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Abstract
Frailty is a common clinical condition used to describe older people who
are more vulnerable to stressors and therefore have a higher risk of negative
health outcomes, such as disability, fracture, and premature death. Several
definitions have been proposed in the literature to conceptualize and opera-
tionalize frailty. However, a universally accepted definition of frailty is still
lacking, making it difficult to effectively target community services to older
adults. Despite its challenges, frailty is not an irreversible process and can
be reversed or delayed from its progression. Therefore, it is argued that it
should be detected early.

This thesis focusses on early detection of frailty conditions among older
adults in order to provide proactive interventions and, consequently, to
maintain wellbeing and quality of life. Most early studies have focused
on frailty detection by analyzing the physical performance of individuals,
with a relative paucity of an administrative database. However, with the
increasing number of the aging population and the growing number of frail
elderly, methods to identify frailty within an administrative database are
current surveillance priorities. Frailty detection using large administrative
databases could capture a complex interplay of a wide variety of heteroge-
neous factors associated with frailty. Thus, discovering interesting patterns
from such large administrative healthcare data is an important application
that requires appropriate analytical tools to exploit it fully. Machine learn-
ing is a promising tool that is well suited for the analysis and capture of
complex patterns within a large dataset.

This thesis presents the application of machine learning as a potential so-
lution for modeling frailty conditions using administrative health database
comprising elderly people aged 65 years and above. Both supervised and un-
supervised machine learning methods have been explored to develop various
models, such as for detecting and predicting adverse outcomes associated
with frailty. In supervised learning, both single-label and multi-label classi-
fication methods have been examined for building frailty prediction models,
while in unsupervised learning, cluster analysis is applied to identify clini-
cally relevant clusters of complex patients. Validation of clustering results
and imbalanced data classification are the most difficult problems in the
machine learning paradigm. The work presented in this thesis devises new
approaches for evaluating the quality of clustering results and proposes a
hybrid approach for solving the imbalanced problem in multi-label learning.

2



Overall, the machine learning models are targeted to assist in the decision-
making process aimed at achieving specific clinical health outcomes of the
elderly, as well as guide the allocation of healthcare resources and reduced
costs.
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Chapter 1

General Introduction

1.1 Background and Motivation

Human life expectancy has increased markedly throughout the world during
the past 100 years, due to improvements in survival that occur during the
demographic change [1]. This demographic transformation of the popula-
tion has resulted in a much higher proportion of people living in advanced
old age. The trend is accelerating quickly, and projections foresee a growing
number and share of older adults (aged 65 years and over), with a partic-
ularly rapid increase in the number of very old people (aged 85 years and
over)[1, 2]. Between 2000 and 2050, the number of older adults aged over
80 years is expected to increase fourfold [3]. While this increased longevity
may be seen as a remarkable human success story, which represents the
achievement of public health, medical advancement, and economic devel-
opment over disease and injury [4], it also presents tremendous challenges
and consequences. One of the most problematic consequences associated
with the aging of the population is the clinical condition of frailty. Frailty
has become the focus of considerable scientific research over the past 18
years, aiming to evaluate the health status of older adults and a need to
prevent or at least delay the onset of the late-life disability and its adverse
consequences [5]. However, no formal agreement has yet been reached on
the comprehensive and objective definition of frailty. That is, the concept
of frailty remains controversial, despite its significant impact on individuals
and society with increased risk of dependency, disability, hospitalization,
and mortality [6, 7].

In spite of all these conceptual disagreements and disputes on how to as-
sess frailty, most studies recognize it as a common clinical syndrome among
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: 1 – General Introduction

older people, which reflects the state of decreased resilience and increasing
vulnerability to stressor events (such as acute illness, surgery or trauma),
along with a higher risk of adverse health outcomes [8]. The level of frailty
can range from none frail to advanced frail and appears to be a dynamic
state in which people can be less frail or more frail over time [9]. Frail
people are considered to be a group of patients that have the most complex
and challenging health problems. They can also have multiple chronic con-
ditions simultaneously, which increases the complexity of their healthcare
needs [10]. Globally, one of the important challenges to healthcare is the
considerable growth in the proportion of frail older people with often com-
plex needs and increased utilization of healthcare resources [11, 12]. The
complexity of frailty is also influenced by a large number of factors (biolog-
ical, genetic, social, environmental, etc.) and consequently, elderly patients
are a heterogeneous group in that their frailty condition may involve mul-
tidimensional functional losses (cognitive, physical, social, psychological)
[13, 14]. Hence, the care of frail elderly adults is challenging due to com-
plex comorbidities with multidimensional deterioration, compounded by the
need for consistent, ongoing management in spite of fragmented healthcare
service delivery [15]. It is, therefore, argued that early identification and
intervention is an important public health goal in order to prevent or delay
the adverse effect of frailty while maintaining life expectancy. Notwith-
standing the burden of frailty, there is increasing evidence indicating that
frailty can be delayed or reversed [16, 17], and the attention has turned to
challenge for better identifying older people at risk of frailty with the aim
of improving health outcomes and quality of life. The early identification
and diagnosis of pre-frail and frail older adults through various screening
methods can provide an opportunity to effectively target interventions to
better manage frailty and improve health and wellbeing [18, 19].

Several landmark studies have been extensively applied for frailty that
demonstrate its association with adverse health outcomes. Most of them are
either questionnaire-based methods or analysis of the physical performance
of the subject. Among those, the Fried’s phenotype model [20] and the
Rockwood’s accumulation of deficits model [21] are some of the most com-
monly used frailty measurements. Even though they are simple, these mea-
sures are not recorded in the current administrative databases and can be
impractical when considering a large fraction of the population [22]. There-
fore, with the increasing number of an aging population and the growing
number of frail elderly, methods to identify frailty within administrative
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databases (patient and population levels) are current surveillance priorities
[23]. Besides, such identification of frailty using administrative database
could capture the current views on frailty through a complex interplay of
a wide variety of heterogeneous factors and includes more than its physical
dimensions, also integrating its cognitive, psychological, and social compo-
nents, in order to reflect the multidimensional and multisystem impairments
and consequences that are inherent to the frailty syndrome [24].

This thesis uses an administrative health database, which contains about
one million older adults aged 65 years and above, representing the whole
elderly population of the Piedmont region, Italy. Healthcare administrative
database represents a powerful alternative that can offer better, more robust
and flexible solutions for a large population and also uncover information
that is unlikely missed in a questionnaire or an interview due to social desir-
ability bias [25]. These days, electronic medical administrative data is often
generated from the healthcare domain in large quantities, requiring appro-
priate analytical tools to fully exploit it and discover interesting patterns.
Machine learning is an exciting and promising tool that is well suited for
the analysis of such a large amount of healthcare administrative databases.
Machine learning can offer a potential solution to improve efforts at iden-
tification and prediction of frailty in older adults, particularly with regard
to the use of administrative datasets that are often characterized by large
dimensionality (high number of features), class imbalance distribution (e.g.,
many more healthy patients than sick), a vast number of samples, informa-
tion collected from different sources (e.g., clinical examination, demographic
and socioeconomic sources), etc.

Machine learning is a branch of artificial intelligence that offers classifica-
tion, prediction, and clustering capabilities focused on building automated
systems that support clinical decision making and visualization of informa-
tion for shared decision making [26]. Machine learning algorithms analyze
the data and generate solutions (models) to address a large variety of com-
plex problems. Once the model is inferred, if we want to understand how
the algorithm performed certain choices, or we interpret the structure of
the solutions, we have the possibility to learn the hidden structure of the
data. Machine learning has evolved rapidly over time, resulting in a revo-
lution in healthcare [27] that includes a wide variety of sophisticated and
new computational methods for enhanced data analysis. In the aging pop-
ulation, it can be applied from frailty identification through remote health
monitoring of elderly people. Despite the advantageous position of machine
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learning methods and multi-label learning, more specifically, to aid identifi-
cation, prediction, and treatment of frailty within administrative databases,
there has only been limited application within the published research liter-
ature to date. One early research compared the machine learning algorithm
with a self-reported Frailty Index (FI) to predict survival within a com-
munity sample of older patients [28], showing that the machine learning
algorithm outperformed the FI. Other subsequent researches have focused
on the use of machine learning techniques to identify frailty by extracting
data from electronic clinical notes of various client populations, including
patients with heart failure [29], Medicare patients [30] and health care in-
surance enrollees [31], with another recent study supplementing electronic
health records with interview data among older community center attendees
[32]. More recently, prediction of hospital admission for older adults [33]
was developed using machine learning techniques based on contact assess-
ment data, including a series of geriatric syndromes, functional assessments,
and baseline care needs. To the best of the author’s knowledge, however,
there are no adequate studies that have applied machine learning algorithms
to simultaneously predict multiple outcomes associated with frailty within
the population-based administrative database, nor attempted to compare
the performance of several commonly used supervised learning algorithms,
particularly using multi-label learning approaches.

This thesis investigates the use of machine learning, with its rich knowl-
edge representations, as an alternative solution to identify an individual or
group of individuals with frailty (i.e. building models that are able to dis-
criminate between frail and non-frail people) and to predict future adverse
outcomes associated with frailty condition based on electronic administra-
tive databases. Both supervised and unsupervised machine learning meth-
ods have been explored to develop various models for the assessment and
management of frailty in elderly people aged 65 years and above. In su-
pervised learning, both single-label (for one outcome prediction) and multi-
label classification (for multiple outcomes prediction simultaneously) models
have been developed, while in the unsupervised learning, clustering analysis
and its validation has been explored for analyzing the frailty dataset aiming
at estimating the number of clusters and assessing the prediction strength
of models to assign cluster labels for new samples.

However, with the use of machine learning techniques, several challenges
exist which prohibits the efficient development of predictive models. In
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supervised learning, one of the open challenges is the presence of highly im-
balanced data, particularly in a multi-label classification. This thesis first
identifies the gap through conducting a systematic review on the state-of-
the-art methods, and then proposes an alternative approach for addressing
imbalance problem in multi-label classification, in the specific context of
frailty data. In unsupervised learning, determining the quality of the re-
sults obtained by clustering techniques is a key issue. However, very little
practical guidance is available to measure the quality of the clustering algo-
rithms in assigning unknown observations to clustering groups. The thesis
also investigates the development of a new clustering validity measure that
helps assessing the clustering results.

In general, the machine learning models are designed to assist in the
decision-making process aimed at achieving specific clinical outcomes of
frailty, as well as guide the allocation of healthcare resources and reduced
costs.

1.2 Aims and Scope

This thesis is an investigation of how machine learning techniques can be
utilized for the identification and prediction of frailty conditions using an
administrative medical database. More specifically, the objectives in this
thesis are: (1) to develop and evaluate clinical classification models (using
both single-label and multi-label classification algorithms) for predicting
negative health outcomes associated with frailty; (2) to explore the potential
of clustering algorithms for identifying subgroups of complex patients from
a large sample of the elderly population; (3) to examine and propose a new
cluster validation criteria for evaluating clustering results in a quantitative
manner and a hybrid approach for handling an imbalanced problem in multi-
label classification. More detailed information on each specific objectives are
given below:

1. To target interventions on those who will become frail or those
who are at high risk of being frail.
Identifying high-risk individuals is often perceived as an important part
of prevention programs [34], since the available healthcare for older
adults may be insufficient, or may not be designed to meet their needs.
From this perspective, the prediction of older persons at risk of admis-
sion to hospital or other negative outcomes may be one important way
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for the future healthcare system to act proactively when meeting in-
creasing needs for care. Here, single-label supervised machine learning
techniques can be used, which are particularly suited for identification
and predictions of frailty based on an administrative database. Various
types of commonly used machine learning models have been explored
and compared to detect people at an early pre-frail stage (i.e., those at
high risk of becoming frail) and those who are already frail and therefore
at risk of complications of frailty (such as disability, falls, hospitaliza-
tions and mortality). Therefore, we wanted to develop and evaluate
clinically useful models for detecting and predicting adverse outcomes
of older persons based on routine healthcare administrative databases.

2. To identify subgroups of the target population in the elderly
using cluster analysis.
Unsupervised learning methods, such as clustering that uses large ad-
ministrative data can help to group and organize the elderly population
into distinct categories, each with specific needs, characteristics, or be-
haviors to allow care delivery and services to be tailored for these groups
[35]. While it is practically impossible to develop models and interven-
tion programs for each individual, programs can be created for groups
of patients with largely similar characteristics. The exponential growth
in medical datasets, together with the developments in machine learn-
ing tools, provides new opportunities to use data for cluster analysis
[36]. Specifically, in this thesis, the clusters identified using frailty data
can be used to prioritize interventions among the pre-frail, mild frail,
and advanced frail groups, and there would also be the potential to set
financial budgets for individuals per cluster.

3. To build a multi-label predictive model for early diagnosis and
prediction of simultaneous outcomes associated with frailty.
People with frailty may be diagnosed with more than one health con-
dition, and because of the high prevalence of frailty and its multiple
adverse conditions, it is often more important to target several out-
comes simultaneously than a single outcome. Simultaneous prediction
of multiple outcomes of frailty from a common set of predictors can help
to detect multiple complicated issues in older adults, minimizing the
risk of multiple states at a time. Recently, multi-label learning is used
to handle the task of simultaneous prediction of all target outcomes.
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Following the objectives in steps 1-3, this thesis also proposes new so-
lutions for two important problems in machine learning: (1) Cluster
validation criteria for assessing the quality of clustering results, and
(2) A hybrid resampling approach for imbalanced data classification in
multi-label learning.

1.3 Thesis Contributions

The primary contribution of this thesis is the efficient development of predic-
tive models, their application for managing and preventing the progression
of frailty condition in older adults. Motivated by the results obtained in
this part, the second contribution is the introduction of a new method for
addressing the issue of cluster validation. This method uses the structure of
multi-label datasets to elaborate a novel clustering validation criteria. The
proposed validation index is a simple yet effective label-based approach to
measuring the predictive strength of a clustering model. This validation
criterion has been used for evaluating the clustering results that have been
obtained on the dataset of the older population. The third contribution of
the thesis is dedicated to addressing an imbalanced problem in multi-label
classification, aiming to provide simultaneous predictions of multiple out-
comes associated with frailty. A hybrid of SMOTE and T-link approaches
is proposd to address the intrinsic problem of imbalanced data in the multi-
label context. This hybrid method particularly solves the imbalanced la-
bel distributions (the joint occurrence of minority and majority labels that
appear in the same instances) in a multi-label classification. Despite the
advantages of such a hybrid method for imbalanced classification, it has not
been well grounded in the multi-label scenario. The proposed method was
evaluated considering the imbalanced multi-label administrative dataset of
older adults aged 65 years and above.

1.4 Thesis Organization

This thesis is organized into seven chapters: the introduction, the prelimi-
nary chapter that provides the context, and the background of the material
on which the thesis is built on. The overall structure of the thesis, excluding
this introductory chapter, is organized as follows:

23



: 1 – General Introduction

Chapter 2 – Literature Review. This chapter introduces the key concepts
necessary to understand the content of the thesis fully. It presents the re-
view of background information on the concepts of frailty, aging and frailty,
impacts and healthcare interventions of frailty, machine learning methods,
and application of machine learning in the healthcare domain.

Chapter 3 – Imbalanced Data classification: A systematic review. This
chapter presents the first survey of handling the imbalanced problem in
multi-label data classification (MLC) which includes a comprehensive survey
of the state-of-the-art methods for imbalanced MLC, the characteristics of
the data, problem descriptions, solutions and limitations of the approaches
proposed in the existing literature for solving an imbalanced problem.

Chapter 4 – Predictive Modelling for Frailty Conditions in Older Adults. A
detailed description of the dataset used (i.e., the frailty data), data prepro-
cessing, feature selection, imbalanced dataset, and the classification model
development is provided. It also presents the data analysis used in the
study, the evaluation methodologies, and the discussion of results.

Chapter 5 – Multi-label Classification for Early Diagnosis of Frailty Syn-
drome. It introduces the use of multi-label learning for early diagnosis and
prediction of adverse outcomes associated with frailty. This chapter dis-
cusses the variety of multi-label classification models, evaluation metrics,
and experimental results. It also presents an algorithm proposed for solving
the imbalanced problem in multi-label classification.

Chapter 6 – Cluster Analysis and Its Validation: Application for improv-
ing health Conditions of Elderly. This chapter is split into two parts. The
first part focuses on proposing a new approach to cluster validation, investi-
gating the use of a cross-validation procedure to evaluate the quality of the
clustering results. The second part covers the application of cluster analysis
for identifying subgroups of patients in the elderly. It describes and applies
clustering techniques to the administrative dataset. It also presents the di-
mensionality reduction techniques used, the variety of clustering methods,
and a methodology proposed for the evaluation of clustering algorithms.

Chapter 7 – Conclusions and Future Work. This chapter summarizes the
results and the main research objectives achieved in each chapter of the
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thesis. The chapter also provides further discussions on more general topics
covered in the whole thesis and the possible areas of future work.
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Chapter 2

Literature Review

This chapter reviews the literature related to this thesis. It discusses an
overview of frailty and of machine learning techniques. The first section
of this chapter (section 2.1) introduces the topic of frailty in older adults
and summarizes its current conceptualizations, impacts from societal and
psychological perspectives, and intervention methods. Then section 2.2
presents the main concepts behind each step of the model development pro-
cess in this thesis. It provides an introduction of machine learning methods
with a particular focus on supervised and unsupervised learning paradigms.
Finally, section 2.3 describes the application of machine learning in the
healthcare domain with some examples of applications to enhance clinical
decision making.

2.1 Introduction to Frailty

The notion of frailty has evolved substantially over the past two decades in
the context of population aging, and the number of publications on frailty
syndrome has increased exponentially [37]. Yet, the concept of frailty and its
objective diagnostic parameters are still evolving as a complex phenomenon.
Frailty has been viewed as a cornerstone of geriatric medicine and has been
described as the most problematic expression of population aging [38]. It
has been shown that frailty has become a major challenge as population
ages. The age composition of the world population is changing, and the
relative number of older adults that grow old is increasing quickly, due to
the increased life expectancy and the decreased fertility rates [39]. Because
of this rapid growth of the older population, national health, and social
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care budgets are under pressure. Healthcare systems have encountered sig-
nificant challenges urging innovation in the management of frail elderly. In
developed countries, the estimated prevalence of frailty is around 11% for
people aged above 65 years, rising to 25–50% for people above 85 years old
[40].

Current literature shows that detecting (recognizing) frailty among older
populations at an early stage provides options to enable proactive interven-
tion and helps to reduce the burden of adverse outcomes associated with
frailty, consequently, to support independent living [41].

2.1.1 Definition of Frailty

Frailty is a term used by healthcare professionals, policymakers, researchers,
and laypeople to describe a range of conditions in older people. However,
their understanding and usages of the term are not similar, which clearly
shows the difficulty of the issue at hand. Despite a large number of scales
and questionnaires to detect frailty syndrome, there is no universally agreed
operational definition of frailty or a generalized method to diagnose or for
its screening, as groups of clinicians and researchers have demonstrated dis-
parate views on the characteristics that make up frailty. The lack of a
gold standard definition of frailty causes heterogeneity in studies. Never-
theless, most definitions of conceptual frailty contain some common factors,
including increased vulnerability to adverse health outcomes, decreased ca-
pacity/reserve to adapt minor stressor events, and impairment in various
physiological systems [9]. With the inclusion of these factors, WHO has
defined conceptual frailty as “ a clinically recognizable state in which the
ability of the older people to cope with everyday or acute stressor is com-
promised by an increased vulnerability brought by age-associated declines
in physiological reserve and function across multiple organ systems” [42].

Considering the composition and type of variables of frailty scores, four
main definitions of frailty have been distinguished in the literature. The
first is the “phenotype of frailty” approach, which considers frailty as ‘a
biological syndrome of decreased reserve and resistance to stressors resulting
from decline across multiple physiological systems and causing vulnerability
to adverse outcomes’[20]. This definition is the most widely adopted one,
which is based on physical markers (such as global weakness with low mus-
cle strength), overall slowness (such as slow gait speed), reduced balance
and mobility, exhaustion, involuntary weight loss, and low physical activity.
For screening the presence of frailty, at least three of these symptoms must
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be observed. The presence of one or two of the symptoms indicates pre-
frailty. However, this definition has been criticized as insufficient by other
researchers as it doesn’t consider socioeconomic domains (such as living
alone, income), cognitive and mental health domains to define frailty. Sec-
ond, the “accumulation of deficit” approach counts the number of health
problems or deficits to classify an individual as frail [43]. It takes into ac-
count various baseline parameters of signs, symptoms, abnormal laboratory
values, disabilities, and disease states, collectively named as deficits, to de-
fine frailty. The acquired frailty index is a computation of the presence or
absence of each variable as a proportion of the total; thus, frailty is defined
as the cumulative effect of individual deficits -‘the more individuals have
wrong with them, the more likely they are to be frail’. However, the frailty
index does not distinguish frailty from disability or comorbidity. Third,
the “multidimensional” approach defines frailty as a dynamic process of
loss of function in one or more domains, including physiological, psycholog-
ical, cognition, nutrition, and social domains, making the individual more
vulnerable [9]. Fourth, the authors in [44] have proposed a “disability”
approach to define frailty, thinking that primarily frailty scores are created
with variables representing a degree of disability. They included this defini-
tion of frailty without a reference from literature or without any theoretical
basis, even though disability is considered as an outcome of frailty by sev-
eral authors [45]. Whereas frailty indicates to instability and risk of loss of
function, disability refers to the loss of function and often assessed based
on dependency or difficulty in performing activities necessary to live inde-
pendently, such as activities of daily living (ADL), e.g., dressing, bathing,
eating, toileting, continence, and transferring [46] and instrumental activi-
ties of daily living (IADL), e.g., shopping, meal preparation, telephone use,
laundry, housekeeping, medication, transportation, and finances [47].

Different models of frailty give varied prevalence estimates that constitute
a major challenge in comparing the results across different studies [48]. In
spite of the differing frailty conceptualizations, its dynamic nature can be of
considerable importance to the development of interventions for prevention
and treatment.

2.1.2 Frailty in Older Adults

The number of older adults has increased significantly in most current soci-
eties. With an increasingly aging population, there will be a greater preva-
lence of frailty [13]. Its prevalence varies greatly according to the age of the
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population under study and is often higher in women than men. Frailty is a
progressive age-related decline in multiple physiological systems, which col-
lectively results in a vulnerability to sudden health status changes triggered
by relatively minor stressor events. Frailty is often associated with individ-
uals who are functionally dependent on others for activities of daily life [38].
Aging is associated with a gradual decline in physical functioning, and the
condition of frailty is considered as an increasingly problematic consequence
of aging [13]. However, the rate of physical decline and functional status of
older individuals vary significantly, depending on their biological, genetic,
and environmental backgrounds as well as other physical, psychological,
and social factors. As a consequence, elderly patients are heterogeneous
groups in which the expression of frailty may include comorbidities and
the loss of multidimensional functions (cognitive, psychological, physical,
social) that may need a broad array of healthcare services. Hence, individ-
uals with the same chronological age can have different biological ages [49],
and advanced aging on its own does not necessarily couple with frailty [50].
The reasons are two: first, compared to other older adults, frail older adults
show a degradation of multiple physiological systems that are responsible for
healthy adaptation to the different demands of life [51]. Those older adults
considered frail are particularly vulnerable to undesirable outcomes, such
as hospitalization, institutionalization, injurious falls, or death [8]. Thus,
frailty is a better indicator for those in need of interventions for their health
and wellbeing than chronological age [52]. Second, frailty is at least partly
programmed in early life and is also associated with lower socioeconomic
status in adulthood [53]. Thus, frailty is related to and also distinct from
the natural aging, represents those adults at the greatest risk of adverse
outcomes and is heterogeneous [54].

2.1.3 Impacts and Interventions of Frailty

Frailty represents a huge public health issue at both the patient and the
societal levels because of its multiple clinical, economic, and societal conse-
quences [55].

The ecological perspective considers the social impact of frailty at many
levels, from the individual, through expanding spheres of family, friends and
caregivers, peer groups, institutions, neighborhoods, and communities, to
society at large [56]. From a clinical perspective, frailty is crucial because
people with frailty are at increased risk of premature death [57], and various
negative health outcomes, including fracture, disability, falls, depression and
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dementia, all of which result in a poor quality of life, increased cost and use
of healthcare resources, such as hospitalization, emergency department and
institutionalization [7]. From a recent systematic review [58], it has been
shown that the healthcare costs of frail older people are sometimes much
greater than those of the non-frail counterparts. It has also been observed
that healthcare costs are increasing all over the world, promoting healthcare
services to seek reduced hospital admission and readmission rates, shorter
lengths of stay, and postponement of admission to nursing homes [59, 60].
This is due to the fact that current healthcare services are mostly designed
to address disease-specific and organ-specific problems one at a time and
are not well prepared to deal with the chronic and medical needs of frail
older patients and to provide seamless care for them in the long term [61].

Frailty is important from a societal perspective because it identifies groups
of people in need of extra hours of home care services, medical attention,
and at risk of higher dependency, particularly when functional dependence
increases an individual’s reliance on caregivers. On the other hand, the
more hours of care provided, the greater risk of health and economic con-
sequences to the caregiver [62]. Frailty is also a concern when considering
financial health care planning to better select management and prevention
programs.

Reducing the prevalence or severity of frailty with appropriate interven-
tions has large benefits for individuals, their families, and society. Several
interventions for frailty have been proposed to improve health outcomes
of frail individuals, including exercises interventions [63], nutritional in-
tervention [64], multicomponent interventions [65], pharmacological agents
[66] and individually tailored geriatric care models based on comprehensive
geriatric assessment (CGA) [67]. Therefore, identifying frail older subjects
who are frail from people who are not frail should be an essential aspect
of assessment in any healthcare system. Early diagnosis or detection of
frailty conditions can help to improve care for elderly people, reducing the
risk of pre-frail states progressing into frail states (primary prevention).
Early detection can also be important for implementing therapeutic mea-
sures, which can help to decrease or delay the underlying symptoms and
conditions or enhance the impacts on independence or a healthy lifestyle
(secondary prevention). In more advanced stages, frailty diagnosis provides
valuable information, essential for planning and implementing intervention
strategies aimed to preserve functional status or control the progression of
adverse outcomes, such as institutionalization, recurrent hospitalizations,
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or death (tertiary prevention)[68]. The evidence from the study of various
types of frailty interventions demonstrates that frailty can be managed and
reduced. Frailty screening can also provide information on older people at
high risk of disability and poor prognosis, and help to identify reversible
risk factors. In the presence of different clinical scenarios where the care of
the elderly is a priority, such as nursing homes or primary health care, it is
imperative to have a specific model for the detection of frailty according to
the characteristics of the population being studied.

2.2 Introduction to Machine Learning

2.2.1 Machine Learning Paradigms

Machine learning (ML) is a broad and rapidly growing area of research in
the field of artificial intelligence [69]. The definition of what exactly consti-
tutes machine learning has been varied among the different experts in the
field. In 1959, Arthur Samuel [70] defined machine learning as “a subfield
of computer science that gives computers the ability to learn without being
explicitly programmed.” It means that ML is able to perform a specified
task without being directly told how to do it. The other most widely ac-
cepted formal definition of ML given by Tom Mitchell [71] was as follows:

Definition 2.2.1. A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its
performance at tasks T, as measured by P, improves with experience E .

In short, Mitchell defines ML as “a set of computer programs that au-
tomatically learn from experience.” According to this definition, we can
formulate our frailty problem as the task of predicting older adults who are
at increased risk of frailty (Task T ) using relevant clinical, administrative
data from several individuals (experience E) through an ML algorithm. If
the algorithm has successfully learned (measure P), it will then be capable
of using these data to predict clinical outcomes of new older individuals.

In the field of today’s data science, ML aims to select, explore and extract
useful knowledge from complex, often non-linear data, building a computa-
tional model capable of describing unknown patterns or correlations, and
in turn, solve challenging problems. This learning process is often carried
out through repeated exposure to the defined problem (dataset), allowing
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the model to achieve self-optimization and continuously enhance its abil-
ity to solve new, previously unseen problems [72]. ML draws on concepts
from many different fields, including computer science, statistics, and opti-
mization. At their core, almost all ML problems can be formulated as an
optimization problem with respect to a dataset. In such settings, the goal is
to find a model that best explains the data. Often, ML is related to pattern
recognition, artificial intelligence, data mining, and statistics.

Figure 2.1 is an indicative representation of the degree of similarities and
differences among the various fields. Although there are no clear boundaries
among these areas and they usually overlap, there are some basic differences
between machine learning and statistics:

1. ML focuses on the task of prediction, by using general-purpose learn-
ing algorithms to find patterns usually in a massive dataset.On the
other hand, statistical methods have a long-standing focus on inference,
which is attained through the creation and fitting of a problem-specific
probability model [73].

2. Most ML techniques are hypothesis-free (i.e., no prior assumptions are
required about the underlying distribution of data), as the goal is to
reconstruct associations within the dataset, while traditional statistics
often depends on specific hypotheses and assumptions, which are usu-
ally originated from the model that has produced the dataset [74].

3. The metrics used to evaluate the generalization performance of an ML
model (ROC curve, cross-validation, etc.) are generally distinct from
the statistical approach, which primarily relies on the computation of
the P values to accept or reject a null hypothesis [75, 76].

4. Statistical modeling is generally fitting a parsimonious model to pro-
duce an easy to understand and interpretable results. However, bi-
ological and clinical factors are often dependent on each other, and
their relationship may be non-linear. ML approach, however, consid-
ers all possible associations between features with complex non-linear
patterns, while investigating to capture as many informative and in-
teresting features as possible, which may produce a complicated and
sophisticated model that is not easy to understand or interpret.

In general, statistics draws population inferences from a sample, and ma-
chine learning finds generalizable predictive patterns. Both inference and
prediction are major goals in the study of biological systems. Inference
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Figure 2.1: Representation of degree of similarities between various fields

creates a mathematical model of the data generation process to formalize
understanding or test a hypothesis about how the system behaves. Pre-
diction aims at forecasting unobserved outcomes or future behavior that
makes it possible to identify best courses of action (e.g., treatment choice)
without requiring understanding of the underlying mechanisms. In a typical
research project, both inference and prediction can be of value—we want to
know how biological processes work and what will happen next. Therefore,
these two approaches can be integrated in a way that they can determine
an added value in medical care.

There are many different applications of ML, which fall into one of four
broad categories: supervised, unsupervised, semi-supervised and reinforce-
ment learning (Figure 2.2).
Supervised learning: is used to search the relationship between input
variables (a set of features) and one or more output variables (classes or
labels) and then forms a function that predicts the outcome value for a set
of unlabeled samples based on an acceptable degree of performance [76].
In supervised learning, the training dataset should have the correct input-
output pairs and has two major tasks to be performed: classification, where
the task is to predict the class or group to which a new sample should be
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assigned, and regression, where the values of a continuous variable for a new
sample must be estimated.
Unsupervised learning: attempts to find the structure in the data with-
out the need for training data, labels, or classes. It explores the underlying
structure of the data to identify useful patterns, such as clusters. The main
tasks in unsupervised learning include cluster analysis [77], dimensional-
ity reduction [78], self-organizing maps (SOM) [79], representation learning
[80], and density estimation [81].

Supervised and unsupervised learning are by far the most commonly used
approaches in general, and the work presented in this thesis employs these
two learning approaches and, therefore, will be discussed in greater detail
in the next subsections.
Semi-supervised learning: is a combination of the two previous paradigms
where the target variables or classes are available for only a part of the data.
The aim of semi-supervised learning is to classify the available unlabeled
data set using its labeled information set. In such scenarios, the size of
the unlabeled data should be greater than the labeled set. Otherwise, the
learning problem can be addressed through supervised learning.
Reinforcement learning: is a paradigm where the algorithms’ behavior
(i.e., the learner) is shaped through a sequence of rewards and penalties,
which is based on the actions it takes in the environment towards a defined
goal. Unlike supervised learning, where the algorithm uses a set of exam-
ples to model behavior, the learning algorithm in reinforcement learning
is allowed to behave freely, i.e., on the basis of trial and error, to discover
what actions maximize reward and minimize the penalty. A computer chess-
playing with a human is an example of reinforcement learning.

2.2.2 Supervised Learning

In this learning paradigm, the algorithm knows the output variable that
it is trying to predict, i.e., the target variable; this could be, for instance,
the presence or absence of disease, severity of symptoms, or future clinical
outcome. The goal is to use an algorithm to learn the optimal function that
best captures the relationship between the input and output variables. The
algorithm is trained using several samples and is allowed to receive feedback
during the learning process based on how close its prediction matches the
true value. Depending on whether the target variable is a categorical or
continuous variable, the supervised learning task is either a regression or
classification problem, respectively.
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Figure 2.2: Categories of learning paradigms in machine learning

In a regression problem, the goal is to predict a numeric score on a
continuous value. Constructing a regression model is all about identifying
the relationship between the class label and the input predictors. Multiple
problems that can be addressed with a classifier can also be solved using a
regression algorithm by defining the outcome as a continuous rather than
a categorical variable. Mathematically, regression aims to approximate a
function f given a finite sample of training instances {(x1, y1), ..., (xn, yn)}.
Unlike in classification, however, the range of yi is not discrete; it can take
any value in R. The approximating function f is also called the regression
function. A natural way of evaluating the performance of an approximating
function f is the residual sum of squares using the following equation:

E =
∑

((yi − f(xi))2 (2.1)

More detailed information on regression analysis can be found in text
books, such as [82]. However, the majority of the work presented in this
thesis employs classification and clustering. Therefore, most of the focus for
this thesis will be on the two paradigms (i.e, classification and clustering).

The classification problem aims to predict group membership (i.e., labels
or classes), for a set of observations. The popularity of classification algo-
rithms can be due to the fact that most of the medical diagnostic problems
can be simplified into categorical decisions; for example, should a medical
patient be treated with medication A, B, or C? The most straight forward
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application of the classification problem in the clinical domain is diagnostic
classification. In this type of problem, a classifier learns to distinguish, for
instance, patients with a particular disease from healthy controls. The clas-
sification problem can be further divided into two categories: single-label
and multi-label classification, as will be discussed in the next subsections.
In this thesis, a variety of classification methods from both the single-label
and multi-label classification approaches have been investigated.

2.2.2.1. Single-label Classification Problem
Single-label classification, also called the standard or traditional classifica-
tion, is a supervised machine learning task where the system learns from
a set of labeled input examples to correctly predict the class membership
of unlabeled samples. The goal of standard classification is to obtain a
model that will be able to assign each of the given unlabeled inputs to the
corresponding known output. A more formal definition of classification is:

Definition 2.2.2.1. Given a set of data points X = {x1, x2, ..., xn}, each
of them associated with a finite set of target classes Y = {y1, y2, ..., ym}, the
classification problem is the task of generating a mapping function f : X →
Y , which maps element of X to Y .

Each training data point xi is often referred to as instance or sample and
is characterized by a finite set of features F = {f1, f2, . . . , fj} that can be
either numerical or categorical. Commonly, the features are called variables
or attributes. Standard classification concerns with learning from a set of
data points that are associated with only one target label from a set of
disjoint labels Y ,with |Y | ≥ 1. If |Y | = 2, then the learning problem is
called a binary classification, while if |Y | > 2, then it is called a multi-class
classification problem [303]. The most common applications of binary clas-
sification problems include disease diagnosis, spam, and malware detection,
quality control, etc. [84]. Several real-world problems, however, involve the
classification of more than two classes. Examples of such problems include
the distinction of multiple types of tumor, image classification (e.g., an ani-
mal image can be classified as either cat, dog, fox, or rabbit, etc.), character
recognition [85] (e.g., classifying an image of a handwritten number into a
digit from 0 to 9), biometric identification [86] and face recognition. In gen-
eral, solving a multi-class problem is more complex and expensive than a
binary problem with the same amount of data [87], as the generated model
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must be able to separate the given examples into a higher number of cate-
gories, which increases the chances of classification errors. As a result, its
complexity grows for large number of classes.

There are two ways to solve multi-class classification: using either di-
rect multi-class learning algorithms or decomposition-based approaches that
combine several binary classifiers. The former category includes ML algo-
rithms, such as k-nearest neighbors [88], neural networks [89], decision trees
[90], and naïve Bayes classifiers [91]. However, some of the well-known
ML algorithms, such as support vector machines, logistic regression, and
perceptron learning, are originally designed for the solution of binary clas-
sification problems. These methods may not be used for multi-class clas-
sification directly. In such cases, we used the alternative of decomposing
the multi-class problem into binary subproblems. Decomposition is one of
the most commonly used approaches to deal with multi-class classification,
splitting multi-class problems into a set of binary classification problems.
The outputs of binary classifiers are then combined to gain the multi-class
outputs.

The most common decomposition strategies used for multi-class classi-
fication problems are one-against-all and one-against-one methods [92]. In
the one-against-all (OAA) strategy, a multi-class problem with k classes is
split into k binary classification problems. Then, k binary classifiers can
be created where each classifier is trained to distinguish one class from the
remaining k-1 classes. For this approach, the kth classifier is assumed be
trained with positive examples belonging to class k and negative examples
belonging to the k-1 classes. In one-against-one (OAO) approach, k(k-1)/2
binary classifiers, one for every possible pair of classes, are generated for
the given k number of classes. Each example is then classified according to
a majority vote amongst the classifiers.

Classification can be a two-step process consisting of model construction
(learning) phase and model usage (classification) phase. In the first phase,
the training data set is used to train the model where the generated model
can be represented as classification rules, mathematical formulas, or decision
trees. The second phase refers to using the model for classifying future or
previously unknown data points. Sometimes, it can also be a three-step
process where a model adjustment step is added between model construction
and model usage to adapt the model better to the data. If the model has not
been able to classify or predict the concept of the new data, there will be a
large generalization or prediction error, which means that the future unseen

37



: 2 – Literature Review

samples are not correctly classified. However, when building a classification
model, future samples are not accessible; therefore, it is essential to simulate
the model using the second phase (i.e., usage phase). Simulating future
behavior of the learning model helps to know whether the learning part
was successful and to estimate the future generalization error rate. The
evaluation of the model through such simulation can be done by dividing
the available data into three non-overlapping sets: training, validation, and
test sets. First, the model is created by learning from the training set;
then, the validation set is used to fine-tune the hyper model parameters.
Once the model is trained using train and validation tests, the test set
provides an evaluation of the final model. The workflow applied in model
usage simulation is illustrated in Figure 2.3. Model validation consists of
evaluating how well the classes of the test instances can be predicted.

Figure 2.3: A general approach to build and validate a predictive model

For binary classification where there are only two classes (presence and
absence), the performance of a model is often evaluated using a confusion
matrix (contingency table). In the healthcare domain, the positive class
often represents individuals with a medical condition, while the negatives
represent healthy individuals or controls. Table 1.1 shows a confusion ma-
trix that summarizes the correct and incorrect predictions for each class.
The choice of evaluation metrics affects the objectivity and fairness of the
final model assessment. Commonly, most classifiers have been assessed by
the overall accuracy rate. However, accuracy alone doesn’t reflect false-
positive samples, and therefore, it is not particularly appropriate for class
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imbalance learning. As a result, some other effective evaluation metrics have
been used to assess the classification performance. In a binary classification
problem, the outcome of classification performance can be represented by a
confusion matrix, as shown in Table 2.1. Then the following performance
metrics are obtained from the confusion matrix.

Table 2.1: Outcomes of a binary classification problem

Predicted class
Positive Negative

Actual class
Positive True Positive (TP) False Negative (FN
Negative False Positive (FP) True Negative (TN)

Accuracy is calculated as the number of all correct predictions divided by
the total number of records in the dataset. With accuracy, performance
values range between 0 and 1, where 0 is very poor overall accuracy, and 1
is perfect classification accuracy.

Accuracy = TP + TN

TP + TN + FN + FP
(2.2)

Sensitivity (Recall or True positive rate) is calculated as the number of
correct positive predictions divided by the total number of (actual) positives.
It is the ability of the model to detect the disease if it is really present. The
best sensitivity is 1.0, whereas the worst is 0.0.

Sensitivity = TP

TP + FN
(2.3)

Precision (Positive predictive value) is measured as the number of cor-
rect positive predictions divided by the total number of positive predictions.
It tells you how often a positive test represents a true positive. The best
precision is 1.0, whereas the worst is 0.0.

Precision = TP

TP + FP
(2.4)

Specificity measures the proportion of negatives that are recognized as
such. It is calculated as the number of correct negative predictions divided
by the total number of (actual) negatives.

Specificity = TN

TN + FP
(2.5)
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G-mean is the geometric mean of sensitivity and specificity. It is often
used when the performance of both classes is expected to be considered.

G−mean =
√
Sensitivity ∗ Specificity (2.6)

F1-score measures the harmonic mean of recall and precision. It is a metric
that takes into account both recall and precision.

F1− score = 2 ∗ Precision ∗Recall
Precision+Recall

(2.7)

In the medical context, model performance is often measured through
the analysis of the Receiver Operating Characteristics (ROC) curve. ROC
curve is also an important and robust evaluation metrics in the presence
of the class imbalance problem. It is a simple graphical representation to
evaluate a machine learning model, where it illustrates the performance of a
classifier based on the true positive rate (sensitivity) and false-positive rate
(1-specificity) [93]. The ROC is a probability curve plotted by varying the
threshold set at which the samples are assigned to a specific class. The ROC
curve can be summarized into a single value by calculating the area under
it, called Area Under the ROC curve (AUC). AUC can be used to assess
the performance of predictive models at different threshold settings. It has
been known to be the most powerful metric in experimental comparisons of
multiple learning algorithms. For binary classification, a perfect classifier
should have an AUC of 1, while a random classifier produces an AUC of 0.5
(i.e., the classifier assigns with a 50% chance on one of the two class labels).

2.2.2.2. Multi-label Classification Problem
In many real-world applications, an object may be associated with mul-
tiple labels concurrently, and such problems are recognized as multi-label
learning[94]. Multi-label classification (MLC)[95] is the task of a multi-label
supervised learning paradigm where there is typically a finite set of poten-
tial labels that can be applied to the instances of multi-label data (MLD).
The basic goal is to simultaneously predict a vector of outputs for a given
single input, which means that it is possible to solve more complex decision-
making problems. This is opposed to the single-label classification, where
each instance is associated with only one label. For a multi-label task, gen-
erally, an instance can be associated with a set of labels (i.e., each distinct
combination of labels); we call these labels as relevant labels (active labels),
while those that are not associated are known as the irrelevant labels. Both
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the relevant and irrelevant labels are represented as a binary vector, with a
size equal to the total number of labels in the MLD.

MLC is currently receiving considerable attention and is applicable to
a variety of research domains, including bioinformatics, text classification,
music categorization, medical diagnosis, image, and video annotation [96].
For example, in medical diagnosis, a patient can have multiple side effects for
a disease or a medical diagnosis might find a patient suffers from more than
one disease at the same time. An image can belong to more than one label;
Figure 2.4 shows one of the classical applications of MLC, image labeling.
There are four labels in the dataset, and each image can be assigned to any
of the labels, or even all of them at once if there was an image in which
the four concepts appear. More than one label is assigned to each picture,
depending on the elements it contains.

Figure 2.4: Image labeling is an example of a multi-label classification problem [95]

A more complex form of multi-label learning problem closely related to
MLC is multi-label ranking (MLR) [97], where the goal is to not only predict
a vector of outputs from a finite set of predefined labels but also to rank them
according to their relevance to the given input. In a multi-label learning
problem, in addition to predicting which labels are relevant and which are
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irrelevant, it is often required to get a good ranking of relevant labels (i.e., a
list of preferences) from the list of possible labels for each unseen example.
MLR is an interesting problem as it subsumes many supervised learning
tasks such as multi-label, multi-class and hierarchical classifications [98]. An
example application of MLR is document classification, where categories are
topics (e.g., technology, politics, and sports) within a document collection
(e.g., news article). It is very likely that a document may belong to several
topics, and the aim of the learning algorithm is to rank (order) the relevant
topics higher than non-relevant ones for a given document query. According
to [99], a multi-label problem is assumed to have the following settings:

1. The set of labels is predefined, meaningful and human-interpretable

2. The number of possible labels is limited in scope, and not greater than
the number of attributes

3. Each training example is associated with multiple labels of the label-set.

4. The number of attributes may be large, but attribute-reduction strate-
gies can be employed in these cases. The number of examples can also
be very large.

5. Labels may be correlated: the relationship between labels represent
additional knowledge that can be explored during the training of the
learners to facilitate the learning process.

6. Dataset can be unbalanced: this can be viewed from three perspectives:
imbalance within labels, imbalance among labels, and imbalance among
label-sets.

2.2.2.2.1. Formal Definition of Multi-label Learning
The formal definition of multi-label learning is presented as follows [249]:
Let X be a d-dimentional input space of categorical or numerical features
and an output space of q labels L = {λ1, λ2, ..., λq},q > 1. A multi-label
example can be defined as a pair (x, Y ) where x = (x1, x2, . . . , xq) ∈ X and
Y ⊆ L is called a label-set. D = {(xi, Yi)|1 ≤ i ≤ m} is a multi-label dataset
(MLD) composed of a set of m instances. Let Q be a quality criterion which
rewards models with high predictive performance and low complexity. If the
task is an MLC, then the goal is to find a function h : X → 2L such that
h maximizes Q. If the task is an MLR, then the goal is to find a function
f : X x L→ R such that f maximizes Q, where R is the ranking of labels
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for a given example. Table 2.2 shows an example of a single-label dataset
and an MLD.

2.2.2.2.2. Multi-label Learning Methods
The different methods proposed in the literature to deal with multi-label
learning problems [96] can be categorized into three groups: problem trans-
formation, algorithm adaptation, and ensemble methods. Figure 2.5 shows
the different categories and associated methods.

Problem Transformation
Problem transformation is one of the simpler strategies which converts the
multi-label problem into one or more single-label (i.e., multi-class or binary)
problems. It is the idea of preprocessing an MLD to generate a dataset that
can be used by any off-the-shelf binary or multi-class classifiers. Often, the
outputs produced by those classifiers have to be back-transformed into the
subsets of labels to obtain the multi-label prediction. The basic approaches
for the problem transformation method can be grouped into three categories:
binary relevance, label powerset, and pairwise methods.

Table 2.2: Example of labels in a single-label and multi-label datasets

Sample Features
Single-label output

Multi-label outputBinary Multi-class
Y ∈ L = {0,1} Y ∈ L = y1 y2 y3 y4 Y ⊆ L =

{λ1, λ2, λ3, λ4} {λ1, λ2, λ3, λ4}

1 X1 1 λ1 1 1 0 1 {λ1, λ2, λ4}

2 X2 0 λ2 0 0 0 1 {λ4}

3 X3 0 λ3 0 1 1 1 {λ2, λ3, λ4}

4 X4 1 λ4 1 0 1 0 {λ1, λ3}

5 X5 0 λ5 0 1 1 0 {λ2, λ3}

Binary Relevance (BR): is the baseline approach that decomposes the
multi-label problem into q binary independent problems by learning one
classifier for each label, using all the instances associated with that label as
positive and all the remaining samples as negative. When making a predic-
tion, each binary classifier predicts whether its label is relevant for the given
example or not, resulting in a set of relevant labels. The final multi-label
prediction for a new instance is determined by aggregating the classification
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Figure 2.5: Multi-label Learning Approaches

results from all the independent classifiers. During the ranking task, the la-
bels are ranked according to the probability associated with each label by
the respective binary classifier. The BR method is an extended form of the
one-against-all (OAA) approach, which has been used for facing multi-class
classification by means of an ensemble of binary classifiers. Although BR is
relatively simple to implement, it is realized that BR ignores the possible
relationship between labels (such as label dependency, co-occurrence, and
correlation). To deal with the limitation of the BR method, the classifier
chain (CC) was introduced in [101] involves q binary classifiers linked along
the chain , which then resolves the disadvantage of BR method by taking
into account the relationship among labels.

Label Powerset (LP): is the most natural approach of problem transfor-
mation method, which combines the entire label-sets into single (atomic)
labels to form a single-class classification problem. In the LP method, the
interrelationships among labels are mapped directly from the data, and
therefore consider label correlations, as all the existing combinations of
single-labels present in the training instances are used as a possible label in
the correspondent multi-class classification. The complexity of LP depends
on the complexity of the single-label classifier with respect to the number of
classes. Although it takes into account the label correlations, it suffers from
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the increasing complexity that depends on the number of distinct label-
sets. The large number of distinct label-sets can also lead to the problem
of imbalanced label-sets. In order to resolve this problem, pruned problem
transformation (PPT) has been developed by Read [102], which chooses
only the transformed labels that occur more than a predefined number of
times. PPT tries to solve LP’s problems related to unbalanced data and
complexity, by pruning samples with less frequent label-sets by focusing on
the most important label-sets through the use of a user-defined threshold.
Another LP-based approach is HOMER [103], which first constructs a hi-
erarchy of the multiple labels and then builds a classifier for the label-sets
in each node of the hierarchy.
Pairwise methods: the third problem transformation method to solve
multi-label learning is the ranking by pairwise comparison (RPC). This ap-
proach is similar to the one-against-one (OAO) approach for the multi-class
classification problem. The basic idea is to transform the multi-label dataset
into q(q − 1)/2 binary datasets, one for each pair of labels, and a binary
classifier is built for each dataset. Given a new instance, all models are
invoked, and a ranking is obtained by counting votes for each label. The
main disadvantage of RPC is the space complexity and the need to query
all the generated binary models at run time. This quadratic complexity
makes RPC very sensitive to a large number of labels and often intractable
for large problems. Calibrated label ranking (CLR) extends the RPC by in-
troducing a virtual label which indicates the boundary between the relevant
and irrelevant labels. The final ranking includes the virtual label that acts
as a split point for the relevant and irrelevant labels obtaining a consistent
ranking and bipartition.

Algorithm adaptation
Algorithm adaptation methods adapt, extend, and customize existing single-
label learning techniques to handle the task of multi-label learning directly.
The adaptations of several single-label learning algorithms have been pro-
posed in the literature based on the following machine learning algorithms:
decision tree, boosting, k-nearest neighbors, neural networks, and support
vector machines. The adapted methods can be able to handle the multi-
label data directly.
Decision trees: Some of the decision tree algorithms have been adapted to
multi-label classification problems. In [104], the C4.5 algorithm is extended
for multi-label data (ML-C4.5) by modifying the formula of entropy. A
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large number of leaves are generated for all combinations of different labels.
This method can handle multiple labels on several levels of the hierarchy
and assign a higher cost to misclassifications higher up in the hierarchy.
Boosting: AdaBoost.MR and AdaBoost.MH [105] are extensions of the
well-known AdaBoost algorithm for multi-label learning. AdaBoost.MR is
designed specifically to find a hypothesis which ranks the correct labels at
the top of the ranking, while AdaBoost.MH is designed to minimize Ham-
ming loss. Besides, AdaBoost.MH can be combined with the alternating
decision trees algorithm to produce the Adapted Decision Tree Boosting
[106]. The resulting multi-label models of this combination can be inter-
preted by humans.
K-Nearest Neighbors: the popular k-Nearest Neighbors (kNN) lazy learn-
ing algorithm has been adapted to multi-label learning problems. In [175],
multi-label k-nearest neighbors (MLkNN) is proposed using a Bayesian ap-
proach. It uses the Maximum A Posteriori Principle (MAP) to determine
the relevant label-set for a new given instance, based on prior and posterior
probabilities for the frequency of each label within the k nearest neighbors.
It also has the capability to produce the ranking of the labels.
Neural networks: artificial neural networks have also been extended for
the multi-label learning task. BPMLL [108] is an extension of the popular
back-propagation algorithm for multi-label learning. The main modification
to the algorithm is the introduction of a new error function that takes
multiple labels into account.
Support vector machines: authors in [109] have proposed a ranking ap-
proach, called Rank-SVM, for multi-label learning that is based on SVMs.
It incorporates pairwise label constraints directly in the optimization prob-
lem, which is used to minimize the ranking-loss. The main function they
use is the average fraction of incorrectly ordered pairs of labels.

Ensemble Methods
Ensemble methods are developed on top of problem transformation or al-
gorithm adaptation methods. The most common problem transformation
ensembles are the ensemble of classifier chains (ECC) [110], RAkEL (ran-
dom k-label-sets) [245], and an ensemble of pruned sets [112]. The com-
bined algorithms can be homogeneous, i.e., the ensemble can be built from
a collection of similar classifiers, or heterogeneous when various classifiers
contribute to building the ensemble. The ensemble approach may reduce
the limitation of one classifier by adding an ensemble of classifiers.
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ECC is an ensemble approach that uses a combination of classifier chains
(CC) to produce the ensemble model. ECC was proposed to alleviate the
effect of classifier order in CC, by training an ensemble of CC classifiers.
Each CC can be trained with a random chain ordering on a random subset
of training patterns.The final prediction is gained by aggregating the pre-
dictions by the label and then using a threshold for selecting the relevant
labels. Both CC and ECC pass label information between binary classi-
fiers, and they take into account correlations among labels and overcome
the limitation of BR, which ignores such correlations. Furthermore, ECC
reduces the risk of selecting a bad chain ordering, which can lead to a bad
prediction performance of the classifier. The diversity in ECC is produced
by using various chains and by selecting random subsets of instances.
RAkEL constructs an ensemble of classifiers using LP as the base classifier.
It splits the large label-sets into several smaller models or subsets, which
are related to random and small-sized k-label-sets. Given a new instance,
the results of all LP classifiers are merged by applying a majority voting
process for each label to determine the final set of labels. RAkEL has several
advantages over LP. First, the LP tasks of each classifier are much simpler
since they only consider a small subset of the labels. Also, the base classifiers
include a much more balanced distribution of classes than using LP with
the full set of labels. Further, RAkEL allows predicting a label set that
does not appear in the original training set. A variation of RAkEL, called
RAkEL++ [113], uses the confidence values of each classifier instead of
bipartitions in order to generate the final prediction for each label. Another
variation, called RAkELd [245], generates disjoint subsets of k labels, taking
into account each label exactly once and reducing the complexity of other
RAkEL variants. The diversity in all the variants of RAkEL is generated
by a different selection of labels in each classifier.

2.2.3 Unsupervised Learning

Unlike supervised learning tasks, unsupervised machine learning works di-
rectly on an unlabeled dataset. The goal is to discover the underlying struc-
tures in the data. In the absence of labels to guide the training process, the
labels can be uncovered by the learning algorithm. The next paragraphs
will describe the most common unsupervised methods employed in a clinical
context.

2.2.3.1. Cluster Analysis
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Cluster Analysis is the fundamental task in unsupervised learning, where
the input is a set of samples, each described by a vector of attribute values
(but no class labels). The output is a set of two or more clusters of samples.
Clustering is the process of partitioning a set of observations into distinct
groups so that the observations within each group (i.e., clusters) are quite
similar to each other, while observations in different groups are quite dif-
ferent from each other. Clustering is probably the most used exploratory
data analysis method across different domains and is often applied to get an
intuition about the underlying structure of the data, for finding meaningful
groups, and also for feature extraction and summarizing. More formally,
given a data space X, clustering can be thought of as a partitioning of this
space into K distinct parts, i.e.,f : X → {1, . . . , K}. This partitioning is
done by optimizing some internal clustering criteria such as the intraclus-
ter distances, etc. The value of K is usually found by employing a second
criterion that measures the robustness of the partitioning.

2.2.3.1.1. Procedures of Clustering Analysis
The clustering procedure may result in different partitioning of a given
dataset, depending on the specific criteria used for clustering analysis. Thus,
there is a need for some preprocessing before performing a clustering task
in a dataset. A typical clustering process is presented in Figure 2.6 and can
be summarized in the following steps [114]. These steps are closely related
to each other and affect the generated clusters.

Figure 2.6: A typical cluster analysis consists of four steps

1. Pattern representation (Feature extraction or selection)
Pattern representation refers to the number of available patterns and the
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type and scale of the features available to the clustering algorithm. Feature
extraction is the process of using one or more transformations of the in-
put features to generate new principal features. Feature extraction can be
elaborated in the context of dimensionality reduction and data visualization
[115]. Feature selection is the process of finding the most effective subset
of the original features to use in clustering. Either or both of these meth-
ods can be used to obtain an appropriate set of features to use in clustering.

2. Clustering algorithm design or selection
The clustering step is usually combined with the selection of a correspond-
ing proximity(i.e, the closeness or distance) measure and the construction
of a clustering criterion function (i.e, finding the optimal partitioning of a
data set according to some criterion function or agorithm).
i.Proximity measures: the definition of pattern proximity measure ap-
propriate to the data domain is an important step, as it directly affects
the formation of the resulting clusters. Almost all clustering techniques are
implicitly or explicitly connected to some definition of proximity measure.
ii.Clustering criterion: once a proximity measure is chosen, the con-
struction of a clustering criterion function makes the partition of clusters as
an optimization problem. Clustering is everywhere, and plenty of cluster-
ing algorithms have been developed to resolve different problems in specific
fields. However, there is no universally accepted clustering algorithm that
can be used to solve all types of problems. As it is proved through an impos-
sibility theorem, “it has been very difficult to develop a unified framework
for reasoning about clustering at a technical level, and profoundly diverse
approaches to clustering” [116]. Therefore, it is essential to carefully explore
the characteristics of the problem at hand in order to select or design an
appropriate clustering method.

3.Cluster validation (Assessment of results)
Given a dataset, any clustering algorithm can usually generate clusters, no
matter whether the structure exists or not. Also, different methods of-
ten lead to different clusters; and even for the same algorithm, parameter
identification, or the presentation order of input patterns may affect the
final results. Thus, effective evaluation standards and criteria are essential
to provide the users with a degree of confidence for the clustering results
derived from the used algorithms. These evaluation methods should be ob-
jective and have no preference for any algorithm. Moreover, they should
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be beneficial to answer questions, such as how many clusters are hidden in
the dataset, what is the reason for choosing a specific algorithm instead of
another, or if the clusters generated are meaningful or just an artifact of the
algorithms. In general, there are three categories of criteria for testing the
goodness of clustering results: external criteria, internal criteria, and rela-
tive criteria. These are defined on two types of clustering structures, called
partitioning clustering and hierarchical clustering [117]. External criteria
(i.e., indices) are based on some prespecified structure, which compares the
clustering result to a reference result, that can also be considered as the
ground truth. If the result is somehow similar to the reference, we regard
the final output as a “good” clustering. However, the reference result is not
provided in most real applications. Internal indexes are not dependent on
external information where the evaluation of clustering is compared only
with the result itself, i.e., the structure of the generated clusters and their
relations to each other. Unlike the external validation, internal clustering
validation is only based on the inherent information of the data, which
measures the compactness and the separation of clusters. Compactness
measures how closely data points are grouped in a cluster. Compactness
is often based on distances between in-cluster points. The most popular
way of calculating the compactness is through variance, i.e., the average
distance to the mean, to estimate how objects are bonded together with its
mean as its center. A small variance indicates high compactness (Figure
2.7). Separation measures how different are the obtained clusters from each
other. Users of clustering algorithms are interested in the well-separated
clustering results (Figure 2.8). The third method of clustering evaluation
is based on relative criteria. The basic idea is the validity of a clustering
structure by comparing it to other clustering schemes, resulting from the
same algorithm but with different parameter values. An in-depth survey on
clustering validity can be found in [118]. Generally, the aim of clustering
is to identify the intrinsic divisions in a dataset, and the validation criteria
provide some insights on the quality of clustering results, yet how to deter-
mine what comprises a good clustering has still a problem requiring more
effort. It can be shown that there is no absolute ‘best’ criterion, which could
be independent of the final goal of the clustering. Thus, it is the user who
must provide this criterion in such a way that the result of the clustering
will suit their needs [119].

4.Results Interpretation
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Figure 2.7: Clusters on the left have better compactness than the ones on the right

Figure 2.8: Clusters on the left have better separation than the ones on the right

The final target of clustering is to supply users with meaningful perceptions
from the original dataset, with the aim that they can effectively solve the
problems faced. Experts in different domains interpret the data groupings.
Further analyses, even experiments, may be required to assure the reliabil-
ity of extracted knowledge.

2.2.3.1.2. Categorization of Clustering Algorithms
Different initialization parameters and varying criteria settings often lead to
different taxonomies of clustering algorithms. Various approaches to clus-
tering data can be described broadly with the help of the hierarchy shown in
Figure 2.9. Other categorizations of clustering algorithms are also possible;
ours is based on the discussion in [120].
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Figure 2.9: An overview of clustering taxonomy

Partitioning-based: these are simply divisions of the set of data points
into non-overlapping clusters such that each object is in exactly one group.
In other words, the partitioning methods split data objects into a number
of groups, where each group constitutes a cluster. These clusters must ful-
fill the following requirements: (1) each partition must comprise at least
one data point, and (2) each object must belong to exactly one group.
The most common and widely used partitioning methods are k-means, k-
medoids and K-modes, and their variations. The k-means algorithm takes
the input parameter, k, and divides a set of n objects into k clusters so that
the resulting inter-cluster similarity is low, while the intra-cluster similarity
is high. Cluster similarity is measured considering the mean value of the
data points in a cluster, which can be viewed as the cluster’s centroid or
center of gravity. In the K-medoids algorithm, objects which are near the
center represent the clusters. It is the most centrally located object of the
cluster, with a minimum sum of distances to other points. K-modes method
extends the k-means paradigm to cluster categorical data by replacing the
means of clusters with modes, using new dissimilarity measures to deal with
categorical objects and a frequency-based method to update modes of clus-
ters. The k-means and the k-modes methods can be integrated to cluster
data with mixed numeric and categorical values. An interested reader can
get an in-depth discussion of partitioning methods in [121].
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Hierarchical-based: data are organized in a hierarchical manner depend-
ing on the medium of proximity. Proximities are obtained by the intermedi-
ate nodes. A dendrogram represents the datasets, where individual data is
presented by leaf nodes. The initial cluster gradually partitions into many
clusters as the hierarchy continues. Hierarchical clustering approaches can
be agglomerative or divisive. An agglomerative clustering begins with one
object for each cluster and recursively merges two or more of the most appro-
priate clusters. A divisive clustering starts with the dataset as one cluster
and recursively splits the most appropriate cluster. The process continues
until a stopping criterion is reached (frequently, the requested number k
of clusters). The hierarchical approaches have a major drawback, though,
which relates to the fact that once a step (merge or split) is performed, this
cannot be undone. CURE, BIRCH, ROCK, and Chameleon are some of the
well-known algorithms of this category [122].

Density-based: here, data points are divided based on their regions of den-
sity, connectivity, and boundary. They are closely related to point-nearest
neighbors. A cluster, defined as a connected dense component, grows in
any direction that density leads to. Therefore, density-based algorithms
are capable of discovering clusters of arbitrary shapes. Also, this provides
natural protection against outliers. Thus, the overall density of a point is
analyzed to determine the functions of datasets that influence a particular
data point. According to Hartigan [123], in density-based clustering, clus-
ters are the high-density regions separated by contiguous regions of a low
density of objects. DBSCAN, HDBSCAN, OPTICS, DBCLASD, and DEN-
CLUE are algorithms that use such a technique to filter out outliers (noise)
and discover clusters of arbitrary shape [124]. Among these, DBSCAN
and HDBSCAN have been tried in this thesis in order to discover plausible
clusters that may exist in the elderly data. The difference between these
two methods is that DBSCAN can only provide a flat (non-hierarchical)
clustering of the data objects, based on a global density threshold, while
HDBSCAN is a hierarchical extension of DBSCAN algorithm for varying
epsilon threshold values [125]. Unlike DBSCAN, HDBSCAN allows finding
clusters of variable densities without using user-defined distance threshold
epsilon. However, there are cases where an epsilon threshold can be advan-
tageous.

Model-based: such a method optimizes the fit between the given data and
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some (predefined) mathematical model. It is based on the assumption that
the data is generated by a mixture of underlying probability distributions.
Also, it leads to a way of automatically determining the number of clus-
ters based on standard statistics, taking noise (outliers) into account, and
thus yielding a robust clustering method. There are two major approaches
that are based on the model-based method: statistical and neural network
approaches. MCLUST is probably the best-known model-based algorithm,
but there are other good algorithms, such as EM (which uses a mixture den-
sity model), conceptual clustering (such as COBWEB), and neural network
approaches (such as self-organizing feature maps). The statistical approach
uses probability measures in determining the concepts or clusters. Prob-
abilistic descriptions are typically used to represent each derived concept.
The neural network approach uses a set of connected input/output units,
where each connection has a weight associated with it. Neural networks
have several properties that make them popular for clustering. First, neu-
ral networks are inherently parallel and distributed processing architectures.
Second, neural networks learn by adjusting their interconnection weights so
as to best fit the data. This allows them to normalize or prototype [126].
Clusters can also be categorized based on other dimensions, such as the
type of clustering, along with which one can describe clustering paradigms
and methods. Based on type, clusters can be classified as hard clustering
where each object either belongs to a cluster completely or not, and soft
clustering where instead of placing each object into a separate cluster, a
probability or likelihood of that object to be in those clusters is assigned
[127]. In healthcare, clustering represents an essential tool; it has been used
for solving several different problems such as: create a taxonomy of living
things, identify clusters of genes with similar biological functions, stratify
patients with similar clinical characteristics, etc.

2.2.3.2. Dimensionality Reduction
Dimensionality reduction is the preprocessing procedure to remove redun-
dant features, irrelevant and noisy data, in order to improve learning fea-
ture accuracy and reduce training time. Dimensionality reduction can be
implemented using feature selection or feature extraction. Feature selec-
tion is based on selecting those features which contribute most to class
separability. In other words, redundant and irrelevant features are ignored.
Feature extraction considers all the information content and maps useful in-
formation content into a lower-dimensional feature space. Many non-linear
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dimensionality reduction techniques have recently been developed to im-
prove upon linear techniques like PCA in feature extraction from complex
non-linear data manifolds. The following are some of the commonly used
dimensionality reduction techniques in the machine learning domain.
Principal Component Analysis (PCA) is a linear distance preservation
technique that aims to summarize the original set of features into a smaller
set that collectively explains most of the variability in the original variables.
PCA uses an orthogonal transformation to convert a set of data points, of
possibly correlated variables, in a set of values of linearly uncorrelated vari-
ables called principal components. Thus, the total number of components is
less or equal than the number of original features. PCA is one of the oldest
and best-known methods in multivariate analysis and data mining [128].
Multiple Correspondence Analysis (MCA) [129] is an extension of
the simple correspondence analysis for summarizing and visualizing a data
table containing more than two categorical variables. It can also be viewed
as a generalization of PCA when the variables to be analyzed are categorical
instead of quantitative.
t-Distributed Stochastic Neighbour Embedding (t-SNE) is a non-
linear dimensionality reduction method for visualizing high-dimensional data
which converts similarity between data points to joint probabilities and pre-
serves the local data manifold. It is a special case of stochastic neighbor
embedding but uses a different cost function to make its application to
larger datasets practical [130].

In dimensionality reduction techniques, like PCA, there are four criteria
that may be used to determine the number of meaningful components to
retain: the eigenvalue-one criterion, the scree test, the proportion of vari-
ance accounted for, and the interpretability criterion [131].
The eigenvalue-one criterion: in PCA, one of the most widely used
criteria for solving the number of components problem is the eigenvalue-one
criterion. This approach helps to retain and interpret any component with
an eigenvalue greater than 1.0. Each observed feature contributes one unit
of variance to the total variance in the dataset. Any component that shows
an eigenvalue greater than 1.0 is accounted for a higher amount of variance
than has been contributed by one variable. Such a component is, therefore,
accounting for a meaningful amount of variance, and is worthy of being
retained.
The scree test: the scree test allows us to plot the eigenvalues linked to
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each component and consider a break between the components with fairly
greater eigenvalues and those with smaller eigenvalues. The components
that are appeared before the break are assumed to be meaningful and are
kept for rotation; those appearing after the break are assumed to be unim-
portant and are not retained. An interested reader can get more information
in [131].
The proportion of variance accounted for : a third criterion in deter-
mining the number of factors involves retaining a component if it accounts
for a specified proportion (or percentage) of variance in the dataset. For ex-
ample, one may choose to retain any component that accounts for at least
10% of the total variance. more detailed information can be obtained in
[131].
The interpretability criteria: probably, the essential criterion for select-
ing the number of components is the interpretability criterion: interpreting
the significant meaning of the retained components and verifying that this
interpretation makes sense in terms of what is known about the constructs
under investigation. Some detailed procedures on using the interpretable
criteria can be found in [131].

2.2.3.3. Association Rule Mining
Association rule mining aims to find frequent and interesting patterns or
associations among the observations in a dataset. Association rules are
defined as an implication of the form:

X → Y

where X, Y ⊆ I, I = i1, i2, ..., in is a set of attributes called item. A set of
items is referred to as an itemset. A transaction database, T, is a finite set
of transactions T = {t1, t2, . . . , tn}, where each transaction contains a set of
items. The goal is to determine frequent patterns, associations, correlations,
or causal structures contained in the item sets in the transaction database
and express these relationships in terms of association rules, if-then rules.

Association rules do not differ much from the classification rules, except
that they predict any attribute, not simply the class attribute, including a
combination of them. The mining of frequent itemsets leads to the discovery
of associations and correlations among items in large relational or transac-
tional datasets. A famous association rule, which emerged from the analysis
of supermarket shoppers, is the market basket analysis. This process
analyzes customer buying habits by discovering associations between the
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various items that customers place in their shopping baskets. The finding
of such association rules can be helpful for retailers to develop marketing
strategies by gaining insights into which items are commonly purchased to-
gether by customers. For instance, if customers buy milk, how likely are
they to also buy bread (and what kind of bread) on the same trip to the
supermarket? Such information can lead to increased sales by helping re-
tailers do selective marketing and plan their shelf space. Apriori is a classic
algorithm for learning association rules [132]. The algorithm tries to find
subsets of attributes which are in common to at least a minimum num-
ber instances. Using a bottom-up approach, frequent subsets are extended
one item at a time, and groups of candidates are tested against the data.
Apriori terminates when no further extensions can be found. Many other
algorithms have been proposed after the Apriori algorithm [133].

2.3 Machine Learning in Healthcare

The clinical decision-making process in several aspects of the healthcare
system is often complex and requires many considerations before arriving at
a course of action inpatient care. Clinical diagnosis and prognosis processes
depend on the experience, judgment, emotions, intuitions, and knowledge
of physicians, which tends to be highly subjective and varies from person
to person. Detecting adverse clinical events by eliminating some degree
of physician’s subjectivity, reducing mortality rates, mitigating healthcare
costs and medical complications at various hospitals, all represent important
research challenges in the healthcare domain [134]. Healthcare setting is
generally perceived as “data-rich,” derived from a wide variety of sources
such as electronic records (clinical and administrative data), images, sensors,
and text in the form of biomedical literature/clinical notes. This variety in
the data collection and representation procedures leads to many challenges
in both the processing and analysis of the underlying data. There is also
a wide heterogeneity in the methods that are required to analyze these
different forms of data. In addition, the diversity of data naturally creates
various data integration and data analysis challenges.

Recently, the massive potential of such integrated data analysis approaches
are being realized, and rapid advances in technologies have changed the
paradigm of healthcare sector [135] where medical experts are using machine
learning (ML) algorithms for diagnosis and treatment recommendations, pa-
tient engagement and adherence, administrative activities, and prediction
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of outcomes in many clinical scenarios. ML plays a significant role in the
healthcare domain and is being increasingly applied to develop complex
models, and extract medical knowledge, exposing novel ideas to practition-
ers, and specialists [136]. As there is no generalized ML model, various
models have been devised to assist with the different decision-making pro-
cesses. Some of these learning methods can be used to increase our under-
standing of the current world (e.g., identifying risk factors for infections or
identifying patients who may be for the development of a particular condi-
tion), whereas others focus on predictions about the future (e.g., predicting
who will become at high risk of hospitalizations or mortality). ML pre-
dictive models can highlight enhanced rules in decision-making regarding
individual patient care. These are also capable of autonomous diagnosis
and treatment of different diseases under clinical regulations. The use of
ML models is likely to increase as healthcare providers, and patients seek to
improve their clinical decision-making process to achieve better outcomes
while reducing overall healthcare costs [137]. However, it should be clear
that the final clinical decision should be made by the physicians as humans
are more flexible and capable of identifying outlying details that the ML
system is unable to account for (e.g., due to the lack of certain information)
[138]. Hence, ML models should serve as guidelines aiming to assist the
overall standard of healthcare and should not be used as a replacement for
physicians. An ideal scenario is to capitalize on the highly accurate predic-
tions that an ML-based system can offer while allowing physicians to have
full flexibility and responsibility in making a good clinical decision [139].

The well-known benchmark ML methods that have been employed to
healthcare includes Artificial Neural Network (ANN), Decision Tree (DT),
Random Forest (RF), Support Vector Machine (SVM), Logistic Regression
(LR)[140], and Genetic Programming (GP)[141]. The use of these algo-
rithms for extracting insights from large medical databases is invaluable
as medicine is a domain that is complex and difficult to model by hu-
mans. These techniques are capable of handling a large amount of data
from different sources, incorporate expert knowledge into the analysis, offer
data-driven predictions that can assist clinicians in making their decision.
The following are some examples of applications that have adopted ML
techniques as an approach to enhance clinical decision making:

1. ANN was applied for disease diagnosis based on patients’ history database,
comparing predictive accuracy of various types of ANN and statistical
models for diagnosis of coronary artery disease [142], diagnosis and risk
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group assignment for pulmonary tuberculosis among hospitalized pa-
tients [143], and non-invasive diagnosis of early risk in dengue patients
[144]. Applications of ANN for prediction includes developing a risk
prediction model to predict the chances of diabetes complication ac-
cording to changes in risk factors [145], identifying the optimal subset
of features from a given set of features for diagnosis of heart disease
[146], modeling daily patient arrivals in the emergency department. In
[147], multiple ANNs approach is proposed to estimate the probability
of nosocomial infection. Multiple ANNs was constructed by connecting
individual ANNs (that predicts the probability of nosocomial infection
at different time period) sequentially, where the output of an ANN is
connected to the input of the next ANN. Experimental results show
that with multiple ANNs, it outperforms multivariate regression mod-
els in predicting the risk of nosocomial infection.

2. Authors in [148] proposed an e-doctor, a web-based application that
makes automatic diagnoses about health problems based on the support
vector machine (SVM). System administrators define specific charac-
teristics for each medical problem that can be diagnosed, and train the
SVM by entering sample files of statistical data. After that, health staff
can feed exam information about patients, and e-doctor makes an auto-
matic diagnosis or prediction by means of answering if the patient has
(or may have in the future) a specific health problem. The application
can be used in cases where statistical information plays a vital role in
deciding about a patient’s condition. A prototype was developed, and
the system trained and tested for the case of heart symptoms. Another
study in [149] was employed using SVM with polynomial kernel for the
estimation of whether tracheal intubation could be simple or difficult
before anesthesia is carried out. A total of 264 medical records and 13
physical variables were analyzed. The use of 13 basic and anthropo-
metrical features has a significant advantage over the approach taken
by some anesthetists where a single feature is examined ahead of anes-
thesia. This is because most specialists agree that full consideration
of multiple variables would improve the prediction accuracy of physi-
cal airway examination. Based on 4-fold cross-validation, an average
classification accuracy of 90.53 % was achieved in the study.

3. Random forest (RF) has been incorporated in a variety of applications
such as risk management, tailored health communication, and decision
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support systems in healthcare [150]. RF has also been applied in a
variety of health conditions, such as for diabetic retinopathy classi-
fication and detection [151], breast cancer diagnosis [152], predicting
healthcare-associated infections [153], and healthcare monitoring sys-
tem [154]. It is highly nonlinear and works well with high-dimensional
data, clearly outperforming classic statistical methods.

4. Decision Tree (DT) is an important method for decision making and
risk analysis, which is often represented in the form of a graph or list of
rules. One of the most important features of decision trees is the ease
of their application. Decision trees are a reliable and effective decision-
making technique that has been used in different areas of medical de-
cision making (classification, diagnosing, etc.). Interesting applications
of decision trees have been used in medical and health care domains for
more than 20 years [155].

5. Logistic Regression (LR) is an ML method for modeling dichotomous
outcomes, and it is one of the most widely used techniques in medical
decision making starting from the early 70s to date [156]. LR is also
widely applicable to epidemiologic studies concerned with quantifying
an association between a study factor (i.e., an exposure variable) and
a health outcome (i.e., disease status) [157]. An in-depth survey of LR
to clinical applications can be found in [158].

6. Nature-inspired computing algorithms, such as evolutionary algorithms,
swarm intelligence, are emerging approaches that are based on the prin-
ciples and inspiration of the biological evolution of nature to develop
new and robust competing techniques [159]. Genetic programming
(GP) is an evolutionary algorithm that has been applied to solve vari-
ous real-world problems. In the medical domain, GP has been used in
the diagnosis and monitoring of Parkinson’s disease, Alzheimer’s dis-
ease and other neurodegenerative conditions [160], prediction of cervical
spine disease [166], in the early detection of breast cancer through au-
tomated assessment of mammograms [162] and much more.

Although the current role of ML-based clinical decision-making system
solves about patient diagnosis, prognosis, and image analysis, it is sug-
gested that it has great potential to improve considerable aspects of
clinical health care in the future, which includes (1) recommendation
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of the most appropriate and cost-efficient diagnostic process, (2) per-
sonalization of therapeutic strategies that maximize efficacy and safety,
(3) real-time and transparent monitoring of patients’ health, and (4)
discovery of new medical knowledge that has a direct and profound
impact to the quality of patients’ health and care [163]. On the other
hand, ML does not explain why the result was gained or its underlying
mechanism. If unexpected results are generated, the data must be re-
investigated to identify whether technical or human errors have created
biases, followed by careful interpretation and validation in the context
of the problem at hand.
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Chapter 3

Imbalanced Data
Classification: A Systematic
Review

This chapter provides a review of the approaches for handling imbalance
problem in multi-label classification by collecting the existing research work.
As the first systematic study of addressing an imbalanced problem in MLC,
this chapter presents a comprehensive survey of the state-of-the-art methods
for imbalanced MLC, including the characteristics of imbalanced multi-label
datasets, evaluation measures and comparative analysis of the proposed
methods. Numerous articles related to imbalanced MLC published between
2006 and 2019 were collected and reviewed. Several methods and techniques
that have been proposed to overcome the negative impacts of imbalanced
MLC have been reviewed: resampling methods, classifier adaptations, en-
semble methods, and cost-sensitive learning approaches. This chapter also
discusses important results reported so far in the literature and highlights
some of their strengths and limitations to guide future research.

3.1 Introduction

Classification is one of the most important machine learning topics [164].
The main goal is to train a computational model using a set of labeled sam-
ples, obtaining a model that is able to correctly classify new unlabeled sam-
ples. Traditional single-label classification is one of the most well-established
and adopted machine learning paradigms. It provides fast and accurate pre-
dictions and is successfully applied in many application domains [165, 166].
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Binary and multi-class classifications are subcategories of single-label clas-
sification that offer learning from a set of samples that are associated with
a single label. Unlike traditional classification methods, multi-label classi-
fication (MLC) maps a set of relevant labels to an instance simultaneously
[303, 168]. Recently, MLC has gained much importance and attracted re-
search attention with a wide range of applications, including medical di-
agnosis, music categorization, emotion recognition, text classification, and
image/video annotation [169, 170]. In all these cases, the task is to assign a
label set for each unseen instance. For example, in bioinformatics, one gene
sequence can be associated with a set of multiple molecular functions [171].
In-text categorization, a new article can cover multiple aspects of an event,
thus being assigned with a set of multiple topics [172].

There are two well-known approaches for solving an MLC task: problem
transformation and algorithm adaptation methods. The former transforms
the MLC task into one or more single-label classification [173], or label
ranking [174] tasks , while the latter aims to adapt or extend the tradi-
tional machine learning algorithms to handle multi-label datasets (MLD)
directly [175]. The three most commonly used transformation methods are
Binary Relevance (BR) [94], label powerset (LP) [176], and classifier chains
(CC)[101]. BR transforms the multi-label problem into a set of indepen-
dent binary problems. Then, each binary problem is processed by uisng
a traditional classifier. Finally, the individual predictions are combined to
get the subset of labels relevant to each test instance. LP considers each
unique set of labels as class identifier, transforming the original MLD into
a multi-class dataset. After using it to train a regular classifier, the pre-
dicted classes are back-transformed into the subsets of labels. Both BR
and LP are the foundation for many multi-label ensemble-based methods.
CC resolves the BR limitations by taking into account the label correlation
task. The second approach, algorithm adaptation, focuses on introducing
MLC-specific changes in classification algorithms. It includes approaches
such as adjusting class weights or decision thresholds, modifying an exist-
ing algorithm, or constructing an entirely new algorithm to perform well
on an imbalanced MLD. Several adaptations of the traditional classifiers
have been proposed in the literature, such as Multi-Label k Nearest Neigh-
bors (MLKNN) [177], multi-class multi-label perceptron (MMP) [178], and
Ranking Support Vector Machine (Rank-SVM) [109]. A recent review of
MLC methods is provided in [179].
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The major challenge in a classification task is the data imbalance prob-
lem where it imposes difficulty in performing data analytics in almost all
domains of research. In traditional classification, the imbalanced problem
is well studied in recent times. An extensive review of methods for imbal-
anced data in single-label classification is already presented elsewhere [180].
The imbalanced problem in MLC is much more complicated than in single-
label learning, as each instance can have multiple labels simultaneously.
The imbalanced nature of an MLC includes the skewed distribution of the
examples and their respective labels, that is, the labels are non-uniformly
distributed over the data space. The problem transformation and adap-
tation approaches applied for the MLC task are not effective in handling
the imbalance problem in an MLC. An imbalanced dataset, in general, be-
comes a significant challenge in many real-world applications, such as fraud
detection [181], risk management [182], and medical diagnosis [183]. For
example, in a disease diagnostic problem where the cases of the disease are
usually rare as compared to the normal populations, the main interest of the
task is to detect people with the diseases. Hence, an effective classification
model is the one that could provide proper labeling of the rare patterns.
The class frequencies in an imbalanced dataset can differ to a large extent,
which affects the learning process of a classification model. The imbalanced
class distribution has been extensively studied for traditional classification
using the commonly existing approaches, such as resampling methods [180].
However, the existing methods cannot be directly applied as a solution to
the imbalanced problem in an MLC due to an imbalance between labels and
label-sets. The imbalance problem becomes even more complex for MLDs
with a higher number of labels.

In this chapter, a literature survey was performed in order to identify a
broad range of approaches for addressing the imbalanced problem in MLC.
The contributions of this survey are threefold: (1) to the best of the au-
thors’ knowledge; it is the first survey study focused on the role of imbalance
techniques in an MLC task. It presents the characteristics of an imbalanced
MLD, a comprehensive survey of different approaches for imbalanced MLC
and a summary of evaluation measures; (2) This chapter presents a compar-
ative analysis of existing approaches and investigates the pros and cons of
each approach; (3) The results presented here provide guidance for choosing
the appropriate technique and developing better approaches for handling an
imbalanced MLC in further studies in this area.

The rest of this chapter is organized as follows. Section 3.2 presents the
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research methods and statistical trends. Section 3.3 describes the classifica-
tion with imbalanced dataset, including its taxonomy and imbalanced level
measures. Section 3.4 is the main section of this chapter, which discusses
various approaches for addressing the imbalanced problem in MLC. Section
3.5 contains a short description of datasets and tools. Section 3.6 describes
various metrics for the evaluation of the MLC model. Section 3.7 presents a
comparative analysis of solutions with advantages and limitations. Finally,
future research directions and conclusions are provided in sections 3.8 and
3.9, respectively.

3.2 Methods and Statistical Trends

In order to ensure as an objective selection of literature sources as possible,
a well-defined search methodology for collecting source articles was adopted
in this work. This methodology is presented in detail in this section.

3.2.1. Data Sources and Search Strategy
For this systematic review, research articles related to imbalanced MLC
were searched for, in order to compile the published papers from 2006 up
to 2019. First, well-known library databases that covered the different re-
search fields were used as a source of information for searching and collecting
the literature: DBLP, IEEExplore, Springer, ACM Digital Library, Elsevier,
Science Direct, Google scholar, etc. Boolean operators were used for search-
ing for terms with similar meanings and restricting the research. Predeter-
mined search keywords that included a combination of query phrases, such
as ‘imbalanced multi-label classification’ or ‘addressing imbalanced prob-
lem’ or ‘multi-label dataset or ‘multi-label prediction,’ were included. We
also attempted to search for articles from other sources (such as peer review
journals and conferences).

3.2.2 Selection of Studies
The main focus of this paper is to review methods for handling the imbal-
anced problem in MLC. The following eligibility criteria, which had to be
jointly satisfied, were used to select the relevant publications: (1) the study
is based on imbalanced MLDs; (2) the work adopts or proposes methods for
addressing imbalanced MLC; (3) experimental results evaluate MLC algo-
rithms using multi-label measures; (4) the publication is a full-text article
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written in English. Articles that provide an MLD-based evaluation of pro-
posed approaches for addressing imbalanced MLC are selected for review
without restrictions on the dates of publication. Published works with du-
plicated titles, abstracts, or content were manually removed, keeping only
one copy of the publication. Generally, at the initial stage of searching, 392
publications were collected and identified, from which 86 were duplicates
and 219 were discarded on the basis of title and abstract. Finally, by re-
viewing the full text of each paper, 74 papers were found to be relevant to
this study.

3.2.3. Statistical Trends
Figure 3.1 presents the publication trends of imbalanced multi-label learning
by plotting the number of publications from 2006 to 2019. The number of
publications has shown stable growth for the years between 2012 to 2015 and
2016 to 2019 in comparison to the other periods. The number of publications
was lowered in the year 2016 compared to 2015 and later showed an increase
in the number of publications in the subsequent years. More recently, the
number of published works on imbalanced MLC is much higher than the
previous years. This suggests that the imbalanced MLC has remained a
valuable research topic that has gained wide attention from researchers.

3.3 Classification With imbalanced Dataset

3.3.1 Imbalance in Single-Label Classification

In many real-world applications, it is common to have imbalanced numbers
of learning samples for one class compared to the other class. In single-label
classification with imbalanced data, at least one class is represented by only
a small number of samples (i.e., the minority class) while the other class
comprises the rest of the samples (i.e., the majority class). This problem is
known as the class imbalance problem, which happens when the distribution
of classes is not uniform among samples and results in a biased prediction
of learning towards majority classes. The imbalance problem in single-label
classification has been investigated in the literature; however, it is still con-
sidered as an open challenge in data analytics in many domains including
medical diagnosis, customer-related data, churn prediction, text categoriza-
tion, and fraud detection, where the class of interest is the minority class.
Several kinds of literature in the machine learning community have shown
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Figure 3.1: Publishing trends for Imbalanced Multi-label Classification

that learning with imbalanced data can leave the learned classifier with a
performance bias; that is, a biased classifier exhibits very poor accuracy on
the minority class but very high accuracy on the majority class [184, 185].

3.3.2 Imbalance in Multi-label Classification

In any classification task, the presence of imbalanced data [186] is a common
and challenging problem that affects the learning process of a classification
model. In particular, imbalance learning is a well-known and inherent char-
acteristic of many MLDs, which affects the learning process of many classi-
fication algorithms. The imbalance problem in an MLD can be viewed from
three perspectives: imbalance within labels, an imbalance between labels,
an imbalance among the label-sets. In the case of imbalance within labels,
each label usually contains an extremely high number of negative samples
and a very small number of positive samples [187, 188]. In the imbalance
between labels, the frequency of individual labels in the MLD is considered
where the number of 1’s (positive class) in one label may be higher than
the number of 1’s in the other label [190, 199]. Since every instance of an
MLD is associated with several outputs or labels, it is common that some
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of them are majority ones while others are minority labels, i.e., some labels
have much more positive examples than others. The third type of label
imbalance that usually occurs in MLD is the sparse frequency of label-sets
[192]. If the full label-set is taken into account, the proportion of positive to
negative examples for each class may be associated with the most common
label-sets. In MLDs, due to the label sparseness, there are usually more
frequent label-sets and unique label-sets. This also involves that some of
the label-sets may be considered majority, and the remaining label-sets may
be considered minority cases at the same time.

3.3.3. Characteristics of Imbalanced MLDs
This section discusses imbalance problems in multi-label datasets (MLDs)
and characterization measures used for examining the characteristics of such
datasets. In this and the following sections, we will use the following nota-
tion:
M = {(xi, Yi), i = 1, ...,m} : an MLD consisting of m = |M | multi-label
examples,
L = {λj : j = 1, ..., q}: the set of all labels in the given multi-label classifi-
cation problem,
q : the number of labels, q = |L|
xi : the attribute vector of the ith sample in M(i = 1, ...,m),
Yi ⊆ L : the actual label-set for the ith sample in M(i = 1, ...,m),
Zi ⊆ L: the predicted label-set for the ith sample in M(i = 1, ...,m),
ri(λ): the rank predicted by a label ranking (LR) method for the label
λ ∈ L . The most relevant label receives the highest rank, which is 1, and
the least relevant one receives the lowest rank, which is q.

3.3.4. Characterization Measures in MLDs
Before building a classification model to solve a specific problem, we usu-
ally examine the characteristics of the dataset being studied to gain an
understanding of the relationships between variables and to determine an
appropriate model for it. When faced with an MLD, we must also examine
the relationships between the labels, the concurrence level among imbal-
anced labels, and the imbalance level to determine the multi-labelness of
the data. The most basic information which can be obtained from an MLD
includes the number of samples, attributes, labels, and label-sets. The com-
monly used characterization measures of an MLD include label distribution
measures, imbalance level measures, and concurrence level measures [193].
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Figure 3.2 shows the taxonomy of characterization measures.

Label distribution measures: in some MLDs, the number of labels of each
example is small, while in others, it is large. Each sample has an associated
label-set, whose size can be in the range {0, ..., q}. There are two measures
for evaluating the characteristics of an MLD, related to the distribution of
labels: Cardinality (Card) and Density (Dens) [194]. Let M be an MLD
consisting of m = |M | multi-label examples (xi, Yi). Label cardinality of
M is the average number of labels of samples in M (Eq.3.1). Label density
is the average number of labels in M divided by the number of all labels
q = |L| (Eq.3.2).

Imbalance level measures: most MLDs are imbalanced, in which some
of the labels are very frequent, while others are quite rare. Therefore, it
is important to define the level of imbalance in MLD, considering all the
labels. Four different measures are proposed in the literature to assess label
imbalance [195]: Imbalance ratio per label (IRLbl), Mean imbalance ratio
(MeanIR), Maximum IRbl (MaxIR), and Coefficient of variation of IRLbl
(CVIR).

Card(M) = 1
m

m∑
i=1
|Yi| (3.1)

Dens(M) = 1
m

m∑
i=1

|Yi|
q

(3.2)

Imbalance ratio per label (IRLbl) (Eq.3.3): let M be an MLD with a set
of labels L and Yi be the label-set of the ith instance, IRLbl is calculated for
the label λ as the ratio between the majority label and the label λ. IRLbl
is 1 for the most frequent label and a greater value for the rest. The larger
the value of IRLbl, the higher the imbalance level for the concerned label.

IRLbl(λ) =
max
λ′∈L

(
m∑
i=1

h(λ′, Yi))
m∑
i=1

h(λ, Yi)
, h(λ, Yi) =

1, λ ∈ L
0, λ /∈ L

(3.3)

Mean imbalance ratio (MeanIR): it is the mean imbalance ratio among
all labels in an MLD (Eq. 3.4).

MeanIR = 1
q

∑
λ∈L

IRLbl(λ) (3.4)
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Figure 3.2: Taxonomy of characterization measures for MLDs

Maximum imbalance ratio (MaxIR): The ratio of the most common label
against the rare one (Eq. 3.5).

MaxIR = max
λ∈L

IRLbl(λ) (3.5)

Coefficient of variation of IRLbl (CVIR) (Eq. 3.6): CVIR measures the
variation of IRLbl, i.e., the similarity of the level of imbalance between all
labels. It indicates if labels experience a similar level of imbalance or, on
the contrary, there are large differences among them. The higher the CVIR
value, the higher would be this difference:

CV IR = IRLblδ
MeanIR

, δ =
√√√√ ∑
λ∈L

(IRLbl(λ)−MeanIR)2

q − 1 (3.6)

Concurrence level measures: the number of different label-sets, as well as
the amount of them being unique label-sets (appearing only once in MLD),
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give us an indication of how sparsely the labels are distributed. The label-
sets by themselves allow knowing how the labels in L are related. SCUM-
BLE [202] is proposed to assess the concurrence among very frequent and
rare labels. A small score will denote an MLD with not much concurrence
among imbalanced labels, whereas a large one would evidence the opposite
case. An MLD with a higher concurrence level would become more difficult
to process using resampling algorithms.

3.4 Approaches for Imbalanced Multi-label Classifi-
cation

The imbalanced approaches proposed for MLC can be divided into four cate-
gories: resampling methods, classifier adaptation, ensemble approaches, and
cost-sensitive methods. Figure 3.3 summarizes the categorization of these
approaches with descriptions in the next subsections. These approaches
have been the most common strategies to rebalance the class distribution
in the traditional classification (i.e., in single-label classification). They
are adapted to the multi-label learning to reduce the imbalance problem
between labels and among label-sets.

Figure 3.3: Categorization of methods proposed in the literature to address imbalanced MLC
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3.4.1 Resampling Methods

The resampling approaches are the most commonly used techniques to han-
dle imbalanced data. These approaches are based on the pre-processing of
the MLDs. They aim to produce new, more balanced versions of MLDs,
and they belong to the classifier-independent group. Resampling methods
are based on undersampling [197], which removes samples associated with
the majority label and oversampling [198], which generates new samples
associated with the minority label, or both actions at the same time. The
way in which the examples to be added or removed can also be grouped
into two categories, random methods and heuristic methods. The former
randomly choose the samples to be deleted or produced associated with a
specific label. The latter can be based on disparate heuristics to search for
the proper instances, as well as to generate new ones. The two resampling
approaches have been adapted to deal with MLDs, as discussed in the next
paragraphs.

Multi-Label Random Resampling: the random resampling method ap-
plied to MLC follows different approaches than the ones used in single-label
classification, as the existing resampling methods cannot be directly used in
MLC. These approaches can be based on the LP transformation, BR meth-
ods, imbalance measures, etc. LP-RUS and LP-ROS are two examples of
resampling methods proposed in [195] based on LP transformation. The LP
transformation method transforms the MLD into a multi-class dataset, pro-
cessing each different combination of labels (label-set) as a class. LP-RUS
randomly removes instances assigned with the most frequent label-set (i.e.,
a specific combination of labels), and the processing stops when the number
of samples in the MLD is reduced by an indicated percentage. LP-ROS is
a multi-label random oversampling method that works by cloning random
samples of minority label-sets until the size of the MLD increases by the pre-
specified percentage. Although LP-based resampling has its own advantages
to solve the imbalance problem, it is limited by the labels sparseness in the
MLDs. In other words, there are MLDs with as many distinct label combi-
nations as instances. This implies that all label-sets would be considered to
be both majority and minority cases at the same time. Thus LP-ROS and
LP-RUS could hardly fix the imbalance problem in such cases. An alterna-
tive approach to tackle this limitation would be evaluating the individual
imbalance level of each label. ML-RUS and ML-ROS are examples of such
approaches based on the frequency of individual labels, instead of the full
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label-sets, isolating the instances with one or more minority labels [192].
The main aim of ML-RUS is to delete samples with majority labels and of
ML-ROS to clone samples with minority labels. These two methods rely on
IRLbl and MeanIR measures: Labels whose IRLbl is greater than MeanIR
are considered to be minority labels, while labels whose IRLbl is smaller
than MeanIR can be considered to be majority labels. ML-RUS determines
what labels are the majority by means of their IRLbl value. One main lim-
itation with these ML-based methods is that some of the minority samples
selected by ML-ROS may contain the most frequent labels, due to the joint
appearance of minority and majority labels. Therefore, the oversampling
will include both the majority and minority labels. As a remedy to this
problem, REMEDIAL is proposed in [199]. REMEDIAL method tackles
the imbalanced problem by decoupling the majority and minority labels,
of which the imbalance level is assessed by SCUMBLE. REMEDIAL could
be either a standalone sampling method or can be combined with other
resampling techniques, like REMEDIAL combines with MLSMOTE [199].
Other strategies, such as best first oversampling [200] and imbalance in hi-
erarchical MLDs [201] have been utilized to address the imbalance problems
of MLC.

Multi-Label Heuristic Resampling: in this approach, the instances to
be deleted or cloned are heuristically selected, instead of being randomly
chosen. The random resampling methods have problems in the loss of po-
tentially useful information during undersampling, which brings overfitting
in the course of oversampling. The heuristic approach can be employed as
an alternative to overcome these limitations by selecting the right samples
in the process of under sampling and oversampling. MLeNN is one of the
heuristic multi-label undersampling approaches proposed by Charte et al.
[202]. It is built upon the Edited Nearest-Neighbor (ENN) rule [203] and
depends on the MeanIR and IRLbl measures to assess the imbalance level
in MLDs. MLeNN is used to make a careful selection of instances to remove
from the majority samples in a heuristic way and performs better than LP-
RUS. MLTL is a similar heuristic-based approach recently proposed [204].
This method adopts the classic Tomek Link algorithm [205] to address the
imbalance, which can be used as an under sampling or cleaning technique.
Generally, heuristic-based under sampling methods, unlike random under
sampling, try to eliminate the least significant instances of the majority
class and thus minimize the risk of losing important information. However,
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these methods also have some drawbacks: (1) they do not allow to influence
the number of removed samples, which usually depends on the nature of the
data; (2) they are difficult to apply when the minority and majority labels
jointly appear in the same instances.

Heuristic-based synthetic instance generation has also been explored to
handle imbalanced MLDs. A proposal in [206] is based on the original
SMOTE algorithm [207] together with three transformation strategies. The
first strategy uses a binary relevance method to transform instances into
positive and negative to apply SMOTE. The second approach transforms
instances in which minority label appears in isolation into positive and the
remaining into negative. The third strategy considers all samples in which
the minority label appears and applies SMOTE several times. In this paper
[52], it was observed that the third method improved the results, whereas
the other two produced a general degradation of performance. An extension
of SMOTE, called MLSMOTE, applied to MLDs, was proposed in [208].
MLSMOTE considers a list of minority labels using the instances in which
these labels appear as seeds to generate new instances. First, the nearest
neighbors of the seed instances are found, and then the features of the
synthetic instances are obtained by an interpolation technique. MLSMOTE
takes into account several minority labels to produce synthetic instances
instead of only one label, which is an advantage since most MLDs have
multiple minority labels.

Another recently proposed approach is MLSOL [209]. This method fo-
cuses on analyzing imbalance by looking at the local characteristics of mi-
nority samples, rather than the imbalance of the whole dataset. MLSOL
first calculates the weight vector for seed instance selection and a type ma-
trix for synthetic instance generation based on the local label distribution.
Once the seed instance is selected based on the weight vector, the reference
instance is randomly chosen from the k nearest neighbors of the seed in-
stance. An ensemble framework is incorporated into MLSOL to improve its
robustness. The use of weighted sampling for seed instance selection and
its ensemble version allows MLSOL to create more diverse models and to
achieve better performance with greater error correction than MLSMOTE.
In MLSMOTE, the labels of the synthetic instance are fixed, while in ML-
SOL, the labels of the new instance change according to its location, which
avoids the introduction of noise. Other works are induction based under
sampling [210] and reverse-nearest neighborhood-based oversampling [211].

In general, the resampling methods are popular approaches for dealing
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with imbalanced data. However, since random oversampling usually in-
volves exact copies of examples to increase the size of the data space, it
may lead to overfitting [212, 213], and also requires more time during the
training phase. Oversampling doesn’t introduce new data, so it can not
address the fundamental ‘lack of data’ issue. As a result, oversampling may
not be effective at improving the detection of minority samples [213, 214].

3.4.2 Classifier Adaptation

Apart from resampling methods, adapting the existing machine learning
algorithms is another way of facing the imbalance problem. Adaptation
methods could be categorized as dedicated algorithms that directly learn
the imbalance distribution from the classes/labels in the datasets. Some
multi-label methods adapted to deal with imbalanced MLC have been pro-
posed in the literature. In [215], a min-max modular network with SVM
was proposed to address the imbalanced problem of MLDs. It works by
decomposing a multi-label imbalanced classification problem into a series
of small two-class subproblems. In the learning process, each subproblem
can be trained by one of the standard classification algorithms, and then
the outputs of the classifiers are combined by using minimization and maxi-
mization principles [216] to generate solutions to the original problem. This
method works according to the principles of the Min-Max Modular network
and presents different decomposition strategies to improve the performance
of these networks.

Another proposal based on adaptation methods is presented in [217]. It
uses an enrichment process in neural network training to address the multi-
label and imbalanced data problems, such as semantic scene classification,
robotic state recognition, and other real-world applications. The enrichment
process manages the training data using three steps: the first step is an
initialization, which uses a clustering method to group similar instances
and gets a balanced representation to initialize the neural network. In
the second step, the network is iteratively trained, as usual, while data
samples are added and removed from the training set, according to their
prevalence. The final phase checks if the enrichment process has reached
the stop condition or it has to be repeated. This way, the overall balance
of the neural network used as a classifier is improved.

Recently, an adaptation approach was proposed in [218] to address the
imbalance in MLC. It is based on an asymmetric stage-wise loss function to
adjust the loss cost of positive and negative samples dynamically. In [219],
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imbalanced multi-modal multi-label learning (IMMML) was proposed. It
was designed to tackle the imbalance problem in the subcellular localization
prediction of the human proteins with multiple sites. The algorithm is based
on a Gaussian process model, combined with latent functions on the feature
space and covariance matrices to obtain correlations among labels. The
imbalance problem is solved, giving each label a weighting coefficient linked
to the likelihood of labels on each sample. Therefore, it is a very specific
solution to a definite problem, hardly applicable in a different context.

The proposal in [220], Imbalanced multi-instance multi-label radial ba-
sis function neural networks (IMIMLRBF), is an extension of MIMLRBF
[221]. IMIMLRBF is a multi-instance and multi-label classification algo-
rithm based on radial basis neural networks. The adaptation works in two
ways. First, the number of units in the hidden layer, with MIMLRBF being
constant, is computed according to the number of samples of each label.
Then, the weights associated with the links between the hidden and output
layers are adjusted, biasing them depending on the label frequencies. In
[222], an approach based on the multi-label hyper network was proposed
to address the imbalance problem in MLC. In this algorithm, labels of an
MLD are separated into two groups based on their imbalance ratios. These
two groups are common labels and imbalanced labels. The algorithm works
in two steps. In the first step, a multi-label hyper network is trained, and
it produces preliminary predictions. In the second step, the correlations
between imbalanced labels and common labels are used for refining the
predictions obtained in the first step, thereby improving the classification
performance.

Zhang et al. [223] proposed the class-imbalance aware algorithm named
cross-coupling aggregation (COCOA). For each class in the dataset, CO-
COA combines the predictive results of a binary-class imbalance classifier
corresponding to the current label and the predictive results of some multi-
class imbalance learners. The final decision for each class label is obtained by
aggregating the outputs of binary and multi-class learners. This approach
has also been applied for a decision support system in medical diagnosis with
imbalanced clinical data [224]. Pouyanfar et al. [225] propose recent work,
entitled "multi-label multimodal deep learning framework for imbalanced
data classification" to address challenges in multi-media data classification.
The proposed framework handles the imbalanced problem in MLC by as-
signing a specific weight to each class automatically during the classification
task. Other models based on a neural network in [226, 227]. Apart from
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the above-mentioned methods, the RelieF feature selection algorithm [228],
concept drift, and KNN based approach [229] have been employed to address
the imbalance in MLC.

3.4.3 Ensemble Methods

Ensemble methods combine several base models in order to produce one
optimal predictive model. The use of sets of classifiers as ensembles has
proven to be effective in single-label classification. A similar approach has
been used in MLC for improving predictive performance and solving the
imbalanced problem. The ensemble of multi-label classifiers trains several
multi-label classifiers. Thus, all the trained classifiers are different and can
provide diverse multi-label predictions. There are several ways of joining
the outputs of these classifiers [230]. An inverse random undersampling
(BR-IRUS) method is proposed in [231]. BR-IRUS is implemented on an
ensemble of binary classifiers that are trained for individual labels using a
subset of the original data. The subset of the instances contains all samples
in which the minority label is present, along with a small portion of the re-
maining samples. This way, each individual classifier solves a classification
task. Joining the predictions given by the classifiers associated with a label,
a more defined boundary around the minority label space is generated. In
[232], a heterogeneous ensemble of multi-label learners is proposed by com-
bining state-of-the-art multi-label methods. This method simultaneously
tackles both the sample imbalance and label correlation problems. The en-
semble is composed of five classifiers. All of them are trained using different
algorithms on the same data. Several methods for joining the individual pre-
dictions are tested, along with different thresholding and weighting schemes
with adjustments made through cross-validation.

The authors in [233] proposed an ensemble classifier called HPSLpred
with an imbalanced source of human protein subcellular location predic-
tion. HPSLpred integrates 12 kinds of basic classifiers to address the imbal-
anced problem. The authors in [234] used a two-stage stack-like ensemble
of MLkNN classifiers to exploit label associations in MLC. The algorithm
shows an improvement in comparison to MLkNN without stacking. EC-
CRU3 [235] extends the ECC resilient to class imbalance by coupling un-
dersampling and improving the exploitation of majority samples. Further-
more, other ensemble classification algorithms have been employed in MLC,
such as the ensemble of multi-label classifiers [236], bagging, and adaptive
boosting [237].
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3.4.4 Cost-Sensitive Approaches

Cost-sensitive methods use different cost metrics to describe the costs of
any particular misclassified sample, aiming to minimize the total cost. Most
commonly, these methods are applied to imbalanced learning by associating
high misclassifying cost to the minority classes [238]. In traditional classifi-
cation, the objective is to minimize the misclassification rate, and thus most
classifiers assume that the misclassification costs are equal. A more general
setting is the cost-sensitive classification, where the costs caused by different
kinds of errors are not assumed to be equal. Cost-sensitive approaches can
be incorporated both at the data level and at the algorithmic level, by con-
sidering higher costs for the misclassification of minority class samples with
respect to majority class samples. In contrast to traditional classification,
cost-sensitive learning studies in MLC are very few. The reason for this can
be due to the fact that cost-sensitive learning strategies are difficult with
regard to the assignment of an effective cost matrix. The cost matrix can
be defined based on past experiences or domain experts with knowledge of
the problem domain.

Some cost-sensitive approaches have been migrated to the multi-label
scenario to explore a class-imbalance problem, among them: SOSHF [239]
transforms the multi-label learning task to an imbalanced single label classi-
fication type via cost-sensitive clustering, and the oblique structured Hellinger
decision trees address the new task. In [240], a cost-sensitive ranking sup-
port vector machine for MLD is attempted, which assigns a different mis-
classification cost for each label-set to effectively tackle the problem of im-
balance in MLC. Another cost-sensitive multi-label learning is proposed
in [241]. This work extends BR to consider the exploitation of the label
correlations and exploration of the class-imbalance simultaneously. A cost-
sensitive loss is utilized to tackle the class-imbalance problem.

3.5 Datasets and software tools

To evaluate the proposed methods of imbalanced MLC, most authors used
publicly available benchmark MLDs with different formats (text, audio, im-
ages, etc.). The names of 26 MLDs in ARFF file format, along with their
descriptions and statistics, are found from the online MULAN repository
[242]. The MULAN repository is the most used resource by many authors
of articles that concern the MLC task. Other MLD repositories include the
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MEKA repository [243] and the R ultimate MLD repository [244]. The soft-
ware tools associated with each repository are proposed in order to analyze
MLDs and perform MLC. These include MULAN [245], MEKA [243], and
multilearn library in Python [246].

3.6 Model Evaluation

Various metrics have been proposed in the literature to evaluate the classi-
fication performance of MLC models. Unlike the traditional classification,
which produces a single class as output being either a correct or wrong
prediction, the output of any multi-label classifier consists of a label-set
predicted for each instance. The evaluation of MLC requires different mea-
sures with respect to the ground truth of multi-label prediction results.
The measures can be broadly categorized into three groups: example-based
[247], label-based [248], and ranking-based measures [194]. Example-based
measures are computed individually for each example, then averaged to ob-
tain the final value. Label-based measures are computed for each label,
instead of per instance. The ranking-based metrics evaluate the ranking of
labels with respect to the original MLDs.

i. Example-Based Measures

Hamming loss (HL) is the most common performance measure in MLC,
computed as the symmetric difference between the predicted and true labels
and divided by the total number of labels in the MLD. The smaller the value
of the Hamming Loss, the better the performance:

HL = 1
m

m∑
i=1

|Yi∆Zi|
q

(3.7)

where ∆ denotes the symmetric difference of the two sets and corresponds
to the XOR operation in Boolean logic. HL measures the fraction of labels
that are misclassified.

Subset Accuracy (SA) evaluates the percentage of correctly predicted
labels among all predicted and true labels. This is a very strict evaluation
measure as it requires the predicted set of labels to be an exact match of
the true set of labels.
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SA = 1
m

m∑
i=1

I(Zi = Yi), (3.8)

where I(true) = 1 and I( false) = 0
Accuracy is the ratio of predicted correct labels with respect to the total
number (predicted and actual) of labels for each instance.

Accuracy = 1
m

m∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(3.9)

Precision , computed as indicated in the equation 3.10, is the proportion of
predicted correct outputs to the total number of predicted outputs, averaged
over all instances.

Precision = 1
m

m∑
i=1

|Yi ∩ Zi|
Zi

(3.10)

Recall measures the proportion of predicted correct labels to the total
number of true labels, averaged over all instances.

Recall = 1
m

m∑
i=1

|Yi ∩ Zi|
Yi

(3.11)

F-measure represents the harmonic mean of Recall and Precision, provid-
ing a balanced assessment between precision and recall. It is a weighted
measure of how many relevant labels are predicted and how many of the
predicted labels are relevant is obtained.

F −measure = 2 ∗ (Precision ∗Recall)/(Precision+Recall) (3.12)
As in single-label multi-class classification, the higher the value of accu-

racy, precision, recall, and F-measure, the better the performance of the
learning algorithm.

Hamming Score (Mean Accuracy): refers to the average of the accuracy
for each label, where,Z(i)

j corresponds to the prediction given by the model
and Y

(i)
j to the real value . It is a label- wise accuracy, which rewards

methods for predicting individual labels well [250].

Hamming Score = 1
m|L|

m∑
i=1

|L|∑
j=1

[Y (i)
j = Z

(i)
j ] (3.13)
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where [A] is an identity function, returning 1 if condition A is true
.

ii. Label-Based Measures
Label based measures evaluate each label separately and then average over
all labels. Therefore, any known measure, used for evaluation of a binary
classifier (e.g., accuracy, precision, recall, F-measure, ROC, etc.), can be
used here. Label-based measures are calculated for all labels by using two
averaging operations, called macro averaging, where any of the measures
can be computed on individual class labels first and then averaged over all
classes and micro-averaging, the measures can be computed globally over
all instances and all class labels. Let EM be one of the evaluation metrics,
FPλ for False Positives, TPλ for True Positives, FNλ for False Negatives,
and TNλ for True Negatives, the macro and micro averaged operations can
be calculated as follows [251]:
EMmacro = 1

q

q∑
λ=1

EM(TPλ, FPλ, TNλ, FNλ)

EMmicro = EM(
q∑

λ=1
TPλ,

q∑
λ=1

FPλ,
q∑

λ=1
TNλ,

q∑
λ=1

FNλ)

iii. Ranking-Based Measures

One Error measures how many times the best-ranked label given by the
model is not part of the true label-set of the example. The smaller the value
of one error, the better the performance:

One error = 1
m

m∑
i=1

δ(argmin ri(λ)), δ(λ) =
1, if λ /∈ Yi

0, otherwise
(3.14)

Coverage is the metric that evaluates how far, on average, a learning al-
gorithm needs to go down in the ordered list of predicted labels to cover all
the true labels of an instance. Clearly, the smaller the value of coverage,
the better the performance.

Coverage = 1
m

m∑
i=1

max(ri(λ))− 1, λ ∈ Yi (3.15)
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Ranking loss (RL) measures how many times a relevant label appears
ranked lower than a non-relevant label. The smaller the value of RL the
better the performance:

RL = 1
m

m∑
i=1

1
|Yi||Yi|

|E| (3.16)

where Yi is the complementary set of Yi with respect to L ,
E = {(λa, λb) : ri(λa) > ri(λb), (λa, λb) ∈ Yi × Yi}

Average precision (AvgPrec) evaluates the average fraction of labels
ranked above a particular label λ ∈ Yi which actually are in Yi. The higher
the average precision, the better the performance.

AvgPrec = 1
m

m∑
i=1

1
|Yi|

∑
λ∈Yi

|{λ′ ∈ Yi : ri(λ′) ≤ ri(λ)}|
ri(λ) (3.17)

3.7 Comparative Analysis

In this section, we present the comparative analysis of the different meth-
ods proposed in the literature for addressing an imbalance problem in MLC.
Table 3.1 depicts the advantages and disadvantages of classifier adaptation,
resampling, ensemble, and cost-sensitive methods. These methods are ef-
fective alternatives for imbalanced MLC tasks. However, there exist vari-
ous constraints with respect to addressing the imbalance. The adaptation
method makes the model insensitive to the imbalanced sample distribu-
tion by modifying the base classifier. This method is inefficient when the
label space is too large and requires extensive knowledge about the base
classifier and the problem domain. Resampling methods proposed for im-
balanced MLC are advantageous as they are classifiers independent and that
do not require any specific multi-label classifier to preprocess MLDs. Thus,
a preprocessed MLD can be used as input to any of the MLC algorithms.
However, the large differences in imbalance levels between labels and the
high level of concurrence among imbalanced labels would greatly influence
the behavior of resampling approaches, and, as a result, only certain MLDs
with the lowest concurrence level can be most benefitted from the resam-
pling. Ensemble approaches have a problem of computational complexity
since more than one classifiers have to be trained and combined to obtain
a final prediction result.
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Table 3.1: Advantages and disadvantage of different categories

Approaches Advantages Constraints/Disadvantages
Resampling
Methods

Can be applicable to
any MLC classifier.
Classifier independent

High level of concurrence between imbalanced
labels and a large number of unique label-sets.
May introduce noisy data.

Classifier
adaptation

Effective in a certain
context.
Original data will not
be affected

Requires extensive knowledge of the specific
classifier and problem domains.

Ensemble
methods

Decrease variance and
improve prediction.
Reduce overfitting

Computational complexity.
No clear criteria for selecting the type and
number of MLC classifiers.

Cost-
sensitive

Computationally effi-
cient.

Real cost values are unknown in most applica-
tions domains
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Table 3.2: Comparison of specific methods proposed for addressing imbalanced MLC

Article Approaches
used

Balancing
Method

Advantages Limitations

(Charte et
al. 2013)
[195]

LP-based
[16]

Random
resampling

Helps to reduce im-
balance among the
label-sets

label sparseness in the
MLD, hardly fix the im-
balance problem

(Giraldo-
Forero et
al. 2013)
[206]

BR based [89] Heuristic
based

Easy to apply
SMOTE for a class-
imbalance problem

It doesn’t consider
imbalance between
labels/label-sets

(K. Chen
et al.,2006)
[215]

Decomposition
strategy [97]

Classifier
adaptation

Subproblems can be
balanced

One label may happen
more frequently than
other

(Charte et
al. 2015)
[192]

imbalance mea-
sure of individ-
ual labels

Random
resampling

Reduces highly im-
balanced labels

The joint appearance of
the majority and minor-
ity labels affect one an-
other

(M. Tahir
et al.,2012)
[231]

BR based Ensemble ap-
proach

Reduces class-
imbalance problem

Doesn’t consider
imbalance between
labels/label-sets

(Pereira
et al,2019)
[204]

LP based Heuristic
based

defined threshold for
Hamming distance to
remove majority la-
bel

Difficult to apply to
highly concurrent imbal-
anced labels

(F. Luo et
al. ,2019)
[218]

asymmetric
stage-wise
functions

Classifier
adaptation

Accuracy on minor-
ity samples can be
improved

More applicable to only
missing (unlabelled) la-
bels [98]

(M. A.
Tahir et
al.,2012)
[232]

LP, BR and
CLR based
transformation

Ensemble ap-
proach

Tackles both class
imbalance and label
correlation

Computationally inten-
sive and base classifiers
may be problem-specific

(Charte et
al.,2019)
[199]

BR and LP Heuristic
and random
resampling

Solves the limitation
of multi-label over-
sampling

Limited to high label
concurrence problem
under certain conditions

(Ding et
al,2018)[255]

BR and CC Cost-sensitive Use of penalty func-
tion to balancing

Does not consider imbal-
ance among labels
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In Table 3.2, a detailed comparison of various methods from the different
approaches using various parameters is presented. The comparison crite-
ria include the MLC approaches used, balancing method, advantages, and
limitations of each proposed approach. The authors in [204] used MLC al-
gorithms to compare the state of the art multi-label resampling approaches
using different imbalanced MLDs with varying level of imbalance. Table
3.3 presents the experimental result of resampling approaches on six MLDs
using a micro F-score as an evaluation metric and RAkEL as an MLC clas-
sifier. The experimental results in Table 3.3 indicate that LPROS achieved
better results on three datasets (emotions, scene, and yeast), while MLROS
and MLTL have shown better results on CAL500 and Medical datasets,
respectively.

Table 3.3: Comparison of resampling methods for MLC with imbalanced datasets

Approaches
Datasets

CAL500 Emotions Enron Medical Scene Yeast
None 0.3354 0.621 0.5496 0.8132 0.6237 0.5812
LPROS [195] 0.4924 0.6814 0.6306 0.8761 0.762 0.6721
LPRUS [195] 0.3751 0.5838 0.5158 0.7853 0.6339 0.5823
MLROS [192] 0.5413 0.6395 0.6694 0.8354 0.65 0.6671
MLRUS [192] 0.3255 0.5846 0.5259 0.8345 0.6919 0.5677
REMEDIAL
[256]

0.2951 0.325 0.1135 0.637 0.5648 0.456

REMEDIAL-
HwR-ROS [199]

0.2503 0.5111 0.2822 0.5064 0.6361 0.3929

REMEDIAL-
HwR-HUS [199]

0.1293 0.349 0.684 0.7841 0.7176 0.3849

REMEDIAL-
HwR-SMT [199]

0.1542 0.3056 0.1851 0.4114 0.3888 0.3772

MLeNN [202] 0.3466 0.621 0.6489 0.8774 0.6415 0.5846
MLSMOTE [208] 0.3839 0.4265 0.6125 0.8546 0.4532 0.5794
MLTL [204] 0.372 0.6409 0.6499 0.8798 0.7502 0.6348
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3.8 Future Work

Existing works have proposed various techniques to tackle the imbalanced
issues of MLC. However, several challenges remain, and imbalanced classi-
fication from the MLD still requires significant development. The following
are some of the possible future research directions to deal with imbalanced
MLC.

1. The success of currently available multi-label resampling algorithms is
highly influenced by many factors:
(i) Joint occurrence of minority and majority labels in the same in-
stance. The potential existence of samples associated with rare and
frequent labels in an MLD could make the resampling strategies inef-
fective. A recent study in [199] has attempted resampling by decoupling
imbalanced labels, but it has limitations for some resampling methods
(e.g., MLeNN) and MLC algorithms (e.g., MLkNN) due to that the
decoupled instances are located in the same position. More sophisti-
cated approaches are needed, considering label-set based relocation and
defining thresholds for decoupling that can be able to work with any of
the available MLC methods.
(ii) MLDs with a large number of imbalanced labels pose a scalability
challenge. Some methods have been proposed by Wang [229] to solve
this problem. This approach could reduce Hamming Loss but did not
completely eliminate it. Some approaches, such as parametrization and
embedding [252], may help to address such challenges.

2. In MLC, there is a need for imbalance–aware classifiers that do not
require resampling strategies. It seems promising to use the existing
MLC methods (such as hierarchical MLC or classifier chains) and com-
bine them with the imbalance–aware solutions that are available in the
multi-class classification domain. An ideal goal would be the develop-
ment of such multi-label classifiers that display similar performance to
canonical methods on balanced multi-label problems while being at the
same time robust to the presence of imbalance.

3. Ensemble methods are well-known to tackle both imbalance and la-
bel correlation problems. They are advocated by employing the non-
trainable average combining rule. However, since MLC algorithms are
computationally intensive and MLDs are highly imbalanced, it opens
new research challenges on how to use other combination techniques
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efficiently, such as trainable combiners (fuzzy integral) [253] or class
indifferent combiners (decision templates and Dempster-Shafer com-
bination) [254]. The other issue that needs further investigation is
how to select the base classifiers in MLC since different combinations
of base classifiers may perform differently for the specific problem do-
main. Moreover, there are no clear indicators of how large the ensemble
should be constructed when applied to MLC tasks.

4. The other strategy can be the use of hybrid methods, concentrating on
combining previously mentioned approaches to take advantage of their
strong points and reduce their weakness. It is recommended to com-
bine one of the resampling methods with another one or with adapta-
tion methods investigating the potential to improve the results in these
cases.

5. Another interesting direction is to investigate the possibilities of us-
ing cost-sensitive learning solutions. RAkEL [173] is the most popu-
lar method, transforming a multi-label problem with a large number
of label-sets into smaller subsets. Hence, it seems straightforward to
balance label-set distribution by automatically generating a misclassi-
fication cost vector in accordance with the label-set distribution.

6. Many of the proposed approaches to address imbalanced MLC in lit-
erature are based on first-order frameworks, such as binary relevance
(BR) method. However, further research is required to extend these
approaches to the second and higher-order frameworks to take into
account label correlations. This can be approached by using informa-
tion about label correlations along with other strategies to improve the
learning performance of extremely imbalanced label distributions.

3.9 Conclusions

This chapter presents the first survey of handling the imbalanced problem in
multi-label data classification (MLC), which includes the characteristics of
the data, problem descriptions, solutions, and limitations of the approaches
for solving an imbalanced problem. In this study, numerous articles re-
lated to imbalanced MLC published between 2006 and 2019 were collected
and reviewed. Various methods and techniques that have been proposed to
overcome the negative impacts of imbalanced MLC can be grouped into four
categories: resampling methods, classifier adaptations, ensemble methods,
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and cost-sensitive learning approaches. These approaches have their own
limitations, even though they have shown achievement in handling imbal-
anced classes, labels, and label-sets in MLC. For example, methods which
are proposed for handling imbalance problem between labels cannot be ap-
plied to handle the imbalance problem among label-sets. We also found
that research in imbalanced MLC is very limited and that the majority of
the existing works addressing the imbalance problem focus on single-label
classification. Despite a growing demand for multi-label classification in
different domains, developing a comprehensive framework for handling an
imbalanced problem in an MLD is still understudied. As a result, this chap-
ter concludes with a discussion on the challenges of imbalanced MLC and
some future research directions that are worthy of further study.
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Chapter 4

Predictive Modeling for Frailty
Conditions in Older Adults

In this chapter, frailty risk predictive models were developed based on the
whole elderly population of the Piedmont region, Italy.The predictive mod-
els were designed to detect and predict frailty according to the expected
risk of various adverse health outcomes (mortality, urgent hospitalization,
disability, fracture, and emergency admission at the emergency depart-
ment) within 12 months.The models were developed based on administrative
health data containing about 1 million elderly people aged 65 or older with
58 input variables and 6 output variables. First, six problems/outputs were
identified as surrogates of frailty. Then, the imbalanced nature of the data
was resolved through resampling process and a comparative study between
the different machine learning algorithms – Artificial neural network(ANN),
Support vector machines (SVM), Random Forest (RF), Logistic regression
(LR), Decision tree (DT), and Genetic programming (GP) – was carried
out. The performance of each model was evaluated using a separate test
dataset through both the holdout and ten-fold cross-validation methods.

4.1 Introduction

The elderly population has been conventionally defined as a chronological
age of 65 years or older [257], and frailty is frequently mentioned in studies
related to the elderly population [7].The health condition of frail people is
characterised by several diagnoses, complex medication routines, frequent
physician visits and hospitalisations, impaired activities of daily living, cog-
nitive decline and reliance on a caregiver for support. Frail older people

89



: 4 – Predictive Modeling for Frailty Conditions in Older Adults

may also suffer from isolation and depression, which compounds their health
problems and may influence non-adherence to prescribed medical regimes
[258]. Recognition of frailty or pre-frailty is important for clinical practi-
tioners and also policy-makers, as it poses a greater risk of adverse health
outcomes such as falls, increased morbidity, physical and psychosocial de-
pendence and death [259].

Frailty in elderly people was first characterized as a physical phenotype by
Fried et al.[20]. According to this study, frailty is defined on the basis of five
physical components: exhaustion, weight loss, slow gait speed, weakness,
and low levels of physical activity. People who meet three or more of the
above mentioned physical components are classified as frail. Those people
who meet one or two criteria as pre-frail and people who meet none of these
criteria are classified as not frail. This research was only phenotypic and
didn’t consider other causes, such as psychological and cognitive factors,
to measure frailty. On the other hand, Rockwood et al. [21] developed a
model to detect frailty. It is based on a comprehensive geriatric assessment
and takes into account different parameters of symptoms, signs, abnormal
laboratory values, disease states, and disabilities, referred to as deficits,
to define frailty. In [260], the comparison of the frailty phenotype and the
frailty index models were also widely discussed. A retrospective study based
on a logistic regression model was proposed in [261] to develop frailty risk
index and validate their content using health record data. There are also few
models that are derived from a single source of information, like primary
care electronic health record data and only insurance claims data [262].
More recent work on frailty was proposed by F. Bertini et al.[263] using
logistic regression. In this paper, they proposed a frailty prediction model
using a broad set of socio-clinical and socioeconomic variables. Their model
was designed to detect and categorize frailty according to the expected risk
of hospitalization or death. In general, the frailty indexes proposed in most
literature have focused on the possible risk factors associated with frailty in
the elderly population, but predicting who is at risk of frailty problems is
still requires further investigation.

Several scales and models have been proposed for the detection of frailty
[264]; however, a precise operational definition of frailty or a standard
method for its screening and diagnosis is still lacking [265]. Moreover, each
of the available tools intended to detect frailty poorly agrees with each
other when applied to the same population [266]. In different clinical set-
tings where the standard measure of frailty is missing, and the care of the
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elderly is a priority, it is imperative to have a specific predictive model in
the prediction of frailty according to the characteristics of the population
being studied. Therefore, the aim is to detect multiple outcomes of frailty
(mortality, disability, fracture, hospitalizations, and emergency admissions)
using large administrative health databases of elderly people in Piedmont,
Italy.

This chapter focuses on exploring the existing machine learning tech-
niques (artificial neural network, genetic programming, support vector ma-
chines, logistic regression, random forest, and decision tree) to predict frailty
according to the different adverse health outcomes. These approaches were
considered for their performance and practical usefulness in the analysis of
different types of medical data.

4.2 Methods

4.2.1 Data Source

This study is based on the Piedmontese Longitudinal Study. The data is
collected using an individual record linkage that is available for about four
millions of Piedmont (Italy) inhabitants between the Italian 2011 census
and the administrative and health databases (enrollees registry, hospital
discharges, drug prescriptions, outpatient clinical investigation database,
and health exemptions) and that is included in the Italian Statistical Na-
tional Plan. Subjects aged 65 years and above are included in the study.
The dataset contains 1,095,612 subjects and 64 different variables (58 input
and 6 output variables). The dataset includes a wide variety of predictor
variables, including clinical and socioeconomic aspects. All outcomes and
comorbidity variables are represented by Boolean values. The demographic
variables such as age, marital status, citizenship, education level, income
status, family size, and others are specified using the dummy variables.
The ’age’ variable is grouped into six categories, with 65-69 used as the
first category. The output variables are described as outcomes or measur-
able changes in the health status of patients. The output variables include
mortality, disability, urgent hospitalization, fracture, preventable hospital-
ization, and accessing the emergency department (ED) with red code. The
color codes assigned to patients may vary from one hospital to another, but
in this study, a red code is used to identify patients with severe symptoms
that need immediate care. Since we intend to develop predictive models for
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these frailty indicators, we extracted as input data those collected in 2016,
while using as output values those collected in 2017.

Table 4.1: Description of output variables in the dataset.

Variables Category Code Number Percent (%)

Mortality
No 0 1,053,790 96.18
yes 1 41,823 3.82

Access to EDa with red code
No 0 1,088,124 99.32
yes 1 7,489 0.68

Disability
No 0 1,064,186 97.13
yes 1 31,427 2.87

Fracture
No 0 1,088,530 99.35
yes 1 7,083 0.65

Urgent hospitalization
No 0 1,056,695 96.45
yes 1 38,918 3.55

Preventable hospitalization
No 0 1,076,541 98.26
yes 1 19,072 1.74

EDa: emergency department

The way the data set is organized is such that one patient can have multi-
ple outcomes. Such type of data is what we call ’multi-output’ or multi-label
dataset. For simple implementation and analysis, this multi-output dataset
is transformed into six single-output problems associated with each output
variable. Decomposing the original data into six independent datasets helps
to study each output independently for the given number of similar risk fac-
tors. Transforming the original problem into single independent problems is
a straightforward way to implement using classical machine learning meth-
ods. Additionally, with this method, we can take full advantage of such
algorithms which consider learning problems that contain only one output.

The six different problems that are associated with frailty conditions
are considered separately in the analysis, which results in six independent
binary classification problems. All the input variables used in the study
are presented in Appendix A. Table 4.1 contains descriptive statistics for
all output variables, where the frequency distributions of each category of
an output variable are represented as counts and percentages. Table 4.1
clearly shows how the dataset is, for each output variable, unbalanced.

92



: 4 – Predictive Modeling for Frailty Conditions in Older Adults

In fact, there are approximately 4% records that have mortality risk as
‘1’, and the rest 96% have mortality risk as ‘0’. Similarly, there are only
approximately 1%, 1%, 2%, 3%, and 4% of the records, which have risk as ‘1’
for access to the emergency admission with red code, fracture, preventable,
hospitalization, disability, and urgent hospitalization, respectively. This is
clearly an indication of an imbalanced dataset, as the number of subjects
from the positive sample is much smaller than the number of subjects of
the negative sample.

Most machine learning techniques may suffer from such extremely unbal-
anced datasets, and, as a result, they may be biased towards the majority
class. Instructing a model with an algorithm that tries to maximize the
accuracy will naturally lead to classifying everything as the major class and
does not give acceptable results. Therefore, it is important to balance the
data before developing the machine-learning model.

4.2.2 Handling Imbalanced Dataset

Imbalanced data sets are common in medicine and other domains. The
issue of imbalanced datasets has gathered wide attention from researchers
during the last several years [180]. It occurs when the samples represented
in a problem show a skewed distribution, i.e., when there is a majority (or
largest number of negative samples) and a minority (or least number of pos-
itive samples) in a dataset. Analyzing such a complex nature of the dataset
becomes an issue in the machine learning community, including genetic pro-
gramming, and it is observed that most of the traditional machine learning
algorithms are very sensitive with imbalanced data. Usually, accurate clas-
sification of minority class samples is more important than majority class
samples, especially in medical diagnosis. Table 4.1 presents an imbalanced
data in each problem (mortality, access to ED with red code, disability,
fracture, urgent hospitalization, and preventable hospitalization). The im-
balanced proportions between the positive and negative classes of the six
datasets are treated independently. Providing imbalanced data to a classi-
fier will produce undesirable results such as much lower performance and
increasing the number of false negatives.

There are various approaches to deal with imbalanced data that have
been used in the literature, such as resampling and cost-sensitive learning
methods [267]. In this study, we choose the resampling methods, which are
based on under-sampling [197] and oversampling [268].These methods are
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advantageous because they are classifier independent and can be used as a
pre-processing step, in which the processed data can be given as input to
any classifier. Oversampling is the process of replicating samples from the
minority class to balance the data. The limitation of oversampling is that it
may cause an overfitting problem as it clones the same instance and requires
more time to execute as compared to the under-sampling approach. As a
result, it is recommended to use it when the dataset is quite small in size.
Another issue with oversampling is that as our aim is to detect minority
classes, oversampling changes the class that we want to identify, which may
not be acceptable in some critical real-time problems [269]. Under-sampling
balances the imbalanced data by reducing the size of samples from the ma-
jority class. One limitation of the under-sampling approach is that it may
lead to loss of important information or bias in the data. From a practical
point of view, some literature showed that under-sampling tends to out-
perform oversampling in some settings [270], while others demonstrate that
oversampling performs better than under-sampling. In high-dimensional
data, oversampling performs poorly than oversampling [271], while under-
sampling performs poorly in very small datasets. In our case, since the
amount of collected data is sufficient, we adopted under-sampling to rebal-
ance the sample distribution followed by a statistical test to avoid bias and
ensure representativeness between samples. Since our data is multi-output
data, we followed these simple steps to obtain balanced and independent
datasets:

1. Filter all positive and negative samples from the original dataset based
on the values of the output variables. Samples with at least one positive
class value from the six outcomes are grouped as a positive sample,
which accounts for 10% of the original dataset, and all remaining are
grouped as a negative sample, which comprises 90% of the original
dataset.

2. Keeping all the 10% samples in the positive class (minority group),
randomly select an equal number of samples (10%) in the negative
class (majority group).

3. Check whether the randomly selected 10% negative samples are rep-
resentative of the remaining negative samples (90%). After checking
that the test is reasonably significant, we obtained a new multi-output
dataset of size 211924 each. A statistical test was applied in all vari-
ables to decide whether the distribution of frequencies of a variable in
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the 10% sample was representative of the same variable in the 90%
sample. Since all the variables in the study are categorical, we used a
chi-square independence test with a significance level of 0.05 to check if
there is a significant difference between the 10% sample the 90% sam-
ple with respect to input variables. The yielded chi-square statistic
and the P-values are assessed to support the significance of the test’s
conclusion. The results of the chi-square test between 10% and 90%
negative samples are shown in Appendix B.

4. Once the test is significant, we decomposed the multi-output dataset
into six independent datasets. Then, an equal number of positive and
negative samples are selected randomly from each dataset.

4.2.3 Predictive Models

The machine learning (ML) approaches selected for this study are support
vector machines (SVM), artificial neural networks (ANN), random forests
(RF), decision trees (DT), logistic regression (LR) and genetic programming
(GP). A brief summary of these learning algorithms is presented below:

SVM is a robust classifier that was originally designed to identify two classes
that require a huge amount of training data to select an effective decision
boundary (Figure 4.1). There exist several works on prediction and classi-
fication using SVM [272].

SVM converts the original feature space into a higher dimensional fea-
ture space based on a kernel function and then obtains support vectors to
maximize the separation (margin) between two classes. SVM first approxi-
mates a hyperplane for segregating the two class labels. Accordingly, SVM
takes samples from both the classes, named as support vectors, which are
closest to the hyperplane. The total distance between the hyperplane and
its support vectors is called the margin. SVM then iteratively aims to op-
timize and/or maximize the margin between the hyperplane and supports
vectors, thereby finding the most generalizable decision boundaries. When
the dataset cannot be linearly separable, certain kernels are implemented in
the SVM to appropriately transform the feature space into higher dimen-
sional and convert back into the original feature space. This is called kernel
function. There are various kernels and parameters that are used to improve
the performance of classification by SVM [273]. In this study, the radial ba-
sis function (RBF) kernel is used with different values of gamma and the
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regularization parameters for solving the binary classification problem. It
has been used to predict negative health outcomes or events in frailty data
by plotting the training dataset where a hyperplane classifies the points into
two classes, presence and absence of frailty.

Figure 4.1: A typical SVM classifier without kernel function on a dataset that has two features
and two classes. All training samples are represented as circles or stars. Support vectors (denoted
as stars) are from the training samples such that they are closest to the hyperplane among the
other training samples for each of the two classes. Two training samples have been misclassified
because they lie on the wrong side of the hyperplane.

Another analytical technique used in this study is artificial neural networks
(ANNs), which have been successful in solving classification problems in
different domains [274]. Based on the functioning of biological neural net-
works, ANNs are dense networks of interconnected artificial neurons that
get activated based on inputs. Among the various types of ANNs, in this
thesis, we used multilayer perceptrons neural network (MLPs) with back-
propagation learning algorithms. MLP, the ANNs most commonly used for
a wide variety of problems, is based on a supervised procedure, i.e., the
network develops a model based on samples in data with known outputs.
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An MLP contains three layers (input, hidden, and output) with nonlin-
ear computational elements (also called neurons and processing units). A
neuron, often called a node or unit, is the basic unit of computation in a
neural network. The information flows from the input layer to the output
layer through the hidden layer (Figure 4.2). All neurons from one layer
are fully connected to neurons in the adjacent layers. These connections
are represented as weights (connection intensity) in the computational pro-
cess. The weights play an important role in the propagation of the signal
in the network. They contain the knowledge of the neural network about
the problem-solution relation. The number of neurons in the input layer de-
pends on the number of input features in the model, whereas the number of
neurons in the output layer is equal to the number of output variables. The
number of output neurons can be single or multiple. In frailty modeling,
input features are generally given to the input layer as independent vari-
ables to predict outcome variables associated with frailty, which are given
to the output layer as target values corresponding to the given input values.
Moreover, both the numbers of hidden layers and their neurons are depen-
dent on the complexity of the model and are important parameters in the
development of the MLP model. The main parameters used in MLP, which
include activation function, solver, hidden layer size, and learning rate, are
configured for the classification work.

An MLP is trained to minimize errors between the desired target values
and the values computed from the model. If the network gives the incorrect
answer, or if the errors are greater than a given threshold, the weights are
updated to minimize them. Thus, errors are reduced, and, as a result,
future responses of the network are likely to be correct. In the learning
process, datasets of input and desired target pattern pairs are presented
sequentially to the network. The learning algorithm of an MLP involves a
forward propagation step followed by a backward propagation step. MLP
algorithms are widely discussed in the literature [275].
We also explored the potential of tree-based classifiers (Decision trees and
Random forests) for the prediction of outcomes in each frailty problem. De-
cision trees (DT) builds classification models in the form of a tree structure.
DT algorithms are effective in that they provide human-readable rules of
classification. The main algorithms used in decision trees are ID3, C4.5,
and CART [276], which build decision trees using the concept of informa-
tion entropy. In our study, the CART algorithm is used for building the
decision tree with hyperparameters set for each problem. Random forests
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Figure 4.2: A typical artificial neural network architecture with three layers. X, input variables;
Y , output variables; and Y ′, values computed from the model.

(RF) consist of a large number of individual decision trees that operate as
an ensemble, and a bootstrap sample technique is used to train each tree
from the set of training data. Each tree gives a classification, and the for-
est chooses the classification having the most votes (over all the trees in
the forest). For the final decision, RF classifier aggregates the decisions of
individual trees; consequently, RF classifier exhibits good generalization.It
seems that using RF results in increased stability as compared to using sin-
gle decision trees. Tree-based classifiers are known for the prediction task
in the medical domain [277]. The set of hyper-parameters, such as the num-
ber of trees in the forest, the maximum number of features considered for
splitting a node, the maximum number of levels in each decision tree, etc.
have been set for each problem.

Logistic Regression (LR), a specific type of multivariate regression, is the
most common and well-established binary classifier [278]. LR is used to
model only a dichotomous variable, which usually represents the presence
or absence of an outcome or event based on a set of predictor variables. It
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predicts an event of occurrence by fitting a dataset into a logit function.
LR analysis has also been used particularly to investigate the relationship
between binary or ordinal response probability and explanatory variables.
In this study, like other ML models, LR has been used to distinguish frail
and non-frail subjects.

Genetic programming (GP) has also been applied to the prediction of ad-
verse outcomes asscocited with frailty. GP is typically designed to address
the problem of automatic program synthesis and automatic programming.
GP accomplishes this task by generating a population of computer pro-
grams over many generations using operations of natural selection [279].
GP is a search and optimization algorithm that iteratively transforms a
population of computer programs into a new generation of programs using
various genetic operators. The most commonly used operators are crossover,
mutation, and reproduction. The crossover operator recombines randomly
chosen subtrees among the parents and creates a new program for the new
population. The mutation operator replaces randomly chosen subtree by a
randomly generated tree, while the reproduction operator replicates a se-
lected individual to a new population.The general problem solving process
of GP includes the following five steps (Figure 4.3).

1. Generate an initial population of functions and terminals of the prob-
lem (computer programs) randomly. Each of the randomly generated
computer programs is considered as candidate solutions to the problem.

2. Execute each program in the population and give it a fitness value
according to how well it solves the problem.

3. Create a new population of computer programs, i.e, the next generation
is produced using genetic operations:

(a) Copy the best existing programs based on fitness value
(b) Create new computer programs by mutation.
(c) Create new computer programs by crossover

4. Steps 2 and 3 will be repeated until a termination criterion is matched,
which can be finding the best program or reaching the maximum num-
ber of generations.

5. The best computer program that is shown in any generation is desig-
nated as the result of GP.
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Figure 4.3: GP searching process.

Many works in GP focus on classifier induction, a task that can be accom-
plished by evolution using GP [280]. In GP, setting the control parameters
is an important first step to manipulate data and to obtain good results. In
our datasets, we tried several experiments for classification tasks by using
the control parameters of GP proposed in HeuristicLab tools [281].

4.2.4 Performance Evaluation

The performance measures were considered based on the proportion of older
people with mortality, urgent hospitalization, preventable hospitalization,
disability, fracture, and access to ED with a red code. Predicting these
adverse outcomes among a large number of subjects is important when
applied in real-world practice. Hence, the true positive rate (TPR) was the
main metric to consider. The overall accuracy (Acc), true negative rate
(TNR) and F1-score, which is the harmonic mean of precision and recall,
were used as additional performance metrics. The accuracy, TPR, and TNR
were formulated using the true positives (TP), false positives (FP), true
negatives, and false negatives (FN). These measures formally are explained
in chapter 2, as defined in [47].
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4.2.5 Data Analysis Tools

The data analysis tools used in the study are Python Scikit-learn library,
RStudio software package, and HeuristicLab. In this work, the exploratory
data analysis part and statistical test analysis were done using R3.5.0,
whereas the entire classification problems with support vector machines,
random forests, neural networks, logistic regression and decision trees were
implemented using python 3.7. The Python implementation codes used in
the experiment can be accessed online from the following URL:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303829/. HeuristicLab
is a software tool for heuristic and evolutionary algorithms, which was used,
in this study, to carry out classification problems using GP.

4.2.6 Experimental Settings

Model Development
In analyzing the data for prediction, the output variables represent an oc-
currence in the next year, and the predictive model is proposed to predict
frailty according to the expected risk of urgent hospitalization, preventive
hospitalization, disability, fracture, access to ED with a red code and death
within a year. The performance of various predictive models is evaluated
for each outcome prediction using four metrics –Accuracy, TPR, TNR, and
F1-score. These metrics provide an effective and simple way to evaluate
the performance of a classifier. Using these four measures, the models were
evaluated using both the holdout method and the cross-validation method.
Figure 4.4 shows the general experimental workflow of the predictive ma-
chine learning model.

Holdout Method
In this study, our first experiment was started by exploring the predictive
performance of machine learning methods using the holdout method. This
method randomly splits a dataset into training and testing according to a
given proportion. Each machine learning model was trained using the train-
ing dataset (70%) and evaluated using test datasets (30%). The training
dataset was used for building the model, while the test dataset was used to
evaluate the prediction capabilities of models.

K-Fold Cross-Validation
The K-fold Cross-Validation (CV) procedure was applied to each problem’s
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data. The CV is one of the most commonly used model evaluation proce-
dure that extends the holdout method by repeating the splitting process
several times. The K-fold CV technique divides the dataset into K folds of
approximately equal size. Then, the model being evaluated is trained using
the K-1 parts, and one part is left out for model validation. In this study,
we used 10-folds, and the dataset was split into three parts for the purpose
of model training and testing: the training set to build the model, the val-
idation set to select the model parameters and the test set to evaluate the
performance of the final model based on the selected parameters.

Hyperparameter Tuning

In all experiments, the set of hyperparameters was selected for each ML
method before the training begins. Hyperparameters allow ML algorithms
to better adjust to the problem details. The hyperparameters for each model
were tuned using a grid search with cross-validation in Python Scikit-learn,
as described by Mueller and Guido [282]. Appendix C presents the list of
hyperparameters used for training each ML model in this study.

Figure 4.4: The experimental workflow of the predictive machine learning model
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4.3 Results using Machine Learning Methods

Study Population
From the original dataset of 1,095,612 elderly people aged 65 and above, we
retrieved 83,646 with mortality, 77,836 with urgent hospitalization, 62,854
with a disability, 38,144 with preventable hospitalization, 14,978 with ac-
cess to ED with red code and 14,166 with a fracture for this study. The
retrieval process was made using the resampling approach, and each problem
was analyzed independently of each other using the widely used machine
learning models. In this section, the predictive performance of machine
learning models using both holdout and cross-validation methods are pre-
sented through feature selection analysis.

Features Selection
Feature selection provides an effective way to remove irrelevant and/or
redundant features, which can reduce running time, increase learning ac-
curacy, and facilitate a better understanding of the model. Unnecessary
features can also increase the chance of overfitting and decrease the gener-
alization performance on the test data. We used a filter method for feature
selection [283]. A Chi-square test is a filter method used in this study to
find out the statistical significance between features and the target. The
Chi-square value, together with P-values at a significance level of .05, was
used to identify the most important features with their rank, i.e., variables
shown to be significantly associated with the outcome by the Chi-square
test analysis (P-value < .05) were selected for model building. A P-value
of P<.001 indicates that there is an association between the input and the
target variables. The strength of the association between the input variables
and the target is ranked based on the Chi-square value. Out of the 58 pre-
dictor variables, 25,24,10,7,4 and 3 non-significant variables were discarded
for preventable hospitalization, urgent hospitalization, emergency admis-
sion with red code, fracture, mortality, and disability, respectively. Table
4.2 presents the top 15 ranked features in order of decreasing importance in
the mortality and fracture problems. The most significant feature for other
problems is presented in Appendix D.

Feature importance can give us insight into a problem by indicating what
variables are the most discriminating between classes. For example, in Table
4.2, ‘age,’ followed by the ‘Charlson index,’ are the most important features
in the prediction of mortality, which makes sense in the problem context.
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The rank of features differs from one problem to another, except for the
variable ‘age,’ which has the highest score in all problems. Next to the
‘age’ attribute, variables, such as ‘femur fracture,’ ‘the number of urgent
hospitalization,’ and ‘neck fracture’ are the most discriminant features in
the fracture problem, while ‘type of family’ and ‘home living status’ are the
least significant variables. ‘Mental disease,’ ‘poly prescription’ and ‘disease
of the circulatory system’ are variables with the highest rank in the urgent
hospitalization and preventable hospitalization. The ‘age,’ ‘Charlson index,’
and ‘number of urgent hospitalization’ are the most important predictors
of emergency admission with red code.

Table 4.2: The most important variables in mortality and fracture problems

Mortality problem Fracture problem
Rank Variable P-Value Variable P-Value

1 Age P<.001 Age P<.001
2 Charlson index P<.001 Femur fracture P<.001
3 # urgent hospitalization P<.001 # urgent hospitalization P<.001
4 # total hospitalizations P<.001 Neck fracture P<.001
5 invalidity P<.001 green code P<.001
6 # non-traumatic P<.001 # total hospitalizations P<.001
7 Disability P<.001 Charlson index P<.001
8 Poly prescriptions P<.001 Poly prescriptions P<.001
9 green code P<.001 invalidity P<.001
10 yellow code P<.001 Disability P<.001
11 blood P<.001 Nerve disease P<.001
12 Anemia P<.001 Depression P<.001
13 circulatory disease P<.001 blood P<.001
14 respiratory disease P<.001 Anemia P<.001
15 urinary tract disease P<.001 yellow code P<.001

Some features with the lowest rank and common to urgent hospitalization
and preventable hospitalization include marital status, level of education,
work status, and income. Each of the predictive models (SVM, ANN, LR,
RF, and DT) have been applied using the most important features in each
of the six problems. GP differs from the other machine learning models
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in that it performs implicit feature selection automatically during the evo-
lutionary process. GP learns which combination of features are useful for
classification and determines the optimal number of features automatically.

Performance via Holdout Method
In this study, our first experimental results were obtained through the hold-
out (train-test split) method with all subsets of features using the default
parameters of the models. However, these approaches have brought the
problem of overfitting on the training data for RF and DT, as shown in
Figures 4.5, 4.6 and 4.7. The plots indicate the accuracy without perform-
ing any parameter tuning and using all the feature subsets (from top 3-top
58 feature subsets). The left plot shows that RF and DT overfit the train-
ing data, which poorly generalizes the test data as the number of features
increase. The training accuracy of DT and RF is rapidly increasing as the
number of features increases while the test accuracy reduces radically with
an increasing number of features. RF and DT learn the noise in the training
data to the extent that it negatively impacts the performance of the model
on test data.

We say overfitting occurs when a hypothesis or model doesn’t generalize
well from our training data to unseen data. A more formal definition of
overfitting can be given as follows [71]: Given a model or hypothesis space
H, a hypothesis h ∈ H is said to overfit the training data if there exists
some other hypothesis h′ ∈ H, such that h has smaller error than h’ over
the training examples, but h’ has a smaller error than h, over the entire
distribution of examples.

In order to reduce overfitting problem and improve the performance,
the parameters of each model were tuned using grid search along with the
most important features associated with each outcome. Table 4.3 shows
the performance of SVM, RF, ANN, and DT using the best features and
parameters selected on each problem via holdout method.

In our experiments, we explored common variations for each machine
learning algorithm in frailty predictions. From the results of the experi-
ment in Table 4.3, it is clear that all algorithms behave differently for each
different problem. For the mortality dataset, RF and ANN produced higher
values of TPR (0.79), while the decision tree produced the lowest perfor-
mance. For the fracture problem, DT has scored the highest values of TPR
(0.79). The overall average TPR of RF was slightly higher for all prob-
lems, while SVM has slightly higher values of TNR in all problems, and
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Figure 4.5: Train accuracy (left) and test accuracy (right) for mortality data with all features.

Figure 4.6: Train accuracy (left) and test accuracy (right) for fracture data with all features.

DT produced the lowest average TPR in all problems. According to the
results on the test part of the dataset, all machine learning models showed
lower prediction performance on the urgent hospitalization and access to ED
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Figure 4.7: Train accuracy (left) and test accuracy (right) for disability data with all features.

with red code problems, while mortality and disability have higher values
of prediction results compared to other outcomes.

Table 4.3: Prediction performance via holdout method for the six problems

SVM RF ANN DT
Problem TPR TNR TPR TNR TPR TNR TPR TNR
Mortality 0.78 0.78 0.79 0.77 0.79 0.78 0.6 0.79
Disability 0.78 0.72 0.78 0.71 0.75 0.75 0.78 0.69
Fracture 0.75 0.74 0.77 0.72 0.77 0.72 0.79 0.66
Urgent
hosptalization

0.61 0.73 0.65 0.68 0.66 0.68 0.64 0.68

Preventable
hosptalization

0.74 0.73 0.73 0.72 0.73 0.73 0.76 0.66

Access ED with
red code

0.63 0.73 0.63 0.72 0.63 0.74 0.62 0.73

Performance via 10-fold Cross-Validation
The 10-fold cross-validation reduces the variance of the resulting estimate
by averaging over 10 different sub-samples. This 10-fold cross-validation
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can deal with limitations of the holdout method, such as to reduce over-
fitting, and therefore, it is more reliable and provides better generalization
performance on the test data. Thus, in our second experiment, we used 10
fold cross-validation method on each of the six datasets. The variation of
each model’s accuracy across the 10 samples in the 10-fold cross-validation
is presented in Figures 4.8 and 4.9 for the largest dataset (i.e., mortality)
and smallest dataset (i.e., fracture), respectively. From the figures, one can
see that the models are more stable in predicting mortality than fracture
across the 10 samples. It is also found a slight variation of classification
rate across the ten samples for the other outcomes.

Figure 4.8: The score of five models across 10 validation samples on Mortality problem.

As shown in Figure 4.8, the classification rate across ten samples in the
10-fold cross-validation is slightly varied in each classifier for the mortality
problem. The variation of accuracy is greater in the fracture problem from
sample 1 to sample 10 for each model, as shown in Figure 4.9. Particularly,
logistic regression has shown a greater variety of performance among the
other models, where it performed the lowest accuracy at sample 7 and the
highest accuracy at sample 9 in the fracture problem. The decision tree
has shown the highest classification rate at sample 10 for mortality and at
sample 3 in the fracture problem, while it has the lowest accuracy in the
rest of the samples. The average performance of 10-fold cross-validation in
each problem is shown in Table 4.4, where performance for each model is
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Figure 4.9: The score of five models across 10 validation samples on fracture problem.

measured using accuracy, TPR, TNR, and F1-score.
From the results of all models in each outcome presented in Tables 4.4

and 4.5, we can see that predicting mortality events has shown the highest
performance, while predicting access to urgent hospitalization and access
to ED with red code have shown lower performance. Next to the mortal-
ity problem, there are higher values classification rates for disability and
fracture problems. This implies that the dataset in this study is better
at predicting mortality than predicting the other outcomes. In predict-
ing urgent hospitalization, only SVM achieved the best performing algo-
rithm in all measurements (Accuracy, TPR, TNR, and F1-score) among
all models trained using 10-fold cross-validation. In mortality problem, it
can be seen that the highest average performance was obtained by ANN
(Accuracy=0.78, TPR=0.81, TNR=0.76, F1-score=0.79) and SVM (Accu-
racy=0.79, TPR=0.77, TNR=0.80, F1-score=0.78) followed by LR (Ac-
curacy=0.78, TPR=0.78, TNR=0.79, F1-score=0.78). DT produced the
highest TPR (0.80) and RF showed comparable results (Accuracy=0.78,
TPR=0.79, TNR=0.76, F1-score=0.76) on mortality problem. For fracture
and disability problems, SVM, RF, and LR have a similar accuracy (0.75),
although they all differ in TPR, TNR, and F1-score.

From the results of the experiments, it is also important to observe that
the various machine learning techniques can significantly vary in terms of
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Table 4.4: Prediction results of models using 10-fold cross-validation

Models Accuracy TPR TNR F1-
Score

Mortality
ANN 0.78 0.81 0.76 0.79
SVM 0.79 0.77 0.8 0.78
RF 0.78 0.79 0.76 0.76
LR 0.78 0.78 0.79 0.78
DT 0.75 0.8 0.7 0.76
Fracture
ANN 0.75 0.77 0.73 0.75
SVM 0.75 0.77 0.74 0.75
RF 0.75 0.78 0.72 0.76
LR 0.75 0.75 0.75 0.75
DT 0.74 0.76 0.72 0.74
Disability
ANN 0.74 0.76 0.71 0.75
SVM 0.75 0.78 0.73 0.76
RF 0.75 0.77 0.72 0.75
LR 0.75 0.76 0.73 0.74
DT 0.73 0.78 0.7 0.75
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Table 4.5: Prediction results of models using 10-fold cross-validation

Models Accuracy TPR TNR F1-
Score

Urgent hospitalization
ANN 0.67 0.6 0.7 0.66
SVM 0.75 0.8 0.7 0.76
RF 0.66 0.7 0.7 0.66
LR 0.67 0.7 0.6 0.65
DT 0.66 0.7 0.7 0.65
Preventable Hospitaliza-
tion
ANN 0.74 0.7 0.7 0.73
SVM 0.74 0.7 0.8 0.73
RF 0.73 0.7 0.7 0.73
LR 0.74 0.7 0.8 0.73
DT 0.72 0.7 0.7 0.72
Access to ED with red
code
ANN 0.7 0.7 0.7 0.67
SVM 0.68 0.6 0.7 0.66
RF 0.68 0.7 0.7 0.67
LR 0.69 0.6 0.7 0.67
DT 0.67 0.7 0.7 0.68
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their performance for the different evaluation metrics. For example, in the
mortality problem, SVM outperforms DT and ANN in TNR value (0.80),
and ANN outperforms both SVM and DT in F1-score (0.79), while DT
outperforms both models in TPR value (0.80). It also noted that the per-
formance of all models differs in all problems due to the difference in feature
space, size, and diversity of data in each of the six problems. This can be
seen that the prediction performance of all models trained with mortality
data (largest in size) is much better than the performance of models trained
with access to ED with red code data (smaller in size), which demonstrates
that the size of data is an important factor for better performance, but not
always true for all models. In addition, the performance of each ML tech-
nique varies from problem to problem. For example, the performance of
ANN measured in TPR is 0.81, 0.77, 0.76, 0.74, 0.70 and 0.67 for mortality,
fracture, disability, preventable hospitalization, access to ED with red code
and urgent hospitalization, while for DT the TPR is 0.80,0.75,0.78, 0.73,
0.70 and 0.65 for each problem, respectively. Considering the performance
of these two ML methods (ANN and DT) in their TPR value, ANN outper-
forms DT in mortality and fracture problems, while DT outperforms ANN
in the disability and access to ED with red code problems. We can also see
that LR has a higher TPR value than SVM in the mortality problem. This
shows that it is not necessarily that the more complex ML models (e.g.,
ANN, SVM) can always outperform simpler models (e.g., DT, LR). The
RF classifiers are considered to be less complex than SVM and ANN. In 10-
fold cross-validation, however, it achieved comparable performance to SVM
and ANN in most of the problems. On the other hand, tree-based classi-
fiers (RF and DT) are more sensitive to bad features and quality of data.
Therefore, effective feature selection is an important step to improve their
performance. SVM model tends to perform well in high-dimensional classi-
fication problems; however, it may not perform well if the sample classes of
the problem are highly overlapping. ANN can generally outperform other
techniques if the dataset is very large and if the structure of the dataset is
complex (e.g., if they have many layers).

In general, machine learning is an exploratory process, where there is no
one-size-fits-all problem. In particular, there is no model that is recognized
to achieve supreme performance for all problem types, domains, or datasets.
The best performing ML model differs from one problem to another accord-
ing to the characteristics of variables, the size of the data, and the metrics
used. The idea is similar to the “No Free Lunch” theorem [284], which
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states that there is no universal algorithm that works best for every prob-
lem. However, it is important to study each problem by evaluating each
model carefully in order to reach an effective predictive design. The results
also show that it is essential to carefully explore and evaluate the perfor-
mance of ML techniques using various optimized parameter values as well
as using the most significant predictor variables. Particularly, tree-based
classifiers (e.g., RF and DT) are more sensitive to overfitting problems, as
shown in Figures 4.5 - 4.7 on the mortality, fracture and disability problems,
if the correct subset of features is not selected or if the required parameter
values of models are not configured properly. The accuracy in the figures
clearly indicates that an increasing number of features in RF and DT leads
to the model overfitting. Interestingly, SVM and ANN models showed rel-
atively consistent performance both on training and testing, even with an
increasing number of features.

4.4 Results using Genetic Programming

In this section, we investigated the performance of GP for the prediction
of frailty status in terms of the six problems or outcomes. The predictors
common to all problems and which were also included in the final model
produced by GP were age, the number of urgent hospitalization, Charl-
son comorbidity index, dementia, and mental disease. The final prediction
model of each problem generated by GP is a binary parse tree representing
the classification model.

GP Parameter setup
In GP, setting the control parameters is an important first step to manip-
ulate data and to obtain good results. In our datasets, we tried several
experiments for classification tasks by using the control parameters of GP,
such as population size, selection method, number of elite individuals, ini-
tialization method, number of generations, crossover probability rates, and
mutation probability rates. Due to the stochastic nature of GP, 30 runs were
performed in all problems, each with a different random number generator
seed. For our frailty problem, we specifically focused on the two common
parameters of GP: Maximum number of generations and population size.
In order to investigate the effect of few generations over a larger population
and small population over more generations and also to get an advantage
from either of these GP parameter settings, we run two different algorithms
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of GP (GP1 and GP2) under varying population size and the maximum
number of generations, keeping all other parameters set to default. The
maximum number of generations and population size for GP1 is set to be
1000 and 100, respectively. In GP2, we set a maximum number of gener-
ations to be 100 and population size 1000. For all frailty problems, GP1
and GP2 were applied, and for each experiment, 30 runs were performed
with the same initial configurations of parameters. We clearly observed that
the runs with a population size of 1000 and generation 100 are related to
the immense runtime requirements, comparing with the runs of population
size 100 and generation 1000. In fitness, it is apparent that a large popula-
tion running for a small number of generations behaves differently from the
small population running for a large number of generations. The summary
of parameters used for running GP2 experiments is presented in Table 4.6.

Table 4.6: GP Control Parameters used in the Experiment

Parameter Name Value
Algorithm GP2
Maximum generations 100
Population size 1000
Mutation rate 15%
Crossover rate 90%
Solution creator Ramped half and half
Max tree depth 10
Max tree length 100
Elites 1
Terminal set Constants, Variables ,

The fitness of GP1 and GP2 across generations were compared for mor-
tality and fracture problems using mean squared error (MSE). The MSE is
used as fitness to compare the quality of the two models (GP1 and GP2),
and it was observed that GP2 produced lower error rates, which is ranging
from 0.18 to 0.25 for mortality and from 0.19 to 0.25 for fracture problems.
While for GP1, the MSE is much higher, which is ranging from 0.20 to 0.30
for the mortality and from 0.22 to 0.29 for fracture problems. The results
show that a large population is more likely than a small population to make
more significant improvements in fitness from one generation to the next,

114



: 4 – Predictive Modeling for Frailty Conditions in Older Adults

given that it generates more new trees in each generation. Generally, for
frailty problems, it seems that results with GP2 are more stable and that
larger population is a better choice than many generations. As a result of
this, we preferred GP with a larger population size and a smaller number
of generations for the prediction of frailty conditions.

GP Prediction Performance
In analyzing GP for classification, the most important aspect is to know
the number of samples that are classified correctly and those, which are
classified incorrectly. The results averaged from 30 runs of GP experiments
are presented in Table 4.7 on the training set, and Table 4.8 on the testing
set.

Table 4.7: Performance of GP on the training set

Problem Sensitivity (SD) Specificity (SD) Accuracy (SD)
Mortality 0.75(0.05) 0.75(0.06) 0.75(0.02)
Access to ED with red code 0.76(0.24) 0.45(0.37) 0.58(0.09)
Disability 0.72(0.04) 0.69(0.05) 0.72(0.02)
Fracture 0.71(0.04) 0.67(0.14) 0.74(0.08)
Urgent hospitalization 0.65(0.22) 0.63(0.29) 0.64(0.13)
Preventable hospitalization 0.71(0.18) 0.63(0.33) 0.67(0.11)

Table 4.8: Performance of GP on the testing set

Problem Sensitivity (SD) Specificity (SD) Accuracy (SD)
Mortality 0.75(0.05) 0.76(0.06) 0.75(0.02)
Access to ED with red code 0.73(0.24) 0.43(0.36) 0.58(0.08)
Disability 0.70(0.04) 0.73(0.05) 0.71(002)
Fracture 0.71(0.14) 0.67(0.08) 0.72(0.04)
Urgent hospitalization 0.66(0.22) 0.62(0.29) 0.63(0.13)
Preventable hospitalization 0.73(0.18) 0.64(0.33) 0.68(0.11)

In these problems, using sensitivity and specificity allows us to correctly
identify those with the disease condition (frail people) and to correctly iden-
tify those without the disease (non-frail people), respectively. The standard
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deviation (SD) for mean sensitivity, specificity, and accuracy are also calcu-
lated since each problem is run 30 times, as shown in Tables 4.7 and 4.8. For
the mortality problem, GP produced the best performance in all measure-
ments. For access to ED with red code, the overall accuracy and specificity
of GP are slightly lowered. For the remaining problems, the performance
of GP is at an acceptable level. These results confirmed the predictive ca-
pability of GP on frailty problems.

Comparison of GP with other non-GP classifiers
In the literature, there are some studies that compare GP with other sta-
tistical and machine learning methods [285]. The studies suggest that GP
may be better at representing the potentially non-linear relationship of (a
smaller subset of) the strongest predictors, although the complexity of the
GP-derived model was found to be much higher. The fact that GP requires
fewer variables to achieve similar performance may have an advantage in the
practical application of the developed clinical prediction models. Therefore,
a prediction model that requires fewer inputs, especially if the information
relating to these inputs is in practice recorded easily and to good quality,
would considerably increase adoption and utility. A comparison of GP with
statistical models, such as cox regression techniques [286], was attempted in
terms of the performance of a cardiovascular risk score using a prospective
cohort study of patients with symptomatic cardiovascular disease. The pre-
dictive ability of the Cox regression model and GP was evaluated in terms
of their risk discrimination and calibration using the validation set. Their
findings indicated that the discrimination of both models was comparable.
Using the calibration of these models, which was assessed based on calibra-
tion plots and the generalization of the Hosmer-Lemeshow test statistic, was
also similar, but with the Cox model is better calibrated to the validation
data. In [287], a comparison of GP and ANN in metamodeling of discrete-
event simulation was studied. The results of this study concluded that GP
provides greater accuracy in validation tests, demonstrating a better gen-
eralization capability than ANN, despite the fact that GP, when compared
to ANN, requires more computation in model development. Most machine
learning methods are usually straightforward to implement and work well
with minimum resources; however, their black-box nature makes them non-
user-friendly. On the other hand, GP results are often human friendly and
provide an explicit mathematical formula as its output, although developing
such an efficient algorithm and realizing its full potential to solve real-world
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problems can be challenging. GP algorithms are expected to require a com-
puting time that grows exponentially with the size of the problem [288].
Most commonly, the ability of a machine learning algorithm to produce
high performance results depends on the nature of the problem as there
is no single algorithm that works best for every problem. As a result, we
compared the results of GP with the other commonly used machine learn-
ing models in terms of prediction performance on the six different problems
of frailty: mortality, access to the emergency department with red code,
disability, fracture, urgent hospitalization, and preventable hospitalization.
On each of the six problems, the results of GP were compared with sup-
port vector machine (SVM), random forest (RF), artificial neural network
(ANN) and decision tree (DT).

In each of the six problems associated with frailty, the results obtained
from the non-GP classifiers (SVM, RF, ANN, and DT) are compared with
the results of GP using sensitivity. The comparison is based on the ability
to identify the positive subjects in the frailty problems using their respec-
tive datasets. The performance comparison of predictions on four problems
by the different classifiers is shown in Figures 4.10 and 4.11. The figures
depict the performance of all classifiers using sensitivity on the testing part
of the data. From the figures, the performance values were obtained using a
different subset of ranked features, the boxplots represent the performance
at every 30 runs of GP, and the different colored dots represent the per-
formance of the other machine learning algorithms. In all plots, the x-axis
represents the number of features, and the y-axis represents the performance
of GP using sensitivity.

Looking at each box plot of GP in Figures 4.10 and 4.11, we can observe
that some runs are outliers in each problem due to the stochastic nature of
GP. For example, in urgent hospitalization, there are three runs beyond the
whiskers for the top 5 and top 10 variables. These runs are outliers of the 30
runs of GP, plotted as points. In all problems with all variables, the perfor-
mance of SVM, RF, ANN, and DT are displayed under the upper quartile
of the GP box plots, indicating the maximum performance obtained from
the 30 runs of GP is always greater than the performance of the machine
learning models. Comparing all algorithms, the decision tree followed by
random forest has the lowest performance in all problems for the number
of variables greater 10. The average sensitivity of GP overlaps with the
performance of ANN. However, the accuracy of GP is lowered compared to
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Figure 4.10: Performance of GP on Mortality (upper plot) and Disability (lower plot) problems
compared to other algorithms.

SVM and ANN. For making the fairest comparison possible between GP
and other machine learning models, a pairwise statistical test between the
30 runs of GP and each individual machine learning model was also per-
formed. The statistical test used was the Wilcoxon signed-rank test. The
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Figure 4.11: Performance of GP on Urgent hospitalization (upper plot) and Fracture (lower plot)
problems compared to other algorithms

Wilcoxon statistical test is a nonparametric test that ranks the differences
in performances of GP and other algorithms over each frailty problem. The
test was based on the sensitivity score of each algorithm in each problem
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on the test data at the significance level of 0.01. The results of the test in
terms of P-values with the significance level of 0.01 are shown in Table 4.9.

Table 4.9: Results of Wilcoxon signed-rank test in terms of P-values

Problem/dataset SVM vs. GP RF vs. GP NN vs. GP DT vs. GP
Mortality 0.000 0.003 0.001 0.000
Fracture 0.000 0.021 0.000 0.002
Disability 0.059 0.004 0.012 0.003
Urgent hospital-
ization

0.709 0.013 0.374 0.013

Preventable hospi-
talization

0.682 0.026 0.871 0.005

Access to ED with
a red code

0.006 0.000 0.011 0.000

As depicted in Table 4.9, the Wilcoxon test allows rejecting 11 hypothe-
ses. The P-values below 0.01 indicate that the respective algorithms differ
significantly in TPR, while the P-values above 0.01 indicate that the al-
gorithms behave similarly in predicting frailty conditions. The test results
between SM and GP are statistically significant only in disability, urgent
hospitalization, and preventable hospitalization. Combining the experimen-
tal results and Wilcoxon signed-rank test results, it is concluded that for
mortality and fracture SVM outperformed GP in TPR score, while GP out-
performed SVM and RF on urgent hospitalization and access to ED with
red code. Despite the fact that DT represented higher values of TPR on the
preventable hospitalization compared to other algorithms, its lowest TNR
result represented a higher disadvantage. ANN has a similar performance
with GP for preventable and urgent hospitalization events.

Feature Selection Comparison of GP and Chi-Square
The performance of GP feature selection is compared with the well-known
Chi-square feature selection method. The top three variables (age, Charlson
index, and the number of urgent hospitalization) selected by GP are also
selected by Chi-square as the top three variables in the mortality problem.
After three variables, there is slightly a little difference in the position of
variables. Table 4.10 presents the prediction accuracy of the classification
model using the features selected by GP and Chi-square for all problems.
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For each problem, the best average accuracy of the 30 runs of GP is taken
to compare the classification performance of GP and Chi-square feature
selection methods. From this table, Chi-square performed the best in the
mortality problem with an accuracy of 76%, followed by GP with an accu-
racy of 75%, a difference of only 1%. This condition also holds for disability
and fracture problems. For urgent hospitalization, both GP and Chi-square
produce a similar performance. The results show that GP can perform the
feature selection task with competitive results.

Table 4.10: Prediction accuracy via feature selection of GP and Chi-square

Problem GP feature selection Chi-square feature selection
Mortality 0.75 0.76
Urgent hospitalization 0.64 0.64
Disability 0.72 0.73
Preventable hospitalization 0.68 0.71
Access to ED with red code 0.58 0.68
Fracture 0.71 0.73

4.5 Discussions

Principal Results
The goals of the study under this chapter were to develop models to predict
the risk of hospitalization, disability, mortality, fracture, and emergency
admissions among older people in Piedmont, Italy. We inspected the pos-
sibility of using an administrative dataset to detect frailty in older adults
using different machine learning models, which have been used as a potential
tool for developing a prediction model. Six different models were developed,
and the performance of each model relies on the input data provided to the
learning algorithm. The performances of models were assessed by splitting
the data into a training set and test set. The test set was untouched during
the entire training and model selection process and only used for the final
model evaluation. A predictive model that can use administrative health
data will be useful in various settings to classify those individuals who are at
risk of frailty and to deliver preventive interventions. Several experiments
were conducted using different classification techniques to build predictive
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models for frailty. The results show that various ML models can vary signifi-
cantly from problem to problem in terms of the different evaluation metrics.
The explored models have shown solid predictive power to estimate the risk
of mortality than predicting disability, fracture, emergency admissions in
red code, urgent hospitalization, and preventable hospitalization within the
next year. Although each model is not a comprehensive model to predict
all frailty outcomes, we have demonstrated that the SVM model has shown
higher overall accuracy (0.79) in predicting mortality and urgent hospital-
ization than other models, when using 10-fold cross-validation. On the other
hand, except for the ANN, all other ML models have shown relatively poor
overall accuracy in predicting emergency admission with red code.

In addition, our results show significant performance enhancement by
reducing features. In order to reduce the overfitting problem and to im-
prove the prediction performance of classifiers, the feature selection pro-
cess is executed, where the best subset of the available features is chosen.
In each binary classification problem, all the independent variables were
ranked using the Chi-square feature selection method for each outcome in
both holdout and cross-validation methods. Using 10-fold cross-validation
on mortality problems, the TPR values (also called, sensitivity) of ANN,
SVM, RF, LR and DT were 0.81, 0.77, 0.79, 0.78 and 0.80, respectively. In
the holdout method, almost similar results have been obtained for ANN,
SVM, and RF, while DT produced higher TPR values using 10-fold cross-
validation than holdout method on the mortality problem. In general, 10-
fold cross-validation reduces variance by averaging over 10 different parti-
tions, and then, it is less sensitive to any of the partitioning bias in the
training and testing data. On predicting emergency admission with red
code, GP achieved better TPR value than SVM, ANN, LR, RF, and DT,
while SVM outperformed all models in predicting urgent hospitalization in
all evaluation measures.

Generally, an important observation from the results of the experiments
is that, on average, some of the ML models produce quite similar results
from the same outcome, while the best performing model varies from one
outcome to another outcome in terms of different metrics. For example,
SVM and ANN produce similar average performance across all evaluation
metrics in mortality and hospitalization outcomes. RF and LR produced
similar performance on average across all measurements in disability and
fracture outcomes. However, the prediction results of each ML model varies
from mortality to fracture or fracture to hospitalization, etc. This can

122



: 4 – Predictive Modeling for Frailty Conditions in Older Adults

demonstrate the feasibility of identifying frail older subjects through rou-
tinely collected administrative health databases.

Strength and limitation
The strength of our study is the possibility to include a multidimensional ad-
ministrative database using the most powerful predictive machine learning
models. In contrast to the previous studies, the prediction models use a wide
variety of input variables, including clinical and socioeconomic aspects, with
six simultaneous outcomes. The use of routinely collected socio-clinical data
can represent the multidimensional loss of an individual’s reserves, which
allows predicting prospective outcomes in the elderly. Moreover, the predic-
tions of frailty in terms of the six different adverse outcomes were assessed
and analyzed, which is a step forward in studying the association of frailty
with multiple health conditions on a frail person. There are limitations to
our study. Despite the original data comes with multiple outcomes, each
machine learning algorithms were designed to predict a single outcome, and
each result is analyzed independently of each other. Therefore, further stud-
ies can be investigated to construct a predictive model that considers the
correlations among the output variables to provide a list of relevant outputs
for a given, previously unseen patient. Furthermore, the patients’ informa-
tion such as gender can be included in the study in order to understand
gender-related factors for frailty and their impact on hospitalization and
mortality among older people.

4.6 Conclusions

Predictive modeling using the information available from the administra-
tive health database is an efficient method to identify frail older people
appropriate for interventions to prevent adverse outcomes. The proposed
predictive models can be applied to detect and predict frail people who
are at increased risk of adverse outcomes. This study suggests that a ma-
chine learning-based predictive model could be used to screen future frailty
conditions using clinical and socioeconomic variables, which are commonly
collected in community healthcare institutions. With efforts to enhance
predictive performance, such a machine learning-based approach can fur-
ther contribute to the improvement of frailty interventions in the elderly
community.
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Chapter 5

Multi-label Classification for
Early Diagnosis of Frailty
Syndrome

In this chapter, we study a multi-label classification problem for the simulta-
neous prediction of multiple outcomes of frailty conditions: mortality, frac-
ture, disability, medical emergency admission at the emergency department,
urgent hospitalization, and preventable hospitalization. The models are
constructed based on state-of-the-art multi-label classification algorithms,
including binary relevance, classifier chains, and label powerset approaches.
In addition, a hybrid of SMOTE and Tomek links (ML-TLSMOTE) is pro-
posed to address the inherent problem of an imbalanced dataset in multi-
label classification. More specifically, the proposed hybrid approach is de-
signed to solve the joint occurrence of minority and majority labels in the
same data patterns in multi-label learning. The proposal was tested using
the imbalanced multi-label dataset of older adults aged 65 years and above.
The experimental results show that the proposed method works effectively
on the imbalanced label distributions. Moreover, the multi-label modeling
of frailty helps to investigate label correlations and provide insights to tackle
future complications associated with frailty.

5.1 Introduction

Frailty syndrome is highly prevalent among older people and is mostly as-
sociated with multimorbidity [289], which leads to several adverse health
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outcomes. It is also a real challenge for many societies from social, fi-
nancial, and economic perspectives. It is commonly recognized that frailty
aggravates the risk of poor outcomes (e.g., hospitalization, loss of autonomy,
functional impairment, and death) and that it escalates health and social
challenges [290]. There are several tools that have been used for the detec-
tion of frailty. The Fried Phenotypic Model [20] is one of the most widely
used tools for assessing physical frailty. It is based on the assessment of five
measurable components: slow walking speed, self-reported exhaustion, low
grip strength, unintended weight loss, and low physical activity. According
to this model, frailty is considered to be present if a person has at least
three of the above pre-defined components. Following the concept of the
Fried model, several studies have been conducted to estimate the prevalence
of frailty in older people [291].

However, it should be noted that there is still considerable uncertainty
around the concept of frailty [13] and that a phenotypic evaluation of sub-
jects is challenging when considering a large population. There are many
reasons as to why it is so difficult to define and conceptualize frailty, includ-
ing its complex etiology [292], the often independent work of researchers in
diverse areas of frailty, such as biological basis, social basis, environment,
and technology, etc. [293, 294], and the inherent difficulty in distinguishing
frailty from aging and disability [295]. There is also a considerable degree of
heterogeneity among the different studies of frailty models in terms of sam-
ple type and size, population characteristics and settings, baseline frailty
status, and outcomes. In general, the current challenges of frailty research
include the lack of standard definition of frailty which leads to lack of a
standard screening and diagnostic tool, further understanding of interven-
tions to reverse frailty, the best time for intervention, comprehensive and
common understanding model to face the challenges and early estimation
of multiple adverse outcomes in a frail patient [296, 297].

Until now, the state-of-the-art statistical or analytical considerations
have been targeted for the intervention of a single outcome or risk fac-
tor associated with frailty. For example, the Fried’s frailty phenotype was
specified as a significant risk factor for 6-month adjusted mortality but was
not associated with delirium and in-hospital falls [40]; similarly, a frailty risk
model developed by Bertini et al.[263] predicts all-cause mortality within a
year, another study proposed in [298] was designed to predict hospital ad-
missions of older persons based on healthcare data. Our recently published
work on frailty [302] has also been focused on single outcome prediction,
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where separate models were developed for predicting mortality, hospital-
ization, fracture, and disability. Clinically, however, it makes sense for the
interventions to target more than one simultaneous outcomes with com-
mon heterogeneous risk factors associated with frailty. This is due to the
fact that the co-existence of multiple chronic conditions or comorbidity is
common in older people [299, 300], which contributes to having multiple ad-
verse outcomes. Therefore, this study aims to construct a predictive model
that considers the correlation among multiple outcomes to provide a list
of relevant outputs for a previously unseen patient. In other words, we
developed a multi-label classification (MLC) model to predict the six out-
comes of frailty simultaneously: mortality, medical emergency admission at
an emergency department, urgent hospitalization, disability, fracture, and
preventable hospitalization.

MLC is focused on training prediction functions that can associate an
instance with multiple labels that are not necessarily mutually exclusive
[301]. These days, MLC has gained considerable attention in the machine
learning community, which appears in many application domains, and it
is natural for many real-world problems, such as clinical diagnosis, disease
prediction, activity recognition, object detection, image classification, etc.
The existing methods for the MLC task are problem transformation and
algorithm adaptation methods. The former transforms the MLC task into
one or more single-label classification [176], regression problems, or label
ranking [174] tasks, while the latter could extend specific learning algorithms
to handle multi-label dataset directly[175].

One of the main challenges of the MLC problem is the existence of imbal-
anced labels where the number of 1’s (positive class) in one label is much
larger than the number of 1’s in the other label. Such imbalanced label
distributions are the intrinsic characteristics of most multi-label datasets.
More specifically, the joint occurrence of minority and majority labels in
the same instances affects the prediction performance of multi-label learn-
ing methods. In order to deal with this problem, we proposed a hybrid of
SMOTE and Tomek links (ML-TLSMOTE) to reduce the imbalanced label
distributions while diagnosing frailty conditions. Until now, such a hybrid
approach has only been applied to single-label classification. In this paper,
it has been extended to the multi-label scenario as an alternative solution
for addressing the imbalanced problem.
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5.2 Methods and Materials

5.2.1 Data Source

Data were already described in section 4.2.1 of chapter 4. Briefly, to de-
velop a multi-label predictive model, we used health information retrieved
from two years of administrative databases of elderly peopled age 65 years
and above. Data are collected using an individual record linkage between
the Italian 2011 census and the administrative health databases (enrolees’
registry, hospital discharges, drug prescriptions, outpatient clinical inves-
tigation database, and health exemptions).There are 1095613 anonymous
record items consisting of input variables such as demographic, socioeco-
nomic, and chronic conditions and output variables, which are described
as outcomes or measurable changes in the health status of patients. In
this study, six output variables that are associated with each individual’s
status are used as labels. They are mortality, urgent hospitalization, medi-
cal emergency admission at emergency department, disability, fracture, and
preventable hospitalization.

5.2.2 Data Description

All the six labels (i.e., the outcomes) in the data are binary-valued, as shown
in Table 5.1, which presents randomly selected records from the original
dataset. Labels that are associated with each record are called relevant (or

Table 5.1: An example of multi-label data records with six labels

Records Label 1 Label 2 Label 3 Label 4 Label 5 Label 6
r1 0 0 1 0 1 1
r2 0 0 1 1 1 0
r3 0 1 1 1 0 0
. . . 1 1 1 0 0 1
rm 1 1 1 1 1 0

active) labels, whereas the remaining (i.e., the non-associated labels) are the
irrelevant ones. For example, in Table 5.1, labels 3, 5, and 6 are relevant
(associated) to the first record, while labels 1, 2, and 4 are the irrelevant
ones (non-associated labels).

We used label cardinality (Card) and label density (Dens) to describe the
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characteristics of our dataset. Label cardinality of dataset M, denoted by
card (M), is the average number of labels of examples in M. Label density of
dataset M, denoted by dens (M), is the average number of labels of examples
in M divided by the number of labels. These measures are defined in section
3.3.4 of chapter 3. Table 5.2 shows the summary of the original dataset in
terms of Card, Dens, number of input features (NF), the number of labels
q, and the number of distinct label combinations (DC).

Table 5.2: Description of the multi-label dataset in the experiment

Dataset Instances NF |L| DC Card Dens
Frailty 1,095,613 58 6 64 0.13 0.02

5.2.3 Multi-Label Classification

Multi-label classification (MLC) problem is a generalization of a single label
(binary or multi-class) classification problem where an instance is associated
with more than one label simultaneously. In this study, the frailty risk
prediction problem is formulated into a multi-label classification problem.
Given a set of m medical records M = {r1, r2, ..., rm} and a finite set of q
outcomes L = {λ1, λ2, ..., λq}, each record in M is associated with one or
more outcomes in L. In this context, the ‘outcomes’ represent the labels.
The set of multi-label training examples of the frailty classification problem
can be represented by S = {(ri, Yi), i = 1, ...,m}, where ri is the feature
vector and Yi ⊆ L denotes the set of labels for the ith record. The objective
is to build a classification model to predict a set of labels Y ′

i for every new
record r′

i. In this study, for any patient, multiple outcomes were identified
in the data, and each outcome is considered as a label.

There are several multi-label classifiers to train on a multi-label dataset
(MLD) [96]. The most common and most straightforward approach is bi-
nary relevance (BR). It considers each label as an independent problem and
trains one binary classifier per label. BR is the baseline MLC algorithm that
does not consider the relationships that may exist between labels. To over-
come this limitation, several ensemble approaches, such as classifier chains
(CC) and label powersets (LP), have been proposed. CC extends BR by
taking some label correlation into account. It works by feeding the predic-
tions of earlier classifiers as features to the latter classifier. However, the CC
algorithms suffer from the issue of label ordering, as classifiers with different

128



: 5 – Multi-label Classification for Early Diagnosis of Frailty Syndrome

chain positions receive different levels of information. LP-based classifiers
use subsets of label-sets as class identifiers where each unique set of labels
for an MLD is considered for a single label. On datasets with a large number
of label combinations, LP has a drawback of ending up with a large number
of represented classes and few samples to train on. Random k-label-sets
(RAkEL) [303] is an improvement to avoid the problem of the LP method
within the large number of unique label-sets. It constructs an ensemble of
LP classifiers, and each one is trained using a different small random sub-
set of labels. The classes are then determined by a voting strategy using a
threshold. The RAkEL method takes label correlation into account and has
lower complexity than the LP method. All three approaches (BR, CC, and
LP) are grouped under problem transformation methods, where the MLC
problem is transformed into a binary or multi-class problem.

Ranking by pairwise comparison (RPC)[304] creates a pairwise transfor-
mation of the multi-label dataset into L(L−1)/2 binary label datasets ,one
for each pair of labels (λi, λj), 1 ≤ i < j ≤ L. On each dataset, a model
is trained based on examples annotated by at least one of the labels, but
not both. Calibrated label ranking (CLR) [174] extends RPC by introduc-
ing one additional virtual label, which indicates the boundary (separation
point) between relevant and irrelevant labels. For classifying a new instance,
each binary classifier is invoked to vote and predict one of the two labels.
Finally, classifiers are evaluated, and the labels are ranked according to
their sum of votes. This way, it manages to solve both the MLC and MLR
(multi-label ranking) tasks. MLkNN (Multi-label K nearest neighbors) is
an adaptation method of the K nearest neighbors (KNN) lazy learning algo-
rithm to multi-label data [175]. MLkNN uses the same basic principle with
KNN, except that MLkNN uses a Bayesian approach of prior probability
and posterior probability to specify the relevant label-sets, for instance.

5.2.4 Imbalance Quantification

The imbalance quantification method designed for single label (binary /multi-
class) classification assumes the ratio of minority to majority class as imbal-
ance measure, which is not suitable for multi-label classification. Learning
from an imbalanced MLD is a more complex problem in MLC due to the
large label space when considering all possible label combinations. Sev-
eral resampling approaches have been proposed to reduce the imbalanced
problem in an MLC (see chapter 3, section 3.4). One of the main chal-
lenges of balancing label distribution through resampling methods is that
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adding new instances with minority labels also increases the frequency of
labels, which are already majority ones. Similarly, removing instances from
majority labels will lead to the loss of minority ones [192].

To solve this problem, we proposed a hybrid approach that combines
SMOTE (synthetic minority oversampling) with Tomek links named ML-
TLSMOTE (Multi-label SMOTE with Tomek links). ML-TLSMOTE can
be used as a heuristic-based approach and combination of preprocessing
methods whereby the SMOTE and Tomek links (T-link) cleaning method
are applied sequentially. SMOTE is applied first to generate synthetic in-
stances of minority labels, and subsequently, T-link, which is used as a
post-process cleaning step, is applied to the dataset composed of the origi-
nal and new synthetic instances with majority labels. Each method, which
works well for single-label classification, is adapted to the multi-label sce-
nario to take advantage of their hybrid version. While the T-link method
has been successful when used as a secondary preprocessing measure, the
T-link cleaning method following SMOTE (i.e., ML-TLSMOTE) doesn’t ap-
pear to have been explored, particularly in the multi-label scenario. Hence,
the aim is to extend and combine each single label resampling method to
be used as a solution for multi-label problems. It is plausible that this com-
bination could yield better results in addressing the imbalanced problem in
the multi-label learning paradigm by taking their strong points and reduce
their weakness. T-link [205] is an enhancement of the nearest neighbor rule
[305], which heuristically removes only the noisy or boundary instances of
the two classes. The basic idea of the T-link algorithm is as follows:

1. Let i be an instance of class A and j be an instance of class B.

2. Let d(i, j) be the distance between i and j.

3. (i,j) is a T-link, if for any instance m, d(i,j) < d(i,m) or d(i,j) < d(j,m)
. If any two examples are T-link, then one of the instances is noise, or
both instances are located at the border of the class.

4. Remove noise or border points

5. Repeat steps 1 to 3 until all possible pairs of classes are processed.

For a dataset with two target class values, a T-link is a pair of samples
that are (1) nearest neighbors of one another, and (2) have different target
class values [205]. Instances that belong to T-link pairs are likely to be
either noise points or points that lie close to the optimal decision boundary.
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Eliminating these points can result in more well-defined class groups in the
training data, which can lead to better classifiers [186]. T-link could be used
as an undersampling technique or as a post-process cleaning step [306]. If it
is used as an undersampling technique, only the samples from the majority
class are removed. If it is used as a post-process cleaning step, samples from
both the majority and minority classes are removed. In this study, we used
T-link as a post-process cleaning step for two main reasons: (1) to reduce
the imbalance between labels by removing instances that are associated with
the majority labels, and (2) at the same time to clean up the non-associated
instances of labels that were added as a result of the SMOTE procedure,
so that the imbalance within a label can be reduced or will not goes to the
extreme. In addition, after applying SMOTE on minority labels, the class
groups of labels may not be well defined or overlapped due to the invasion
of synthetic samples. Therefore, a data cleaning stage is desirable to clean
up the borders between each class.

SMOTE [207] technique is an oversampling method where minority class
is oversampled to generate new instances using an interpolation technique.
The basic idea is to create new samples that are located anywhere on the
line that joins together each of the minority class samples and all (or same)
of its k nearest neighbors (KNN). The Euclidean distance function is the
most commonly used distance metric in KNN. The synthetic samples in
SMOTE are generated using the following steps:
1. Choose the feature vector of the current sample (minority class sample)
2. Calculate its k nearest neighbors and randomly select the feature vector

of one of these nearest neighbors.
3. The new instances are generated by interpolation technique (e.g., the

difference between the selected feature vector of the sample and its
selected nearest neighbor)

4. Multiply the result obtained in step 3 with a random value between 0
and 1 and add this vector to the feature vector of the current sample.
This causes the selection of a random point along the line segment
between two specific feature vectors.

5. The new vector will be the synthetic sample. Repeat these steps until
it reaches the number of instances to be generated.

In the multi-label scenario, SMOTE produces a set of instances in which
each minority label appears. Each minority instance will be the seed (i.e.,
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used as a reference point) for a new synthetic sample. The set of features
and label-sets appearing in the reference instances will also be added for the
new instances. This hybrid version of SMOTE and T-link (ML-TLSMOTE)
is used to reduce the imbalance among the labels. This approach works on
the individual minority and majority labels in the MLD. The set of majority
and minority labels can be identified based on the imbalance ratio per label
(IRLbl), Max imbalance ratio (MaxIR), Coefficient of variation of IRLbl
(CVIR), and mean imbalance ratio (MeanIR). These imbalance measures
are defined in chapter 3, section 3.3.4.

As it is declared in [192], the joint use of MeanIR and CVIR measures rep-
resent if an MLD is imbalanced or not, whereas IRLbl is important to eval-
uate the imbalance level of each individual label. Any MLD with a MeanIR
value higher than 1.5 and a CVIR value of 0.2 should be considered as
imbalanced [192]. To come up with balanced labels using ML-TLSMOTE,
all instances that are both associated and non-associated with the current
minority label are considered for SMOTE; at the same time, these instances
should be non-associated with other label combinations. Then, T-link is ap-
plied for each majority label to make some adjustments between the classes
of each individual label. The algorithm for ML-TLSMOTE is shown in Ap-
pendix E. Generally, the joint of use of SMOTE and T-link algorithm is
designed to remove the imbalance between the labels and also to reduce the
imbalance within the labels. Thus, there are four main aspects to solve the
imbalance problem using ML-TLSMOTE in accordance with the following
steps:
1. Majority and Minority labels selection: First, the set of majority labels

and set of minority labels are identified from the MLD with the help of
MeanIR and IRLbl. Labels whose IRLbl is smaller than MeanIR can
be considered as majority labels, while labels whose IRLbl is greater
than MeanIR are considered as minority labels [192].

2. Multi-label SMOTE: The MLD has more than one minority label.
Therefore, each instance associated with each minority label (i.e., in-
stances with 1’s for the minority label), but non-associated (value 0’s)
with other label combinations are oversampled using SMOTE. Select-
ing active (associated) labels of minority instances and non-associated
labels of majority instances help to increase only the frequency of rare
labels without cloning the instances that are linked to the majority
labels.
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3. Multi-label T-Link: in this step, instances that are linked to the major-
ity labels are treated through the T-link cleaning method. T-link allows
removing only the noisy or border samples of the majority labels. Re-
moving T-link points can result in more well-defined class clusters in the
training data, which can improve the performance of classifiers [186].

4. Reassess the imbalance level: finally, the IRLbl, MeanIR, and CVIR
will be recalculated to check if the preprocessed MLD is balanced. At
this stage, the MLD could have a more balanced label distribution and
would be easier to process by the MLC algorithms.

The algorithm for pre-processing the dataset is implemented using Python.
The experimentation part of the study was carried out using the MEKA
library [243]. MEKA is an open-source framework for multi-label learning
and evaluation, which has been employed for training and comparison of
the multi-label classifiers.

5.3 Results and Discussions

From the total dataset of 1,095,612 older adults aged 65 years and over, we
extracted 105,962 instances to a new MLD, where each instance is associated
with at least one active label of the label-set. Several experiments were
conducted using the original data, which is basically an imbalanced MLD,
and also using the resampled MLDs through SMOTE, T-link, and ML-
TLSMOTE for testing the MLC algorithms.

Table 5.3: Characteristics of the MLD before and after applying resampling algorithms

Resampling Methods MaxIR MeanIR CVIR Card Dense
Without resampling 5.9 2.85 0.8 1.38 0.23
T-link (Under sampling ) 1.7 1.42 0.18 0.5 0.08
SMOTE (Oversampling) 1.42 1.25 0.13 2.02 0.34
ML-TLSMOTE (Hybrid version) 1.4 1.17 0.12 1.8 0.3

ML-TLSMOTE is the SMOTE followed by the T-link cleaning method
for improving the performance of multi-label algorithms on the dataset
with overrepresented and underrepresented labels. Once the resampling ap-
proaches were applied to the extracted data, the imbalance level of the pre-
processed MLD was re-evaluated. Table 5.3 presents the MaxIR, MeanIR,
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and CVIR values for each dataset along with the distribution of the la-
bels.When we compare the imbalance measures (MaxIR, MeanIR, and CVIR)
of resampled data with the one without resampling (first row) in Table 5.3,
it can be seen that a general improvement in the imbalance levels has been
achieved.

Figure 5.1: The behavior of the data after applying the resampling approaches

The average imbalance level of the data after applying ML-TLSMOTE is
MeanIR=1.17 and CVIR=0.12, which gives evidence that the imbalanced
problem has been much reduced in the data. Although it might not always
be the case, MaxIR, MeanIR, and CVIR are lower after applying resam-
pling approaches with the lowest value (i.e., the better result) found in
the hybrid of oversampling and cleaning methods (ML-TLSMOTE). This
implies that the ratio between the most frequent and the least frequent la-
bels have been reduced in the data. Figure 5.1 shows the behavior of the
original dataset after applying the resampling approaches. To understand
how these imbalance levels could influence the classification results, we used
various multi-label classifiers. In this experiment, six different MLC algo-
rithms were chosen: Binary Relevance (BR) [307], Classifier Chains (CC)
[101], Label Powerset (LP), Random k-label sets (RAkEL) [303], Calibrated
Label Ranking (CLR) [174] and MLkNN [175]. All the experiments were
conducted using 10-fold cross-validation. Different base classifiers such as
decision trees, random forest, and naïve Bayes were used for each multi-label
algorithm.

Although the change in imbalance level will not necessarily imply better
134



: 5 – Multi-label Classification for Early Diagnosis of Frailty Syndrome

classification results, it has been observed that the lower the values of the
imbalance levels, the better the performance of the MLC algorithms. In this
regard, the performance of MLC algorithms has shown improvement when
using SMOTE and ML-TLSMOTE with respect to the different multi-label
performance measures.

The evaluation of models in MLC differs from the traditional single-label
classification [175]. It requires a special approach in order to consider per-
formance over all labels. In this study, the average precision, Hamming loss,
ranking loss, and Hamming score were used to evaluate the performance of
different MLC models. Figure 5.2 shows the comparison of oversampling
(SMOTE), under-sampling (T-link), and hybrid approach (ML-TLSMOTE)
on various MLC algorithms using the Hamming loss, ranking loss, and aver-
age precision. Hamming loss discriminates the capability of the algorithm to
identify the presence of frailty in terms of adverse health outcomes. Ranking
loss discriminates how well the algorithm ranks labels, which allow under-
standing the type of patient outcomes that have a strong expression, giving
an indication of where to act promptly. Average precision allows knowing
the percentage of correct positive predictions.

Although the MaxIR, MeanIR, and CVIR are reduced after applying T-
link on the original data, the classifiers built using the dataset created with
the T-link under-sampling technique showed a very poor result. One of the
reasons for this could be the fact that T-link can be more robust when used
as a secondary pre-processing method following SMOTE than when it is
used alone as an independent technique. The other possible and obvious
reason could be the type of data used in the study and the distribution of
the classes or labels in the dataset. As shown in Figure 5.2, each classifier
was applied to the data that has been pre-processed through SMOTE and
T-link to compare the results with the proposed ML-TLSMOTE method.
It is plausible that more balanced MLDs could yield higher classification
performance than the less balanced ones. ML-TLSMOTE has the lowest
score of Hamming loss and ranking loss in all classifiers followed by SMOTE,
indicating the classification results obtained with ML-TLSMOTE are better
than the results found through SMOTE and T-link individually. SMOTE
has the best result next to ML-TLSMOTE, while T-link showed lower re-
sults, even worse than the results of the original imbalanced MLD for some
classifiers.
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Figure 5.2: Comparison of resampling methods through various classifiers using Hamming loss
(a), ranking loss (b), and average precision (c).

136



: 5 – Multi-label Classification for Early Diagnosis of Frailty Syndrome

Tables 5.4 and 5.5 present the detailed results of 10 fold cross-validation
produced by six different MLC classifiers. Table 5.4 shows the results of clas-
sifiers on the original imbalanced MLD, and Table 5.5 presents the results
after applying ML-TLSMOTE. The results show that the ML-TLSMOTE
significantly improves the performances of classifiers in all evaluation met-
rics.

Table 5.4: Results before applying ML-TLSMOTE (original MLD)

Metrics BR CC LP RAkEL CLR MLkNN
Hamming Score 0.77 0.76 0.7 0.67 0.58 0.73
Average precision 0.62 0.51 0.43 0.57 0.55 0.64
Hamming loss 0.23 0.24 0.3 0.33 0.42 0.27
Ranking loss 0.31 0.34 0.38 0.31 0.3 0.26

Table 5.5: Results after applying ML-TLSMOTE

Metrics BR CC LP RAkEL CLR MLkNN
Hamming Score 0.85 0.84 0.85 0.85 0.79 0.81
Average precision 0.72 0.7 0.72 0.73 0.77 0.72
Hamming loss 0.15 0.16 0.15 0.15 0.21 0.19
Ranking loss 0.17 0.19 0.18 0.18 0.16 0.2

To further analyze the results shown in Tables 5.4 and 5.5, and to see if
there is any significant difference between the classifier results in terms of all
evaluation metrics, a Wilcoxon signed-rank test is performed on the results
obtained before ML-SMOTE versus after ML-SMOTE. The test is applied
to each performance metric across the six algorithms with a significance
level of 0.05. The obtained P-value is less than 0.05, which shows that
applying ML-TLSMOTE significantly improves the classification results,
and the difference of results before and after ML-TLSMOTE is big enough
to be statistically significant.

We also noticed that the use of different base classifiers for each MLC al-
gorithms had shown a more significant effect in the variation of classification
results. Classifier chains have shown the best results in terms of Hamming
loss and average precision when using the random forest as a base classifier,
while RAkEL has achieved the best results using SMO (Sequential Minimal
Optimization) as the base classifier. MLkNN used naïve Bayes as the base
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classifier. Among the MLC algorithms, RAkEL, LP, and BR achieved the
best performance in terms of Hamming loss with ML-TLSMOTE (Table
5.5). They also have a similar value of Hamming score (85%) with an av-
erage precision of 73% for RAkEL and 72% for BR and LP. The Hamming
score and Hamming loss capture the fraction of labels that are correctly and
incorrectly predicted, respectively.

Ranking loss measures the average fraction of labels that are ordered
incorrectly. For example, the ranking loss of RAkEL in Table 5.5 is 0.18,
which means that 18% of the label pairs are wrongly ordered for instances.
With ranking evaluation measures, CLR outperforms the other algorithms
which rank the relevant labels higher than irrelevant labels efficiently based
on the pairwise comparison of labels. CLR has also achieved the best re-
sult in average precision (77%), while the multi-label variant of KNN (i.e.,
MLKNN) showed poor performances in Hamming loss and ranking loss as
compared to BR, CC, and LP. The BR doesn’t consider label correlation.
It uses six classifiers separately, which is equal to the number of labels in
the frailty dataset. Overall, from the analysis of results, it can be concluded
that the ML-TLSMOTE has a more positive influence over classifiers, such
as BR, CLR, CC, LP, RAkEL, and MLKNN.

Finally, with efficiency measures, the computational complexity of BR,
CLR, and LP depends on the complexity of the base classifier and the
parameters of the learning problem [308]. We observed that using tree-based
methods as a base classifier (e.g., C4.5) is more efficient than the SVM-based
methods. The BR algorithm, which builds separate models for each label,
is the simplest one. CLR is the next least complex algorithm, requiring |L|
number of BR models and additionally |L|*(|N|-1)/2 one against one model.
LP is relatively the most sophisticated algorithm, since it trains a multi-class
classifier, with the number of classes being equal to the number of distinct
label-sets in the MLD. The computational complexity of MLKNN is |L|
times the computational cost of computing K nearest neighbors. Training
MLKNN model is linear with the size of the training dataset and the length
of the data vector.

5.4 Conclusions

Detecting frailty in elderly people represents an essential research problem,
and there is potential to prevent frailty and intervene early. In this study,
MLC was developed for the purpose of predicting multiple outcomes of
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frailty conditions: mortality, fracture, disability, medical emergency admis-
sion at the emergency department, urgent hospitalization, and preventable
hospitalization. MLC models are valuable tools to construct a predictive
model that considers the prediction of multiple outcomes and interventions
in an unseen patient. The study consists of two major parts: the first is ad-
dressing the imbalance problem in an MLC. ML-TLSMOTE was proposed
to reduce the imbalance between labels and to improve the performance of
MLC algorithms. The results of the experiment show that ML-TLSMOTE
was an efficient approach as compared to SMOTE or Tomek links. The sec-
ond part presents a comparative study of six MLC algorithms (BR, ECC,
LP, CLR, RAkEL, and MLKNN). RAkEL achieved the best performance
in terms of Hamming loss, while CLR showed the best value of the ranking
loss.

As future work, there are three problems that need further investigation
in our study. The first is the dimensionality reduction (feature selection or
extraction) to optimize and improve the performance of the training mod-
els, which is one of the challenging topics in the MLC task. Second, in
the advances of wearable and sensor technologies, many elderly people with
frailty can use intelligent wearable sensor equipment to monitor the phys-
iological signals; thus, it is essential to collect and analyze real-time data
from wearable sensors to make a more accurate risk assessment. Finally,
with the development of personalized healthcare, there is a need to study
and build a personalized frailty risk prediction model for elderly care.
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Chapter 6

Cluster Analysis and Its
Validation: Towards Improving
Health Conditions of Elderly

This chapter presents two main sections on clustering problem. Section 6.1
presents a cross-validation approach to validate clustering results. It pro-
poses a new cluster validity index based on information from multiple labels
to measure the effectiveness of the clustering algorithm through exploiting
and adjusting the root mean squared error (RMSE). The study validates
the proposal through the k-fold cross-validation analysis of some challenging
multi-label datasets. Section 6.2 presents cluster analysis aiming to identify
homogenous groups of elderly patients aged 65+ years and above. This
section examines the various dimensionality reduction and clustering meth-
ods to achieve optimal clusters. The resulting clusters were evaluated using
various validation techniques, including the validation criteria proposed in
section 6.1.

6.1 Cross-Validation Approach to Evaluate Cluster-
ing Results using Multi-label Datasets

6.1.1 Introduction

This subsection first introduces an overview of clustering problem, valida-
tion techniques, and multi-label data and the existing challenges of the
clustering task. Then the proposed approach to cluster validation is de-
scribed in detail in section 6.1.2. Finally, the experiments and results are
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presented in the subsequent sections.

Overview of Cluster Analysis
Unsupervised learning aims to find the underlying structure or the distri-
bution of data. It is an important area in the domain of machine learn-
ing, where the labels for the data examples are not necessarily required for
model building. The main tasks in unsupervised learning include cluster
analysis [77, 309], building self-organizing maps (SOM)[79], representation
learning [80], and density estimation [81]. Cluster analysis, the main focus
of this study, is a central task for grouping heterogeneous data points into
a number of more homogenous subgroups based on distance, or naturally
occurring trends, patterns, and relationships in the data. The formation
of homogenous or heterogeneous grouping (or clustering) structure from a
complex dataset requires a measure of ‘closeness’ or ‘similarity.’ In cluster-
ing, the definition of similarity is highly dependent on the applied distance
function between the data objects. The choice of similarity measure can be
considered based on the type of the variable used to cluster objects (contin-
uous, discrete, binary), the type of measurements (nominal, ordinal, ratio,
interval), and subject matter knowledge. The most commonly used distance
measure in most clustering algorithms is the Euclidian distance [310]. Other
measures include Minkowski’s distance [311],Cosine distance[312],S-distance
[313] ,etc.

The clustering problem has a clear goal of finding distinct groups or ‘clus-
ters’ within the dataset. However, the notion of a ‘cluster’ has not been
precisely defined, which has driven to the development of several cluster-
ing paradigms and several clustering algorithms within each paradigm[314].
The existence of different types of clustering algorithms poses difficulties in
selecting the best algorithm for a particular task. Independent of the type
of algorithm used, Kleinberg [116] proposes three properties that an ideal
clustering algorithm should have so that it can be considered good: scale
invariance, consistency, and richness. Scale invariance indicates that the
clustering algorithm does not change its results when all distances between
points are scaled by a constant factor. A clustering process is considered
to be consistent when the clustering results do not change if the distances
within clusters decreases and/or the distance between clusters increase. The
richness criteria mean that the clustering function must be flexible enough to
potentially produce any arbitrary partitions of the input dataset. According
to Kleinberg’s impossibility theorem [116], no clustering algorithm satisfies
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all three requirements simultaneously. This implies that it has been very
difficult to develop a unified framework for validation of clustering methods
and to reason about it at a technical level.

Multi-label Data
Several types of research in machine learning deal with the analysis of single-
label data, where training instances are associated with a single label λ from
a set of disjoint labels L. However, training samples in several application
domains are often associated with a set of labels Y ⊆ L. Such datasets are
called multi-label data. Multi-label datasets have been popular in various
domains, such as protein function classification, medical diagnosis, emotion
recognition, text classification, etc. For instance, a medical patient may be
affected by more than one chronic disease: diabetes, hypertension, and fatty
liver. We can cluster the patients into distinct groups, each with specific
characteristics, and then the burden of these unwanted outcomes (diabetes,
hypertension, fatty liver, etc.) can be identified to provide tailored inter-
ventions in each cluster. One of the common trends for solving supervised
learning through the use of multi-label data is decomposing the multi-label
problem into binary classification problems [315]. In unsupervised learning,
we can use the labels information of the multi-label data for evaluation of
the clustering algorithm. In this study, we used features for forming clusters
and class labels for performance evaluation.

Cluster Validation
Cluster validation is one of the most important and challenging parts of
cluster analysis, which involves the objective and quantitative assessment
of clustering results [309]. One of the problems in cluster validation is that
there is no clear notion as to what exactly the ‘prediction error’ is. Because
of that, clusters are sometimes validated by ad hoc methods based on the
application area. Due to the absence of the ground truth and the nature
of the problem, cluster validation has not been well developed [316]. As a
result, evaluating the performance of a clustering algorithm is not an easy
task. Commonly, the evaluation process depends on the algorithm used
to obtain clustering results, which resulted in the development of multiple
evaluation techniques. Various methods have been suggested in the litera-
ture for cluster validation, including external validation, internal validation,
relative criteria, and stability based approaches.
External Clustering Validity Methods: The external validation index
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uses prior knowledge, such as externally provided class labels, to evaluate
results of cluster analysis. External clustering validity approaches, such
as Rand Index [317] and normalized mutual information [318], is used to
measure the quality of clustering results by comparing the generated clus-
ter labels with the pre-existing clustering (reference labels) structure, i.e.,
ground truth solution. If the result is in some way similar to the reference,
the final output is regarded as a “good” clustering. The external validation
is straightforward when the closeness between two clusterings is well-defined.
However, it has a basic caveat that the reference result is not given in most
real-world applications. Therefore, external evaluation is generally used for
synthetic data and for tuning clustering algorithms [319].
Internal Cluster Validity Methods: these are used to assess the good-
ness of the clustering structure without reference to the external informa-
tion, using only the data themselves. Internal clustering validity methods
measure the quality of clustering based solely on information intrinsic to the
data; as a result, they have great practical application and numerous crite-
ria have been proposed in the literature, such as Silhouette analyses [320],
Calinski–Harabasz index [321], Davies–Bouldin [322]. The internal criteria
are the most commonly used evaluation methods designed to compute the
ratio of within-cluster scattering (compactness) and to between-cluster sep-
aration. Measures that grouped under this category have been designed for
the validation of convex-shaped clusters ( such as globular clusters), and
fail when applied to validate non-convex clusters [323].
The relative approach: is performed by comparing two sets of clusters
(usually built with similar algorithms but with different parameter settings)
to determine which one is better. It’s generally used for determining the
optimal number of clusters.
Clustering Stability Approach: clustering stability measure is a slightly
different approach used to assess the similarity of clustering solutions ob-
tained by applying the same clustering algorithm on multiple independent
and identically distributed samples. The intuitive idea behind the stability
approach is that if we repeatedly sample data points from the population
and apply the candidate clustering algorithm, then a good algorithm should
produce clusterings that do not vary much from one sample to another [324].
In other words, the algorithm is stable with respect to input randomization.
There are several studies to validate clusters by stability criteria [325, 326].
In general, the existing validation criteria are useful for such tasks as de-
termining the correct number of clusters in the dataset, verifying whether
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the clusters obtained are meaningful or are just an artifact produced by
the algorithms, justifying why we choose some algorithms instead of others
or assessing the quality of clustering solutions. However, in the literature,
there is still a lack of methods to measure the ability of the clustering algo-
rithm to predict cluster memberships for new data points.

Generally, evaluating clustering results has been historically expressed as
the most challenging topic [327]. In fact, Jain and Dubes [328], in their
classic book on clustering, stated that:

"The validation of clustering structures is the most difficult and frustrat-
ing part of cluster analysis.Without a strong effort in this direction, cluster
analysis will remain a black art accessible only to those true believers who
have experience and great courage".

Despite achievements observed in this particular area over the last several
decades, it is highlighted that the above statement still remains true. This
has motivated us and many other researchers in the area to study, develop,
and propose methods to the validation of clustering results.

Objectives and Contributions
The primary aim of the study under this section is to measure the perfor-
mance of a clustering model to predict cluster labels for new data points,
given that the model is already constructed from the training data. For
example, we have three existing clusters, C1, C2, and C3, and a new data
point D1. The clustering model should assign D1 to one of the clusters, say
C2. In this case, we want to know ‘how good is the model on new data?’
i.e., to what extent the model has correctly assigned D1 into C2.

The cluster validation idea presented in this study is different from the
existing methods in that it focuses on measuring the prediction strength of
a clustering algorithm by using the cross-validation procedure. The k-fold
cross-validation method is used for simulating the situation when we have
built the clustering model on some previously available data, and then we
want to assign new data points to the previously built clusters. The pre-
diction strength concept presented here, similarly, as the stability of the
clusters, can be used for assessing the performance of a clustering method.
Clustering stability results are mostly obtained based on perturbations in-
troduced to the input data, such as sub-sampling or the addition of noise.
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Unlike in the other studies, the prediction strength of an algorithm intro-
duced here is measured by incorporating information from several labels
of multi-label data. Namely, the probability of occurrence of the labels in
the training and testing data is calculated for each cluster. If label prob-
abilities in the training and testing data are similar, the clustering can be
considered as a good one. Thus, this study assumes that the clusters are
already formed from the training data, and the aim is to measure how well
the clustering model predicts the corresponding cluster labels for the test
data based on their membership on the clustering results obtained from the
training data.

This approach is motivated by medical applications in which we would
like to assess the probability of various health problems in different patient
groups. For example, the labels for the chronic dataset are diabetes, hyper-
tension, and fatty liver. Once the clusters are formed, the probabilities of
the occurrence of these labels, i.e., diabetes, hypertension, and fatty liver
are estimated in each cluster and compared between the training set and
the test set. The aim is to measure how well we can predict the probabili-
ties of these three outcomes in new patients (i.e., in the test data) based on
their membership in the training clusters. In this study, the k-fold cross-
validation procedure is used to simulate such a scenario.

The k-fold Cross-Validation (CV) is one of the most commonly used
model evaluation procedures in supervised learning. Unfortunately, it is
challenging to apply CV to unsupervised learning, for example, to cluster-
ing validation. Here, the k-fold CV procedure is adapted, by using labels
from a multi-label dataset, to be applicable to unsupervised learning (i.e.,
clustering) for evaluating the performance of clustering algorithms. Follow-
ing the k-fold cross-validation approach, the input data is randomly divided
into k parts, of which k-1 parts are used to construct the model, and the
remaining part is used as an evaluation set. Then, the prediction strength is
used as a statistic for clustering stability. Thus, here we propose the use of
the k-fold cross-validation procedure for evaluating the prediction strength
of the clustering model using the information acquired from multiple labels.

The contributions of this study are: (1) a new cluster validity index
is proposed that uses the information from multiple labels to evaluate the
quality of clustering algorithms; (2) the study validates the proposal through
the cross-validation analysis of some challenging multi-label datasets; (3)
the root mean squared error (RMSE), which is the most frequently used
measure of the differences between values in regression problem, is exploited
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and adjusted to be used as a cluster validity index; (4) this study shows
that the proposed method can be used to measure the ability of a clustering
algorithm to predict the cluster membership for new data.

6.1.2 Proposed Method

Given a particular clustering result, one can predict cluster membership
for new data based on a clustering model built on training data. This is
not always easy for all types of clustering algorithms. For example, it is
hard for density-based clustering algorithms (e.g., DBSCAN) to predict a
cluster for the new data points, because the new data points may change
the underlying clustering structure. For centroid-based cluster algorithms
(e.g., k-means clustering), however, the prediction of a cluster for new data
points is relatively easy since it only requires finding the minimum distance
of a new data from all cluster centers and then updating the cluster center
of that cluster. Hence, k-means clustering is employed to test the proposed
method in this study. Recently, several techniques have been proposed to
improve the standard k-means algorithm for high dimensional datasets, such
as the Entropy Regularized Power k-Means [329], sparse k-means [330] and
others [331]. The proposed k-Fold CV for unsupervised learning can also
be applied to these modified versions of the k-means algorithms.

Assigning new data points to existing clusters that are constructed through
the training data is considered to be an important practical application.
However, very little practical guidance is available to measure the predic-
tion strength of the constructed model to predict the cluster membership
of a new data point. Prediction strength is a global measure forcing all
clusters to be stable, as it uses the minimum value of cluster similarity over
all clusters [127]. This thesis proposes a k-fold cross-validation procedure
followed by the root mean squared error (RMSE) or the mean absolute per-
centage error (MAPE) to evaluate the prediction strength of the clustering
algorithm. RMSE and MAPE are the most commonly used error measure-
ments in statistics. In prediction tasks, RMSE indicates the absolute fit of
the model to the data, i.e., it is used to compare how close the observed data
points are to the predicted values of the model. MAPE is the average mag-
nitude of the difference between predicted and actual values in percentages,
without considering their direction, that is, since absolute percentage errors
are used, the positive and negative errors are not canceling each other. In
clustering validation, these two metrics can be used to measure the average
distance between the data points and their cluster centers [332, 333]. The
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smaller the RMSE/MAPE, the better the prediction results.
At each iteration of the k-fold CV procedure, one fold is used as the

test set and the remaining folds as the training set. The training set is
presented to a clustering method, giving a partition as a result (training
partition). Then, new data points are assigned to the clusters in the train-
ing partition based on the minimum distance from all the cluster centers.
The CV method allows calculating the quality measure expressing the dif-
ference between the probability of occurrence of the outcomes (i.e., labels)
in the training data and in the test data assigned to the same cluster. Once
the clusters are formed using the training part of the data, the probability
of occurrence of the labels in the training set, and in the testing set in each
cluster will be assessed and analyzed. This is similar to estimating the prob-
ability that an outcome will occur, given that a sample belongs to a certain
cluster, mathematically written as P(outcome|cluster). For instance, in the
chronic disease dataset, one can estimate a probability of the risk of hav-
ing hypertension in each of the generated clusters. Below, we describe the
k-fold cross-validation procedure used to calculate a quality measure for a
clustering model.

Let: L = {λ1, λ2, ..., λq} : the set of all labels in a multi-label dataset
q = |L|: the number of labels in the multi-label dataset.
k: the number of folds in the cross-validation procedure,
C: the number of clusters generated by the clustering algorithm.

Because we calculate label probabilities separately for each cluster i in each
of the cross-validation folds j we denote these probabilities without using
the number of the cluster nor the number of the fold in order not to clutter
the equations:
ym,m = 1, . . . , q: the probability that a sample from the training dataset
assigned to cluster i has the mth label
ŷm,m = 1, . . . , q: the probability that a sample from the testing dataset
assigned to cluster i has the mth label

1. Shuffle the original dataset randomly

2. Split the original dataset into k parts (folds)

3. For each fold j = 1, . . . , k.
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(a) Take fold j as the test dataset (each fold, in turn, is used as the
test dataset).

(b) Take the remaining folds together as the training dataset.
(c) apply dimensionality reduction (if needed )
(d) apply normalization to dataset (if needed)
(e) Generate clusters on the training dataset.
(f) Assign data points from the test dataset (selected in step ’a’) into

the corresponding clusters obtained in step ’e’.
(g) For each cluster i = 1, . . . , C :

i. Compute the probabilities ym,m = 1, . . . , q of the occurrence
of the labels in cluster i based on the samples in the training
dataset, found in step ’e’.

ii. Compute the probabilities ŷm,m = 1, . . . , q of the occurrence of
the labels in cluster i using the assignment of the points from
the test dataset to the clusters, which was obtained in step ’f’.

iii. Compute the root mean squared error (RMSEij) between the
probabilities calculated in steps i and ii. Note down the scores/errors
as a quality measure for cluster i obtained in fold j.

4. When the loop in step 3 finishes (and so every fold served as the test
set), take the average over the k folds of the recorded scores for each
cluster and/or overall the clusters).

In the context of this clustering validity criteria, RMSE and MAPE
are proposed to measure the prediction strength of clustering techniques.
RMSE represents the standard deviation of the difference between the prob-
abilities of occurrence of the labels of the training data and the probabilities
of occurrence of the labels of the test data in clusters. Intuitively, the RMSE
in this study can be understood as the Euclidean distance between the vec-
tor of the observed probability scores of labels in the training data and the
estimated probability scores of the labels in the test data for a given clus-
ter, averaged by the total number of labels in the data (Eq. 6.1). Similarly,
MAPE measures the size of the error between the probability scores of the
training set and the probability scores of the test set in percentage terms
(Eq. 6.2). RMSE and MAPE are evaluation methods that can be used
together to diagnosis the variation in the errors of a clustering algorithm.
For cluster i and cross-validation fold j, these two measures are calculated
as follows:
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RMSEij =

√√√√√√
q∑

m=1
(ŷm − ym)2

q
(6.1)

MAPEij = (1
q

∑ (ym − ŷm)2

ym
)× 100 (6.2)

The resulting score obtained through RMSE with k-fold cross-validation
across all clusters based on the probability score information from multiple
labels, named CVIM in short, can be used as a cluster validity index (i.e.,
stability index). The better the values of the cluster validity index, the
more stable the outputs of the clustering algorithm. High cluster stabil-
ity is achieved when memberships of the clusters are not affected by small
changes in the data set. The RMSE of the clustering algorithm obtained
using the k-fold cross-validation can be computed as shown in equation 6.3:
let RMSEij be the RMSE for the ith cluster obtained in the jth fold. The
average RMSE for the ith clusters obtained in k fold with C clusters in each
fold, denoted by ARMSEi , can be computed as:

ARMSE1 = (RMSE11 +RMSE12 +RMSE13 + ...+RMSE1k)/k

ARMSE2 = (RMSE21 +RMSE22 +RMSE23 + ...+RMSE2k)/k
...

ARMSEC = (RMSEC1 +RMSEC2 +RMSEC3 + ...+RMSECk)/k

Overall ARMSE = (ARMSE1 + ARMSE2 + ...+ ARMSEC)/C

Cluster V alidity Index(CV IM) = 1
C

C∑
i=1

ARMSEi

(6.3)

Finally, the RMSE based cluster validity index across all clusters is found
using equation 6.3. The MAPE based CVIM is also computed in a similar
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fashion as the RMSE. The architecture of the proposed method for calcu-
lating RMSE and MAPE for each cluster in ten folds of cross-validation is
presented in Figure 6.1 for an algorithm generating C = 3 clusters. In the
final stage, the average RMSE/MAPE of 10 similar clusters is taken from
each fold of cross-validation.

Figure 6.1: The architecture of the proposed method to evaluate a clustering model through 10
fold cross-validation with three clusters at each fold.

6.1.3 Experiments

In this section, three public multi-label datasets were used to test the pro-
posed method: the chronic diseases dataset [334], emotions [335], and Yeast
[109] datasets. The chronic diseases dataset contains a collection of phys-
ical examination records for 110,300 patients with 62 features and 3 class
labels. All the input features were used for forming clusters. The class
labels (non-clustering variables), which include hypertension, diabetes, and
fatty liver, were not used for defining clusters but only for cluster valida-
tion. Each record in the data may be associated with more than one of
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the class labels. As a result, the probability of occurrence of hyperten-
sion, diabetes, or fatty liver in patients of the test data can be estimated
in the corresponding clusters. The chronic disease dataset is available on-
line at http://pinfish.cs.usm.edu/dnn/. The Yeast dataset is formed by
micro-array expression data and phylogenetic profiles with 2,417 genes. The
dataset consists of 103 features with 14 labels, and each gene is associated
with a set of functional labels. The emotions dataset contains examples of
songs according to people’s emotions. The emotions and Yeast datasets were
taken from the Mulan Library at http://mulan.sourceforge.net/datasets-
mlc.html.

Multi-label datasets, and current data, in general, tend to be more com-
plex than conventional data and need dimensionality reduction. All three
multi-label datasets used in this experiment have a large number of features
and labels/outcomes. Taking this problem into account, we applied the di-
mensionality reduction process to convert the dataset into two-dimensional
space. The purpose of reducing data into lower-dimensional representation
is to visualize and interpret the samples so that such visualization can be
used to obtain insights from the data, e.g., to detect clusters and identify
outliers. Moreover, a clustering process requires data reduction to obtain an
efficient processing time while clustering and avoid the curse of dimensional-
ity. For example, the k-means clustering algorithm often doesn’t work well
for high dimensional data [336]. There are different techniques proposed in
the literature for high dimensional features in clustering [337, 338]. In this
study, principal component analysis (PCA)[339], one of the most commonly
used technique, was applied as a data dimensionality reduction to convert
each dataset into a two-dimensional representation. Emotions and Yeast
datasets have large variations within the range of feature values, which can
affect the quality of computed clusters. Therefore, after PCA, we applied
the normalization technique [340] for Emotions and Yeast datasets to en-
sure that good quality clusters are generated. Then, k-means clustering
[341] was applied to the reduced dataset. All the experiments have been
implemented using Python programming language.

6.1.4 Results and Discussions

With the help of the Calinski-Harabasz index, three clusters for emotions
dataset, four clusters for chronic disease dataset, and five clusters for yeast
dataset were identified using the k-means clustering algorithm. A two-
dimensional (2D) representation of clustering results for each dataset is
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shown in Figure 6.2. Colors of the points represent cluster memberships of
the samples.

Figure 6.2: 2D visualization of clustering results on Emotions (a), chronic disease (b), and Yeast
(c) datasets.

Min-Max normalization method has been applied to Emotions and Yeast
datasets to eliminate the large variations within the range of features before
the clustering process. For each dataset, the probabilities of the occurrence
of each target variable in each cluster have been calculated both in the train-
ing and testing part of the data during the cross-validation procedure. We
first evaluated the quality of the clusters using the existing internal validity
criteria. Silhouette analysis is one of the most popular and effective internal
measures which allows evaluating the appropriateness of the assignment of a
data object to a cluster by measuring both intra-cluster cohesion and inter-
cluster separation. Clusters within the range of 51 to 70% and 71 to 100%
respectively indicate that a reasonable and a strong intra-cluster cohesion
and inter-cluster separation are found [342]. The silhouette score can take
values in the interval [-1, 1]. Negative silhouette values represent wrong
data placements, while positive silhouette values better data assignments.
Therefore, we want the scores to be as big as possible and close to 1 to have
good clusters. In our experiments, the silhouette score has shown good re-
sults. The silhouette score for clusters found on emotion, chronic disease,
and Yeast datasets were 0.76, 0.82, and 0.69, respectively, indicating that
the obtained clusterings were good ones.

As the main objective of this study is to evaluate the prediction perfor-
mance of the clustering algorithm through a 10-fold cross-validation proce-
dure, the result of prediction performance in terms of RMSE and MAPE
are presented for each cluster and across all clusters (i.e., the CVIM value),
as shown in Table 6.1. The results represent the strength of the clustering
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algorithm to predict cluster labels for the test data. The obtained RMSE
and MAPE scores of the clustering results in each cluster of each dataset
represent the prediction errors. Figures 6.3 and 6.4 show the RMSE and
MAPE of the k-means clustering algorithm applied to each dataset, respec-
tively. The smallest RMSE (i.e, the better result) is found in the Emotions
dataset in each cluster, while the highest RMSE was found in the Yeast
dataset. This also holds true for the total RMSE across all the clusters
(i.e., the CVIM score) on each dataset.

Table 6.1: Performance of a clustering algorithm in each and across the clusters using CVIM

Dataset Metrics Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 CVIM

Emotions
RMSE 0.021 0.019 0.017 - - 0.019
MAPE 7.88% 18.27% 8.99% - - 11.71%

Chronic
RMSE 0.0361 0.0543 0.0228 0.0282 - 0.0354
MAPE 5.62% 5.92% 7.91% 12.29% - 7.94%

Yeast
RMSE 0.071 0.061 0.066 0.086 0.076 0.072
MAPE 7.49% 9.36% 11.59% 17.34% 15.34% 12.22%

Figure 6.3: RMSE of the clustering algorithm on each cluster in each dataset

Generally, an RMSE close to zero is indicative of the high similarity be-
tween the training and testing probabilities. Similarly, low MAPE values
indicate good predictions of the occurrence of labels in each cluster across
all datasets. The smaller the MAPE, the better the forecast, and more
specifically, Lewis’s [343] interpretation of MAPE is that a value of less
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Figure 6.4: MAPE of the clustering algorithm on each cluster in each dataset

than 10% indicates highly accurate forecast,11 to 20% is a good forecast,
21 to 50% is a reasonable forecast, and 51% or more is an inaccurate fore-
cast. Accordingly, a highly accurate forecast is found in the chronic disease
dataset. The results on emotion and yeast datasets show a good prediction.

6.2 Identifying Subgroups of Elderly Patients using
Clustering Analysis

6.2.1 Introduction

In order to address the specific healthcare needs of a population, it is vi-
tal to develop more effective healthcare models that can be applied for
the decision-making process [344, 345]. Specifically, elderly-driven care ap-
proaches continue to become a central issue for healthcare systems and to
face the different challenges associated with the frail people. To really cen-
ter on the elderly, his or her specific care needs and other characteristics
must be addressed. While it is practically expensive to develop healthcare
models and intervention programs for every individual, programs can be
proposed for subgroups of patients with similar characteristics. In this re-
gard, clustering presents as an appropriate method for dividing an elderly
population into distinct groups, each with specific needs, characteristics, or
behaviors to allow care delivery and policies to be tailored for these groups
[35].
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In this section, clustering methods have been used for identifying sub-
groups of patients among the elderly with homogeneous characteristics by
exploring the underlying structure of the data. Currently, the wide adoption
of electronic health records in healthcare systems makes administrative data
more accessible and provides opportunities to utilize real patient records for
different data analytics and prediction tasks [344]. Data from administra-
tive systems can be used to allocate patients into clusters based on, for
example, medical health conditions, and analyze healthcare costs and ad-
verse outcomes per clusters. With the growing awareness of administrative
data as an asset, clustering approaches are adopted in order to identify and
address the distinct healthcare profiles and priorities of different groups
comprising it [346]. Data-driven clustering approaches empower healthcare
systems to have a deeper understanding of elderly health needs, facilitate ef-
fective healthcare resource planning, and improving many aspects of present
and future healthcare delivery [347].

In this section, the study aims to identify groups of elderly people using
a cluster analysis approach based on administrative data associated with
frailty syndrome. The discovered clusters can serve as a robust basis for
interpreting potential correlations among patient characteristics within the
context of chronic conditions, comorbidities, and other factors.

6.2.2 Materials and Methods

Data Source
Approximately 1.1 million medical records of the elderly patients aged 65
and above have been used for the clustering problem. As described in chap-
ter 4, the data corresponds to medical claims from the regional patients’
information (including hospital discharges, mortality registers, and drug
prescriptions) in Piedmont, Italy. The data provides a rich source of infor-
mation on the demographic, medical, and functional characteristics of the
elderly population. Each health record in the dataset has several attributes
with 58 input variables and six output variables. The input variables in-
clude different combinations of demographic variables (including gender,
age, marital status, household composition, etc.), socioeconomic variables
(such as income, education, employment, housing, etc.), and comorbidity
measures, which include Charlson comorbidity index and other chronic con-
ditions. Chronic medical conditions include diabetes, respiratory disease,
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kidney disease, stroke, dementia, cancer, congestive heart failure, depres-
sion, and many others. All categorical variables with chronic conditions
were represented by Boolean values, while each non-categorical variable was
specified using the dummy variables. In particular, the variable ‘age’ was
grouped into three categories using nine-year age ranges, with 65-74 used
as the first category. The full list of all the input variables that have been
used for the formation of clusters is shown in Appendix A.

For each subject in the data, there are one or more outputs: mortality,
access to the emergency department (ED) with red code, urgent hospitaliza-
tion, disability, fracture, and preventable hospitalization. These variables
are described as outcomes or measurable changes in the health status of
patients. The output variables were not used for the creation of clusters
but for interpreting or characterizing the clusters formed through the input
variables. A cluster analysis was performed in order to identify the patterns
of input cases and to allow the assignment of variables into groups or clus-
ters so that medical conditions in the same cluster are more similar to one
another than to conditions from different clusters.

Dimensionality Reduction Methods
Dimensionality reduction method was an important aspect of our clustering
problem. Three dimensionality reduction methods were explored to visual-
ize and reduce the dimensionality of the data: Principal component analysis
(PCA), t-distributed stochastic neighbor embedding (t-SNE), and multiple
correspondence analysis (MCA).

PCA [348] is one of the most commonly used dimensionality reduction
methods which aims to find the linear combinations of the multivariate data
that captures a maximum amount of variance. PCA performance depends
on the presence of discrete data. Binary and ordinal discrete data can affect
how PCA operates and the interpretation of the results. The t-SNE is a
non-linear projection method for dimensionality reduction that is partic-
ularly well suited for the visualization of high-dimensional datasets [337].
This method works by taking the high dimensional space of the data and
computing a probability distribution based on points that are next to each
other in the n-dimensional space. Unlike PCA and t-SNE, which are best
suited for continuous data, we also used MCA, which is designed for cat-
egorical data. MCA is an extension of correspondence analysis [349] for
multivariate datasets. It projects a given dataset in a lower-dimensional
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subspace producing two major effects: It reduces the dimensionality of the
dataset, and it projects the observations on continuous space. In particular,
k-means requires continuous features on comparable scales so as not to be
biassed towards features with large value ranges. The orthogonal (uncorre-
lated) features created by MCA ensures that highly correlated variables do
not dominate cluster assignments.

The examination of different methods helped us to identify the right
dimensionality technique. In each dimensionality technique, an optimal
number of dimensions extracted and percentages of inertia were determined
by the scree plot. However, not all of them were designed to work well
with this dataset. When using MCA, we observed the meaningful distribu-
tion of input and output cases that makes each cluster to vary by unique
characteristics or prevalence. Whereas in using PCA or t-NSE, we noted a
higher overlap of clusters’ characteristics in which we cannot identify clus-
ters with unique behaviors. This can be because PCA and t-SNE don’t
work well with categorical variables in contrast to MCA, which works well
and designed for categorical variables. To get consistent and clinically inter-
pretable patterns of association in medical conditions, we considered only
the results of clusters obtained on the MCA subspace. In this case, all the
clustering results described in this section were based on the MCA subspace
only unless otherwise specified.

Clustering Methods
For the cluster analysis, k-means (KM) clustering, model-based clustering
via the Gaussian mixture model (GMM), and hierarchical density-based
spatial clustering of applications with noise (HDBSCAN) were assessed and
explored. KM is one of the most widely used clustering techniques. The
“K” in K-means refers to the number of clusters that should be assigned
by users [341, 345]. The KM clustering uses a simple iterative technique to
group points in a dataset into clusters that contain similar characteristics.
The algorithm is made up of two different phases. First, the centroids are
selected randomly, with a fixed value of K, and the second phase is to assign
each data point to the closest center [350]. Euclidean distance is mostly used
to measure the distance between cluster centers and each data point.

The GMM is based on the assumption that the data are generated by a
collection of models, with each cluster corresponding to a different model
[351]. Each resulting cluster is represented by a parametric distribution
and can be either spherical or ellipsoidal of varying sizes and variance. The
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GMM attempts to find a mixture of multidimensional Gaussian probability
distributions that best model any input dataset [352]. It can be used for
finding clusters in the same manner as k-means; however, GMM still as-
sumes the data is coming from a mixture of probability distributions, each
representing a different cluster.

A density-based method is used to discover clusters of non-spherical
shapes. In order to find clusters of arbitrary shapes, clusters are modeled
as a dense region in the data space, separated by sparse regions [342]. The
HDBSCAN algorithm extends DBSCAN by converting it into a hierarchical
clustering algorithm and then using a technique to extract a flat clustering
based on the stability of clusters [353, 125]. It means that it can cluster
data points that are close together. Then, it will mark outliers that are in
the lower-density areas. HDBSCAN is different from the above two cluster-
ing algorithms because it doesn’t require input to determine the number of
clusters.

All three clustering techniques (KM, GMM, and HDBSCAN) have been
applied to the frailty data used in this thesis. GMM works in some ways,
similar to KM, specifically for our problem. However, KM solutions were
slightly more meaningful and interpretable for further analysis and evalua-
tion than GMM. As a result, we only focused on the clustering solutions of
K-Means and HDBSCAN, as discussed in the results section.

Evaluation of Cluster Qualities
One of the most important and difficult activities in clustering analysis is
measuring cluster qualities, which represents the objective and quantitative
assessment of clustering results [323]. A common approach to evaluate
the quality of clustering results involves the use of internal validity criteria
[120]. Many of such measures are designed to show the compactness and
separation of data. The compactness means that the data within the same
cluster should be close to each other, and the separation means that the
data in different clusters should be widely spaced.

In this study, we use internal validity [320] to measure the qualities of
clustering results. We also used a new method for evaluating clustering
results. It is based on predicting the probability of occurrence of the six
outcomes in new patients of a specific cluster, based on the characteristics
of outcomes/labels in the data. A more detailed procedure and measure-
ment techniques for the proposed cluster evaluation method are provided
in section 6.1.
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6.2.3 Experimental Analysis

Analyses were stratified by gender and age groups (65-74, 75-84, and >85
years). There were no missing values, as gender, age group, chronic diseases,
and others were recorded for all the samples. Descriptive statistics were
employed to summarize the overall data, and all the variables were expressed
as frequencies and percentages.

Clustering has been applied to the electronic health records of elderly
data to group similar patients based on various input characteristics, in-
cluding demographics and socioeconomic characteristics and chronic condi-
tions. We examined the different clustering techniques as well as feature
extraction methods for identifying similar groups of elderly people using
data stratified by age and gender groups.

Generally, we used a two-step process: Firstly, we took our dataset and
used a data dimensionality reduction technique to convert it into a lower-
dimensional dataset. Then, we took that reduced dataset and applied var-
ious clustering techniques. Alternatively, we first applied our clustering
method to the data and then used our dimensionality reduction technique
to visualize it. However, clustering data with all of its dimensions is pos-
sible with lower-dimensional and continuous data. Since our data contains
binary and multi-valued categorical variables, it is not appropriate comput-
ing distances between observations. As a result, we emphasized reducing
the dimension first and then applied the clustering algorithm on the reduced
data.

On the numerical components created in the MCA step, elderly patients
were classified in clusters according to proximity criteria using the K-Means
algorithm with random initial centroids. An optimal number of clusters
was assessed according to Calinski Harabaz criteria and the elbow method
[355, 356]. Both methods showed that there were three potential clusters of
elderly patients that best separated the dataset.

To describe and characterize clusters, we used the input and output
variables. The input variables are cluster generating features, which can
be described as comorbidities, chronic disease, demographic and socioeco-
nomic variables. We also used the pre-defined output variables to evaluate
and interpret (but not to generate) clusters: mortality, access to ED with
red code, urgent hospitalization, and disability, fracture, and preventable
hospitalization. Once the clusters were formed using input variables, the
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prevalence of the outcome variables in each cluster were assessed and ana-
lyzed. In order to facilitate interpretation, the frequencies and percentage
of each input and output features in each cluster were calculated. Cluster
characterization and prevalence of variables in clusters are illustrated using
bar graphs.

To assess the internal cluster quality, we applied silhouette analysis on
training and test data. Using the silhouette coefficient, the degree of separa-
tion between clusters, as well as the consistency of silhouette scores between
the training and testing, were determined. The dataset was randomly split
into a training set (70%) and a test set (30%). First, the clustering algo-
rithm has been applied to the training data to create potential clusters, and
the test data has been used as a sample of new patients to be assigned to
the existing clusters. In this case, the quality of the model to assign new
patients into their nearest cluster as well as to predict the probability of
occurrence of the six adverse outcomes in clusters were measured.

The majority of clustering analyses were carried out using different li-
braries in Python, and we implemented dimensionality reduction techniques
and clustering methods as well as plotting and interpreting the results.
RStudio was also used for some specific tasks, such as analyzing the dimen-
sions of the data.

6.2.4 Results and discussions

The data was composed of 1,095,613 elderly patients aged 65 and above
years. Both male and female patients aged 65 and older years were in-
cluded in the cluster analysis, each composed of three age groups. Women
outnumber men among the elderly people aged between 65 to 74 years (47%
men versus 53% women), 75-84 years (44% men versus 56% women) and
a predominance of women among the most elderly (≥ 85 years) (33% men
versus 67% women).

Both HDBSCAN and K-Means algorithms identified three clusters across
all age and gender groups. An example of a two-dimensional representation
of clustering results for men across all age groups is shown in Figure 6.5 for
K-Means and Figure 6.6 for HDBSCAN. The shapes of the colors indicate
the size of the three clusters and their cluster memberships.

In clustering results via HDBSCAN, we observed clusters that are well-
separated and have stronger stability over the different portions of the
dataset as opposed to overlapping clusters that are created through k-means
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Figure 6.5: Visualizations of clustering experiments in 2D scatter plots using the K-Means algo-
rithm for men with all age groups.

Figure 6.6: Visualizations of clustering experiments in 2D scatter plots using HDBSCAN for men
with all age groups.

clustering. However, in the context of our frailty problem, HDBSCAN clas-
sifies and removes most of the frail subjects as noise, which may lose effi-
ciency in grouping elderly patients into plausible clusters. It has also shown
a high probability of getting one larger cluster with the creation of other very
small outlying clusters. HDBSCAN also scored the lowest average silhou-
ette coefficient. However, the clusters obtained using the k-means algorithm
had a higher average silhouette coefficient, as shown in Table 6.2. In this
experiment, the silhouette measure obtained for HDBSCAN clusters is be-
tween 0.47 and 0.71. In KM, the silhouette measure obtained for clusters is
found between is 0.76 and 1.0 for all age and gender groups, demonstrating
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a strong clustering structure was found. Furthermore, almost similar silhou-
ette scores were obtained in the training and testing datasets, which shows
the concordant or consistency of clusters between the training and testing
datasets with respect to the input characteristics and other covariates.

Table 6.2: Average silhouette score of clusters obtained using the k-means

Gender Age Group
Silhouette Score
Training data Testing data

65-74 0.768 0.767
Female 75-84 0.802 0.802

85+ 0.773 0.772
65-74 0.791 0.79

Male 75-84 0.802 0.801
85+ 0.762 0.76

The descriptive statistics of clusters identified through K-Means is shown
in Table 6.3 for women and men in all age groups. For simple comparison
and interpretation, the clusters were sorted from smallest to largest based
on the number of samples. The first cluster had the smallest percentage
of the sample, both women and men: 8% and 10 % of those aged 65–74
years, 11% and 15% of those aged 75-84, 15% and 18% of those aged 85 and
above respectively. On the other hand, the largest percentage of patients
was observed in the third cluster in all age groups of men and women: For
age groups 65-74, 75-84 and 85+, there was 50%, 47%, and 48% of women
patients in the third cluster, respectively.

Table 6.3: Descriptive statistics of clusters, stratified by gender and age group

Clusters
65-74 years 75-84 years 85 years

Female Male Female Male Female Male
(n=265251) (n=239386) (n=230872) (n=178104) (n=122385) (n=59615)

0
20311 24721 26013 26272 17882 10616
8% 10% 11% 15% 15% 18%

1
111387 93450 95374 67190 45725 19679
42% 39% 41% 38% 37% 33%

2
133553 121215 109485 84642 58778 29320
50% 51% 47% 48% 48% 49%
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Differences in characteristics between clusters were compared according
to the input and output variables, using Pearson Chi-square tests. The
significance level was set at α =0.05, and all tests were two-tailed. The
input variables are cluster membership or cluster generating features which
are involved in the process of clusters formation, while the output variables
(mortality, disability, fracture, urgent hospitalization, preventable hospital-
ization, and access to emergency room visits) are not used in cluster gener-
ation, but they are used for assessing, evaluating and interpreting clusters.
The clusters’ difference in each age groups of both genders were reviewed
and assessed to identify whether they were statistically different with re-
spect to the output variables. All input variables differed statistically sig-
nificant between clusters (all P-values < 0.00 ) in all age groups. The output
variables were also found to differ significantly across clusters (P-values <
0.00). Table 6.4 presents an example of the statistical test results among the
three clusters with respect to the six output variables for women aged 65-74.

Table 6.4: Comparison of output variables across the three clusters for women aged 65-74.

Output Code Cluster 0 Cluster 1 Cluster 2
P-Value*Variable (0=no, (N=17641) (N=115345) (N=85725)

1=yes) n % n % n %
Mortality 0 19364 95.34 110524 99.2 133099 99.7 <0.0

1 947 4.66 863 0.77 454 0.34
Access to ED
with red code

0 20131 99.11 111048 99.7 133350 99.9 <0.0

1 180 0.89 339 0.3 203 0.15
Urgent Hospi-
talization

0 19228 94.67 109149 98 132266 99 <0.0

1 1083 5.33 2238 2.01 1287 0.96
Disability 0 19259 94.82 110017 98.8 133112 99.7 <0.0

1 1052 5.18 1370 1.23 441 0.33
Fracture 0 20169 99.3 111127 99.8 133382 99.9 <0.0

1 142 0.7 260 0.23 171 0.13
Preventable 0 19780 97.39 110523 99.2 133253 99.8 <0.0
Hospitalization 1 531 2.61 864 0.78 300 0.22

Prevalence of Chronic Disease and Hospitalization
Figure 6.7 presents the prevalence of the most common chronic disease and
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hospitalization conditions of men and women clusters for the age group 75-
84. Almost, in all clusters, we observed the heterogeneity in the occurrence
of chronic disease and hospitalization conditions among the three clusters
through all age and gender groups. Among the three clusters formed in
all age groups, the third cluster is the one that contains the largest cluster
size with the lowest prevalence of hospitalization and chronic conditions in
patients as opposed to the first cluster, which had the largest prevalence.
In all age groups, the first cluster (cluster 0) has been characterized by the
largest occurrence of hospitalization variables (number of urgent hospital-
ization, non-traumatic hospitalization, emergency admissions with red code
and total hospitalization) with the urgent hospitalization being the highest
in clusters of older age groups (85+ years). The overall prevalence of total
hospitalization was significantly higher in men than in women in all clusters
of all age groups, whereas some diseases such as mental disease, depression,
and femur fracture are significantly more prevalent in women than men
across all clusters of age groups. Comparing the first cluster across all age
groups, we noticed substantial heterogeneity in the composition of urgent
hospitalization with a proportion of 41%, 57%,75% for women and 46%,
57%, 72% for men with age groups 65-74, 75-84 and >85, respectively. This
shows intuitively that the oldest age group (85+) had the highest probabil-
ity of being hospitalized than the lower age groups in both gender groups.

The second cluster (cluster 1) can be characterized by the predominant
occurrence of hypertension and cardiovascular disease both in men and
women. This cluster had the smallest occurrence of hospitalizations and
emergency admissions. This cluster also had a significant prevalence of dia-
betes, respiratory disease, anemia, depression, blood disease, nerve disease,
and so on. In both men and women, there was a nearly similar prevalence
of clinical conditions in the second cluster. In the remaining cluster, there
is always the least number of chronic diseases and other input cases.

The third cluster contained none of the emergency department visits
with red code and urgent hospitalization in all age groups. The prevalence
of input cases such as the number of urgent hospitalization, number of emer-
gency admissions with red code, femur fracture, circulatory system disease,
increases significantly with aging for men and women, whereas some other
diseases such as cancer, hypertension, and diabetes are nearly similar across
all age groups.
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Figure 6.7: The prevalence of input variables in the three clusters of different age groups
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Probability of Outcomes in Clusters
The probability of occurrence of mortality, emergency admissions with red
code, urgent hospitalization, and disability, preventable hospitalization, and
fracture outcomes for all clusters across all age and gender groups are shown
in Figure 6.8. Once the clusters are formed, the probability that a problem
will occur, given that there is a cluster with negative and positive cases,
mathematically written as ‘P(Problem | Cluster)’ can be estimated. The
first cluster had the highest probability of occurrence of the six outcomes,
followed by the second and third clusters in all age groups. The probability
of occurrence of the mortality and urgent hospitalization is a little higher in
men than women, while disability and fracture are more prevalent in women
than men. As shown in the plots (Figure 6.8), it is intuitive to mention
that the probability of occurrence of all outcomes (mortality, emergency
admissions with red code, urgent hospitalization, and disability, preventable
hospitalization and fracture) increases from the younger age groups (65-
74) to the oldest age groups (85+) in each of the clusters. For example,
the probability of a woman having an urgent hospitalization is 5% for age
groups 65-74 years, 8% for 75-84 years, and 9% for 85+ years.

For age groups 65-74, both genders, the most prevalent outcome is ur-
gent hospitalization followed by mortality. For age groups 75-84, the most
prevalent outcome is a disability for women and mortality for men. In the
oldest age groups (85+years), mortality is the predominant,accounting an
average overall rate of 16% for men and 13% for women.

Generally, the number of patients who were dead, hospitalized, disabled,
admitted with red code, and /or fractured are the most dominant in the first
cluster. The subgroups in both genders can be roughly labeled according
to the dominant input and output variables assigned to patients as follows:
Cluster 0 – Frail , Cluster 1 – Pre- frail, Cluster 2 – non-frail. In this
regard, early intervention-oriented systems should gain priority attention for
elderly patients in the first cluster (cluster 0). This cluster requires urgent
interventions addressing some of the most common problems encountered
in older patients.

Once the probability of outcomes in training data is determined, the
probability of urgent hospitalization, disability, fracture, emergency admis-
sion, or death for next year in adults aged over 65 in the testing data can be
estimated. In each cluster for all age groups, the probability of occurrence
of outcomes in the test data was calculated and predicted.
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Figure 6.8: Probability of occurrence of the six outcomes in clusters, stratified by age and gender
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The prediction capabilities were evaluated by using cross-validation proce-
dure, as proposed in section 6.1. Tabel 6.5 presents the quality of each
cluster measured interms of MAPE and RMSE.

Table 6.5: Cluster quality measures in terms of MAPE and RMSE

Gender Age Group
MAPE in % RMSE
Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

65-74 2.73 2.96 1.99 0.00177 0.00071 0.00489
Female 75-84 5.45 6.75 1.4 0.00897 0.0095 0.00305

>=85 1.91 0.64 1.54 0.00643 0.00495 0.00659
65-74 1.12 1.75 1 0.00092 0.00146 0.00403

Male 75-84 2.88 2.44 0.86 0.00396 0.0044 0.00389
>=85 3.29 2 2.75 0.0083 0.01006 0.01404

Clusters were also evaluated on the basis of results obtained from the
training dataset. In order to test the reproducibility of the resulting clusters
on the test dataset, we trained one of the supervised learning classifier (e.g.,
random forest classifier) [354], using the labels acquired from the clustering
process, and validate the model on the remaining subset. To evaluate the
robustness of the clustering results, we repeated the experiment (MCA/k-
means clustering) to the test set and compared the concordance of the
acquired clusters with the cluster labels predicted by the random forest
classifier (RF).

The Random Forest (RF) was trained on 70% of the clustering training
data with the K-Means (KM) cluster labels as the predicted classes using
the 56 features. For example, for women 65-74 years old, the accuracy of
RF on the test part of the data was able to reach 96% accuracy in classi-
fying unseen patients (test data) to their respective cluster subgroups. The
characteristics of the three clusters derived from the test dataset were com-
parable to those of the training dataset with regards to variables included
in the analysis, indicating good reproducibility of the clusters in test data.
The same number of 56 variables were also used as the input to the MCA/K-
Means to predict the cluster membership for test data. The similarity of
cluster assignments (prediction of cluster membership) by the RF and by the
MCA/K-Means was calculated using the Jaccard index (percentage of pa-
tients overlapping in the same cluster between the two solutions).We found
very good agreement between the two approaches with 96% Jaccard index,
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indicating that most patients are allocated to the same clusters in both the
RF and MCA/K-Means approaches. An example graphical representation
of the RF and MCA/K-Means outputs is shown in Figure 6.9 for women
aged 65-74.

Figure 6.9: Experimental evaluation of clusters on predicting cluster membership for new patient
cases using a combined approach of random forest classifier and K-Means clustering.

6.3 Conclusions

The first part of this chapter focuses on evaluating the quality of clustering
algorithms, which is an important and challenging part of the clustering
task. In this study, the k-fold cross-validation procedure was adapted to
the task of evaluating the quality of the clustering algorithms, that is, mea-
suring the ability of these algorithms to predict cluster membership for new
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data. A new clustering validity index was proposed to measure the effec-
tiveness of the clustering algorithm through the use of root mean squared
error (RMSE) and mean absolute percentage error (MAPE) values. The in-
dex was developed using the probability information obtained from several
labels of multi-label data. This measure is useful for evaluating clusterings,
which can be used for estimating the probability of the occurrence of the
labels. For example, patients can be grouped into several clusters, and the
occurrence of diseases can be studied separately in each group. The results
presented in this chapter show that the proposed method works well for
evaluating the quality of clusters obtained using the k-means algorithm.
Combining the proposed method with other, for example, density-based,
clustering algorithms require solving additional problems such as finding an
effective way of assigning new data points to previously discovered clusters.
Therefore, combining the proposed method with such clustering algorithms
was left as further work.

In the second part of this chapter, we applied a clustering analysis to
the administrative data of elderly people routinely collected primarily from
hospital discharges,drug prescriptions, etc. This data-driven analysis has
identified three distinct, plausible clusters of elderly patients and the rela-
tionship between variables within each cluster. The first cluster is composed
of the highest-burden of diseases and outcomes, which requires urgent ac-
tion as a key priority to maintain health and avoid future costs in this
cluster. In general, the findings provide the basis for further research into
the consequences of frailty clustering in terms of outcomes and have par-
ticular significance for frailty prevention plans, clinical practice, and the
planning of follow-up services for older people.
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Chapter 7

Conclusions and Future Work

This chapter provides a summary and recommendations for future research
work

7.1 Summary of the Thesis

Currently, several countries around the world face problems associated with
an increasingly aging population, which drives significant challenges for their
health services and societies. One of the common challenges is the growth
of older adults who have a frail health condition or are at a greater risk of
progressing frailty conditions. Frailty is a complex phenomenon as the tar-
get population of frail elderly adults may have diverse and complex needs.
It has been a major threat to older peoples’ wellbeing along with high ser-
vice expenditures. Therefore, it should be detected at an early stage to give
options for proactive care, in order to help reduce or delay functional de-
cline, prevent hospitalization, and maintain the wellbeing and independent
life of the elderly. For the detection of frailty, various frailty scores based
on different concepts of frailty have been developed. However, so far, none
of them is recognized as the "gold standard", and the debate is centered on
whether frailty should be defined solely in terms of biomedical factors or
whether other factors should also be considered.

In different clinical and social settings where the care of the elderly is a
priority, early detection initiatives should consider the current views on
frailty that integrates various factors including, clinical, cognitive, psycho-
logical and socioeconomic factors, in order to reflect the multidimensional
impairments and consequences that are intrinsic to the frailty syndrome
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[9]. In current clinical settings, health administrative databases are impor-
tant source of information to assess frailty from various dimensions. Such
databases are also available for health services planning and delivery, surveil-
lance of health status population, or various researches [24]. An adminis-
trative health database with large and heterogeneous dimensions requires
a better analytical method that could capture the interaction of various
components. Machine learning represents a powerful approach to process
the complex nonlinear relationships between various factors and yield more
stable predictions.

This thesis is focused on the analysis of the administrative health database
of the elderly population using machine learning approaches, both the su-
pervised and unsupervised learning paradigms. In particular, the presented
work has explored the application of a classification task for detecting and
predicting frailty, and clustering analysis for the management of frail older
adults. In chapter 4, we have investigated the use of various standard (i.e.,
single-label) classification models to identify various adverse health out-
comes associated with frailty (fracture, disability, medical emergency ad-
mission at the emergency department, urgent hospitalization, preventable
hospitalization, and premature mortality) from a routinely collected med-
ical administrative dataset, including 1,095,613 older adults aged 65 years
and above from Piedmont, a region in the North-West of Italy. Important
preprocessing procedures, such as feature selection and reducing the imbal-
anced nature of the data, were performed before building machine learning
models. As we confirmed from the results of the experiments, the predic-
tion performance of machine learning models significantly varies from one
problem (i.e., from one outcome associated with frailty) to another in terms
of different evaluation measures and the dataset used in the study is better
at predicting mortality than predicting the other outcomes associated with
frailty.

Although the explored models have shown a strong predictive ability to es-
timate the risk of a single outcome associated with frailty syndrome, they
are not well aligned to handle multiple labels simultaneously, as the data
originally contains multiple negative health outcomes. Moreover, current
studies on single-label classification for complex multi-label datasets fail
to handle new approaches of improving performance through exploiting la-
bel correlations. Thus, chapter 5 is focused on detecting more than one
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adverse outcomes concurrently using the multi-label learning method. Var-
ious multi-label learning algorithms have been employed and compared for
simultaneously predicting the six adverse outcomes associated with frailty.
One of the main challenges in multi-label learning is the joint occurrence of
highly imbalanced labels in the same data patterns. A hybrid resampling
approach, named ML-TLSMOTE, was proposed to reduce the imbalanced
label distribution and improve the performance of MLC algorithms.

In chapter 6, the problem of identifying the profiles of frail elderly people
was tackled through cluster analysis. The aim was to divide the elderly
patients into distinct groups, each with specific needs, characteristics, or
behaviors to allow healthcare delivery and policies to be tailored for these
groups. This thesis has identified three distinct, plausible clusters of elderly
patients across all age and gender groups, and that it provides a unique
opportunity for investigating the co-occurrence of multiple conditions, the
rate of comorbidities and the prevalence of adverse outcomes in each cluster
of elderly patients. The results can help us to know those clusters composed
of patients with frailty, and therefore, require urgent action and priority to
maintain health and avoid future costs. One of the main issues related to
the clustering task is the proper validation of the clustering results, which
is usually reported as one of the most difficult and frustrating steps of
cluster analysis [117]. In this thesis, we propose a new cluster validity index
that uses the information from multiple labels to evaluate the quality of
clustering algorithms. The study validates the proposal through the cross-
validation analysis of some challenging multi-label datasets. This approach
was motivated by medical applications in which we would like to assess
the probability of various health problems in different patient groups. For
example, the labels for the frailty dataset are mortality, hospitalization,
disability, and fracture, as indicated in section 4. Once the clusters are
formed, the probabilities of the occurrence of these labels, i.e., mortality,
hospitalization, disability, and fracture are estimated in each cluster and
compared between the training set and the test set. The aim is to measure
how well we can predict the probabilities of these three outcomes in new
patients (i.e., in the test data) based on their membership in the training
clusters.

Finally, it is important to highlight that the various approaches proposed in
this thesis were demonstrated and validated using an administrative health
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database of older adults, and the results clearly showed that machine learn-
ing models are particularly relevant for early intervention and prevention
of frailty syndrome in the elderly population. Currently, this is the first
to attempt to develop frailty predictive models using a large population of
routinely collected socio-clinical administrative data with multiple simulta-
neous outcomes, and the first to attempt to do so using machine learning,
in particular using multi-label learning methods. Although traditional sta-
tistical modeling is frequently used to identify frailty and its risk factors,
machine learning has become more indispensable for solving more complex
problems and provides highly useful information for frailty risk prediction
and for informing courses of treatment. Such sophisticated predictive knowl-
edge is often of great importance to physicians, health specialists, policy-
makers, or other professionals, who may then advice to screen high-risk
individuals or early interventions to prevent adverse health outcomes from
happening in patients. Furthermore, modern machine learning techniques,
unlike the classical methods, have greater flexibility to capture non-linear
complex interactions among a large number of variables in massive quan-
tities of data, making them more suitable for big steps in diagnostics and
prediction. Therefore, an increased integration of machine learning into ev-
eryday medical applications could improve the efficiency of treatments and
lower costs in various ways. Despite such in-depth applications of machine
learning in healthcare and other domains, some limitations still exist, in-
cluding the data acquisition and representation issues [357], the degree of
interpretability for predictive power [358], and the deployment issues [359].

7.2 Future Research Directions

The final consideration of this thesis is to show some future directions of
research related to the application of machine learning techniques in a frail
older population. While the investigation of this thesis have shown promis-
ing results with respect to the detection and management of frailty as well
as some approaches for enhancing the quality of predictive models, there is
still much work that requires further investigation and research.

The thesis used an administrative health database of the elderly for analyz-
ing and predicting the risk of frailty syndrome (fracture, disability, urgent
hospitalization, and mortality). With appropriate modifications through an

174



: 7 – Conclusions and Future Work

extended tuning process and by investigating various socioclinical and ad-
ministrative databases at the national level, the predictive models might be
applicable in an international setting. Furthermore, the frailty phenotypic
information such as grip strength and gait speed can be integrated with
administrative databases in order to develop a comprehensive model with
improved predictive ability.

One of the issues that pose a challenge in building a predictive model was
that the data suffer from the imbalanced class distribution. To address
the imbalanced problem in this administrative data, we applied commonly
used resampling methods. These approaches are model-independent prepro-
cessing techniques that can be applied to any machine learning algorithm.
However, they may lead to loss of important information or the introduc-
tion of meaningless new samples. Therefore, alternative approaches such
as cost-sensitive learning [238] can be integrated with the new emerging
machine learning methods such as deep learning, resulting in robust and
efficient learners without the perturbation of the original data.

Multi-label feature selection is a powerful tool for a high-dimensional prob-
lem in order to improve the performance of multi-label classifiers. In this
thesis, the single-label based feature selection methods such as chi-square
and information gain have been tried in the multi-label scenario to enhance
the performance of classifiers. However, the existing feature selection meth-
ods are unable to take both computational complexity and label correlation
into consideration. Moreover, since each label might be decided by some spe-
cific features of its own, the problems of feature selection are often addressed
independently. Therefore, further study can be important to perform joint
feature selection in a multi-label classification that can learn both shared
features and label specific features by considering pairwise label correlations.

In developing a multi-label frailty risk prediction model, this thesis presents
a new resampling algorithm for imbalanced multi-label classification prob-
lem named ML-TLSMOTE (multi-label resampling using SMOTE followed
by Tomek link), which is based on the existing hybrid resampling ap-
proaches. ML-TLSMOTE is an effective technique that reduces the imbal-
anced label distributions and improves performance in a multi-label data
when compared to the independent resampling techniques such as SMOTE
or Tomek link. The ML-TLSMOTE algorithm was evaluated considering
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the specific problem of the administrative database of older adults. In the
future, we need to evaluate our proposed algorithm using other benchmark
datasets.

The thesis was also focused on the application of the clustering problem for
identifying new frailty classes using administrative health database. Two
essential aspects of this clustering problem were: (1) to estimate the number
of clusters using input features in the dataset; and to allocate the output fea-
tures to these clusters so that we can compute the probability of occurrence
of adverse health outcomes in each cluster, and (2) assess the prediction
strength of the clustering model to predict cluster labels for new samples.
For the second problem, a new cluster validation criteria was proposed,
named CVIM, using the information from multiple labels of multi-label
data. The results show that the CVIM works well for evaluating partition-
ing based clustering results (e.g., k-means). Combining the CVIM approach
with others, for example, density-based clustering algorithms require solv-
ing additional problems such as finding an effective way of assigning new
data points to previously discovered clusters.

With the growing number of an older population and its associated chal-
lenges in healthcare demand and social care, the management or reduction
of healthcare costs while improving the quality of service is a priority. In or-
der to address these challenges, remote monitoring of older person’s health
can be used to identify pre-frailty and frailty conditions, therefore, enabling
early intervention and reduce hospital admissions. Advanced machine learn-
ing techniques can be used for the detection of elderly health outcomes with
multiple data sources such as wearable devices, sensors, and video cameras.
Thus, the development of a smart healthcare monitoring system, which is
capable of observing elderly people remotely, can be considered important
as future development.
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Variable   Category  Code  Count  Percent (%) 

Age 

65-69 0 273,389 24.95 

70-74 1 231,248 21.11 

75-79 2 233,122 21.28 

80-84 3 175,854 16.05 

85-89 4 117,674 10.74 

>=90 5 64,326 5.87 

 Citizenship  
PSA* 0 1,076,375 98.24 

PFPM** 1 19,238 1.76 

Number of urgent 

hospitalization  

0 0 1,024,739 93.53 

1 or 2 1 67,523 6.16 

3 or more  2 3,351 0.31 

Number of  non-

traumatic  

hospitalizations  

0 0 987,152 90.10 

1 or 2 1 99,576 9.09 

3 or more  2 8,885 0.81 

Number of total 

hospitalizations  

0 0 977,028 89.18 

1 or 2 1 107,881 9.85 

3 or more  2 10,704 0.98 

Charlson index  [370] 

Value index  0 0 1,019,406 93.04 

 Index 1-2  1 61,717 5.63 

Index  3 - 5 2 10,160 0.93 

value index 6 or higher 3 4,330 0.40 
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Home-based care 
no  0 1,084,324 98.97 

yes 1 11,289 1.03 

Income  
no  0 251,424 22.95 

yes 1 844,189 77.05 

 Invalidity  
no  0 959,791 87.60 

yes 1 135,822 12.40 

Poly prescriptions 

(number of  drugs 

prescribed)   

from 0 to 5 drugs 0 559,731 51.09 

from 6 to 10 drugs  1 366,355 33.44 

more than 11  drugs  2 169,527 15.47 

Number of different 

types of drugs  

prescribed ( First 

three  digits of  ATC 

code) 

0 0 82,879 7.56 

from 1 to 5 1 566,187 51.68 

from 6 to 14 2 439,599 40.12 

15 or more  3 6,948 0.63 

    

     

emergency 

department visits  

with white code 

no access 0 1,062,489 96.98 

at least one access 1 33,124 3.02 

emergency 

department visits  

with green code  

no access 0 879,634 80.29 

1 or 2 accesses 1 194,310 17.74 

3 or more accesses  2 21,669 1.98 

 emergency 

department visits   

with yellow code 

no access 0 1,039,685 94.90 

1 or 2 accesses 1 54,426 4.97 

3 or more accesses  2 1,502 0.14 

emergency 

department visits  

with red code 

no access 0 1,092,082 99.68 

at least one access 1 3,531 0.32 

Housing condition 

privately owned 1 890,222 81.25 

renting  2 157,150 14.34 

other  3 48,241 4.40 
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Marital status  

single  1 81,492 7.44 

married  2 697,589 63.67 

widower  3 251,423 22.95 

divorced  4 65,109 5.94 

Level of education  

degree or superior 

average 
1 188,799 17.23 

lower average or 

professional qualification 
3 325,242 29.69 

elementary or without 

study title 
4 581,572 53.08 

Work status 

employed  1 95,188 8.69 

housewife 3 102,523 9.36 

withdrawn from work 5 851,202 77.69 

Other (unemployed, 

student, etc.) 
7 46,700 4.26 

Home living status   noncrowded 1 1,020,696 93.16 
 crowded  2 74,917 6.84 

Type of family 

an elderly couple (both 

over 65) without children 
1 375,189 34.24 

only with  children  2 63,561 5.80 

only without children, 

single or widower 
3 360,051 32.86 

other cohabitations  4 296,812 27.09 

Disability  
no  0 950,048 86.71 

yes 1 145,565 13.29 

Femur Fracture  
no  0 1,040,449 94.97 

yes 1 55,164 5.04 

Depression  
no  0 929,835 84.87 

yes 1 165,778 15.13 

Diabetes  
no  0 914,357 83.46 

yes 1 181,256 16.54 

Arthropathy 
no  0 1,046,700 95.54 

yes 1 48,913 4.46 

 

 

 

 

 

 

 

 

 

 

 

    

: Appendices

180



Parkinson's disease 
no  0 1,074,446 98.07 

yes 1 21,167 1.93 

Epilepsy 
no  0 1,033,834 94.36 

yes 1 61,779 5.64 

Anaemia 
no  0 1,018,977 93.01 

yes 1 76,636 6.99 

Hypertensive 
no  0 782,954 71.46 

yes 1 312,659 28.54 

Glaucoma  
no  0 1,016,227 92.75 

yes 1 79,386 7.25 

Mental disease   
no  0 1,060,794 96.82 

yes 1 34,819 3.18 

Cancer  
no  0 969,426 88.48 

yes 1 126,187 11.52 

Thyroid  
no  0 992,007 90.54 

yes 1 103,606 9.46 

Dementia  
no  0 1,080,388 98.61 

yes 1 15,225 1.39 

Coronary artery 

disease  

no  0 1,048,234 95.68 

yes 1 47,379 4.32 

Congestive heart 

failure  

no  0 1,082,722 98.82 

yes 1 12,891 1.18 

Stroke 
no  0 1,067,443 97.43 

yes 1 28,170 2.57 

Kidney failure 
no  0 1,084,182 98.96 

yes 1 11,431 1.04 

Hypercholesterolemia 
no  0 1,067,678 97.45 

yes 1 27,935 2.55 

Atrial fibrillation 
no  0 1,044,590 95.34 

yes 1 51,023 4.66 

neck fracture 
no  0 1,084,155 98.95 

yes 1 11,458 1.05 

Infectious diseases 
no  0 581,304 53.06 

yes 1 514,309 46.94 

Neoplasia 
no  0 961,674 87.78 

yes 1 133,939 12.23 
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Blood  disease  
no  0 659,726 60.22 

yes 1 435,887 39.78 

Nerve  disease  
no  0 698,471 63.75 

yes 1 397,142 36.25 

Diseases of the 

respiratory system 

no  0 878,327 80.17 

yes 1 217,286 19.83 

Muscular diseases 
no  0 110,723 10.11 

yes 1 984,890 89.89 

Diseases of the 

urinary tract 

no  0 1,034,044 94.38 

yes 1 61,569 5.62 

Diseases of the 

digestive tract 

no  0 1,035,118 94.48 

yes 1 60,495 5.52 

Endocrine diseases 
no  0 871,693 79.56 

yes 1 223,920 20.44 

diseases of the 

circulatory system 

no  0 683,534 62.39 

yes 1 412,079 37.61 

Metabolism diseases 
no  0 431,410 39.38 

yes 1 664,203 60.62 

Cardiovascular 

diseases 

no  0 299,798 27.36 

yes 1 795,815 72.64 

Drugs for 

dermatological 

problems 

no  0 1,068,253 97.50 

yes 1 27,360 2.50 

Genital diseases 
no  0 946,439 86.38 

yes 1 149,174 13.62 

Hormonal diseases 
no  0 839,661 76.64 

yes 1 255,952 23.36 

Problems with  the 

sensory parts 

no  0 1,019,402 93.04 

yes 1 76,211 6.96 

 

: Appendices

182



Variable Name   

Code 

Sample-1 (10%) Sample-2 (90%)  

X2 

 

DF 

 

CV 

 

P-

values 
Count % N % 

Age  

0 27,897 26 234,694 27 4.36 5 11.07 .50 

1 23,512 22 195,078 22         

2 22,912 22 191,267 22         

3 16,560 16 136,996 16         

4 10,113 10 84,746 10         

5 4,968 5 40,908 5         

Citizenship 
0 104,088 98 867,665 98 1.07 1 3.84 .30 

1 1,874 2 16,024 2         

Number of urgent 

hospitalization 

0 100,886 95 840,603 95 1.90 2 5.99 .39 

1 4,931 5 41,785 5         

2 145 0 1,301 0         

Number of 

nontraumatic 

hospitalizations  

0 97,230 92 809,990 92 2.65 2 5.99 .27 

1 8,149 8 69,023 8         

2 583 1 4,676 1         

Number of total 

hospitalizations 

0 96,423 91 803,210 91 1.86 2 5.99 .39 

1 8,840 8 74,757 8         

2 699 1 5,722 1         

Charlson index  

0 100,247 95 836,048 95 0.69 3 7.81 .88 

1 4,836 5 40,120 5         

2 627 1 5,392 1         

3 252 0 2,129 0         
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Home-based care 
0 104,868 99 874,682 99 0.16 1 3.84 .69 

1 1,094 1 9,007 1         

Income 
0 24,990 24 208,621 24 0.03 1 3.84 .86 

1 80,972 76 675,068 76         

Invalidity 
0 94,608 89 789,101 89 0.01 1 3.84 .91 

1 11,354 11 94,588 11         

Poly prescriptions 

(number of  drugs 

prescribed)   

0 56,475 53 470,901 53 2.50 2 5.99 .29 

1 35,262 33 292,723 33         

2 14,225 13 120,065 14         

Number of different 

types of drugs  

prescribed ( First 

three  digits of  ATC 

code) 

0 8,573 8 70,642 8 1.25 3 7.81 .74 

1 56,665 53 472,961 54         

2 40,254 38 336,201 38         

3 
470 0 3,885 0 

        

Access to ED with 

White code 

0 102,833 97 857,402 97 0.16 1 3.84 .69 

1 3,129 3 26,287 3         

Access to ED with 

Green code 

0 86,958 82 724,742 82 0.34 2 5.99 .84 

1 17,399 16 145,384 16         

2 1,605 2 13,563 2         

Access to ED with 

Yellow code 

0 101,762 96 847,565 96 3.82 2 5.99 .15 

1 4,122 4 35,477 4         

2 78 0 647 0         

Access to ED with 

Red code 

0 105,740 100 881,738 100 0.55 1 3.84 .46 

1 222 0 1,951 0         

Housing condition 

1 86,678 82 722,002   0.55 2 5.99 .76 

2 14,853 14 123,963 14         

3 4,431 4 37,724 4         

Marital status 

1 7,730 7 65,119 7 1.10 3 7.81 .78 

2 68,656 65 572,836 65         

3 23,153 22 192,280 22         

4 6,423 6 53,454 6         

Level of education 

1 18,736 18 157,134 18 0.75 2 5.99 .69 

3 32,145 30 268,151 30         

4 55,081 52 458,404 52         
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Work status 

1 9,680 9 80,955 9 0.29 3 7.81 .96 

3 10,155 10 84,838 10         

5 81,694 77 680,710 77         

7 4,433 4 37,186 4         

Home living status 
1 98,811 93 823,362 93 0.90 1 3.84 .34 

2 7,151 7 60,327 7         

Type of family 

1 36,780 35 305,745 35 1.66 3 7.81 .65 

2 6,147 6 50,654 6         

3 33,482 32 280,202 32         

4 29,553 28 247,088 28         

Disability 
0 93,636 88 781,148 88 0.08 1 3.84 .78 

1 12,326 12 102,541 12         

Femur Fracture 
0 101,331 96 843,904 96 3.83 1 3.84 .05 

1 4,631 4 39,785 5         

Depression 
0 91,148 86 759,378 86 0.59 1 3.84 .44 

1 14,814 14 124,311 14         

Diabetes 
0 89,437 84 744,236 84 2.45 1 3.84 .12 

1 16,525 16 139,453 16         

Arthropathy 
0 101,320 96 845,264 96 0.24 1 3.84 .62 

1 4,642 4 38,425 4         

Parkinson's disease 
0 104,233 98 869,700 98 1.44 1 3.84 .23 

1 1,729 2 13,989 2         

Epilepsy 
0 100,577 95 838,499 95 0.20 1 3.84 .66 

1 5,385 5 45,190 5         

Anemia 
0 99,657 94 830,663 94 0.42 1 3.84 .51 

1 6,305 6 53,026 6         

Hypertensive 
0 76,533 72 637,821 72 0.12 1 3.84 .73 

1 29,429 28 245,868 28         

Glaucoma  
0 98,385 93 820,530 93 0.00 1 3.84 .97 

1 7,577 7 63,159 7         

Mental disease   
0 103,095 97 860,158 97 0.67 1 3.84 .41 

1 2,867 3 23,531 3         
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Cancer  
0 94,429 89 787,377 89 0.02 1 3.84 .88 

1 11,533 11 96,312 11         

Thyroid  
0 96,048 91 801,056 91 0.00 1 3.84 .96 

1 9,914 9 82,633 9         

Dementia  
0 104,948 99 875,171 99 0.05 1 3.84 .83 

1 1,014 1 8,518 1         

Coronary artery 

disease  

0 101,713 96 848,154 96 0.03 1 3.84 .86 

1 4,249 4 35,535 4         

 

Congestive heart 

failure  

 

 

0 

 

 

105,099 

 

 

99 

 

 

876,572 

 

 

99 

 

 

0.10 

 

 

1 

 

 

3.84 

 

 

.76 

1 863 1 7,117 1         

Stroke 
0 103,549 98 863,804 98 0.31 1 3.84 .58 

1 2,413 2 19,885 2         

kidney failure 
0 105,048 99 875,966 99 0.14 1 3.84 .71 

1 914 1 7,723 1         

Hypercholesterolemi

a 

0 103,254 97 861,238 97 0.09 1 3.84 .77 

1 2,708 3 22,451 3         

Atrial fibrillation 
0 101,702 96 848,265 96 0.03 1 3.84 .86 

1 4,260 4 35,424 4         

Neck  fracture 
0 105,117 99 876,678 99 0.02 1 3.84 .89 

1 845 1 7,011 1         

Infectious diseases 
0 57,484 54 478,823 54 0.16 1 3.84 .69 

1 48,478 46 404,866 46         

Neoplasia 
0 93,736 88 781,662 88 0.01 1 3.84 .94 

1 12,226 12 102,027 12         

Blood  disease  
0 66,208 62 553,085 63 0.45 1 3.84 .50 

1 39,754 38 330,604 37         

Nerve  disease  
0 69,698 66 580,218 66 0.58 1 3.84 .45 

1 36,264 34 303,471 34         

Diseases of the 

respiratory system 

0 86,452 82 720,816 82 0.02 1 3.84 .88 

1 19,510 18 162,873 18         

Muscular diseases 
0 9,649 9 80,108 9 0.19 1 3.84 .66 

1 96,313 91 803,581 91         
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Diseases of the 

urinary tract 

0 100,843 95 841,242 95 0.16 1 3.84 0.69 

1 5,119 5 42,447 5         

Diseases of the 

digestive tract 

0 100,932 95 840,559 95 3.65 1 3.84 .06 

1 5,030 5 43,130 5         

Endocrine diseases 
0 85,300 81 710,744 80 0.31 1 3.84 .58 

1 20,662 20 172,945 20         

Diseases of the 

circulatory system 

0 68,293 64 569,475 64 0.00 1 3.84 .96 

1 37,669 36 314,214 36         

Metabolism diseases 
0 43,419 41 360,291 41 1.64 1 3.84 .20 

1 62,543 59 523,398 59         

Cardiovascular 

diseases 

0 30,111 28 250,030 28 0.70 1 3.84 .40 

1 75,851 72 633,659 72         

Drugs for 

dermatological 

problems 

0 103,420 98 862,639 98 0.12 1 3.84 .73 

1 
2,542 2 21,050 2 

        

Genital diseases 
0 91,741 87 765,505 87 0.18 1 3.84 .67 

1 14,221 13 118,184 13         

Hormonal diseases 
0 82,094 77 683,505 77 0.89 1 3.84 .35 

1 23,868 23 200,184 23         

Problems with  the 

sensory parts 

0 98,687 93 822,827 93 0.07 1 3.84 .79 

1 7,275 7 60,862 7         
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      Hyperparameters settings for each ML model  in each of the six  problems 

 

Problem SVM  ANN RF  DT LR 

Mortality  'C': 

100, 

'gamma'

: 

0.001, 

'kernel

': 

'rbf' 

 

'activation': 

'relu', 

'alpha': 0.05, 

'hidden_layer_s

izes': (30, 30, 

30), 

'learning_rate'

: 'constant', 

'solver': 'sgd' 

 

'max_depth': 

90, 

'max_features': 

3, 

'min_samples_le

af': 5, 

'min_samples_sp

lit': 12, 

'n_estimators': 

100 

'criterion': 

'entropy', 

'max_depth': 

12, 

'max_feature

s': 5, 

'min_samples

_split': 2 

'C': 10.0, 

'penalty': 

'l2' 

 

Fracture 'C': 1, 

'gamma'

: 0.01, 

'kernel

': 

'rbf' 

 

'activation': 

'relu', 

'alpha': 0.05, 

'hidden_layer_s

izes': (50, 

100, 50), 

'learning_rate'

: 'adaptive', 

'solver': 'sgd' 

 

'max_depth': 

80, 

'max_features': 

8, 

'min_samples_le

af': 5, 

'min_samples_sp

lit': 12, 

'n_estimators': 

200 

'criterion':

'entropy', 

'max_depth': 

6, 

'max_feature

s': 30, 

'min_samples

_split': 5 

 

'C': 

1000.0, 

'penalty': 

'l2' 

 

 

 

 

 

 

 

 

 

 

 

 

     

: Appendices

C Parameters Settings for Machine learning Algorithms

188



Disability  'C': 1, 

'gamma'

: 0.1, 

'kernel

': 

'rbf' 

 

'activation': 

'tanh', 

'alpha': 0.05, 

'learning_rate'

: 'constant', 

'solver':‘sgd,h

idden_layer_siz

es':(10,10,10) 

 

'max_features': 

6, 

'min_samples_le

af': 3, 

'min_samples_sp

lit': 8, 

'n_estimators': 

100, 

‘max_depth':80 

'max_depth': 

100, 

'max_feature

s': 3, 

'min_samples

_split': 12, 

'n_estimator

s': 100 

 

'C': 

100.0, 

'penalty': 

'l2' 

 

Urgent 

Hosp. 

'C': 

100, 

'gamma'

: 

0.001, 

'kernel

': 

'rbf' 

 

'activation': 

'relu', 

'alpha': 

0.0001, 

'learning_rate'

: 'constant', 

'solver':‘adam,

hidden_layer_si

zes':(100,) 

 

'max_features': 

3, 

'min_samples_le

af': 5, 

'min_samples_sp

lit': 12, 

'n_estimators': 

100, 

‘max_depth':90 

 

'criterion': 

'entropy', 

'max_depth': 

6, 

'max_feature

s': 30, 

'min_samples

_split': 2 

 

'C': 1.0, 

'penalty': 

'l2' 

 

      

Preventable 

Hosp. 

'C': 

10, 

'gamma'

: 

0.001, 

'kernel

': 

'rbf' 

 

'activation': 

'tanh', 

'alpha': 0.05, 

'hidden_layer_s

izes': (100,), 

'learning_rate'

: 'constant', 

'solver': 'sgd' 

 

'max_features': 

3, 

'min_samples_le

af': 4, 

'min_samples_sp

lit': 12, 

'n_estimators': 

300, 

‘max_depth':90 

'criterion': 

'gini', 

'max_depth': 

6, 

'max_feature

s': 10, 

'min_samples

_split': 2 

 

'C': 10.0, 

'penalty': 

'l2' 

 

Access to 

emergency 

department 

with red 

code  

'C': 1, 

'gamma'

: 0.1, 

'kernel

': 

'rbf' 

 

'activation': 

'relu', 

'alpha': 

0.0001, 

'learning_rate'

: 'adaptive', 

'solver': 'sgd' 

 

'max_depth': 

80, 

'max_features': 

10, 

'min_samples_le

af': 4, 

'min_samples_sp

lit': 2, 

'n_estimators': 

300 

 

'criterion': 

'entropy', 

'max_depth': 

6, 

'max_feature

s': 40, 

'min_samples

_split': 2 

 

'C': 0.1, 

'penalty': 

'l2' 
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D.1: The most important variables in disability and urgent hospitalization problems 

Disability   problem Urgent hospitalization  problem 

Variable Rank P-Value Variable Rank P-Value 

Age            1 P<.001 Age  1 P<.001 

Charlson index 2 P<.001 Mental Disease  2 P<.001 

# total hospitalizations        3 P<.001 Poly prescriptions 3 P<.001 

# urgent hospitalization 

4 P<.001 

diseases of the 

respiratory 

system 
4 P<.001 

Poly prescriptions 5 P<.001 Citizenship 5 P<.001 

# non-traumatic 6 P<.001 White code  
6 

P<.001 

Green code                7 P<.001 arthropathy 
7 

P<.001 

Nerve disease                

8 P<.001 

diseases of the 

circulatory 

system 8 
P<.001 

Disability             10 P<.001 Glaucoma  10 P<.001 

blood   disease               11 P<.001 Femur fracture 11 P<.001 

Yellow code                12 P<.001 Heart disease  12 P<.001 
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Depression                13 P<.001 Nerve disease  13 P<.001 

diseases of the 

circulatory system                14 P<.001 
Neoplasm  

14 P<.001 

Dementia              15 P<.001 Disability  15 P<.001 

Anaemia               

16 P<.001 

Drugs for 

dermatological 

problems 
16 P<.001 

mental   disease             17 P<.001 metabolism 

diseases 
17 P<.001 

diseases of the urinary 

tract                18 P<.001 
genital diseases 

18 P<.001 

Parkinson disease                  19 P<.001 hormonal 

diseases 
19 P<.001 

 

 

D.2: The most important variables in preventable hospitalization and emergency 

admission 

Preventable hospitalization     Emergency admission with red code    

Variable  Rank  P-Value Variable  Rank P-Value 

Age  1 P<.001 Age 1 P<.001 

Mental disease  2 P<.001 Charlson index  2 P<.001 

Poly prescriptions 3 P<.001 # urgent 

hospitalization  
3 P<.001 

diseases of the 

respiratory system 
4 P<.001 # total 

hospitalization  
4 P<.001 

White code  5 P<.001 Poly prescriptions 5 P<.001 

Citizenship 6 P<.001 # non-traumatic  
6 

P<.001 
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arthropathy 7 P<.001 Yellow code  
7 

P<.001 

diseases of the 

circulatory system 
8 P<.001 Invalidity  

8 
P<.001 

Glaucoma  10 P<.001 Disability              10 P<.001 

Heat disease  12 P<.001 diseases of the 

respiratory system 
12 P<.001 

Femur fracture  13 P<.001 Blood disease  13 P<.001 

Nerve disease  14 P<.001 diseases of the 

circulatory system 
14 P<.001 

Neoplasm  15 P<.001 Green code 15 P<.001 

metabolism diseases 16 P<.001 diseases of the 

urinary tract 
16 P<.001 

Drugs for 

dermatological 

problems 
17 P<.001 

Anaemia  

17 P<.001 

drugs for the sensory 

parts 
18 P<.001 Congestive heart 

failure 
18 P<.001 
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1. Start with an input dataset D  // Pre-process minority  samples using SMOTE 

2. L1 LabelsInDataset(D)    // get the  set of all labels  in D 

3. MeanIR GetMeanIR(D)   // get MeanIR of labels in  D 

4. for each  label  in L1 

a. IRLbl getIRLbl (label)   // imbalance ratio of each label 

b. If (IRLbl)  > MeanIR) then  

i. minBags(label)  GetInstances(label)  // bags of minority label samples  

c. end if  

5. For each minBag in minBags 

a. for each sample  in minBag and  lb in L1 

i. T  instances that are associated and non-associated with lb, but only 

non-associated with the other combinations of labels 

ii. A  D \ T  ,   where D \ T is the set difference  //  keep all the 

remaining instances  of  x  in A , s.t , x ∈ D and x ∉ T 

iii. Set the imbalance percentage  

iv. for  each point  p  in  T,   

1. Compute its k nearest neighbours  in T 

2. Randomly choose r ≤ k of the neighbours (with replacement). 

3. Generate synthetic instance along the lines joining p and each 

of the r selected neighbours. 

4. Add the generated synthetic instance to the feature vector and  

labelset of p 

5. S  synthetic samples found in step (4)  U  T  

v. W S U A    // W is the  union of  S  and  A 
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6. Start from Dataset W   // Pre-process majority samples using Tomek links  

7. L2 LabelsInDataset(W) 

8. DT samples that are associated with at least one label  in L2 

9. L3 LabelsInDataset(DT) 

10. MeanIR GetMeanIR(DT) 

11. for each  label  in  L3 do  

a. IRLbl getIRLbl (label) 

b. If (IRLbl < MeanIR) then  

i. majBag  GetAllInstances(label) 

c. end if  

12.  end for 

13. TL  empty list of  instances  

14. A instances of negative class  in majBag)  // class 0  

15. B instances of  positive  class  in majBag) // class 1   

16. for each  sample  in majBag 

a. if sample ∊ A 

i. i sample  

b. else  

i. j sample   // i.e j∈ B 

c. d(i,j) Distance (i, j) 

d. end if  

i. for  any sample E in  (A U B) 

1. if (d(i,j) < d(i,E) or d(i,j) <d(j,E)) 

a. TL   (i,j)   // mark a pair (i,j) is a Tomek link 

b. FW-TL // remove TL from W  

2. end if 

ii. end for  

17.  end for  
18.  return F //a pre-processed dataset  
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