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Abstract 

In this article, we examine eighth graders’ incorrect responses to a specific task on a national 

standardized assessment of mathematics. The task asked students to write the formula for the 

perimeter of a given figure as a function of a variable. We focus on incorrect responses to better 

understand students’ difficulties with the algebraic thinking demanded by the task, especially 

with the formula and the variable. We show how these responses identify a variety of 

approaches to the solution of the task, which we name routes. We use these data to conclude 

that, at the end of middle school in our country, there still appears to be a lack of a relational 

view of formula, pointing to a need to reconceptualize formulas as relations rather than 

procedures. The strength of large-scale data in fueling mathematics education research is also 

discussed. 
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Entanglements of mathematics education research and large-scale 

assessment: Rethinking formulas as relational 

1. The relevance of formulas to mathematics 

In this article, we investigate middle grade students’ difficulties in solving a 

mathematical task that requires algebraic modelling. The task asked students to write 

the formula for the perimeter of a geometric figure as a function of a variable, providing 

the relevant information in a text and a figure. Solving the task involves algebraic 

thinking and the ability to grasp relationships from both text and figure. The geometric 

figure provides the initial context, but the target of the task is the function. Once 

relevant information is properly combined and translated into symbols, the perimeter of 

the figure is given by a simple linear function.  

That the task focused on writing a formula is a central aspect of our study. At a 

large-scale, formulas are important for those STEM-oriented or business-related future 

studies and careers in which mathematical statements or investigations are required. The 

relevance of formulas to mathematics is traditionally associated with the fact that, to a 

great extent, they save time, space, and effort by reducing cognitive load and 

simplifying or facilitating mathematical practice. A formula directs attention, through 

symbols, to the relation or the operation expressed by it, often extricated by the length, 

bewilderment, or complexity of ordinary language.  

In the elementary and middle grades, students use formulas as a murky 

translation of a mathematical statement from words, a furtive means to relate different 

domains (e.g., geometry and algebra) when modeling a situation, and a vivid site of 

encounter between arithmetic and algebra when used to measure areas and perimeters. 

Working with formulas in mathematics therefore evokes problematic pairs, such as 
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conceptual and procedural, or relational and operational (see, for example, Arcavi, 

1994; Sfard, 1991). Each pair foregrounds a tension between the meaning of formulas 

(conceptual, relational) and their application as rote procedures (procedural, 

operational).  

Because we are interested in the activities of students in the classroom, at a 

closer look, we can see this tension in terms of the dynamic of explorative and ritual, 

two kinds of routines “at the extremes” (see Lavie et al., 2019 for a detailed discussion). 

While rituals are seen as inevitable in the initial stages of learning, de-ritualization must 

occur to gradually turn them into explorations. One of the problems we have in 

mathematics education––stress Lavie and colleagues––is that many of the routines 

taught in school are learned as rituals and there is insufficient de-ritualization. In this 

sense, a formula, like the area formula A = b´h for a rectangle with the base b and the 

height h, is a ritual when its use is limited to applying it as a static rule, like when it is 

used to calculate the value of A by inserting the known values of b and h. It must be the 

responsibility of the teacher to draw students’ attention to things that should be related, 

especially if they are conceptually important.  

A formula requires variable notation (using letters). We know that students often 

possess static images of variables as unknown values, and thus of formulas, with 

difficulty in conceptualizing quantities in a problem context, how they can be related, 

and how they vary together (e.g., Carlson et al., 2015; Thompson & Carlson, 2017). A 

formula also explicitly implicates the meaning of the equals sign, which is itself a 

source of misconceptions, particularly when interpreted under an operational view as 

indicating the need to compute an answer, rather than in a relational manner, in terms of 

equivalence (e.g., Carpenter et al., 2003; Kieran, 2006; Knuth et al., 2011; Molina & 

Ambrose, 2008).  
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Conceptually, we see that the formula (e.g., A = b´h) involves an algebraic 

relationship between quantities (e.g., area, base and height), or a function when it 

expresses one quantity as dependent on another (e.g., A = 2b´b for a rectangle with one 

dimension twice the size of the other). In many instances, this is crucial to algebraic 

thinking (Blanton et al., 2011; Carraher et al., 2008). Researchers stress that “the 

growing body of evidence that K–grade 8 students can successfully reason algebraically 

about functional relationships opens the possibility that the difficulties exhibited by 

older students might stem from a lack of experiences with functional thinking in the 

elementary grades” (Stephens et al., 2017, pp. 397–398, emphasis in the original). With 

this focus on formulas, we ask what happens if we turn our attention to the challenge of 

reasoning functionally about algebraic relationships. We see formulas as being relations 

by nature, but what will students do when they solve the mathematical task of writing a 

formula and writing it as a function? 

We use this introductory discourse as a point of departure for our article’s focus 

on ways of interpreting formulas in grade 8, when students should be ready to progress 

to the more formal algebra of high school. Despite their role in algebraic or functional 

reasoning, formulas have not received extensive attention in mathematics education 

research, especially in relation to students’ performance. While we want to draw 

attention to a notion that is central to mathematics teaching and learning, we are 

concerned about the culture of mathematics education in our country being often too 

much about procedural practices and rituals. We therefore focus on the cognitive 

challenges students encounter when experiencing conceptual tasks with formulas. Our 

main interest in this article is in how formulas are conceptualized at the end of middle 

school in our country and in the difficulty in solving the problem of writing a formula as 

a function in a given situation (we call this problem the “formula task”). To address this 
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interest, we consider a sample of Italian students, who were given the formula task 

during a national standardized assessment of mathematics and analyze the incorrect 

answers to the task to better understand students’ underlying view of the formula. In this 

way, we hope to contribute to a line of research that draws specific attention to formulas 

in mathematics teaching and learning and their relevance as algebraic tools, not only as 

arithmetic procedures (the way they are usually practiced and framed). We argue that a 

reframing of formulas is a promising lever for shifting traditional mathematics 

education towards more conceptual, explorative sense making practices. 

2. Theoretical Framework 

In this section, we focus our attention on the cognitive challenges students 

encounter when engaging in conceptual tasks with formulas. We situate the study 

described in this article within the field of algebraic thinking in elementary and middle 

grades (Kieran et al., 2016), because it involves the elementary symbolic treatment of 

variables. Milestone studies have increased our knowledge of algebraic thinking 

processes and their nature. Kieran (2004) pointed out that algebraic thinking in the 

lower grades may involve the development of ways of thinking within activities for 

which “the letter-symbolic” could be used as a tool, or it may refer, for example, to 

finding relationships among quantities and noticing structure without resorting to letters 

or symbols. For Arcavi (1994), even students who can handle algebraic techniques (or 

rituals) successfully do not necessarily use algebra as a tool to understand, express, and 

communicate generalizations, to reveal structure, or to establish connections. Briefly 

speaking, they do not possess “symbol sense,” the algebraic component of mathematical 

sense-making. Following Arcavi, symbol sense comprises aspects such as: 

“understanding how and when symbols can and should be used in order to display 

relationships” and “awareness that one can successfully engineer symbolic relationships 
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which express the verbal or graphical information needed to make progress in a 

problem, and the ability to engineer those expressions” (p. 31). These two aspects are 

especially relevant to the task analyzed in our study, which requires the symbolic grasp 

of the relationships provided in figural and textual form before writing a formula that 

connects them. In Arcavi’s vision, algebraic reasoning is versatile and transformative, 

which is to say, different from procedural, ritual reasoning that often obscures 

conceptual understanding.  

2.1. Variables and letter usage 

The versatile and transformative character of algebraic reasoning seems 

challenging and difficult to achieve, especially in the lower grades, as it speaks directly 

to letter usage and understanding of the roles and multiple meanings of variables 

(Küchemann, 1978; Philipp, 1992; see also Bush & Karp, 2013 for an extensive review 

on middle school students’ misconceptions). Both Philipp (1992) and Küchemann 

(1978) noted that variables can be seen and used in many ways. While Philipp focused 

on explaining the difficulty students encounter with variables as related to an inability to 

recognize the role of the variable, Küchemann studied how certain ways of using letters 

are typically perceived as less demanding than others, thus proposing a hierarchical 

structure of variables. According to Philipp, we can think of variables as labels, 

constants, unknowns, generalized numbers, varying quantities, parameters, or abstract 

symbols. Drawing on Küchemann, letters can be evaluated or ignored, and treated as 

objects, specific unknowns, generalized numbers or variables. For him, however, 

students understand the meaning of using symbols in algebra only when they can work 

with letters as variables. These two visions are entwined with each other. For example, 

letters standing as names or labels, such as p for the perimeter and A for the area of a 

geometric figure, are used as objects. Letters standing for unknown quantities that 
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cannot be evaluated are used as specific unknowns, like in the following propositions: 

“Stefania is 2 cm taller than Francesca. Francesca’s height is denoted by a. Therefore, 

Stefania’s height is a+2” (adapted from Bush & Karp, 2013). Usiskin (1988) pointed 

out similar misconceptions where variables are viewed as simple labels or where 

students fail to understand a variable as a varying quantity rather than as a missing 

value. Usiskin also made diverse meanings of variables correspond with diverse 

conceptions of algebra: algebra as generalized arithmetic, when the variable represents 

any number; algebra as a tool to solve problems, when the variable is seen as an 

unknown; algebra as the study of relationships among quantities, when variables are 

varying quantities. These conceptions effectively reflect Küchemann’s rising degrees of 

difficulty in letter usage.  

2.2. Working with variables in context 

Working with variables in context is a primary aspect of algebraic thinking, 

which implicates looking at numbers from a more structural perspective (Warren et al., 

2016) and brings forth discontinuities with arithmetical thinking (Kieran, 2006; Malara 

& Navarra, 2003; Stacey & MacGregor, 2000), while supporting generalization 

processes and actions (e.g., Kaput et al., 2008; Radford, 2006). For example, Warren 

and colleagues made the case that prior arithmetical use of letters in formulas and as 

labels can negatively impact students’ understanding of the variable. This aspect is 

particularly influenced by algebraic reasoning routines in the classroom. Typically, 

consistent use of the first letter of a word as the unknown is one of those habitual, 

context-based practices that confuse the difference between labels and variables 

(MacGregor & Stacey, 1997). The use of p and A for perimeter and area, as mentioned 

above, provides two instances related to measurement practices. The letter n used for a 

natural number gives another instance related to early algebraic practices. 
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In line with these studies, Álvarez and colleagues (2015) suggested that the 

complexity of variable as a concept exists because its meaning varies depending on the 

context, a factor advanced by Kieran (2007) as a matter of concern for algebraic 

reasoning and as an obstacle for learners when confronted with problems involving this 

notion. These researchers contend that for students to acquire a vision of variable as “a 

multifarious entity” or “a global entity with several sides” (Álvarez et al., 2015, p. 

1512), students must work with each usage separately and develop flexibility to change 

from one use to another. Álvarez and colleagues described successful algebra problem 

solvers as being able to see variables as changing entities, specifically by recognizing 

the correspondence between related variables independent of the representation used 

(e.g., tables, graphs, word problems, or analytic expressions), and symbolizing a 

functional relation based on the analysis of the data of a problem. In the case of 

problems involving unknowns, instead, one is primarily required to recognize and 

identify the presence of something unknown that can be determined by considering the 

restrictions of the problem based on the situation. 

2.3. Working with formulas 

Working with formulas involves variables in context. Take again the case of b´h for the 

area of a rectangle, where b and h typically refer to the base and the height of the 

rectangle. Rather than seeing it as an algebraic expression, which does not depend on 

chosen lengths or specific letters, students easily see it as an arithmetic rule or operation 

to obtain the area of the figure using known numbers for base and height. The formula A 

= b´h embeds both procedural and conceptual aspects as soon as we contextualize it as 

a measurement or problem-solving task which requires the use of letters or symbols. 

The interplay of procedural and conceptual is mastered through problem solving. In 

fact, the formula A = b´h embeds a purely operational meaning—the area measurement 
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for a given rectangle, and a more structural meaning—an open bundle of possibilities 

for the family of all rectangles as the area changes together with b and h. Usiskin (1988) 

would say that the formula describes a relationship among three quantities and that there 

is not the feel of an unknown, because we do not solve for anything. Additionally, the 

feel of formulas is different from the feel of generalizations, even though a formula is a 

special kind of generalization. 

Stacey and MacGregor (2000) argued that difficulty in formulating or solving 

algebra word problems often has to do with a compulsion to calculate, which stems 

from arithmetic ways of solving problems and accounts for many of the misconceptions 

students experience in algebra learning. Interestingly, these researchers observed a 

variety of “routes” from problem to solution followed by grade 10 learners when 

solving simple problems. They identified non-algebraic routes where students used 

arithmetic reasoning or trial and error without attempting to use algebra; superficially 

algebraic routes where students wrote equations to solve the problem as formulas 

describing sequences of calculations to work out the answer from known information 

but did not use an algebraic approach; and algebraic routes where students engaged in 

equation writing and solving. Capraro and Joffrion (2006) also noted that writing 

equations from word problems is difficult for middle grades students due to both 

misconceptions or literal translation. Literal translation occurs when directly changing 

from natural language to symbolic expression, simply moving from left to right. So, a 

sentence like “Seven less than a number” is interpreted by many students as “7–n” 

instead of “n–7”, in relation to the “less than” following the 7 in the sentence. For 

Capraro and Joffrion, students’ inclination to engage in direct translation may be 

reinforced with procedural approaches, sometimes resulting in an inability to apply 
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problem solving methods. Direct translation is also commonly associated with reversal 

errors (Bush & Karp, 2013). 

Much of the research highlighted above does not focus specifically on the 

understanding of formulas. Consequently, we turn to research on the teaching and 

learning of measurement. A number of studies have considered conceptual difficulties 

that students face in understanding formulas. Many students learn and apply formulas 

for the area of simple figures without understanding why they work, making them prone 

to errors (Lehrer et al., 2003; Tan, 1998; Zacharos, 2006). Additionally, the problem of 

confusing area and perimeter, especially for rectangles, is widely documented and 

indicates weakness in grasping both formulas (Smith & Barrett, 2017). The challenge of 

distinguishing area from the length of the region’s boundary extends into middle school 

for many students (Chappell & Thompson, 1999; Tan-Sisman & Aksu, 2012). These 

studies are particularly significant to this article since the formula task analyzed below 

concerns the perimeter of a simple trapezoid.  

2.4. Formulas as relational 

Recall that Stacey and MacGregor (2000) identified algebraic and non-algebraic 

routes that learners followed to solve problems. They identified the superficially 

algebraic route in accordance with Janvier’s (1996) view of formulas, where formulas 

are conceptualized as defined procedures for computing or rules telling one what to do, 

distinct from equations. Janvier stressed that an equation as a statement about equality 

differs from an equation as a formula, which does not require any knowledge of algebra. 

In contrast, rather than conceptualizing the formula as a rule, which only relies upon the 

procedural, we conceptualize it as an algebraic statement, valuing the interplay of 

procedural and conceptual (operational and relational) aspects as the very essence of the 

formula (more in line with the intertwined nature of procedural and conceptual in 
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mathematics knowledge embraced in the study by Capraro and Joffrion, 2006). From 

this perspective, solving problems that require formulas mobilizes symbol sense.  

Returning to A = b´h (or any other formula), only the flexibility of moving 

between the rule and a view of the formula as an equality, where variables are varying 

quantities and the equals sign establishes relationships, can feed a relational 

understanding of the formula as an algebraic statement. It is in these circumstances that 

the formula can become for the students “a tool to establish connections” and to 

transform two (or more) variables. In our example, the changing b and h are 

transformed into a new variable, the changing area. This dynamic, transformative nature 

allows an individual to conceptualize the formula algebraically, in ways that involve 

structural relationships or functional reasoning depending on the context. In our study, 

the view of formulas as relational is important since the task at hand is to write a 

formula as a function of a variable.  

2.5. Rationale and aim 

The formula task considered in this study was administered in the context of a 

national computer-based assessment for grade 8. In our investigation, we are interested 

primarily in the “routes” followed by the students who solved the task, and in the 

particular and unstable nature of these routes in relation to problem solving. To that end, 

we focus on the incorrect answers that elude stability. In fact, the incorrect answers and 

errors students may include are associated with the struggles with mathematics they 

experience that are critical to meaning making and understanding (e.g., Borasi, 1987; 

Hiebert & Grouws, 2007; Granberg, 2016; Pozio, 2011). Taking the full sample of 

students from the national assessment, we can have a realistic glimpse of how and to 

what extent middle school students struggle with understanding formulas as relations in 

our country. We ask: What are the routes to an incorrect solution of the formula task? 
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What is the relationship between the routes and the students’ knowledge concerning 

formulas and the use of variables? 

Ultimately, we aim to contribute to the discussion on algebraic thinking in 

young learners by shedding light on how formulas are interpreted by grade 8 students. 

We believe this can help address the challenges of mathematics education research 

relative to the nature and processes of algebraic thinking, which has mostly disregarded 

formulas as an object of study, while largely considering mathematical structure and 

relationships as central to the practice of algebra (Blanton et al., 2011; Kaput, 2008; 

Kieran, 2007; Stephens et al., 2017).  

3. Research Context and Methods 

We first provide an overview of the research context, including the participants 

and the kind of research data that were collected. We then describe the mathematical 

task. Finally, we articulate our data analysis process. 

3.1. Participants and data 

The data for this article were collected from a national standardized computer-

based assessment of mathematics conducted with Italian students at the conclusion of 

grade 8, as part of the evaluation of their middle school-based education. The 

assessment was administered by the National Institute for the Evaluation of the System 

of Education and Training (INVALSI), which tests students’ knowledge and skills 

(proficiency) in mathematics, reading, and English in different grades. The computer-

based testing (CBT) aligns with the trends of international surveys, such as PISA 2015 

and eTIMSS 2019 (see Mullis & Martin; 2017; OECD, 2017). 

The test assesses the entire student population but estimates of overall 

proficiency are obtained for a sample of students from the total number of participating 
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classes. For the sample selection, schools are nationally sampled from all eligible 

schools, through size, geographical position, etc., and two classes are randomly sampled 

for each selected school. This process guarantees reliability and quality of the collected 

data, and the sample is considered representative of the entire population of learners, 

thereby providing information to establish national and regional standards. 

The test reports student progress by means of empirically-based levels of 

knowledge and skills, defined as levels of mathematical proficiency, and estimated by 

the student performance on the test. Based on Rasch analysis, the assessment also 

provides estimates of the empirical difficulty of each item in the test (level of 

difficulty), using the same scale, depending on the proportion of participants who solve 

the item correctly. Briefly speaking, item difficulty can be seen as the location along the 

ability continuum at which a person is just as likely to answer the item correctly or not. 

The mathematics scale is divided into five proficiency levels, 1 to 5, lowest to highest, 

with items scaled according to their difficulty. Students’ positions on the scale help 

indicate their proficiency based on the kind of tasks they are able to solve.  

The subjects of our study took part in the national CBT of mathematics that was 

administered in grade 8 in April 2018. They spent 90 minutes completing a 38-item test. 

A total of 574506 students (student population) completed the assessment test, out of 

which 31300 constituted the sample. Of these, 4543 students received the item (the 

formula task), which is the focus of this article, as part of two comparable test forms.  

The test produces simple quantitative information about the respondents’ 

proficiency levels and item difficulty. We collected all the students’ written responses to 

the item, made available by the central coding of the test. For our study’s purpose, we 

have conducted the analysis on the unsuccessful responses, which goes beyond 

identifying proficiency levels. 
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3.2. The formula task 

The test item we consider in this article is shown in Figure 1. The three numbered lines 

contain the following statements: 

(1) In the isosceles trapezoid in the picture, the long base is twice the short base. 

(2) Write a formula that expresses the trapezoid’s perimeter p as a function of b. 

(3) Type your answer to the question. 

Figure 1 

The formula task 

 
 

The item includes both text and a figure. It shows an isosceles trapezoid whose 

long base is twice the short base, and this relational information is presented with an 

initial textual statement (1). The figure also provides the lengths of the leg and the short 

base respectively with a number and a letter. The second textual statement (2) asks the 

students to write a formula to express the trapezoid’s perimeter “as a function of b”. The 

task requires connecting the letter b to the length of the short base and considering all 

the given relationships, in addition to applying knowledge of the calculation of the 
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perimeter. Therefore, it focuses on reasoning functionally about the algebraic relations 

captured by the formula and implies coordination among the different semiotic 

registers. The final textual statement (3) directs to type the answer inside the box.  

This open constructed-response item involves the mathematical domain of 

relations and functions, and its intent is for students to write a formula that expresses a 

relationship in a geometric context. The intent aligns with the specific learning objective 

of the content domain: to interpret, construct, and transform formulas that contain letters 

to express relations and properties in a general form, and the grade 8 goal of using and 

interpreting mathematical language (formulas, equations, etc.).  

The item requires relating different elements (the figure, the text, a number and a 

letter) to each other. The solution to the task is obtained from the sum of the four sides 

of the quadrilateral, after having considered that the length of the long base, which is 

missing in the figure, corresponds to 2b. The formula is: p = 3b+10, but the correct 

answer can be written in many ways, no matter if condensed into a single expression or 

not. For example, p = b+b+b+5+5, p = b+2b+10, p = b+2b+5´2, p = 3b+5´2 are all 

acceptable answers.  

The seemingly simple task requires various knowledge and skills to be applied 

effectively. The student must put together what double means, what the perimeter of a 

quadrilateral is, what an isosceles trapezoid is, and what “a function of” means. Thus, 

the student must know how to calculate the perimeter, that for the given figure the two 

legs are equal (and the other leg’s length is also 5), the relationship between short and 

long base, and how to express that relationship using the unique letter b so that the long 

base depends on the short base. The student who completes the task successfully must 

coordinate control over these steps and maintain coordination between the different 
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relationships at play in the situation. Therefore, the complexity of the task resides in the 

ability to establish relations among the various elements and connect information.  

3.3. Method and process 

We situate our investigation process within the larger context of qualitative 

research methods. According to Denzin and Lincoln (2011), “qualitative research is a 

situated activity that locates the observer in the world” and “consists of a set of 

interpretive, material practices that make the world visible. These practices transform 

the world” (p. x). The world we strive to make visible in this article is that of 8th grade 

students’ views of the formula and corresponding algebraic proficiency when they are 

required to write a formula in context (given by the task above), with specific attention 

to their difficulties.  

Qualitative research is also “attentive to those aspects of data about individual or 

group behaviour or sites of inquiry that often get lost when we turn too quickly to 

coding and quantifying that which is under study” (de Freitas et al., 2017, p. 160). There 

is always some sort of flow or quality in the empirical data which is always in excess of 

any simplistic code. Instead of inferring overall algebraic ability from the correct, 

incorrect and omitted answer percentages (which we can easily calculate), we are more 

interested in how the students write their (incorrect) answers, which we use as a way to 

examine their approach to solving the task and the nature of their mathematical 

conceptualizations. By focusing on this aspect, we see errors in the incorrect responses 

as positive events which produce reasoning and disrupt solving routines to show what 

the students bring to the task in relation to their view of the formula. 

We see our method as one which relies on forms of observation at a distance. 

We consider it as based on interpretive empirical practice, which seeks to better 

understand questions about what is happening in particular places, ways that people and 
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material objects are organized in various settings, patterns of interaction, and 

relationships among settings (de Freitas et al., 2017). Our “place,” as nonparticipant 

observers, is the wide context of the national computer-based test. With software easily 

performing searches on large data corpus, we additionally characterize the methodology 

we use as mainly pursuing a qualitative, exploratory analysis of the students’ incorrect 

answers while also considering limited quantitative information about their percentage 

and the proficiency levels of the students. Since the respondents are part of the sampled 

group, their answers represent those of the national population of grade 8 learners and 

the analysis provides insight into the situation across the country.  

After taking the set of incorrect answers, made accessible to us thanks to the 

central coding of the item, our data analysis proceeded by identifying common elements 

in the answers that were more or less related to the mathematical thinking provoked by 

the task. Types of commonalities included the following: prevalent reference to a single 

semiotic register occurred when incorrect responses were written using only symbols or 

only numbers, or when other responses were expressed only in words. Attention to 

specific relationships embraced not only the given relationship between the bases of the 

trapezoid but also new relationships between them, or between the short base and the 

leg (expressed for example by associating the same length to the two sides). Specific 

letters were used to name specific sides (like l for the leg).  

We viewed and discussed the incorrect answers in the data set, attending to 

instances of commonality as described above. This analysis enabled us to divide the 

responses into different categories and sub-categories, which emerged as a responsive 

and inventive way of reading the data. The categories were established when we could 

discern a main characterizing commonality and then other common characteristics 

within it. For this article, we focus on the main series of incorrect answers that we 
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considered significant with respect to the nature of the mathematical task, as mentioned 

above. Rather than seeing these in terms of errors to the task (thinking products or 

failing outcomes), we see them as traces of the ways in which letters are used and the 

formula is viewed in the specific context (dynamic processes). We also pay attention to 

the extent to which they are generative of differences regarding the correct solution. 

Other incorrect responses occurred in the test, such as purely numerical values or 

expressions, and word answers which were often out of context, but in this article, we 

report on these only briefly. 

By so doing, we offer a qualitative interpretation of the students’ incorrect 

responses, borrowing from Stacey and MacGregor (2000) to rethink the categories as 

routes not only to the solution, but also to algebraic or functional reasoning about the 

formula. This helps us better understand ways that middle school students may still 

struggle with formulas.  

4. Students’ routes and incorrect responses 

As an overview of our data, the overall performance on the formula task 

indicated a very difficult item (level 5). Some 2147 students out of our 4543 

respondents gave an incorrect answer (47,2%) and 835 students omitted the answer 

(18,4%), while only 1561 students answered the task correctly (34,4%). As shown in 

Table 1, among the successful students, about 42% were at level 5 of proficiency and 

32% at level 4. We also observe that around 71% of students with low proficiency 

(levels 1 and 2) did not even attempt an answer. As mentioned already, we focus 

specifically on the main group of incorrect answers, without numerical values or 

expressions and irrelevant word answers, which consisted of a total of 1759 responses 

out of 2147.  

Table 1 
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Percentages of students at a given proficiency level in relation to response type 

 Number 
% level 5 

students 

% level 4 

students 

% level 3 

students 

% level 2 

students 

% level 1 

students 

Incorrect responses 2147 6,9 14,4 26,9 29,6 22,1 

Missing responses 835 1,4 7,8 20 35,4 35,3 

Correct responses 1561 41,6 31,6 17,2 7,9 1,6 

Total number of 

students 
4543 17,9 19,1 22,3 23,3 17,5 

 

Analyzing the kinds of incorrect answers, we identified the major groups of 

responses which we see as approaches students used to solve the task: those that tried to 

write a formula for the perimeter of the trapezoid making explicit reference to the 

relationship between the bases (first route); those that referred only partially to the given 

elements to write the perimeter formula (second route); and those that wrote an area 

formula instead (third route). An additional approach included answers that presented 

letters but seemed to escape a decipherable orientation (fourth route).  

The four routes are outlined in Table 2, which provides a short description of the 

nature of each approach and percentages of related answers (with respect to the total of 

2147 incorrect answers). We name these routes: relational (first route described above), 

partial (second route), habitual (third route), and murky (fourth route). The following 

sections introduce and discuss each route.  

Table 2 

Students’ main routes to an incorrect solution of the formula task 

1. The relational route 2. The partial route 3. The habitual route 4. The murky route 
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Written expression with 

explicit reference to the 

relationship between 

the bases 

Written expression with 

non-complete reference 

to all the elements, 

but partial focus 

Writing an area 

formula instead of the 

perimeter formula, 

albeit using letters 

Using letters with 

a generally unclear 

connection with 

the formula 

10,6% (228) 31,4% (676) 13,6% (293) 26,2% (562) 

4.1. The relational route 

The answers in this route (228 in total) appear to be closest of the four routes to solving 

the task correctly and provided examples of how students who understood the task 

could complete it unsuccessfully. The answers all exhibited a perimeter formula (using 

operations) and explicitly referred to the relationship between the bases of the trapezoid. 

This route has a “relational” character not only because of this explicit reference, but 

also because we interpret the students who undertook it as essentially capable of 

orienting themselves to the information presented across the different semiotic registers 

and to the various relationships in the task. In fact, we observed that in addition to 

writing a relationship between the two bases, these students knew how to find the 

perimeter of an isosceles trapezoid and took into consideration all its elements, 

obtaining information from both the text and the figure.  

Table 3 shows examples of the answers in this route and how they distribute 

across five sub-groups. Each sub-group is characterized by some specific choice 

regarding letter use, the role of the variable, or the view of the formula, which makes 

the answers differ. Each sub-group demonstrates an approach to the specific task, 

linking to the algebraic thinking that was activated in the solving process. We use “R” 

to denote the route and “Rx”, with x changing, to denote its sub-groups, while the total 

number of students undertaking that approach is in parentheses. 

Table 3 reports the students’ answers as written (words have been translated 

from the original language, while the multiplication sign is expressed by the symbol * 
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or the letter x, and the use of letter pairs, like lb and sb (or SB), refers to the long base 

and the short base, respectively).  

Table 3 

Examples of students’ answers in the relational route 

The relational route (R) 

R1 (62) R2 (32) R3 (4) R4 (66) R5 (64) 

Using a letter  

in place of  

number 5 

Using only 

numbers for the 

formula 

Using mainly 

words for the 

formula 

Reversing  

the 

relationship 

Using wrong 

typing for 

operation signs 

bx3+2l [6+(6*2)]+(5*2) 

You have to 

multiply b by 2 to 

find the long base 

then add up 5 plus 

5 and finally add 

up all numbers to 

find the perimeter 

B+1/2B+(5*2) 5*2+b+b*b 

b+(b*2)+(d*2) 5+5+5+(5*2) Short base plus 

short base times 

two plus ten 

(B : 2) + B + 

(5+5) 
b + b x b + 5 x 2 

b+2b+a+a 3+(3x2)+(5+5) (5x2)+(B/2)+B (b*bx2)*(5*5) 

b+2b+2l 8+4+5+5=22 
Short base+(short 

base*2)+(leg*2) 
(l*2)+lb+lb/2 (5x5)+(bxbx2) 

b+(bx2)+(hx2) 5*3+5*2 
P=2times5+SB+ 

2timesB 

long 

base+(5x2)+ 

long base:2 

5+5+b+:2b 

b+(b*2)+(l*2) 
10 cm + 15 cm = 

25 cm 
10+B+1/2B b+(2+b)+(2+5) 

4.1.1. Sub-routes of the relational route 

R1 depicts ways in which students wrote the perimeter formula without using 

the known value 5 for the length of the leg while introducing a new letter to refer to it. 

Despite this substitution, the writing of the formula is appropriate and, usually, appears 
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as the sum of three pieces, associated with the length of the short base, the length of the 

long base, and the total length of the two legs. Particularly, the relationship between the 

bases is correct and is expressed through the letter b. The three pieces indicate the 

successive identifications of the length of the short base as a quantity captured by the 

variable b, of the length of the long base as dependent on b according to doubling, and 

of the equal lengths of the two legs. Therefore, various relationships are considered 

before writing the perimeter as a sum of these essential elements. In Table 3, the only 

exception is given by the expression bx3+2l, which considers the single piece bx3 as the 

sum of the bases, still keeping the multiplication sign for the operation “three times b”.  

We see the answers of R1 (including the one just mentioned) as a trace of a 

peculiar vision of the formula as an entity that generally evokes a procedure in which 

only letters can be used, but not numbers. We might interpret this approach as emerging 

from working habits with formulas in contexts in which the formula is ritualized as a 

direct rule (like in our example of A = b´h) to calculate a measure (of the area or the 

perimeter) once known values are substituted for letters. The typical approach, then, is 

that of using letters for all the sides that have a role in the formula, which for these 

students implicates the use of two letters, the given b for the short base and the long 

base, and another letter for the equal legs.  

From the examples, we observe that the choice of the new letter varies, from l to 

a to h or d. Interestingly, the majority of the 62 students who approached the task in this 

manner used the letter l as a variable for the leg, that is, exactly the first letter of the 

Italian word for side (“lato”). This is the most evident example of the misconception 

related to the role of the variable as a label. Some students used a as the second letter, 

along with b, and this usually occurs with figures (such as rectangles) where only two 

letters are needed, and the letters a and b are chosen (the first two letters of the 
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alphabet). This approach reinforces the ritual view of the formula as a procedure which 

also relies on the use of the letter as an object to name a side.   

R2 and R3 are two approaches of the relational route that we see as similar due 

to their focus on a single semiotic register. Both R2 and R3 offer examples of answers to 

the task where the relationship between the bases is clearly stated, but the answers 

contain only operations with numbers (R2) or are mainly expressed in words (R3). What 

is relevant in these kinds of responses is again the way that the answer was written. The 

32 answers for R2 provided the perimeter as a sum of numerical terms where the bases 

were given by two numbers, one double the other, and the equality of the two legs were 

expressed through the number 5 added up twice. Therefore, these students assigned a 

known value to the short base, and then they doubled it to indicate the long base. Most 

of them chose 5 as the value for the length of the short base, which was the same value 

given for the leg, perhaps because they paid special attention to the figure, which may 

have influenced these students to establish new relationships between the lengths of the 

two sides, which visually appear almost the same. Others chose 4 or 6, which were 

significant in the same respect.  

For students following this approach, the formula seems to recall once again the 

rote application of a rule, as it requires operations and a numerical result. We might 

interpret this approach as related to ritual uses of the formula to calculate a value, the 

measure of the length of the perimeter. It might also be related to how students find 

algebraic expressions challenging in problem solving. The responses in R2 can be 

connected with Stacey and MacGregor’s (1997) non-algebraic routes based on 

arithmetic reasoning. Stacey and MacGregor indeed found that not only do students not 

conceptually understand what variables mean, but they also struggle with answers to a 

problem that are different from numbers (as in the case of a+2 for Stefania’s height, 



ENTANGLEMENTS OF MATHEMATICS EDUCATION AND LARGE-SCALE 
ASSESSMENT 

which is discussed in the theoretical highlights). Similar troubles have to do with the 

idea that literal symbols and numbers should not be combined in a single equation 

(Brizuela et al., 2015). 

Only 4 answers belong to R3, but it is interesting to find a textual approach to 

the task. We see how the procedure to find the trapezoid’s perimeter was described in 

words, regardless of some use of addition and multiplication signs. We might interpret 

such an approach as one that tracks how students struggle to manage symbols, while 

noticing that the procedure or its steps were correctly expressed and that the relationship 

between the bases was made explicit. But we might also interpret it as a response to the 

specific request to “write” a formula, as if this request asked students to explain in 

words how to find the trapezoid’s perimeter.  

R4 presents a backward interpretation of the given relationship between the 

bases of the trapezoid (activated by 66 students, the largest group in R). All the answers 

in R4 in fact expressed the inverse relationship, that is, that the short base is half of the 

long base, and assumed to have the latter. They generally contained the letter B (the 

usual name given to the long base in Italian) and the term B/2 or B:2. Most of these 

answers were correct conceptually, since the leg’s length is associated with the number 

5 instead of a letter (l when present). An example illustrating this interpretation is (B : 2) 

+ B + (5+5). The writing of the inverse relationship might easily be interpreted as 

evidence of a reversal error. This error in fact arises every time the students exchange 

the role of the variables used to translate from the written to the symbolic, as in the case 

of: “There are 6 times as many students as professors” translated into 6S = P instead of 

6P = S (see Bush & Karp, 2013). But if we consider how the formula was written and 

how the information was given, it may have been that the students of this group were 

very influenced by the first textual statement they encountered. This conjecture gains 
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strength when we realize that in the initial text, the long base is the subject of the phrase 

and that the short base has no associated value (given the introduction of the letter b in 

the figure). We might also interpret the approach here as implying the conceptual 

understanding that the doubling can always be seen in reverse as halving, in which case 

it makes no difference whether to consider either base as a starting point because that 

relationship can be written one way or another, and the two are equivalent. The choice 

of the capital B, commonly attributed to the length of the long base (the biggest one), 

might be interpreted once again in relation to the letter used as a label. But we can also 

see how the perimeter is mainly offered using a single variable. What is missing from 

this approach is the focus on using the given letter b. It may be that paying close 

attention to the initial text meant that these students lost sight of the figure and the 

information in it or forgot the “function of b” part of the task.  

The approaches of R1 and R4 can be considered close to the algebraic routes of 

Stacey and MacGregor (1997). In both approaches, the written formula expresses in 

symbolic form the relationship between the bases of the trapezoid (and in the case of R4 

it is expressed as a function). However, the use of letters as labels and the initial textual 

statement seem to interfere with a correct solution. 

Finally, 64 incorrect answers contained wrong signs for some of the operations 

(R5). For example, for some students writing a multiplication of b by 2 was the same as 

writing the multiplication of b by itself, so they presented the term b*b instead of 2*b. 

Others used the multiplication sign instead of the addition sign, or vice versa. Errors of 

the first kind are conceptual, habitually conveyed by those particular operations whose 

results are the same (e.g., 2*2 and 22). Examples are the expressions 5*2+b+b*b (the 

last term refers to the long base) and (b+b^2)+5*2 (the second term in brackets refers to 

the long base; this example is not shown in Table 3). Students in this group showed that 
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they connected different semiotic registers, wrote a formula, grasped the relationship 

between the bases, calculated the perimeter, and considered leg equivalence, but 

surprisingly, they confused the double and the square of a number. 

Errors of the second kind (some are shown in Table 3) were more related to the 

use of the computer keyboard, where a single key has, for example, both the addition 

sign (+) and the multiplication sign (*). This was the case with the expressions 10*3b, 

b+(2+b)+(2+5) and (b*bx2)*(5*5). The first expression uses * in place of +, the second 

contains 2+b instead of 2*b, and in the third expression, the three signs would all have 

to be + to make sense. A similar example is the expression (b*2)+b+(5*“), since “ and 2 

are on the same key. 

4.2. The partial route 

About three times the number of answers (676 in total) fell into the partial route 

than in the relational route. Furthermore, the answers in the partial route appear to be 

further from a correct solution than answers in R. The students who fell into the partial 

route all showed a similar approach to solving the task, an approach that was essentially 

captured by knowing the formula for the perimeter of the isosceles trapezoid. However, 

students seemed to not fully comply with the writing of the formula by using the letter b 

for the bases and the known value for the leg. It was as if they had put particular focus 

on writing the perimeter formula while forgetting some elements of the item. We 

interpret this approach as having a “partial” character because of the explicit attention 

paid to the request for the formula and the only partial focus on the various pieces of 

information provided. The students who undertook this route understood the request to 

write a perimeter formula but did not apply the formula to the whole context, which 

requires consideration of the different relationships. In particular, most students seemed 
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to not pay attention to the first textual information provided about the relationship 

between the bases.  

Table 4 provides examples of answers in the partial route and how they are 

divided into four sub-groups, each of which is again characterized by different choices 

regarding the use of letters, the role of the variable, or the view of the formula. Each 

sub-group indicates an approach to solving the task related to the specific information 

used in the solving process. The route is labeled “P” and the sub-groups “Px”, with x 

changing, and the corresponding number of responses in parentheses. The table shows 

the answers as written, with translation from the original language. 

Table 4 

Examples of students’ answers in the partial route 

The partial route (P) 

P1 (229) P2 (276) P3 (145) P4 (26) 

Using the letter B 

for the long base 

Multiplying b by  

2 instead of 3 

Seeing the perimeter 

as sum of any 4 sides 

Writing the 

procedure in words 

B+b+5+5 (5+5)+b*2 B+b+l+l 
Long base + short 

base + 2*5 

b+B+5*2 (5+5) + (b+b) AB+BC+CD+DE 
Long base + short 

base + leg+leg 

(5*2)+(b+B) 2b+10 b1+b2+2l 

Short base plus 

long base plus side 

times two 

5+5+shortb+longb (b*2)+(5*2) L+L+(b+b) 

You add up all the 

sides, but first you 

have to find ‘b’ and 

then add up the 

sides 

b1+b2+(5+5) (5+b)2 L1+L2+L3+L4 all sides added up 
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10+b+B 
(b*2)+10=2b+10= 

12b 
B+b+lx2 

2sides+short 

base+long base 

4.2.1. Sub-routes of the partial route 

P1 gives examples of ways in which 229 students wrote the perimeter formula 

of the isosceles trapezoid by adding a short base, a long base, and two legs with length 

5. The two bases are always written using the letters b and B. Even if the writing of the 

formula was appropriate, these students focused on the trapezoid to extract the length of 

the legs but not on the initial text. They showed that they knew what the perimeter is 

and how to find it for an isosceles trapezoid, as evidenced when they doubled the length 

of the leg. However, they only considered part of the information provided because they 

did not explicitly write any relationship between the bases while introducing the letter B 

to refer to the length of the long base. These students incompletely grasped the task 

because they satisfied the writing of a formula that expresses the trapezoid’s perimeter 

but neglected to write it “as a function of b”. For their answers to be correct, a single 

step was missing. However, this step concerned the most demanding part of the task, 

namely being able to express a quantity as a function of another quantity, or to relate the 

two quantities to each other. We might interpret this approach as derived from a vision 

of the figure as providing everything necessary to write the formula (a ritual of working 

with geometric figures in the context of measurement), which implies only one element 

missing from the sides of the trapezoid, exactly the long base. But we might also 

interpret it as supported by the usual definition of the perimeter of a quadrilateral as the 

sum of its four sides. In both cases, the letter B was introduced as the name for the long 

base (again, the classical label for the long base of a trapezoid), not as a variable 

quantity that depends on b.  
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A different approach was followed by the 276 students whose answers belong to 

P2. These students wrote the perimeter formula by adding only double the short base 

and double the leg. Students considered both text and figure information to solve the 

task, but the formula did not include the short base. Students showed that they built the 

relationship between short base and long base, and that they focused on and understood 

the initial textual statement. However, they failed to write the correct expression for the 

perimeter since they precisely forgot the short base. They may have translated the initial 

text into symbols (“the long base is twice the short base”), moved to the figure, figured 

out the length of the leg and doubled it, and then omitted one side. We see this approach 

as strictly related to the specific focus on writing the formula as a function of b, where 

the long base is the only element that can be expressed in function of b. It is as if these 

students had interpreted the request to write the perimeter formula in terms of what is to 

be entered in the formula as a function of b, excluding b, since the latter was already 

given in the task. The initial text told what to do to write the long base as a function of 

b, then the figure added visual and numerical information to relate the legs (their 

equivalence, beyond value 5). The result was a partial writing of the formula which 

missed the term present in the figure, even if the answer was written in function of b, 

which was therefore used as a variable. The perimeter, in fact, is always expressed as 

the sum of two pieces, a numerical part referring to the legs and a symbolic part 

referring to the long base. In short, our interpretation is that the students did not feel the 

need to consider another b because the task already provided it. A different 

interpretation might be that students confused the trapezoid with a rectangle, taking the 

leg as one dimension and the two bases as equal to write the perimeter as double of b 

plus double of 5. 
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145 students fell into P3. They showed a procedural approach to solving the 

task, which rests on writing the formula using only letters and which we might see as 

emerging from habits related to defining the perimeter of a quadrilateral. The perimeter 

was offered as the sum of four addends captured by letters, most commonly the letter l 

to name the leg (as already seen for R) and the letter b to refer to one or both bases. We 

cannot know for sure whether the letter b was used for the base since this letter is given 

in the figure or simply because it is generally used to indicate a base. Nevertheless, for 

the overall approach of the answers, we may interpret that the students used letters 

mainly as labels, often linked to habitual ways of using letters with geometric figures. 

For example, we find again the long base called B, but we also observe the use of AB, 

BC, CD, DE for the four sides, which usually occurs to name the sides of a given 

quadrilateral in sequence. An exception in Table 4 is the expression b1+b2+2l in which 

the two bases are distinguished by numbers and the legs have been joined. Interestingly, 

almost half of the answers in P3 exhibit the multiplication of the leg’s length by 2, 

while in the rest of the answers all four sides appear, mostly denoted by B, b and l, as in 

the expression B+b+l+l. Only 8 students wrote the perimeter using four different terms, 

as in the case of the aforementioned AB+BC+CD+DE, or in the case of L1+L2+L3+L4. 

There were also students who introduced the letter h for the leg. Since h is primarily 

related to height, especially when working with areas, we might interpret that these 

students showed a confusion between the leg and the height of the trapezoid. It is not 

likely that students were thinking of an area formula, as their answers were like the 

others except that we find h in place of l. But we might also see the use of h as related to 

the formula for the perimeter of a rectangle, where base and height are often used. The 

vision of letters as labels leads us to think that the students who fell into this group 

ignored the information given by the figure and the initial text. They did not show they 
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were able to write a relationship between quantities or extract elements from the given 

context, although they had an idea of the perimeter of a trapezoid as the sum of four 

sides. The answers also indicate a vision of the formula as a rule, in this case strictly 

connected with the definition of the perimeter of a figure as the sum of its sides (often 

not stated in textbooks but independent of the figure).  

Finally, even in the partial route a few students (26, the smallest percentage, like 

in the relational route) provided written descriptions on how to find the trapezoid’s 

perimeter. While they were all appropriate with respect to the procedure, we interpret 

these responses in the same way as the answers in R3, as essentially focused on the 

specific request to “write” a formula, thus seeing it in terms of description rather than in 

terms of the algebraic expression of the formula in the given context.  

In most of the answers in P, the view of the perimeter formula appears to be 

procedural as it involves sequences of operations and letters used as names. Stacey and 

MacGregor (2000) would likely have seen these kinds of solutions as part of a 

superficially algebraic route, mainly centered on working out the answer. 

4.3. The habitual route 

This route comprises answers (293 in total) that we consider far from solving the 

task correctly, because they appear to refer to writing an area formula rather than a 

perimeter formula. We can see this in principle from the use of the letter h, which 

usually occurs for the height of a geometric figure, multiplied by a base or by the sum 

of two bases in many answers. The answers all showed a similar approach to solving the 

task, one that we interpret as reducing the focus to the presence of a simple geometric 

figure and the subsequent request to write a formula. The use of the letter h is peculiar 

not only because it is the typical letter for naming height in mathematical practice, but 

also because of the specific role it plays in the area of geometric figures. In other words, 
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the case where we find the letter h in a formula is usually that of area formulas. It is 

principally this feature that pushed us to interpret the route as having a “habitual” 

character, mainly linked to working habits with the perimeter and area formulas in 

geometry. In fact, extensive work on the perimeter is unusual, because the perimeter has 

the same generic meaning of the sum of the lengths of the sides, for all geometric 

figures. Textbooks rarely mention perimeter formulas. If anything, they only provide 

the general idea of perimeter. Conversely, students often learn to measure the area of 

specific figures by rote procedures involving different ways of proceeding. In addition, 

work on perimeter is often taken for granted in middle grades, and in elementary grades 

it is generally limited to squares, rectangles, and triangles. The students who followed 

this route may have immediately associated the trapezoid and the formula with finding 

the trapezoid’s area. Some seemed to consider the relationship between the bases. 

However, many showed only a vague awareness of a proper area formula. 

Table 5 offers examples of answers in the habitual route and how they are 

distributed across five sub-groups, each characterized by choices on the use of letters, 

the role of the variable, or the view of the formula. We label the route “H” and the sub-

groups “Hx” (x changing). The parentheses contain the total number of students for each 

group, and the answers are reported as written and translated if necessary. 

Table 5 

Examples of students’ answers in the habitual route 

The habitual route (H) 

H1 (112) H2 (35) H3 (31) H4 (28) H5 (87) 

Using the letter  

B for the  

long base 

Taking the 

relationship 

between the bases 

Writing the 

area of a 

triangle 

Using words 

to write an 

area formula 

Using the letter 

h in some 

way 

(b+B)xh/2 [b+(b*2)]*h/2 b*h/2 
b plus B times 5 all 

divided by 2 
[(B+b)*h] 
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B+b times h 

divided by 2 
(b*3*h:2 b * h : 2 

Long base plus 

short base times 

height divided by 

two 

(B+b)/h 

B+bxh:2 3b*h/2 bxh:2 Base times height b+b*h 

b1 + b2 times h :2 
(b+b times 2)times 

h :2 
(B*H)/2 

Long base plus 

short base times 

height 

Bxb:h 

(b+b2)*h/2 (b+b*2)*5/2 2b*h/2 

LONG BASE 

+SHORT BASE* 

HEIGHT/2  

b*h+5*2 

(Lb+sb)*h/2 [(b*2)+b*5]/2 b times h : 2 
B TIMES A 

DIVIDED BY 2 
[B+(B/2)]*h 

4.3.1. Sub-routes of the habitual route 

Students’ answers that were closely related to a formula for the area of the 

isosceles trapezoid belong to the sub-routes H1 and H2. H1 provides examples of ways 

112 students wrote the area formula using the rule learned in school or found in 

textbooks (the sum of the bases multiplied by the height and divided by 2). However, 

they used the letter B for the long base, or the letters b1 and b2 for the two bases (like in 

the expression b1 + b2 times h :2). These students used letters as names, without 

considering the relationship between the bases, as if they neglected the initial text. 

By contrast, the 35 answers in H2 exhibited a formula for the isosceles trapezoid 

that was conceptually consistent with the information given, except that it captured the 

area rather than the perimeter. The relationship between the bases was clearly expressed 

by the term 2b or b*2 used for the long base, or by the presence of the term 3b or b*3 

involving some manipulation. The students who undertook this approach knew how to 

write the long base in function of b, although most of them used the letter h to denote 
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the height of the trapezoid. Five students used the known value of the leg instead of h. 

This choice may highlight a confusion between leg and height, but we might also 

interpret it as a way for these students to offer an understanding of “as a function of b”. 

In this way, they advanced a formula written as a function of b. In either case, the intent 

of the original test question was surprisingly met with an incorrect answer. 

The students falling into H1 and H2 may have connected trapezoid and formula 

with the ritual of learning area formulas in the geometric context. The two approaches 

may also indicate confusion and a weak grasp of perimeter and area formulas, which 

occurs even with simple two-dimensional shapes. Research demonstrates, for example, 

that students are more likely to report the perimeter of rectangles as their area when 

numerical information about the lengths of the sides is present (Miller, 2013), while 

vague descriptive language, especially for perimeter, can perpetuate such confusion 

(Clements & Sarama, 2009). This could be the case with the formula task, where the leg 

length is given by a number and the relationship between the bases is given in words. 

The 31 answers in H3 show a half product of a base and a height expressing the 

area of a triangle (one of the first areas encountered in school). The students who gave 

these answers seemed not to distinguish the type of figure given, nor to consider the text 

or any other element provided. In H4, there are 28 answers that verbally expressed a 

procedure that recalls the calculation of the area but is often described incorrectly.  

The last group, H5, is made up of 87 answers, which combined letters pertinent 

to the trapezoid (e.g., b for the short base, sometimes B for the long base, h for the 

height) but inconsistently. For example, there were cases of multiplying one base by 

another, as in the expression Bxb:h. Almost a third of the answers contained the sum of 

the two bases multiplied or divided by the height. We might interpret this as an attempt 
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by the students to construct a formula, or as an effort to dig into memory to find rules 

(rituals) learned without exploration.  

Summarizing, route H collects answers that manifested difficulties not only in 

the way to treat formulas as functions or relations, but especially with the concepts of 

area and perimeter, or possibly with the request to “write” a perimeter formula, which 

some students may have seen as far from their experience with trapezoids. 

4.4. The murky route 

We collected the rest of the incorrect responses using letters (562) in this route. 

The responses showed a similar approach to solving the task that consisted of the use of 

letters but did not capture transparent reasoning on the perimeter formula, except in the 

case of a few examples. We interpret the route as having a “murky” character because 

of the somewhat indecipherable approach of the answers to the formula. We see that 

these answers considered partial elements, in many cases excluding the legs’ length or 

the relationship between the bases. About two-thirds of the answers appeared to show 

little or no idea of which elements to use to find the perimeter of the trapezoid. 

Alternatively, it may be that the request to write the perimeter as a function of b had 

involved specific reasoning about how to use the letter b, and other letters, in a formula, 

or a specific focus on one or the other base. 

Table 6 provides examples of answers and how they were divided into three sub-

groups, each characterized by the use of letters, essentially confined to one or two 

letters. The route is labeled “M” and the sub-groups “Mx” (with x changing and the 

indication of the number of associated answers). The answers are reported as written.  

Table 6 

Examples of students’ answers in the murky route 

The murky route (M) 
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M1 (202) M2 (180) M3 (180) 

Taking essentially 

b and 5 

Taking essentially 

b and 2 

Taking b and  

other letters 

5*2+2*b+B-b b*2+b*2+b+b l+l=b+B 

b+5+5+10 [b+(bx2)]:2 b*(C*3)-(C:2) 

(b x 2) +5 x 3 : 2 b+b+b+2b b+B x (l+l) 

{3b*[5+(b:2)]:2} B=2 times b pXb 

b+5+5+7 b+b+b*2/2 (b+b)+(B+B) 

5+5-b=B Lbase + Lbase:2  b+B 

4.4.1. Sub-routes of the murky route 

The three sub-routes all contain nearly the same number of answers. M1 (202) 

shows answers from students who clearly focused on the information given in the 

figure. In fact, they mostly contained the number 5 and the letter b, and in few cases 

other letters such as B or h, or specific names (labels) for the bases. Interestingly, the 

elements were sometimes combined in a form that resembled a formula for the 

perimeter, as in the expressions b+5+5+10 and b+5+5+7 which would give the 

perimeter of the trapezoid by assigning a value of 10 or 7 to the length of the long base. 

Therefore, in these instances, the students may have inferred the length of the long base 

by relating it to the length of the leg. We can also note that both the example 

expressions above are written in function of b. Another interesting answer was given as 

5*2+2*b+B-b, which in the end might be seen as capturing the perimeter of the 
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trapezoid, despite using B for the long base (in fact, 2*b diminished by one b gives one 

b). The vision of the formula is here typically procedural. Other times, the elements in 

the figure were combined without apparent relationships, such as when only the 

multiplication of 5 by b appears.  

M2 contains 180 answers, which primarily included multiplication or division by 

2, often of b or a different label used for either base. There is no trace of the leg in these 

responses, and the students merely considered the bases to obtain the perimeter. Some 

students summed the bases in some way, even contemplating the relationship given in 

the initial textual statement. For example, the expression Lbase + Lbase:2 (where Lbase 

stands for the length of the long base) exactly provides the sum of the two bases, written 

in a way that exploits the inverse relationship again. Expressions like b+b+b*2/2 and 

[b+(bx2)]:2 seem to refer to a formula that involves division by 2, which may be that of 

a half perimeter or area. Expressions of the kind of b*2+b*2+b+b might suggest the 

reference to a rectangle, whose two dimensions are identified with the two bases, or to a 

trapezoid whose leg is perceived as long as the short base. Other students simply wrote 

the long base as the double of the short base, translating the relationship between the 

bases without going further to construct the formula. Answers in M2 are the only ones 

of the murky route that focused attention to relating the bases using a single letter or 

label (b, Lbase).  

Finally, in most of the 180 answers in M3, only the letter for the short base was 

taken from the task. In many cases, the letter was added up to or multiplied by the long 

base, while in the rest of the cases, it was used together with other letters like l or p, 

respectively introduced for the leg or perimeter. Also in this group, we find procedural 

visions of the formula, which we might hypothesize as referring to a rectangle, for 

example in the case of the expression (b+b)+(B+B). Answers such as b+B x (l+l) or 
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l+l=b+B might also demonstrate sums of the four sides of the trapezoid, showing 

probable typing errors. 

It cannot be said that the answers in this route were given by chance. They seem 

to reveal a type of reasoning, albeit a rough one. Although the approach may seem 

illogical on the surface, traces of attention to relevant elements of the task make us 

better see it as a murky approach in which students strove to unravel the knot but were 

far from being able to solve the task correctly. 

4.5. Single numbers or numerical expressions 

Beyond the four routes, there is another sizable group of incorrect answers 

(348), which corresponded to single numbers or numerical expressions. We do not 

analyze these answers in detail, but it is worth mentioning that the most common 

number response was 25, which can be obtained by assigning a value of 5 to the length 

of the short base, and then using the relationship between the bases to express the length 

of the long base. In this group, we also find other values, such as 19 and 22, which are 

possible results of numerical answers collected in R1 and based on the use of specific 

numbers to write the perimeter formula (3+6+5+5 and 4+8+5+5). We might infer that 

they are the results of a similar approach to solving the task. We might interpret them as 

conveyed by a ritualized view of the formula, implying a numerical result for the 

perimeter through a precise calculation. The students who gave these answers may have 

concentrated solely on the figure and the relationships between the lengths involved, 

particularly those of the short base and the leg, which could be perceived as being very 

close to one another, exactly as in the case of R1. So, they may have estimated the 

lengths of the bases. The difference is that no procedure was explicitly offered to make 

such estimates visible. Although the three answers (19, 22 and 25) are all sensible 

estimates for the perimeter and reasonable ways to look at the information in this 
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context, taken together they make up only a low percentage of all the incorrect 

responses in the group. The remainder of the responses consisted of out-of-context 

numerical responses. Similarly, 40 additional out-of-context word responses were not 

examined. Therefore, no further discussion about these responses has been included as 

part of significant and generalizable results.  

5. Final discussion 

In this article, we have examined the incorrect answers provided to the formula 

task by a sample of eighth graders during a national assessment test of mathematics. We 

focused on how these answers are written in order to investigate the ways in which 

middle school students solved the task and the nature of their mathematical 

conceptualizations, especially of formulas. In doing so, we see errors as positive events 

that generate reasoning and help us understand the students’ difficulties, as well as what 

the students brought to the task in relation to their view of the formula.  

By analyzing all the incorrect answers, we identified various routes, which show 

similarities and differences in the conceptual understandings of the formula. We 

contend that these routes are different approaches that students followed to solve the 

task, depending on the elements they focused on. We use them to interpret how students 

view formulas and can reason about them functionally or algebraically. 

The formula task is neither a simple algebra word problem nor an arithmetic-to-

algebra problem, but a modelling task that specifically involves a relationship between a 

geometric formula and elementary algebra. The routes, therefore, also provide a way of 

examining the extent to which middle school students think of formulas as 

generalizations of geometric relationships. While the first three routes show the main 

attempts to write the formula (and ways of seeing it) in the given context, the fourth 
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route completes the landscape with answers that still consider letters, albeit often 

without a clear orientation to the perimeter. 

We found intersections between the routes. For example, we found textual 

approaches to the formula in the three main routes, as if the request to “write” a formula 

involved only the use of words. Often, we also found procedural or ritual views of the 

perimeter formula as a rule or calculation in which letters are mainly used as names or 

labels for the sides, or similarly, the perimeter ended up being conceptualized as a 

numerical value rather than a variable length. These intersections, as well as the specific 

choices that characterize the routes, seem to highlight overall difficulties encountered 

by middle school students in conceptualizing formulas in a versatile and transformative 

sense (according to Arcavi’s vision of algebraic thinking). A specific difficulty is seeing 

formulas as tools for establishing relationships between quantities, in this case between 

the trapezoid’s perimeter and the length of its sides, or directly between the perimeter 

and the length of the short base. We have suggested that these difficulties may arise 

from habitual, operational ways and ritual routines of using formulas to provide results 

or from struggling with answers to a problem that are different from numbers. 

Additionally, they may be based on arithmetic thinking applied to the task.  

We have also found in the answers the problem of distinguishing perimeter from 

area, a problem that has been well-documented by the extant literature. Finally, some 

incorrect answers show attempts at formulas that nevertheless express the relationship 

between the bases of the trapezoid, or even a function of b, meeting the question’s 

original intent. 

5.1. About mathematics education research and large-scale assessment 

While the study we have presented in this article focused only on one item of the 

national assessment test, it analyzed incorrect answers from a sample of students that 
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were representative of grade 8 students in our country. Because these students came 

from different classes and different schools throughout the country, the analysis leads to 

significant and generalizable results. In particular, it reveals two needs: first, to have 

students work more with formulas as a means of establishing algebraic relationships in 

different contexts; and second, to rethink formulas as relational rather than procedural, 

so as to reconcile the view of the formula with its multiple uses in mathematics and to 

shift attention to the transformative nature of algebraic thinking, of which the culture 

and practice of formulas should be a major part. 

Identifying the routes as an analytical process to investigate students’ ways of 

interpreting the formula provided us with a tool to explain students’ struggles and 

difficulties. This approach may hold promise for further investigations on other tasks 

involving formulaic reasoning or other mathematical thinking. Studying the 

relationships between students’ mathematical conceptualizations and their proficiency 

levels, for example, seems a promising line of inquiry.  

We believe that the data from the national mathematics assessment, although 

raw, are invaluable material for research in mathematics education. They allow for a 

better understanding of the problems in large-scale mathematics education and, 

ultimately, an understanding of what is missing, what is needed, and what interventions 

can be made to improve mathematics teaching and learning. We also believe that 

mathematics education research and large-scale assessment can learn from each other. 

We hope that other researchers will take up the challenge of examining this fascinating 

and unexplored connection in favor of new lines of flight.  

The overall results of our collaboration did not end in this article. Ongoing 

emergent visions of the relevance of incorrect answers continue and herald new 

discussions and questions each time we return to investigating them. While it might be 
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difficult for researchers to appreciate incorrectness in school mathematics or 

mathematical performance, the unanticipated richness unfolded by the responses to the 

formula task offers opportunities for further exploration.  
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