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• Passive Acoustic Monitoring is increas-
ingly utilised for studying wildlife.

• Wind-induced noise poses a significant
challenge in sound processing.

• CNNs offer a cutting-edge approach for
detecting acoustic events.

• YAMNet shows high-performance to
detect wind-induced noise.

• Low computational needs can enable
real-time analysis on portable devices.
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A B S T R A C T

Passive Acoustic Monitoring (PAM), which involves using autonomous record units for studying wildlife
behaviour and distribution, often requires handling big acoustic datasets collected over extended periods. While
these data offer invaluable insights about wildlife, their analysis can present challenges in dealing with geo-
phonic sources. A major issue in the process of detection of target sounds is represented by wind-induced noise.
This can lead to false positive detections, i.e., energy peaks due to wind gusts misclassified as biological sounds,
or false negative, i.e., the wind noise masks the presence of biological sounds. Acoustic data dominated by wind
noise makes the analysis of vocal activity unreliable, thus compromising the detection of target sounds and,
subsequently, the interpretation of the results. Our work introduces a straightforward approach for detecting
recordings affected by windy events using a pre-trained convolutional neural network. This process facilitates
identifying wind-compromised data. We consider this dataset pre-processing crucial for ensuring the reliable use
of PAM data. We implemented this preprocessing by leveraging YAMNet, a deep learning model for sound
classification tasks. We evaluated YAMNet as-is ability to detect wind-induced noise and tested its performance in
a Transfer Learning scenario by using our annotated data from the Stony Point Penguin Colony in South Africa.
While the classification of YAMNet as-is achieved a precision of 0.71, and recall of 0.66, those metrics strongly
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improved after the training on our annotated dataset, reaching a precision of 0.91, and recall of 0.92, corre-
sponding to a relative increment of >28 %.
Our study demonstrates the promising application of YAMNet in the bioacoustics and ecoacoustics fields,

addressing the need for wind-noise-free acoustic data. We released an open-access code that, combined with the
efficiency and peak performance of YAMNet, can be used on standard laptops for a broad user base.

1. Introduction

The use of Passive Acoustic Monitoring (PAM) is significantly
growing for wildlife monitoring applications (Sugai et al., 2019; Ross
et al., 2023). Two primary factors promote this methodology: techno-
logical advancements that enable cost-effective devices for recording
extensive acoustic data (Szymański et al., 2021) and its non-invasive
approach. This method allows for continuous, long-term wildlife
monitoring without disturbing animals, by deploying multiple Autono-
mous Recording Units (ARUs) in an area over extended time periods
(Sugai et al., 2019; Pérez-Granados and Traba, 2021). ARUs allow
continuous recording under different environmental conditions with
limited maintenance of the recorders (Rhinehart et al., 2020). However,
they also present a challenge: do not allow for choosing the best con-
ditions for recording the biological sounds beforehand, hence leading to
the inclusion of environmental noise in the acoustic dataset. Indeed,
other than biophony (wildlife vocalisations), the soundscape of natural
environments is characterised by two more main components of the
soundscape: anthrophony (anthropogenic activities) and geophony
(weather-related phenomena) (Pijanowski et al., 2011). Geophony
represents a distinctive and dynamic layer of the soundscape of a given
area (e.g., strong wind or heavy rain can strongly characterise audio
recordings). Windy events, in particular, pose a challenge in sound
analysis because they could determine a persistent interference in the
recordings (Depraetere et al., 2012; Stowell et al., 2018; Quinn et al.,
2022).

In terrestrial environments, microphone wind noise is characterised
by transient peaks, with particular emphasis on the lower frequency
range (Bardeli et al., 2010; Walker and Hedlin, 2009; Nelke, 2016). To
date, wind interference remains a significant issue in several PAM ap-
plications, reflected in the substantial number of published studies that
highlight the negative impact of wind interference on PAM outcomes (e.
g., Buxton and Jones, 2012; Digby et al., 2013; Gillam et al., 2009;
Znidersic et al., 2021; Priyadarshani et al., 2018; Zhao et al., 2022;
Hacker et al., 2023). Specifically, during the analysis for the detection of
target sounds, wind noise can lead to the presence of false positives, i.e.,
the increasing peak energy of wind often produces false detection of
target species (Zwart et al., 2014; Juodakis and Marsland, 2022) or false
negatives, i.e., the presence of wind noise could mask the presence of the
target sound (Zwart et al., 2014; Willacy et al., 2015; Salamon et al.,
2016; Stowell et al., 2018). In sum, wind noise in the recordings poses a
challenge, as its identification and filtering are necessary steps to ach-
ieve wind-free analysis which will improve the reliability of research
relying on PAM techniques (Depraetere et al., 2012; Eldridge et al.,
2018; Fairbrass et al., 2017; Stowell et al., 2018).

Researchers can take precautions to avoid environmental noise in the
recordings, including the accurate choice of the recording area (Oswald
et al., 2022) or post-filtering the data with bad weather conditions using
meteorological data (Desjonquères et al., 2018). Nevertheless, the
effectiveness of these techniques in mitigating wind-induced noise in
recordings may vary depending on both the recording area and
deployment methods. This variability is attributed to the dynamic na-
ture of wind conditions, where extensive deployment areas may be
exposed to diverse wind scenarios, subjecting ARUs to varying levels of
exposure.

Finally, the volume of data generated through PAM has increased
significantly in the last few years, leading to a critical need for fast wind
detection methods. Long-term monitoring results in thousands of hours

of recordings, rendering manual inspection impractical. Consequently,
methods for identifying target species often rely on automated detection
techniques, with widely used approaches including software applica-
tions. However, these software tools often struggle to distinguish
whether energy peaks in the recording tools are caused by wind or an-
imal species, as dynamic characteristics of windy events complicate
template recognition.

Convolutional Neural Networks (CNNs) have proven remarkable
performance in classification tasks involving different natural signals
such as image, text, speech, and audio data (LeCun et al., 2015; Zhang
et al., 2018; Norman et al., 2022). Their capabilities stem from pro-
cessing the input signal through multiple layers that learn from data
features at varying levels of abstraction, which allow CNNs to learn the
hierarchical structure of the data (LeCun et al., 2015). When processing
audio data, this property translates into CNNs being able to distinguish
different sounds in a complex soundscape scenario. In the field of
bioacoustics research, CNNs have been used for tasks such as classifying
different species, identifying target species, and detecting individual
cues encoded in vocal signals (Christin et al., 2019; Ruff et al., 2021;
LeBien et al., 2020; Zhong et al., 2020; Kahl et al., 2021; Bedoya and
Molles, 2021; Dufourq et al., 2022; Trapanotto et al., 2022; Ravaglia
et al., 2023).

Despite their effectiveness, the widespread adoption of CNNs and
deep neural networks is hindered by their high computational re-
quirements and the necessity to be trained on massive, annotated
datasets (Dufourq et al., 2022). Those limitations can be mitigated by
developing efficient CNN architectures resulting in compact models that
require limited computational complexity and small memory re-
quirements at the cost of marginal performance loss compared to large-
scale deep learning models (Howard et al., 2017; Sandler et al., 2018).
This also allows the use of those models on mobile devices without the
need for powerful hardware.

Additionally, Transfer Learning offers a solution for applications in
which the availability of annotated data is limited. This approach in-
volves leveraging neural networks pre-trained on large datasets and
retraining them on smaller annotated datasets to achieve good perfor-
mance in specialised tasks. By transferring knowledge learned from vast
datasets to the specific domain of identification in audio recordings,
Transfer Learning allows for efficient utilisation in settings with limited
annotated data (Lu et al., 2021; Tsalera et al., 2021; Dufourq et al.,
2022).

Regardless of the methodologies employed in bioacoustic research,
studies aimed at detecting species-specific vocalisations often assume
either (i) animal sounds and geophony are mutually exclusive occupying
different spaces within the frequency spectrum or (ii) environmental
noise is negligible. However, they overlook the possibility of animals
vocalising in windy conditions, leading to potential reliability issues.
This oversight includes the risk of both underestimating animal sounds,
where wind may mask vocal activity in the case of false negative pres-
ence, and overestimating animal sounds, where the wind may be erro-
neously classified as animal sounds, leading to a false-positive presence.
Wind also poses a challenge for ecoacoustics indices, that often require
wind-free recordings to avoid biases in the interpretation of indices
(Farina, 2018; Fairbrass et al., 2018; Metcalf et al., 2021; Ross et al.,
2021; Quinn et al., 2022). Wind could induce rapid broad-frequency
interference, which demands careful consideration to ensure the accu-
racy and reliability of automated analyses in ecoacoustics research for
soundscape analysis.

F. Terranova et al.
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Here, we report a study whose primary objective was developing a
methodology for pre-processing our big acoustic dataset, to reliably
identify recordings affected by windy events. To do this we analysed an
acoustic dataset gathered at the African penguin colony of Stony Point
(South Africa), comprising recordings from the colony's terrestrial
habitat. We employ a pre-trained CNN to classify windy events present
in acoustic data and enhance the data pre-processing process for
bioacoustics datasets. Specifically, we leverage a deep neural network
known as “Yet Another Mobile Network (YAMNet)”, a CNN with a
lightweight architecture pre-trained on the Audioset Ontology. This
ontology is a comprehensive collection of 2,084,320 human-labelled 10-
s sound clips sourced from YouTube videos, encompassing 521 distinct
audio classes, comprising a Wind class (Gemmeke et al., 2017). YAM-
Net2 has proven effective in various fields for audio event classification
(Mohammed et al., 2023; Tena et al., 2022; Hyun, 2023). We predict
that CNN-based methods can be effective in a complex soundscape
scenario characterised by multiple broadband signals with overlapping
characteristic frequencies, such as wind and penguin vocalisations.

Initially, our approach involves utilising YAMNet as-is for classifying
windy events. Subsequently, we applied Transfer Learning to YAMNet,
retraining its last classification layer on our manually annotated dataset,
based on the acoustic dataset of the African penguin colony of Stony
Point. Accordingly, we created an efficient method to detect windy
events from terrestrial soundscape recordings. Our overall goal was to
improve the reliability and utility of long-term PAM research outcomes,
contributing to a more accurate understanding of wildlife acoustic
environments.

2. Methods

2.1. Acoustic dataset – case study

The acoustic dataset was collected at the Stony Point Penguin Colony
(Betty's Bay, South Africa; Fig. 1) under the CapeNature research permit
CN32-87-23209 and the South African Minister of Forestry, Fisheries
and the Environment research permit RES2023-25. African penguins
(Spheniscus demersus) exhibit a peak of vocal activity around sunrise and
sunset (Favaro et al., 2021). Their vocalisations have a fundamental
frequency (fo) of approximately 200 Hz (Favaro et al., 2014), meaning
that their detection is particularly challenging when wind gusts mask
the low-frequency components of the soundscape.

We used the acoustic recordings collected from February to April
2023 over 76 consecutive days with eight Song Meter micro-
omnidirectional recorders (Wildlife Acoustics, Inc.) mounted on sta-
tionary poles positioned 20 cm above ground level across eight distinct
sampling sites, with a distance of 25–50 m from the shoreline (GPS
coordinates are provided in Table S1). The deployment area was char-
acterised by different types of substrates and vegetation, including an
area blanketed by dense dune spinach (Tetragonia decumbens) bushes
(Fig. 1a), another with dispersed Baccharis halimifolia bushes in a grassy
region (Fig. 1b), and an area featuring a coastal landscape with a com-
bination of rocks and sandy terrain (Fig. 1c).

We set up a duty cycle of 30-min recordings from 06:00 p.m. to 8:00
a.m. South African Standard Time (SAST), adjusted to local sunrise and
sunset times. This time frame allows capturing the peak of vocal activity
of African penguins, typically occurring between 4:00–8:00 a.m. and
5:30–9:30 p.m. (Favaro et al., 2021). For the resulting n = 14,564 30-
min recordings, corresponding to 7282 h), the gain of the recorders
was set to 18 dB to balance optimal audio capture for animal recordings
without being overly susceptible to environmental noise. The used mi-
crophones have Sensitivity: +2 dB FS +/− 4 dB re 1pa@1 kHz with +18
dB gain; Signal-to-Noise ratio: 73 dB Typ. at 1 kHz (1 Pa, A-weighted);

Max input sound level: 104 dB SPL. Their output signals were digitised at
a sampling rate of 48 kHz and saved into internal Secure Digital memory
cards as .WAV files with 16-bit amplitude resolution.

2.2. Manual annotation of the spectrograms

We created the annotated dataset using a two-step process to ensure
a diverse representation of soundscapes. Specifically, we aim to create a
dataset comprising recordings with wind noise and recordings with
African penguin vocalisation, the main species represented in our
acoustic dataset. This is essential to provide the model with a variety of
soundscapes of interest for our application. The Fig. 2 provides a sche-
matic representation of the selection process.

In the first annotation step (Fig. 2a), we divided the daytime into two
periods based on the vocal activity peaks of African penguins, which
occur from 4:30 to 6:00 AM and from 6:30 to 8:00 PM (Favaro et al.,
2021). For each period and each of the eight songmeters, we randomly
selected 13 30-min recordings. This approach yielded a total of 208
recordings, which represent 1.4 % of the acoustic dataset. Subsequently,
we segmented these recordings into 5-min intervals. Each segment was
manually annotated to identify the presence of wind and biophonic
events, i.e. animal calls, through audio and visual inspection of spec-
trograms using Praat v. 6.3.09 with the following spectrogram settings:
View range (Hz): 0–5000; Window length (s): 0.05; Dynamic range (dB):
70 (Boersma and Weenink, 2024).

For the second annotation step (Fig. 2b), we employed the annota-
tions from the previous step to refine our selection process. We randomly
selected 18 30-minute recordings from each combination of wind and
animal sounds. This strategy ensured a representation of all possible
acoustic conditions and resulted in a total of 72 30-minute recordings,
representing 0.5% of the acoustics dataset.

Two human observers (F.T. and V.F.) annotated this subset with a 5-
second resolution (i.e., each recording was split into non-overlapping
segments of 5 s) through visual inspection of the spectrograms (exam-
ples of the annotated spectrograms are provided in Fig. 3), by annotating
for (i) the presence of wind, (ii) wind strength, (iii) presence of bio-
phony, (iv) presence of rain. Wind strength was annotated into three
categories: low, medium, and high. We defined low wind as the presence
of at least 1 continuous second, extending up to 3 non-continuous sec-
onds of windy events in the spectrogram,medium wind as the presence of
over 3 s of wind, accompanied by clear, noise-free segments lasting >1 s
above 2000 Hz in frequency range. Lastly, high wind is identified by
continuous wind presence, masking the entire spectrogram throughout
the 5-s segment (Fig. 3). We opted for a 5-second duration cutoff for
these segments to effectively capture phenomena such as wind gusts,
which often lack temporal discreteness, and considering that the longest
African penguin vocalisation typically extends for approximately 5 s
(Favaro et al., 2014; Quinn et al., 2022). This two-level labelling allows
to have an annotated dataset that is well-balanced with respect to the
distribution of wind and biophonic events, which is crucial to train
YAMNet, thus ensuring that our sampling efforts yield a diverse range of
soundscapes and avoiding scarcity in recordings with windy events. All
the spectrograms were generated with Parselmouth (Jadoul et al.,
2018), an open-source Python (Van Rossum and Drake Jr, 1995) inter-
face to Praat's core functionality (Boersma and Weenink, 2024). The
spectrogram settings are detailed in the caption of Fig. 3.

We used eight recordings (10 % of the annotated dataset) balanced
for wind and animal sounds, resulting in 2880 5-second segments, to
assess the inter-annotator agreement by employing Cohen's Kappa sta-
tistic for categorical data (i.e. binary label for the presence of wind,
biophonic events, rain) (McHugh, 2012) and the weighted Cohen's
Kappa for ordinal data (i.e. wind strength) (Cohen, 1968). The Cohen's
Kappa for wind was 0.82, the Weighted Cohen's Kappa for wind strength
was 0.82, Cohen's Kappa for rain was 0.94, and Cohen's Kappa for ani-
mal sound was 0.63. According to the interpretation of Kappa results
(McHugh, 2012) the agreement was “almost perfect” for all the labels

2 Official repository of the model: https://github.com/tensorflow/models
/tree/master/research/audioset/yamnet.
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but biophonic events, a case in which the agreement was “substantial”.
To summarise, we employed a two-step annotation procedure to

obtain an annotated dataset for the presence of biophonic events and
noise sources (wind, rain) at a 5-second resolution. We reported the
basic statistics of the annotated dataset in Table 1. By using data from
two weather stations, we validated the annotations of the presence of
wind and the wind strength categories (Fig. S1) and reported the dis-
tribution of wind speed and wind direction for each ARU (Fig. S2 and
Fig. S3). Additional details on the validation are provided in the section
“Validation of manual wind annotation” of the Supporting Information.

2.3. YAMNet convolutional neural network

We employed YAMNet to predict the presence of wind in audio re-
cordings. YAMNet is a Convolutional Neural Network that employs the
MobileNets architecture (Howard et al., 2017), a lighter alternative to
other state-of-the-art models that achieve competitive performance in
computer vision tasks. Details of the architecture of the CNN are avail-
able in the release notes.3 To make predictions from audio data, YAMNet

requires an image-based representation of the audio obtained by pre-
processing, segmenting, and transforming the original audio waveform
into a spectrogram. YAMNet is pre-trained on the AudioSet dataset
(Gemmeke et al., 2017), a large-scale dataset composed of around two
million manually annotated audio events extracted from YouTube
videos (top panel Fig. 4). Given an audio signal as input, the model
outputs a score between 0 and 1 for 521 audio event classes belonging to
the AudioSet hierarchical ontology, which covers a wide range of
everyday sounds, from human and animal sounds to natural and envi-
ronmental sounds, to musical and miscellaneous sounds.

2.4. YAMNet-as is wind detection model

Our first approach involved utilising the model ‘as-is’ without any
retraining (Fig. 4).

We pre-processed the original waveforms according to the release
notes3. We resampled the audio signal at 16 kHz and scaled to obtain
values in the range [− 1.0, 1.0]. Next, we transformed the audio signal
into a spectrogram using the magnitudes of the Short-Time Fourier
Transform with a window size of 25 ms, a window hop of 10 ms, and a
periodic Hann window. Subsequently, we computed a mel spectrogram
by mapping the spectrogram to 64 mel bins covering the range
125–7500 Hz. Furthermore, we segmented the spectrogram into

Fig. 1. Study area with the position of the ARUs (red dots). The right-hand panels represent the three different landscapes of the colony. (a) Area with dense dune
spinach (Tetragonia decumbens); (b) coastal landscape with a combination of rocks and sandy terrain; (c) area with dispersed Baccharis halimifolia bushes.

3 Official repository of the model: https://github.com/tensorflow/models
/tree/master/research/audioset/yamnet.
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segments of 0.96 s each, with a stride of 0.48 s, resulting in consecutive
segments with a 50 % overlap. Ultimately, the model provided a vector
of predictions for each segment.

Then, we used the pre-processed audio segment as the input of
YAMNet, which returns two outputs for each audio segment. The first
output is a feature vector that represents the input audio. The second is a
set of predicted probabilities for each class defined in the AudioSet
ontology, which YAMNet was pre-trained on. From these predictions,
we selected three classes related to wind: ‘Howl (wind)’, ‘Wind noise
(microphone)’ and ‘Rustling Leaves’. We considered the highest prob-
ability score among these three classes as the measure of wind detection
probability of each segment.

2.5. YAMNet transfer learning scenario

We used the features extracted from YAMNet as-is model to train a
new classifier. This technique allowed us to exploit the pre-existing
YAMNet pre-training phase and adapt it to our specific acoustic data-
set. To accomplish this, we extracted the average-pooled output of the
last convolutional layer of YAMNet as-is and used this vector as a feature
representing the input audio segment. We then trained a single-layer
neural network using those features as input. In other words, we
trained the last classification layer of YAMNet on our annotated dataset
from scratch. We utilised the Adam optimiser (Kingma and Ba, 2014)
and a binary cross-entropy loss function during the training process. To
prevent overfitting, we employed Early Stopping (Morgan and Bourlard,
1989) by using 20 % of the training set. A sigmoid activation function
was utilised in the final layer to output scores ranging from 0 to 1,
indicating the likelihood of wind presence in the audio recordings. The
resulting model provided probability scores that indicate the confidence
level in the presence of wind within the analysed audio segment. We
refer to this second model as ‘YAMNet Transfer Learning’ (YAMNet TL)

hereafter (Fig. 4). We reported the results obtained by setting the
learning rate at 2 × 10− 4, batch size at 64, and number of epochs at 20.
Other parameter choices led to only marginal differences in the per-
formance (see Supporting information, Fig. S4). Finally, we replicated
the experiment using half of the recordings (36 files= 18 h of recording)
to assess the consistency of performance with a halved dataset.

2.6. Classification and threshold optimization

Classification within machine learning involves training a model to
accurately predict the target class(es) to which data belongs. By defining
a positive sample as an audio segment containing wind, the comparison
between the YAMNet output and target label could produce four
different results: true positive (TP) when a positive sample is correctly
identified; false negative (FN) when a positive sample is misclassified as
negative; true negative (TN), when a negative sample is correctly
identified; and false positive (FP) when a negative sample is mistakenly
classified as positive.

The evaluation of our models incorporated several metrics, including
Recall (also known as Sensitivity), Specificity, Precision, and F(β)-score.

Precision measures the proportion of samples that the model
correctly identified as positive out of all samples it predicted as positive:

Precision =
True Positives

True Positives+ False Positives

Recall assesses the ability to capture as many true positive instances
as possible, minimising false negatives.

Recall =
True Positives

True Positives+ False Negatives

The interplay between precision and recall often presents a trade-off
that depends on the use case. The F(β)-score can be used to optimise the

Fig. 2. Schematic representation of the two different selection processes.

F. Terranova et al.
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classification threshold depending on the desired relative weight for
precision and recall (Sokolova et al., 2006). The F(β)-score is defined as:

F(β) =
(
1+ β2

)
*precision*recall

(
β2*precision

)
+ recall

where β is a parameter favouring precision (β < 1) or recall (β > 1). We
tested β values of 1 and 2, covering two scenarios in which we give to
precision and recall the same weight (β = 1) and more weight to recall (β
= 2). Across these values, classification thresholds are tested

incrementally from 0 to 1 in 0.01 steps. The optimal threshold is then the
threshold that maximises the F(β)-score. We reported results optimised
for the F1-score unless specified otherwise. We also evaluated Specific-
ity—a keymeasure assessing the model's ability to correctly identify true
negatives (Tharwat, 2020):

Specificity =
True Negatives

True Negatives+ False Positives

Overall performance was evaluated using the area under the receiver
operating characteristic curve (AUC-ROC). ROC curve (Receiver Oper-
ating Characteristic curve) is a graph showing the performance of a
classification model at all classification thresholds: it plots True Positive
and False Positive rates (Tharwat, 2020). AUC stands for “Area under
the ROC Curve”. That is, AUC (Area Under the Curve) measures the two-
dimensional area underneath the ROC curve from (0,0) to (1,1). AUC
provides an aggregate measure of performance across all possible clas-
sification thresholds. Similarly, the Precision-Recall curve plots the
values of Precision and Recall for all possible classification thresholds.

We followed the recommendations outlined by Knight et al. (2017)
to ensure robust and reliable performance evaluations.

Fig. 3. Examples of 5-s spectrograms used for the second annotation step, taken from different recordings, showing four different levels of wind strengths. From top
to bottom: absent wind, low wind, medium wind, high wind. Parselmouth settings used to generate the annotation pages: time interval = 5 s; dynamic range = 70 dB,
Window length = 0.03 s, maximum frequency = 5000 Hz; Time step (overlap) = 0.015 s, Frequency step = 50 Hz, NFFT = 960.

Table 1
Soundscape components of the annotated dataset. Occurrences of 5-second
segments annotated for wind strength, rain and biophonic events. The per-
centages indicate the proportion of each element within specific wind strength
categories.

Wind strength Geophony (rain) Biophonic events Total

Absent 2903 (17 %) 2613 (16 %) 16.627
Low 990 (13 %) 748 (10 %) 7494
Medium 3 (0 %) 66 (5 %) 1283
High 0 (0 %) 0 (0 %) 446
Total 3896 3427 –

F. Terranova et al.



Science of the Total Environment 949 (2024) 174868

7

2.7. Cross-validation for model evaluation

We evaluated the performance of the proposed models using cross-
validation. This procedure consists of partitioning at random the data-
set into k folds. Then, for each iteration, k-1 folds are chosen to train the
model and the remaining fold is used to evaluate the model's perfor-
mance. In such a way, the model can be evaluated on a held-out test set
in an iterative fashion. However, since our annotated audio segments
belong to 30-minute-long audio recordings, the presence of wind in an
audio segment may not be independent from the one in another segment
belonging to the same audio recording. Such temporal autocorrelations
in the target label may lead to overestimating the performance. This is
why we opted for Block cross-validation to ensure a robust assessment of
our model's performance (Roberts et al., 2017). Instead of randomly
partitioning the segments into k equal-sized folds as for the classic k-fold
cross-validation, we split each audio recording into 100-second-long
blocks and then partition each audio recording separately into k folds

(Fig. S5). This cross-validation strategy limits the risk that temporal
autocorrelations in the target label within the same audio recording can
overestimate the model's performance (Roberts et al., 2017).

For our experiments, we used k = 5. We considered the average of
the k scores to estimate the model's performance and its standard de-
viation as a measure of its variability across folds.

2.8. Investigating the effect of non-wind components on model's
performance

We assessed our models' performance across different soundscapes
characterised by the presence of non-wind components. This analysis
aimed to explore to what extent other soundscapes may affect the ability
of the models to detect wind-induced noise. To do that, we compared
precision and recall against three distinct subsets of the annotated
dataset, each excluding segments affected by rain and biophony. We
compared such scores against the scores obtained on the whole

Fig. 4. Schematic Representation of the CNN Pipeline. The top section outlines the general CNN model structure. The middle section details the YAMNet model used
‘as-is’ for predicting wind sounds from audio recordings, utilising pre-trained classes related to wind. The bottom section illustrates the transfer learning scenario,
where features extracted from YAMNet are used to train a new classifier specifically for wind sound detection.
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annotated dataset and discussed their relative differences concerning
one of the whole annotated datasets. A positive relative difference in-
dicates that the performance would increase by discarding other
soundscapes, thus pointing to the misclassification of such soundscapes
into wind-induced noise.

2.9. Effect of wind-strength on YAMNet scores

To test whether the distributions of the probabilities predicted by the
two models differ for different wind strengths, we first employed a
Kruskal–Wallis test due to the heterogeneity of sample sizes and non-
homogeneity of variances among wind strength categories (Kruskal
and Wallis, 1952). Significance from the Kruskal-Wallis test (p < 0.05)
would indicate significant differences among the distributions. Subse-
quently, we employed Dunn's simultaneous multiple-comparison test
(Dunn, 1964) with a Bonferroni correction to address multiple com-
parisons to distinguish which score distributions significantly differed.
However, these tests do not provide information about the correlation
between wind strength and probability scores. To investigate the po-
tential correlation, we computed the Kendall Tau-b correlation coeffi-
cient between the probability scores and the low, medium, and absent
wind strength classes. This additional analysis allows us to explore
whether a monotonic relationship exists between YAMNet scores and
wind strength, even though this information was unavailable during the
training. The two YAMNet models were tested separately, and the score
distributions were obtained by concatenating the test sets of the 5-folds
used for cross-validation.

3. Results

3.1. Performance of the models

The discriminatory performance of the two models was quantified
through ROC and Precision-Recall (PR) curves displayed in Fig. 5. Those
two metrics are independent of the threshold used for classifying the
wind. YAMNet as-is achieved a ROC-AUC score of 0.81, while YAMNet
TL exhibited superior performance with a score of 0.98. Similarly,
YAMNet TL outperforms the pre-trained version concerning the PR-AUC
score, achieving 0.97 and 0.77, respectively.

After optimising the classification threshold, we evaluated precision,
recall, specificity, and F1-score for two possible thresholds: one opti-
mising the F1-score and one optimising the F2-score. YAMNet TL out-
performs YAMNet as-is in all the metrics. The only exception occurs for
the recall when optimising for the F2-score, which gives more weight to
recall than to precision, in which they performed similarly (Table 2).
Indeed, both YAMNet as-is and YAMNet TL achieve a recall of 0.99 and
0.97 respectively. Furthermore, repeating the experiment with half of

the recordings (36 files = 18 h of recording) yielded identical perfor-
mance (Fig. S6).

3.2. Impact of other environmental sounds on the performance of the
models

We assessed the performance of our models across different com-
ponents of the soundscape, incorporating annotations for rain and bio-
phonic events. The evaluation involved comparing the metrics on the
entire acoustic dataset (“All”) and the subsets excluding audio segments
with rain (“No rain”) and segments with animal sounds (“No bio-
phony”). Results are shown in Fig. 6. Biophonic events and rain had
marginal effects (absolute relative difference within 6 %), except for the
recall of YAMNet as-is for rain (relative increase of 11 %). Instead,
YAMNet TL proved to be more robust to the presence of rain (relative
increase of 1 %). YAMNet TL demonstrated increased overall power
(scores increased) and enhanced robustness, with smaller relative dif-
ferences. All relative differences for these assessments are present in the
Supporting information (Table S2).

3.3. Effect of wind strength on YAMNet scores

We tested the distributions of the probabilities predicted by the two
models for different wind strengths, plotted in Fig. 7. Kruskal-Wallis
revealed significant differences among wind strengths for both YAM-
Net as-is (H = 7063, p < 0.0001) and YAMNet TL (H = 17,181, p <

0.0001). All the pairwise comparisons resulted in statistically significant
differences according to Dunn's test (p < 0.0001), except in YAMNet TL
between medium and high wind strengths (p = 0.54). The correlation
between wind strengths and predicted probabilities resulted positive
and significant in both cases: YAMNet as-is τ =0.20 and YAMNet TL τ
=0.47, both with p < 0.0001.

4. Discussion

In this study, we illustrate the efficacy of using YAMNet, a pre-

Fig. 5. ROC and Precision-Recall curves for YAMNet as-is and YAMNet TL. Transparent lines refer to the 5-fold cross-validation predictions, while the opaque lines
are their averages. Dashed lines refer to the performance of dummy classifiers. Average ROC and Precision-Recall AUC are reported in the caption. Standard de-
viations are <0.01.

Table 2
Classification metrics for the YAMNet as-is and YAMNet TL models. Values refer
to the score averaged across the 5-fold cross-validation. Metrics are reported for
both settings where we optimised the classification threshold to maximise the
F1-score and F2-score. Standard deviations are smaller than 0.06 for all entries.

Precision Recall Specificity F1

Optimised for F1 F2 F1 F2 F1 F2 F1 F2

YAMNet as-is 0.71 0.36 0.66 0.99 0.85 0.03 0.68 0.53
YAMNet TL 0.91 0.82 0.92 0.97 0.95 0.88 0.91 0.89
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trained audio event classifier, in accurately detecting windy recordings
over a large dataset of soundscape recordings. Additionally, we explored
methods to enhance its performance through Transfer Learning. Our
results emphasise the high-performance capabilities of YAMNet-like
models, especially with application of Transfer Learning, serving as a
valuable tool in the pre-processing bioacoustics and ecoacoustics data.

We showed that YAMNet as-is is capable of identifying windy events
in recordings from a penguin colony. This capability arises from the
presence of wind-related classes in its pre-training dataset, even though
it was not directly exposed to the specific soundscapes we tested it on.
While the performance being modest, it highlights that YAMNet can
prove useful in diverse contexts for preliminary data explorations where
external annotations for the presence of wind are absent (e.g., weather
station or manual annotations). However, a relative increase larger than
28 % in precision and recall is achieved by training a classifier (YAMNet
TL) using the features extracted from YAMNet as-is as input at the cost of
a small manual annotation of the dataset, in our case 0.5 % of the dataset
corresponding to 36 h of recordings. This indicates that ad-hoc re-
training can adapt a generic model to the environment under study.
Moreover, our findings illustrate how YAMNet as-is classifications are
robust to the presence of other components of the soundscapes, such as
biophonic events (e.g., African penguin vocalisations) and geophonic
sounds (i.e., rain). However, we showed that ad-hoc retraining could
make the model even more robust to the presence of such additional
components of soundscapes. Overall, this study demonstrates that
YAMNet as-is maintains the ability to detect windy events in dynamic
acoustic environments. Moreover, the re-training achieved through
YAMNet Transfer Learning enhances the model's robustness, pointing to

its usefulness in bioacoustics and ecoacoustics studies. While our data
collection focused on an African penguin colony, and thus designed for
terrestrial environments, the effectiveness of this methodology could be
extended beyond our specific study, functioning as a valuable tool for
the pre-processing of sound data in a variety of different environments.
Indeed, the strength of YAMNet lies in its extensive pre-training on 521
different audio classes, with a collection of 2,084,320 human-labelled
10-s sound clips drawn from YouTube videos. Thus, starting from this,
transfer learning scenarios could be applicable in many different con-
texts, both terrestrial and aquatic. For example, the Audioset ontology
includes categories such as the ‘vehicle class.’ Therefore, future works
could explore employing the same methodology for anthropogenic noise
classification.

Despite their widespread and growing usage in bioacoustics and
ecoacoustics studies, automatic analysis methods too often overlook the
crucial data pre-processing stage, rendering our contribution particu-
larly timely. Within Passive Acoustic Monitoring (PAM) studies, the
prevalence of geophony reflecting predominantly wind patterns, high-
lighted in recent investigations (Quinn et al., 2022), mirrors our case
study, where approximately 30 % of annotated data reveals wind pres-
ence, coinciding often with an overlap between wind frequencies and
low-pitched African penguin vocalisations. This overlap poses a signif-
icant challenge to downstream analyses. Despite the recent denoising
methods proposed for wind-robust detection of the biophonic sounds
(Juodakis and Marsland, 2022), the varying levels of wind strengths in
windy-exposed environments present challenges, as differing gusts can
entirely mask the signal of interest in the spectrogram, rendering con-
ventional denoising inadequate. Consequently, our approach advocates

Fig. 6. Comparative results for YAMNet models across different soundscapes. The model's performance across three subsets of the dataset, showing the variations in
precision scores (a) and recall scores (b) within each distinct subset for YAMNet as-is and YAMNet TL.

Fig. 7. Distribution of YAMNet as-is and YAMNET TL predicted probabilities for different wind strengths. The boxplots show the distribution of the probability scores
predicted by each model for the wind strength classes. All distributions within each model differ from each other according to Dunn's test (p < 0.0001), except for
YAMNET TL between medium and high wind strengths.
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for removing irrevocably wind-corrupted audio segments alongside
potentially identifying moderately affected segments for analysis using
denoising-based methods. This would greatly reduce the computational
requirements for denoising and, at the same time, lower the risk of false
positives and false negatives for biophonic events detection.

Moreover, our results suggest that YAMNet can be tailored for
different applications and adapted to accommodate diverse data
collection scenarios. Indeed, YAMNet as-is can be used to recommend a
subset of the acoustic dataset that likely contains windy events. This can
speed up a full manual dataset annotation by selecting audio segments
worth annotating. This application is supported by the 0.99 recall ob-
tained by YAMNet as-is optimising for F2-score. Once the annotated
dataset containing all the acoustic scenarios specific to the studied
environment has been established, YAMNet TL can be used for an
automatic data cleaning, as shown by the 0.91 precision and 0.92 recall
obtained by optimising for the F1-score. This can be achieved at the
lower cost of manually annotating only a small subset of the acoustic
dataset. For instance, we have reached such a result by manually
annotating only the 0.5 % of the whole acoustic dataset of our experi-
ments. However, we also show that similar performances can be ob-
tained by annotating an even smaller fraction of the acoustic dataset.
Indeed, repeating the experiment with half of the recordings (36 files =
18 h of recording, in our case) yielded to identical performances. The
similar performance achieved on a smaller annotated dataset demon-
strates the feasibility of also applying our approach to acoustic datasets
collected under diverse scenarios, such as from different regions with
diverse soundscapes or using different types of acoustic recorders. In
these contexts, recordings may exhibit heterogeneous sound character-
istics, making it beneficial to apply our approach separately to each
acoustic scenario to better capture their peculiarities. Taken together,
our work points to YAMNet along with its TL specialised versions being a
versatile tool for wind noise detection.

Since our main goal with this study was to identify recordings
impacted by wind, a predominant challenge in our study area, we did
not encompass the utilisation of YAMNet for other noise sources. We
encourage further research exploring leveraging Transfer Learning
techniques on the YAMNet architecture to create new methods for
classifying additional noise sources. These could include categorising
rain sounds or differentiating the noise produced by traffic vehicles,
providing a more comprehensive and adaptable solution to environ-
mental noise challenges.

Big data acquisition drives a rising demand within the bioacoustics
community to integrate Machine Learning (ML) techniques. We
demonstrate that it is possible to bridge this gap by introducing an
affordable and cutting-edge methodology available even to those unfa-
miliar with ML. Notably, the compact size of YAMNet, attributed to its
employment of the MobileNet architecture family (Howard et al., 2017;
Sandler et al., 2018) eliminates the requirement for high-cost hardware,
thereby ensuring accessibility for researchers employing standard
laptops.

Furthermore, the promising performance of YAMNet with its low
demand for computational resources, paves the way for its integration
into portable devices for real-time data cleaning and analysis of
soundscapes. This possibility can complement ARUs' ability to record
prolonged recordings of natural habitats while pre-filtering environ-
mental noise that may affect the downstream analysis. Recent research
has made noteworthy advancements, such as implementing YAMNet
sound detection in cost-effective technologies like a Raspberry Pi-
connected microphone (Hyun, 2023). This forward-looking capability
ensures instantaneous access to bioacoustics insights and judiciously
optimises data storage by avoiding recordings in less-than-optimal
environmental conditions.

To conclude, in the realm of sound detection, while previous studies
have utilised YAMNet to identify target sounds (Mohammed et al., 2023;
Tena et al., 2022; Hyun, 2023), our work contributes to advancing the
application of machine learning in bioacoustics, representing the first

instance of using YAMNet to pre-process bioacoustics data. Combining
YAMNet and Transfer Learning provides a valid solution to address the
challenges of windy environments, opening avenues for improved audio
classification in bioacoustics and ecoacoustics studies.
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