time limit of 100 seconds
has been set; when this limit is reached, the limit diciture is shown in the relevant
column.

6.3.1 Standard instances (bi = 10)

All the results are shown separately for the following cases: multi-size with no
families (Tab. 6.1); incompatible families with one size (Tab. 6.2); multi-size and
incompatible families (Tab. 6.3 and Tab. 6.4, showing only the cases of 3 and 7 fami-
lies for reasons of conciseness). Results of single-size single-family instances (that is,
1|p−batch, b, σj |

∑
Cj problem, which CG-UB results are discussed in Section 4.3.1)

are not reported here, for reasons of conciseness.

First, both the CG-UB and VR-UB approaches are very fast; indeed, for instances
up to 60 jobs, the overall computation time is of the order of one second. Across
all instances, the largest (maximum, not reported in the tables) computation time

88 Chapter 6 Unweighted total completion time: heuristics for multi-size jobs and

incompatibility families

for VR-UB is 96.2 seconds, while CG-UB sometimes reaches the 100 seconds time
limit.

Tab. 6.1: Computational results of CG-UB and VR-UB for the multi-size case.

CG-UB VR-UB

n s1, s2, s3 opt Time (s) Gap (%) Time (s) Gap (%)

20 σ10, σ10, − 7 0.03 0.27 0.02 0.20
20 σ10, σ5, − 6 0.03 0.52 0.02 0.36
20 σ5, σ5, − 2 0.05 1.13 0.02 1.11

60 σ10, σ10, − 0 0.19 0.30 0.14 0.48
60 σ10, σ5, − 0 0.50 0.53 0.30 0.86
60 σ5, σ5, − 0 10.74 2.01 0.97 1.85

100 σ10, σ10, − 1 1.17 0.16 0.99 0.36
100 σ10, σ5, − 0 8.55 0.60 1.79 1.08
100 σ5, σ5, − 0 97.66 3.76 4.11 1.84

200 σ10, σ10, − 0 20.91 0.12 7.91 0.29
200 σ10, σ5, − 0 97.40 0.51 11.51 0.60
200 σ5, σ5, − 0 limit 56.80 27.91 1.37

20 σ10, σ10, σ10 10 0.03 0.00 0.03 0.00
20 σ10, σ10, σ5 8 0.04 0.06 0.03 0.07
20 σ10, σ5, σ5 3 0.05 0.78 0.05 1.29
20 σ5, σ5, σ5 0 0.07 1.94 0.07 2.34

60 σ10, σ10, σ10 7 0.18 0.12 0.34 0.14
60 σ10, σ10, σ5 1 0.25 0.34 0.60 0.70
60 σ10, σ5, σ5 0 0.40 0.49 0.87 1.08
60 σ5, σ5, σ5 0 7.24 1.62 2.09 1.81

100 σ10, σ10, σ10 4 0.83 0.03 1.84 0.08
100 σ10, σ10, σ5 4 1.21 0.10 2.69 0.24
100 σ10, σ5, σ5 0 6.08 0.51 5.75 0.94
100 σ5, σ5, σ5 0 82.57 1.88 9.04 1.33

200 σ10, σ10, σ10 4 5.76 0.03 13.90 0.08
200 σ10, σ10, σ5 0 12.05 0.10 25.21 0.28
200 σ10, σ5, σ5 0 90.16 0.34 44.27 0.69
200 σ5, σ5, σ5 0 limit 22.85 78.35 1.14

The instances with sizes distributed following σ5 are more difficult than those
following σ10. Indeed, if comparing the instances in Tab. 6.2 with 200 jobs, the
average computation time of CG-UB moves from the order of 20 seconds for σ10

cases to times larger than 100 seconds for σ5. The same is true for VR-UB, although
computation times are lower for both cases. As σ5 reduces the maximum size a job
can have, there are more possible combinations of jobs in a single batch, thus both
computation times and gaps increase.

However, if more than one size constraint is considered (Tab. 6.1, Tab. 6.3 and
Tab. 6.4), even with σ5 the number of combinations decreases, and the DP that
searches for feasible batches is able to cut uninteresting combinations. Thus, the
greater the numerosity of job sizes, the faster the algorithm works.

6.3 Computational results 89

The number of jobs negatively impacts the computation time and the gaps, both
for CG-UB and VR-UB. Specifically, CG-UB often needs more than 100 seconds to
solve instances with 200 jobs, especially in the cases of σ5 size distributions. Instead,
VR-UB is able to handle these instances in most cases, but its computation time
largely increases with respect to the instances with a small number of jobs.

Moreover, with smaller numbers of jobs, both algorithms are more likely able to
find optimal solutions; indeed, the number of optimal solutions (opt) is larger with
smaller instances.

Tab. 6.2: Computational results of CG-UB and VR-UB for the incompatible families case.

CG-UB VR-UB

n s1 nf opt Time (s) Gap (%) Time (s) Gap (%)

20 σ10 3 6 0.04 0.54 0.01 1.28
20 σ10 5 7 0.03 0.44 0.01 0.49
20 σ10 7 7 0.04 0.41 0.01 0.42
20 σ10 10 7 0.04 0.22 0.01 0.43

60 σ10 3 0 0.29 1.34 0.15 1.97
60 σ10 5 0 0.19 0.65 0.09 1.17
60 σ10 7 3 0.18 0.76 0.06 1.08
60 σ10 10 2 0.12 0.83 0.06 1.11

100 σ10 3 0 2.51 0.76 1.24 1.31
100 σ10 5 0 1.29 0.92 1.01 1.70
100 σ10 7 0 1.28 0.81 0.81 1.18
100 σ10 10 0 0.97 1.21 0.74 1.87

200 σ10 3 0 53.45 0.58 8.63 1.01
200 σ10 5 0 16.33 0.74 8.05 1.52
200 σ10 7 0 16.94 0.83 6.58 1.39
200 σ10 10 0 11.09 0.80 5.95 1.39

20 σ5 3 3 0.05 1.12 0.01 1.43
20 σ5 5 4 0.04 1.34 0.01 2.15
20 σ5 7 5 0.04 0.63 0.01 1.09
20 σ5 10 6 0.04 0.99 0.01 1.25

60 σ5 3 0 2.05 2.49 0.69 3.30
60 σ5 5 0 0.75 2.72 0.51 3.40
60 σ5 7 0 0.61 2.79 0.40 3.51
60 σ5 10 0 0.28 2.02 0.26 2.75

100 σ5 3 0 87.51 3.19 3.50 3.11
100 σ5 5 0 24.05 2.39 2.72 3.34
100 σ5 7 0 8.13 2.49 2.30 3.02
100 σ5 10 0 3.00 2.02 2.02 2.66

200 σ5 3 0 limit 40.70 23.97 2.35
200 σ5 5 0 limit 39.83 18.71 2.94
200 σ5 7 0 limit 5.41 17.14 3.23
200 σ5 10 0 limit 3.86 14.75 3.00

When incompatible families are addressed, a noticeable difference in computation
times can be seen when the number of families increases. This is shown in Tab. 6.2,

90 Chapter 6 Unweighted total completion time: heuristics for multi-size jobs and

incompatibility families

Tab. 6.3 and Tab. 6.4. In the former tables, the average computation time decreases
with the increase of the number of families.

Tab. 6.3: Computational results of CG-UB and VR-UB for the multi-size and incompatible
families case, with two sizes.

CG-UB VR-UB

n s1, s2, s3 nf opt Time (s) Gap (%) Time (s) Gap (%)

20 σ10, σ10, − 3 9 0.02 0.06 0.01 0.31
20 σ10, σ10, − 7 10 0.02 0.00 0.01 0.00

20 σ10, σ5, − 3 6 0.04 0.86 0.01 0.90
20 σ10, σ5, − 7 4 0.04 0.40 0.01 1.33

20 σ5, σ5, − 3 2 0.07 1.18 0.02 1.61
20 σ5, σ5, − 7 2 0.07 1.92 0.01 2.79

60 σ10, σ10, − 3 2 0.13 0.29 0.10 0.68
60 σ10, σ10, − 7 5 0.09 0.16 0.06 0.36

60 σ10, σ5, − 3 0 0.33 1.00 0.18 1.41
60 σ10, σ5, − 7 2 0.12 0.82 0.11 1.09

60 σ5, σ5, − 3 0 1.36 2.38 0.77 3.79
60 σ5, σ5, − 7 0 0.43 2.46 0.43 4.14

100 σ10, σ10, − 3 3 0.78 0.32 0.77 0.57
100 σ10, σ10, − 7 2 0.47 0.45 0.61 0.73

100 σ10, σ5, − 3 0 1.77 0.50 1.39 0.93
100 σ10, σ5, − 7 0 1.00 0.96 0.99 1.52

100 σ5, σ5, − 3 0 75.00 2.26 3.59 2.42
100 σ5, σ5, − 7 0 8.74 2.17 2.55 2.98

200 σ10, σ10, − 3 1 6.36 0.17 6.35 0.34
200 σ10, σ10, − 7 0 4.83 0.25 4.99 0.53

200 σ10, σ5, − 3 0 52.38 0.54 11.12 1.16
200 σ10, σ5, − 7 0 14.58 0.81 9.06 1.63

200 σ5, σ5, − 3 0 limit 28.97 24.27 2.24
200 σ5, σ5, − 7 0 limit 6.38 20.17 2.50

For instance (Tab. 6.2), with n = 100 and s1 = σ10, the average computation
time goes from 2.51 with 3 families to 0.97 with 10 families for CG-UB, and from
1.24 to 0.74 for VR-UB. When multiple sizes are involved, the same decrease in
computation time is shown in Tab. 6.3 and Tab. 6.4; interestingly, if σ5 distribution
is given to the sizes, the difference in computation time with different families is
even larger. As an example, if comparing the cases {n = 100, m = 3, si = σ10} and
{n = 100, m = 3, si = σ5}, the difference in the average computation times from 3
to 7 families for the CG-UB moves from the order of 0.68 seconds to the order of
39.41 seconds.

In the same instances, for the VR-UB approach, there is no difference between
computation times of 3 and 7 families for the σ10 instances, and there is a difference
of the order of 1.52 seconds for the σ5 instances.

6.3 Computational results 91

Tab. 6.4: Computational results of CG-UB and VR-UB for the multi-size and incompatible
families case, with three sizes.

CG-UB VR-UB

n s1, s2, s3 nf opt Time (s) Gap (%) Time (s) Gap (%)

20 σ10, σ10, σ10 3 10 0.04 0.00 0.03 0.00
20 σ10, σ10, σ10 7 10 0.03 0.00 0.02 0.00

20 σ10, σ10, σ5 3 7 0.07 0.56 0.04 0.48
20 σ10, σ10, σ5 7 8 0.03 0.12 0.03 0.47

20 σ10, σ5, σ5 3 4 0.08 0.91 0.04 1.16
20 σ10, σ5, σ5 7 6 0.04 0.88 0.04 1.19

20 σ5, σ5, σ5 3 1 0.09 2.38 0.06 2.99
20 σ5, σ5, σ5 7 3 0.05 1.61 0.05 2.50

60 σ10, σ10, σ10 3 8 0.16 0.03 0.31 0.16
60 σ10, σ10, σ10 7 7 0.13 0.18 0.32 0.36

60 σ10, σ10, σ5 3 3 0.26 0.35 0.44 0.43
60 σ10, σ10, σ5 7 6 0.16 0.37 0.44 0.59

60 σ10, σ5, σ5 3 0 0.50 0.88 0.91 1.51
60 σ10, σ5, σ5 7 0 0.27 1.05 0.64 1.76

60 σ5, σ5, σ5 3 1 1.39 1.84 1.61 2.14
60 σ5, σ5, σ5 7 0 0.36 1.98 1.19 2.61

100 σ10, σ10, σ10 3 6 1.08 0.04 1.04 0.07
100 σ10, σ10, σ10 7 5 0.40 0.20 1.05 0.23

100 σ10, σ10, σ5 3 2 1.31 0.20 2.25 0.36
100 σ10, σ10, σ5 7 1 0.65 0.42 2.33 0.80

100 σ10, σ5, σ5 3 0 2.56 0.58 4.05 1.17
100 σ10, σ5, σ5 7 0 1.10 0.81 4.07 1.32

100 σ5, σ5, σ5 3 0 43.04 1.57 7.97 2.04
100 σ5, σ5, σ5 7 0 3.63 1.69 6.45 2.88

200 σ10, σ10, σ10 3 3 5.07 0.03 15.40 0.09
200 σ10, σ10, σ10 7 4 2.92 0.10 8.98 0.15

200 σ10, σ10, σ5 3 0 8.88 0.17 19.70 0.36
200 σ10, σ10, σ5 7 1 6.13 0.27 21.78 0.60

200 σ10, σ5, σ5 3 0 38.87 0.46 40.75 0.91
200 σ10, σ5, σ5 7 0 11.20 0.60 32.97 1.10

200 σ5, σ5, σ5 3 0 limit 9.52 71.87 1.86
200 σ5, σ5, σ5 7 0 limit 4.12 59.99 2.37

As explained in Section 6.2.1, the search in the state space from job r that belongs
to family f can be restricted to the subset of jobs belonging to the same family. This
modification of the search procedure does not impact on the structure of the state
space, and leads to a decrease in computation time proportional to the number of
families.

Lastly, comparing the results of CG-UB and VR-UB across all results, the proposed
variable rounding tends to be faster than solving the MIP, and obtains comparable

92 Chapter 6 Unweighted total completion time: heuristics for multi-size jobs and

incompatibility families

or better performance. Specifically, for the single-size multi-family cases VR-UB is
always faster than CG-UB. Indeed, Tab. 6.2 shows that average computation times
are smaller for VR-UB in all the cases. When the single-family multi-size cases
are considered (Tab. 6.1), CG-UB and VR-UB have comparable performance in the
instances with a small number of jobs and σ10 distribution. However, VR-UB achieves
remarkable improvements in gaps for the cases with large numbers of jobs and sizes
with σ5 distributions. For instance, in the experiments with {n = 200, si = σ5}, the
average gap moves from 56.80% (two sizes) and 22.85% (three sizes) for CG-UB
to 1.37% (two sizes) and 1.14% (three sizes) for VR-UB, respectively. It is worth
noting that the large CG-UB gap for larger instances is due to the enforced time
limit. In terms of computation times, VR-UB results to be faster than CG-UB in
almost all the cases; also, the latter often reaches the time limit when 200 jobs
are considered. For the multi-size multi-family case, the same considerations hold,
proving the outperforming of VR-UB with respect to CG-UB.

Although some gaps are slightly better for CG-UB (except for the cases where the
time limit is exceeded), the relative difference is not worth the extra time required
in comparison to the faster VR-UB. For instance, consider the single-size multi-family
case with {n = 200, s1 = σ10, nf = 7} in Tab. 6.2. The algorithm CG-UB finds the
optimum value (without reaching the time limit) in an average time of almost 17
seconds, with a mean gap equal to 0.83%; on the same instances VR-UB takes only 8
seconds in the worst (maximum, not reported in the tables) case, way less than the
half of CG-UB average case, with an average gap equal to 1.39%, only half a point
worse than CG-UB.

As the additional tests of Section 6.3.2 show, the efficiency of the algorithms is not
affected for instances with larger job sizes and batch capacity. The average gaps are
competitive for both algorithms; however, they suffer from the computation point of
view since the pricing procedure becomes more difficult in these cases.

6.3.2 Extra instances (bi = 50)

Table 6.5 shows the results of some additional tests; in these tests, a different size
distribution and a different batch capacity are considered. The instances were
generated with all jobs sizes sampled from a uniform distribution σ50 : sij ∈ [1, 50]
while the batch capacity bi is set to 50 for all sizes i = 1, . . . , d. The tests are run for
all combinations used in the previous Section 6.3.1. For issues related to excessive
RAM usage, tests for instances up to 100 jobs are run.

The results on computation times show that having jobs with higher granularity
with regards to their packing in batches, that is, jobs with sizes included in a wider
interval, makes the problem more difficult to solve. The pricing procedure requires

6.3 Computational results 93

in fact to optimally solve the cardinality-constrained multi-weight knapsack, which
becomes harder when the number of feasible batches that can be formed increases.

Tab. 6.5: Computational results of CG-UB and VR-UB for the multi-size case, for the incom-
patible families case, and for the multi-size and incompatible families case over
the extra instances.

CG-UB VR-UB

n s1, s2, s3 nf opt Time (s) Gap (%) Time (s) Gap (%)

MULTI-SIZE (SINGLE FAMILY)

20 σ50, σ50, − 1 6 0.06 0.67 0.04 0.84
60 σ50, σ50, − 1 2 0.60 0.18 0.33 0.30

100 σ50, σ50, − 1 1 3.76 0.12 1.83 0.30

20 σ50, σ50, σ50 1 10 1.25 0.00 0.58 0.00
60 σ50, σ50, σ50 1 7 34.27 0.15 5.26 0.23

100 σ50, σ50, σ50 1 4 limit 0.12 18.19 0.06

INCOMPATIBLE FAMILIES (SINGLE SIZE)

20 σ50, −, − 3 7 0.03 0.25 0.02 0.31
20 σ50, −, − 5 6 0.03 0.72 0.02 0.84
20 σ50, −, − 7 10 0.02 0.00 0.02 0.00
20 σ50, −, − 10 8 0.02 0.29 0.02 0.29

60 σ50, −, − 3 1 0.21 0.84 0.21 1.43
60 σ50, −, − 5 0 0.23 0.97 0.13 1.29
60 σ50, −, − 7 0 0.17 0.80 0.10 1.57
60 σ50, −, − 10 0 0.15 0.78 0.09 1.09

100 σ50, −, − 3 0 2.49 0.53 1.62 1.07
100 σ50, −, − 5 0 2.50 1.33 1.38 1.89
100 σ50, −, − 7 0 1.32 1.21 1.06 1.98
100 σ50, −, − 10 0 0.91 0.73 0.94 1.44

MULTI-SIZE AND INCOMPATIBLE FAMILIES

20 σ50, σ50, − 3 9 0.04 0.05 0.03 0.14
20 σ50, σ50, − 7 7 0.04 0.26 0.03 0.72

60 σ50, σ50, − 3 3 0.67 0.37 0.26 0.82
60 σ50, σ50, − 7 5 0.47 0.23 0.19 0.38

100 σ50, σ50, − 3 1 2.77 0.24 1.07 0.45
100 σ50, σ50, − 7 3 2.24 0.36 0.75 0.65

20 σ50, σ50, σ50 3 9 1.33 0.22 0.60 0.21
20 σ50, σ50, σ50 7 9 1.26 0.02 0.60 0.09

60 σ50, σ50, σ50 3 6 30.27 0.16 5.27 0.22
60 σ50, σ50, σ50 7 7 27.73 0.12 5.24 0.30

100 σ50, σ50, σ50 3 5 limit 0.23 17.66 0.12
100 σ50, σ50, σ50 7 8 limit 0.14 17.41 0.07

Also, as noted in Section 6.2.1, the DP state space increases of one dimension for
every size of the jobs, and the magnitude of these state space dimensions are exactly
the maximum batch capacities bi for every i ∈ {1, . . . , d}. Thus, having a larger
batch capacity leads to a considerably higher memory usage.

94 Chapter 6 Unweighted total completion time: heuristics for multi-size jobs and

incompatibility families

With respect to the percentage gaps, the algorithms still perform well, with very
good average gaps, showing that the quality is not affected by the granularity of job
sizes.

6.4 Final remarks
The parallel batch scheduling problem has become more and more addressed by
the scientific and industrial communities because of its applications in many indus-
trial fields. Specifically, the parallel batch scheduling problem with multiple size
constraints has been starting to get attention for its applicability to the growing
Additive Manufacturing technology, where parts are placed in chambers in 2- or
3-dimensional spaces. Also, including job families with incompatibilities between
families in the batch composition has getting attention, as jobs of different families
often need different operations in shop floors.

This work addresses the 1|p−batch, bi, σij , incomp|
∑
Cj problem; to the writer’s

knowledge, this is the first attempt in the literature to consider multiple sizes and
family incompatibility constraints together. Also, no assumptions are made on the
distribution and/or the value of the processing times.

The solution approach is based on the flow formulation of the problem described
in Chapter 4 (Alfieri et al. [3]) and with the heuristic improvements described in
Chapter 5 (Druetto and Grosso [20]); this formulation is, in fact, exploited to
develop two heuristics based upon CG techniques: one is the P&B heuristic CG-UB,
the other is the variable rounding procedure VR-UB. The CG finds a continuous-
relaxed solution, then the two heuristics are used to move from the continuous to the
integer solution of the problem. An extensive experimental campaign compared the
two heuristics, which both proved to be very effective for this scheduling problem.
Indeed, the proposed approaches can handle instances up to 200 jobs, and both find
very good optimality gaps in all the addressed instances. Moreover, with a small
number of jobs, the proposed algorithms are able to find optimal solutions in most
of the cases.

Numerical results show that the smaller the numerosity of job sizes, the more difficult
the batch scheduling problem becomes. Having more than one size constraint
simplifies the problem from the computation standpoint; also, having more families
simplifies the problem, as the number of feasible combinations of jobs is reduced.

Comparing the two heuristics, interesting results emerged. In simple instances (that
is, with a small number of jobs, large numerosity of job sizes and a small number
of families) the difference between the two approaches is not appreciable. The
real gain can be perceived in difficult instances, where both computation times and
gaps largely decrease. Specifically, instances with 200 jobs can not be solved by the

6.4 Final remarks 95

CG-UB approach in 100 second time limit; however, the variable rounding VR-UB is
able to achieve good gaps in less than the time limit. In general, almost all instances
are solved within a minute and the gap rarely overcomes 5%. The variable rounding
procedure is therefore shown to be a valid alternative to the other approach.

At its current state, the proposed approach is able to solve single-machine batch
scheduling problems. Further research will be devoted to adapting the approach
to parallel machines (as for the Pm|p−batch, b, σj |

∑
Cj problem described in Sec-

tion 4.2) and to weighted completion times (as for the 1|p−batch, b, σj |
∑
wjCj

problem described in Section 5.1).

As an alternative significant and nontrivial direction for future research, one might
consider identifying families with agents. The main difference with this model is that
in a multiagent setting each agent pursues its own objective; that is, the minimization
of the total completion time of its jobs only. To the writer’s knowledge, this problem
has not yet been addressed in the context of bounded p−batch scheduling problems
and multi-size jobs, while a pseudopolynomial algorithm exists for the unbounded
case and generic sum-type objectives (Li and Yuan [43]). It would be interesting
to analyze whether the approach proposed in this work can be modified to the
multiagent setting.

96 Chapter 6 Unweighted total completion time: heuristics for multi-size jobs and

incompatibility families

7Unweighted total completion time:
analysis of two polynomial-size
models

I
N recently proposed, so-called arc-flow models, the structure of a batch
sequence is encoded as a flow configuration on a suitable type network.
An original arc-flow Mixed-Integer Program (MIP) model is proposed

by Trindade et al. [67] for makespan minimization, leading to excellent computa-
tional results on very large instances.

In Chapter 4 (Alfieri et al. [3]) a different arc-flow model is proposed for the
1|p−batch, b, σj |

∑
Cj problem, leading to exact solution of 40-jobs instances and

heuristic solution of 100-jobs instances. The size of such model is exponential in the
number of jobs, and Column Generation (CG) techniques are necessary to solve it. In
Chapter 5 (Druetto and Grosso [20]) this approach is extended to the weighted case
with the introduction of bounding heuristics, and in Chapter 6 (Druetto et al. [22])
is further extended to cope with multi-size and incompatible families variant.

From a practical point of view, it can be appealing to get rid of the technicalities that
arise in CG. We present the first strong MIP model for problem 1|p−batch, b, σj |

∑
Cj

which is also “compact” in size, that is, with a number of variables and constraints
bounded by a polynomial in the number of jobs.

The continuous relaxation of such model delivers a sharp lower bound, competitive
with the bounds provided by the CG techniques described in Chapter 4. Combined
with a variable rounding heuristic, inspired by the one implemented in Chapter 5, it
can generate very good solutions with certified optimality gaps for instances with up
to 50 jobs. Although this performance is still behind that of CG, the compact model
is extremely promising.

7.1 Models description
Recalling the notation introduced in Chapter 3, a set of jobs N = {1, 2, . . . , n} is to
be partitioned into batches and processed on a single machine. Each job j ∈ N has
a given processing time pj and a size sj; jobs are partitioned and processed without
interruptions in a batch sequence S = (B1, B2, . . . , Bt), and each batch Bk in S must
satisfy

∑
j∈B sj ≤ b, where b is the machine capacity. The jobs in a same batch Bk

are processed simultaneously, with the longest job determining the processing time

97

for the whole batch, having that pB = max{pj : j ∈ B}. All the jobs in the same
batch Bk share the same completion time, that is Cj = CBk =

∑k
l=1 pBl .

The considered problem calls for finding S that minimizes f(S) =
∑
j∈N Cj .

7.1.1 Arc-flow models

Arc-flow models for parallel batching problems are a recent development, where
batch schedules are mapped on flow configurations on a suitable network.

In Trindade et al. [67] an arc-flow model for minimizing makespan in a single
parallel-batching machine is proposed, with very good results. In Alfieri et al. [3] an
arc-flow model is proposed for the 1|p−batch, b, σj |

∑
Cj problem, leading to handle

100-jobs instances. This arc-flow model is exponential in size and must be handled
via CG techniques; here we develop, from the same modeling ideas, arc-flow models
whose size is polynomial in the number on jobs n.

For the key modeling ideas on arc-flow representations of 1|p−batch, b, σj |
∑
Cj ,

refer to Section 4.1.1. In particular, equation 4.11 defines the G(V,A) graph,
Property 1 shows that the structure of a batch sequence S can be mapped onto a
path PS from node 1 to node n+ 1 in the graph G, and in Fig. 4.1 conveys the idea
behind the proof.

7.1.2 A polynomial-size flow-based model

In this section, we formulate a MIP that calls for finding a minimum-cost path PS
from node 1 to n+ 1 on graph G, partitioning jobs on the arcs of PS .

Each decision variable xik will be set to 1 if arc (i, k) belongs to PS; constraints (7.2)
are flow conservation constraints, with a unit flow routed from node 1 to node n+ 1;
we note that this is the classical MIP formulation of a path construction problem.
Each decision variable yikj = 1 if job j is assigned to the batch Bik corresponding
to arc (i, k). Constraints (7.3) require that each job is assigned to an arc/batch,
constraints (7.4) limits the total size packed into a batch, and constraints (7.5)
enforce the correct cardinality of a batch. Variable πik is set by constraints (7.6) to
the processing time of the longest job in the batch.

The total completion time is expressed by (7.1), multiplying processing times πik
for the number of still-to-be-scheduled jobs in advance, since completion time of
each job j is the processing time of the batch it is currently scheduled in, plus the
processing time of all previous batches.

98 Chapter 7 Unweighted total completion time: analysis of two polynomial-size models

minimize
∑

(i,k)∈A
(n− i+ 1)πik (7.1)

subject to
∑

(i,k)∈A
xik −

∑
(k,i)∈A

xki =

1 i = 1

0 i = 2, . . . , n

−1 i = n+ 1

(7.2)

∑
(i,k)∈A

yikj = 1 j ∈ N (7.3)

n∑
j=1

sjyikj ≤ bxik (i, k) ∈ A (7.4)

n∑
j=1

yikj = (k − i)xik (i, k) ∈ A (7.5)

πik ≥ pjyikj j ∈ N, (i, k) ∈ A (7.6)

πik ≥ 0 (i, k) ∈ A (7.7)

xikt, yjikt ∈ {0, 1} j ∈ N, (i, k) ∈ A (7.8)

7.1.3 A stronger model

Model (7.1)–(7.8) requires O(n3) variables and constraints. It is a reasonably
compact MIP, but computational experience shows that it still has severe limitations;
although the lower bound delivered by the continuous relaxation of (7.1)–(7.8) is
much higher than the one computed on (4.1)–(4.9), the optimality gap is still large,
and CPLEX cannot solve (7.1)–(7.8) on large instances.

A stronger arc-flow model can be developed at the cost of using a larger (but still
polynomial) number of variables. Let T = {pj : j ∈ N} the set of all distinct
processing times listed in the considered problem instance. The MIP model still calls
for finding a minimum cost path PS from node 1 to node n + 1; we use a larger
set of decision variables xikt, where xikt = 1 iff an arc (i, k) is in the paths and the
corresponding batch Bik has processing time pBik = t ∈ T . Another set of decision
variables yjikt is defined, with yjikt = 1 iff job j is in the batch Bik and the latter has
batch processing time pBik = t.

The cost cikt for an arc whose batch Bik has processing time t is defined as

cikt = t(n− i+ 1)

and the complete model can then be written as follows.

7.1 Models description 99

minimize
∑

(i,k)∈A
t∈T

ciktxikt (7.9)

subject to
∑

(i,k)∈A
t∈T

xikt −
∑

(k,i)∈A
t∈T

xkit =

1 i = 1

0 i = 2, . . . , n

−1 i = n+ 1

(7.10)

∑
(i,k)∈A
t∈T

yjikt = 1 j ∈ N (7.11)

∑
j∈N

sjyjikt ≤ b · xikt
(i, k) ∈ A
t ∈ T

(7.12)

∑
j∈N

yjikt ≤ (k − i)xikt
(i, k) ∈ A
t ∈ T

(7.13)

yjikt ≤ xikt
j ∈ N
(i, k) ∈ A
t ∈ T

(7.14)

xikt, yjikt ∈ {0, 1}
j ∈ N
(i, k) ∈ A
t ∈ T

(7.15)

Objective function (7.9) requires to minimize the sum of total completion time for
all selected arcs. Constraints in (7.10) represents a classical flow model with unitary
flow, from source 1 to destination n+ 1, counting as positive the flow to outgoing
arcs and as negative the flow from incoming arcs. Exact partitioning for all jobs is
enforced in (7.11), and capacity constraints (7.12) are defined for all selected arcs.
Correct cardinality of a batch is enforced by constraints (7.13).

The number of variables for this model grows theoretically to O(n4), but the actual
number of variables can be sensibly trimmed since not all pairs i, k (with i < k) can
correspond to a batch because of the machine capacity limit. Also, constraints (7.14)
can be used as lazy constraints, to be dynamically separated when needed.

7.2 Variable Rounding heuristic

Once programs (7.1)–(7.8) or (7.9)–(7.15) has been solved to their continuous
optimum, a lower bound is available. A simple strategy for getting an integral upper
bound could be setting all variables back to the binary type and solve the integer
version of the problem by Branch-and-Bound (B&B), truncating the process when

100 Chapter 7 Unweighted total completion time: analysis of two polynomial-size models

a limit on computation time is reached. The value of solution obtained with this
approach will be called Branch-and Bound Upper Bound (BB-UB) in the following.

We also investigated a simple strategy based on rounding fractional variables in order
to generate feasible solutions within shorter computation times. The value of such
solution is called Variable Rounding Upper Bound (VR-UB) in the following. This
approach is inspired by Mourgaya and Vanderbeck [53] where rounding heuristics
are applied to vehicle routing problems, and is derived from the work described in
Chapter 5 (Druetto and Grosso [20]) and Chapter 6 (Druetto et al. [22]).

7.2.1 Variable Rounding for the 7.1.3 model

Using a basic rounding approach, we build a partition path by rounding flow values,
starting from the source and moving towards the sink node. The full procedure can
be described as follows.

• Given the optimal fractional flow on the problem, we search for tuple (i, k, t)
corresponding to arc (i, k) with processing time t and maximal nonzero flow
that lies as near as possible to the source, and round its flow value to 1. This
corresponds to the fixing of a variable xikt to 1.

• We search for all tuples (j, i, k, t) corresponding to jobs j associated to the
fixed arc (i, k) with processing time t that present nonzero flow; potentially
those jobs can be more than the required k − i jobs to fill the arc.

• Amongst all subsets of the jobs found in the previous step, we select the best
combination that can fit in a batch, that is of length k − i, and with maximum
flow value amongst the sum of flow values for all included jobs; those jobs will
have their flow value rounded to 1. This corresponds to the fixing of some
variables yjikt to 1. This step is admittedly combinatorial, but never involves
more than a handful of jobs.

• The problem is optimized again to obtain new flow values for the remaining
arcs and jobs.

We then iterate this rounding step until an arc reaching the sink node n+ 1 is fixed,
thus completing a feasible solution.

7.2.2 Variable Rounding for the 7.1.2 model

The underlying approach is similar to the one implemented for the other model: we
build a partition path by rounding flow values, starting from the source and moving
towards the sink node. Difference between this procedure and the one described
in 7.2.1 model are as follows.

7.2 Variable Rounding heuristic 101

Since variables relative to arcs and jobs does not depend on a specific processing
time, we have to fix the variable xik that corresponds to the arc (i, k) with maximal
nonzero flow to 1, search for its associated jobs j with nonzero flow, select some of
them with the same criteria as before, and fix those variables yikj to 1.

7.3 Computational results
For 1|p−batch, b, σj |

∑
Cj very few heuristics and/or relaxations are available in

literature; among them are both a relaxation and a greedy heuristic (Uzsoy [69],
Azizoglu and Webster [5]) in the context of a B&B algorithm. Such procedures are
labeled AW-LB and AW-UB respectively.

The following naming convention is valid for all tables, for the results of both models.
All gaps in the following tables are evaluated by the relative difference between
upper bound and lower bound, using the formula

Gap = UB− LB
UB

.

Gap values for the AW-UB procedure by Azizoglu and Webster [5] are evaluated
using AW-LB as the lower bound.

The values for the lower bound obtained by solving the continuous relaxation of
the problem are denoted by CR-LB, and with BB-UB we refer to the upper bound
found by running the integer version of the problem. The gap values in this case
are evaluated using the best continuous lower bound returned by the solver after its
termination (optimum found, or computation time limit reached). Time limit for the
solver is set to 600 seconds.

The values for the upper bound obtained by Variable Rounding, as described in
Section 7.2, are denoted by VR-UB. The gap values in this case are evaluated using
CR-LB as the lower bound.

7.3.1 Testing environment

All the tests ran in a Linux environment equipped with Intel Core i7-6500U CPU @
2.50GHz processor; all algorithms (AW-LB, AW-UB, VR-UB) have been implemented
in Python 3.6; the Linear Program (LP) and MIP solver used was CPLEX 12.8, called
directly from Python 3.6 environment using the callable library.

A number of test instances were generated following the de-facto standard for this
type of parallel batching problems.

• The machine capacity was fixed to b = 10.

102 Chapter 7 Unweighted total completion time: analysis of two polynomial-size models

• The processing times pj were randomly drawn from the uniform discrete
distribution [1, 100].

• The job sizes sj were randomly drawn from four possible uniform discrete
distributions, labeled by σ ∈ {σ1, σ2, σ3, σ4}:

σ1 : sj ∈ [1, 10] σ3 : sj ∈ [3, 10]

σ2 : sj ∈ [2, 8] σ4 : sj ∈ [1, 5].

A batch with 10 instances for each σ class was generated, considering an increasing
number of jobs n ∈ [10, 20, 30, 40, 50]. The following tables report average values
evaluated over all (n, σ) combinations. The diciture limit is displayed for the cases
where computational times of all instances in a particular combination exceeded the
maximum alloted time of 600 seconds.

7.3.2 Results for the 7.1.2 model

Tab. 7.1 contains the average number of nodes opened during evaluation of BB-UB by
the solver, and the number of optima found, all within the 600 seconds threshold.

Tab. 7.1: Number of opened BnB nodes and optima found for the 7.1.2 model.

Param Avg Nodes # Opt

n σ BB-UB BB-UB

10 σ1 7472 10
σ2 22256 10
σ3 3892 10
σ4 5440 10

20 σ1 148518 0
σ2 613856 0
σ3 930158 0
σ4 102653 0

Unfortunately, performance of this model is poor: the B&B requires to explore a lot
of nodes, and even with only 20 jobs the solver cannot find even an optimal result
for all instances.

Comparison between upper bounds, in Tab. 7.2, confirms the poor performance of
this model. Although the lower bound CR-LB is very fast to execute, even with 20
jobs where in less than one second the result is found, the integer optimum BB-UB is
very hard to find. After the entire allotted time limit of 600 seconds, the gap obtained
by the solver is, in the majority of the cases, even worse than the gap obtained using
the polynomial bounds by by Azizoglu and Webster [5].

7.3 Computational results 103

Since the quality of the lower bound CR-LB is bad, even the Variable Rounding upper
bound VR-UB is of poor quality. Here, even for 10 jobs the obtained gap is worse
than the gap obtained with the aforementioned polynomial bounds.

Tab. 7.2: Comparison of bounds quality and execution times for the 7.1.2 model.

Param Avg Times (s) Avg Gap

n σ CR-LB BB-UB VR-UB AW-UB BB-UB VR-UB

10 σ1 0.02 3.27 0.02 0.37 0.00 0.67
σ2 0.01 3.14 0.01 0.26 0.00 0.48
σ3 0.01 0.72 0.01 0.22 0.00 0.36
σ4 0.03 3.60 0.02 0.37 0.00 0.70

20 σ1 0.30 limit 0.61 0.33 0.46 0.70
σ2 0.20 limit 0.19 0.26 0.32 0.59
σ3 0.18 limit 0.11 0.21 0.16 0.44
σ4 0.31 limit 1.07 0.37 0.57 0.81

We decided to test this model only for instances with 10 and 20 jobs, given these
poor performances.

7.3.3 Results for the 7.1.3 model
Tab. 7.3 contains the average number of nodes opened during evaluation of BB-UB by
the solver, and the number of optima found, all within the 600 seconds threshold.

Tab. 7.3: Number of opened BnB nodes and optima found for the 7.1.3 model.

Param Avg Nodes # Opt

n σ BB-UB BB-UB

10 σ1 0 10
σ2 0 10
σ3 1 10
σ4 0 10

20 σ1 753 10
σ2 1036 10
σ3 783 10
σ4 442 10

30 σ1 648 7
σ2 6071 7
σ3 1846 10
σ4 143 2

40 σ1 188 1
σ2 138 1
σ3 5189 3
σ4 2 0

50 σ1 136 1
σ2 642 1
σ3 4752 4
σ4 0 0

104 Chapter 7 Unweighted total completion time: analysis of two polynomial-size models

The performance of this model is way better than the previous: the B&B requires
to explore a very small number of nodes. For 10 jobs, in fact, the entire problem is
solved in the root node, in the majority of the cases.

However, since the model is heavier than the previous one, even the computation of
the root node is intensive. As we can see for 50 jobs, for the hardest distribution σ4

the solver uses the entirety of its 600 seconds allotted time only for the root node
evaluation.

Tab. 7.4: Comparison of bounds quality and execution times for the 7.1.3 model.

Param Avg Times (s) Avg Gap

n σ CR-LB BB-UB VR-UB AW-UB BB-UB VR-UB

10 σ1 0.04 0.12 0.02 0.37 0.00 0.04
σ2 0.02 0.12 0.01 0.26 0.00 0.05
σ3 0.01 0.07 0.01 0.22 0.00 0.04
σ4 0.06 0.14 0.01 0.37 0.00 0.02

20 σ1 0.93 41.26 1.04 0.33 0.00 0.09
σ2 0.57 14.03 0.57 0.26 0.00 0.07
σ3 0.33 4.38 0.29 0.21 0.00 0.04
σ4 1.60 100.97 1.51 0.37 0.00 0.04

30 σ1 4.94 238.89 8.44 0.32 0.01 0.08
σ2 2.71 231.89 3.92 0.28 0.00 0.06
σ3 1.58 19.91 1.71 0.22 0.00 0.03
σ4 9.03 516.16 13.43 0.34 0.05 0.06

40 σ1 24.64 576.59 55.11 0.37 0.06 0.08
σ2 16.58 567.71 48.09 0.27 0.05 0.09
σ3 8.12 531.04 14.13 0.24 0.01 0.07
σ4 43.00 limit 81.08 0.29 0.11 0.05

50 σ1 63.40 583.14 123.19 0.35 0.09 0.07
σ2 26.33 591.03 37.28 0.24 0.01 0.07
σ3 15.49 367.34 11.06 0.19 0.00 0.03
σ4 74.65 limit 213.89 0.27 0.16 0.05

Comparison between upper bounds, in Tab. 7.4, shows the interesting performance
of this model. The lower bound CR-LB is slightly slower to execute than in the
previous case, but in return we have a way better Variable Rounding upper bound
VR-UB in all cases, having a gap lower than 0.10 and performing way better than
the gap evaluated with the polynomial bounds by Azizoglu and Webster [5]. When
the upper bound BB-UB starts breaking the 600 seconds threshold in its evaluation,
for 40 and 50 jobs, the gap evaluated by VR-UB is very competitive in comparison,
even surpassing the B&B for distribution σ4 that is known to be hard.

It is worth noting that the time required for the Variable Rounding upper bound
is way lower than the B&B one, with an order of magnitude very similar to the
continuous lower bound.

7.3 Computational results 105

Increasing the number of jobs for the instances, it is clear that VR-UB will be even
better in time performance than BB-UB, and will always retain its good gap quality.

7.4 Final remarks

Our analysis for the parallel batching problem 1|p−batch, b, σj |
∑
Cj over two arc-

flow models shows that model (7.9)–(7.15) is capable to deliver a good continuous
relaxation lower bound CR-LB and a good Variable Rounding upper bound VR-UB,
leading to excellent performance in gap quality within an acceptable amount of
time.

Tab. 7.5: Comparison between lower bound CR-LB obtained by the 7.1.3 model, and lower
bound CG-LB obtained by the CG approach described in Section 4.1.2.

Param Avg Ratio

n σ CR-LB
CG-LB

10 σ1 0.98
σ2 0.96
σ3 0.97
σ4 0.99

20 σ1 0.95
σ2 0.96
σ3 0.98
σ4 0.99

30 σ1 0.96
σ2 0.97
σ3 0.98
σ4 0.99

40 σ1 0.97
σ2 0.96
σ3 0.97
σ4 0.99

50 σ1 0.97
σ2 0.97
σ3 0.99
σ4 0.99

In Tab. 7.5 we compared the lower bound CR-LB obtained with the best performing
model of Section 7.1.3, with the current state-of-the-art lower bound known in
literature; that is, the Column Generation Lower Bound (CG-LB) described in
Section 4.1.2 (Alfieri et al. [3]). The comparison ratio is evaluated by dividing the
two lower bounds,

Ratio = CR-LB
CG-LB

;

the higher this fraction is, the better model (7.9)–(7.15) performs.

106 Chapter 7 Unweighted total completion time: analysis of two polynomial-size models

As it can be seen, the quality of our lower bound CR-LB is excellent, and stays tightly
close to the state-of-the-art lower bound delivered by CG; especially for the hardest
distribution σ4.

Thus we claim that model (7.9)–(7.15) is promising and deserves further study, in
order to improve its performances; in particular we are studying sifting techniques
for speeding up the solution of the continuous relaxation, reducing as well the
computational time required by the Variable Rounding heuristic. Also, the extension
to multiple parallel machines (identical or unrelated) variant of the problem would
be easily handled. Extension of this approach also to the weighted total completion
time case is under investigation.

7.4 Final remarks 107

Part II

Process scheduling in embedded systems

8Process scheduling and memory
mapping: multi-step optimization
approach

T
HE second part of my PhD was dedicated to the development of ad-hoc
assignment and scheduling algorithms for specific problems that arise in
automotive embedded systems, in particular in the presence of shared

variables constraints.

Multicore architectures provide the increased performance required by modern
embedded real-time systems. Most platforms exhibit a Non-Uniform Memory Access
(NUMA). In NUMA, memory banks with different access time can be explicitly
addressed. Such an architecture, however, is challenging predictability given the
significant impact of the allocation of variables on the execution times.

At software level, real-world embedded applications (for example, automotive) are
composed by thousands of functions often communicating through shared variables
stored in memory, with a variable access time because of NUMA.

This chapter addresses the mapping of complex embedded applications onto NUMA
multicore architectures. The developed problem formulation offers a solution to the
following problems:

1. allocating variables (called labels in the automotive context) over memories of
different characteristics;

2. mapping functionalities (called runnables) onto Central Processing Units
(CPUs);

3. creating Operating System (OS) tasks from runnables;

4. assigning priorities to tasks.

Our developed implementation is capable to handle an application composed by
1K+ runnables, all sharing 10K+ labels and finds a solution in at most 3 minutes on
a standard laptop, enabling interactive design space exploration.

111

Fi
g.

8.
1:

A
U

R
IX

Tr
iC

or
e

TC
39

x:
C

PU
s

an
d

m
em

or
ie

s
(n

o
I/

O
is

re
po

rt
ed

).

112 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

8.1 CPUs and memories in NUMA
In this section, we illustrate a realistic NUMA architecture, widely used for large
embedded applications, especially in the automotive context. Later, in Section 8.2.1,
we will be borrowing an abstract model of the hardware (Wolff et al. [130], Eclipse
APP4MC Web Page [88]), which generalizes the architectural features shared by
several architectures.

Our reference architecture is Infineon AURIX™ TriCore™ TC3xx (AURIX TriCore
TC3xx Web Page [75]). Fig. 8.1 describes the architecture of CPUs, memories, and
the corresponding interconnections.

Specifically, the TC39x architecture offers the following memory areas for data, listed
by decreasing proximity to the CPUs.

• DCACHE is the two-way set associative caches with Least Recently Used (LRU)
replacement algorithm. It is protected by Error Correction Codes (ECCs) and,
if properly configured, may be accessed from other CPUs.

• Each core has a dedicated Data ScratchPad RAM (DSPR) with fast access.

• Blocks of Local Memory Units (LMUs) are available to offer ECC-protected
volatile storage.

– Also, each core has a block of Distributed Local Memory Unit (dLMU),
which grants a fast access to the CPU it is directly connected to. Other
CPUs may also access through the available interconnection.

• Default Application Memory (DAM) may be used for both code or data, but
has no hardware safety mechanisms such as ECCs.

The architecture also has memory areas to store code (PCACHE, PSPR, PF). These
memories, however, are not further described because program storage is normally
not a stringent constraint.

The above listed memories and the CPUs are connected through the high bandwidth
System Resource Interconnect (SRI) Fabric. Accesses by CPUs to the available
memory blocks are regulated by two crossbars (indicated by XBAR0 and XBAR1 in
Fig. 8.1), as follows.

• Accesses to different memory blocks are executed in parallel.

• Accesses to the same memory block are arbitrated according to two round-
robin groups (high and low priority), depending on the configuration. By
setting all requestors to the same priority, standard round robin is achieved
with a constant access time.

8.1 CPUs and memories in NUMA 113

• Accesses from a CPU over one crossbar to a memory block connected to the
other crossbar need to go through bridges (S2S3 and S2S0 in Fig. 8.1), and
take a longer time.

Depending on the size of the data, more than one SRI bus transaction may be needed
to complete a single load/store instruction.

8.2 System model
In this section, we describe the abstract model we referred to, in the analysis and
development of our approach. This abstraction generalizes the relevant and real
features shared by several architectures.

AUTomotive Open System ARchitecture (AUTOSAR) (AUTOSAR Web Page [76]) is
a standardized software architecture for the definition of automotive components
and for providing the foundation platform for their execution (Fürst et al. [93]).
The essential element of AUTOSAR that is relevant for our problem is the concept
of runnables, that are functions to be executed in response to events. For the sake
of our work, we are interested in capturing the nature of these activation events,
assumed as periodic or sporadic. AUTOSAR runnables communicate by means of
data ports or by client-server interactions. In both cases, memory locations shall be
identified (in a stage called Run-Time Environment (RTE) generation) to store the
values communicated over the ports or the arguments of the call and its result.

In the AMALTHEA Projects (Model Based Open Source Development Environment
for Automotive Multi Core Systems) and its follow-up APP4MC (Eclipse APP4MC
Web Page [88]), the problem is abstracted by analyzing the results of the RTE
generation stage directly. The model contains the elements that provide the minimal
level of details necessary to setup a partitioning problem (Wolff et al. [130]). The
AMALTHEA/APP4MC metamodel addresses also the hardware and the access time
pertaining to it. The APP4MC platform was used to introduce the model of the 2017
WATERS Challenge (Kramer et al. [101]), which is used as our reference use case.

8.2.1 Hardware model
The AMALTHEA/APP4MC hardware model is depicted in Fig. 8.2. It provides the
key features with an impact on timing analysis, without delving into too fine-grained
details, which have little impact on the mapping problem. According to this view:

• a set of the identical CPUs, denoted here by M, is available for processing
instructions;

• each CPU k ∈ M has a directly connected local memory called Local RAM
(LRAM) of size Scpu

k , which can be accessed at higher speed;

114 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

• a generic memory called Global RAM (GRAM) is available (we assume its size
is large enough to accommodate data as needed);

• a crossbar switch enables all CPUs to access both the GRAM and the LRAM of
the others with dedicated virtual channels;

• all LRAMs and the GRAM are mapped to a unique address space, making them
accessible from any CPU.

LRAM0 LRAM1 LRAM2 LRAM3

CPU0 CPU1 CPU2 CPU3

GRAM

Fig. 8.2: Abstract hardware model.

8.2.2 Software model

The software model used in AMALTHEA, which is also relevant to our purposes,
includes the following terms.

• A label is a data element used by the application code; it has a type, which
determines its memory size. The set of labels is denoted by L and s` is the size
of label ` ∈ L.

• A runnable is a function implemented by sequential code. The set of runnables
is denoted by N . A runnable may read or write labels with a given frequency.
Communication between runnables is implemented by writing/reading shared
labels. As illustrated later in Section 8.4, a subset of labels Li ⊆ L is attached
to the runnable i ∈ N .

• Ti denotes the period or minimum interarrival time of runnable i. Later, we
may use the notation fi = 1

Ti
to denote the maximum frequency of activation.

• A task corresponds to the OS notion of thread. Its code corresponds to a
sequence of runnables invoked sequentially. The set of tasks is denoted by T .

• Other notions will be used in this chapter such as the gain gi,` for runnable i to
have fast access to label ` or the execution cycles C0

i of runnable i. However,
we postpone their precise definitions to the context when they will be needed
(Section 8.4 and Section 8.5, respectively).

8.2 System model 115

Tab. 8.1 reports the size of the 2017 WATERS Challenge (Kramer et al. [101])
embedded application, which we extensively use in this paper.

Tab. 8.1: Key data of 2017 WATERS Challenge reference application.

property value

Number of labels in L 10000
Total memory of labels [bytes] 27363
Number of runnables in N 1250
Number of tasks in T 21
Number of different release patterns 19
Number of accesses by runnables to any label 15255

Finally, tasks execute on statically assigned CPU (partitioned scheduling) and are
scheduled by Fixed Priority.

8.3 Problem description
The problem addressed in this work is the mapping of an application modeled by
runnables N and labels L over the CPUsM and their associated LRAMs, respectively
(as depicted in Fig. 8.4).

Mapping

− of labels to LRAMs

− of runnables to CPUs

Execution cycles
− of runnables

Access times
− by runnables to labels

Fig. 8.3: The cyclic dependency of the mapping problem.

The main difficulty of the problem is due to the accesses that runnables make to
labels. Depending on the mapping, these accesses may happen either locally (from
a CPU to its directly connected LRAM, such as LRAM2 from CPU2 in Fig. 8.2)
or remotely. Since access times vary by one order of magnitude (please refer to
Tab. 8.2), they do affect the overall execution cycles of runnables.

In turn, the execution cycles of runnables do affect the mapping as any knapsack
problem is affected by the size of the items to be packed. Such a cyclic dependency
is represented in Fig. 8.3.

Finally, the size of real-world problem (please refer to Tab. 8.1) is about two orders
of magnitude above the size of tractable problems of this kind.

116 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

Hence, we decompose the mapping in the following stages.

1. First, we address the problem of binding labels to runnables (in Section 8.4).
This is the key enabler of the significant reduction in complexity. In Fig. 8.6,
labels bound to a runnable are represented by a thick link.

2. Then runnables are mapped to CPUs (Section 8.5). As illustrated in Fig. 8.5,
every runnable carries the bound labels which are then implicitly mapped to
the corresponding LRAM.

3. Finally, runnables are assigned to tasks (Section 8.6) and then tasks are
assigned a priority (Section 8.7).

LRAM0 LRAM1 LRAM2 LRAM3

CPU0 CPU1 CPU2 CPU3

GRAM

a c

i kh j

db

e f g

1 2 3 4 5 6 7

Fig. 8.4: The mapping problem. Runnables are azure circles (“1”, “2”, . . .), labels are mint
green rounded boxes (“a”, “b”, . . .). The mapping (of runnables to CPUs and labels
to LRAMs) is represented by thick dashed gray arrows.

As it will be illustrated in greater details in the next section, the guiding principles
that drive all optimization stages are the minimization of the resource utilization,
and the maximization of the slack so that further upgrades or extensions may be
accommodated more easily.

Without loss of generality, we identify the elements in any set N by the integers
1, . . . , |N |. Also, to lighten the presentation, we use the same notation of any set N
to denote the number of elements as well. In short, we consider correct to write
N = {1, 2, . . . ,N}.

8.3 Problem description 117

8.4 Binding labels to runnables
The key phase that makes the overall methodology feasible for the large scale
automotive use case, is the binding of labels to runnables. In fact, given the size of
realistic applications (of 1K+ runnables and 10K+ labels, please refer to Tab. 8.1
for details), a unique Integer Program (IP) formulation for the joint mapping of the
labels and runnables is not tractable with the computing capacity available at time
of writing.

LRAM0 LRAM1 LRAM2 LRAM3

CPU0 CPU1 CPU2 CPU3

GRAM

a c

i kh j

db

e f g

1 2 43 65 7

Fig. 8.5: In our methodology, labels are first bound to the runnable which benefits the most
(represented by a thick link), then runnables only are mapped to a CPU; the bound
labels will follow to the linked LRAM.

Hence, we bind labels to runnables (as represented by thick black links between
runnables and labels in Fig. 8.6). When a runnable i is mapped to CPU k, then all
the labels Li bound to it are mapped to the LRAM directly linked to CPU k.

We formulate the binding problem as follows. For each pair (i, `) ∈ N × L:

• if the label ` is used by the runnable i, we define the gain gi,` as the saved
execution cycles by one invocation of the runnable i when the label ` is
allocated to the LRAM linked to the CPU where the runnable i is mapped;

• we set gi,` = 0 if the label ` is not used by runnable i.

The gain gi,` is expressed in clock cycles. Its calculation depends on many factors:
type of access, size s` of `, frequency of access, and so on. Later, in Section 8.8.1, we
illustrate the gain models used in the experiments. We remark that our proposed
methodology is independent of such a choice.

118 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

label

runnable1

2

3

4

5

6

7

a

b

c

d

e

f

g

h

i

j

k

1

2

3

4

5

6

7

a

b

c

d

e

f

g

h

i

j

k

Fig. 8.6: Binding labels to runnables.

Variables

For the purpose of partitioning labels among runnables, we introduce the following
variables

xi,` =

1 label ` is bound to runnable i

0 otherwise
i ∈ N , ` ∈ L (8.1)

and we define the partition of labels by

Li = {` ∈ L : xi,` = 1} i ∈ N .

Constraints

If we denote by Si the amount (unknown) of LRAM assigned to labels in Li, then
the following constraint ∑

`∈L
s`xi,` ≤ Si i ∈ N (8.2)

ensures that the total memory local to the runnable i is not exceeded, while the next
one ∑

i∈N
Si ≤

∑
k∈M

Scpu
k (8.3)

is needed not to exceed the total LRAM. If needed, our formulation can also include
a constraint on the maximum amount of memory Si needed by runnable i.

Finally, it is certainly needed to assign a label to at most one runnable; that is,

∑
i∈N

xi,` ≤ 1 ` ∈ L. (8.4)

Notice that the subsets Li are not a partition (that is, constraint (8.4) is not written
with the “=” sign but with the “≤” one) as there may be some labels that are not
bound to any runnable.

8.4 Binding labels to runnables 119

Objective function

The natural aim of the binding is to minimize the resource usage by runnables. In
fact, wherever every runnable i is mapped, we are certain that accesses to labels
in Li are through local links. Since each runnable executes with frequency fi, the
metric to be maximized is ∑

i∈N
fi
∑
`∈L

(gi,` · xi,`) . (8.5)

The rationale of the cost of equation (8.5) is to bind label ` to the runnable i that
can benefit the most in terms of saving CPU utilization, since it has the largest
utilization gain represented by execution time saving gi,` multiplied by the frequency
of execution fi.

Size of the problem

For this problem, the number of variables xi,` (8.1) is N ×L, while the number of
constraints is N + L+ 1 following from (8.2)–(8.4).

8.4.1 Polynomial-time algorithms

If the overall amount of LRAM is sufficient to store all labels, then constraint (8.3)
is never active. This means that the only active constraint remains the one in
equation (8.4) and that the optimal solution is

xi,` = 1 ⇔ i = argmax
j∈N

{fj · gj,`} ` ∈ L (8.6)

which is found in O(N × L) time. For such a solution, every label ` brings the
maximum saving of resource usage, which is G` = maxj{fj · gj,`}.

If instead the constraint of equation (8.3) is active, then the problem becomes the
knapsack problem. The continuous relaxation of this problem is solved exactly in
O(L × log(L)) time as suggested by Dantzig [85] and described below.

1. Labels are sorted by decreasing gain density as follows:

G`
s`
≥ G`′

s`′
`, `′ ∈ L, ` < `′. (8.7)

2. Labels are selected, and assigned to the runnable of equation (8.6), following
the ordering of equation (8.7) until the memory capacity constraint (8.3) is
not violated.

3. Let z ∈ L be the critical item, which is the first label that, according to the
ordering of equation (8.7), violates the capacity constraint (8.3).

120 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

If we set

Sslack =
∑
k∈M

Scpu
k −

z−1∑
`=1

s`,

which is the remaining memory capacity after allocating the first z − 1 labels, then
the optimum is found by taking a fraction Sslack

sz
of the label z. Such an optimal

solution has the following (see equation (8.5)) maximal metric:

z−1∑
`=1

G` + Sslack

sz
Gz.

In our polynomial time greedy algorithm:

1. we drop the critical item “label z” and bind labels up to the one in position
z − 1 in the ordering of equation (8.7), and

2. we fill up the remaining capacity Sslack with any label that fits.

Distance to optimality

The maximum penalty of this solution is

Sslack

sz
·Gz ≤ Gz ≤ max

`∈L
G` = max

`∈L,i∈N
{fi · gi,`} .

If the granularity fi · gi,` � 1, as in our use case (Kramer et al. [101]), the penalty is
negligible. Our experiments confirm the quality of the polynomial greedy algorithm,
since its solution and the optimal one are nearly indistinguishable.

8.5 Mapping runnables to CPUs

The mapping of the runnables in N over the available CPUs can be formalized as an
IP with binary variables.

Variables

We model the mapping over the CPUs by N ×M variables yi,k with the following
interpretation:

yi,k =

1 runnable i is mapped to CPU k

0 otherwise
i ∈ N , k ∈M. (8.8)

We remind that if yi,k = 1, then the bound labels in Li will be mapped to the LRAM
associated to CPU k.

8.5 Mapping runnables to CPUs 121

The distinguishing feature that needs to be captured in the problem of mapping
runnables to CPUs is whether or not any pair of runnables is mapped onto the same
core. In fact, if runnable i is on the same CPU as runnable j, it may save processing
time if it uses labels in Lj . Motivated by this observation, we add the following
variables to the problem formulation:

xsame
i,j =

1 runnables i and j mapped on same CPU

0 otherwise
i, j ∈ N , i < j. (8.9)

Finally, an additional continuous slack variable z is added. Such a variable represents
the “extensibility” of software for future updates and it is going to be maximized. A
negative value of z indicates an infeasible design.

Constraints

If runnables i and j are bound to the same CPU k, then the corresponding variable
xsame
i,j must be equal to one:

xsame
i,j = max

k∈M
(yi,k + yj,k)− 1 i, j ∈ N , i < j, (8.10)

which can also be written as a linear constraint, by adding extra variables xsame
i,j,k for

each k ∈M.

Each runnable is mapped over one CPU only, that is

∑
k∈M

yi,k = 1 i ∈ N . (8.11)

Notice that if a runnable i must be necessarily mapped to some specific CPU k (for
example, some of the available CPUs offer some hardware features or accelerator
which are necessary to the runnable), it is possible to encode such a constraint by
setting yi,k = 1.

The variables xsame
i,j as defined by equation (8.9) clearly imply an equivalence relation.

Hence, we enforce the following properties.

• Reflexivity is enforced implicitly by omitting the variables xsame
i,i , as it would

always be xsame
i,i = 1.

• Symmetry is enforced implicitly by having only one variable xsame
i,j for both

ordered pairs (i, j) and (j, i). To have a more convenient notation, we may be
using xsame

i,j with i > j. When this happens, we mean xsame
j,i .

• Transitivity that is

(xsame
i,j = 1) ∧ (xsame

j,` = 1) ⇒ (xsame
i,` = 1).

122 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

Transitivity is not explicitly enforced because implied by equations (8.10) and (8.11).
In fact, if xsame

i,j = 1, from constraint (8.10) it must exist k1 ∈ M such that yi,k1 =
yj,k1 = 1. For the same reason, xsame

j,` = 1 implies that it must exist k2 ∈ M
such that yj,k2 = y`,k2 = 1. Constraint (8.11) implies that k1 = k2 and then from
yi,k1 = y`,k1 = 1 we have xsame

i,` = 1.

Furthermore, applications may require two or more runnables to be scheduled
together over the same CPU. For example, in the automotive AUTOSAR standard,
runnables may belong to Software Components (SWCs), which need to be mapped
to the same core. This can be easily encoded constraining xsame

i,j = 1 for all the
runnables i and j belonging to the same SWC.

Before formulating the constraints on the CPU capacity, let us introduce the following
notation.

• C0
i denotes the execution cycles of runnable i, assuming that:

– all labels in Li, bound to runnable i as described in Section 8.4, are stored
in LRAM and then enjoy a faster access;

– all other labels are stored in GRAM.

• ∆Ci,j denotes the execution cycles saved by one invocation of runnable i

if runnable j executes over the same CPU. ∆Ci,j is non-zero, if runnable i
happens to use any label in Lj . ∆Ci,j is written as function of the gains gi,`
introduced in Section 8.4, as follows:

∆Ci,j =
∑
`∈Lj

gi,` i ∈ N . (8.12)

• The variable Ci,k ≥ 0 represents the number of execution cycles required by
runnable i over CPU k, that is

Ci,k ≥ C0
i · yi,k −

∑
j∈N ,j 6=i

(
∆Ci,j · xsame

i,j

)
k ∈M. (8.13)

It is worth noting that, if the solver does not map runnable i to CPU k, the
value of Ci,k is set to zero.

As stated in Section 8.4, when runnable i is partitioned it also carries an amount
of needed local memory Si. The constraint of limited size of the local memory is
formulated as

1
Scpu
k

∑
i∈N

(yi,k · Si) ≤ 1− αmemz k ∈M (8.14)

8.5 Mapping runnables to CPUs 123

while the constraint on the CPU capacity is

∑
i∈N

(fi · Ci,k) ≤ 1− αcpuz k ∈M. (8.15)

The weights αmem and αcpu represent the relevance of the slack in each constraint
and can be freely chosen by the designer. A large value of αmem or αcpu encodes the
goal of having much slack in the constraint, while a value of zero informs the solver
that the constraint can also hold tightly.

Objective function

The goal of the design is to maximize the “extensibility” of software for future
updates, that is

maximize z. (8.16)

If the optimal z∗ found is negative then the problem is not feasible. If z∗ ≥ (1−ULL)
αcpu

,
with ULL equals to the utilization upper bound log 2 ≈ 0.693 by Liu and Layland
[105], the problem is feasible. Otherwise, schedulability is ensured by the next step
of the design (the assignment of priority described in Section 8.7). Notice that the
proposed design goal generalizes the typical optimization objective borrowed from
the literature (Pazzaglia et al. [119]).

Size of the problem

Summarizing, the total number of variables is 2(N ×M), counting yi,k of equa-
tion (8.8) and Ci,k of equation (8.13). The number of constraints is O(N 2), domi-
nated by (8.10). In real-world scenarios, N ≈ 1000 as shown in Tab. 8.1, making
the number of constraints in the order of millions.

This is true even without considering the linearization of constraint (8.10), that
would amplify the magnitude of the number of xsame variables and the numerosity
of constraint (8.10) by a factorM (the number of cores).

When such a problem becomes intractable, a different approach, illustrated next, is
required.

1

2

3

4

5

6

7

a

b

c

d

e

f

g

h

i

j

k

a

b

c

2

4

d

e

f

g

3 j

k
7

1

i6

h5

Fig. 8.7: Merging runnables in clusters.

124 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

8.5.1 Hierarchical Clustering

To mitigate the issues due to the size of the problem, we borrow the methods of
Hierarchical Clustering (HC) from the literature (Murtagh and Contreras [114]).
With HC, runnables are aggregated into clusters (Fig. 8.7) of tunable size. Then the
mapping described earlier in Section 8.5 is applied to the fewer clusters, rather than
to all runnables. An advantage of HC is that the size of clusters can be set by the
designer to trade accuracy versus tractability. Also, HC is particularly well suited for
partitioning very many “small” items, as in our use case.

Algorithm 10 Hierarchical Clustering.
1: function HC(N ,U) . runnables, their utilizations
2: clusters← {{i} : i ∈ N}; . initialize clusters
3: utils← U ; . utilization of singleton clusters
4: mergeTree← []; . tracking of cluster merges
5: for n from |N | − 1 to 1 do . need |N | − 1 merges
6: cmin ← argmin{utils}; . min cluster utilization
7: Uavg ← (

∑
{utils} − utils[cmin])/n; . average cluster utilization

8: maxGain← −1;
9: for c in clusters \ {cmin} do . cannot merge a cluster with itself

10: if utils[c] > Uavg then . skip if cluster utilization is above average
11: continue;
12: end if
13: g ← utilGain(cmin, c);
14: if g > maxGain then . selecting cluster with maximum gain
15: maxGain← g;
16: cbest ← c;
17: end if
18: end for
19: clusters← clusters \ {cmin} \ {cbest}; . remove min and best clusters
20: cnew ← cmin ∪ cbest; . merge clusters
21: clusters← clusters ∪ {cnew} . add new cluster
22: utils[cnew]← utils[cmin] + utils[cbest]−maxGain; . update utilization
23: mergeTree[n]← clusters; . save found n clusters
24: end for
25: return mergeTree;
26: end function

The full procedure of HC is outlined in Algorithm 10. The initial clustering set
clusters is initialized (line 2) by considering all runnables as singleton clusters. The
array utils contains the CPU utilization of all clusters (line 3) and for any cluster c we
denote its utilization of utils[c]. The array of clusters mergeTree (initialized at line 4)
is meant to contain the set of all found clusters. More specifically, mergeTree[n]
reports the solution of how all runnables in N are partitioned in n clusters.

The loop from line 5 to line 24 picks a pair of clusters and merges them until a
unique cluster with all runnables is created. At every iteration, our algorithm first

8.5 Mapping runnables to CPUs 125

picks the cluster cmin with the lowest utilization (line 6). The second cluster cbest to
be merged with cmin satisfies two properties:

1. it has utilization no greater than the average utilization of clusters (enforced
by the condition at line 10);

2. it has the highest gain maxGain if paired with cmin (enforced by the condition
at line 14).

The choice of this merging rule was proven to keep a very balanced utilization of the
clusters, while leading towards the best possible decrease in utilization for all merge
operations.

Once the joining pair of clusters is chosen, they are removed from the set (line 19),
all runnables that they contain are merged in a new cluster cnew (at line 20), which
is then added to the set (line 21). At line 22, the utilization of the new cluster cnew

is computed accounting for the utilization of each of the merged clusters and the
gain maxGain they have from being together.

Finally, the clustering obtained for level n is added into the clustering tree (line 23)
as the element with key n; the procedure stops when, at level 1, all runnables are
merged in a single cluster.

Considerations

An immediate advantage of HC is the availability of the entire hierarchical tree
recording the history of the merges. Such a tree enables the designer to choose
the desired level of granularity. Once a level of granularity has been chosen, the
newly formed clusters are considered as “runnables” for the model described in
Section 8.5 and the problem of mapping runnables to CPUs is solved with an orders
of magnitude smaller set N .

In the classical HC, at each step, the merge is always done by joining the two clusters
with the best possible similarity, hence in our case the highest possible gain; but that
is not the approach followed in this work, for two specific reasons. Firstly, it is a
costly approach, involving a potentially quadratic search at every step, and since the
number of runnables is very high the time required for the clustering can increase
and impact hugely on the performance of the entire procedure. Secondly, and more
importantly, in this specific problem blindly joining at every step the two clusters
with highest reciprocal gain leads eventually to extremely unbalanced clustering;
this can be easily seen considering the fact that if a cluster contains runnables with
a lot of labels required also by other runnables in unmerged clusters, this kind of
approach will untimely merge at every step this favorable cluster with all others.
This leads to a situation where in the clustering tree at each level n there is one huge
cluster growing, and n− 1 clusters of (probably) runnable singletons.

126 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

8.6 Aggregation of runnables into tasks
Runnables, we remind, are equivalent to functions to be properly invoked. The
division of software in runnables responds to specifications and principles at ap-
plication design level. At the lower OS level, instead, it may be infeasible (due to
the potentially large number of runnables) and it is certainly inefficient (due to
context switches) to dedicate an OS task to each runnable. For example, in the 2017
WATERS Challenge (Kramer et al. [101]), there are 1250 runnables, but only 21
tasks executing them, as reported in Tab. 8.1. It is then necessary to establish criteria
to aggregate runnables.

Our approach to aggregate runnables in tasks is applied after the optimal mapping of
runnables (or clusters of runnables) to CPUs is performed as described in Section 8.5.
We assume then to have a solution to the mapping represented by the variables
yi,k and xsame

i,j defined in (8.8) and (8.9), respectively. Let us now formalize the
aggregation of runnables.

• The set of tasks is denoted by T .

• The set of runnables in N to form task t is denoted by Nt ⊆ N . The subsets in
{Nt}t∈T form a partition of N such that every runnable i ∈ N belongs to one
and only one subset Nt.

• The equivalence relation ∼ over the pairs of runnables N × N encodes the
aggregation of runnables. In our case, i ∼ j if “the two runnables i and j

have the same release period and none of them self-suspends”. We remark
that our methodology works for any other choice ∼ providing the properties
of equivalence relations.

• The runnables in Nt belonging to the same task t are defined as

i, j ∈ Nt ⇔ (i ∼ j) ∧ xsame
i,j = 1 (8.17)

with xsame
i,j being the variables representing the optimal mapping found in

Section 8.5.

From our definition of ∼ above, it follows that

i ∼ j ⇒ Ti = Tj , (8.18)

meaning that two runnables with different period cannot be aggregated together in
the same task. Such assumption holds for the 2017 WATERS Challenge (Kramer et al.
[101]) and is recommended in software design. Still, having runnables with different
period in the same task is possible. In such a case, the task implementation simulates
the different periods by counting the invocations of each runnable and the execution

8.6 Aggregation of runnables into tasks 127

pattern of the task becomes analogous to the multi-frame task model (Mok and Chen
[113]). The analysis of this case, however, is left to future investigations.

The definition of equation (8.17) partitions runnables to tasks. We can now define
the parameters of tasks, starting from the parameters of the runnables.

• From (8.13), the execution cycles of task t ∈ T are

Ct =
∑
i∈Nt

C0
i −

∑
j∈N ,xsame

i,j =1
∆Ci,j

 . (8.19)

• Because of (8.18), all runnables of a task have the same period (or minimum
interarrival time). Hence, ∀t ∈ T , we set Tt = Ti, picking any i ∈ Nt.

• The deadline of task t ∈ T is

Dt = min
i∈Nt

Di.

• Finally, it is useful to introduce the partition of tasks over the CPUs inM. We
define

Tk = {t ∈ T : i ∈ Nt, yi,k = 1}.

Notice that this is a good definition because if yi,k = 1 for some runnable
i ∈ Nt, then yj,k = 1 for all j ∈ Nt.

8.7 Assigning priorities to tasks

For each CPU k, the priorities of the tasks in Tk are assigned based on the Robust
Priority Assignment (RPA) by Davis and Burns [86], recalled in Algorithm 11.
The only adaptation with reference to the original RPA is the computation of the
maximum slack zi at line 8. Rather than using binary search as originally proposed
(Davis and Burns [86]), we borrow the sensitivity analysis by Bini et al. [79] to
find the exact expression of the per-task slack zi. More precisely, from the exact
schedulability condition (Lehoczky et al. [103]) properly modified to account for the
per-task weighted slack zi

∃t ∈ Pi : 1
t

Ci +Bi +
∑
j∈Thp

⌈
t

Tj

⌉
Cj

 ≤ 1− αsched
i zi

with
Pi = {Di} ∪ {kTj : j ∈ Thp, 0 < kTj < Di, k ∈ N}, (8.20)

128 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

we find

zi ≤ max
t∈Pi

t−
(
Ci +Bi +

∑
j∈Thp

⌈
t
Tj

⌉
Cj
)

αsched
i t

(8.21)

which is the expression used at line 8 of Algorithm 11 for computing zi.

Algorithm 11 Robust Priority Assignment.
1: function RPA(Tk) . tasks mapped to CPU k
2: pri← lowest priority available;
3: Tunassigned ← Tk;
4: while Tunassigned not empty; do
5: zbest ← −∞;
6: for i in Tunassigned do
7: Thp ← Tunassigned \ {i};
8: zi ← slack of task i; . RHS of (8.21)
9: if zi > zbest then . found a better task

10: zbest ← zi;
11: ibest ← i;
12: end if
13: end for
14: priority[ibest]← pri;
15: pri← next priority higher than pri;
16: Tunassigned ← Tunassigned \ {ibest};
17: end while
18: return priority;
19: end function

The blocking time Bi in equation (8.21) is the waiting time spent by task i for the
execution of lower priority tasks on the same CPU or any task on other CPUs. This
may happen because of:

• an attempt to access to a shared resource locked by

– a lower priority task within the same CPU, or

– a task executing on a different CPU;

• the invocation of a blocking system call such as a remote procedure call
(allowed by the AUTOSAR standard, for example).

Several protocols can be used to protect resources shared globally. In the case of the
AUTOSAR standard, a discussion on their applicability to AUTOSAR and blocking
times can be found in Wieder and Brandenburg [129] and in Yang et al. [131], where
linear formulations for lock-based protocols that admit a bounded blocking time
are presented. AUTOSAR requires that a task can be terminated at any time, even
when waiting (in a spin lock) for a global resource. This can be in principle solved
by using the protocols described in Craig [83] and in Takada and Sakamura [125].
We remark that shared resource protocols for multiprocessor systems are outside the

8.7 Assigning priorities to tasks 129

scope of this work and that our methodology can nevertheless integrate any protocol
listed above.

Complexity

Algorithm 11 is pseudo-polynomial because it depends upon the cardinality of Pi
from equation (8.20). In our experiments, the entire execution of RPA algorithm
completed in a matter of tenths of a second.

8.8 Experiments
Our experiments are based on the use case of an automotive application provided
by the WATERS 2017 Challenge (Kramer et al. [101]), whose size was reported
earlier in Tab. 8.1. Our methodology is relevant for those applications which make
an intensive use of labels in memory. Applications with CPU bound work and few
memory operations do not particularly benefit by our approach since the impact of
the mapping of labels is negligible.

8.8.1 The use case

In our experiments, we borrowed the values of the memory access times from the
datasheet of TC39x architectures. Tab. 8.2 reports the stall cycles to access a 32-bit
word.

• The cycles for read and write accesses are reported.

• Since write operations are buffered, stall cycles “5, 3” mean:

– 5 cycles for the first write of a 32-bit word;

– 3 cycles for the next consecutive writes.

• The column “Local CPU” reports the access time from a CPU to the directly
connected LRAM (direct accesses to GRAM are not possible as shown in the
architecture of Fig. 8.2).

• The column “Remote CPU” reports the time for accesses from a CPU to a LRAM
or to the GRAM which need to traverse the crossbar (shown as a horizontal
arrow in Fig. 8.2).

Access times for fetching instructions are not reported because memory for storing
program code is normally not a stringent constraints and for this reason is not
addressed.

130 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

Tab. 8.2: Stall cycles for memory accesses in TC39x. LRAM denotes: Data ScratchPad RAM
(DSPR) and distributed Local Memory Units (dLMUs). GRAM denotes: Local
Memory Units (LMUs) and Default Application Memory (DAM).

Local CPU Remote CPU

Type read write read write

LRAM 0 0 7 5, 3
GRAM n.a. n.a. 7 5, 3

Given these characteristics, we model the gain gi,` of the cycles saved by one
invocation of runnable i when accessing the label ` in the directly connected LRAM,
by

gi,` =

7× numi ×
⌈ s`

4
⌉

read accesses

5 + 3× (
⌈ s`

4
⌉
− 1) write accesses

with:

• s` denoting the size of the label ` in bytes;

•
⌈ s`

4
⌉

accounting for accesses made by 4-bytes words;

• numi denoting the number of reads by the one invocation of runnable i;

• the expression of the write cycles accounting for the different number of write
cycles to the first word and the following ones in presence of write buffers.

The model of the gain gi,` assumes that a runnable writes to a label only once per
invocation. This assumption originates from an inspection of the WATERS 2017
use case, which does not contain any information about the access statistics for the
labels to be written. Clearly, our approach can account for labels to be written more
than once whenever this information is available. Moreover, we underline that our
approach is compatible with any model of the memory access times such as the one
proposed in the WATERS 2017 use case (which is 1 cycle to access to the directly
linked LRAM, 9 cycles for other accesses) or others. In fact, the gains gi,` are fed as
input to our problem.

To avoid trivial solutions (in which, for example, all runnables fit onto the same core
or the mapping is infeasible), we scaled the execution cycles of all runnables such
that:

• if no label is in LRAM, then the total utilization
∑
i∈N (fi · Ci) is equal to 2.110

(still fitting on 4 CPUs);

• if all runnables have their used labels in the directly linked LRAM, then the
total utilization is equal to 1.479 (not fitting on a single CPU).

8.8 Experiments 131

These values allow exploring rich scenarios for the mapping over 4 identical CPUs,
and set upper and lower bounds to the total utilization of any solution.

8.8.2 A Simulated Annealing approach
To evaluate the quality of the IP solution, we implemented a Simulated Annealing
(SA) mapping optimizer (Aarts and Korst [73]) as baseline. The choice upon a SA
algorithm in spite of other meta-heuristics or genetic algorithms is twofold. Firstly,
SA is a generally applicable and easy-to-implement stochastic approximation ap-
proach, and it is able to produce good solutions for an optimization problem even if
the underlying structure of the problem is not obvious nor easily understandable.
Moreover, SA algorithms in the past history (Bertsimas and Tsitsiklis [78]) have out-
performed the best known heuristics for several problems, while for other problems
their performance was comparable to specialized heuristics finely-crafted to solve
exactly those specific problems.

SA belongs to the category of randomized optimization techniques and aims at
optimizing a given objective function by performing a sequence of random changes
to the system configuration, generating at every iteration a new mapping solution.
At each step, the new configuration is evaluated and retained if its performance
is better than the previous solution. If the new solution is worse, it can still be
conditionally accepted with a probability P computed by

P = e
−∆V
T

which exponentially decreases with “temperature” T ; this prevents being stuck in a
local optimum. ∆V is the difference between the current and the new performance
values.

The performance metric is the same as the IP (maximization of the slack, as in
equation (8.16)). The constraints are not explicit, to let the algorithm explore
unfeasible regions of the solution space and guarantee the reachability of any
possible configuration. However, unfeasible configurations are penalized in the
objective function, hence the SA moves towards feasible solutions in the end.

The random modifications to the system configuration are realized by 4 transition
operators.

• Task priority assignment: this operator picks a task of the system and sets its
priority to a different value.

• Runnable-to-task mapping: this operator chooses a runnable of the system and
moves it to another task. The runnable can be moved to an existing task, or
a newly created one. If the task where the runnable was originally allocated
contains no runnables after the transition, it is removed from the system.

132 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

• Task-to-CPU mapping: this operator picks a task of the system and moves it to
a different CPU.

• Label-to-memory mapping: this operator chooses a label and places it to a
different memory where it can fit according to the currently available space.

At every step, the algorithm randomly chooses the number of consecutive transition
operators to apply to the current solution (between 1 and 3) and then randomly
picks the operators. Applying more than one operator at a time helps the SA escape
local optima during the search.

The algorithm was programmed to run with an initial temperature of 20000, a final
temperature of 0.0001, a cooling rate of 0.94, a maximum number of temperature
values (MAXNUMCHAINS) of 4000000, a maximum number of iterations for each
temperature value (MAXTRY) of 400000, a maximum number of acceptable configu-
rations for each temperature value (MAXCHANGE) of 20000 and a penalty multiplier
10 (in cost) for unfeasible configurations.

8.8.3 Setup for our approach

The executions of the solver are performed under a Linux environment over one
of the cores available in a machine equipped with Intel Core i7-11700 CPU @
2.50GHz.

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0 5000 10000 15000 20000 25000 30000

T
ot

al
 U

ti
li

za
ti

on

Total LRAM [B]

No local label
After binding

After clustering
After mapping
All local labels

Fig. 8.8: Utilization as function of the allocated memory, with 40 clusters.

To ease the process of data extraction and analysis of the 2017 WATERS Challenge
(Kramer et al. [101]), described in XML format, we implemented the parsing process,
the two polynomial algorithms to bind labels to runnables (Section 8.4.1) and to
aggregate runnables in clusters (Section 8.5.1), and the pseudo-polynomial algorithm
to assign priorities (described in Section 8.7) using Python 3 programming language.

8.8 Experiments 133

The solver of the IP problem to map clusters to CPUs of Section 8.5 is COIN-OR Cbc
(Lougee-Heimer [106]). Cbc is one of the best open-source integer optimization
solvers, and it is developed and maintained explicitly for research by the non-profit
COIN-OR Foundation. The communication between the main Phyton 3 code and
Cbc solver is made by Python’s library Pyomo (Hart et al. [96]). The solver was
invoked as a single thread.

We underline that we purposely targeted a not-so-performing implementation (that
is, an interpreted language and a single-thread solver) to focus exclusively on the
optimization problems and leave room to further performance improvements by
those willing to make an industrial product out of our research prototype.

The weights to the slack αmem, αcpu, and αsched
i from (8.14), (8.15) and (8.21) are

set as follows:

• αmem = 0 and αcpu = 1 meaning that we aim at balancing the total utilization
among CPUs;

• αsched
i = 1 meaning that we equally weight all tasks.

We tried different weights, which did not highlight any different behavior.

8.8.4 Computational results

The experiment of Fig. 8.8, made with 40 clusters, shows the impact of the amount
of allocated LRAM onto the total utilization of the application. For reference, we
also plot the upper and lower bounds to the utilization found as described in
Section 8.8.1.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 5000 10000 15000 20000 25000 30000

S
la

ck

Total LRAM [B]

utilization-based upper bound
average slack

minimum slack among CPUs
per-CPU slack

simulated annealing (20h)

Fig. 8.9: Slack of the mapping, with 40 clusters.

134 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

The “After binding” plot corresponds to the total utilization of the whole application
after labels are bound to runnables (as described in Section 8.4.1). Then, “After
clustering” accounts for the extra utilization savings achieved by HC (Section 8.5.1).
Finally, “After mapping” is the utilization after the clusters are mapped to CPUs.

As expected, the more LRAM is available for storing labels, the lower the final
utilization it is. We also observe that a much steeper descent is achieved for the low
values of LRAM; our explanation is that storing in LRAM a very frequently used label
has a greater impact on utilization than storing another one with the same size, but
used less frequently.

Fig. 8.9 shows the achieved slack. As the IP optimzation targets the maximization of
the minimum slack among CPUs, we observe that all CPU slacks are quite balanced.
It is very striking to observe that SA, despite running about 1500 times longer than
the proposed IP approach, is always achieving significantly inferior results.

 1.52

 1.525

 1.53

 1.535

 1.54

 1.545

 1.55

 1.555

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 U

ti
li

za
ti

o
n

clusters

After binding
After clustering
After mapping

Fig. 8.10: Utilization as function of the number of clusters.

The impact of the number of clusters on the utilization can be seen in Fig. 8.10, and
is as expected. As clusters get merged, their total utilization decreases, because the
merged pair takes advantage of the commonly used labels.

On the other hand, if clusters are too few, then the mapping has really little ma-
neuvering margin to allocate clusters which are then very coarse grained. To our
experience, a number between 20 and 40 demonstrated to be a good compromise
when mapping over 4 CPUs.

Tab. 8.3: Run-time of binding, clustering, and priority assignment.

Time (milliseconds)

Phase average std deviation

Binding labels 10.7 8.1
Clustering runnables 338.6 40.0
Priority assignment 17.4 12.1

Let us now examine the run-time of the whole method. The run time taken by the
binding (Section 8.4.1), the clustering (Section 8.5.1), and the priority assignment

8.8 Experiments 135

(Section 8.7) is negligible compared to the time taken to map clusters over CPUs.
Tab. 8.3 reports the average and standard deviation of their run-times. Fig. 8.11
shows the run-time of the mapping of clusters (of runnables); not surprisingly, it
grows rapidly with the number of clusters. We also observe that if the amount of
allocated LRAM is smaller (3.2K instead of 16K) then the run-time is also smaller.
This happens because if the LRAM is large, then there are more pairs of clusters with
potential utilization savings by staying together.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
[s

ec
]

clusters

LRAM=16K
LRAM=3.2K

Fig. 8.11: Run-time of mapping of clusters.

Our explanation for the observed decrease of the run time when the number of
clusters approaches 100 is that for such a value, the clusters gets smaller and smaller.
Hence, the pruning rules of the solver operate very effectively.

8.9 Final remarks
In this chapter we have illustrated a whole methodology for mapping complex
embedded software over NUMA architectures, exploiting the features of the different
memory areas. The key innovation of our approach resides in the “binding” phase
that reduces the complexity of the problem by orders of magnitude.

In the future, we may exploit the efficiency of our method by integrating it with
other tools including measurement-based timing analysis tools. Also, we may
be investigating the adaptation of the mapping in response to variations in the
application features or in the processing capacity. Finally, a valuable direction of
further investigation is the possibility to add end-to-end constraints, which are very
typical of automotive applications.

136 Chapter 8 Process scheduling and memory mapping: multi-step optimization approach

9Conclusions

A
lot of work has been done in the study of these problems, but even more
work is still underway, both in the adaption of our succesful approaches
to other problem families and in the analysis of new problems with this

accumulated knowledge at hand. I am very happy of what we have managed to
achieve during my PhD, and research is quickly moving forward to provide new
state-of-the-art results and analysis over new problems.

In the following, a brief highlight of current research directions is given, with focus
on aspects derived and relevant to my PhD thesis.

9.1 Flow models for parallel batching
With the work done in Part I, we managed to give am innovative and extremely
tight lower bound for the parallel batching problem that aims to minimize the
total completion time. This has became the new state-of-the-art for that family
of problems, being able to even solve to optimality a lot of instances and giving
excellent heuristic solutions for different variants of the main problem: in the
weighted objective function version, in the case with incompatibilities, in the case
with multiple job sizes (and in the case with both incompatibilities and multiple job
sizes).

We are considering a third type of reformulation that can be able to cope with other
objective functions, an application of our Column Generation (CG) strategy to the
polynomial-size models, and implementation of our flow formulation approach on
different scheduling problems that exhibit other types of complicating constraints.

9.1.1 Time-indexed formulation for exponential-size models
The flow models described in Chapter 4 and Chapter 6 can be considered built
upon job-indexed graphs, since the number of nodes in the graph is always equal to
the number of jobs (plus one). For a similar reason, the flow model described in
Chapter 5 can be considered build upon a weight-indexed graph, since the number of
nodes in the graph is always equal to the sum of weights of all jobs (plus one).

Unfortunately, these approaches are not able to consider several objective functions
(like the total tardiness) and problem structures (like job release dates) because of
the underlying evaluation of the cost of each arc that impacts because the way arcs
are generated by the CG algorithm. To cope with these additional constraints and

137

other objective functions, we are working on a formulation built upon a time-indexed
graph, with the number of nodes in the graph equal to the sum of processing times
of all jobs (plus one). Obviously this can result in slower execution times with
respect to the job-indexed and weight-indexed approaches, since the resulting model
is undoubtedly bigger (processing times are typically higher than weights); but
luckily in the preliminary tests we have done this impact is not too big that becomes
untractable.

This modeling approach is currently under further investigations, especially with
respect to the way new arcs can be efficiently generated with an adapted CG
algorithm, and with respect to the objective functions that we are able to integrate
with this technique.

9.1.2 Application of Column Generation to polynomial-size
models

One reason our CG approach have excellent time performances in the exponential-
size models is the fact that only very few columns are actually generated and added to
the model, way less (by orders of magnitude) than the actual number of all possible
columns, that is exponential. This is the main strength of good CG algorithms, and
the principal fact that enables the writing and efficient solving of exponential-size
models.

This specific approach is not, in fact, applied only where the number of variables
is untractable, but can be implemented even when there is only a polynomial (but
still high) number of variables. This is the case of the models described in Chapter 7,
especially the stronger model of Section 7.1.3 where the number of variables is
in the order of O(n4) and for higher number of jobs leads to slow computational
times.

Our aim in this direction is to modify the CG approach already implemented, and
proven to be effective, for the exponential-size models, and apply them to the
stronger of the two polynomial-size models, hoping that computational times will
decrease significantly while generating only the columns relevant to the optimal
(relaxed) solution. When CG techniques are implemented for polynomial-size models,
one can simply sift all the possible columns by enumeration if a clever pricing formula
does not exist; this solution is not at all viable for exponential-size models, obviously.
In fact, the name of the approach changes, and becomes Column Sifting in this
specific case.

138 Chapter 9 Conclusions

9.1.3 Flow formulations for Common Server problems

The last research direction we have undertaken with regards to flow formulations
applied to the scheduling world is related to the (unbatched) parallel machines
problem in the presence of a common server. In the basic version of the problem, the
aim is to minimize the makespan across all machines under the extra requirement
that all jobs needs a specific load operation, done by a single common server, before
the machine can start processing the job.

Following the modeling scheme already envisioned for Chapter 7, hence a flow model
of polynomial (or pseudo-polynomial) size, we started to develop and analyze the
performance of this kind of modeling technique for this Common Server problem.

Preliminary results are very promising, and will hopefully be published soon, definin-
ing a new state-of-the-art for this problem. In the immmediate future we are already
trying to adapt this approach to more difficult variants; for example, with more
than one Common Server (adding an unload operation) or with extra complicating
constraints over jobs.

9.2 Process scheduling in embedded systems
With the work done in Part II, we studied a challenging problem in process scheduling
for specific embedded systems, obtaining excellent results both in term of solution
quality and computational times. This has been done via the development of a
specific, ad-hoc and fine-tuned algorithm for the entire labels/runnables mapping
procedure that renders the problem tractable via splitting it in subsequent phases
and solving each single step separately.

We now are thinking about the flexibility of our approach, in which cases it can
still produce good results in presence of run-time modifications on the unerdlying
system, and on which extent this approach can be adapted to cope with other specific
problems of the same kind.

9.2.1 Handle modifications over runnables

As we stated in Section 8.9, one possible further investigation path could be the
adaption of the mapping procedure in response to various modifications that could
happen at run-time.

Consider we have a full mapping scheme of labels to runnables (hence to Local
RAMs (LRAMs)) and of runnables to Central Processing Units (CPUs), and something
changes in the underlying architecture or in the utilization required by runnables. For
example, some runnables may have been modified and would require less (or more)

9.2 Process scheduling in embedded systems 139

computational time to execute their job, or something changes in the communication
speed between CPUs and the “distant” LRAMs or the Global RAM (GRAM).

If our aim is to strike a balance between utilization on all CPUs, the situation becomes
unfavorable if those changes impact the utilization over CPUs in such a way that
the slack over some of them is much higher than the slack over others. In this
case, we can re-run our procedure in order to ditribute more equally all labels and
runnables between LRAMs and CPUs and achieve a balanced utilization again. But
this approach can be potentially costly in terms of system management, requiring if
modifications are mandatory even changes over the clustering of runnables, their
mapping to the CPUs, their grouping in tasks and their proprities. One can decide
to postpone such evaluation only after a certain threshold ratio over the reciprocal
difference between slacks has been reached; for example, we can say that if the
highest slack strays from the lowest slack less than 25% we consider that still
acceptable and don’t re-run our entire procedure.

If, instead, a change has happened in utilizations of runnables only because of some
of them changed their used labels, a simpler thing can be done. One can try to
run only the mapping of labels to runnables (Section 8.4.1) to bind labels to the
new-best runnables, and see how (and if) the slack improves; if it is not the case,
hence a full run of the entire procedure could be required.

9.2.2 Application to different architectures
In several parts of Chapter 8 we said that a specific evaluation or a peculiar consid-
eration has been done for the application over our case-study.

For example, the gain in utilization gi,` that a runnable i that runs on a CPU exhibits
while having a specific label ` assigned to the relative LRAM (Section 8.8.1) can be
whatever the underlying architecture allows it to be. It is problem-specific data, and
our method is entirely independent of such a choice.

This leads us to the possibility of exploration over a lot of different architectures
that conforms to the basic abstrat scheme described in Section 8.2, with little to no
structural modifications to our approach.

140 Chapter 9 Conclusions

Bibliography

Part I
[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, Inc., 1993 (cit. on pp. 33, 63).

[2] A. Alfieri, A. Druetto, A. Grosso, and F. Salassa. “Column generation for min-
imizing total completion time on a single machine with parallel batching”. In:
IFAC-PapersOnLine 52.13 (2019), pp. 969–974 (cit. on pp. 14, 57, 70).

[3] A. Alfieri, A. Druetto, A. Grosso, and F. Salassa. “Column generation for minimizing
total completion time in a parallel-batching environment”. In: Journal of Scheduling
24 (Oct. 2021), pp. 569–588 (cit. on pp. 15, 57, 70, 82, 83, 86, 87, 95, 97, 98,
106).

[4] J.E.C. Arroyo and J.Y.-T. Leung. “An effective iterated greedy algorithm for schedul-
ing unrelated parallel batch machines with non-identical capacities and unequal
ready times”. In: Computers & Industrial Engineering 105 (Mar. 2017), pp. 84–100
(cit. on p. 11).

[5] M. Azizoglu and S. Webster. “Scheduling a batch processing machine with non-
identical job sizes”. In: International Journal of Production Research 38.10 (July
2000), pp. 2173–2184 (cit. on pp. 12, 27, 37, 50–52, 69, 74, 75, 102, 103, 105).

[6] M. Azizoglu and S. Webster. “Scheduling a batch processing machine with incom-
patible job families”. In: Computers & Industrial Engineering 39.3–4 (Apr. 2001),
pp. 325–335 (cit. on pp. 13, 87).

[7] P. Baptiste. “Batching identical jobs”. In: Mathematical Methods of Operations Re-
search 52.3 (Dec. 2000), pp. 355–367 (cit. on p. 10).

[8] A. Bellanger, A. Janiak, M.Y. Kovalyov, and A. Oulamara. “Scheduling an unbounded
batching machine with job processing time compatibilities”. In: Discrete Applied
Mathematics 160.1 (Jan. 2012), pp. 15–23 (cit. on p. 11).

[9] J.F. Benders. “Split-merge: Using exponential neighborhood search for scheduling a
batching machine”. In: Numerische Mathematik 4 (Dec. 1962), pp. 238–252 (cit. on
p. 12).

[10] M. Boudhar. “Scheduling a batch processing machine with bipartite compatibility
graphs”. In: Mathematical Methods of Operations Research 57.3 (Aug. 2003), pp. 513–
527 (cit. on p. 10).

[11] P. Brucker, A. Gladky, H. Hoogeveen, et al. “Scheduling a batching machine”. In:
Journal of Scheduling 1.1 (Dec. 1998), pp. 31–54 (cit. on pp. 9–13).

141

[12] M. Cabo, J.L. González-Velarde, E. Possani, and Y.Á. Ríos Solís. “Bi-objective schedul-
ing on a restricted batching machine”. In: Computers & Operations Research 100
(Dec. 2018), pp. 201–210 (cit. on p. 12).

[13] M. Cabo, E. Possani, C.N. Potts, and X. Song. “Split-merge: Using exponential neigh-
borhood search for scheduling a batching machine”. In: Computers & Operations
Research 63 (Nov. 2015), pp. 125–135 (cit. on p. 12).

[14] G. Cachon and C. Terwiesch. Matching Supply with Demand: An Introduction to
Operations Management. McGraw-Hill Education, 2012 (cit. on p. 2).

[15] P. Damodaran, P. Kumar Manjeshwar, and K. Srihari. “Minimizing makespan on a
batch-processing machine with non-identical job sizes using genetic algorithms”.
In: International Journal of Production Economics 103.2 (Oct. 2006), pp. 882–891
(cit. on pp. 10, 12).

[16] S. Dauzère-Pérès and L. Mönch. “Scheduling jobs on a single batch processing ma-
chine with incompatible job families and weighted number of tardy jobs objective”.
In: Computers & Operations Research 40.5 (May 2013), pp. 1224–1233 (cit. on
p. 13).

[17] J. Desrosiers and M. Lübbecke. “A Primer in Column Generation”. In: Column
Generation. Ed. by G. Desaulniers, J. Desrosiers, and M.M. Solomon. Springer,
Boston, MA, 2005 (cit. on p. 62).

[18] J. Desrosiers and M.E. Lübbecke. “Branch-Price-and-Cut Algorithms”. In: Wiley
Encyclopedia of Operations Research and Management Science. Ed. by John Wiley &
Sons. American Cancer Society, Jan. 2011 (cit. on p. 27).

[19] G. Dobson and R.S. Nambimadom. “The Batch Loading and Scheduling Problem”.
In: Operations Research 49.1 (Feb. 2001), pp. 52–65 (cit. on p. 13).

[20] A. Druetto and A. Grosso. “Column generation and rounding heuristics for min-
imizing the total weighted completion time on a single batching machine”. In:
Computers & Operations Research 139 (Mar. 2022) (cit. on pp. 15, 82, 86, 87, 95,
97, 101).

[21] A. Druetto and A. Grosso. “Polynomial-Size Models to Minimize Total Completion
Time in a Parallel Batching Environment”. In: IFAC-PapersOnLine 55.10 (2022),
pp. 2173–2178 (cit. on p. 15).

[22] A. Druetto, E. Pastore, and E. Rener. “Parallel batching with multi-size jobs and
incompatible job families”. In: TOP 31 (July 2023), pp. 440–458 (cit. on pp. 15, 97,
101).

[23] J. Du and J.Y.-T. Leung. “Minimizing Total Tardiness on One Machine Is NP-Hard”.
In: Mathematics of Operations Research 15.3 (Aug. 1990), pp. 483–495 (cit. on
p. 13).

[24] L. Dupont and C. Dhaenens-Flipo. “Minimizing the makespan on a batch machine
with non-identical job sizes: an exact procedure”. In: Computers & Operations
Research 29.7 (June 2002), pp. 807–819 (cit. on p. 10).

[25] S. Emde, L. Polten, and M. Gendreau. “Logic-based benders decomposition for
scheduling a batching machine”. In: Computers & Operations Research 113 (Jan.
2020) (cit. on p. 12).

142

[26] B.Q. Fan, T.C.E. Cheng, S.S. Li, and Q. Feng. “Bounded parallel-batching scheduling
with two competing agents”. In: Journal of Scheduling 16.3 (June 2013), pp. 261–
271 (cit. on p. 14).

[27] B.A. Foster and D.M. Ryan. “An Integer Programming Approach to the Vehicle
Scheduling Problem”. In: Operational Research Quarterly (1970-1977) 27.2 (1976),
pp. 367–384 (cit. on p. 36).

[28] J.W. Fowler and L. Mönch. “A survey of scheduling with parallel batch (p-batch)
processing”. In: European Journal of Operational Research 298.1 (Apr. 2022), pp. 1–
24 (cit. on pp. 7, 12).

[29] R. Fu, J. Tian, S. Li, and J. Yuan. “An optimal online algorithm for the parallel-batch
scheduling with job processing time compatibilities”. In: Journal of Combinatorial
Optimization 34.4 (Nov. 2017), pp. 1187–1197 (cit. on p. 11).

[30] Michel Gondran, Michel Minoux, and Steven Vajda. Graphs and Algorithms. John
Wiley & Sons, Inc., 1984 (cit. on p. 69).

[31] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. “Optimization and
Approximation in Deterministic Sequencing and Scheduling: a Survey”. In: Discrete
Optimization II. Ed. by P.L. Hammer, E.L. Johnson, and B.H. Korte. Vol. 5. Annals of
Discrete Mathematics. Elsevier, 1979, pp. 287–326 (cit. on pp. 8, 27, 57, 82).

[32] M. Hulett, P. Damodaran, and M. Amouie. “Scheduling non-identical parallel batch
processing machines to minimize total weighted tardiness using particle swarm
optimization”. In: Computers & Industrial Engineering 113 (Nov. 2017), pp. 425–436
(cit. on p. 81).

[33] Y. Ikura and M. Gimple. “Efficient scheduling algorithms for a single batch process-
ing machine”. In: Operations Research Letters 5.2 (July 1986), pp. 61–65 (cit. on
p. 7).

[34] F. Jolai. “Minimizing number of tardy jobs on a batch processing machine with
incompatible job families”. In: European Journal of Operational Research 162.1 (Apr.
2005), pp. 184–190 (cit. on p. 13).

[35] F. Jolai Ghazvini and L. Dupont. “Minimizing mean flow times criteria on a single
batch processing machine with non-identical jobs sizes”. In: International Journal of
Production Economics 55.3 (Aug. 1998), pp. 273–280 (cit. on p. 12).

[36] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Berlin, Hei-
delberg, 2004 (cit. on pp. 34, 85).

[37] I. Kucukkoc. “MILP models to minimise makespan in additive manufacturing ma-
chine scheduling problems”. In: Computers & Operations Research 105 (May 2019),
pp. 58–67 (cit. on p. 11).

[38] B.J. Lageweg, J.K. Lenstra, E.L. Lawler, and A.H.G. Rinnooy Kan. “Computer-Aided
complexity classification of combinational problems”. In: Communications of the
ACM 25.11 (Nov. 1982), pp. 817–822 (cit. on pp. 9, 11).

[39] E.L. Lawler. “A Pseudopolynomial Algorithm for Sequencing Jobs to Minimize Total
Tardiness”. In: Studies in Integer Programming. Ed. by P.L. Hammer, E.L. Johnson,
B.H. Korte, and G.L. Nemhauser. Vol. 1. Annals of Discrete Mathematics. Elsevier,
1977, pp. 331–342 (cit. on p. 13).

143

[40] C.-Y. Lee, R. Uzsoy, and L.A. Martin-Vega. “Efficient Algorithms for Scheduling
Semiconductor Burn-In Operations”. In: Operations Research 40.4 (Aug. 1992),
pp. 764–775 (cit. on pp. 9, 11).

[41] C.-L. Li and C.-Y. Lee. “Scheduling with agreeable release times and due dates on a
batch processing machine”. In: European Journal of Operational Research 96.3 (Feb.
1997), pp. 564–569 (cit. on p. 11).

[42] S. Li. “Approximation algorithms for scheduling jobs with release times and arbitrary
sizes on batch machines with non-identical capacities”. In: European Journal of
Operational Research 263.3 (Dec. 2017), pp. 815–826 (cit. on p. 10).

[43] S. Li and J. Yuan. “Minimizing Total Tardiness on One Machine Is NP-Hard”. In:
Journal of Scheduling 15 (Oct. 2012), pp. 629–640 (cit. on p. 96).

[44] J.J. Liu, Z.T. Li, Q.X. Chen, and N. Mao. “Controlling delivery and energy perfor-
mance of parallel batch processors in dynamic mould manufacturing”. In: Computers
& Operations Research 66 (Feb. 2016), pp. 116–129 (cit. on pp. 3, 81).

[45] A. Malapert, C. Gueret, and L.-M. Rousseau. “A constraint programming approach
for a batch processing problem with non-identical job sizes”. In: European Journal
of Operational Research 221.3 (Sept. 2012), pp. 533–545 (cit. on p. 12).

[46] M. Mathirajan and A.I. Sivakumar. “A literature review, classification and simple
meta-analysis on scheduling of batch processors in semiconductor”. In: The Inter-
national Journal of Advanced Manufacturing Technology 29.9 (Jan. 2006), pp. 990–
1001 (cit. on p. 7).

[47] M. Mathirajan, A.I. Sivakumar, and V. Chandru. “Scheduling algorithms for hetero-
geneous batch processors with incompatible job-families”. In: Journal of Intelligent
Manufacturing 15.6 (Dec. 2004), pp. 787–803 (cit. on p. 14).

[48] S. Melouk, P. Damodaran, and P.-Y. Chang. “Minimizing makespan for single ma-
chine batch processing with non-identical job sizes using simulated annealing”.
In: International Journal of Production Economics 87.2 (Jan. 2004), pp. 141–147
(cit. on pp. 10, 11).

[49] L. Mönch, H. Balasubramanian, J.W. Fowler, and M.E. Pfund. “Minimizing Total
Weighted Tardiness on Parallel Batch Process Machines Using Genetic Algorithms”.
In: Operations Research Proceedings 2002. Ed. by U. Leopold-Wildburger, F. Rendl,
and G. Wäscher. Springer Berlin, Heidelberg, 2003, pp. 229–234 (cit. on p. 14).

[50] L. Mönch, J.W. Fowler, S. Dauzère-Pérès, S.J. Mason, and O. Rose. “A survey of
problems, solution techniques, and future challenges in scheduling semiconductor
manufacturing operations”. In: Journal of Scheduling 14.6 (Jan. 2011), pp. 583–599
(cit. on p. 7).

[51] L. Mönch, J.W. Fowler, and S.J. Mason. Production Planning and Control for Semi-
conductor Wafer Fabrication Facilities: Modeling, Analysis, and Systems. Vol. 52.
Operations Research/Computer Science Interfaces Series. Springer Science & Busi-
ness Media, 2012 (cit. on pp. 3, 81).

[52] L. Mönch and R. Unbehaun. “Decomposition heuristics for minimizing earliness–
tardiness on parallel burn-in ovens with a common due date”. In: Computers &
operations research 34.11 (Nov. 2007), pp. 3380–3396 (cit. on p. 81).

144

[53] M. Mourgaya and F. Vanderbeck. “Column generation based heuristic for tactical
planning in multi-period vehicle routing”. In: European Journal of Operational
Research 183.3 (Dec. 2007), pp. 1028–1041 (cit. on pp. 70, 101).

[54] I. Muter. “Exact algorithms to minimize makespan on single and parallel batch
processing machines”. In: European Journal of Operational Research 285.2 (Sept.
2020), pp. 470–483 (cit. on pp. 10, 11).

[55] O. Ozturk. “A truncated column generation algorithm for the parallel batch schedul-
ing problem to minimize total flow time”. In: European Journal of Operational
Research 286.2 (Oct. 2020), pp. 432–443 (cit. on p. 13).

[56] O. Ozturk, M.A. Begen, and G.S. Zaric. “A branch and bound algorithm for schedul-
ing unit size jobs on parallel batching machines to minimize makespan”. In: Inter-
national Journal of Production Research 55.6 (Nov. 2016), pp. 1815–1831 (cit. on
p. 11).

[57] O. Ozturk, M.-L. Espinouse, M. Di Mascolo, and A. Gouin. “Makespan minimisation
on parallel batch processing machines with non-identical job sizes and release dates”.
In: International Journal of Production Research 50.20 (Dec. 2011), pp. 6022–6035
(cit. on pp. 3, 81).

[58] I.C. Perez, J.W. Fowler, and W.M. Carlyle. “Minimizing total weighted tardiness
on a single batch process machine with incompatible job families”. In: Operations
Research 32.2 (Feb. 2005), pp. 327–341 (cit. on p. 13).

[59] C.N. Potts and M.Y. Kovalyov. “Scheduling with batching: A review”. In: European
Journal of Operational Research 120.2 (Jan. 2000), pp. 228–249 (cit. on pp. 7, 10,
12, 81).

[60] N. Rafiee Parsa, B. Karimi, and A. Husseinzadeh Kashan. “A branch and price
algorithm to minimize makespan on a single batch processing machine with
non-identical job sizes”. In: Computers & Operations Research 37.10 (Oct. 2010),
pp. 1720–1730 (cit. on p. 10).

[61] N. Rafiee Parsa, B. Karimi, and S.M. Moattar Husseini. “Minimizing total flow time
on a batch processing machine using a hybrid max-min ant system”. In: Computers
& Industrial Engineering 99 (Sept. 2016), pp. 372–381 (cit. on pp. 12, 27, 28, 43,
44, 47, 48).

[62] N. Rafiee Parsa, T. Keshavarz, B. Karimi, and S.M. Moattar Husseini. “A hybrid
neural network approach to minimize total completion time on a single batch
processing machine”. In: International Transactions in Operational Research 28.5
(Apr. 2019), pp. 2867–2899 (cit. on p. 47).

[63] B. Shahidi-Zadeh, R. Tavakkoli-Moghaddam, A. Taheri-Moghadam, and I. Rastgar.
“Solving a bi-objective unrelated parallel batch processing machines scheduling
problem: A comparison study”. In: Computers & Operations Research 88 (Dec. 2017),
pp. 71–90 (cit. on p. 14).

[64] O. Shahvari and R. Logendran. “A bi-objective batch processing problem with dual-
resources on unrelated-parallel machines”. In: Applied Soft Computing 61 (Dec.
2017), pp. 174–192 (cit. on p. 14).

145

[65] T. Takamatsu, I. Hashimoto, and S. Hasebe. “Optimal scheduling and minimum
storage tank capacities in a process system with parallel batch units”. In: Computers
& Chemical Engineering 3.1–4 (1979), pp. 185–195 (cit. on p. 81).

[66] Y. Tan, L. Mönch, and J.W. Fowler. “A hybrid scheduling approach for a two-stage
flexible flow shop with batch processing machines”. In: Journal of Scheduling 21.2
(Apr. 2018), pp. 209–226 (cit. on p. 14).

[67] R.S. Trindade, O.C.B. de Araújo, and M.H.C. Fampa. “Arc-flow approach for single
batch-processing machine scheduling”. In: Computers & Operations Research 134
(Oct. 2021) (cit. on pp. 10, 97, 98).

[68] R.S. Trindade, O.C.B. de Araújo, M.H.C. Fampa, and F.M. Müller. “Modelling and
symmetry breaking in scheduling problems on batch processing machines”. In:
International Journal of Production Research 56.22 (Nov. 2018), pp. 7031–7048
(cit. on p. 11).

[69] R. Uzsoy. “Scheduling a single batch processing machine with non-identical job
sizes”. In: International Journal of Production Research 32.7 (1994), pp. 1615–1635
(cit. on pp. 12, 37, 43, 44, 47, 50, 52, 102).

[70] R. Uzsoy, C.-Y. Lee, and L.A. Martin-Vega. “A review of production planning and
scheduling models in the semiconductor industry part II: shop-floor control”. In: IIE
Transactions 26.5 (Sept. 1994), pp. 44–55 (cit. on p. 10).

[71] J. Zhang, X. Yao, and Y. Li. “Improved evolutionary algorithm for parallel batch
processing machine scheduling in additive manufacturing”. In: International Journal
of Production Research 58.8 (Apr. 2020), pp. 2263–2282 (cit. on pp. 57, 81).

[72] H. Zhou, J. Pang, P.-K. Chen, and F.-D. Chou. “A modified particle swarm optimiza-
tion algorithm for a batch-processing machine scheduling problem with arbitrary
release times and non-identical job sizes”. In: Computers & Industrial Engineering
123 (Sept. 2018), pp. 67–81 (cit. on p. 12).

Part II
[73] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. Wiley & Sons,

1989 (cit. on p. 132).

[74] A. Alexandrescu, I. Agavriloaei, and M. Craus. “A genetic algorithm for mapping
tasks in heterogeneous computing systems”. In: 15th International Conference on
System Theory, Control and Computing. 2011, pp. 1–6 (cit. on p. 16).

[75] AURIX TriCore TC3xx Web Page. https://www.infineon.com/cms/en/product/
microcontroller / 32 - bit - tricore - microcontroller / 32 - bit - tricore -
aurix-tc3xx/ (cit. on p. 113).

[76] AUTOSAR Web Page. https://www.autosar.org/ (cit. on p. 114).

[77] M. Becker, D. Dasari, B. Nicolic, et al. “Contention-free execution of automotive
applications on a clustered many-core platform”. In: 2016 28th Euromicro Conference
on Real-Time Systems (ECRTS). 2016, pp. 14–24 (cit. on p. 17).

[78] D. Bertsimas and J. Tsitsiklis. “Simulated Annealing”. In: Statistical Science 8.1 (Feb.
1993), pp. 10–15 (cit. on p. 132).

146

https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
https://www.autosar.org/

[79] E. Bini, M. Di Natale, and G. Buttazzo. “Sensitivity analysis for fixed-priority real-
time systems”. In: Real-Time Systems 39.1–3 (Apr. 2008), pp. 5–30 (cit. on p. 128).

[80] R. Bouaziz, L. Lemarchand, F. Singhoff, B. Zalila, and M. Jmaiel. “Multi-objective
design exploration approach for ravenscar real-time systems”. In: Real-Time Systems
54 (Feb. 2018), pp. 424–483 (cit. on p. 16).

[81] D. Casini, P. Pazzaglia, A. Biondi, and M. Di Natale. “Optimized partitioning and
priority assignment of real-time applications on heterogeneous platforms with
hardware acceleration”. In: Journal of Systems Architecture 124 (Mar. 2022) (cit. on
p. 18).

[82] J. Chen, P. Han, Y. Liu, and X. Du. “Scheduling independent tasks in cloud environ-
ment based on modified differential evolution”. In: Concurrency and Computation:
Practice and Experience (Mar. 2021) (cit. on p. 16).

[83] T.S. Craig. “Queuing spin lock algorithms to support timing predictability”. In: 1993
Proceedings Real-Time Systems Symposium (Dec. 1993), pp. 148–157 (cit. on p. 129).

[84] P. Cuadra, L. Krawczyk, R. Höttger, P. Heisig, and C. Wolff. “Automated scheduling
for tightly-coupled embedded multi-core systems using hybrid genetic algorithms”.
In: International Conference on Information and Software Technologies. 2017, pp. 362–
373 (cit. on p. 16).

[85] G.B. Dantzig. “Discrete-variable extremum problems”. In: Operations Research 5.2
(Apr. 1957), pp. 266–288 (cit. on p. 120).

[86] R.I. Davis and A. Burns. “Robust priority assignment for fixed priority real-time
systems”. In: 28th IEEE International Real-Time Systems Symposium (RTSS 2007).
2007, pp. 3–14 (cit. on p. 128).

[87] A. Druetto, E. Bini, A. Grosso, et al. “Task and Memory Mapping of Large Size
Embedded Applications over NUMA Architecture”. In: Proceedings of the 31st In-
ternational Conference on Real-Time Networks and Systems (RTNS). Association for
Computing Machinery, 2023, pp. 166–176 (cit. on p. 20).

[88] Eclipse APP4MC Web Page. https://www.eclipse.org/app4mc/ (cit. on pp. 113,
114).

[89] H.R. Faragardi, B. Lisper, K. Sandström, and T. Nolte. “An efficient scheduling of
AUTOSAR runnables to minimize communication cost in multi-core systems”. In:
7’th International Symposium on Telecommunications (IST’2014). 2014, pp. 41–48
(cit. on p. 16).

[90] F. Fauberteau and S. Midonnet. “Robust Partitioned Scheduling for Static-Priority
Real-Time Multiprocessor Systems with Shared Resources”. In: 18th International
Conference on Real-Time and Network Systems. 2010, pp. 217–225 (cit. on p. 15).

[91] G. Fernandez, J. Abella, E. Quinones, et al. “Seeking time-composable partitions of
tasks for cots multicore processors”. In: 2015 IEEE 18th International Symposium on
Real-Time Distributed Computing. 2015, pp. 208–217 (cit. on p. 18).

[92] F. Ferrandi, P.L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo. “Ant colony heuristic for
mapping and scheduling tasks and communications on heterogeneous embedded
systems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 29.6 (May 2010), pp. 911–924 (cit. on p. 16).

147

https://www.eclipse.org/app4mc/

[93] S. Fürst, J. Mössinger, S. Bunzel, et al. “AUTOSAR – A Worldwide Standard is
on the Road”. In: 14th International VDI Congress Electronic Systems for Vehicles,
Baden-Baden. 2009 (cit. on pp. 3, 114).

[94] M. Guan and T. Tong. “Ant colony algorithm based optimization method for real-
time task scheduling of multi-core system”. Pat. CN105487920. 2016 (cit. on p. 19).

[95] A. Hamann, D. Ziegenbein, S. Kramer, and M. Lukasiewycz. “Demonstration of the
FMTV 2016 timing verification challenge”. In: 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 2016 (cit. on p. 19).

[96] W.E. Hart, J.-P. Watson, and D.L. Woodruff. “Pyomo: modeling and solving mathe-
matical programs in Python”. In: Mathematical Programming Computation 3 (Aug.
2011), pp. 219–260 (cit. on p. 134).

[97] F. Hebbache, F. Brandner, M. Jan, and L. Pautet. “Work-conserving dynamic time-
division multiplexing for multi-criticality systems”. In: Real-Time Systems 56 (July
2020), pp. 124–170 (cit. on p. 19).

[98] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. “Giotto: a time-triggered language
for embedded programming”. In: Lecture Notes in Computer Science 2211 (Sept.
2001), pp. 84–99 (cit. on p. 17).

[99] R. Höttger, L. Krawczyk, and B. Igel. “Model-based automotive partitioning and
mapping for embedded multicore systems”. In: International Conference on Parallel,
Distributed Systems and Software Engineering. 2015 (cit. on p. 17).

[100] Y. Kobayashi, K. Honda, S. Kojima, et al. “Mapping Method Usable with Clustered
Many-core Platforms for Simulink Model”. In: Journal of Information Processing 30
(Feb. 2022), pp. 141–150 (cit. on p. 17).

[101] S. Kramer, D. Ziegenbein, and A. Hamann. Automotive application model based on
APP4MC (WATERS17). https://waters2017.inria.fr/ (cit. on pp. 114, 116,
121, 127, 130, 133).

[102] C. Lameter. “NUMA (Non-Uniform Memory Access): An Overview”. In: Queue 11.7
(July 2013), pp. 40–51 (cit. on p. 4).

[103] J.P. Lehoczky, L. Sha, and Y. Ding. “The Rate-Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior”. In: Proceedings of the 10th IEEE
Real-Time Systems Symposium. 1989, pp. 166–171 (cit. on p. 128).

[104] L. Liping. “Central Processing Unit performance optimization method and device
based on NUMA (Non-uniform Memory Access) architecture”. Pat. CN107346267.
2017 (cit. on p. 19).

[105] C.L. Liu and J.W. Layland. “Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment”. In: Journal of the Association for Computing Machinery
20.1 (Jan. 1973), pp. 46–61 (cit. on p. 124).

[106] R. Lougee-Heimer. “The Common Optimization INterface for Operations Research:
Promoting open-source software in the operations research community”. In: IBM
Journal of Research and Development 47.1 (Jan. 2003), pp. 57–66 (cit. on p. 134).

[107] M. Lowinski, D. Ziegenbein, and S. Glesner. “Splitting tasks for migrating real-time
automotive applications to multi-core ecus”. In: 2016 11th IEEE Symposium on
Industrial Embedded Systems (SIES). 2016, pp. 1–8 (cit. on p. 18).

148

https://waters2017.inria.fr/

[108] F. Lumpp, S. Aldegheri, H.D. Patel, and N. Bombieri. “Task Mapping and Scheduling
for OpenVX Applications on Heterogeneous Multi/Many-Core Architectures”. In:
IEEE Transactions on Computers 70.8 (Feb. 2021), pp. 1148–1159 (cit. on p. 16).

[109] G.M. Mancuso, E. Bini, and G. Pannocchia. “Optimal priority assignment to control
tasks”. In: ACM Transactions on Embedded Computing Systems (TECS) 13.5s (Oct.
2014), pp. 1–17 (cit. on p. 18).

[110] M. Maspoli, M. Knauss, and M. Nowacki. “Method and device for operating a
many-core system”. Pat. US2017090820. 2017 (cit. on p. 19).

[111] S.D. McLean, S.S. Craciunas, E.A.J. Hansen, and P. Pop. “Mapping and Scheduling
Automotive Applications on ADAS Platforms using Metaheuristics”. In: 2020 25th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). 2020, pp. 329–336 (cit. on p. 15).

[112] R. Mirosanlou, D. Guo, M. Hassan, and R. Pellizzoni. “MCsim: An extensible dram
memory controller simulator”. In: IEEE Computer Architecture Letters 19.2 (July
2020), pp. 105–109 (cit. on p. 19).

[113] A.K. Mok and D. Chen. “A multiframe model for real-time tasks”. In: IEEE Transac-
tions on Software Engineering 23.10 (Oct. 1997), pp. 635–645 (cit. on p. 128).

[114] F. Murtagh and P. Contreras. “Methods of Hierarchical Clustering”. In: International
Encyclopedia of Statistical Science (Dec. 2011), pp. 633–635 (cit. on p. 125).

[115] S. Noriaki, E. Masato, and S. Junji. “Real time system task configuration optimization
system for multi-core processors, and method and program”. Pat. US2012331474.
2012 (cit. on p. 19).

[116] A.J. Page, T.M. Keane, and T.J. Naughton. “Multi-heuristic dynamic task allocation
using genetic algorithms in a heterogeneous distributed system”. In: Journal of
Parallel and Distributed Computing 70.7 (July 2010), pp. 758–766 (cit. on p. 16).

[117] R. Pathan, P. Voudouris, and P. Stenström. “Scheduling parallel real-time recurrent
tasks on multicore platforms”. In: IEEE Transactions on Parallel and Distributed
Systems 29.4 (Nov. 2017), pp. 915–928 (cit. on p. 16).

[118] S. Paul, N. Chatterjee, P. Ghosal, and J.-P. Diguet. “Adaptive Task Allocation and
Scheduling on NoC-based Multicore Platforms with Multitasking Processors”. In:
ACM Transactions on Embedded Computing Systems 20.1 (Dec. 2020), pp. 1–26
(cit. on p. 18).

[119] P. Pazzaglia, A. Biondi, and M. Di Natale. “Optimizing the functional deployment on
multicore platforms with logical execution time”. In: 2019 IEEE Real-Time Systems
Symposium (RTSS). 2019, pp. 207–219 (cit. on pp. 17, 124).

[120] Q. Perret, P. Maurère, É. Noulard, et al. “Mapping hard real-time applications on
many-core processors”. In: Proceedings of the 24th International Conference on
Real-Time Networks and Systems. 2016, pp. 235–244 (cit. on p. 18).

[121] J. Reineke, I. Liu, H.D. Patel, S. Kim, and E.A. Lee. “PRET DRAM controller: Bank
privatization for predictability and temporal isolation”. In: 2011 Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ ISSS). 2011, pp. 99–108 (cit. on p. 19).

149

[122] S.E. Saidi, S. Cotard, K. Chaaban, and K. Marteil. “An ILP approach for mapping
AUTOSAR runnables on multi-core architectures”. In: Proceedings of the 2015
Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools.
2015, pp. 1–8 (cit. on p. 18).

[123] D. Senapati, A. Sarkar, and C. Karfa. “PRESTO: A Penalty-aware Real-time Scheduler
for Task Graphs on Heterogeneous Platforms”. In: IEEE Transactions on Computers
71.2 (Feb. 2021), pp. 421–435 (cit. on p. 16).

[124] M.H. Shirvani and R.N. Talouki. “A novel hybrid heuristic-based list scheduling algo-
rithm in heterogeneous cloud computing environment for makespan optimization”.
In: Parallel Computing 108 (Dec. 2021) (cit. on p. 17).

[125] H. Takada and K. Sakamura. “Predictable spin lock algorithms with preemption”.
In: Proceedings of 11th IEEE Workshop on Real-Time Operating Systems and Software
(May 1994), pp. 2–6 (cit. on p. 129).

[126] H. Topcuoglu, S. Hariri, and M.-Y. Wu. “Performance-effective and low-complexity
task scheduling for heterogeneous computing”. In: IEEE transactions on parallel and
distributed systems 13.3 (Mar. 2002), pp. 260–274 (cit. on p. 17).

[127] S. Voronov, S. Tang, T. Amert, and J.H. Anderson. “AI meets real-time: Addressing
real-world complexities in graph response-time analysis”. In: 2021 IEEE Real-Time
Systems Symposium (RTSS). 2021, pp. 82–96 (cit. on p. 18).

[128] W. Wang, S. Cotard, F. Gravez, and B. Miramond. “Optimizing application dis-
tribution on multi-core systems within AUTOSAR”. In: 8th European Congress on
Embedded Real Time Software and Systems (ERTS 2016). 2016 (cit. on p. 18).

[129] A. Wieder and B. Brandenburg. “On spin locks in AUTOSAR: Blocking analysis of
FIFO, unordered, and priority-ordered spin locks”. In: Proceedings of the IEEE 34th
Real-Time Systems Symposium. 2013, pp. 45–56 (cit. on p. 129).

[130] C. Wolff, L. Krawczyk, R. Höttger, et al. “AMALTHEA – Tailoring tools to projects
in automotive software development”. In: 2015 IEEE 8th International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS). 2015, pp. 515–520 (cit. on pp. 16, 113, 114).

[131] M. Yang, A. Wieder, and B. Brandenburg. “Global real-time semaphore protocols: A
survey, unified analysis, and comparison”. In: Proceedings of the IEEE 36th Real-Time
Systems Symposium. 2015, pp. 1–12 (cit. on p. 129).

[132] Y. Zhao and H. Zeng. “The concept of unschedulability core for optimizing real-time
systems with fixed-priority scheduling”. In: IEEE Transactions on Computers 68.6
(June 2018), pp. 926–938 (cit. on p. 18).

150

List of Publications

Publications related to the topics of the thesis
A. Alfieri, A. Druetto, A. Grosso and F. Salassa, Column generation for minimizing total
completion time on a single machine with parallel batching. IFAC-PapersOnLine, vol 52, n 13,
pages 969-974. Elsevier, 2019.
Basis for Chapter 4, Part I

A. Druetto and A. Grosso, Column generation bounds on a network flow model to minimize
the total weighted completion time for a single parallel batching machine. 31st European
Conference on Operational Research (EURO), July 2021.
Basis for Chapter 5, Part I

E. Rener, A. Druetto and E. Pastore, Parallel batching with multi-size jobs. 31st European
Conference on Operational Research (EURO), July 2021.
Basis for Chapter 6, Part I

A. Alfieri, A. Druetto, A. Grosso and F. Salassa, Column generation for minimizing total
completion time in a parallel-batching environment. Journal of Scheduling, vol 24, pages
569-588. Springer Nature, 2021.
Seminal paper of Chapter 4, Part I

A. Druetto and A. Grosso, Column generation and rounding heuristics for minimizing the total
weighted completion time on a single batching machine. Computers & Operations Research,
vol 139. Elsevier, 2022.
Seminal paper of Chapter 5, Part I

A. Druetto and A. Grosso, Polynomial-Size ILP formulations for the Total Completion Time
Problem on a Parallel Batching Machine. 15th Workshop on Models and Algorithms for
Planning and Scheduling (MAPSP), June 2022.
Basis for Chapter 7, Part I

A. Druetto and A. Grosso, Polynomial-Size Models to Minimize Total Completion Time in a
Parallel Batching Environment. IFAC-PapersOnLine, vol 55, n 10, pages 2173-2178. Elsevier,
2022.
Seminal paper of Chapter 7, Part I

A. Druetto, E. Pastore and E. Rener, Parallel batching with multi-size jobs and incompatible job
families. TOP, vol 31, pages 440-458. Springer Nature, 2023.
Seminal paper of Chapter 6, Part I

151

A. Druetto, E. Bini, A. Grosso, S. Puri, S. Bacci, M. Di Natale and F. Paladino, Task and
Memory Mapping of Large Size Embedded Applications over NUMA architecture. Proceedings of
the 31st International Conference on Real-Time Networks and Systems (RTNS), June 2023.

Patent Pending: SOFTWARE OPTIMIZATION METHOD AND DEVICE FOR NUMA AR-
CHITECTURE, International Patent Application PCT/EP2022/063829 (not published
yet).

Seminal paper of Chapter 8, Part II

Other publications during the PhD period
A. Druetto, M. Roberti, R. Cancelliere, D. Cavagnino and M. Gai, A Deep Learning Approach
to Anomaly Detection in the Gaia Space Mission Data. Lecture Notes in Computer Science, vol
11507, pages 390-401. Springer Nature, 2019.

M. Roberti, A. Druetto, D. Busonero, R. Cancelliere, D. Cavagnino and M. Gai, Anomaly
Detection Techniques in the Gaia Space Mission Data. Journal of Signal Processing Systems,
vol 93, pages 1339-1357. Springer Nature, 2021.

R. Aringhieri, S. Bigharaz, A. Druetto, D. Duma, A. Grosso and A. Guastalla, The daily swab
test collection problem. Annals of Operations Research, In Press. Springer Nature, 2022.

152

List of Acronyms (Part I)

Notation Description
B&B Branch-and-Bound.
B&P Branch-and-Price.
BB-UB Branch-and Bound Upper Bound.
CG Column Generation.
CG-LB Column Generation Lower Bound.
CG-UB Column Generation Upper Bound.
DP Dynamic Programming.
ER-UB Early Rounding Upper Bound.
LP Linear Program.
LPT Longest Processing Time.
MIP Mixed-Integer Program.
P&B Price-and-Branch.
PR Parallel Relaxation.
RMP Restricted Master Problem.
SPT Shortest Processing Time.
VR-UB Variable Rounding Upper Bound.

153

List of Acronyms (Part II)

Notation Description
AUTOSAR AUTomotive Open System ARchitecture.
CPU Central Processing Unit.
DAG Direct Acyclic Graph.
DRAM Dynamic Random Access Memory.
GA Genetic Algorithm.
GRAM Global RAM.
HC Hierarchical Clustering.
IP Integer Program.
LRAM Local RAM.
NUMA Non-Uniform Memory Access.
OS Operating System.
RPA Robust Priority Assignment.
RTE Run-Time Environment.
SA Simulated Annealing.

155

List of Figures

4.1 Batch sequence as a path on a graph. 31
4.2 Example of a full graph. 31
4.3 Batch sequences on machines as a collection of paths on a graph. 39

5.1 Weighted batch sequence as a path on a graph. 60

8.1 AURIX TriCore TC39x: CPUs and memories (no I/O is reported). 112
8.2 Abstract hardware model. 115
8.3 The cyclic dependency of the mapping problem. 116
8.4 The mapping problem. 117
8.5 Binding of labels to runnables, then runnables to CPUs. 118
8.6 Binding labels to runnables. 119
8.7 Merging runnables in clusters. 124
8.8 Utilization as function of the allocated memory, with 40 clusters. 133
8.9 Slack of the mapping, with 40 clusters. 134
8.10 Utilization as function of the number of clusters. 135
8.11 Run-time of mapping of clusters. 136

157

List of Tables

2.1 Graham three-field notation. 8

3.1 Notation summary for Parallel Batching. 23

4.1 Results for CG-UB and CG-LB with b = 10. 45
4.2 Results for CG-UB and CG-LB with b = 30. 46
4.3 Results for CG-UB and CG-LB with b = 50. 47
4.4 Comparison between HMMAS and CG-UB algorithms. 48
4.5 Comparison between CPLEX-UB and CG-UB. 49
4.6 Results for CG-UB and CG-LB with b = 10 and 2 parallel machines. 50
4.7 Results for CG-UB and CG-LB with b = 10 and 3 parallel machines. 51
4.8 Results for CG-UB and CG-LB with b = 10 and 5 parallel machines. 52
4.9 Comparison of exact approaches. 53
4.10 Comparison between CG-UB and real optima with b = 10. 54
4.11 Results for CG-UB and CG-LB with b = 50 and σ = σ5. 55

5.1 Times and size for arc-based model vs path-based model. 73
5.2 Results for CG-LB and VR-UB on the weighted model. 75
5.3 Comparison between VR-UB and ER-UB on the weighted model. 76
5.4 Comparison between VR-UB and ER-UB over the Extended Set. 77
5.5 Comparison between VR-UB and ER-UB with different b. 78

6.1 Results for the multi-size case. 89
6.2 Results for the incompatible families case. 90
6.3 Results for the multi-size (2) and incompatible families case. 91
6.4 Results for the multi-size (3) and incompatible families case. 92
6.5 Results for all cases over the extra instances. 94

7.1 Open nodes and optima found for the 7.1.2 model. 103
7.2 Results for the 7.1.2 model. 104
7.3 Open nodes and optima found for the 7.1.3 model. 104
7.4 Results for the 7.1.3 model. 105
7.5 Comparison between the 7.1.3 and the 4.1.2 lower bounds. 106

8.1 Key data of 2017 WATERS Challenge reference application. 116
8.2 Stall cycles for memory accesses in TC39x. 131
8.3 Run-time of binding, clustering, and priority assignment. 135

159

Colophon
This thesis was typeset with LATEX 2ε. It uses a slightly adapted version of the Clean Thesis
style developed by Ricardo Langner. The design of the Clean Thesis style is inspired by user
guide documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Cover
	Titlepage
	Acknowledgments
	Contents
	1 Introduction
	1.1 Research motivations
	1.1.1 Flow models for parallel batching
	1.1.2 Process scheduling in embedded systems

	1.2 Thesis outline

	2 Literature review
	2.1 Flow models for parallel batching
	2.1.1 Polynomially solvable problems
	2.1.2 Minimizing the maximum completion time
	2.1.3 Minimizing the maximum lateness
	2.1.4 Minimizing the (weighted) total completion time
	2.1.5 Minimizing the (weighted) number of tardy jobs
	2.1.6 Minimizing the (weighted) total tardiness
	2.1.7 Other objective functions
	2.1.8 Contribution of this work

	2.2 Process scheduling in embedded systems
	2.2.1 Metaheuristic techniques
	2.2.2 Direct Acyclic Graphs
	2.2.3 Specific environments
	2.2.4 Generalization of memory hierarchy
	2.2.5 Related patents
	2.2.6 Contribution of this work

	I Flow models for parallel batching
	3 Problem description
	3.1 Unweighted total completion time: exact approach and parallel machines
	3.2 Weighted total completion time: heuristics for the single machine case
	3.3 Unweighted total completion time: heuristics for multi-size jobs and incompatibility families
	3.4 Unweighted total completion time: analysis of two polynomial-size models

	4 Unweighted total completion time: exact approach and parallel machines
	4.1 Single-machine models
	4.1.1 A new problem formulation
	4.1.2 Continuous relaxation for the new graph-based formulation: Column Generation
	4.1.3 Heuristic procedure: Price-and-Branch
	4.1.4 Exact approach: Branch-and-Price

	4.2 Parallel-machines models
	4.3 Computational results
	4.3.1 Evaluation of the heuristic algorithms
	4.3.2 Evaluation of the exact approach

	4.4 Final remarks

	5 Weighted total completion time: single machine and heuristics
	5.1 Column Generation models
	5.1.1 The graph-based model
	5.1.2 An arc-based flow model
	5.1.3 A path-based model

	5.2 Upper bounding: heuristics
	5.2.1 Variable Rounding Upper Bound
	5.2.2 Early Rounding Upper Bound

	5.3 Computational results
	5.3.1 Performance of basic models
	5.3.2 Generating feasible solutions by rounding

	5.4 Final remarks

	6 Unweighted total completion time: heuristics for multi-size jobs and incompatibility families
	6.1 Multiple sizes and incompatible families
	6.2 Column Generation-based heuristics
	6.2.1 The CG-LB Column Generation algorithm
	6.2.2 The CG-UB and VR-UB heuristic procedures

	6.3 Computational results
	6.3.1 Standard instances (b = 10)
	6.3.2 Extra instances (b = 50)

	6.4 Final remarks

	7 Unweighted total completion time: analysis of two polynomial-size models
	7.1 Models description
	7.1.1 Arc-flow models
	7.1.2 A polynomial-size flow-based model
	7.1.3 A stronger model

	7.2 Variable Rounding heuristic
	7.2.1 Variable Rounding for the 7.1.3 model
	7.2.2 Variable Rounding for the 7.1.2 model

	7.3 Computational results
	7.3.1 Testing environment
	7.3.2 Results for the 7.1.2 model
	7.3.3 Results for the 7.1.3 model

	7.4 Final remarks

	II Process scheduling in embedded systems
	8 Process scheduling and memory mapping: multi-step optimization approach
	8.1 CPUs and memories in NUMA
	8.2 System model
	8.2.1 Hardware model
	8.2.2 Software model

	8.3 Problem description
	8.4 Binding labels to runnables
	8.4.1 Polynomial-time algorithms

	8.5 Mapping runnables to CPUs
	8.5.1 Hierarchical Clustering

	8.6 Aggregation of runnables into tasks
	8.7 Assigning priorities to tasks
	8.8 Experiments
	8.8.1 The use case
	8.8.2 A Simulated Annealing approach
	8.8.3 Setup for our approach
	8.8.4 Computational results

	8.9 Final remarks

	9 Conclusions
	9.1 Flow models for parallel batching
	9.1.1 Time-indexed formulation for exponential-size models
	9.1.2 Application of Column Generation to polynomial-size models
	9.1.3 Flow formulations for Common Server problems

	9.2 Process scheduling in embedded systems
	9.2.1 Handle modifications over runnables
	9.2.2 Application to different architectures

	Bibliography
	List of Publications
	List of Acronyms (Part I)
	List of Acronyms (Part II)
	List of Figures
	List of Tables
	Colophon

