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ABSTRACT 

In this research study the application of Hierarchical Bayesian models to metrology is due to a 
real industrial need. Nowadays, the problem of evaluating accuracy for a whole product line of 
testing equipments has not been yet completely addressed by an overall international standard. 
The most useful standard, because its aim is close to the purpose of accuracy evaluation of a 
product line, is the ISO 5725. This standard, under the general title “Accuracy (trueness and 
precision) of measurement methods and results”, sets the general principles, definitions and basis 
methods for the determination of trueness and precision under repeatability and reproducibility 
conditions. The statistics set out by the ISO 5725 are drawn from the ANOVA general linear model. 
Nevertheless, these statistics work well as we need to establish the deviation from the general 
mean value of each specific group and the components of variability within each specific group and 
between groups. That means, ISO 5725 works well for inter-laboratory experiments. Whereas, if 
we need to describe a possible coverage interval for the systematic errors and the ones for random 
errors, the ANOVA general model does not work so well. In fact, the confidence interval of the 
general mean, according to the ANOVA scheme, is not able to properly catch a reasonable interval 
describing where the systematic errors for a whole population of test equipments are expected to 
lay. This is relevant because in the last years, pushed by technological improvements, the 
international standards for testing methods are setting smaller and smaller variability requirements. 
Therefore, the manufacturers of the relative testing equipments need to deeply understand the 
systematic measurement errors component that is the error percentage that can be eliminated by 
removing its root cause, or controlled or adjusted. In order to overcome the limits of the ANOVA 
general linear models in the accuracy description for a whole product line, the present research 
suggests the usage of the hierarchical Bayesian model. Besides, it is coined the term homogeneity 
conditions in order to distinguish the intermediate level of precision, in between repeatability and 
reproducibility, that occurs in the experiments for the accuracy evaluation of a product line. The 
usage of Bayesian approach to overcome some limits of ANOVA modeling is not so new in 
metrology literature. Actually, Bayesian model has been already presented for the evaluation of 
between-bottle homogeneity (again homogeneity with regard to production conditions) studies in 
the production of reference and proficiency test materials [1]. Besides, the working group 1 of the 
International Bureau of Weights and Measures (BIPM) is developing another supplement to the 
Guide to the Expression of Uncertainty in Measurement, named JCGM 108 [2], that definitely 
opens to the Bayesian models in metrology. The efforts of the International Bureau are oriented to 
fade the dichotomy of the guide to the expression of uncertainty in measurement [3], that it is 
currently based on a mixture of frequentist (Type A statistical uncertainty evaluation from repeated 
measurements) and Bayesian (Type B uncertainty evaluation, based on state-of-knowledge 
distributions) frameworks. So, this research is also on the same line of the ongoing works of the 
International Bureau, in the direction of a fully Bayesian formulation for the accuracy evaluation. 

The goodness of fit of the proposed hierarchical Bayesian model for accuracy evaluation is 
tested on two datasets: the former is drawn out from the ISO 5725-2 in order to have a reliable and 
authoritative benchmark at which compare the Bayesian outcome, while the latter expresses the 
real industrial application case, drew from the field of the equipments for thermo-mechanical 
testing of polymer, as the ISO 306 standard prescribes. The former is under reproducibility 
conditions, the latter under homogeneity conditions. Overall, the point estimates used to describe 
the accuracy for both ISO 5725 and Bayesian models are closer than the magnitude of the product 
resolution and this is considered enough in order to validate the model. The greatest advantage of 
the Bayesian model is the way of describing trueness and precision in terms of credibility intervals 
from the posterior distributions of bias and standard deviations under both repeatability and 
homogeneity conditions. The credibility interval for bias is really a good description of the deviance 
of the product line's general mean respect to the reference accepted value, being able to 
encompass the systematic errors that we can expect from a product line because they have not 
already been adjusted through a specific calibration. Moreover, at the end of the product 
development project, before the official launch of the new Instron testing equipments' family for 
measuring the Vicat Softening Temperature (VST in the following, it reflects the point of softening 
to be expected when a polymer is used in an elevated temperature application), it was adopted a 
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validation criteria based on the proposed hierarchical Bayesian model. That is the first tangible 
acknowledgment. 

The present research ends with a quick overview on the application of Hierarchical Bayesian 
models to proficiency testing scheme, data consistency techniques and outliers detection tests in 
order to show how easily the hierarchical Bayesian models can be extended as number of levels 
for describing more nested probability structures and as number of metrology application fields. 
Also in this case an International standard, the ISO 13528, is leveraged in order to have a reliable 
benchmark. The choice for the representative dataset was to enlarge the VST experimental one 
through a random number generator according to some accuracy assumptions describing two 
additional product lines. In this way is possible provide that even if we add an additional 
hierarchical level, we do not lose consistency in the description of the accuracy for the specific 
product line that are in the second hierarchical level. 

This research project is within the continuous research flow. It is far from putting the finishing 
touch to the Bayesian formulation of the accuracy description. Instead, it was conceived as a first 
determined step toward the fully Bayesian accuracy evaluation. That is the spirit, and also the 
letter, of the present research. And always in this spirit, for future developments and further 
industrial applications the whole R script is shared at the end of this study. 
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1 INTRODUCTION  

The intellectual assent to the idea of the mathematics as the first driver for innovation is the 
vision that inspired this research project. During my PhD experience, this vision was nested into 
my work-life, that was a mix between the academic world of the Polytechnic of Turin and the 
industrial environment of Instron Italy. So attending courses, seminars, and sharing ideas with 
professors and other students, I gradually reached the root idea for this study. 

Before jumping in the core topic, just few words about Instron Italy: it is a manufacturer of test 
equipments, designed to evaluate the mechanical properties of materials and structures using 
tensile, compression, flexural, fatigue, impact, dynamic, torsional, multi-axial and thermal loading. 
The majority of these characterizations for the material behaviour under specific testing conditions 
is in accordance with international standards, such as ASTM and ISO, and the final output is 
always a measurement result, that is, the set of quantity values that are attributed to a quantity 
together with any other available relevant information [5, def. 2.9], such as the measurement 
uncertainty. Hence, the main domain of this paper is the mathematics applied to the science of 
measurement, in other words, the metrology. 

In the life span of a manufacturer of test equipments, there comes always the time for 
launching a new product. For each of these events, the product development team has to evaluate 
some metrological performances of the new equipment. Although in the last 15 years the 
International Organization for Standardization (ISO) has produced several documents on 
measurement accuracy, in such events there are two possible scenarios.  

In the first one the problem of metrological evaluation is well defined because there is an 
international standard aimed at the calibration and verification of the specific test equipment and 
providing accuracy classes that meet stated metrological requirements to which every single 
instrument has to comply. For example, ISO 7500-1 specifies the calibration and verification of 
tension/compression testing machine in order to confirm that the performance properties satisfy the 
limits given for a specified class [5]. So, there is a measurement procedure to be used in assessing 
the accuracy of measured quantity values with respect to some specified classes.  

In the second scenario a similar procedure does not exist at all or the reference operating 
conditions [4, def. 4.11] are not so clear. For example ISO 306 specifies four methods for the 
determination of the Vicat softening temperature (VST) of thermoplastic materials [6, def.3.3], 
whereas the verification procedure is not well defined. In such a case, the manufacturer has also to 
define a way for describing and verifying the metrological performances of every influence quantity 
[4, def. 2.52] controlled by the instrument. Back to VST example, the measurand is the 
temperature at which a flat-ended needle penetrates the specimen to a depth of 1 mm under a 
specified load using a selected uniform rate of temperature rise, so, the VST measurement is 
affected by the following main influence quantities: 

- length, that is the needle penetration depth; 
- mass, that is the specified load; 
- temperature rate, derived from time and temperature. 

For each of this quantities, the manufacturer not only has to design a testing equipment able to 
satisfy the standard requirements but also has to define a procedure for providing the metrological 
evidence of the compliance respect to the acceptance criteria stated in the ISO 306. In order to be 
more clear, looking at the requirement for the penetration measuring device, the standard requires 
an accuracy of ±0,01 mm [6, Cpv. 5.2.4] but it not clarifies the procedure aimed to verify this 
acceptance criterion once the machine is on field. The verification procedure is on the shoulder of 
manufactures and, so, procedures can differ manufacturer by manufacturer. So, in this shady 
regulatory environment the degrees of freedom of the verification procedure, such as test 
conditions and statistical objects for accuracy description of the penetration measuring device, 
make no easy the performance comparison between testing equipments of different 
manufacturers. 

The core business of my PhD work is mathematics, so, all my efforts were focused on finding a 
generic and flexible model aimed at the evaluation of the metrological performances for a whole 
new product line. Thus, in this study the design of the verification procedure and the choice for the 
references is negligible with respect to the effort lavished on analyzing the modelling problem. 
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The industrial case around which the idea of this project grew up is the evaluation of 
displacement measurement accuracy, that, as said, is one of the main reference conditions for 
VST method. To meet this scope, the most consolidated approach follows the statements of ISO-
5725. This international standard, under the general title “Accuracy (trueness and precision) of 
measurement methods and results”, provides basic methods for the determination of trueness and 
precision of a standard measurement method and results. The standard states that the variability 
of a measurement method can range as function of two extremes conditions, termed repeatability 
and reproducibility. The former corresponds to the minimum and the latter to the maximum 
variability in results. Intermediate conditions between these two extreme conditions for precision 
evaluation are also conceivable, when one or more of the different factors contributing to the 
variability are allowed to vary [7]. Looking at the manufacturer point of view, the factor needing to 
be assessed is primarily the contribution of the equipments. Instead, to be consistent with the 
method point of view, what needs to be assessed is the maximum level of variability arising from 
collaborative inter-laboratory experiment, that is reproducibility for ISO 5725. It is now evident as 
the main focus of manufacturers is an intermediate level of precision between repeatability and 
reproducibility conditions. Hence, the general problem can be modelled as a fully nested 
experimental design with three different levels: the upper level is for laboratories, the bottom level 
is for residuals and the intermediate level is for the equipments. It is just the intermediate level 
which manufacturers take care of, that is about the homogeneity of manufacturing conditions. 

The ISO 5725-3 states that the analysis of the results of an n-factor fully-nested experiment is 
carried out by the statistical technique “analysis of variance” (ANOVA). As an alternative, the 
approach proposed in this study is the hierarchical Bayesian model. In a certain way, it is “natural” 
to recognise that it is unlikely that all different manufacturers have the same underlying precision 
for their test equipment, due to employing different design solutions, but it is also reasonable to 
assume that knowing something about the equipments of other manufacturers tells some 
additional information about the test method. So, the general purpose of such study is to provide a 
basis for international comparison of test equipment performances. The project is rooted in the 
idea of generic reusable components that can be put together as desired, like a child’s construction 
set but not so colourful. A unique model where it is easy to add additional intermediate hierarchical 
levels. One of these intermediate levels is just useful for manufactures needs. In addition, the 
posterior distribution achieved with the Bayesian inference would be fully consistent with the 
definition of measurand, that is the quantity to be measured and it is supposed to be specified not 
by a value but only by a description [3, Cpv. D]. Although this definition leaves room for 
interpretation, the posterior distribution achieved with the Bayesian approach contains more 
information with respect to the interval estimate evaluated with the frequentist inference, because 
the final results is the probability density function after Bayesian updating instead of an interval that 
may be expected to encompass a fraction of the distribution of values that could be reasonably 
attributed to this quantity. In addition, it solves the criticism raised at §2.26 of VIM [4] and 
thoroughly analysed in the Guide to the Expression of Uncertainty in Measurement (GUM) [5], that 
is based on a mixture of frequentist and Bayesian thinking. In particular, the Type A (statistical) 
uncertainty evaluations are frequentist, whereas the Type B evaluations, using state-of-knowledge 
distributions, have a Bayesian attitude. In contrast, making the hierarchical model fully Bayesian 
implies, among other things, that a conventional objective Bayesian approach to Type A 
uncertainty evaluation for a number n of observations leads to the impractical consequence that n 
must be at least equal to 4, thus presenting a difficult for many metrologists [8]. In the interests of 
providing fuller information, the usage of Bayesian approach to overcome some limits of ANOVA 
modeling is not so new in metrology literature. As matter of fact, a Bayesian model has been 
already presented for the evaluation of between-bottle homogeneity studies in the production of 
reference and proficiency test materials [1]. 

The analysis starts in chapter §2 with a short introduction of the ISO 5725, staring at the 
relationships between the fundamental objects describing metrology accuracy, that are trueness 
and precision, under both repeatability and reproducibility conditions, and the parameters of an 
ANOVA general linear model. Then, the focus turns on how it was thought to use the ISO 5725 for 
the evaluation of the intermediate level of precision aimed at the metrological characterization of a 
whole product line. Intermediate means between repeatability and reproducibility conditions. So, 
these two words are stressed in order to clarify why the product line characterization needs a level 
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in between. The intermediate level does not describe the full variability conditions like 
reproducibility, but just the production-inherent variability, that is, under minimized room noise 
conditions. For this reason, it is said under homogeneity manufacturing conditions. Having clarified 
these concepts, the dissertation moves through the analysis of the ISO 5725 models and looks for 
which of them is the better option for the intermediate level of precision evaluation. Data examples 
are used to illustrate the approach and clarify the statistical models as ISO 5725 suggests. Two 
different datasets are used. The first is an example drawn from the ISO 5725-2 in order to have a 
reliable and authoritative benchmark against which to compare the Bayesian outcome. The second 
arises from a real industrial application case, drawn from the field of the equipments for thermo-
mechanical testing of polymers, as the ISO 306 standard prescribes. The former is under 
reproducibility conditions, the latter under homogeneity conditions. 

The core of the study is in chapter §3. Here, guided by metrology considerations and not by 
pure statistical criteria, it is drawn up the full Hierarchical Bayesian model. The first test bench for 
the model is the sulfur example illustrated in the ISO 5725-2. Then, the dissertation moves to the 
industrial application case of the accuracy evaluation for the LVDT displacement measurements of 
the ISO 306 testing equipment family. The hierarchical Bayesian model is gradually sophisticated 
in order to guarantee the coherence with the metrology mindset and a good fit with the ANOVA 
results. A couple of reasonable prior distributions are tested in order to provide for the lack of 
unintended sensitivity to apparently innocuous “non-informative” assumptions. In other words, the 
sensitivity of the Hierarchical Bayesian model is tested respect to different prior distribution 
assumptions, both proper and improper. In greater detail, for the sulphur accuracy experiment the 
sensitivity test is performed comparing the results achieved by two different improper prior 
assumptions, specifically, an uniform having infinite lower and upper bounds against a gamma 
having null shape and scale parameters. Instead, for the ISO 306 accuracy experiment, the 
sensitivity test is performed with improper against proper priors, specifically, uniform distributions 
having infinite against finite lower and upper bounds. Both sensitivity analyses showed that the 
prior assumptions do not make any difference, and this finding was welcomed. Looking at the final 
outcomes in terms of expected values of the hyperparameter posteriors for both cases we have a 
good fit with the ANOVA ones. The differences are of the same order of magnitude of the 
equipment resolution and this also was welcome. Overall, the Bayesian framework offers the great 
advantage of a better description of the accuracy. The manufacturers can achieve the maximum of 
the information from the experimental data and, in addition, they may leverage some prior 
information. Then, solving the Bayesian framework, the combination of the two sources of 
information, experimental data and prior knowledge, is split between the bias component and the 
precision components for both repeatability and reproducibility or homogeneity conditions. The 
former component is correlated to the concepts of trueness and systematic errors, whereas the 
other components are correlated to the concepts of precision and random errors. Bearing in mind, 
that we have the maximum of information, as combination of experimental data and prior 
knowledge, the full posterior probability density functions mostly confers a "natural" benefit upon 
the descriptions of trueness and precision, respect to those achieved with the ISO 5725-2 model. 
This is more evident as we turn from point to interval estimates. As a matter of fact, in the Bayesian 
framework we have a better decomposition of variability between the parameters describing 
accuracy and, so, the credibility interval for trueness is really able to encompass every laboratory 
or equipment expected value and the precision parameters are really engaged to describe only the 
sources of random variability. Lastly, exploiting exchangeability assumption, it was possible to 
design a unique and flexible mathematical model able to evaluate the accuracy of a whole new 
product line of testing equipments, according to the concepts expressed in the International 
Vocabulary of Metrology [4]. On the other hand, this descriptive coherence and the data 
information maximization are paid in a more complex accuracy model, that needs higher statistics 
skills. This chapter ends with some considerations about the validation metrics adopted in Instron, 
that are the first concrete acknowledgement for this study. 

The last chapter §4 seeks to further extend the application scope of the Hierarchical Bayesian 
models in metrology, even if its deep reason is to show how easily it is possible to extend the 
number of hierarchical levels and to consider more complex and nested probability structures. It 
considers the proficiency testing scheme that is a standardized way of conducting inter-laboratory 
tests in order to determine the performance of participants for specific tests or measurements, and 
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to monitor their continuing performance independently several times [9]. So, once again, the 
benchmarking is provided by an international standard, the ISO 13528, that this time is applied to a 
simulated dataset for a proficiency inter-laboratory experiment. Then, the statistics, scoring 
participants performances according to the ISO 13528, are compared with ones achieved with the 
proposed Hierarchical Bayesian model. The test bench is the displacement accuracy experiment 
on the VST test equipments. Nevertheless, in order to be more consistent with a real proficiency 
test, where not all participants have the same model of testing equipment, the size of the 
experiment was extended through numerical random generation of data according to two different 
hypothesis for describing the performances of other product lines, that is, other manufacturer 
designs. Overall, the patterns between scores is still guaranteed. In other words, if we sort the 
participants as an increasing or decreasing function of their score statistics, we will achieve the 
same sorting for both approaches, ISO 13528 and the proposed Bayesian. Nevertheless, due to 
the Bayesian intrinsic shrinkage to the mean attitude (let’s refer to [10, Cpv. 10.1]), the Bayesian 
scores are a bit more conservative with respect to the ISO 13528 ones. The Bayesian scores are 
closer each other, due to the force of attraction with respect to their center of gravity (overall mean 
hyperparameter), that is induced by the Hierarchical Bayesian framework.  

Mandel’s graphical consistency and Grubb outliers tests, suggested by the standard, are used 
also in the Bayesian Framework in order to check laboratory results. The working hypotheses of 
the conceptual framework behind the Mandel’s h statistic and the Grubb test are still met also for 
the Bayesian outcome. Hence, for consistency techniques and outlier-detection tests based on 
relative deviation for grouped sets of each laboratory's observations, we keep on having a good 
consistency between the two approaches, frequentist and Bayesian. Then, the last flexibility proof 
of the hierarchical Bayesian framework brings to the end this applicative research: an additional 
hierarchical level is set for the proficiency Bayesian model in order to distinguish the accuracy 
performances of the three different product lines. This last probability structure provides a top level 
for the hyperparameter of the test method trueness, a second level for the hyperparameters of the 
specific-product lines trueness and precision under both repeatability and reproducibility conditions 
and a third level for the specific-laboratory bias. Thus the core purpose of the research is satisfied. 
We have the searched Hierarchical Bayesian model: a model able to describe the accuracy for 
more than one product line at the same time, without losing consistency with the accuracy 
description achieved by analyzing the subset specific for each product line separately. This single 
model is able to both catch the single laboratory proficiency scores and describe the accuracy 
performances of each of the product lines involved in the proficiency experiment. That means, the 
proficiency testing aims can be enlarged: not only evaluation of the laboratory performances but 
also rate the manufacturers designs performances. We would like to emphasize that the capability 
of guaranteeing the consistency of the accuracy results was just qualitatively proved and only for a 
balanced experiment plan. Further analysis need to be carried out before extending the 
conclusions as a general principle. Then, special attention should be paid to these sorts of cases, 
especially because between participants it could be possible to have someone neglectful with 
respect to maintenance plans or in general to the testing conditions. Even if these cases are 
extremely rare, because participants goal is to demonstrate the goodness of the results achieved 
in their laboratories for marketing purpose, the consistency techniques and the outlier detection 
test should ensure an adequate protection of the final rating outcome for manufacturers. The 
manufacturer ratings can be stated as the point estimates for their accuracy or as normalized 
statistics. We suggest the second option and we provide for two statistics normalized over the 
accepted range for displacement accuracy according the ISO 306 standard: the former able to rate 
the precision whereas the latter able to rate the combined effect of trueness and precision. 

In conclusion, let me remark once again that the hierarchical Bayesian models can be used as 
an alternative to the frequentist ones, that are currently recommended in the international 
standards for the accuracy evaluation. The Bayesian framework keeps the outcome consistent with 
respect to the established methods. In addition, it offers an enhanced descriptive capability for 
accuracy evaluation, as the result is not just a point estimator or a confidence interval but the full 
probability density for each accuracy parameter, that are trueness, precision under repeatability, 
homogeneity and reproducibility conditions. This ought to really be appreciated by people who are 
not deep inside the metrology environment because they can clearly distinguish all the accuracy 
components.  
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2 ISO 5725 AS STANDARD FOR THE EVALUATION OF TEST EQUIPMENTS 
PERFORMANCES 

2.1 INTRODUCTION TO ISO 5725 

Just as the nearly universal use of the International System of Units (SI) has brought coherence 
to all scientific and technological measurements [3], international standards on the evaluation and 
expression of accuracy permit more clarity in the rating of the metrological performance. This may 
also be summarized as the wish to guarantee more clearness to the customers in order to provide 
a result to be readily understood and properly interpreted. 

The most important standards on accuracy topic are the “International Vocabulary of Metrology” 
(VIM) [4] and the ISO 5725:1994 (Part 1:6) [11], [12], [7], [13], [14], [15]. The vocabulary sets the 
definitions and the associated terms for the system of basic and general concepts used in 
metrology. It is meant to be a common reference for people involved in planning and performing 
measurements, irrespective of the field of application. It is intended to promote global 
harmonization of terminology used in metrology [4]. At the upper level, it can be seen as a set of 
propositions that are mutually consistent. It serves as a premise or starting point for further 
reasoning and arguments, such as really ISO-5725 does, dealing with accuracy of measurements 
methods and results. Before going on, it is opportune to remark some of the definitions drawn from 
the VIM in order to set the steering compass for the next steps of this paper. 

Measurement accuracy refers to the closeness of agreement between a measured quantity 
value and the true quantity value. So, the concept accuracy is not a quantity and is not given a 
numerical value. In addition, accuracy is related to the concepts of measurement trueness and 
precision.  

Measurement trueness refers to the closeness of agreement between the average of infinite 
number of replicate measured quantity values and the accepted reference value, while precision 
refers to the closeness agreement between indications or measured quantity values obtained by 
replicate measurements on the same or similar objects under specified conditions. The need of 
taking into account the precision arises from the inner variability of the measurement procedure in 
a test methods, even if every covariate is assumed to be identical. This is due to unavoidable 
occurrence of random errors in each measurement process. As a matter of fact, the inner 
variability of test method results reflects the influence of many different variables, for example: 

a. operator; 
b. test equipment; 
c. equipment calibration; 
d. environment (temperature, humidity, air pollution, etc.); 
e. time between measurements. 

Instead, trueness is the expression of the component of measurement error that in replicate 
measurements remains constant or varies in a predictable manner, that is the systematic error. 
The causes of systematic measurement errors not always are known but a correction can be 
applied to compensate for them. 

Two measure of trueness may be of interest: bias of the measurement method, that is the 
difference between the average of replicated indications obtained from all laboratories given a 
certain method and the accepted reference value, and the laboratory bias, that is the difference 
between the expectation of the replicated test results for a particular laboratory and the accepted 
reference value. In both cases a reference quantity value is required. On the other hand, precision 
does not require a reference value, as it involves only comparisons between replicate 
measurements of a quantity under specified conditions of repeatability or reproducibility. The 
former exists when independent test results are obtained with the same measurement procedure, 
same operators, same measuring system, same operating conditions and same location, and with 
replicate measurements on the same or similar objects over a short period of time. Reproducibility 
conditions exist when test results are obtained with the same measurement procedure in different 
laboratories with different operators using different equipments. Thus repeatability and 
reproducibility are the two extremes of precision, the former describing the minimum and the latter 
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the maximum variability of the results. Precision is normally expressed in terms of standard 
deviation. 

Figure 2.1 shows a legible concept diagram of the relations between the accuracy and the 
other definitions termed in the preceding clauses. The accuracy is the “tympanon” standing on the 
two columns trueness and precision. So, the accuracy encompasses the concepts of trueness and 
precision but cannot be strictly numerically expressed. In order to get our hands dirty with 
numbers, we have to go down the steps of the temple. Actually, trueness and precision are related 
to systematic and random components of a measurement result, respectively. So, the former is 
expressed numerically by the bias of a finite number of replicated measurements with respect to a 
reference quantity value, whereas the latter is expressed by measures of imprecision, such as 
standard deviation. Precision also depends on the test conditions that can range from repeatability 
to reproducibility ones. 

 
Figure 2.1: Visual presentation of the relations between the concepts about accuracy 

As expected by the VIM [4, Par. §2.13, NOTE 2], ISO-5725 uses the two terms trueness and 
precision in order to assess the accuracy. It should be evaluated from a series of test results 
obtained through a collaborative study, that is an inter-laboratory experiment run under 
reproducibility conditions [11]. Such an inter-laboratory experiment is called an “accuracy 
experiment”. 

Following ISO-5725, the statistical model explaining the measurand   depends on the 

experimental design used to obtain the measurement. In general, each observed value     of the 

measurand   can be expressed as a realization of a general linear model, such as  

             2.1 

where   is the overall mean,    (the notation is the same of ISO-5725 and denotes an observed 

value even if the capital letter can lead to think differently) is the laboratory component,     is the 
residual random error. As a consequence of the hypotheses for the linear model, these random 
errors     are the realizations of independent and normally distributed variables (with same null 
mean and same unknown variance) variables, supposed to incorporate all variation in the result 
variable due to factors other than laboratories. The overall mean   is the particular reference value 

tested and it is not necessarily equal to the true value or its accepted reference value  .    is a 
quantity value depending on the categorical variable ”laboratory”, with         levels. Besides, 

for the i-th laboratory it is required a sample of          replicated measurements, so,   
subscript denotes the position of the observation within   laboratory sample. 
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Generally, mathematicians follow the convention of denoting random variables by upper case 
italic letters and observed values by the corresponding lower case letters. Greek letters are used to 
denote parameters and corresponding lower case letters are used to denote estimators and 

estimates; occasionally the symbol      is also used for estimators and estimates. Therefore, 
according to the convention, the general linear model for the generic measurand   stated in the 
equation 2.1, as it is in the ISO 5725-2, can be also expressed in terms of random variables as: 

                                2.2 

or in terms of its realizations and least square estimates as: 

             2.3 

Careful readers will have already recognized in 2.1, 2.2 or 2.3 the general linear model of  
1-way ANOVA [16]. Indeed, it can be easily proved that the estimate of the repeatability variance is 
the mean square error. As a matter of fact, the repeatability variance, according to ISO 5725-2 [12, 
Par. 7.4.5.1] is 

  
  

         
  

   

        
   

 

2.4 

or, if the number of replicated measurement is the same for each laboratory 

  
  

   
  

   

 
  2.5 

where   
  

           
  

   

   
 represents the sample variance for the measurements of each laboratory. 

Finally, we have 

  
  

            
  

   
 
   

      
 

   

      
       

 
 2.6 

SSE is the sum of square errors and MSE is the mean square error, as they are commonly 
presented in classical ANOVA literature [17], [18]. They both measure the variation that would be 
present within samples. 

It is a bit more complicated to show the link between reproducibility variance according to ISO 
5725-2 and the variance component model according to Fisher [18]. Let the reproducibility 

variance as ISO 5725-2 be the sum of the between-laboratory variance   
  and the repeatability 

variance, that is 

  
    

    
 

 2.7 

Fisher’s book (1925) shows that the mean square among groups is equal to [18] 

    
   

   
    

    
 

 2.8 

where the sum of squares among groups is                  
  

    and   
  is the variance 

component for the variability among groups. In a consistent way the ISO 5725-2 uses   
  to 

evaluate the between-laboratory variance   
  and consequently 

  
    

  
      

 

 
 

   

   
   

 

 
 

             
  

   

   
   

 

 
 

  
    

 

 
  

2.9 

where   
  is the mean square error among groups. 

If   is not constant for each group, equation 2.9 becomes 

  
  

  
    

 

         
  

      
  

   
  
 

  
   

   
      

 

   
     

   
  

   

   
 
   

 

   

  2.10 

As a general rule [12, Par. 5.1.1], in the layout used in the accuracy experiment, samples from 

  batches of materials, representing   different levels of the test, are sent to   laboratories which 

each obtain exactly   replicate test results under repeatability condition. This type of experiment is 
called balanced uniform-level. 
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Hence, model 2.1 becomes: 

                 2.11 

where         is the index for the level of the batch or, in general, the level of the reference 
value. Nevertheless, ISO 5725-2 prefers to treat each batch as different populations in order to not 
push for the hypothesis of same variance between different batches. It follows that for each j-batch 
an individual linear model is given, so we prefer the notation: 

   
   

        
   

    
   

 2.12 

Hence, equations 2.6, 2.7 and 2.10 become respectively: 

  
    

 
      

   
     

   
 

 
 
   

 
   

    

   
    

   

 2.13 

  
    

   
    

   
    

 2.14 

  
    

 
  

    
   

    

     

     

  
    

 
   

   
     

   
   

  

   
 

 
 
   

   

      
 

   
    

   
 

   
     

   

   

    
   

 

   

 

 2.15 

We shall try to make this dissertation clearer by solving an example drawn from Annex B of ISO 
5725-2 with R, the most powerful and flexible statistical software [19], enabling users to apply 
many statistical techniques such as ANOVA.  

 
Table 2-1: Original data for sulfur content of coal experiment (Annex B ISO 5725-2) 

Eight laboratories participated in the experiment for the determination of the sulphur content in 
coal, carrying out the analysis according to a standardized measurement method. The original data 
are given in Table 2-1, as percentage by mass. Looking at these data, it can be noticed that the 
experiment is not balanced and there are four different batches (“Levels  ”) of material. 
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The original data have several inadequacies for processing in R as are collected in Table 2-1, 
so the first step for data analysis with R is to arrange the dataset as shown in Table 2-2: a data 
frame of three variables, of which two are categorical and one is numerical.  

 
Table 2-2: R data.frame for sulfur content of coal observed values, corresponding to the R object named data2 

The numerical variable sulfur contains the observed quantity values    
   

, where   is the index 

for the level of the categorical variable laboratory,   is the index for replicated measurements and   
refers to the batch level. The batch variable has four levels and, so, according to ISO 5725-2 four 
ANOVA 1-way models have to be performed, one for each level of batch.  

Once the batch level   is selected, the ANOVA 1-way for the model 2.1 can be performed in R 

using the aov function [20]. Table 2-3 summarizes the “aov” outcome for the first level of the factor 
Batch. Who wish can found all the R script details for the sulfur content experiment in the annex B 
§7. 

Table 2-3: Anova 1-way summary(AOV) output for the first level of Sulfur content of coal batches 

The summary in Table 2-3 has all the values needed to estimate the precision variance under 

repeatability conditions or, if you prefer, the mean square error for residuals   
 , that is the value in 

the position identified by column “Mean Sq” and row “Residuals”. So, the repeatability variance for 
the first batch of coal is: 

  
    

           2.16 

Then, in the column “Mean Sq” and row “Laboratory[Batch == "LV1"]”, we have the mean 
square error among groups estimate: 

  
    

               2.17 

# Df Sum Sq Mean Sq F value Pr(>F) 

#Laboratory[Batch == "LV1"] 7 0.012555 0.0017935 7.849 0.000163 *** 

#Residuals 19 0.004342 0.0002285   

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Another way in R for reading the output of the “aov” function is the usage of the “model.tables” 
function in order to report the means and the number of each i-laboratory group. For the first level 
of the batch factor this result is given in Table 2-4. 

Table 2-4: Means and replications’ number of each i-laboratory group for the first level of Sulfur content of coal batches 
as output of the function model.tables(AOV, "means") 

Looking at the output in Table 2-4, the grand mean is the general mean as it is called in ISO 
5725-2, that is: 

          
    

   
   

    
    

   

   

    
   

 2.18 

where     
   

 is the specific i-laboratory mean or cell mean according to ISO 5725-2, in formula: 

    
   

 
    

     
   

   

  

   
 2.19 

Having clarified the links between the ISO 5725-2 and the ANOVA output in R, for the first 
batch of sulfur content experiment, we have the grand mean equal to 

          
           2.20 

and the cell means are equal to: 

                  

    
   
                                                 

Table 2-5: Specific i-th laboratory means for the first batch of sulfur content experiment 

The last information in the Table 2-4 is the row called “rep” reporting the number of replicates 
for each i-laboratory, that means: 

                  

  
   
                 

Table 2-6: number of replicates for each i-th laboratory of the first batch of sulfur content experiment 

Due to the unbalanced experiment, the next step is about the evaluation of the average of 

replicates number   , as stated in the equation 2.15. At the moment we are interested just to the 
level 1 of the factor batch, so with the input data in Table 2-6 the average number of replicates is: 

             2.21 

Hence, according to the equation 2.15, it is possible calculate the between-laboratory variance 

  
  as combination of the mean square error among group in 2.17, the repeatability variance in 2.16 

and the average number of replicates in 2.21. It results: 

  
    

           2.22 

Finally, we can achieve the reproducibility variance   
 , as stated in the equation 2.14, achieving: 

  
    

 0.0006950 2.23 

The same operating flow can be followed for the other batches of materials. As a matter of fact, 
general mean and reproducibility and repeatability variances for the other batches can be easily 
achieved with the proper routine in R. The final result is summarized in Table 2-7, having 

#Tables of means 
#Grand mean 
# 
#0.6903704  
# 
# Laboratory[Batch == j[1]] 

# Lab1 Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Lab8 

# 0.708 0.680 0.667 0.660 0.690 0.733 0.703 0.677 

#rep 4 3 3 3 5 3 3 3 
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reproducibility and repeatability expressed as standard deviations. Even if they were achieved 
through the ANOVA model, the final outcome is equal to one in Table B.5 of ISO 5727-2 [12]. 

 

Table 2-7: Computed values [%] of      ,   
   

 and   
   

 for sulfur content of coal 

Just in case of balanced experiment the replicates number   can be straight obtained from the 
degrees of freedom of residuals     and from the number   of laboratories involved. Actually, it 

has been proved [18] that the degree of freedom for residuals are equal to 

           2.24 

Now that the analogy between ISO 5725-2 and ANOVA 1-way was revealed and, so, it was 
clarified what means variance repeatability and reproducibility from general linear model point of 
view, let’s see basic methods for the determination of the trueness drawn from ISO 5725-4 [13]. 
We remind that this part of ISO 5725 can be applied only if the accepted reference value can be 
established as conventional true value. In these cases bias values give quantitative estimates of 
the ability of a measurement method to give the correct (true) result. According to this definition in 

the basic model 2.1 the general mean   may be replaced by 

      2.25 

where   is the accepted reference value of the property being measured and   is the bias of the 
measurement method. Even if it is by definition not straight correlated with the concept of 
closeness between the average of replicated measurements and the accepted reference value, 

trueness of the measurement method is normally expressed in terms of bias  . So, the model 
becomes 

               2.26 

Hence, the laboratory bias is given by: 

        2.27 

Summarizing, in this paragraph it has been shown the values describing, in quantitative terms, 
the ability of the method to give a correct result (trueness) and to replicate a given result 
(precision), both obtained by a collaborative study, that is an inter-laboratory experiment run under 
reproducibility condition. 
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2.2 PERFORMANCES EVALUATION OF A PRODUCT FAMILY WITH ISO 5725-2 

Testing equipments performing measurements of physical quantities are expected to provide 
not only the measured quantity value but also some quantitative indications of the quality of the 
results. Actually, a measurement result is generally expressed as a single measured quantity value 
and an indication of its accuracy. Without such an indication, measurement equipments among 
different manufacturers and, in general, measurements cannot be compared. 

In this scenario a slice of competition among manufacturers of test equipments is hardly played 
around the will of having on their own test equipments the best performances of accuracy for every 
influence quantity affecting the test method. As a matter of fact, accuracy is for the majority of the 
customers the criterion on which they decide from which manufacturer to buy a test equipment. For 
this reason, it is convenient to standardize the procedures describing the method for evaluating 
accuracy of each equipment family in order to ensure the maximum transparency. In other words, it 
shall exist a common language for the evaluation of the metrological performances of each test 
equipments family. Here, family means the whole product line of a specific testing equipment 
manufacturer for a specific test method, such as Instron Vicat test equipments (HV), TESA Vernier 
calipers, Mitutoyo gauge blocks, et similia. The will to control every single variable affecting the 
measurement result is unrealistic. So, the unavoidable occurrence of random errors can affect the 
measurement response of the test equipment with different magnitude as a function of the 
manufacturer design, mainly due to the engineering solutions on uncontrolled variables. Moreover, 
in some cases, systematic errors arise due to the engineering design or to the manufacturer 
calibration procedure. The differences over the quality of the metrological performances between 
test equipments of different manufacturer can fade without a unique metric for accuracy evaluation. 
For some product lines the problem of the metrological performances evaluation is well defined 
because there is an international standard aimed just at the calibration and verification of the 
specific test equipment. In these cases the standard provides accuracy classes, as function of 
stated metrological requirements, in which every single instrument has to belong to (e.g. the 
calibration and verification of static uniaxial testing machines follows the ISO 7500-1:2015 [5]). In 
other words, there is a measurement procedure to assess the measurement accuracy of the 
measured quantity values with respect to some specified classes. Otherwise, if the calibration and 
verification procedure there is no at all or the reference operating conditions [4, Par. 4.11] are not 
so clear, the manufacturer has to define its own procedure to describe the metrological 
performances of every influence quantity controlled by the instrument. So, in this shady regulatory 
environment the main manufacturer’s needs are the choice of reference measurement standards, 
conditions and models in order to evaluate the metrological performances for the whole family of a 
new measuring instrument. This is not completely true because the ISO 5725 comes to rescue 
whenever there is the need to deal with accuracy. 

Actually, the standard in its third part [7] also provides for intermediate precision conditions 
of measurement, out of the set of reproducibility conditions that include the same measurement 
procedure, same location, and replicate measurements on the same or similar objects over a 
limited period of time, but may include other conditions involving changes, for example different 
instruments of the same product line instead of different laboratories. In other words, at the end of 
the development project of a new product the engineering team can set up an experimental plan as 
the one provided for inter-laboratory experiment. The plan scope, rather than the evaluation of the 
test method accuracy, is the accuracy evaluation for the production homogeneity, that means just 
every influence quantity arising due to the tolerance design choices. So, the repeatability 
conditions are the same of the inter-laboratory experiment but with different instruments of the 
same manufacturer instead of different laboratories as in the reproducibility conditions. Moreover, 
in homogeneity conditions the location is always the same, the repetitions of measurements are 
carried out in a short time span and the instruments are all new. That is, the room noise and 
obsolescence effect are minimized with respect to the reproducibility condition in order to focus the 
analysis only on the production variability. So, this intermediate level sets the experimental 
conditions for the evaluation of the product line precision. As said, it takes into account just the 
variability introduced by the production processes. Different equipments of the same manufacturer 
are only nominally the same. In fact, due to the design tolerance approach, each single physical 
quantity of every single component of the equipment can vary within the limits set by the tolerance 
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design. The infinite number of combinations for these dimensions allows the inherent variability of 
the production process and, so, that affects homogeneity precision of the product family. 

The repeatability, homogeneity and reproducibility conditions are summarized in Table 2-8. It is 
clear that the homogeneity conditions, those in which the manufacturers are interested, are 
intermediate between repeatability and test method reproducibility. 

Repeatability Homogeneity Reproducibility 

Same test method Same test method Same test method 

Same test equipment Different test equipments but 
of the same manufacturer 

Different test equipments 

Same operator Different operators Different operators 

Same location Same location Different locations 

Same condition of use Same condition of use (new) Different conditions of use 

Repetition over a short period 
of time 

Repetition over a short period 
of time 

Repetition over a long period 
of time 

Table 2-8: Experiment conditions 

The problem of the accuracy description, as set, can be solved with the same models 
introduced in chapter §2.1 by simply changing the design of the experiment. 

In conclusion, the experimental layout for the evaluation of the metrological performances of a 
product family provides for the use of samples from   batches of materials, representing   different 
levels of the test methods, measured with   test equipments of the same manufacturer which 

each obtains exactly   replicate test results under repeatability condition in a short time span. This 
type of experiment is still balanced uniform-level and the repeatability and homogeneity variances 
can be calculated using equations 2.13 and 2.14 respectively. 
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2.3 INDUSTRIAL APPLICATION CASE: VST TEST EQUIPMENTS PERFORMANCES 

ISO 306:2013, or the equivalent ASTM D1525 – 17, deserves to be mentioned among the 
standards lacking a well defined procedure for the calibration and verification of the reference 
operating conditions [4, Par. 4.11]. This International Standard specifies four methods for the 
determination of the Vicat softening temperature (VST) of thermoplastic materials. Furthermore, 
this kind of test is becoming increasingly important as plastics continue to replace more traditional 
materials in many applications. Even if the test does not provide results for the usage in design 
calculations, it is very useful as a quality control or development tool.  

The result is the temperature value at which thermoplastics begin to rapidly soften. In detail, 
these test methods are used in gauging the ability of polymers to retain their mechanical (in this 
case surface) properties at high temperatures. The test itself is performed by slowly raising the 
temperature of the medium, where the specimen stands, while applying a point load on the 
specimen surface. The combination of two possible values for both the control variables 
temperature rate (50 K/h or 120 K/h) and load (10 N or 50 N) gives the four conditions for the four 
test methods of ISO 306:2013. As function of one over four conditions of the test method, when the 
point load has penetrated 1 mm into the material, the test is ended and the temperature recorded. 
So, the final outcome of VST measurement method is the temperature at which the needle 
penetrates 1 mm under one of the four temperature rate and load combinations allowed by the 
standard. 

 
Figure 2.2: Schematic view of the apparatus for Vicat Softening Temperature determination 

Of course, the VST standard is documented in sufficient detail to enable the manufacturer to 
design the measurement equipment. Briefly ([6] for more details), the test frame assembly (see 
Figure 2.2), consists of a heating bath, containing a medium (liquid or fluidized bed) in which the 
test specimen can be immersed to a depth of at least 35 mm. An efficient stirring mechanism shall 
be used to achieve the medium temperature homogeneity in the specimen area. The base of the 
frame (see point 9 in Figure 2.2) supports the test specimen under the indenting tip at the end of 
the rod, provided with a support plate or other suitable load-application device. The rod shall be 
able to move freely, with minimum friction, in a vertical direction. The surface of the indenting tip in 
contact with the specimen shall be flat and perpendicular to the axis of the rod, and free from burrs 
circular cross-section, having a diameter of 1,128 ± 0,008 mm. Weights are applied to the rod 
centrally, so that the total load, (10 ± 0,2) N or (50 ± 1 N), is applied to the test specimen. The 
heating equipment raises the temperature at a uniform rate of (50 ± 5) K/h or (120 ± 10) K/h, 
through a temperature control system (the temperature transducer shall be accurate to at least  
± 0,5 K). A penetration-measuring device (calibrated micrometer dial gauge, LVDT «linear variable 
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differential transformer» or other suitable instrument to measure the penetration of the indenting tip 
into the test specimen to an accuracy of ± 0,01 mm) completes the VST measuring system.  

The test specimens shall be between 3 mm and 6,5 mm thick and at least 10 mm square or of 
10 mm diameter. Considering that the test ends when the needle is penetrated 1 mm, Instron 
design uses of LVDTs having 15 mm as range of the stroke nominal indication interval [4, Par. 4.5]. 
Being the stroke more than 4,5 mm, it is surely possible to cover the penetration measurement for 
every specimen thickness without mechanical adjustment.  

The measurement procedure consists of the following steps: 

1. position the specimen in the support under the indenting tip of the unloaded rod; 
2. wait until the medium has a uniform temperature of 25 °C; 
3. with the indenting tip still in position, lower the assembly with at least 2 specimens into 

the bath; 
4. add a sufficient weight to the support plate, so that the total load on the test specimen is 

(10 ± 0,2) N for methods A50 and A120 or (50 ± 1) N for methods B50 and B120; 
5. after 5 min, set to zero the reading of the penetration-measuring transducer; 
6. increase the temperature at a uniform rate of (50 ± 5) K/h or (120 ± 10) K/h; 
7. record the temperature of the bath when the needle has penetrated 1 mm; 
8. express the VST of the material under test as the arithmetic mean of the VSTs of the 

specimens tested, unless the range of individual results exceeds 2 K. If the range is 
greater than 2 K, record the individual results and repeat the test a second time using 
an additional set of at least two specimens. 

So, the control factors of the VST method are temperature, time (temperature rate), penetration 
and load measurements. For each of these four quantities the standard sets specific validation 
requirements. Nevertheless, their verification procedure is well defined just for temperature rate.  

In the Instron design solution of the VICAT instrument system, the most tricky accuracy 
requirement to proof is that concerning the penetration transducer. This measurement is affected 
by many noise variables such as the quadrature error and non-linearity introduced by the LVDT 
[21], the digital processing errors, and the rod positioning errors due to the mechanical clearances 
aimed to ensure that the system is frictionless. In order to manage all these noise variables in the 
accuracy verification of the penetration measurement requirement, an experimental method was 
designed. The designed experiment consists in using traceable [4, Par. 2.41] gauge blocks instead 
of the specimen in order to refer the LVDT reading to an accepted reference value. The first step is 
zeroing the LVDT reading with respect to a first class 0 gauge block (according to ISO 3650:1998), 
thick    . Then, the first gauge block is substituted with another one of the same class 1 mm less 

thick      and the LVDT reading    
   

 is registered.    
   

 is the observed quantity value of the 

accuracy experiment with respect to the reference accepted value: 

    
   

               2.28 

where, even if     shall be any value in the range        mm, it was chosen to zero the LVDT in 

the positions corresponding to gauge block thicknesses of 6 mm, 5 mm, 4 mm and 3 mm. So, 

              mm 2.29 

and the relative reference accepted values are summarized in Table 2-9. 

     [mm]     [mm]      [mm] 

1 1 6 5 

2 1 5 4 

3 1 4 3 

4 1 3 2 

Table 2-9: Reference accepted values 

Therefore, the experiment plan has four (   ) reference values (as shown in Figure 2.3), 
called “jump”, having the same magnitude of 1 mm but differing for the zeroing point of the 
differential displacement measurement. 
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Figure 2.3: Schematic view of the verification method with blocks from 6 mm to 2 mm in order to have 4 jumps of 1 mm 

Besides, the layout of this accuracy experiment implies a balanced plan, having four replicated 

measurement (   ) to explore repeatability conditions and eighteen (    ) different VST 
measuring systems (as the one in Figure 2.2) to explore the homogeneity conditions of the product 
family, as explained in Table 2-8. The eighteen apparatuses are identified with the LVDT serial 
number mounted in each. The zeroing is repeated for each measurement in order to avoid 
autocorrelation in the results due to the same zero. The results of the VST accuracy experiment 
are summarized in Table 2-10 and extensively reported in annex A 6. 

 

Table 2-10: R data.frame of the VST accuracy experiment (   

   
 are in millimetres), having the R object named data3 
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On this data frame we can apply the model for accuracy evaluation discussed in chapter 2.1, 
with the interpretation of the reproducibility variance as discussed in chapter 2.2, that is, what we 
called production homogeneity variance. In this accuracy experiment the VST testing equipment 
are all made by Instron. Each of them was randomly drawn from the mass production population 
and the time span for the whole experiment was kept as short as possible. For ease of discussion 
no further variables affecting the measurand (for example room temperature) are considered. 
Therefore, for each subset of dataset corresponding to one over four levels for the reference 
accepted value, that in this case plays the role of the factor batch of material, we can solve the 
general linear model of equation 2.12 through the “aov” R function. Beside, due to the fact that the 
design matrix associated to the equation linking the response and explanatory variables in the 
ANOVA model is not full rank, its least square solution needs an additional constraint equation. As 

default the “aov” R function uses the constraint   
   

  . Nevertheless, this choice is not easy to 

interpret. Whereas, it can be proved that, in the balanced experiment, forcing the constrain 

   
   

  
 
    in the least square solution of the linear problem 2.12 (instead of   

   
   used by 

default in R) the estimate       is straightly the average of the group means [22]: 

      
 

  
     

   

 

   

 

   

  2.30 

This is exactly the general mean as provided by the ISO 5725-2 [12, Par. 7.4.4] and reported in 
equation 2.18. In this regard, we just specify into the “aov” R function the kind of contrast as 
"contr.sum". 

As we learnt in section 2.1, the purpose of the accuracy description according to ISO 5725-2 
can be achieved by running the ANOVA model for each subset of the dataset in Table 2-10 
grouped by a specific level of the reference accepted value parameter. Since the experimental plan 
for the accuracy evaluation of the displacement measurement in VST apparatuses is balanced, we 
can also leverage the equation 2.24 and the considerations behind equation 2.30. The R script 
details can be found in annex C 8. After rounding, the final accuracy outcome is summarized in 
Table 2-11 with repeatability and homogeneity expressed as standard deviations. 

 

Table 2-11: estimates in millimeter of      ,   
   

 and   
   

 for VST accuracy experiment based on ANOVA 1-way model 

For the purpose of this research it is better to replace the point estimates of the general means 

      with the lower and upper limits of their 95 % confidence intervals. Actually, it is possible to 
proof that: 

          

  
   

    
            2.31 

So, through the quantile function      of equation 2.31, or if you prefer its inverse cumulative 

distribution function       , we can specify the value at which the probability of the random 
variable is less than or equal to the given probability. That means we are looking for: 

        
   

       
       

     
  

   

   
           

   
             

          2.32 

where                    

               . 
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Hence, replacing the column          with the upper and lower limits of the 95 % confidence 
interval, as stated in 2.32, we have the outcome shown in Table 2-12. 

 

Table 2-12: estimates of        
   

,        
   

,   
   

 and   
   

 for VST accuracy experiment based on ANOVA 1-way model 

Lastly, we can arrange this final outcome in terms of bias, as expressed in 2.25, and expanded 

uncertainties for both repeatability   
   

 and homogeneity   
   

 conditions. A view of the Uncertainty 

approach is detailed in the Guide to the expression of uncertainty in measurement (GUM) that 
focuses on the mathematical treatment of measurement uncertainty through an explicit 
measurement model under the assumption that the measurand can be characterized by an 
essentially unique value [3]. Briefly, the guide requires to describe the combined standard 
uncertainty [4, Par. 2.31] as a proper linear combination of the individual standard uncertainties 
associated with the input quantities in the measurement model. From the combined standard 
uncertainty it is possible to obtain the expanded uncertainty as the product of the combined 
standard uncertainty and a coverage factor depending on the type of probability distribution of the 
output quantity in the measurement model and on the selected coverage probability. 

A possible choice for the measurement model associated with this application is the following: 

                         2.33 

where: 

- all input quantities are assumed to be independent; 
-   is the difference between the measured value   and the reference accepted value 

                ; 

-      is the thickness of the first gauge block where we zeroing the transducer; 

-      is the thickness of the second gauge block with respect to which we observe the 

displacement; 
-   is the linear expansion coefficient of the gauge blocks material; 

-    is the temperature difference respect to the room temperature, conventionally assumed 
20°C.  

An additional common assumption provides for considering the measured value   as affected 
by two uncertainty components: the apparatus resolution       and the amount of all noise factor 

     , so that                    . 

Hence, the uncertainty budget comprises many components. Out of all these components just 
the amount of all noise factors    may be evaluated by Type A evaluation of measurement 
uncertainty from the statistical distribution of the quantity values from the series of measurements 
in Table 2-10 and it can be characterized by their precision standard deviations under conditions 
either repeatability or homogeneity. The other components may be evaluated by Type B 
evaluation of measurement uncertainty, and so, they also can be characterized by standard 
deviations, evaluated from probability density functions based on experience or other information. 
This inharmonious mixture of frequentist statistics for the type A uncertainty evaluation and 
Bayesian attitude for type B uncertainty evaluation could be fixed working in a fully Bayesian 
framework as we propose in the next chapters. 

Going back to the accuracy experiment, during the measurements the test temperature was 

under control and monitored with resolution      . The reference accepted values were provided 
by certified gauge blocks, with thickness stated as having expanded uncertainty equal to       . 
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The LVDT was zeroed at the beginning of each measurement in order to avoid autocorrelation 

between the replications. The resolution of the displacement transducer is equal to      and is 
provided in digital way. Besides, for the purpose of this research we can consider the linear 

expansion coefficient                  as a constant. Combining all these inputs through the 
measurement model, we can achieve the uncertainty budget summarized in Table 2-13. This 
outcome is just for the level corresponding to the reference accepted value of the “jump 5»4”, that 
is the level with the minimum repeatability precision (see Table 2-12), where the column labels 
follow the glossary indication of JCGM:100 [3] Annex J and the row labels follow the symbols used 
in the measurement model of equation 2.33. We need to pay attention to the meaning of the i 
subscript that in the uncertainty budget table does not indicate the specific laboratory but the 
source of variability. 

 
Table 2-13: Uncertainty budget for the 3

rd
 level of the reference accepted value factor, that corresponds to "jump 5»4" 

The combined (squared) uncertainty   
    , associated with the output estimate   of the 

response variable   of the measurement model 2.33, is achieved as the sum of the variance 
components for all the variability source terms. For the components in Table 2-13 the combined 
standard uncertainty is 

             
    

 

   

            2.34 

Even if we chose the (minimum) repeatability condition, the additional sources of variability are 
negligible with respect to those inherent in the test equipments, that are expressed in terms of their 
repeatability precision standard deviation.  

It follows that the attempt to provide explanation in terms of ever smaller entities leads to 
neglect the additional sources of variability and characterize the dispersion of the values that could 

reasonably be attributed to the displacement measurand   just in terms of its precision standard 
deviation under either repeatability conditions or homogeneity conditions. Once again, we remark 
that this assumption is well supported by the outcome in Table 2-13. 

So, the expanded precisions are achieved as the product of a coverage factor    , in order to 
have 95 % confidence level, and repeatability or homogeneity standard deviations. Of course, the 
underlying assumption is that the PDF for the measurand is a Gaussian (which is reasonable, 

since precision deals with random effects). We named the expanded precisions   
   

 and   
   

 

respectively, in order to highlight the degree closeness to the expanded uncertainty, even if they 
are not exactly the same quantity [23]. Then, according to 2.25, the trueness can be described by 
the interval limits for the general means estimate minus the reference accepted values. 
Consistently we can apply the same considerations to the outcome in Table 2-12 in order to 
describe the accuracy in terms of its bias intervals and extended precisions under both condition of 
repeatability and homogeneity, as it is shown in Table 2-14. 
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Table 2-14: evaluated values of        
   

,        
   

,   
   

 and   
   

 for VST accuracy experiment based on ANOVA model 

From the manufacturer point of view the homogeneity expanded precision   
   

 gives a good 

confidence that the production of VST measurement systems meets the ISO 306:2013 requirement 
about penetration measurement accuracy. Actually, rounding to the most significant digit gives 

  
   

        . On the contrary, the results in terms of bias intervals that do not encompass the 

null bias leave serious doubts, so that there is enough evidence for rejecting the null hypothesis of 
null bias. This is an unexpected result from the manufacturer’s point of view. 

For the scope of this research, the outcome in Table 2-11 is the benchmark against which to 
compare the results obtained with the hierarchical Bayesian model defined in the next chapters. In 
this regard, we would like to remind the readers that the repeatability variance is the mean square 
error of the ANOVA 1-way linear model (see equation 2.6) whereas the 
reproducibility/homogeneity variance is the sum of repeatability variance and between-laboratory 
variance, that describes among groups variability. Let’s keep in mind this relation for better 
understanding the probability structure assumed for the Bayesian formulation of the accuracy 
description problem. 
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3 HIERARCHICAL BAYESIAN MODEL FOR THE EVALUATION OF TEST 
EQUIPMENTS PERFORMANCES 

3.1 INTRODUCTION TO HIERARCHICAL BAYESIAN MODELS 

Thomas Bayes (1702-1761), from whom Bayes’ Theorem takes its name, is believed to have 
been the father of several results in probability stimulated by his seminal paper [24], in which he 
wrote: “Given the number of times in which an unknown event has happened and failed: Required 
the chance that the probability of its happening in a single trial lies somewhere between any two 
degrees of probability that can be named”. In this statement the usage of the two words “chance” 
and “probability” is not just a matter of insisting on a point but the conscious intention to describe 
uncertainty as the result of two nested processes: the “probability” defines the underlying risk of the 
event occurring, and it is affected by the “chance”, as the riskiness related to the proper event 
description. In other words, Bayes used “probability” to refer to uncertainty concerning an 
observable event and “chance” to refer to uncertainty concerning that probability [10]. Thus, the 
first crucial step taken in Bayesian Statistics is to consider any parameter  , describing a generic 

probability distribution     , as a random variable too (therefore, theoretically we should use 
capital and lower case letters, but this is not generally done in this study just for convenience and 
practicality). Second, as a consequence of the Bayes’ Theorem, the probability distributions in the 
Bayesian framework apparently express opinions rather than being solely based on formal data 
analysis like in the frequentist approach. Actually, Bayes’ Theorem tells us how to learn from new 
evidence, but inevitably requires the specification of what we thought before that evidence was 
taken into account. So, specification of one or more such “priors” is an additional responsibility of 
the analyst. The choice of the appropriate prior distribution depends on the degree of knowledge of 
the specific subject matter and a strong degree of judgment. For these reason, often a Bayesian 

model is said a full probability model in which both observed realizations   and parameters   are 
random variables, having the joint probability distribution: 

                      3.1 

In expression 3.1,      is the prior distribution for the parameters, representing the state of 
knowledge or personal belief about the values of   before taking into account the observed data, 

and        is the likelihood function, providing a credible description of the model parameters 
given the observed data. From another point of view, the likelihood gives an indication of how 
much the data contribute to the probability of the parameter value or of the model. Per Bayes 
theorem, the likelihood can be multiplied by a prior probability and then normalized, to give a 
posterior probability. Therefore, as a consequence of the Bayes theorem, for random variables 

described by probability density function, we can achieve the conditional probability       , that is 
assigned to the parameters   after the relevant evidence or background of the observed data 

    is taken into account. This is said called posterior probability and is given by 

       
         

     
                 3.2 

So, this conditional distribution for   is a function of the selected prior, updated in the light of new 
relevant data (evidence) expressed by the likelihood       . The constant      normalizes to one 
the total probability. 

Leaving aside the philosophical crusades between the Fisherian and Bayesian schools, 
distinguished by a greater “purely” objectivist view of the former against a subjectivist attitude of 
the latter, we need to acknowledge that Bayesian methods tend to be inherently more complex 
than classical analyses, and the numerical data summarization is even worst. It is obvious that the 
objectivistic climate of the late 19th century, combined with the complexity of calculation, initially 
slowed the spread of Bayesian techniques. In the last decade of the 20th century the tones of 
religious war, that have characterized the dawn of the frequentist / Bayesian debate have faded. 
This is also due to the increased flexibility and computability of the Bayesian models, thanks to the 
development of new computational methods and to the IT progress. Among the several 
mathematicians which promoted the Bayesian paradigm, the Italian Bruno de Finetti (1906-1985) 
deserves a special mention. Today, where no closed-form algebraic formula for posterior 
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probability distribution is available, the quantities of interest can be calculated using computer 
simulation techniques, known as Markov Chain Monte Carlo (MCMC) methods [16]. And even the 
most complex hierarchical Bayesian models can be explored.  

What does Hierarchical Bayesian model mean? These models are invariably used for fitting 
data from multiple “units”, for example, different patients, geographical areas, schools, hospitals, 
etc. [10], and provide a formal framework for analysis with a complexity of structure that matches 
the system being studied. They are flexible, that is, all sources of correlation and heterogeneity can 
be incorporated in a modular fashion, in particular by the introduction of unit-specific parameters. 
The posterior distribution for such a model is still proportional to the likelihood multiplied by the 
prior, but the prior distribution, of all unknown parameters, is decomposed into an exchangeability 
assumption for the unit-specific parameters, for example laboratories and equipments, and a prior 
for the population parameters [10].  

The flexibility of MCMC techniques enables the application of Bayesian models in areas that 
Bayes had never dreamed about, such as metrology. Actually, since the release in 2008 of the 
supplement 1 of the GUM [25] the Monte Carlo method to approximate a probability density 
function has found widespread use in the evaluation of measurement uncertainty [26]. Besides, 
GUM-S1 appears to move the guidelines towards the Bayesian point of view, in the sense that 
produces a probability distribution that shall encode one’s state of knowledge about the 
measurand. In contrast to a Bayesian uncertainty analysis, however, Bayes’ Theorem is not 
applied explicitly. Instead, a distribution is assigned for the input quantities which is then 
‘propagated’ through a model that relates the input quantities to the measurand. The relation 
between the Bayesian uncertainty analysis and the application of the GUM and its supplements 
has been already investigated [27] and it has been shown that under certain assumptions both 
analyses yield the same results but this is not true in general [26], [28], [29]. Current GUM-S1 
recommendations for evaluating uncertainty of measurement are based on the Bayesian 
interpretation of probability distributions as encoding the state of knowledge about the quantities to 
which those distributions refer. Conceptually, this allows to overcome the criticism often levelled at 
the GUM, that it is based on a mixture of frequentist and Bayesian thinking. In particular, the GUM 
Type A uncertainty evaluations are frequentist, whereas the Type B evaluations, using state-of-
knowledge distributions, have a Bayesian attitude. In contrast, making the GUM fully Bayesian, as 

shown in [8], leads to the impractical consequence that the number   of observations must be at 
least equal to 4, which introduces a difficulty in many measurements. Moreover, it still remains a bit 
of more complexity in the model formulation and in the following calculation. 

As declared in the introduction, §1, this study carries on the research flow about the Bayesian 
models applied to metrology. The main objective of this paper is to show an alternative formulation 
of the ISO 5725 models for accuracy evaluation, based on Hierarchical Bayesian models in order 
to provide more consistent use of measurement data and prior information. The proposed 
Hierarchical Bayes model is then applied to the datasets introduced in chapter 2, demonstrating 
that there are no evident discrepancies between the two formulations, but rather improvement 
accuracy description thanks to the better consistency with the concepts of trueness and precision 
as declared in the VIM. 
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3.2 HIERARCHICAL BAYESIAN MODEL FOR ACCURACY EVALUATION 

The present research arises from the desire to design a unique and flexible mathematical 
model able to evaluate the accuracy of a whole new product line of test equipment, according to 
the concepts expressed in the International Vocabulary of Metrology [4]. The experimental plan is 
the same introduced in section §2.2, that provides for   different levels of the test methods, 

measured with   test equipments of the same manufacturer which each obtains exactly   replicate 
test results under repeatability condition. Using a medical analogy, the replications made in 
repeatability conditions with the same test equipment can be thought as technical replicates, while 
the measurements on different instruments under reproducibility conditions such as biological 
replicates. The problem thus framed lends itself well to representation through hierarchical 
Bayesian models. In this framework, the first step is to express the qualitative structure of the 
model, that is, all the assumptions concerning the joint relationship between all known and 
unknown quantities. Graphs are an effective aid to communicate qualitative conditional 
independence structure and, actually according to BUGS syntax [10], it is possible to arrange 
variables in order to reduce “globally” complex models into a set of fairly simple “local” components 
through direct acyclic graph representation. So, graphical representation of the hierarchical models 
can be helpful in understanding the structure of the proposed metrological model. Nevertheless, 
before going ahead, some preliminary simplifying assumptions are needed. First of all, we will take 
into account separately the different levels of the test methods in order not to introduce 
dependence effects as for ISO 5725-2 (see section §2.2). The assumption of “exchangeability”, 
which is shown to be equivalent to assuming the observations were independent and identically 
distributed from a distribution with unknown parameters, where those parameters are given a prior 
distribution[10], is made about the unit-specific parameters (in this case the laboratory-specific 
parameters). This is equivalent to assuming that they arise from a common “population” distribution 
whose parameters are unknown and assigned proper prior distributions [30]. Therefore, the 
laboratory-specific parameters are similar but not identical.  

As concerns notation, the parameter variables are denoted with the Greek letters and the 
corresponding lower case letters denote their estimates, the sole exception being the estimates of 
the specific-laboratory means where we still use the capital letter in order to be consistent with the 
ISO 5725-2 glossary. 

 
Figure 3.1: Doodle graph of the Hierarchical Bayesian model for the accuracy evaluation 

Under the previous assumptions, the proposed hierarchical Bayesian model for accuracy 
evaluation is graphically represented in Figure 3.1. It is worth noting the lack of the subscript   in 

the observed values    . This is due to the first assumption of not having any dependence on the 
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levels of the reference accepted value. So, the model is going to be applied  -time, for each of 

data subsets grouped by reference accepted value level. Then, each     is assumed to be 
independent and identically distributed from a distribution of parameters    and   .    are the 

laboratory-specific parameters and, in turn, are exchangeable from a distribution of parameters    
and   . Looking at the taxonomy of   ,    and    the meaning behind is clear enough: 

-    was thought in order to describe the method trueness; 
-    was thought in order to describe the method precision under repeatability conditions and 

it represents the mean standard error by analogy with ANOVA models; 
-    was thought in order to describe the method precision under reproducibility conditions. 

A proper prior distribution has to be assigned to these last three parameters. In the GUM-S1 
context, the prior distribution expresses the state of knowledge on the method. If such information 
exists, it is expressed in the form of a prior, otherwise a non-informative prior is needed and it 
depends on the statistical models encoded by the likelihood function. The posterior distribution 
corresponding to them is then obtained after the Bayesian updating by analytical or numerical 
marginalization. It is now evident the metrological completeness of this model: we have three 
distinct probability distributions, each of them to describe the concepts of trueness, precision under 
repeatability conditions and precision under reproducibility conditions respectively. 

The assumptions behind the accuracy model in Figure 3.1 can be written as follows: 

   
   

   
   

   
   

            
   

   
   

 

  
   

   
   

   
   

            
   

   
   

 

  
   

       

  
   

       

  
   

       

 3.3 

Nevertheless, whichever probability distributions are assigned to these quantities, it is not easy to 
calculate in closed form the joint probability distribution that encodes the final state of knowledge 
about the measurand and its input quantities according to the independence structure expressed in 
Figure 3.1. Besides, the search for some specific prior allowing a closed form for the joint 
probability distribution lies beyond the scope of this applied research. So, at the moment, the main 
pain point of this formulation is the need to use “advanced” software (not Microsoft Excel for 
example) in order to perform MCMC simulations for the numerical solution. As explained in the 
previous section §3.1, we also know that the international bureau of metrology has already open to 
the usage of Monte Carlo methods with the GUM-S1 [25]. Therefore, we do not think that the 
following discussion may be affected in terms of authority, although we will keep on moving just in 
the MCMC methods’ plan. 

In the following calculations we use OpenBUGS [31], a popular software providing MCMC 
methods to analyze complex statistical Bayesian models. This software uses Gibbs sampling [32], 
[33] and the Metropolis algorithm [34] to generate a Markov chain by sampling from full conditional 
distributions. Using OpenBUGS, the users must just specify the model to be run and to load data 
and initial values for a specified number of Markov chains. Furthermore, the R2OpenBUGS 
package provides the tools to call OpenBUGS [35] directly in R, where it is possible to work with 
the results, for example to create posterior predictive simulations or graphical displays of data. 
Embedding all the routines in R was extremely useful to process the bunch of data sets at each 
level of the reference accepted value factor, thus saving a lot of time and efforts. 
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3.3 MODEL CHECKING AND COMPARISON WITH ISO 5725-2 RESULTS 

The strength of the Bayesian graphical modelling techniques is the way they can represent the 
typical complexity of real data. Nevertheless, the conclusions of a Bayesian analysis are always 
conditional on the assumed probability model, so we need to be reassured that our assumptions 
are a reasonable approximation to reality, even though we do not generally believe any model is 
actually “true”. Many aspects of an assumed model might be questioned: observations that don’t 
fit, the distributional assumptions, qualitative structure, link functions, which covariates to include, 
and so on. Hence, we straightaway test the accuracy of our Bayesian model with the level 1 for 
Sulfur content of coal experiment (dataset in Table 2-2). The result in Table 2-7 is the benchmark 
against which to compare the Bayesian outcome. 

As said in the previous section 3.2, the accuracy model in Figure 3.1 was implemented using 
the R library “R2OpenBUGS” [35], whereas all calculations were executed with the calculus engine 
of “OpenBUGS”. The full R script is reported in the ANNEX B §7 in order to give the possibility of 
checking the reliability of the results or leveraging it for further analysis. 

Using R2OpenBUGS the first step to solve is to arrange the dataset according to the 
OpenBUGS required format. So, we first extract the subset for the level one of the reference 
accepted value factor. This subset of data includes missing values. Actually, ISO 5725 already 
takes into account the possibilities that sometimes a laboratory may carry out and report more than 

  test results officially specified and, in other cases, some of the test results may be missing, for 
example because of loss of sample or mistake in performing the measurement [12]. Looking at 
Table 2-1, according to Rubin classification [36], we are dealing with missing responses distributed 
at random. Under this assumption, it is not necessary to specify a model for the missing data 
mechanism in order to make valid inference about the parameters [10]. The missing data in BUGS 

are denoted by    and from a Bayesian perspective are treated as additional unknown quantities 
for which a posterior distribution can be estimated. If we simply denote the value as missing (  ) in 
the dataset, then BUGS will automatically generate values from its posterior predictive distribution 
and inferences on the parameters will be as if we had deleted that response [10]. So, we have to 

complete the vector of the measured quantity values    
   

 with the information about the missing 

values, in order to have a balanced number of replicates, missing data included, for each 
laboratory. Finally, we can prepare the data input list for the BUGS engine. The list includes the 

two scalar quantities     and    . The former is the number of laboratory-specific parameters 
and implies the total number of exchangeable cycles. The latter represents the number of 
replicates inside each cycle. This is the result of the two hierarchical level of the model 3.3 in 

Figure 3.1. Besides, the inputs list provides the     data matrix for the measured values    
   

. The 

structure of the input list is shown in Table 3-1 where we can see that for most laboratories there 
are two missing values. This suggests that the minimum requirement of the inter-laboratory 
accuracy experiment of sulfur content was just 3 replicated measurements for each level of the 
materials batches. 

> print(data) 
#$p 
#[1] 8 
 
#$a 
#[1] 5 
 
#$y1ik 
#     [,1] [,2] [,3] [,4] [,5] 
#[1,] 0.71 0.71 0.70 0.71   NA 
#[2,] 0.69 0.67 0.68   NA   NA 
#[3,] 0.66 0.65 0.69   NA   NA 
#[4,] 0.67 0.65 0.66   NA   NA 
#[5,] 0.70 0.69 0.66 0.71 0.69 
#[6,] 0.73 0.74 0.73   NA   NA 
#[7,] 0.71 0.71 0.69   NA   NA 
#[8,] 0.70 0.65 0.68   NA   NA 

Table 3-1: inputs list of the Hierarchical Bayesian model 3.3 
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The hierarchical model for accuracy evaluation as proposed in Figure 3.1 needs to be 
completed with assumptions about the prior probability distributions. Historically, it is common to 
distinguish between “non-informative” (sometimes called “objective”) and “informative” priors. The 
former are preferred when there is not explicitly knowledge on the data source, as for dataset in 
Table 3-1, where measurements come from a study done by someone else for ISO 5725-2. The 
term “non-informative” is misleading: it should be better to refer to them as “improper” priors. 
Actually, all priors contain information at least about the prior family distribution (for example, 
normal, gamma or uniform). Leveraging the metrology mindset, the following assumption is arosen 
for the prior distributions of the of the accuracy probability model expressed in equation 3.3 

   
   

   
   

   
   

                 
   

   
   

 

  
   

   
   

   
   

                
   

   
   

 

  
   

             

  
   

              

  
   

              

 3.4 

Going into details, all the observed quantity values    
   

 are supposed to be normally distributed 

according to their population parameters, the specific-laboratory mean   
   

, assumed as an 

expression of potentially systematic laboratory bias, and the residual standard deviation   
   

, that it 

is expected to play the role of the precision under repeatability conditions. Similarly, the specific-

laboratory parameters   
   

 are supposed to be normally distributed according to their population 

hyperparameters, the general mean parameter  
 

   
 and the reproducibility standard deviation   

   
. 

In this case due to the lack of reliable prior information, a normal improper prior was assumed for 

the general mean hyperparameter  
 

   
. Instead, the standard deviation is always thought as a 

value in   , so the easiest assumption is the improper uniform probability distribution over the 
whole real positive line. So, in terms of priors, the lack of knowledge on data is translated in flat 
distributions, having an infinite standard deviation in the case of the normal prior distribution for 
general bias, and with the upper limit approaching infinity for both the uniform distributions of the 
standard deviations. Now, it should be clear why “improper” is preferred to “non informative”. In 
many circumstances this is not a problem, as an improper prior can still lead to a proper posterior 
distribution [10].  

The Bayesian reader can have a bit of confusion due to the use of the standard deviation as 
parameter for the normal distribution. As a matter of fact, Bayesian mathematicians prefer to 
parameterize the normal with the mean and the inverse of the variance 

  
 

  
  3.5 

The   parameter is called “precision” and here it was deliberately not used in order to avoid 
misunderstanding with the metrology concept of precision, that is described with a measurement of 
imprecision such as the mean square error in 2.6. Nevertheless, OpenBUGS, such as other 
software for Bayesian computations, uses the Bayesian convention for the normal distribution 
parameterization, and, so, in the following scripts the reader is going to find the transformation 
according to the equation 3.5 and the normal improper prior distribution is going to have the scale 
parameter   instead of  . In the doodle graph representation of Figure 3.1 the transformation of 
the equation 3.5 is depicted with the double arrow symbol. 

Then, the MCMC hierarchical accuracy model was written using the OpenBUGS code, given in 
the script 3.6. Working with finite computational capability the improper prior distributions are 
managed using finite values that reasonably approximate the infinite condition for the scale 
parameters. In other words we represent these distributions using proper distributions with a 
“large” variance, where “large” means five orders of magnitude less than the magnitude of the 
observed values for approximating the zero and five orders of magnitude more for approximating 
the infinite. Lastly, before running the MCMC method to obtain the sequence of random samples 
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describing the posterior probability distribution, we need to initialize the Metropolis algorithm. In this 
respect, tuple of elements for the model parameters are randomly drawn according to the prior 
distribution assumptions in 3.4 and in order to avoid elements from the tails, that could increase the 
computation time, proper prior assumptions are taken for the selection of the starting points. 
“Proper” in this case means having a scale parameter of the same magnitude of the resolution of 
the sulfur content of coal measurements. 

model { 
for (i in 1:p) 
{ 
for(k in 1:a) { 
xik[i,k] ~ dnorm (B[i], tau.r) 
} 
B[i] ~ dnorm (mu.B, tau.R) 
} 
mu.B ~ dnorm (0.0, 1.0E-6) 
tau.R <- pow(sigma.R, -2) 
sigma.R ~ dunif (0, 1000) 
 
tau.r <- pow(sigma.r, -2) 
sigma.r ~ dunif (0, 1000) 
} 

3.6 

Now, the MCMC simulation can start putting together the data, the randomly selected starting 
points, the model describing the probability structure in 3.6 and other control parameters 
depending on the specific numerical framework like number of total iterations per each Markov 
Chain. This model must be stored in a separate file, e.g. “sulfur1.txt” as it is named in ANNEX B: R 
script for the sulfur content experiment, in an appropriate directory, say C:/PhD/Thesis, in order to 
be inserted into the MCMC routine. Then, through the R function bugs() of R2OpenBUGS 
package, that is able to run an entire OpenBUGS session, the Hierarchical Bayesian problem is 
solved and MCMC posterior samples, summary statistics and other related information are 
available for further analysis. 

The posterior data for sulfur content    
   

 are shown in Figure 3.2. Arranged as boxplot grouped 

by laboratory index, the posterior data fit well the raw initial values. Actually, posterior boxplots 
overall provide a good encompass of the experimental measurements. 

 
Figure 3.2: Red points representing specific-laboratory measurements (raw data) plotted with respect to green boxplots 

describing posterior data for each specific-laboratory parameter as a result of MCMC solution 

Under the assumption of exchangeable laboratory-specific parameters, each posterior borrows 
strength (or variance) from the others, via their joint influence on the estimation of the underlying 
population parameters. There are not evident differences in the size of interquartile range of the 
boxplots for the posterior specific-laboratory samples, whereas it seems more evident a magnitude 
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of the variability between laboratories different from the raw data dispersion. Besides, in the 
Bayesian framework the extreme values tend to get pulled in towards the population mean. This is 

more clear in Figure 3.3 where the green points are the expected values   
   

     
   

  for the 

posterior distributions of the laboratory-specific parameter, while the red ones are the sample 
means of the replicated values for each laboratory and the dash-dot line is the general mean. To 
improve description, it is used dodging that preserves the vertical position of the points while 
adjusting the horizontal position so that the paired points for each laboratory are more clear. 

 
Figure 3.3: Comparison on the first batch of material between the expected values of the Bayesian posterior probability 

distributions for each laboratory-specific parameter and the corresponding sample means 

After the overview of the posterior distributions for each laboratory-specific parameter   , in 
both terms of boxplot in Figure 3.2 and expected value in Figure 3.3, we can analyze the posterior 

description for accuracy parameters, that are   
   

,   
   

 and   
   

, as explained in section §3.2.  

The results are shown in Figure 3.4 below. 

 

Figure 3.4: Marginal posterior distributions for general mean   
   

, repeatability standard deviation   
   

 and reproducibility 

standard deviations   
   

 



University of Turin and Politecnico di Torino  Page 34 

Hence, from the marginal posterior distributions of   
   

,   
   

 and   
   

 we can calculate the 

expected values in order to compare them with the ANOVA outcomes. Actually, comparing the 
Bayesian output in Table 3-2 with the first row of Table 2-7 we see a good fit between the two 
models. The difference, at most equal to 0.001 %, is small enough to be considered negligible, 
being an order of magnitude less than the resolution.  

 
Table 3-2: Expected values [%] of the marginal posterior probability distributions for the accuracy parameters according 

to probability structure formulated in the equation 3.4 

The point estimators according to ISO 5725-2 yield single-valued results whereas the great 
advantage of the hierarchical Bayesian accuracy model according to the probability structure of the 
equation 3.4 is the possibility to approximate the whole marginal probability distribution for each 
parameter in Figure 3.1. This consistent with the metrology attitude of the last decade [37]. This 
attitude is fully satisfied in the sulfur content of coal experiments when we apply the hierarchical 
Bayesian accuracy model, as the final outcome is not just the expected value but the whole 
marginal posterior distribution for each of the parameter describing the accuracy (see Figure 3.4). 
With respect to the prior distribution assumptions, after the Bayesian updating, only the general 

mean   
   

 still has the same probability distribution family (Normal), even if it is no more improper 

but having mean and standard deviation as expressed in equation 3.7. Instead, the repeatability 
and reproducibility parameters are definitely no more uniform distributed: their marginal posterior 
distributions seem more like Gamma with shape and scale as reported in equation 3.7. 

  
   

                     

  
   

                  

  
   

                

 3.7 

Actually, Figure 3.4 shows a good agreement between the MCMC marginal posterior 
distributions (see black solid line) and their approximated distributions (see red dot-dashed line, 

called theoretical) as Normal for   
   

 and Gamma for   
   

 and   
   

 having parameters as 

expressed in equation 3.7. Instead, after the likelihood updating, the marginal posterior 
distributions for both the standard deviations of repeatability and reproducibility are no more 
improper uniform distributions but they are effectively approximated (see Figure 3.4) by gamma 
distributions having parameters as reported in 3.7. 

Thanks to the marginal posterior distributions, the related credibility interval can clearly be 

associated to each of the accuracy parameters. So, repeatability precision   
   

 we can construct a 
95 % unilateral credibility interval derived from its marginal posterior, that is: 

  
   

  
  

      
   

      
   

   
   

        3.8 

Similarly, a 95 % unilateral credibility interval for the reproducibility precision   
   

 can be derived 

from its marginal posterior distribution, that is: 

  
   

  
  

      
   

      
   

   
   

       3.9 

The description of trueness is more complex, because for the sulfur content experiment we do 
not have a reference accepted value. Here we can assume that the reference value is equal to the 

expected value   
   

     
   

  of the general mean parameter and it does not introduce additional 

variability, that is equivalent to assume that bias is zero. So, we propose to express trueness with 

the 95 % bilateral credibility interval         
   

       
     derived from the posterior marginal 

distribution of the general mean shifted to zero, that is 
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  3.10 

In conclusion, the sulfur content measurement method can be expected to have a systematic 

error lying in the interval         
   

       
     % and a random error encompassed between ±  

   
 % 

under repeatability conditions or ±  
   

 % under reproducibility conditions. The final outcome is 

reported in Table 3-3 below. 

 
Table 3-3: Trueness limits and expanded precision under both repeatability and reproducibility conditions as mass 
percentage for Sulfur content of coal experiment according to probability structure formulated in the equation 3.4 

Even if the conclusions of the Bayesian analysis, given the assumed probability model in 3.7, 
seem to be in agreement with the treatment given in ISO 5725-2, we would further assess the 
probability structure assumptions by carrying on a sensitivity analysis on the effect of the number 
of iterations for each Markov chain in the R function bugs() and on the choice for priors. 

 
Figure 3.5: Sensitivity analysis on the number of iterations 

The results of the sensitivity analysis on the number of iterations in each Markov chain are 
shown in Figure 3.5. In this case study, 1000 iterations (see the dot-dashed vertical line) are 
sufficient to provide stable results for the expected values of all parameter distributions except for 
the reproducibility standard deviation, where it may be better to run at least 5000 iterations. This is 

not a big issue, considering that even with     iterations the MCMC simulation takes just seconds. 
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Given that there is no such a thing as the true prior, sensitivity analysis to alternative prior 
assumptions is vital and should be an integral part of Bayesian analysis. As a matter of fact, 
neglecting uncertainty about the choice of model has been called a “quiet scandal” in statistical 
practice [38], and, moreover, drawing conclusion on the basis of a single selected model can 
conceal the possibility that other plausible models would give different results. In any case it is 
good practice to explore the influence of different choices for the priors of the unknown scale 
parameters. Considering Gelman suggestions [39], in model 3.6 a uniform prior was used on both 
scales of the standard deviations, over a “large” range. Looking at the results in Figure 3.4, it 
seems reasonable to test the improper gamma prior on both the inverse-variance of repeatability 
and reproducibility. Under this assumption for priors the accuracy probability structure becomes: 

   
   

   
   

   
   

                 
   

     
   

  

  
   

   
   

   
   

                
   

     
   

  

  
   

             

  
   

            

  
   

            

  3.11 

The corresponding script for the hierarchical accuracy model in its MCMC formulation is 

model { 
for (i in 1:p) 
{ 
for(k in 1:a) { 
xik[i,k] ~ dnorm (B[i], tau.r) 
} 
B[i] ~ dnorm (mu.B, tau.R) 
} 
mu.B ~ dnorm (0.0, 1.0E-6) 
tau.R ~ dgamma (0.001, 0.001) 
tau.r ~ dgamma (0.001, 0.001) 
} 

3.12 

This model must be stored in a separate file, e.g. “sulfur3.txt” as it is named in the ANNEX B 
§7, in an appropriate directory, say C:/PhD/Thesis, in order to be got into the MCMC routine. 
Finally, running the MCMC solver through the R function bugs() of R2OpenBUGS package we 
can draw the expected values of the general mean, the repeatability and reproducibility 
parameters. The outcome is summarized in Table 3-4. 

 
Table 3-4: Expected values [%] of the marginal posterior probability distributions for the accuracy parameters according 

to probability structure formulated in the equation 3.11 

The difference from the point estimators is negligible for repeatability and reproducibility 
standard deviations, even if there is a slight increase for the precision parameters. The same 
conclusion can be drawn looking at the 95 % credibility intervals for trueness, as expressed in 
equation 3.10, and at the expanded precisions in both repeatability and reproducibility conditions, 
summarized in Table 3-5. In both precision estimates the 5 % unilateral credibility interval is used 
instead of the 95 %, as in equations 3.8 and 3.9, because the chosen precision parameters in the 
last probability structure 3.11 are the reciprocal of the variances. 
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Table 3-5: Trueness limits and expanded precision under both repeatability and reproducibility conditions as mass 
percentage for Sulfur content of coal experiment according to probability structure formulated in the equation 3.11 

Given the set of candidate models, we would like to say something about which is “better”, or 

even “best”. For this reason the effective number of parameters    and Deviance Information 
Criterion     are particularly useful [10]. The minimum for both    and     is intended to identify 
the “better” model. Actually, the bugs() function already report these parameters and their 
outcome is reported in Table 3-6. 

 
Table 3-6: Model comparison statistics 

We note that DIC can legitimately be negative. So, the smaller for both    and     are in 3.4. 

Besides, it is important to highlight that only differences between models in     are important, and 
not the absolute values. Hence, we select the model 3.4. 

Oncethe model is chosen we replicate the Bayesian calculation to evaluate the accuracy of the 
remaining three levels for the batch factor. Thanks to the integration with R through the package 
R2OpenBUGS, repeating the calculations is not time-consuming (see the whole script in annex B 
§7). The more relevant results are summarized in the following figures. 

 

Figure 3.6: Comparison between red points representing specific-laboratory measurements (raw data) plotted with 
respect to green boxplots describing posterior data for each specific-laboratory parameter as result of MCMC solution  
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Figure 3.7: Comparison between the expected values of the Bayesian posterior probability distributions for each laboratory-
specific parameter and the relative sample means 

 

Figure 3.8: Posterior densities of the overall mean parameter for each level of the materials’ batches 

 
Figure 3.9: Posterior densities of the precision parameters under both repeatability and reproducibility conditions for each 

level of the materials’ batches 

In addition, the final results expressed in terms of standard deviations to be compared with the 
ANOVA results (see Table 2-7) are summarized in the following table. 

 

Table 3-7: Computed values of   
   

,   
   

 and   
   

 for sulfur content of coal [%] through the accuracy Bayesian model 3.4 
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In conclusion, the accuracy Bayesian model 3.4 overall yields the same results given in section 
2.1. The differences between the point estimates in Table 3-7 and those in Table 2-7 are at the 
level of the least significant digit of the measurements, so we can assume that are negligible. The 
main differences are: 

i. the shrinkage to the population mean for all the laboratory-specific parameters, that is the 
tendency of the unit-specific parameters to be closer to the overall mean value; 

ii. the slight increase in the point estimators for standard deviations under repeatability and 
reproducibility conditions, due to the use of the improper uniform prior. 

What we appreciate most is the possibility of describing the accuracy of each material’s batch 
with three marginal probability distributions, each uniquely linked to one of the concepts of 
trueness, repeatability precision and reproducibility precision. In the next section we see how this 
increased descriptive capability can be leveraged for the accuracy evaluation of a product line. 
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3.4 INDUSTRIAL APPLICATION CASE: VST TEST EQUIPMENTS PERFORMANCES 

The accuracy hierarchical Bayesian model in Figure 3.1 can be applied to the industrial case 
analyzed in section 2.3. As already emphasized in section 2.2, moving from the domain of the 
inter-laboratory accuracy experiment to the production accuracy experiment, the reproducibility 
precision turns into homogeneity precision due to the different environment conditions, as 
summarized in Table 2-8. The final outcome reported in Table 2-11 is the benchmark against 
which to compare the following Bayesian results. 

The first step is to arrange the data in Table 2-10 according to BUGS requirements and split 

theminto     subsets grouped by each of the specific level for the reference accepted value 
factor, that was named “jump”. The experimental plan for the LVDT accuracy evaluation is 
balanced, so we do not need to deal with missing values as we can realize looking at the BUGS 
input data in Table 3-8, that is the data subset for the level "3»2" of the reference accepted value 
factor. 

print(data) 
$p 
[1] 18 
 
$n 
[1] 4 
 
$yik 
       [,1]  [,2]  [,3]  [,4] 
 [1,] 1.000 1.003 1.002 1.002 
 [2,] 1.003 0.996 0.999 0.997 
 [3,] 0.998 0.999 0.999 1.001 
 [4,] 1.005 1.005 1.009 1.008 
 [5,] 1.004 1.003 1.004 1.004 
 [6,] 0.998 0.999 1.003 0.999 
 [7,] 1.003 1.004 1.004 1.000 
 [8,] 0.999 1.003 0.999 0.998 
 [9,] 1.014 1.013 1.013 1.013 
[10,] 0.998 0.999 0.999 1.000 
[11,] 1.004 1.006 1.007 1.012 
[12,] 1.001 1.001 1.003 1.003 
[13,] 0.991 0.990 0.999 0.995 
[14,] 0.999 0.998 0.999 0.998 
[15,] 1.009 1.009 1.009 1.009 
[16,] 1.001 1.001 1.003 1.003 
[17,] 0.995 0.995 1.002 0.999 
[18,] 0.995 0.995 0.996 0.998 

Table 3-8: inputs list of the Hierarchical Bayesian model for the first “jump” of the LVDT accuracy experiment 

The hierarchical model has the same probability structure as expressed in equation 3.4. So, we 
still have the two-levels Hierarchical Bayesian model with improper priors. The few differences are 
about objects naming, so it is written as: 

model { 
for (i in 1:p) 
{ 
for(k in 1:n) { 
yik[i,k] ~ dnorm (B[i], tau.r) 
} 
B[i] ~ dnorm (mu.B, tau.H) 
} 
mu.B ~ dnorm (0.0, 1.0E-6) 
tau.H <- pow(sigma.H, -2) 
sigma.H ~ dunif (0, 1000) 
tau.r <- pow(sigma.r, -2) 
sigma.r ~ dunif (0, 1000) 
} 

3.13 

Again, this model must be stored in a separate file, e.g. “LVDT_model.txt” as it is named in 
ANNEX C §8, in an appropriate directory, say C:/PhD/Thesis, in order to be got into the MCMC 
routine. Then, in order to have a clever initialization of the Metropolis algorithm, the starting points 
are randomly sampled from tight distributions of the same families of those assumed for the 
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hyperparameters. The Hierarchical Bayesian problem is then solved through the R function bugs() 
of R2OpenBUGS package and MCMC posterior samples, summary statistics and other related 
information are available for further analysis. 

It is possible to have a quick summary of the main statistics correlated to the MCMC simulation, 
as in Table 3-9 below. 

Inference for Bugs model at "C:/PhD/Thesis/LVDT_model.txt",  
Current: 3 chains, each with 1500 iterations (first 750 discarded) 
Cumulative: n.sims = 2250 iterations saved 
 
B[1] 
B[2] 
B[3] 
B[4] 
B[5] 
B[6] 
B[7] 
B[8] 
B[9] 
B[10] 
B[11] 
B[12] 
B[13] 
B[14] 
B[15] 
B[16] 
B[17] 
B[18] 
mu.B 
sigma.R 
sigma.r 
deviance 

mean 
1.002 
0.999 
0.999 
1.007 
1.004 
1.000 
1.003 
1.000 
1.013 
0.999 
1.007 
1.002 
0.994 
0.999 
1.009 
1.002 
0.998 
0.996 
1.002 
0.005 
0.002 

-684.536 

sd 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.000 
7.336 

2.5% 
1.000 
0.997 
0.997 
1.004 
1.002 
0.998 
1.001 
0.998 
1.011 
0.997 
1.005 
1.000 
0.992 
0.997 
1.007 
1.000 
0.996 
0.994 
0.999 
0.004 
0.002 

-696.600 

25% 
1.001 
0.998 
0.999 
1.006 
1.003 
0.999 
1.002 
0.999 
1.012 
0.998 
1.006 
1.001 
0.993 
0.998 
1.008 
1.001 
0.997 
0.996 
1.001 
0.004 
0.002 

-689.900 

50% 
1.002 
0.999 
0.999 
1.007 
1.004 
1.000 
1.003 
1.000 
1.013 
0.999 
1.007 
1.002 
0.994 
0.999 
1.009 
1.002 
0.998 
0.996 
1.002 
0.005 
0.002 

-685.300 

75% 
1.002 
1.000 
1.000 
1.007 
1.004 
1.001 
1.003 
1.001 
1.013 
1.000 
1.008 
1.003 
0.995 
0.999 
1.009 
1.003 
0.999 
0.997 
1.003 
0.006 
0.002 

-680.500 

97.5% 
1.004 
1.001 
1.001 
1.008 
1.006 
1.002 
1.005 
1.002 
1.015 
1.001 
1.009 
1.004 
0.996 
1.001 
1.011 
1.004 
1.000 
0.998 
1.004 
0.008 
0.003 

-667.967 

Rhat 
1.001 
1.001 
1.001 
1.002 
1.002 
1.002 
1.001 
1.000 
1.002 
1.002 
1.001 
1.002 
1.005 
1.001 
1.000 
1.000 
1.001 
1.000 
1.002 
1.002 
1.001 
1.000 

n.eff 
2000 
2200 
2200 
940 
2200 
1700 
2200 
2200 
1700 
1100 
2200 
1500 
430 
2200 
2200 
2200 
2200 
2200 
980 
1600 
2200 
2200 

For each parameter, n.eff is a crude measure of effective sample size, 
and Rhat is the potential scale reduction factor (at convergence, Rhat=1). 
 
DIC info (using the rule, pD = Dbar-Dhat) 
pD = 18.090 and DIC = -666.400 
DIC is an estimate of expected predictive error (lower deviance is better). 

Table 3-9: Summary of the main statistics for an MCMC simulation run with the package R2OpenBUGS 

In the column “mean” of Table 3-9 we find the values to be compared with the point estimates 
evaluated with the ISO 5725-2 models. As we know, the point estimators of ANOVA models yield 
single-valued results for parameters, while the great advantage of operating in the Bayesian 
analysis framework is the possibility of dealing straightly with the marginal probability distributions 
for each hyperparameter. For example in Figure 3.10, we can compare the boxplots depicting the 
posterior probability distributions with the corresponding empirical measurements (raw data) 
grouped by product unit-specific parameter. 

 

Figure 3.10: Comparison between red points representing specific-laboratory measurements (raw data) plotted respect 
to green boxplots describing posterior data for each specific-laboratory parameter as result of MCMC solution 

Even if the sequence of boxplots for every equipment-specific parameter displays variations not 
homogeneously overlapping , only the LVDT having serial number 148893 is out of the acceptance 
range according to ISO 306 (dot-dashed lines). The same analysis can be repeated for the other 
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levels of the reference accepted value factor, as shown in Figure 3.11. Overall the result conveys a 
good fulfillment of the ISO 306 acceptance criteria for the penetration measurement. Also at the 
second level of the reference acceptance factor the measurements average of the LVDT 148893 it 
is slightly out of the thresholds. It is suspected to be a production fault and as such, it will be useful 
in the next chapter when data consistency techniques are discussed. 

 
Figure 3.11: Comparison between red points representing specific-laboratory measurements (raw data) plotted respect 

to green boxplots describing posterior data for each specific-laboratory parameter as result of MCMC solution 

Having some production faults does not affect the general mean parameter distributions, as 
can be seen in Figure 3.12. After Bayesian updating they are still normal, overall with the same 
variability span (similar shapes) and having slight differences in terms of specific mean values. 

 
Figure 3.12: Marginal posterior probability densities for the general mean variable    

Smooth distributions are also achieved for the repeatability and homogeneity standard 
deviation parameters, as shown in Figure 3.13. The figure shows a good fit between the MCMC 
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numerical realization for the posterior densities (solid lines) and the corresponding theoretical 
gamma densities (dot-dash lines). The latter PDFs were evaluated using shape and scale 
parameters calculated from the mean and variance of a random variable   having the gamma 
distribution [14]. 

 

Figure 3.13: Marginal posterior probability densities for repeatability    (left) and homogeneity    (right) parameters 

The validation of this model passes through the comparison between the point estimators given 
by ANOVA (Table 2-11) and the expected values of the marginal posteriors given by MCMC 
(Figure 3.12 and Figure 3.13). These are included in the output of the “bugs” function of the 
package R2OpenBUGS. The final result is summarized in Table 3-10. 

 

Table 3-10: Expected values of the posterior distributions for the accuracy parameters   
   

,   
   

 and   
   

 based on the 

hierarchical Bayesian model 3.13 

 

Table 3-11: Differences between the results obtained with the Hierarchical Bayesian model and those with the ANOVA 

The results from the two models are very close. Looking at the differences (Table 3-11 and 
Figure 3.14), the largest of them (regarding homogeneity standard deviation) is of the same order 

of magnitude as the transducer resolution (    ), i.e., negligible.  

In general, about repeatability, the Hierarchical Bayesian model gives the same outcome of 
ANOVA. Actually, at most for the jumps 4 » 3 mm and 6 » 5 mm the Bayesian result is 0.1 µm 
higher than the ANOVA that is to be considered negligible, being one-tenth the resolution. 
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Figure 3.14: left to right, paired expected values, yield by ANOVA (green) and Bayesian (red), for general mean, 
repeatability and homogeneity parameters 

The consistency of repeatability is as expected, whereas the behavior of homogeneity deserves 
deeper analysis. Looking at equation 2.7, the suspicion is that the what we identified as the 
homogeneity variable in the Hierarchical Bayesian model for accuracy evaluation (see Figure 3.1) 
is not rather the between-laboratory standard deviation (the ISO 5725 equivalent is reported in the 
equation 2.9). To remove this doubt we consider the mean values of the homogeneity standard 
deviation variables in Table 3-10 as the inter-laboratory standard deviation, that in this context is 

the inter-equipment standard deviation parameter   
   

. Table 3-12 is as Table 3-10 with the last 

column heading changed. 

 

Table 3-12: Expected values of the posterior distributions for the accuracy parameter   
   

,   
   

 and   
   

, i.e. interpreting 

the data in the last column as referring to the inter-equipment standard deviation rather than to homogeneity as it is in the 
hierarchical Bayesian model 3.13 

Then, for each   we combine the squares of the point estimates of repeatability   
   

 and inter-

equipment standard deviations   
   

, according to equation 2.7, to evaluate the homogeneity   
   

 as 

their combination, according to ISO 5725-2. This result is reported in Table 3-13.  

 

Table 3-13: it adds to Table 3-12 the column   
   

, achieved from the point estimates of   
   

 and   
   

, as the standard 

provides (see equation 2.7) 

The new paired values are also given graphically in Figure 3.15. The overall mean and 
repeatability comparisons being unaffected, only the inter-equipment and homogeneity 
comparisons are shown. The paired values are still close, with a definitely better pattern. The 
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differences are almost constant and the Bayesian outcome is (consistently) slightly bigger than the 
ANOVA. 

 
Figure 3.15: left to right, paired expected values, yield by ANOVA (green) and Bayesian (red), for inter-equipment and 

homogeneity parameters 

Overall, the closeness of the results (well within resolution) confirms the validity of the 
hierarchical Bayesian model outcome, provided that we redefine the hyper-parameter for 
homogeneity as that for inter-laboratory variability in the proposed Hierarchical Bayesian model for 
Accuracy evaluation. Therefore, the Hierarchical Bayesian model for the accuracy evaluation 
becomes as in the schematic doodle graph of Figure 3.16. 

 
Figure 3.16: Doodle graph of the Hierarchical Bayesian model for the accuracy evaluation with the inter-laboratory node 

The bound between the hyperparameters of repeatability and inter-equipment variability is not 
included in Figure 3.16, even though the flexibility of the MCMC algorithm would allow to introduce 
equation 2.7 directly in the model definition. As a matter of fact from the numerical point of view it 
would not be an issue to combine repeatability and inter-laboratory variability in order to achieve 
the random variable distribution for the homogeneity. By contrast, it is impossible to find a closed-
form expression under the link of equation 2.7. At the moment, we leave aside the analytical 
implications and we focus on the design of the model according to the ISO 5725-2 constrains. It 
will be the purpose of other studies to rewrite the model under different assumptions in order to 
make the problem tractable and to solve it in terms of a closed-form expression. Here, the scope is 
to look for the model that better overlaps the ISO 5725-2 results, having the joint probability 
structure as close as possible to the "soul" of the standard itself. In order to create the logical link 
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between the nodes of repeatability and inter-laboratory variability, according to equation 2.7 and 
inherently to the joint probability structure, model 3.13 is modified as follows: 

model { 
for (i in 1:p) 
{ 
for(k in 1:n) { 
yik[i,k] ~ dnorm (B[i], tau.r) 
} 
B[i] ~ dnorm (mu.B, tau.L) 
} 
mu.B ~ dnorm (0.0, 1.0E-6) 
tau.r <- pow(sigma.r, -2) 
sigma.r ~ dunif (0, 1000) 
tau.L <- pow(sigma.L, -2) 
sigma.L ~ dunif (0, 1000) 
sigma.H <- sqrt(pow(sigma.r, 2) + pow(sigma.L, 2)) 
} 

3.14 

This model must be stored in a separate file, e.g. “LVDT_repr.txt”, in an appropriate directory, say 
C:/PhD/Thesis. 

The doodle graph used to represent model 3.14 is shown in Figure 3.17, where the double 
arrows linking the repeatability and inter-equipment standard deviation nodes to their inverse 
variances represent the transformation of equation 3.5, and the double arrows linking the 
repeatability and inter-equipment standard deviation nodes to the homogeneity standard deviation 
node represent equation 2.7. 

 
Figure 3.17: Hierarchical Bayesian model for the accuracy evaluation with both the inter-laboratory and the homogeneity 

nodes 

Also in this case the OpenBUGS engine is able to numerically solve the Bayesian problem, 
using the prior probability structure 

   
   

   
   

   
   

                 
   

   
   

 

  
   

   
   

   
   

                
   

   
   

 

  
   

             

  
   

              

  
   

              

  3.15 
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The starting points are randomly sampled according to the narrow prior distributions of the 
parameters, and so the BUGS engine can run as many times as are the number of levels for the 
reference accepted value factor, i.e.   times. The final results for the expected values of the 
marginal probability distributions of interest are summarized in Table 3-14. 

 
Table 3-14: expected values of the marginal posterior distributions for the parameters   ,    ,     and     based on the 

Hierarchical Bayesian model of Figure 3.17 for the LVDT accuracy evaluation 

The final outcome of the   expected values for the parameters of interest is the same as that of 
Table 3-13. Therefore, we achieve the same results whether we get the homogeneity straight from 
the expected value of the marginal posterior distributions of the repeatability and inter-equipment 
variability or if we get the homogeneity through the joint probability distribution in the Bayesian 
formulation. The second option is preferred because it maximizes the amount of information. As a 
matter of fact, the Bayesian data updating provides the marginal posterior distribution for each of 
interest parameter, including the inter-equipment variability and the homogeneity, as shown in 
Figure 3.18.  

 
Figure 3.18: Marginal posterior probability density functions for repeatability   , inter-equipment variability    and 

homogeneity    parameters (left to right) 

It can be seen from Figure 3.18 that the marginal posterior distribution for the repeatability 
parameter is the same achieved with model 3.13 and the same holds for the inter-equipment 
distribution if compared to the homogeneity one (see Figure 3.13 to compare results). The dot-
dash lines show the gamma distributions evaluated using shape and scale parameters calculated 
from the updated data for each level of the factor “Jump” using the classical equations providing 
their relationship with sample mean and variance[17]. Overall, the fit is not bad, especially for the 
repeatability parameter. 

Finally, under the same assumptions used to obtain Table 2-14, we can arrange the final 

outcome of the hierarchical model 3.14 in terms of bias interval         
   

        
   

  and expanded 

precisions for both repeatability   
   

 and homogeneity   
   

 conditions. Unlike the ISO 5725-2 

framework, the proposed Hierarchical Bayesian model for accuracy evaluation provides a full 
description as well for bias in terms of posterior probability distribution. So, if using ISO 5725-2 the 
95 % confidence interval for bias (Table 2-14) is the maximum amount of information about the 
trueness, the Bayesian framework provides a full description of the bias, and accordingly of the 
trueness. This represents the great advantage. In this way, the manufacturer can declare an 
interval with a stipulated level of credibility to describe also the trueness performance. As concerns 
expanded precisions, we can use the upper endpoint of the 95 % unilateral credible intervals 
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evaluated according to their marginal posterior probability distributions. In formulae, for a credibility 
level of 95 % we have 

              
   

        
   

           
   

   
   

             
   

      

                                   
 
  

  
      

   
      

   
   

   
      

                                 
 
  

  
      

   
      

   
   

   
      

  3.16 

where: 

  
   

 is the overall mean variable at each  -level of the reference accepted value     , described as a 

normal distribution (Figure 3.12) . The bias interval is thus defined by those values encompassing 
the 95 % of probability for the overall mean  density shifted by the reference accepted value     ; 

 
  

    and  
  

    are the cumulative distribution function for the repeatability   
   

and reproducibility   
   

 

parameters respectively. As we saw, both distributions can be described by gamma functions with 
their characteristic shape and scale parameters (Figure 3.18). Therefore, the expanded precisions 
are the value encompassing 95 % of probability.  

According to equations 3.16, the accuracy outcome is drawn and the result is summarized in 
Table 3-15. 

 
Table 3-15: Bias and uncertainties under repeatability and reproducibility condition for the LVDT accuracy evaluation 

based on the Hierarchical Bayesian model of Figure 3.17 

It should be stressed that, although the expected values for the standard deviation parameters 
in Table 3-14 are bigger than the point estimators provided by ANOVA (Table 2-11), the evaluated 
values for expanded precisions reverse the trend for both repeatability and homogeneity (see 
Table 3-15 against Table 2-14). The reason is the possibility of exploiting the whole amount of 
information encompassed by the marginal posterior distributions for bias, repeatability and 
homogeneity precisions instead of mixing the concepts of bias and uncertainty in the confidence 
intervals as in the ISO 5725-2 framework. Especially, it was the trueness to awaken some 
misunderstandings, to the point that many manufacturers preferred to describe their products only 
in terms of precision. On the other hand, the Hierarchical Bayesian model removes for the 
manufacturer the ambiguity in the description of the accuracy performances of a testing equipment 
family. The trueness can be described in terms of credibility interval for bias parameter. As a 
matter of fact, with respect to the confidence intervals for the constant parameter of the ANOVA 
model, the credibility intervals encompass the zero, so there is no reason for rejecting the 
hypothesis of null bias as it seemed looking at the ANOVA outcome in Table 2-14. So, as a 
consequence of the result in Table 3-15, there are no systematic errors to be corrected by 
reviewing the product design. The precision can be described in terms of the right endpoint of the 
unilateral credibility interval for both the parameters. These are expression of the random errors 
under repeatability or production homogeneity conditions, respectively, and so, they can introduce 
both positive and negative contribution. 

This opportunity of error decomposition is really appreciated by the engineering mindset. The 
reductionist attempt to provide explanation in terms of smaller entities was already followed at the 
design stage of the new product project. The displacement measurement of LVDTs was split into 
three components. The first component was thought as the error introduced by the mechanics due 
to the tolerance chain that can cause an imperfect perpendicularity between the rod and the test 
specimen support (see Figure 2.2, item 4 and 9). This can be considered as a systematic error, 
different among equipments, because each specific-equipment, at the time at which it was 
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produced, had its own specific angle for the rod axis of the LVDT. The second component was the 
sum of the available clearance for the LVDT rod in order to guarantee a frictionless positioning and 
of the electronic inner variability. It expresses the random variability of the single equipment and, 
so, the random errors. Lastly, it was taken into account the inter-equipment variability. Then, in the 
discovery stage of the new product development project, a specific quantity requirement was 
stated for each of these entities in order to better control the design. So, every design choice was 
taken in order to address that specific requirement. Twice the sum square of the design 
requirements is roughly 0.01 mm, as it is stated in the standard ISO 306 for the accuracy accepted 
value [6, Par. 5.2.4]. The decomposition provides ±4 µm for the mechanical systematic error, ±4 
µm for the intra-equipment random error and ±6 µm for the inter-equipment random error. This 
attitude in the Bayesian framework can be translated in the following proper priors: 

  
   

                   

  
   

                

  
   

               

 3.17 

Using these priors we can solve the MCMC problem after suitably modifying model 3.14 as 
stated below: 

model { 
for (i in 1:p) 
{ 
for(k in 1:n) { 
yik[i,k] ~ dnorm (B[i], tau.r) 
} 
B[i] ~ dnorm (mu.B, tau.L) 
} 
mu.B ~ dunif (0.995, 1.005) 
tau.r <- pow(sigma.r, -2) 
sigma.r ~ dunif (0, 0.008) 
tau.L <- pow(sigma.L, -2) 
sigma.L ~ dunif (0, 0.012) 
sigma.R <- sqrt(pow(sigma.r, 2) + pow(sigma.L, 2)) 
} 

3.18 

The final result in terms of posterior distribution for accuracy parameters is depicted in Figure 
3.19 below. Considering that, as seen in the uncertainty budget in Table 2-13, the reference 
accepted value can be modeled as a random variable described by a Dirac delta function which is 
zero everywhere except at 1 mm, then, according to 2.25, the trueness can be described by the 
same bell shapes of the general mean parameter    in Figure 3.19 but shifted by -1 mm. The bias 
result thus obtained is depicted in Figure 3.20. 

 
Figure 3.19: marginal posterior probability density functions for general mean   , repeatability   , inter-equipment 

variability    and homogeneity    parameters (from top left to right and then bottom left to right) 

Hence, Figure 3.20 condenses all the information needed to describe the accuracy of a whole 
product line into an unique graph. Besides, bias is clearly distinguishable from precision and, so, 
the systematic error from the random error.  



University of Turin and Politecnico di Torino  Page 50 

 
Figure 3.20: accuracy desciption in terms of the posterior density function of bias, repetability precision and homogeneity 

precision (from left to right) 

Finally, we can apply the statistics the equation 3.16 to the result in Figure 3.20 aimed to 
complete the accuracy description under the prior conditions in 3.17. The outcome is summarized 
below in Table 3-16. 

 
Table 3-16: Bias and expanded precisions under repeatability and homogeneity conditions for the LVDT accuracy 

evaluation based on the Hierarchical Bayesian model of Figure 3.17 using the proper prior distributions conditions of 3.17 

As expected, we have a “slight” reduction in terms of variability with respect to the outcome 
under improper prior conditions (see Table 3-15). This reduction is negligible, being well within the 
equipment resolution. Overall, we can emphasise that, having a negligible effect in the analysis 
due to the influence of the vague prior, this strongly suggests we have sufficient data to draw a 
robust conclusion. 

We remark that informative prior distributions can be based on pure judgment, data from 
literature (in a broad sense, e.g. calibration report, scientific papers, etc.), or a mixture of them. Of 
course, selecting an informative prior distribution is never an automatic procedure but needs a 
deep understanding of the full process. The blind usage of the informative prior risks to heighten 
the model ambiguity and to twist the final result. 

Looking at the outcome in Table 3-16, the manufacturer may conclude that its testing 
equipment family has the following accuracy description about the LVDT displacement 
measurements: 

- trueness, evaluated in terms of bias, is in the range          ; 
- repeatability, evaluated in terms of expanded precision is      ; 

- homogeneity, evaluated in terms of expanded precision is      . 

This synthesis of the statistics in Table 3-16 was achieved by considering the worst case for each 
parameter. But can we do better? A tentative answer to this question is given in the last section of 
this chapter. 
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3.5 DIFFERENT HYPOTESIS FOR THE JOINT PROBABILITY STRUCTURE 

At the end of the previous section 3.4, we left pending a question about the possibility of doing 
something better in order to achieve a unique result summarizing the  -levels of the reference 
accepted value “jump”. In ISO 5725-2 you cannot find any openings to the possibility of 
summarizing with unique parameters the statistics between the batch factor’s levels. Nevertheless, 
for the LVDT accuracy experiment, it also seems reasonable to suppose that, although different, 
the parameters for the  -levels of the reference accepted value factor are similar in some sense, 
and so we may wish to assume they are exchangeable. So, extending the exchangeability 
assumption to the reference accepted value factors, we can rewrite the accuracy model by adding 
another hierarchical level, as shown in the doodle graph of Figure 3.21. 

 
Figure 3.21: Doodle graph of the full Hierarchical Bayesian model for the accuracy evaluation of testing equipments 

Hence, this full hierarchical Bayesian model has the inter-equipments means     as first level, 

the reference accepted values means     as second level, and the hyperparameters for the overall 

product line mean   , the inter-equipments variability    and the repeatability    as third level. 

The assumptions behind the full model in Figure 3.21 can be written as: 

                               

       
                   

    

    
                         

                     
                 
                 

  3.19 

The same scale parameter    was assigned to both reference accepted value mean     and 

specific-equipment mean     parameters, because we expect that the inter-equipments variability 

conditions affect in the same way both parameters. Besides, under this assumption the 
homogeneity parameter is still the combination of repeatability and inter-equipment variability as 
stated in equation 2.7. 

Given the measurement model 3.19 that relates the hyperparameters output quantities to the 
available measurement data, the distributions of the former are obtained by propagating the 
experimental evidence provided by observed data according to the axioms of probability calculus 
and by applying Bayes' theorem. Having a further hierarchical level, we need to add a further 
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subscript in the input data to identify the specific reference accepted value, so in this case the input 
data object for the “bugs” R function has the structure shown in the following Table 3-17. 

> print(data) 
$p 
[1] 18 
 
$q 
[1] 4 
 
$n 
[1] 4 
 
$xkij 
, , 1 
      [,1]  [,2]  [,3]  [,4]  [,5]  …  [,14] [,15] [,16] [,17] [,18] 
[1,] 1.000 1.003 0.998 1.005 1.004  …  0.999 1.009 1.001 0.995 0.995 
[2,] 1.003 0.996 0.999 1.005 1.003  …  0.998 1.009 1.001 0.995 0.995 
[3,] 1.002 0.999 0.999 1.009 1.004  …  0.999 1.009 1.003 1.002 0.996 
[4,] 1.002 0.997 1.001 1.008 1.004  …  0.998 1.009 1.003 0.999 0.998 
 
, , 2 
      [,1]  [,2]  [,3]  [,4]  [,5]  …  [,14] [,15] [,16] [,17] [,18] 
[1,] 1.001 0.994 0.999 0.997 0.994  …  0.992 1.005 1.001 0.999 0.991 
[2,] 1.001 1.001 1.000 0.992 0.994  …  1.003 1.006 1.004 1.000 1.005 
[3,] 1.002 0.998 1.000 0.999 0.996  …  1.001 1.006 1.001 1.000 0.989 
[4,] 1.004 1.001 1.000 0.994 0.996  …  1.000 1.006 1.004 1.003 0.990 
 
, , 3 
      [,1]  [,2]  [,3]  [,4]  [,5]  …  [,14] [,15] [,16] [,17] [,18] 
[1,] 0.996 1.001 0.995 0.996 0.993  …  0.992 0.991 1.000 0.999 1.006 
[2,] 0.997 1.004 0.999 0.998 0.993  …  0.992 0.992 0.992 1.000 1.006 
[3,] 0.996 1.003 0.999 0.996 0.993  …  0.990 0.994 0.996 0.997 1.008 
[4,] 0.996 1.006 0.999 0.996 0.990  …  0.990 0.993 0.995 0.997 1.006 
 
, , 4 
      [,1]  [,2]  [,3]  [,4]  [,5]  …  [,14] [,15] [,16] [,17] [,18] 
[1,] 1.003 0.995 0.999 1.005 1.003  …  1.001 0.989 0.992 1.001 1.000 
[2,] 1.004 1.003 0.999 1.007 1.001  …  1.003 0.990 0.994 1.000 1.000 
[3,] 1.003 1.001 1.000 1.005 1.004  …  0.998 0.994 0.991 1.003 1.001 
[4,] 1.003 0.994 1.000 1.011 1.004  …  0.995 0.992 0.994 1.006 1.001 

Table 3-17: inputs list of the full Hierarchical Bayesian model for the LVDT accuracy experiment 

The full model is then formulated according to the standards of the OpenBUGS code, as below. 

model { 
 m ~ dunif (0.997, 1.003) 
 tau.L <- pow(sigma.L, -2) 
 sigma.L ~ dunif (0, 0.008) 
 tau.r <- pow(sigma.r, -2) 
 sigma.r ~ dunif (0, 0.006) 
 sigma.R <- sqrt(pow(sigma.r, 2) + pow(sigma.L, 2)) 
  for (j in 1:q) { 
  mu.B[j] ~ dnorm (m, tau.L) 
  for (i in 1:p) { 
   for (k in 1:n){ 
     xkij[k,i,j] ~ dnorm (B[i,j], tau.r) 
     } 
    B[i,j] ~ dnorm (mu.B[j], tau.L) 
   } 
 } 
} 

3.20 

This model must be stored in a separate file, e.g. “LVDT_full.txt”, in an appropriate directory, say 
C:/PhD/Thesis. 

We must be careful, if attempting to use informative priors, that our choice for the starting 
points does not influence the calculus solving time too much or even render the successive MCMC 
approximations not converging to the solution in the limits. Once again, this risk can be avoided by 
ensuring that the starting points are randomly selected from tighter proper prior distributions, where 
tighter means having a reduced scale parameter.  
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After this last expedient the MCMC solver can run to yield the result analysis. Nevertheless, 
before looking at the statistics for the accuracy description, we can provide a quick model check by 
comparing the expected value of the marginal posterior distributions for the reference accepted 
values means        to those achieved by iterating   times the Hierarchical Bayesian model of 

Figure 3.17 and summarized in the column   
   

 of Table 3-14. The four expected values for the full 

Hierarchical Bayesian model, given in Table 3-18, are almost exactly the same as those of Table 
3-14, so that we can assume that the new joint probability structure does not introduce significant 
differences on the results. 

 
Table 3-18: expected value of the marginal posterior distributions for the reference accepted values means        

Looking at Figure 3.22 we appreciate how the overall product line mean    encompasses every 

 -th variable for reference accepted parameters    
, that is exactly what we are looking at to  

describe trueness: a unique statistic able to describe the population mean with respect to the 
reference accepted value. Again, the reference accepted value   can be modelled as a random 
variable described by a Dirac delta probability function which is zero everywhere except at 1 mm. 
Then, according to 2.25, the trueness can be described by the same bell shapes of the overall 

product line mean    in Figure 3.19 but shifted by -1 mm. The bias result thus obtained is depicted 
in Figure 3.22. 

 
Figure 3.22: posterior probability density functions for the main mean parameters 

The final result in terms of posterior density functions for the accuracy parameters of interest, 
i.e. trueness, repeatability precision and homogeneity precision, is shown below in Figure 3.23. 
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Figure 3.23: Marginal posterior density functions for bias  , repeatability    and homogeneity    parameters 

As expected, under a nested probability structure, repeatability and homogeneity parameters 
take advantage of the increased actual sample size. For them both we have tighter distributions 
(higher maximum value for the gamma probability density functions with respect to those in Figure 
3.20) which means improved value for expanded precisions. 

Finally, we can use the statistics 3.16 to the result in Figure 3.23 to complete the accuracy 
description with interval estimates. The outcome in Table 3-19 is no longer a table with   rows, like 

Table 3-16, because there is no more the distinction for each  -level of the reference accepted 
value factor. We have unique statistics, that are effective for the whole working measurement 
interval of the equipments population.  

 
Table 3-19: bias and expanded precisions under repeatability and homogeneity conditions for the full Hierarchical 

Bayesian model of the LVDT accuracy experiment 

As already said, with respect to the synthesis that you can find in Table 3-16 at the end of 
section 3.4, the expanded precision evaluations benefit from the joint influence between the levels 
of the reference accepted value factor.  

The manufacturer may now conclude that its testing equipments’ family has the following 
accuracy description about the LVDT displacement measurements: 

- trueness, evaluated in terms of bias, is in the range          ; 

- repeatability precision, evaluated in terms of expanded standard deviation is within      ; 
- homogeneity precision, evaluated in terms of expanded standard deviation is within      . 

The clear distinction between trueness and precision descriptions is the greatest advantage of 
the Bayesian formulation. As a matter of fact in the Bayesian framework there is a greater 
distinction between the statistics associated to the concepts of trueness and precision with respect 
to the general linear model stated in the ISO 5725-2, where the trueness is described just by the 
estimate of the model general mean at which we may associate its confidence interval that is 
always based on the residuals mean square errors as also the repeatability and inter-laboratory 
standard deviations are. In conclusion, model 3.19 is able to describe the accuracy of the whole 
product line as what it had set out to achieve. Further researches are needed in order to give to the 
model more solid analytics foundations and to test it under a wider spectrum of sensitivity analysis 
that takes into account different sample sizes, others metrological domains, etc. 

On the other hand, the manufacturers may now state up to which credible probability level are 
able to satisfy the ISO 306 requirement on the accuracy of displacement measurement. Without 

going into details of accuracy decomposition, in simple terms,           is assigned as 

requirement for trueness and          as requirement for homogeneity precision. Then, applying 
to the posterior samples that describe the accuracy parameters in Figure 3.23 the Empirical 
cumulative distribution function, that is a step function with jumps     at observation values, where 
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  is the number of tied observations at that value, it is possible evaluate the credible probability 
levels “C.P.” as reported in Table 3-20 below. 

 
Table 3-20: Credible Probability levels "C.P." of trueness and precision homogeneity requirements 

In this way the accuracy evaluation frame has completely been turned upside down: from 
parameter estimation in term of fixed parameters with an assigned confidence level in the ISO 
5725-2 framework, to credible probability estimation for specific target of variability encompassed 
by random variables describing the parameters in the proposed Bayesian framework.  

The result of Table 3-20 is the cornerstone of the Instron requirement for the final validation of 
the penetration measurement accuracy on the new product line of VST test equipments. In this 
respect, it is recalled that ISO 306 requires to measure the penetration of the indenting tip into the 
test specimen to an accuracy of         . It was decided to split the requirement as           

for bias and           for precision. The final check is satisfied if the probability that the 
parameters (bias and precision taken individually) take a value in the required interval is higher 
than 0.95, consistently with their respective posterior distributions. Looking at the outcome in Table 
3-20, the final check was fully satisfied. In this way the manufacturer knows that the risk that the 
shipped equipment does not meet the ISO 306 requirement is 0,5 %. Only in these few cases the 
adjustment of the displacement transducer is required, which implies an additional cost for the 
manufacturer. This industrial application is a first concrete acknowledgment of the goodness of the 
proposed model. 
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4 HIERARCHICAL BAYESIAN MODEL FOR PROFICIENCY TESTING 

4.1 INTRODUCTION TO PROFICIENCY TESTING 

A proficiency test is an inter-laboratory exercise aimed to determine the performance of 
participants in specific tests or measurements, and to monitor their continuing performance 
independently several times. The typical purposes of a proficiency test include the evaluation of 
laboratory performance, the identification of problems in laboratories, establishing effectiveness 
and comparability of test or measurements methods, the provision of additional confidence to 
laboratory customers, validation of uncertainty claims, and the education of participating 
laboratories [9].  

In the last decades, proficiency testing has become an essential aspect of laboratory practice in 
all areas of testing, calibration and inspection. The testing schemes vary according to the needs of 
the sector in which they are used, the nature of the proficiency test items, the methods in use and 
the number of participants. However, in their simplest form, most proficiency testing possess the 
common feature of comparison of results obtained by one laboratory with those obtained by one or 
more different laboratories. So, the greatest common factor for the nature of this test method is the 
need of comparing performance, especially concerned with the assessment of participants and as 
such does not specifically address bias or precision. 

The definition of proficiency testing is stated in ISO/IEC 17043 [40], whereas the ISO 13528 
provides the requirements for the statistical design, validation criteria, review of results and 
reporting summary statistics [9]. The statistical techniques are consistent with other International 
Standards, particularly the ISO 5725 series, the ISO/IEC 98-3 (GUM) and the ISO/IEC Guide 99 
(VIM). In its simpler scheme, performance statistics are typically derived by comparing the 
difference between a reported participant result and an assigned value with an allowable deviation 
or with an evaluation of the measurement uncertainty of the difference.  

Although the proficiency scheme exhibits a strong Bayesian attitude, expressed in the 
statement of willing to compare participant results with respect to an assigned value, that 
remembers the prior value, the statistical design of ISO 13528 follows the frequentist formulation, 
based on the nature of errors assumption, the observed results and the nature of data. There are 
various types of data used in proficiency testing, including quantitative, categorical and ordinal. 
Here we consider continuous quantitative variables. In addition, we assume that the results from 
competent participants are approximately normally distributed. 

In addition to what has already been mentioned, the basic approach for all purposes is to 
compare results on a proficiency test item    with the assigned value    . Hence, usually for the 

performance evaluation, the difference is compared to an allowance for measurement error. The 
ISO 13528 standard indicates five ways to determine the assigned value     [9, Par. 7]. The choice 

between these methods is the responsibility of the proficiency test provider. Once the assigned 
value has been determined, the approach for determining the evaluation criterion has to be 
chosen.  

We adopt the ISO 13528:2015 notation. Accordingly,   denotes the measurement results, even 

if until now we have used  . 

Coming back to the comparison criterions of ISO 13528:2015, a prescribed maximum 
permissible error may be used directly as    (it is a threshold and not a parameter even if it is 

indicated by a Greek letter) for use with the estimates of deviation   , that is the simplest measure 
of participants’ performance: 

          4.1 

The difference    may be also expressed as a percentage difference, calculated as: 

                     4.2 

The difference    or     is usually compared with a criterion    based on fitness purpose or with 
experience from previous rounds of a proficiency testing scheme. Use of    or     generally 
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assumes symmetry of the distribution of participant results in the sense that the acceptable range 
is: 

          4.3 

The advantage of the deviance statistic is that participants have an intuitive understanding of 
the results, since they are tied directly to the measurement error. Instead, the disadvantages are 
that, being not standardized, it does not allow simple scanning of reports for action signals in 
proficiency testing scheme with multiple analyses or where fitness for purpose criteria can vary by 
level of the measurand. For all these purposes the z-score is preferred and it is calculated as: 

                4.4 

where     is the standard deviation for proficiency assessment, that can be interpreted as the 

population standard deviation of results from a hypothetical population of laboratories performing 
exactly in accordance with requirements [9]. If a regulatory requirement or a fitness-for-purpose 
goal is given as a standard deviation, then     may be used directly. Further details about the 

approaches for determining the standard deviation for proficiency testing are reported in the 
chapter 8 of ISO 13528.  

The advantage of z-score with both these approaches for continuous schemes are: 

a) performance  -scores have a consistent interpretation in terms of fitness for purpose 
from one round to the next; 

b) performance  -scores are not subjected to the variation expected when estimating 
dispersion from reported results. 

Otherwise, the value of the standard deviation     for proficiency assessment can be derived 

from a general model for the reproducibility of the measurement method. This method has the 
advantage of objectivity and consistency across measurands, as well as of being empirically 
based. It can be used for data from a previous collaborative study or from data obtained in the 
same round of a proficiency testing scheme. In the latter case, the value so obtained is called 
consensus value. This procedure invalidates the long-term monitoring, due to the fact that the 
comparability from year to year depends on the participants as well as on the used reference 
materials. Therefore, it is difficult for a participant to use values of z-score to look for trends over 
several proficiency rounds. Moreover, the standard deviation     can be unreliable when the 

number of participants is small. Lastly, when     and     are calculated from participant results, the 

performance score is correlated with individual participant results, because individual results have 
an impact on both. 

Besides, when there is concern about the uncertainty of the assigned value       , for example 

as the clause 4.5 is satisfied,  

               4.5 

then the uncertainty can be taken into account by expanding the denominator of the performance 
score. This statistic is called z’-score and it is calculated as follows: 

    
      

    
         

 
4.6 

The conventional interpretation of both z-scores and z’-scores is the following (see [40, Par. 
B.4.1.1]): 

-       is considered to be acceptable; 
-         is considered to give a warning signal; 

-       is considered to be unacceptable. 

The justification of the usage of the limits of 2 and 3 for z-scores is easily understood. 
Measurements that are carried out correctly are assumed to generate results that can be described 
by a normal distribution with mean     and standard deviation    . Hence, the z-scores will follow a 
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standard normal distribution. Under these assumptions, only about 5 % of scores would be 

expected to fall outside the range      , and only about 0,3 % would be expected to fall outside 
the range      . Because the probability of z-scores falling outside ±3 is so low, it is likely that 
there is an identifiable cause for the anomaly. Moreover,    is closely related to     as used for z-

scores. The relation is determined by the evaluation criterion for the proficiency assessment, so 
that         sets the boundary within which the deviation in equation 4.1 is considered 

acceptable. 

Finally, it is common, within a single round of a proficiency scheme, that more than one test 
item or measurand are included by mixing materials with different known levels of a property in 
specified proportions. In all these applications the designed levels are included such as to 
investigate the trends of random or systematic errors. For example, two similar proficiency test 
items may be used with the intention of treating them through a Youden plot [9]. Anyway, in this 
situation the results for each proficiency test item or for each measurand should be evaluated 
separately. 

In the next sections we apply the proficiency testing scheme to the application case of the 
displacement measurements with the transducers of the VICAT test equipments. First, we follow 
ISO 13528. Then, we apply the Bayesian framework.  
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4.2 A SIMULATED PROFICIENCY TEST ON THE VST DEFLECTION MEASUREMENTS  

In real proficiency tests, it is common that participants use testing equipement of different 
manufactures even if the test item or the measurand is the same. So, we cannot straightly use the 
previous dataset of the VST accuracy experiment. In order to better simulate the reality of 
proficiency testing schemes, we decided to enlarge the dataset in annex A (chapter 6) by adding 
data consistent with other levels of another factor for the manufacturer brand and for simplicity we 
focused on the first two levels of the reference accepted value factor, that are the jumps “3»2” and 
“4»3”. Therefore, from the VST accuracy experiement dataset we drawn out only the first level of 
the new factor, called "manufacturer" and, in order to add the other two levels, we resort to the 
random generation of numbers according to two different distributions. The former is supposed to 
describe the most competent testing equipments from an unknown manufacturer, and it is said 
“Best”. The latter is supposed to describe biased testing equipments from an unknown 
manufacturer, and it is said “Biased”. A normal distribution with mean equal to 1 mm and standard 
deviation equal to 5 µm describes the former. The latter is represented by a normal distribution 
having mean value of 1,006 mm and standard deviation of 4 µm. From each of these distributions 

     values      are drawn in order to represent   different laboratories, described by normal 

distributions having the drawn value      as mean and the same standard deviation of the 

manufacturer level. In addition, for each laboratory     values      are drawn out according to 

the normal distribution having the specific laboratory mean value      and standard deviation 3 µm. 
So, for each “jump” in formula we have: 

                     

                     

                      

                      

 4.7 

where         is the subscript for the manufacturer brand, and, following the   numeric order, we 
have “Instron”, “Best” and “Biased”. This dataset in the rows below is called “simulated” in order to 
underline its origin from drawing of numerical random values, that are computer simulated. The 
simulated dataset was achieved through the random data generator of the software "R" and the 
reader can look the full script up in the annex D (chapter 9). The proficiency dataset so achieved is 
depicted in Figure 4.1 for the LVDT jump 3»2 and Figure 4.2 for jump 4»3. 

  

  
Figure 4.1: visual review for the level “3»2” of the simulated proficiency dataset 
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The visual check of data in Figure 4.1 and Figure 4.2 confirms the expected distribution of 
results. As a matter of fact, the histograms, useful and widely available data review tools, do not 
show any multimodal or asymmetric attitude in the density distribution. Likewise, the Q-Q (quantile-
quantile) plots, a graphical method to compare the data distribution against the corresponding 
theoretical normal, show a good fit with the normality assumption. 

  

  
Figure 4.2: visual review for the level “4»3” of the simulated proficiency dataset 

Besides, looking at the data of the level “3»2” (Figure 4.1) we see wider deviations in terms of 

both mean value and standard deviation (looking at the slopes of the QQ-lines) between the   
manufacturers than those of level “4»3” (Figure 4.2). 

Once the goodness of data fit with respect to the model assumptions has been checked, we 
can move to the proficiency performance evaluation with respect to the claimed expected value 
and standard deviation, which in this specific case are those used for the random numerical data 

drawing according to      in equation 4.7. We are of course in a convenient position, as we know 
the best values, having simulated two-thirds of the dataset. Differently, we would act according to 
one of the approaches suggested by the ISO 13528 standard to determine the assigned mean 

value     and the assigned standard deviation    . Summing up, for the simulated proficiency 

testing the assigned value attributed to both test items is: 

   
       

   
     

   
       

   
     

  4.8 

and the measure of dispersion for proficiency assessment of both test items is: 

   
       

   
         

   
       

   
         

  4.9 

We can now proceed to the statistical analysis for performance evaluation, being aware that 
data are consistent with the statistical assumptions for z-scores criteria. For dissertation simplicity, 

we focus only on the z-score in 4.4. The assessed dataset has   replicated measurements for 
each of the     participant laboratories. The subscript notation is a bit misleading: the k-

measurements      and      are drawn up from two different laboratories even if the  -laboratory 
subscript is the same. As a matter of fact, every single laboratory is identified by the pair      , 
where   adds the information about which kind of equipment the laboratory uses, or in other words 



University of Turin and Politecnico di Torino  Page 61 

which manufacturer made the test equipment. That means that we are managing   replicated 

measurements by   different laboratories, where   is: 

         4.10 

Hence, the notation can be arranged by suppressing the   subscript and having        . 

We can calculate the expected value     for each participant laboratory and the associated 
standard deviation. The results are summarized in Figure 4.3, where the effect of the bias 
deliberately introduced in the random sampling can be appreciated, especially for the test item 
corresponding to the “jump    ”. The two grey dashed and solid lines in Figure 4.3 delimit the 
         and          regions, respectively. Only the mean value for the LVDT with serial 

number 155991 in “jump    ” is on the threshold for unacceptable values. 

 

 
Figure 4.3: lab mean value ± lab standard deviation for each proficiency test item 

In this simulated proficiency test we have two different test items, one for each level of the 
variable “jump”, having the same expected value and best standard deviation as stated in 
equations 4.8 and 4.9 respectively. The only difference is the subset used over the whole LVDT 
measurement interval. In order to distinguish between the two different test items, a superscript 
was added to the laboratory mean in Figure 4.3 and, similarly for the calculated z-scores. 

Combined performance scores for results from different proficiency test items can be useful for 
detecting persistent bias. Here, having two similar proficiency test items, the Youden Plot provides 
a very informative graphical method of studying the results [9]. The Youden graph is constructed 
by plotting the participant z-scores obtained on one of the proficiency test items against the other 
one. Using this graphical tool, the z-scores of the LVDT proficiency case are depicted in Figure 4.4. 

Inspection of Figure 4.4 reveals two participants (LVDT numbers 148893 and 155691) in the 
bottom right-hand quadrant out from the solid line, and therefore they could have poor calibration 
having a high z-score on proficiency test item     and a negative score on proficiency test item 
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   . Overall, the real measurements, that are those from the Instron test equipments, are close to 
the origin, as it is for the “Best” population. Instead, the “Biased” population has an evident bias on 
the proficiency test item of the level    , and the cloud of data is shifted to the right on the Youden 
graph of Figure 4.4. Concluded the visual review, we can move to the next section facing up the 
Bayesian formulation of the proficiency testing scheme. 

 
Figure 4.4: Youden Plot for the z-score of the jump 3»2, that is     , against the ones of the jump 4»3, that is      
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4.3 HIERARCHICAL BAYESIAN MODEL FOR PROFICIENCY TESTING 

In chapter 3 we have dealt with hierarchical models comprising three levels: 

i. a likelihood conditional on unit-specific parameters; 
ii. exchangeability assumptions for the unit-specific parameters; 
iii. prior distributions for the population parameters, also referred to as hyperparameters. 

There is, of course, no reason to stop us considering further application fields for the models 
previously introduced. Therefore, in this section we model the proficiency testing scheme for the 
simulated VST experiment according to a possible Bayesian formulation. The benchmark is the 
results achieved through the ISO 13528 scheme in section 4.2. 

In a manner corresponding to the data structure of the simulated proficiency test on the VST 
deflection measurements (see left side of Figure 4.1 and Figure 4.2) and as implicitly stated in 
equation 4.7, we can write the following conditional probability structure based on the 
exchangeability assumptions: 

   
   

    
   

   
   

                  
   

   
   

 

   
   

    
      

   
                  

      
   

 

   
                      

  
   

                    

  
   

                    

 4.11 

where         is the subscript for the replicated measurement of each i-participant laboratory, 
so         is the subscript for the specific laboratory and       is the superscript for the specific 

proficiency test item. Looking at the prior assumption for the overall mean parameter    
   

 in 4.11, 

we see that is assumed to be coherent with the assigned value    
   

 of equation 4.8 and with the 

assigned standard deviation    
   

 of equation 4.9. The same probability structure is depicted in 

Figure 4.5 through the corresponding Doodle graph, where the test item superscript was omitted 
for the sake of simplicity.  

 
Figure 4.5: Hierarchical Bayesian probability structure for Proficiency testing scheme 

As already mentioned, the proficiency scheme according to ISO 13528 has a strong Bayesian 
attitude, expressed in the statement of willing to compare participant results to an assigned value 

   
   

, for each  -test item. The Bayesian formulation in Figure 4.5 solves the conflict between 

proficiency attitude and ISO 13528 suggested statistics. Actually, we are able to include the 
information about the assigned value directly in the model through the choice of the proper prior 
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distribution for the hyper-parameter    
   

. The Bayesian rule propagates this information through the 

probability structure and the chosen prior affects the posterior distributions    
   

 of each specific 

laboratory and, then, the final laboratory z-scores. 

So, the hierarchical Bayesian model is written according to the standards of the OpenBUGS as 

model { 
 x ~ dnorm(1, 40000) 
 tau.L <- pow(sigma.L, -2) 
 sigma.L ~ dunif (0, 0.01) 
 tau.r <- pow(sigma.r, -2) 
 sigma.r ~ dunif (0, 0.006) 
  
 for (i in 1:t) { 
   for (k in 1:n) { 
     xki[k,i] ~ dnorm (xi[i], tau.r) 
     } 
   xi[i] ~ dnorm (x, tau.L) 
   } 
 }. 

4.12 

Then, to use the “R2OpenBUGS” package the next step is to arrange the simulated dataset as 
the OpenBUGS standard needs, that is the “list” R object in 4.13, having     dimension. 

$t 
[1] 54 
 
$n 
[1] 4 
 
$xki 
      [,1]  [,2]  [,3]  [,4]  [,5] … [,50] [,51] [,52] [,53] [,54] 
[1,] 1.000 1.003 0.998 1.005 1.004 … 1.000 1.002 1.006 1.007 1.015 
[2,] 1.003 0.996 0.999 1.005 1.003 … 1.011 1.011 1.004 1.006 1.017 
[3,] 1.002 0.999 0.999 1.009 1.004 … 1.003 1.005 1.009 1.007 1.013 
[4,] 1.002 0.997 1.001 1.008 1.004 … 1.006 1.012 1.003 1.012 1.015 

4.13 

As in the previous cases, the starting points are randomly selected from tighter proper prior 
distributions, where tighter means having a reduced scale parameter. Eventually, the Bayesian 
numerical computation is performed using the “bugs” function of the “R2OpenBUGS” package.  

 
Figure 4.6: credible intervals (mean value ± standard deviation) for the laboratory specific parameters of the first 

proficiency test item, that is the “jump” 3»2 
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The results in terms of mean value (the point) and standard deviation (the error bars) of the 

posterior distributions for the specific laboratory parameters    
   

 are shown in Figure 4.6 and 

Figure 4.7. 

 
Figure 4.7: credible intervals (mean value ± standard deviation) for the laboratory specific parameters of the second 

proficiency test item, that is the “jump” 4»3 

Going into the details of the Bayesian result, we the effects of fitting a hierarchical model based 
on exchangeability assumptions are enhanced strength, global smoothing of uncertainty and 
shrinkage to the mean. The first two effects can be deduced looking at the width of the error bars: 
under the exchangeability assumption each posterior borrows precision from the others via the 
joint influence on the estimation of the underlying population parameters. So, a side effect of this 
borrowing strength is that the variability about each specific parameter is spread more evenly 
across the laboratories, as can be observed from the more uniform width of credible intervals 
respect of the width of the error bars in Figure 4.3. The last effect, that is the shrinkage towards the 
mean, tends to pull extreme values towards the population mean, as can be seen especially for 
LVDT s/n 148893, 155667 and 155691 in Figure 4.6 compared to Figure 4.3.  

Shrinkage towards the mean can initially appear somewhat undesirable, because we expect 
that it can affect the deviation scores and, consequently, the z-scores. We expect that this negative 
effect especially affects the result of the LVDT s/n 155691 for the first test item. Actually, the result 
lies on the solid line in Figure 4.3, whereas in Figure 4.6 it is farther from that threshold, within the 
zone between the solid line and dot-dash line. 

Shrinkage is reflected in the Youden plot for the z-scores calculated according to equation 4.4 
(Figure 4.8), where the assigned mean value     and the assigned standard deviation     are 

those stated in equations 4.8 and 4.9, respectively. In fact, even if the Youden plot preserves the 
overall relative positions between z-scores, these are pulled in towards the origin of the plan and, 
as a consequence, the z-score of the LVDT s/n 155691 is pulled within the solid line. 

The risk of misclassification can be reduced through a proper setting of the probability level for 

the credibility interval of the among-laboratories variability parameter   
   

, with which the two 

thresholds can be alternatively achieved instead of keeping on using ±2 and ±3. The thresholds 
optimization is beyond the scope of this research. Further studies need to be carried out in order to 
address the topic of how avoiding the misclassification if the proficiency statistics move into the 
Bayesian framework. At the moment, we merely seek to show that such proficiency statistics in the 
Bayesian framework are biased due to the shrinkage-to-the-mean effect. Further investigations 
would certainly help to provide a better sight of the concept. 
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Figure 4.8: Youden Plot for the z-score of the jump 3»2, that is     , against the ones of the jump 4»3, that is      
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4.4 BAYESIAN TECHNIQUES FOR DATA CONSISTENCY CHECKING 

ISO/IEC 17043 and IUPAC Harmonized Protocol [41] recommend removing obvious blunders 
from a data set at the early stage of the analysis, prior to use of any test to identify statistical 
outliers. Actually, obvious blunders, such as reporting results in incorrect units or switching results 
from different proficiency test items, occur in most rounds of proficiency testing, and these results 
impair the performance of subsequent statistical methods. In these cases a visual review of the 
data, as the one performed in section 4.2, should be enough.  

Then, in accordance with ISO 13528, outlier detection may be performed either to support 
visual review for anomalies or, coupled with outlier rejection, to provide a degree of resistance to 
extreme values when calculating summary statistics. In this respect, the standard suggests to 
apply the following techniques and tests, provided by ISO 5725-2: 

- two measurements for graphical consistency techniques, called Mandel’s h and k; 
- Cochran’s numerical outlier test; 
- Grubb’s numerical outlier test. 

In addition, the standard provides recommendations for the level of confidence appropriate for 
outlier rejection in inter-laboratory studies for the determination of precision of test methods. In 
particular, it recommends rejection only at the 99 % level unless there is other strong reason to 
reject a particular result. 

Before going ahead and introducing the Bayesian formulation for some consistency techniques 
and outlier detection tests, we emphasise that the techniques described in this chapter are more 
informal than those of the inferential methods. Classical statistical models generally depend on 
assumptions such as a linear model for error structure and normality distribution. Here we adapt 
these ideas to be generically applicable in Bayesian models, noting that this approach means that 
parameters have distributions and so, for example, residuals and deviations will be quantities with 
posterior distributions. In addition, within a Bayesian framework it is necessary to check for 
sensitivity to the prior and for conflict between prior and data. 

Let us start and see Mandel’s h statistic in order to understand if and under which assumptions 
it can be used in the Bayesian framework. 

Mandel’s h statistic is a simple indicator of relative deviation for grouped sets of observations. 

Let a set of observations   
   

 be supposed as realizations of random variable   
   

 and to be 

identically and independently distributed according to the normal distribution       , where 

        denotes the group (usually the laboratory mean over   replicated measurements) and 
        is the test item index. The Mandel h statistic is given by: 

  
   

 
  

   
      

  

   
    

   
       

 
 
   

 
4.14 

This is also called the between-laboratory consistency. Thompson [42] derived the exact 
distribution of the Mandel’s h statistic. This distribution is symmetrically distributed around zero and 
the two-sided critical values in ISO 5725-2 can be also got as [43]: 

         
             

               
  

 
4.15 

where          is the        -quantile of the t-distribution with       degrees of freedom. This 

distribution has been implemented with the “qmandelh” function of the R-package “metRology”. 

Before moving to the Bayesian framework, we build the benchmark by applying the criterion as 
stated in ISO 5725-2 to the simulated proficiency dataset shown in section 4.2. 

Mandel statistics are traditionally plotted for inter-laboratory study data, grouped by laboratory, 
to give a rapid graphical view of laboratory bias and precision. This plot produces a grouped, side-
by-side bar plot. The final outcome for the Mandel h statistic applied to the simulated proficiency 
dataset according to ISO 5725-2 is depicted in Figure 4.9, where the solid lines encompass data 
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within a confidence level equal to the 99 %, whereas the dot-dashed lines within the 95 %. 
Therefore, we have: 

- high consistency within the dot-dashed lines, that, given the symmetry of the   
   

 

distribution, are equal to                  ; 

- low consistency outside the solid lines, that, given the symmetry of the   
   

 distribution, 

are equal to                  ; 

- medium consistency elsewhere. 

Various patterns appear in the h plot. The majority of LVDTs tend to have both positive and 
negative h values at different test items, and in general the number of LVDTs giving negative 
values is approximately equal to those giving positive value, with the sole exception for the test 
item 3»2 of the “Biased” group of test equipments, that are all positive according to their random 
sampling strategy. Looking at the empirical data, i.e. those from Instron, only the serial number 
148893 requires further investigation: it seems to be affected by a systematic error, arisen during 
the LVDT calibration procedure. 

 
Figure 4.9: Mandel's between-laboratory consistency statistic according to ISO 5725-2, grouped by LVDT serial number, 

for the simulated proficiency testing of displacement measurements in VST apparatus 

Now, we can move to the Bayesian formulation for the between-laboratory consistency statistic. 
Looking at the probability structure 4.11 for the Proficiency testing scheme, unless there are 

unavoidable changes due to the Bayesian updating, we have that    
   

 are normal random 

variables, identically and independently distributed thanks to the exchangeability assumption. This 
is the same assumption behind the Mandel’s h statistic for the between-laboratory consistency. 
Leveraging this similarity, we keep in the Bayesian framework equations 4.14 and 4.15, where the 
root of the observed data - the sample means of the replicated measurements within each of the 
LVDT groups in ISO 5725-2 - are in the Bayesian framework the mean of the posterior normal 
distribution for the specific LVDT parameters. Before using consistency and outlier detection 
techniques, the validity of the assumptions underlying the test, the assumption of normality in 
particular, should be demonstrated. 

So, going back to the simulated proficiency test on the VST deflection measurements, first of all 
we have to check the consistency with the normality assumption for the posterior distributions of 
the specific LVDT parameters and, then, we can calculate the Mandel’s h statistic. Figure 4.10 

depicts the posterior distributions of all the specific LVDT parameters    
   

 for each of the two test 

items and their population distribution that is a normal with parameters    
   

      
   

  and   
   

 

    
   

 . The    
   

 bell shapes (coloured) look all very similar to normal distributions and their 
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population distribution (black dot-dashed) properly encompasses them all. Furthermore, the    
   

 

posterior distributions seem to have the same scale parameter and to be properly drawn from the 

marginal posterior distribution of the overall mean parameter. The normality assumption for the    
   

 

posterior distributions is double-checked with the Q–Q (quantile-quantile) plot (Figure 4.11), where 
the black dot-dashed line is the theoretical trend for a normal distribution having the mean value of 

the overall mean posterior distribution    
   

 as location parameter and the square root of the 

average variance of the specific LVDT distributions    
   

 as scale parameter. Each coloured line is 

the simulated posterior set of realizations for a specific LVDT parameter. 

 

Figure 4.10: Posterior probability density functions for the specific LVDT parameters    
   

, that are the colored curves, 

and for their population distribution           
      

   
 , that is the black dot-dashed curve 

 
Figure 4.11: Q-Q plot of the posterior distributions for the specific LVDT parameters (one color for each LVDT) against 

normality assumption (black dot-dashed line) 

Even more important for checking the assumptions underlying Mandel’s h statistic, it is the 
identification of substantive departures from normality on the expected values of posterior 
probability distributions of the specific LVDT parameters with respect to their population 
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distribution. In other words, we ought to verify that    
   

      
   

 , as stated in equation 4.11. To 

this end, the Q–Q probability plot was obtained for a normal distribution having as mean parameter 

the expected value of the posterior distribution for the assigned value parameter    
   

      
   

  

and as standard deviation the expected value of the posterior distribution for the inter-laboratory 

variability   
   

     
   

 . The outcome is depicted in Figure 4.12. 

Overall, we observe a good fit with respect to both normality assumptions. In addition, the 
examination of the plots in Figure 4.11 indicates that the specific LVDTs exhibit differences just on 
the shift parameter, as all the coloured lines share the same slope of the theoretical line, with 
different intercepts. The plots of Figure 4.12 support the applicability of the Mandel’s h statistic in a 
Bayesian framework, thanks to the graphical confirmation of the normality assumption. Moreover, 
Figure 4.12 shows that the second test item has a better inter-laboratory variability, being the slope 
of the q-q line (red dot-dashed line) of the level “4»3” lower than that of the level “3»2”. We also 
see that the posterior realization of the first test item is biased, being the intercept of the q-q line 
greater than 1 mm. 

 

Figure 4.12: Q-Q plot of the posterior distributions for the expected values    
   

 of the posterior distribution of specific 

LVDT parameters against normality assumption for their population (the red dot-dashed line is the theoretical trend) 

Therefore, consistently with the posterior probability structure, we consider the mean value of 
the posterior specific LVDT distributions as the realizations of their population distribution. 
Accordingly we use the Mandel’s h statistic in its form 4.14, with the expected value of the posterior 

distributions for the specific LVDTs    
   

 replacing the sample mean    
   

. We can also keep the 

same thresholds for evaluating the level of consistency between-LVDT means. 

The final outcome of the Mandel’s h statistic for the Bayesian framework is depicted in Figure 
4.13. The differences with respect to the ISO 5725-2 results are negligible, being of the same order 
of magnitude of the least significant digit (Figure 4.14) and the main differences are not for the 
lower consistency results. Therefore, in this case we have a negligible “shrinkage-to-the-mean 
effect with respect to the Mandel’s h statistic in its natural frequentist framework. Further analysis 
and studies have to be performed before giving a universal validity to this conclusion. 

Arguing along these lines, we can extend the same assumptions to the Grubbs test and, as for 

Mandel’s h statistic we can try and replace the sample mean    
   

 of each LVDT’s group of n-

replicated measurement with the expected value of the posterior distributions for the specific 

LVDTs    
   

. As many other statistical tests we use to distinguish between Single Grubbs test for 

the detection of an extreme laboratory mean as an outlier and the Double Grubbs test for the 
detection of two extreme laboratory means as outliers. The former uses the maximum or the 
minimum of Mandel’s h statistic as test statistic, the latter uses the sum of squared deviations of 
the laboratory (LVDT in our case) means from their average without the two extreme means 
divided by that with the two extreme means as test statistic [43]. The null hypothesis of both the 
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Single and the Double Grubbs tests is that the   
   

, with        , are independently and 

identically distributed according to a normal distribution. This is also the null hypothesis of any 
goodness-of-fit-test for normality or any specific test for normality, e.g. the Shapiro–Wilk test. 
However, whereas the tests for normality are powerful against the alternative hypothesis that the 

  
   

 are i.i.d. according to a non-normal distribution, the Grubbs tests as outlier test are powerful 

against the alternative hypothesis that all   
   

 are i.i.d. normally distributed except the random 

variables modeling the extreme values of the sample, and that these follow a distribution with 
larger (smaller) mean [43]. 

 
Figure 4.13: Mandel's between-laboratory consistency statistic for the Bayesian framework, grouped by LVDT serial 

number, for the simulated proficiency testing of displacement measurements in VST apparatus 

 

Figure 4.14: Differences    
   

 between Mandel's statistic in the Bayesian framework against ones according to ISO 

5725-2 

It can be proved that the critical value, that is the      -quantile        for the Single Grubbs 

test is approximated by the      -quantile         , by application of Bonferroni’s inequality [43]. 

The ISO 5725-2 recommends: 
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- if the Grubbs statistic is less than or equal to its 5 % critical value, the specific laboratory 
is accepted as correct; 

- if the Grubbs statistic is more than its 5 % critical value and less than or equal to its 1 % 
critical value, the specific laboratory is called a straggler; 

- if the Grubbs statistic is more than its 1 % critical value, the specific laboratory is called 
a statistic outlier. 

Therefore, in the present proficiency test, the critical values for stragglers are                  , 

and the critical values for outliers are                  . From results in Figure 4.9 and Figure 

4.13, all LVDT data for the first proficiency test item (“jump” 3»2) can be accepted as correct, 
whereas for the second proficiency test item (“jump” 4»3) the LVDT having serial number 155677 
is in the thin line between correct and straggler. More precisely, if we look at the results achieved 

according to ISO 5725-2 it can be accepted as correct (          ), whereas in the Bayesian 
framework it ought to be a straggler (          ). Looking at the same result from the p-value 
perspective, for the LVDT having serial number 155677 you get 5.05 % with ISO 5725-2 and 4.96 
% with the Bayesian framework. This means that, even though the differences in Figure 4.14 seem 
to be negligible, the Single Grubbs test in the Bayesian framework tends to be less conservative, 
or in other words it is easier to reject the null hypothesis, at least in this present case.  

Even if the present proficiency test needs not being checked against the Double Grubbs test, 
working with the expected values of the posterior probability distributions for the specific laboratory 
parameters also the Double Grubbs test can be performed in the Bayesian framework. Leaving to 
the curious reader the task of analyzing in detail the Double Grubbs statistic [43], [44], we can 
check if the lowest and highest value are two outliers on opposite tails in both ISO 5725-2 and 
Bayesian scenarios. In this respect, calculating the p-value according to the Double Grubbs 
statistic, we achieve for the first proficiency test item (“jump” 3»2) 13,67 % according to ISO 5725-2 
against 14,54 % of the Bayesian framework, whereas for the second proficiency test item (“jump” 
4»3) 5,74 % according to ISO 5725-2 against 5,44 % of the Bayesian framework. Again the results 
are not exactly the same but they are not so far between the two approaches, ISO 5725-2 and 
Bayesian.  

Finally, about the usability of the Grubbs test on the expected value of the posterior probability 
distributions for the specific laboratory parameter we achieved good results, that means they are 
close to ones achieved on sample data. Nevertheless, further analysis and studies have to be 
performed before considering this conclusion an overall rule. 

Lastly, we can consider the Mandel’s k statistic and the Cochran test. Both are based on the 

assumption that    
   

, with         and        , are independently and identically distributed 

according to the normal distribution              and, to a certain degree, both look for 
consistency or detection of an extremely large within-laboratory standard deviation with respect to 
its mean value. So, the structure of both these statistics lays on the within-laboratory standard 
deviation or variance [43]. Nevertheless, we cannot apply them to the standard deviation of the 
posterior probability distributions for the specific laboratory parameters due to the borrowing of 
precision effect. As a matter of fact, the scale parameters of the bell-shaped curves for each LVDT 
in Figure 4.10 or the slopes of the Q-Q plots in Figure 4.11 are all very close to their mean value. 

Moreover, the critical value for both statistics is also based on the number   of replicated 
measurements within each laboratory. This number for the posterior distributions is a “big value” 
(size of thousands of simulated sample) due to the MCMC solving strategy and it pushes close to 
each other the critical values for stragglers and outliers or for medium and low consistency. 

Anyway, the problem of testing outlying observations regards the data themselves, so it can 
leave out of consideration the Bayesian framework. In other words, before any metrology 
evaluation we can apply the graphical consistency techniques and the outlier detection tests in 
their original formulation [43], [44], [45]. Then, on the “checked” dataset we can apply the Bayesian 
statistics for proficiency testing, as in section 4.3, or for accuracy evaluation, as in section 3.2.  
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4.5 HIERARCHICAL BAYESIAN MODEL FOR MANUFACTURERS RATING 

There is, of course, no reason to stop us considering models with more levels. The appropriate 
number of levels is governed by the structure of the data under consideration. So, if we want to 
leverage the proficiency testing scheme not only to determine the performance of participants but 
also to rate the test equipments made by different manufacturers, we can add a hierarchical level 
to the probability structure in order to consider this additional parameter. 

 
Figure 4.15: Hierarchical Bayesian probability structure for Proficiency testing scheme and manufacturers rating 

The proposed Hierarchical Bayesian model for fulfilling this purpose is shown in Figure 4.15 
and it can be summarized by the following conditional probability structure based on the 
exchangeability assumptions: 

    
   

     
   

    

   
                   

   
    

   
 

    
   

     
   

    

   
                   

   
    

   
 

    
   

         

   
                       

   
 

   

   
                      

   

   
                      

                     

 4.16 

where         is the subscript for the replicated measurements of each i-participant laboratory, 
        is the subscript for the specific laboratory,         is the subscript for the 
manufacturer (one between Instron, Best and Biased) and       is the superscript for the specific 
proficiency test item. 

The proposed probability structure, shown in Figure 4.15 and defined by equations 4.16, 
pursues the following founding idea. The accuracy description is split between the two top 
hierarchical levels. The first level expresses the characteristic properly related to the method 
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accuracy, that we supposed to be just the overall mean, whereas the second level describes 
mean, repeatability and inter-laboratory variability for a specific manufacturer. So, we lose the 
capability of capturing the overall method accuracy in order to highlight the differences between the 
equipments made by different manufacturers. Besides, being the dataset assumed to represent an 
inter-laboratory experiment, is it correct to talk about reproducibility instead of homogeneity. Of 
course, we are aware that this is misleading if we just consider the true experimental conditions for 
the Instron’s data subset. 

The hierarchical Bayesian model 4.16 is written following the OpenBUGS code as 

model { 
mu ~ dnorm (0, 40000) 

for (z in 1:r) { 
 x.z[z] ~ dnorm (mu, tau.Lz[z]) 
 tau.Lz[z] <- pow(sigma.Lz[z], -2) 
 sigma.Lz[z] ~ dunif (0, 0.010) 
 tau.rz[z] <- pow(sigma.rz[z], -2) 
 sigma.rz[z] ~ dunif (0, 0.006) 
 sigma.Rz[z] <- sqrt(pow(sigma.rz[z], 2) + pow(sigma.Lz[z], 2)) 
  for (i in 1:p) { 
   for (k in 1:n){ 
    xkiz[k,i,z] ~ dnorm (xiz[i,z], tau.rz[z]) 
     } 
    xiz[i,z] ~ dnorm (x.z[z], tau.Lz[z]) 
    } 
 } 

}. 

4.17 

To use the “R2OpenBUGS” package, the simulated dataset has to be arranged, according to 

the OpenBUGS rules, as a “list” R object in 4.13, having now       dimensions: 

$p 
[1] 18 
 
$r 
[1] 3 
 
$n 
[1] 4 
 
$xkiz 
, , 1 
 
      [,1]  [,2]  [,3]  [,4]  [,5]  …  [,14] [,15] [,16] [,17] [,18] 
[1,] 1.000 1.003 0.998 1.005 1.004  …  0.999 1.009 1.001 0.995 0.995 
[2,] 1.003 0.996 0.999 1.005 1.003  …  0.998 1.009 1.001 0.995 0.995 
[3,] 1.002 0.999 0.999 1.009 1.004  …  0.999 1.009 1.003 1.002 0.996 
[4,] 1.002 0.997 1.001 1.008 1.004  …  0.998 1.009 1.003 0.999 0.998 
 
, , 2 
 
      [,1]  [,2]  [,3]  [,4]  [,5]  …  [,14] [,15] [,16] [,17] [,18] 
[1,] 0.996 1.007 1.000 0.994 1.003  …  0.995 1.002 0.998 0.998 1.002 
[2,] 0.995 1.007 1.001 0.991 1.005  …  1.001 0.999 1.001 1.001 1.003 
[3,] 0.993 1.003 0.999 0.994 0.998  …  1.000 0.993 1.000 0.999 1.001 
[4,] 0.992 1.003 1.002 0.990 0.996  …  0.999 0.995 1.002 1.006 1.005 
 
, , 3 
 
      [,1]  [,2]  [,3]  [,4]  [,5]  …  [,14] [,15] [,16] [,17] [,18] 
[1,] 1.004 1.003 1.014 1.002 1.007  …  1.000 1.002 1.006 1.007 1.015 
[2,] 1.009 1.011 1.014 1.006 1.001  …  1.011 1.011 1.004 1.006 1.017 
[3,] 1.007 1.005 1.010 1.004 1.008  …  1.003 1.005 1.009 1.007 1.013 
[4,] 1.008 1.001 1.004 1.004 1.005  …  1.006 1.012 1.003 1.012 1.015 

4.18 
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As in the previous cases, the starting points are randomly selected from tighter proper prior 
distributions, where tighter means having a reduced scale parameter. Finally, the Bayesian 
numerical computation is performed using the “bugs” function of the “R2OpenBUGS” package.  

The results are shown in Figure 4.16 in terms of mean value (points) and standard deviation 

(error bars) of the posterior distributions for the specific laboratory parameters    
   

. The outcome is 

compared with sample values: the pink points denote the expected values of the specific LVDTs 
posterior distributions and the associated error bars span two standard deviations of their posterior 
distributions, whereas the light blue triangles and associated error bars are for the sample values, 
the same shown in Figure 4.3. Again we see the typical behavior of the Bayesian statistics, that are 
the borrowing of precision between the specific laboratory parameters and the shrinkage to the 
mean.  

 

 
Figure 4.16: Bayesian posterior compared to sample mean value ± lab standard deviation for each proficiency test item 

The shrinkage to the mean deserves attention. The center of gravity for each manufacturer 
group is not the general mean but the specific manufacturer mean value (grey dot-dashed lines). 
This effect is more evident when looking at the “Biased” manufacturer results for the first test item 
(“jump 3»2”). For this reason, we observe slight differences in the expected values of the posterior 
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distribution for the specific LVDT parameters with respect to those shown in Figure 4.6 and Figure 
4.7, that were achieved with the Bayesian model 4.11. 

We can calculate the z-scores on the specific LVDT results of the hierarchical Bayesian model 
4.16 arranging them in the Youden plot of Figure 4.17. Even if overall there is a good level of 
agreement of the results in Figure 4.17 with respect to those in Figure 4.8, we can see that the left 
side of the cloud of the green points is a bit shifted to the right with respect to what is shown in 
Figure 4.8 for the results of the hierarchical Bayesian model 4.11, and this is a consequence of the 
shrinkage to Biased manufacturer mean for the first test item. The effect is more evident for the z-
scores of the LVDT having serial number 155677 in the Figure 4.17 with respect to those in Figure 
4.8. 

 
Figure 4.17: Youden Plot for the z-score of the jump 3»2, that is     , against the ones of the jump 4»3, that is      

Now, we are wondering if the model is able to catch the same accuracy description within each 
manufacturer group as the stand alone model. For this purpose, we compare the point estimators 
obtained using model 3.15 to those achieved using model 4.16. The comparison is summarized in 
Table 4-1 where the superscript identifies the first or the second test item. The subscript is always 
  because we are looking just inside the the manufacturer group, Instron. 

 
Table 4-1: Point estimator comparison between the outcome of the model 3.15 against 4.16 for general manufacturer 

mean and repeatability, inter-LVDTs and reproducibility standard deviations 

Table 4-1 shows a good agreement even if the results were achieved by two different paths 
and enlarging the dataset as input of the model 4.16 for the proficiency testing scheme. We have 
slight differences only on the point estimators of the inter-laboratory (LVDT) variability. The 
goodness of this results arises by having a balanced experimental plan even for the proficiency 
testing dataset and enough laboratories for each manufacturer. We refer to future studies to 
answer the question on the effect of unbalanced experimental plan or smaller-sized datasets,. 

In connection with the accuracy description, we can analyze the posterior distributions of the 
parameters connected to its definition. We first examine in Figure 4.18 the overall mean for the 
LVDT displacement measurement in the equipments performing the VST method. The posterior 
distributions for the two test items give an idea of the trueness for the measurand. Considering 
that, in this case, we have a reference accepted value that can be modeled as a random variable 
described by a Dirac delta probability function which is zero everywhere except at 1 mm, then, 
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according to 2.25, the trueness can be described by the same bell shapes of Figure 4.18 shifted by 
-1 mm. We also remind that the assumption for the reference accepted value is drawn up as a 
consequence of the uncertainty budget analysis in Table 2-13. 

 
Figure 4.18: posterior probability distribution of the overall mean for the VST method as outcome of the simulated 

proficiency testing experiment 

Likewise, we can consider the posterior distributions for the specific manufacturer mean 

parameters     
 

. Figure 4.19 depicts their outcome after Bayesian updating according to model 

4.16. Again we can think about them as the expression of the measurement trueness because of 
the assumption for the reference accepted value as the Dirac delta function which is zero 
everywhere except at 1 mm.  

 
Figure 4.19: posterior probability distribution of the specific manufacturer mean for the VST method as outcome of the 

simulated proficiency testing experiment 

In both Figure 4.18 and Figure 4.19 there is a good fit with respect to the normality assumption. 
The posterior normal distribution of the overall mean is wider than those for the specific 
manufacturer means and encompasses them. Lastly, there is an evident bias on the overall mean, 
due to the Biased subset of data. 

We can then analyze the posterior probability density functions of the variability parameters, i.e. 
repeatability, inter-laboratory and reproducibility standard deviations shown in Figure 4.20. As we 
could expect, we have a good fit with the associated gamma theoretical distribution just for 
repeatability and inter-laboratory posterior distributions. As a matter of fact, in Figure 4.20 there is 
a good overlapping between the solid line and the dot-dashed line, the former depicts the 
numerical solution of the Bayesian hierarchical model whereas the latter is related to the 
theoretical distribution. Instead, the gamma assumption is not so good for the reproducibility 
parameter, being the combination of two gammas having different scale parameters as stated in 
the equation 2.7.  
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Figure 4.20: Posterior probability distributions of precision parameters under repeatability, inter-laboratory variability and 

reproducibility condition grouped by manufacturers (different colors) and by test items (different columns) 

Figure 4.18, Figure 4.19 and Figure 4.20 highlight the great advantage of the Hierarchical 
Bayesian models: in spite of their greater calculus complexity, they yield a full description in terms 
of probability distributions for each of the concepts defining accuracy. We have not just confidence 
intervals for the point estimators of the accuracy parameters, achieved as linear combinations of 
the residuals' mean square error and propagating the normality assumption for residuals, but in the 
presented Hierarchical Bayesian models we also have the full probability distributions, being the 
parameters random variables, each with its own density. So, we see the bias as a normal 
distribution more or less centered in zero, the repeatability as a gamma function and the 
reproducibility having a density not so far from a gamma function. 

Using equations 3.16, from the posterior probability distributions of the accuracy parameters we 
can draw up the credibility intervals for each of them. These results are summarized in Table 4-2. 
Once again, looking at the results for Instron product line, we have a good level of agreement with 
the results of the accuracy experiment in Table 3-16. On the basis of this information it can be 
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concluded that, performing the hierarchical Bayesian model 4.16 for a balanced experimental 
proficiency dataset with this cardinality and without outliers on the dataset, we do not introduce any 
distortion on the accuracy statistics for each manufacturers product line, that are, bias and 
uncertainties in Table 3-16. 

Level: 3»2 

 

Level: 4»3 

 
Table 4-2: Bias and uncertainties under repeatability and reproducibility conditions for the LVDT proficiency testing 

scheme based on the Hierarchical Bayesian having the conditional probability structure of the equation 4.16 

After the model validation, confident that we did not introduced distortion, finally we can 
introduce the rating metrics in order to judge which manufacturers’ product line is performing better 
regarding the ISO 306 standard requirement. The aim of the rating is to evaluate the ability of each 
manufacturers’ measuring system to produce output within specification limits of the standard. The 
proposed idea for the rating statistics is borrowed from the Statistical Process Control (SPC) 
methods. So, it was thought to adopt something similar to process capability    and     statistics. 

These indices measure how much "natural variation" a process experiences relative to its 
specification limits and allows different processes to be compared with respect to how well an 

organization controls them. Both these statistics assume a two-sided specification, if   and   are 
the mean and standard deviation, respectively, of the normal data for the process under control 
and USL and LSL are the upper and lower specification limits, respectively, then the population 
capability indices are defined as follows: 

    
       

   

         
      

   
 
      

   
 

 4.19 

Working on the VST example, the specification limits can be easily associated with the ISO 306 
requirement for accuracy, so: 

                 4.20 

The process mean value can be thought as the specific manufacturer product line bias, in 
formula: 

   
   

      
   

  
    

        
   

        4.21 

where 1 is measured in millimeters and it the reference accepted value for the deflection 
measurements of the VST accuracy experiment. We did not use the generic letter, as stated in 
2.25, in order to avoid conflict between symbols, being   also the choice for indicating the overall 
mean parameter of the Bayesian model having the probability structure in 4.16. 

Lastly, to estimate the half width of the “natural process variability, instead of three standard 
deviations, we use the quantile function of the posterior probability distribution of the reproducibility 
parameter for each z-specific manufacturer, that is, the inverse of its posterior probability cumulate 
distribution function, corresponding to a probability equal to 99,73 %, that represents the probability 
associated to a standard normal random variable taking on a value less than or equal to 3. In 
formula we have: 

    
   

    

   
  

   

       

   
        4.22 

Therefore, the manufacturer rating equations are: 
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 4.23 

where   
 

 

   
describes, under the assumption of zero bias, the capability of the product line of the z-

specific manufacture for the j-level of the reference accepted value factor to provide measurements 

within the specific limits range, whereas    
 

 

   
 describes the capability of the product line of the z-

specific manufacture for the j-level of the reference accepted value factor to provide measurements 

centred between the specification limits. 

Therefore, applying the rating metrics in 4.23 to the outcome of the Hierarchical Bayesian 
model 4.16 we achieve the final result that is summarized in Table 4-3. 

 
Table 4-3: Manufacturers’ product lines ratings 

Higher ratings correspond to better manufacturer performance. The optimum value for   
 

 

   
 

should be 2. Anyway, above 1 the performance is satisfactory. More complex is the judgment 

about    
 

 

   
 statistic. As a matter of fact, it depends also on the   

 
 

   
 index so that, if   

 
 

   
  , 

then    
 

 

   
   could be acceptable. That is exactly what happened for the “Biased” manufacturer, 

for whom looking at the Youden plot outcome in Figure 4.17 we don’t have any low consistency 

results, even if its    
 

 

   
 is less than 1. 

Hence, we did not lose consistency in accuracy evaluation for the each specific product line, 
even if the general problem has been modelled as fully nested experimental design with four 
different hierarchical levels: the upper level is for test method, the second is for the manufacturer 
product lines, the third is for the specific testing equipments and the bottom level is for residuals. 
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5 CONCLUSIONS 

At the practical level, hierarchical models proved to be flexible tools for combining information 
from both cognitive sources, that are measurements and prior knowledge. The flexibility 
guarantees a complete accuracy description in terms of probability density function for trueness, 
evaluated as bias from a reference accepted value, and for precision under repeatability and 
homogeneity or reproducibility conditions. So, instead of the point estimators described in ISO 
5725-2, that yield single-valued results, the great advantage of the hierarchical Bayesian accuracy 
model, according to the proposed probability structure of equation 3.15 or, at a higher level, of 
equation 3.19, is the possibility to have a numerical approximation of the whole marginal probability 
distribution for each accuracy parameter. This leads to a better fit with the metrology attitude of the 
last decade. Indeed, the recent GUM-S1 appears to move the metrology guidelines towards the 
direction of working with probability distributions encoding the state of knowledge about quantities. 
This attitude is fully satisfied in both accuracy experiments considered in this research. As we 
apply the hierarchical Bayesian accuracy model, the final outcome is not just the expected value 
but the whole marginal posterior distribution for each of the parameter describing the accuracy 
(see Figure 3.4 for Sulfur content experiment or Figure 3.20 for LVDT displacement experiment). 

Conceptually, this allows to overcome the criticism often moved at the GUM, that of being 
based on a mixture of frequentist and Bayesian thinking. In particular, the GUM Type A uncertainty 
evaluations are frequentist, whereas the Type B evaluations, using state-of-knowledge 
distributions, have a Bayesian attitude. In a fully Bayesian framework the inference is based on the 
state-of-knowledge, expressed in terms of prior distributions that are upgraded as functions of data 
evidence (observed measurements). 

The most important result from the model validation viewpoint is the consistency of the 
Bayesian outcome, expressed as expected values for accuracy parameters, with the bias and 
expanded precision estimates according to ISO 5725-2. In the case of the LVDT displacement 
experiment, the difference between ISO 5725-2 outcome (Table 2-11) and the Bayesian one 
(Table 3-14) is smaller than the instrument resolution. Therefore, there is no evidence for asserting 
that the bias and precision point estimates are different, be they obtained with ISO 5725-2 or the 
proposed Bayesian statistics. This statement is no more completely true as we move from point 
estimation to interval estimation, that is what manufacturers need to characterise their whole 
product lines of test equipments. In fact, comparing the ISO 5725-2 interval estimates (Table 2-14) 
to the Bayesian (Table 3-14), you may gather that the ISO 5725-2 is not able to properly separate 
random and systematic errors. As explained in section 2.1, the statistics describing trueness and 
precision according ISO 5725-2 descend from the ANOVA general linear model, so that the 
variance decomposition follows the ANOVA rules. This means that we are able to distinguish 
between the within-groups and among-groups variances, the former expressing repeatability and 
the latter expressing inter-laboratory variability. However, we are unable to evaluate the fraction of 
variability due to the systematic effects. Undoubtedly, looking at the result reported in Table 2-14, 
the product line trueness of the displacement measurement as bias interval estimate according to 
ANOVA model does not make much sense. Three intervals over four do not encompass the zero. 
This result suggests that the product line displacement measurements are systematically biased. 
By contrast, the proposed Bayesian model does not come to the same conclusion. Looking at the 
outcome in Table 3-14, there is no enough evidence to infer that the displacement measurements 
of the product line population are systematically biased. We believe in the Bayesian result because 
it provides a better variance decomposition, being the proposed Bayesian model also able to 
describe the systematic variability in terms of probability distribution for the general mean. So, the 
Bayesian model seems definitely better to describe the accuracy of a whole product line, in a way 
consistent with the concepts of trueness and precision, as they are stated in the International 
Vocabulary of Metrology. Looking at the final result, the customer realizes that, buying one Instron 
VST equipment for testing samples 3 mm thick, the displacement measurement can be affect by a 

systematic error in the range        µm and by a random error up to     µm under homogeneity 
conditions, both having a credibility level of 95 %. 

Moreover, we can easily leverage the exchangeability assumption for the reference accepted 
value, thought in order to analyze the metrological performance for a discrete subset of sample 
thicknesses allowed by the ISO 306, and adding another hierarchical level it is possible to have a 
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complete overview of the accuracy associated with the displacement measurements in the Instron 
VST test equipment. The overall accuracy outcome is summarized in Table 3-19 as interval 
estimates for specific credibility levels or in Table 3-20 as credibility levels given some specific 
interval estimates. 

The proposed hierarchical models for accuracy evaluation have been already tested under two 
experimental plans with different sample sizes and in one case including missing values, under 
different assumptions for priors, under different choices for MCMC numerical conditions. Of course 
we are far from a full sensitivity analysis and further researches are welcome. The main pending 
questions are how much small the experimental sample size can be without affecting the accuracy 
outcome and if the sensitivity to prior assumptions depends on sample size.  

The greater disadvantage is the greater calculus complexity with respect to ISO 5725-2, 
especially because a possible solution in closed form was not analyzed. Nowadays, even where no 
closed-form algebraic formulas are available, Bayesian statistics of interest can be calculated using 
a computer simulation technique, popularly known as Markov Chain Monte Carlo (MCMC) [16]. 
Even complicated hierarchical Bayesian models as those used in this study can be solved easily 
thanks to the IT progress. However, it should be pointed out that the Bayesian framework needs a 
deeper level of statistical knowledge, which might be a deterrent to their spread in metrology. 

In order to have a complete overview of the Bayesian framework in metrology, the present 
research proofs how it is possible to exploit the hierarchical models flexibility for proficiency testing 
schemes. The benchmarks are the z-scores statistics according to ISO 13528. Overall, also in this 
case there is a good agreement between the Bayesian outcome and its benchmark. Nevertheless, 
we need to pay attention to the shrinkage-to-the-mean effect of the hierarchical Bayesian models 
that can lead to misclassifications with respect to the benchmark. Also this topic deserves to be 
further analyzed focusing on possible choices for comparison criterion. 

As concerns proficiency testing, the graphical consistency technique based on Mandel h-
statistic and Grubb’s tests for outliers detection were successfully introduced straight on the 
Bayesian outcome after proving the consistency of the underlying assumptions. However, we were 
unableto do the same with the Mandel k-statistic and Cochran test due to the attitude, said 
borrowing of precision, of the hierarchical Bayesian models.  

Lastly, adding another level in the hierarchical Bayesian model for proficiency comparison in 
was possible to maintain the overall specific laboratory scores and to have at the same time a full 
accuracy evaluation of each product family from different manufacturers involved in the inter-
laboratory test. This has been possible thanks to the evidence that with the fully nested hierarchical 
model established in equation 4.16, we did not lose consistency in accuracy evaluation for the 
specific Instron product line with respect to the outcome of the stand alone accuracy evaluation, 
even if the experimental dataset was enlarged by adding data drawn from the product line of other 
manufacturers. So, leveraging this “accuracy-retaining property” within each product line involved 
in the proficiency testing experiment, two scores for evaluating the equipments performance of 
different manufacturers are presented. The first statistic rates the product line variability with 
respect to an assigned target, while the second rates the behaviour of the different product line as 
a combined function of their bias and variability. In this way, the proficiency test scheme can be 
exploited not only for laboratories comparisons but also in order to compare the performance of the 
product lines of different manufacturers. Further analysis and studies have to be performed before 
giving universal validity to this conclusion, especially because unbalanced experimental plan have 
not already been tested. Actually, there are concerns that in the case of unbalanced plan as 
concerns the number of equipments for each product line the “accuracy-retaining property” is no 
more realistic. In this way the risk is that the final rating is not a reliable projection of the product 
line accuracy performance but a function of the represented market share within the subset of the 
participants to the proficiency testing. 

In conclusion, let we remark once again that, as result of this research, the proposed 
hierarchical Bayesian models can be used as an alternative to those given in ISO 5725-2 and ISO 
13528, the main international standards for the accuracy evaluation in inter-laboratory experiments 
and proficiency testing schemes, respectively. The Bayesian framework yields results consistent 
with those of the established methods, while offering an enhanced descriptive capability for 
accuracy evaluation, as the result is not just a point estimator or a confidence interval but the full 
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probability density for each accuracy parameter, that are trueness, precision under repeatability, 
homogeneity and reproducibility conditions. This really ought to be appreciated by people who are 
not deep inside the metrology environment because they can clearly distinguish all the accuracy 
components, as it was for some colleagues in Instron. 
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6 ANNEX A: VST ACCURACY EXPERIMENT MEASUREMENTS 

 #   yijk   Jump    LVDT 
 

#   yijk   Jump    LVDT 
 

#   yijk   Jump    LVDT 

 1    0.996    6»5  155534 
 

97   1.006    6»5  148886 
 

193  1.003    6»5  148880 
 2    1.006    6»5  155534 

 
98   1.008    6»5  148886 

 
194  1.001    6»5  148880 

 3    0.997    6»5  155534 
 

99   1.006    6»5  148886 
 

195  1.004    6»5  148880 
 4    0.998    6»5  155534 

 
100  0.995    6»5  148886 

 
196  1.004    6»5  148880 

 5    0.999    5»4  155534 
 

101  1.006    5»4  148886 
 

197  0.993    5»4  148880 
 6    0.998    5»4  155534 

 
102  1.003    5»4  148886 

 
198  0.993    5»4  148880 

 7    1.002    5»4  155534 
 

103  1.004    5»4  148886 
 

199  0.993    5»4  148880 
 8    1.006    5»4  155534 

 
104  1.003    5»4  148886 

 
200  0.990    5»4  148880 

 9    0.999    4»3  155534 
 

105  0.991    4»3  148886 
 

201  0.994    4»3  148880 
 10   0.999    4»3  155534 

 
106  0.992    4»3  148886 

 
202  0.994    4»3  148880 

 11   0.998    4»3  155534 
 

107  0.994    4»3  148886 
 

203  0.996    4»3  148880 
 12   1.011    4»3  155534 

 
108  1.005    4»3  148886 

 
204  0.996    4»3  148880 

 13   1.001    3»2  155534 
 

109  1.003    3»2  148886 
 

205  1.004    3»2  148880 
 14   1.001    3»2  155534 

 
110  1.004    3»2  148886 

 
206  1.003    3»2  148880 

 15   1.003    3»2  155534 
 

111  1.004    3»2  148886 
 

207  1.004    3»2  148880 
 16   1.003    3»2  155534 

 
112  1.000    3»2  148886 

 
208  1.004    3»2  148880 

 17   0.989    6»5  155652 
 

113  0.995    6»5  148859 
 

209  0.991    6»5  148890 
 18   0.990    6»5  155652 

 
114  1.003    6»5  148859 

 
210  0.990    6»5  148890 

 19   0.994    6»5  155652 
 

115  1.001    6»5  148859 
 

211  0.992    6»5  148890 
 20   0.992    6»5  155652 

 
116  0.994    6»5  148859 

 
212  0.994    6»5  148890 

 21   0.991    5»4  155652 
 

117  1.001    5»4  148859 
 

213  1.001    5»4  148890 
 22   0.992    5»4  155652 

 
118  1.004    5»4  148859 

 
214  1.000    5»4  148890 

 23   0.994    5»4  155652 
 

119  1.003    5»4  148859 
 

215  1.002    5»4  148890 
 24   0.993    5»4  155652 

 
120  1.006    5»4  148859 

 
216  1.002    5»4  148890 

 25   1.005    4»3  155652 
 

121  0.994    4»3  148859 
 

217  1.001    4»3  148890 
 26   1.006    4»3  155652 

 
122  1.001    4»3  148859 

 
218  1.009    4»3  148890 

 27   1.006    4»3  155652 
 

123  0.998    4»3  148859 
 

219  1.005    4»3  148890 
 28   1.006    4»3  155652 

 
124  1.001    4»3  148859 

 
220  0.999    4»3  148890 

 29   1.009    3»2  155652 
 

125  1.003    3»2  148859 
 

221  0.999    3»2  148890 
 30   1.009    3»2  155652 

 
126  0.996    3»2  148859 

 
222  1.003    3»2  148890 

 31   1.009    3»2  155652 
 

127  0.999    3»2  148859 
 

223  0.999    3»2  148890 
 32   1.009    3»2  155652 

 
128  0.997    3»2  148859 

 
224  0.998    3»2  148890 

 33   0.996    6»5  155530 
 

129  1.001    6»5  148883 
 

225  1.005    6»5  148866 
 34   1.006    6»5  155530 

 
130  1.000    6»5  148883 

 
226  1.007    6»5  148866 

 35   1.003    6»5  155530 
 

131  1.003    6»5  148883 
 

227  1.005    6»5  148866 
 36   1.002    6»5  155530 

 
132  1.001    6»5  148883 

 
228  1.011    6»5  148866 

 37   0.997    5»4  155530 
 

133  0.995    5»4  148883 
 

229  0.996    5»4  148866 
 38   1.005    5»4  155530 

 
134  0.998    5»4  148883 

 
230  0.998    5»4  148866 

 39   1.000    5»4  155530 
 

135  0.998    5»4  148883 
 

231  0.996    5»4  148866 
 40   1.002    5»4  155530 

 
136  0.996    5»4  148883 

 
232  0.996    5»4  148866 

 41   1.002    4»3  155530 
 

137  0.999    4»3  148883 
 

233  0.997    4»3  148866 
 42   1.000    4»3  155530 

 
138  0.999    4»3  148883 

 
234  0.992    4»3  148866 

 43   0.998    4»3  155530 
 

139  1.003    4»3  148883 
 

235  0.999    4»3  148866 
 44   1.005    4»3  155530 

 
140  1.000    4»3  148883 

 
236  0.994    4»3  148866 

 45   1.004    3»2  155530 
 

141  0.998    3»2  148883 
 

237  1.005    3»2  148866 
 46   1.006    3»2  155530 

 
142  0.999    3»2  148883 

 
238  1.005    3»2  148866 

 47   1.007    3»2  155530 
 

143  1.003    3»2  148883 
 

239  1.009    3»2  148866 
 48   1.012    3»2  155530 

 
144  0.999    3»2  148883 

 
240  1.008    3»2  148866 
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 #   yijk   Jump    LVDT 
 

#   yijk   Jump    LVDT 
 

#   yijk   Jump    LVDT 

 49   0.999    6»5  148865 
 

145  1.001    6»5  155651 
 

241  1.005    6»5  148893 
 50   0.999    6»5  148865 

 
146  1.003    6»5  155651 

 
242  1.005    6»5  148893 

 51   1.000    6»5  148865 
 

147  0.998    6»5  155651 
 

243  1.005    6»5  148893 
 52   1.000    6»5  148865 

 
148  0.995    6»5  155651 

 
244  1.006    6»5  148893 

 53   0.995    5»4  148865 
 

149  0.992    5»4  155651 
 

245  1.005    5»4  148893 
 54   0.999    5»4  148865 

 
150  0.992    5»4  155651 

 
246  1.006    5»4  148893 

 55   0.999    5»4  148865 
 

151  0.990    5»4  155651 
 

247  1.007    5»4  148893 
 56   0.999    5»4  148865 

 
152  0.990    5»4  155651 

 
248  1.007    5»4  148893 

 57   0.999    4»3  148865 
 

153  0.992    4»3  155651 
 

249  0.990    4»3  148893 
 58   1.000    4»3  148865 

 
154  1.003    4»3  155651 

 
250  0.988    4»3  148893 

 59   1.000    4»3  148865 
 

155  1.001    4»3  155651 
 

251  0.990    4»3  148893 
 60   1.000    4»3  148865 

 
156  1.000    4»3  155651 

 
252  0.989    4»3  148893 

 61   0.998    3»2  148865 
 

157  0.999    3»2  155651 
 

253  1.014    3»2  148893 
 62   0.999    3»2  148865 

 
158  0.998    3»2  155651 

 
254  1.013    3»2  148893 

 63   0.999    3»2  148865 
 

159  0.999    3»2  155651 
 

255  1.013    3»2  148893 
 64   1.001    3»2  148865 

 
160  0.998    3»2  155651 

 
256  1.013    3»2  148893 

 65   1.000    6»5  155655 
 

161  1.003    6»5  148857 
 

257  0.992    6»5  155653 
 66   1.000    6»5  155655 

 
162  1.004    6»5  148857 

 
258  0.994    6»5  155653 

 67   1.001    6»5  155655 
 

163  1.003    6»5  148857 
 

259  0.991    6»5  155653 
 68   1.001    6»5  155655 

 
164  1.003    6»5  148857 

 
260  0.994    6»5  155653 

 69   1.006    5»4  155655 
 

165  0.996    5»4  148857 
 

261  1.000    5»4  155653 
 70   1.006    5»4  155655 

 
166  0.997    5»4  148857 

 
262  0.992    5»4  155653 

 71   1.008    5»4  155655 
 

167  0.996    5»4  148857 
 

263  0.996    5»4  155653 
 72   1.006    5»4  155655 

 
168  0.996    5»4  148857 

 
264  0.995    5»4  155653 

 73   0.991    4»3  155655 
 

169  1.001    4»3  148857 
 

265  1.001    4»3  155653 
 74   1.005    4»3  155655 

 
170  1.001    4»3  148857 

 
266  1.004    4»3  155653 

 75   0.989    4»3  155655 
 

171  1.002    4»3  148857 
 

267  1.001    4»3  155653 
 76   0.990    4»3  155655 

 
172  1.004    4»3  148857 

 
268  1.004    4»3  155653 

 77   0.995    3»2  155655 
 

173  1.000    3»2  148857 
 

269  1.001    3»2  155653 
 78   0.995    3»2  155655 

 
174  1.003    3»2  148857 

 
270  1.001    3»2  155653 

 79   0.996    3»2  155655 
 

175  1.002    3»2  148857 
 

271  1.003    3»2  155653 
 80   0.998    3»2  155655 

 
176  1.002    3»2  148857 

 
272  1.003    3»2  155653 

 81   1.001    6»5  155654 
 

177  1.003    6»5  148900 
 

273  1.000    6»5  155601 
 82   1.000    6»5  155654 

 
178  0.999    6»5  148900 

 
274  1.001    6»5  155601 

 83   1.003    6»5  155654 
 

179  1.004    6»5  148900 
 

275  1.008    6»5  155601 
 84   1.006    6»5  155654 

 
180  1.004    6»5  148900 

 
276  1.003    6»5  155601 

 85   0.999    5»4  155654 
 

181  1.002    5»4  148900 
 

277  1.006    5»4  155601 
 86   1.000    5»4  155654 

 
182  1.004    5»4  148900 

 
278  1.003    5»4  155601 

 87   0.997    5»4  155654 
 

183  1.005    5»4  148900 
 

279  1.006    5»4  155601 
 88   0.997    5»4  155654 

 
184  1.005    5»4  148900 

 
280  1.004    5»4  155601 

 89   0.999    4»3  155654 
 

185  0.997    4»3  148900 
 

281  0.996    4»3  155601 
 90   1.000    4»3  155654 

 
186  0.995    4»3  148900 

 
282  0.998    4»3  155601 

 91   1.000    4»3  155654 
 

187  0.996    4»3  148900 
 

283  0.999    4»3  155601 
 92   1.003    4»3  155654 

 
188  0.996    4»3  148900 

 
284  1.003    4»3  155601 

 93   0.995    3»2  155654 
 

189  0.998    3»2  148900 
 

285  0.991    3»2  155601 
 94   0.995    3»2  155654 

 
190  0.999    3»2  148900 

 
286  0.990    3»2  155601 

 95   1.002    3»2  155654 
 

191  0.999    3»2  148900 
 

287  0.999    3»2  155601 
 96   0.999    3»2  155654 

 
192  1.000    3»2  148900 

 
288  0.995    3»2  155601 
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7 ANNEX B: R SCRIPT FOR THE SULFUR CONTENT EXPERIMENT 

setwd("C:/PhD/Thesis ") 
d<-dim(data2) 
i<-levels(data2$Laboratory) 
p<-length(i)   #nr. of Laboratories 
#[1] 8 
j<-levels(data2$Batch) 
q<-length(j)   #nr. of testing levels 
#[1] 4 
names(data2)[4] <- "xijk" #sulfur measurements 
attach(data2) 
 

########### ISO 5725-2 Framework ############# 
 
### Arranging data like Figure 2 
FormB <- tapply(xijk,list(Laboratory,Batch),mean) 
round(FormB,3)   #Cell means §7.2.9 
#       LV1   LV2   LV3   LV4 
#Lab1 0.708 1.205 1.688 3.240 
#Lab2 0.680 1.217 1.643 3.200 
#Lab3 0.667 1.297 1.613 3.370 
#Lab4 0.660 1.203 1.667 3.203 
#Lab5 0.690 1.248 1.650 3.216 
#Lab6 0.733 1.373 1.720 3.290 
#Lab7 0.703 1.240 1.690 3.247 
#Lab8 0.677 1.253 1.673 3.257 
FormC <- tapply(xijk,list(Laboratory,Batch),sd) 
round(FormC,3)   #Measure of cells spread §7.2.10 
#       LV1   LV2   LV3   LV4 
#Lab1 0.005 0.021 0.010 0.028 
#Lab2 0.010 0.006 0.006 0.000 
#Lab3 0.021 0.015 0.006 0.010 
#Lab4 0.010 0.025 0.012 0.038 
#Lab5 0.019 0.043 0.032 0.038 
#Lab6 0.006 0.015 0.017 0.020 
#Lab7 0.012 0.035 0.010 0.021 
#Lab8 0.025 0.042 0.006 0.006 
FormN <- tapply(xijk,list(Laboratory,Batch),length) 
FormN    #Number of replicates for each cell 
#     LV1 LV2 LV3 LV4 
#Lab1   4   4   4   4 
#Lab2   3   3   3   3 
#Lab3   3   3   3   3 
#Lab4   3   3   3   3 
#Lab5   5   4   5   5 
#Lab6   3   3   3   3 
#Lab7   3   3   3   3 
#Lab8   3   3   3   3 
FormV <- tapply(xijk,list(Laboratory,Batch),var) 
 
AOV <- aov(xijk[Batch == j[1]]~Laboratory[Batch == j[1]]) 
summary(AOV) 
#                          Df   Sum Sq   Mean Sq F value   Pr(>F)     
#Laboratory[Batch == j[1]]  7 0.012555 0.0017935   7.849 0.000163 *** 
#Residuals                 19 0.004342 0.0002285                      
#--- 
#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
print(a<-model.tables(AOV, "means"),digits=4) 
#Tables of means 
#Grand mean 
#           
#0.6903704  
# 
# Laboratory[Batch == j[1]]  
#      Lab1 Lab2   Lab3 Lab4 Lab5   Lab6   Lab7   Lab8 
#    0.7075 0.68 0.6667 0.66 0.69 0.7333 0.7033 0.6767 #laboratory means 
#rep 4.0000 3.00 3.0000 3.00 5.00 3.0000 3.0000 3.0000 #cell replicates 
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print(ni <- a$n$`Laboratory[Batch == j[1]]`) 
#Laboratory[Batch == j[1]] 
#Lab1 Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Lab8  
#   4    3    3    3    5    3    3    3  
print(ntot <- sum(ni)) 
#[1] 27  #that is the total number of measurements for the first batch 
print(n1 <- 1/summary(AOV)[[1]]$'Df' [1]*(ntot-sum(ni^2)/ntot)) 
#[1] 3.354497 #that is the average number of measurements for the first batch 
 
#initialization of the objected needed by the following for cycle 
Table.B2 <- matrix(nrow = p, ncol = q*2) 
mj <- c()  #the vector for the general means 
ss2dj <- 1:q 
ss2rj <- 1:q  #the vector of the repeatability variances 
p2 <- 1:q  #the vector of the numbers of laboratory 
n2 <- 1:q  #the vector of the replicates’ average numbers 
 
> for(w in 1:q){ 
+   AOV <- aov(xijk[Batch == j[w]]~Laboratory[Batch == j[w]]) 
+   ss2dj[w] <- summary(AOV)[[1]]$'Mean Sq'[1] 
+   ss2rj[w] <- summary(AOV)[[1]]$'Mean Sq'[2] 
+   p2[w] <- summary(AOV)[[1]]$'Df'[1]+1 
+   ntot <-sum(summary(AOV)[[1]]$'Df')+1 
+   a <- model.tables(AOV, "means") 
+   ni <- a$n$`Laboratory[Batch == j[w]]` 
+   Table.B2[,(2*w)]<-ni 
+   Table.B2[,(2*w-1)]<-round(a$tables$`Laboratory[Batch == j[w]]`,3) 
+   n2[w] <- 1/summary(AOV)[[1]]$'Df' [1]*(ntot-sum(ni^2)/ntot) 
+   mj <- c(mj, a$tables$`Grand mean`) 
+ } 
rm(a, ni, ntot, n1) 
print(ss2Lj <- (ss2dj-ss2rj)/n2)  #inter-laboratory variances 
#[1] 0.0004665408 0.0028448195 0.0009171136 0.0027092114 
print(ss2Rj <- ss2Lj + ss2rj)   #reproducibility variances 
[1] 0.0006950495 0.0036730603 0.0012087802 0.0033892114 
 
### General mean for each level 
print(xj <- round(apply(FormB*FormN,2,sum)/apply(FormN,2,sum),3)) 
#  LV1   LV2   LV3   LV4  
#0.690 1.252 1.667 3.250  
print(round(mj,3)) 
#[1] 0.690 1.252 1.667 3.250 #ANOVA leads to the same result of ISO 5725-2 
 
TableB5 <- cbind(1:4, format(round(mj,3), nsmall = 3), round(sqrt(ss2rj),3),  
  round(sqrt(ss2Rj),3)) 
library(ggplot2) 
library(grid) 
library(gridExtra) 
colnames(TableB5) <- c('Level[j]', paste0('hat(m)','^','(j)'),  
   paste0('s[r]','^','(j)'), paste0('s[R]','^','(j)')) 
grid.newpage() 
tt <- ttheme_default(colhead=list(fg_params = list(parse=TRUE))) 
grid.table(TableB5, theme = tt) #accuracy table according to ISO 5725-2 
 

 

 

########### Bayesian Framework ############# 
library(R2OpenBUGS) 
library(coda) 
library(ggplot2) 
 
data1 <- data2[Batch == "LV1",c(1,4)] 
detach(data2) 
attach(data1) 
 
print(u <- tapply(xijk,list(Laboratory),length)) 
#Lab1 Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Lab8  
#   4    3    3    3    5    3    3    3  
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print(u <- max(u)-tapply(xijk,list(Laboratory),length)) 
#Lab1 Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Lab8  
#   1    2    2    2    0    2    2    2  
a<-c() 
for(w in 1:p){ 
   a<-c(a,xijk[Laboratory==i[w]],rep(NA,u[w])) 
} 
print(xik <- a) 
# [1] 0.71 0.71 0.70 0.71   NA 0.69 0.67 0.68   NA   NA 0.66 0.65 0.69   NA   #
[15]   NA 0.67 0.65 0.66   NA   NA 0.70 0.69 0.66 0.71 0.69 0.73 0.74 0.73   #[
29]   NA   NA 0.71 0.71 0.69   NA   NA 0.70 0.65 0.68   NA   NA 
a<-max(tapply(xijk,list(Laboratory),length)) 
print(data <- list (p=p, a=a, xik=t(structure(.Data=xik, .Dim=c(a,p))))) 
#$p 
#[1] 8 
# 
#$a 
#[1] 5 
# 
#$xik 
#     [,1] [,2] [,3] [,4] [,5] 
#[1,] 0.71 0.71 0.70 0.71   NA 
#[2,] 0.69 0.67 0.68   NA   NA 
#[3,] 0.66 0.65 0.69   NA   NA 
#[4,] 0.67 0.65 0.66   NA   NA 
#[5,] 0.70 0.69 0.66 0.71 0.69 
#[6,] 0.73 0.74 0.73   NA   NA 
#[7,] 0.71 0.71 0.69   NA   NA 
#[8,] 0.70 0.65 0.68   NA   NA 
 
inits <- function(){ 
  list(B = rnorm(p, 0, 100), mu.B = rnorm(1, 0, 1), sigma.R = runif(1, 0, 100),
  
 sigma.r = runif(1, 0, 100)) 
} 
> LV1.sim <- bugs(data, inits, model.file = "C:/PhD/Thesis/sulfur2a.txt", 
 parameters = c("B", "mu.B", "sigma.R", "sigma.r"), n.iter = 1000) 
 
print(LV1.sim) 
#Inference for Bugs model at " C:/PhD/Thesis/sulfur2a.txt",  
#Current: 3 chains, each with 1000 iterations (first 500 discarded) 
#Cumulative: n.sims = 1500 iterations saved 
#           mean  sd   2.5%    25%    50%    75%  97.5% Rhat n.eff 
#B[1]        0.7 0.0    0.7    0.7    0.7    0.7    0.7    1  1500 
#B[2]        0.7 0.0    0.7    0.7    0.7    0.7    0.7    1   800 
#B[3]        0.7 0.0    0.7    0.7    0.7    0.7    0.7    1  1500 
#B[4]        0.7 0.0    0.6    0.7    0.7    0.7    0.7    1   690 
#B[5]        0.7 0.0    0.7    0.7    0.7    0.7    0.7    1  1100 
#B[6]        0.7 0.0    0.7    0.7    0.7    0.7    0.7    1   610 
#B[7]        0.7 0.0    0.7    0.7    0.7    0.7    0.7    1   830 
#B[8]        0.7 0.0    0.7    0.7    0.7    0.7    0.7    1   220 
#mu.B        0.7 0.0    0.7    0.7    0.7    0.7    0.7    1   520 
#sigma.R     0.0 0.0    0.0    0.0    0.0    0.0    0.1    1   740 
#sigma.r     0.0 0.0    0.0    0.0    0.0    0.0    0.0    1   790 
#deviance -147.4 5.6 -155.7 -151.6 -148.4 -144.0 -134.8    1   970 
 
#For each parameter, n.eff is a crude measure of effective sample size, 
#and Rhat is the potential scale reduction factor (at convergence, Rhat=1). 
 
#DIC info (using the rule, pD = Dbar-Dhat) 
#pD = 7.9 and DIC = -139.5 
#DIC is an estimate of expected predictive error (lower deviance is better). 
 
MCR <- LV1.sim$sims.list$B 
n <- length(MCR[,1]) 
MCR <- as.vector(MCR) 
MCR <- data.frame(y1ik = MCR, i = as.vector(t(matrix(rep(i, n), p, n)))) 
rm(n) 
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ggplot(data = MCR, aes(x=i, y=y1ik)) + geom_boxplot(aes(fill = 'lightgreen')) +
  
   labs(x = "", y = expression(paste(y[ik]^(1), '[%]'))) +  
   theme(axis.text=element_text(size=12), axis.title=element_text(size=18, face
="bold"), legend.text=element_text(size=12), legend.title=element_text(size=12,
 face="bold")) + 
   geom_point(data = data.frame(x=Laboratory,y =xijk), aes(x=x, y=y, color='dar
kred'), size=3) +  
   scale_fill_identity(name = 'Boxplot', guide = 'legend',labels = c('Bayesian'
)) + 
   scale_colour_manual(name = 'Points', values =c('darkred'='darkred'), labels 
= c('Raw data')) 
rm(MCR) 
 
### Comparison 
round(LV1.sim$mean$B,3)  #Bayesian outcome 
#[1] 0.705 0.681 0.670 0.664 0.690 0.727 0.701 0.679 
round(FormB[,1],3)   #ISO 5725-2 outcome 
# Lab1  Lab2  Lab3  Lab4  Lab5  Lab6  Lab7  Lab8  
#0.708 0.680 0.667 0.660 0.690 0.733 0.703 0.677  
VS <- data.frame(c(round(FormB[,1],3), round(LV1.sim$mean$B,3)),c(i,i),  
    c(rep("Sample", p), rep("Bayesian", p))) 
colnames(VS) <- c("Bi", "Laboratory_i", "Model") 
ggplot(VS, aes(Laboratory_i, Bi)) +  
geom_point(aes(colour = factor(Model)), position=position_dodge(0.5), size=3) +
  
   labs(x = "", y = expression(paste(b[i]^(1), ' [%]'))) +  
   geom_hline(yintercept = LV1.sim$mean$mu.B, lty = 4, size = 1.05) +  
   scale_color_manual(name = 'Mean', breaks = levels(VS$Model), values=c("darkg
reen", "darkred")) +  
   theme(axis.text=element_text(size=12), axis.title=element_text(size=18,face=
"bold"), legend.text=element_text(size=12),  
legend.title=element_text(size=12, face="bold")) 
rm(VS) 
 
TableHB5 <- data.frame(1, mB1 = format(round(LV1.sim$mean$mu.B, 3), nsmall=3), 
                       sr1 = round(LV1.sim$mean$sigma.r, 3),  
                       sR1 = round(LV1.sim$mean$sigma.R, 3)) 
colnames(TableHB5) <- c('Level[j]', paste0('m[B]','^','(j)'), paste0('s[r]','^'
,'(j)'), paste0('s[R]','^','(j)')) 
grid.newpage() 
grid.table(TableHB5, theme = tt) 
 
### General mean posterior parameters 
print(round(LV1.sim$mean$mu.B,3)) 
#[1] 0.69   #expected value of the general mean parameter 
print(round(LV1.sim$sd$mu.B,3)) 
#[1] 0.011   #standard deviation of the general mean parameter 
### Repeatability posterior parameters 
print(round((LV1.sim$mean$sigma.r/LV1.sim$sd$sigma.r)^2,1)) 
#[1] 32.8   #shape parameter of the repeatability parameter 
print(round(LV1.sim$mean$sigma.r/LV1.sim$sd$sigma.r^2,0)) 
#[1] 2004   #scale parameter of the repeatability parameter 
### Reproducibility posterior parameters 
print(round((LV1.sim$mean$sigma.R/LV1.sim$sd$sigma.R)^2,1)) 
#[1] 6.5   #shape parameter of the reproducibity parameter 
print(round(LV1.sim$mean$sigma.R/LV1.sim$sd$sigma.R^2,0)) 
#[1] 237   #scale parameter of the reproducibity parameter 
 
p1 <- ggplot(data.frame(muB = LV1.sim$sims.list$mu.B), aes(muB)) +  
   geom_density(aes(color="Bayesian"), adjust=1, alpha=0.1) + ylim(0, 150) +  
   labs(x = expression(paste(mu[B]^(1), ' [%]')), title = "General mean", subti
tle = paste0('Batch: ', j[1])) +  
   theme(title=element_text(size=15,face="bold"), axis.text=element_text(size=1
8), axis.title=element_text(size=18,face="bold"), legend.position="bottom", leg
end.text=element_text(size=15)) +  
   stat_function(aes(color = "Theoretical"), fun = dnorm, args = list(mean = LV
1.sim$mean$mu.B, sd = LV1.sim$sd$mu.B), lwd = 1.2, lty = 4) +  
   geom_vline(xintercept = LV1.sim$mean$mu.B, col = 'darkgrey') + 
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   scale_colour_manual("Legend: ", values=c("Bayesian"="black","Theoretical"="d
arkred")) 
a <- (LV1.sim$mean$sigma.r/LV1.sim$sd$sigma.r)^2 
b <- LV1.sim$mean$sigma.r/LV1.sim$sd$sigma.r^2 
p2 <- ggplot(data.frame(sr = LV1.sim$sims.list$sigma.r), aes(sr)) +  
   geom_density(aes(color="Bayesian"), adjust=1, alpha=0.1) +  
   xlim(0, .13) + ylim(0, 150) +  
   labs(x = expression(paste(sigma[r]^(1), ' [%]')),  
title="Repeatability standard deviation", subtitle = paste0('Batch: ', j[1])) +
  
   theme(title=element_text(size=15,face="bold"), axis.text=element_text(size=1
8), axis.title=element_text(size=18,face="bold"), legend.position = "bottom", l
egend.text=element_text(size=15)) +  
   stat_function(aes(color = "Theoretical"), fun = dgamma, args = list(shape=a,
 rate = b), lwd = 1.2, lty = 4) +  
   geom_vline(xintercept = LV1.sim$mean$sigma.r, col = 'darkgrey') + 
   scale_colour_manual("Legend: ", values=c("Bayesian"="black", "Theoretical"="
darkred")) 
 
a <- (LV1.sim$mean$sigma.R/LV1.sim$sd$sigma.R)^2 
b <- LV1.sim$mean$sigma.R/LV1.sim$sd$sigma.R^2 
p3 <- ggplot(data.frame(sR = LV1.sim$sims.list$sigma.R), aes(sR)) +  
   geom_density(aes(color="Bayesian"), adjust=1, alpha=0.1) +  
   xlim(0, .13) + ylim(0, 150) + 
   labs(x = expression(paste(sigma[R]^(1), ' [%]')),  
title="Reproducibility standard deviation", subtitle=paste0('Batch: ', j[1])) +
  
   theme(title=element_text(size=15,face="bold"), axis.text=element_text(size=1
8), axis.title=element_text(size=18,face="bold"), legend.position = "bottom", l
egend.text=element_text(size=15)) +  
   stat_function(aes(color="Theoretical"), fun=dgamma, args=list(shape=a, rate=
b), lwd = 1.2, lty = 4) +  
   geom_vline(xintercept = LV1.sim$mean$sigma.r, col = 'darkgrey') + 
   scale_colour_manual("Legend: ", values = c("Bayesian" ="black", "Theoretical
" = "darkred")) 
grid.arrange(p1,p2,p3, ncol = 3) 
 
TableHB5 <- data.frame(1,  
   dl = round(quantile(LV1.sim$sims.list$mu.B-LV1.sim$mean$mu.B, .025), 2), 
   du = round(quantile(LV1.sim$sims.list$mu.B-LV1.sim$mean$mu.B, .975), 2), 
   ur = round(quantile(LV1.sim$sims.list$sigma.r, .95),3),  
   uR = round(quantile(LV1.sim$sims.list$sigma.R, .95),3)) 
colnames(TableHB5) <- c('Level[j]', paste0('hat(delta)[lower]','^','(j)'),  
   paste0('hat(delta)[upper]','^','(j)'), paste0('u[r]','^','(j)'),  
   paste0('u[R]','^','(j)')) 
grid.newpage() 
grid.table(TableHB5, theme = tt) 
 

 

### Model checking 
u <- 2^(9:15) 
n <- length(u) 
mt <- u 
sr <- u 
sR <- u 
ti <- matrix(1,p,n) 
for(w in 1:n){ 
   inits <- function(){ 
     list(B = rnorm(p, 0, 100), mu.B = rnorm(1, 0, 1),  
          sigma.R = runif(1, 0, 100), sigma.r = runif(1, 0, 100)) 
   } 
   LV1.sim2 <- bugs(data, inits, model.file = "C:/PhD/Thesis/sulfur2a.txt", 
                    parameters = c("B", "mu.B", "sigma.R", "sigma.r"), 
                    n.chains = 3, n.iter = u[w]) 
   ti[,w] <- LV1.sim2$mean$B 
   mt[w] <- LV1.sim2$mean$mu.B 
   sr[w] <- LV1.sim2$mean$sigma.r 
   sR[w] <- LV1.sim2$mean$sigma.R 
} 
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n <- length(u) 
u <- data.frame(c(mt,as.vector(t(ti))),rep(u,p+1),  
  c(rep('m[B]',n),as.vector(t(matrix(rep(paste0('B[',1:p,']'),n), nrow = p))))) 
colnames(u) <- c('Fit', 'N.iter', 'Theta') 
p1 <- ggplot(data = u, aes(x=N.iter, y=Fit)) +  
   geom_point(aes(colour=factor(Theta)), size = 2.1) +  
   labs(x = "Nr. of iterations", y=expression(paste('E[', theta[i], '] [%]')), 
color=expression(theta[i])) +  
   geom_vline(xintercept = 1000, lty = 4, size = 1.05) +  
   theme(axis.text=element_text(size=15), axis.title=element_text(size=18,face=
"bold"), legend.text=element_text(size=15), legend.title=element_text(size=15))
 +  
   scale_colour_discrete(breaks = levels(u$Theta), labels=c(expression(B[1]), e
xpression(B[2]), expression(B[3]), expression(B[4]), expression(B[5]), expressi
on(B[6]), expression(B[7]), expression(B[8]), expression(m[B]))) 
 
u <- 2^(9:15) 
u <- data.frame(c(sr, sR), rep(u, 2), c(rep('sr', n), rep('sR', n))) 
colnames(u) <- c('Fit', 'N.iter', 'Theta') 
p2 <- ggplot(data = u, aes(x=N.iter, y=Fit)) +  
   geom_point(aes(colour = factor(Theta)), size = 2.1) +  
   labs(x = "Nr. of iterations",  =expression(paste('E[', theta[i], '] [%]')), 
color=expression(theta[i])) +  
   geom_vline(xintercept = 1000, lty = 4, size = 1.05) +  
   theme(axis.text=element_text(size=15), axis.title=element_text(size=18,face=
"bold"), legend.text=element_text(size=15), legend.title=element_text(size=15))
 +  
   scale_colour_discrete(breaks=levels(u$Theta),  
labels=c(expression(paste(' ', sigma[r])), expression(paste('  ', sigma[R])))) 
grid.arrange(p1,p2, nrow = 2) 
rm(n,u) 
 

 

### Another model having gamma priors for the inverse of variance parameters 

inits <- function(){ 
   list(B = rnorm(p, 0, 100), mu.B = rnorm(1, 0, 1),  
   tau.R = rgamma(1, 0.01, 0.01), tau.r = rgamma(1, 0.01, 0.01)) 
 } 
LV1.sim3 <- bugs(data, inits, model.file = "C:/PhD/Thesis/sulfur3.txt", 
                 parameters = c("B", "mu.B", "tau.R", "tau.r"), 
                 n.chains = 3, n.iter = 1000) 
TableHBB5 <- data.frame(1, mB1=format(round(LV1.sim3$mean$mu.B, 3), nsmall=3), 
                        sr1 = round(sqrt(1/LV1.sim3$mean$tau.r), 3),  
                        sR1 = round(sqrt(1/LV1.sim3$mean$tau.R), 3)) 
colnames(TableHBB5) <- c('Level[j]', paste0('m[B]','^','(j)'),  
                         paste0('s[r]','^','(j)'), paste0('s[R]','^','(j)')) 
grid.newpage() 
grid.table(TableHBB5, theme = tt) 
TableHBB5 <- data.frame(1, dl = round(qnorm(.025, 0, LV1.sim3$sd$mu.B), 3), 
                 du=round(qnorm(.975, 0, LV1.sim3$sd$mu.B), 3), 
                 ur=round(1/sqrt(quantile(LV1.sim3$sims.list$tau.r, .05)),3),  
                 uR = round(1/sqrt(quantile(LV1.sim3$sims.list$tau.R, .05)),3)) 
colnames(TableHBB5) <- c('Level[j]', paste0('hat(delta)[lower]','^','(j)'),  
                         paste0('hat(delta)[upper]','^','(j)'),  
                         paste0('u[r]','^','(j)'), paste0('u[R]','^','(j)')) 
grid.newpage() 
grid.table(TableHBB5, theme = tt) 
TableD <- data.frame(c('3.04', '3.11'), c('Uniform', 'Gamma'), 
                     c(LV1.sim$pD, LV1.sim3$pD), c(LV1.sim$DIC, LV1.sim3$DIC)) 
colnames(TableD) <- c('Model', 'Precision/prior', paste0('p[D]','^','(1)'),  
                      paste0('DIC','^','(1)')) 
grid.newpage() 
grid.table(TableD, theme = tt) 
 
 
### Other levels for the batch of material 
bij <- c() 
mBj <- c() 
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srj <- c() 
sRj <- c() 
Par <- matrix(nrow = q, ncol = 8) 
myplots <- list() 
for(z in 1:q){ 
   detach(data1) 
   data1 <- data2[data2$Batch == j[z],c(1,4)] 
   attach(data1) 
   u <- tapply(xijk,list(Laboratory),length) 
   u <- max(u)-tapply(xijk,list(Laboratory),length) 
   a<-c() 
   for(w in 1:p){ 
      a<-c(a,xijk[Laboratory==i[w]],rep(NA,u[w])) 
   } 
   xik <- a 
   a<-max(tapply(xijk,list(Laboratory),length)) 
   data <- list (p=p, a=a, xik=t(structure(.Data=xik, .Dim=c(a,p)))) 
   inits <- function(){ 
     list(B = rnorm(p, 0, 100), mu.B = rnorm(1, 0, 1),  
          sigma.R = runif(1, 0, 100), sigma.r = runif(1, 0, 100)) 
   } 
   LV1.sim <- bugs(data, inits, model.file = "C:/PhD/Thesis/sulfur2a.txt", 
                  parameters=c("B", "mu.B", "sigma.R", "sigma.r"), n.iter=1000) 
   data1 <- data2[which(data2$Batch==j[z]),] 
   n <- length(LV1.sim$sims.list$mu.B) 
   myplots[[z]] <- ggplot(data=data.frame(yijk=as.vector(LV1.sim$sims.list$B),  
                i = as.vector(t(matrix(rep(i, n), p, n)))), aes(x=i, y=yijk)) +
  
     geom_boxplot(aes(fill = 'lightgreen')) + 
     theme(axis.text=element_text(size=12), 
   axis.title=element_text(size=18,face="bold"),  
   legend.text=element_text(size=12),  
   legend.title=element_text(size=12, face="bold"),  
   legend.position="bottom", plot.subtitle=element_text(size=15, hjust=0.5)) + 
     geom_point(data=data.frame(i = data1$Laboratory, yijk=data1$xijk,  
                  j=data1$Batch), aes(x=i, y=yijk, color='darkred'), size=3) + 
     labs(x="",y=expression(paste(y[ik]^(j),'[%]')), subtitle=paste('j =',z)) + 
     scale_fill_identity(name='Boxplot', guide='legend', labels=c('Bayesian'))+ 
     scale_colour_manual(name = 'Points', values =c('darkred'='darkred'),  
   labels = c('Raw data')) 
   bij <- c(bij, as.vector(LV1.sim$mean$B)) 
   mBj <- c(mBj, LV1.sim$sims.list$mu.B) 
   Par[z, 1] <- LV1.sim$mean$mu.B 
   Par[z, 2] <- LV1.sim$sd$mu.B 
   Par[z, 3] <- (LV1.sim$mean$sigma.r/LV1.sim$sd$sigma.r)^2 
   Par[z, 4] <- LV1.sim$mean$sigma.r/LV1.sim$sd$sigma.r^2 
   Par[z, 5] <- (LV1.sim$mean$sigma.R/LV1.sim$sd$sigma.R)^2 
   Par[z, 6] <- LV1.sim$mean$sigma.R/LV1.sim$sd$sigma.R^2 
   Par[z, 7] <- LV1.sim$mean$sigma.r 
   Par[z, 8] <- LV1.sim$mean$sigma.R 
   srj <- c(srj, LV1.sim$sims.list$sigma.r) 
   sRj <- c(sRj, LV1.sim$sims.list$sigma.R) 
 } 
multiplot(plotlist = myplots, cols = 2) 
 
VS <- data.frame(bij = c(as.vector(FormB), bij), Lab_i = c(rep(i,q),rep(i,q)),  
                 Model = c(rep("Sample", p*q), rep("Bayesian", p*q)), 
                 LV = rep(as.vector(t(matrix(rep(paste('j =',1:q), p),  
                          nrow = q))),2)) 
 
ggplot(VS, aes(Lab_i, bij)) +  
   geom_point(aes(colour=factor(Model)), position=position_dodge(0.5), size=3)+ 
   labs(x = "", y = expression(paste(b[i]^(j), ' [%]'))) +  
   scale_color_manual(name='Mean', breaks=levels(VS$Model), values=c("darkgreen
", "darkred")) +  
   theme(axis.text=element_text(size=12),  
axis.title=element_text(size=18, face="bold"),  
legend.text=element_text(size=12), legend.position = 'bottom',  
legend.title=element_text(size=12, face="bold"),  
strip.text.x = element_text(size = 12, color = 'darkorange', face="bold")) +  
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   facet_wrap(~ LV, ncol = 2, scales="free_y") +  
   geom_hline(data = data.frame(LV = paste('j =',1:q), bij = Par[,1]), aes(yint
ercept = bij), lty = 4, size = 1.05) 
rm(VS)  
 
gg_color_hue <- function(n) { 
   hues = seq(15, 375, length = n + 1) 
   hcl(h = hues, l = 65, c = 100)[1:n] 
} 
 
ggplot(data.frame(mB = mBj,  
                Batch=as.vector(t(matrix(rep(paste('j = ',1:q), n), nrow=q)))), 
   aes(mB, fill = Batch, colour = Batch)) + geom_density(adjust=1, alpha=0.1) +
  
   labs(x = expression(paste(mu[B], ' [mm]'))) +  
   stat_function(fun = dnorm, args = list(mean = Par[1,1], sd = Par[1,2]),  
col = gg_color_hue(q)[1], lwd = 1.2, lty = 4) +  
   stat_function(fun = dnorm, args = list(mean = Par[2,1], sd = Par[2,2]),  
col = gg_color_hue(q)[2], lwd = 1.2, lty = 4) +  
   stat_function(fun = dnorm, args = list(mean = Par[3,1], sd = Par[3,2]),  
col = gg_color_hue(q)[3], lwd = 1.2, lty = 4) +  
   stat_function(fun = dnorm, args = list(mean = Par[4,1], sd = Par[4,2]),  
col = gg_color_hue(q)[4], lwd = 1.2, lty = 4) +  
   theme(axis.text=element_text(size=12), axis.title=element_text(size=18,face=
"bold"),  
legend.text=element_text(size=15),  
legend.title=element_text(size=15, face = 'bold')) + 
   geom_hline(yintercept = 0, size = 1.05) 
 
p1 <- ggplot(data.frame(mB = srj,  
             Batch = as.vector(t(matrix(rep(paste('j = ', 1:q),n), nrow=q)))),  
      aes(mB, fill=Batch, colour=Batch)) + geom_density(adjust=1, alpha=0.1) +  
   labs(x = expression(paste(sigma[r], ' [mm]'))) +  
   stat_function(fun = dgamma, args = list(shape = Par[1,3], rate = Par[1,4]), 
col = gg_color_hue(q)[1], lwd = 1.2, lty = 4) +  
   stat_function(fun = dgamma, args = list(shape = Par[2,3], rate = Par[2,4]), 
col = gg_color_hue(q)[2], lwd = 1.2, lty = 4) +  
   stat_function(fun = dgamma, args = list(shape = Par[3,3], rate = Par[3,4]), 
col = gg_color_hue(q)[3], lwd = 1.2, lty = 4) +  
   stat_function(fun = dgamma, args = list(shape = Par[4,3], rate = Par[4,4]), 
col = gg_color_hue(q)[4], lwd = 1.2, lty = 4) +  
   theme(axis.text=element_text(size=12), axis.title=element_text(size=18,face=
"bold"),  
legend.text=element_text(size=15),  
legend.title=element_text(size=15, face = 'bold')) + 
   geom_hline(yintercept = 0, size = 1.05) + ylim(0, 150) + xlim(0, 0.25) 
p2 <- ggplot(data.frame(mB = sRj,  
             Batch=as.vector(t(matrix(rep(paste('j = ', 1:q),n), nrow =q)))),  
      aes(mB, fill=Batch, colour=Batch)) + geom_density(adjust=1, alpha=0.1) +  
   labs(x = expression(paste(sigma[R], ' [mm]'))) +  
   stat_function(fun = dgamma, args = list(shape = Par[1,5], rate = Par[1,6]), 
col = gg_color_hue(q)[1], lwd = 1.2, lty = 4) +  
   stat_function(fun = dgamma, args = list(shape = Par[2,5], rate = Par[2,6]), 
col = gg_color_hue(q)[2], lwd = 1.2, lty = 4) +  
   stat_function(fun = dgamma, args = list(shape = Par[3,5], rate = Par[3,6]), 
col = gg_color_hue(q)[3], lwd = 1.2, lty = 4) +  
   stat_function(fun = dgamma, args = list(shape = Par[4,5], rate = Par[4,6]), 
col = gg_color_hue(q)[4], lwd = 1.2, lty = 4) +  
   theme(axis.text=element_text(size=12), axis.title=element_text(size=18,face=
"bold"),  
legend.text=element_text(size=15),  
legend.title=element_text(size=15, face = 'bold')) + 
   geom_hline(yintercept = 0, size = 1.05) + ylim(0, 150) + xlim(0, 0.25) 
grid.arrange(p1,p2, ncol = 2) 
 
TableHB5 <- data.frame(1:q, mB1 = format(round(Par[,1], 3), nsmall = 3), 
                       sr1 = round(Par[,7], 3), sR1 = round(Par[,8], 3)) 
colnames(TableHB5) <- c('Level[j]', paste0('m[B]','^','(j)'), paste0('s[r]','^'
,'(j)'), paste0('s[R]','^','(j)')) 
grid.newpage() 
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grid.table(TableHB5, theme = tt) 
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8 ANNEX C: R SCRIPT FOR THE VST ACCURACY EXPERIMENT 

setwd("C:/PhD/Thesis ") 
data3<-read.table("LVDT.txt",header = TRUE, dec = ",") 
data3 <- data3[-which(data3$LVDT==data3$LVDT[length(data3$LVDT)]),] 
data3$LVDT <- as.factor(data3$LVDT) 
i<-levels(data3$LVDT) 
p<-length(i)    #nr. of testing equipments  
j<-levels(data3$Jump) 
q<-length(j)    #nr. of testing levels 
k<-levels(data3$round) 
n<-length(k)    #nr. of replicates 
data3 <- data3[order(data3$LVDT, data3$Jump),] 
attach(data3) 
data3 <- cbind(data3,as.numeric(LVDT)) 
### ISO 5725-2 framework 
FormB <- tapply(yijk,list(LVDT,Jump),mean) 
round(FormB,3)    #Cell means §7.2.9 
#         3»2   4»3   5»4   6»5 
#148857 1.002 1.002 0.996 1.003 
#…      …     …     …     … 
#155655 0.996 0.994 1.006 1.000 
FormC <- tapply(yijk,list(LVDT,Jump),sd) 
round(FormC,4)    #Measure of cells spread §7.2.10 
#          3»2    4»3    5»4    6»5 
#148857 0.0013 0.0014 0.0005 0.0005 
#…      …      …      …      … 
#155655 0.0014 0.0075 0.0010 0.0006 
FormN <- tapply(yijk,list(LVDT,Jump),length) 
yj <- apply(FormB*FormN,2,sum)/apply(FormN,2,sum) 
round(yj, 3)    #General means 
#  3»2   4»3   5»4   6»5  
#1.002 0.999 0.999 1.000  
library(ggplot2) 
library(grid) 
library(gridExtra) 
mj <- 1:q 
s2rj <- 1:q 
s2dj <- 1:q 
smj <- 1:q 
pj <- 1:q 
nj <- 1:q 
for(w in 1:q){ 
  A <- data3$LVDT[Jump==j[w]] 
  AOV1 <- aov(data3$yijk[Jump==j[w]]~A, contrasts = list(A = "contr.sum")) 
  mj[w] <- AOV1$coefficients[1] 
  s2dj[w] <- summary(AOV1)[[1]]$'Mean Sq'[1] 
  s2rj[w] <- summary(AOV1)[[1]]$'Mean Sq'[2] 
  smj[w] <- coef(summary.lm(AOV1))[1, "Std. Error"] 
  pj[w] <- summary(AOV1)[[1]]$'Df'[1]+1 
  nj[w] <- summary(AOV1)[[1]]$'Df'[2]/pj[w]+1 
  } 
s2Lj <- (s2dj-s2rj)/nj 
s2Rj <- s2Lj + s2rj 
round(mj, 3)    #same result if compared with yj above 
#[1] 1.002 0.999 0.999 1.000 
mj <- round(mj,4) 
srj <- round(sqrt(s2rj),4) 
sRj <- round(sqrt(s2Rj),4) 
sLj <- round(sqrt(s2Lj),4) 
TableB <- data.frame(1:4, j, pj, mj, srj, sRj) 
colnames(TableB) <- c('j',paste0('Level','^','(j)'), paste0('p','^','(j)'), pas
te0('hat(m)','^','(j)'), paste0('s[r]','^','(j)'), paste0('s[H]','^','(j)')) 
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tt <- ttheme_default(colhead=list(fg_params = list(parse=TRUE))) 
grid.newpage() 
grid.table(TableB, theme = tt) 
c <- qt(.975, df=(n-1)*p) 
TableB <- data.frame(TableB[,1:3], round(mj-c*srj/sqrt(n*p),4), round(mj+c*srj/
sqrt(n*p),4), TableB[,5:6]) 
colnames(TableB) <- c('j',paste0('Level','^','(j)'), paste0('p','^','(j)'), pas
te0('hat(m)[lower]','^','(j)'), paste0('hat(m)[upper]','^','(j)'), paste0('s[r]
','^','(j)'), paste0('s[H]','^','(j)')) 
grid.newpage() 
grid.table(TableB, theme = tt) 
# Uncertainty budget 
TableU <- data.frame(Source = c('Measurements', 'Resolution', 'Block[4]',  
                                'Block[5]', 'Temperature'), 
               pdf = c('T-student', 'Uniform', 'Normal', 'Normal', 'Uniform'), 
               E = c(mj[3], 0, 4, 5, 0), 
               U = c(srj[3], round(0.001/sqrt(12),4), 0.0001/2, 0.0001/2,  
                     round(0.2/sqrt(12),4)), 
               v = c(p*(n-1), 8, 60, 60, 8), 
               c = c(1, 1, 1, 1, 10.8E-6)) 
TableU <- data.frame(i = 1:length(TableU[,1]), TableU,  
                     cU2 = round((TableU$c*TableU$U)^2,15)) 
colnames(TableU) <- c('i', 'Source','pdf', 'bar(X[i])', 'u(x[i])', 'nu[i]', 'c[
i]', paste0('u[i]','^','2','~(y)')) 
row.names(TableU) <- c(paste0('Y[r]','^','(3)'), paste0('Y[d]','^','(3)'), past
e0('T[4]','^','(3)'), paste0('T[5]','^','(3)'),paste0('Delta~T','^','(3)')) 
grid.newpage() 
tt <- ttheme_default(colhead=list(fg_params = list(parse=TRUE)), rowhead=list(f
g_params = list(parse=TRUE))) 
grid.table(TableU, theme = tt) 
print(uc <- round(sqrt(sum(TableU$`u[i]^2~(y)`)),5)) 
#[1] 0.00192   #same magnitude of the repeatability precision 
#Bias 95 % credibility interval and expanded precisions 
TableU <- TableB 
TableU$`hat(m)[lower]^(j)` <- TableU$`hat(m)[lower]^(j)`-1 
TableU$`hat(m)[upper]^(j)` <- TableU$`hat(m)[upper]^(j)`-1 
TableU$`s[r]^(j)` <- 2*TableU$`s[r]^(j)` 
TableU$`s[H]^(j)` <- 2*TableU$`s[H]^(j)` 
colnames(TableU) <- c('j',paste0('Level','^','(j)'), paste0('p','^','(j)'), pas
te0('hat(delta)[lower]','^','(j)'), paste0('hat(delta)[upper]','^','(j)'), past
e0('U[r]','^','(j)'), paste0('U[H]','^','(j)')) 
grid.newpage() 
tt <- ttheme_default(colhead=list(fg_params = list(parse=TRUE))) 
grid.table(TableU, theme = tt) 

 

########### Bayesian Framework ############# 
library(R2OpenBUGS) 
library(coda) 
library(ggplot2) 
detach(data3) 
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 
   library(grid) 
   # Make a list from the ... arguments and plotlist 
   plots <- c(list(...), plotlist) 
   numPlots = length(plots) 
   # If layout is NULL, then use 'cols' to determine layout 
   if (is.null(layout)) { 
     # Make the panel 
     # ncol: Number of columns of plots 
     # nrow: Number of rows needed, calculated from # of cols 
     layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 
                      ncol = cols, nrow = ceiling(numPlots/cols)) 
   } 
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   if (numPlots==1) { 
     print(plots[[1]]) 
   } else { 
     # Set up the page 
     grid.newpage() 
     pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) 
     # Make each plot, in the correct location 
     for (i in 1:numPlots) { 
       # Get the i,j matrix positions of the regions that contain this subplot 
       matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 
       print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 
                                       layout.pos.col = matchidx$col)) 
     } 
   } 
 } 
 
data1 <- data3[data3$Jump == j[1],c(1,4)] 
attach(data1) 
inits <- function(){ 
   list(B = rnorm(p, 0, 100), mu.B = rnorm(1, 0, 1),  
        sigma.R = runif(1, 0, 100), sigma.r = runif(1, 0, 100)) 
} 
print(data <- list (p=p, n=n, yik=t(structure(.Data=yijk, .Dim=c(n,p))))) 
#$p 
#[1] 18 
# 
#$n 
#[1] 4 
# 
#$yik 
#       [,1]  [,2]  [,3]  [,4] 
# [1,] 1.000 1.003 1.002 1.002 
# [2,] 1.003 0.996 0.999 0.997 
# [3,] 0.998 0.999 0.999 1.001 
# [4,] 1.005 1.005 1.009 1.008 
# [5,] 1.004 1.003 1.004 1.004 
# [6,] 0.998 0.999 1.003 0.999 
# [7,] 1.003 1.004 1.004 1.000 
# [8,] 0.999 1.003 0.999 0.998 
# [9,] 1.014 1.013 1.013 1.013 
#[10,] 0.998 0.999 0.999 1.000 
#[11,] 1.004 1.006 1.007 1.012 
#[12,] 1.001 1.001 1.003 1.003 
#[13,] 0.991 0.990 0.999 0.995 
#[14,] 0.999 0.998 0.999 0.998 
#[15,] 1.009 1.009 1.009 1.009 
#[16,] 1.001 1.001 1.003 1.003 
#[17,] 0.995 0.995 1.002 0.999 
#[18,] 0.995 0.995 0.996 0.998 
 
LV1.sim <- bugs(data, inits, model.file = "C:/PhD/Thesis/LVDT_model.txt", 
                parameters = c("B", "mu.B", "sigma.R", "sigma.r"), n.iter=1500) 
ggplot(data = data.frame(i = as.vector(t(matrix(rep(i, dim(LV1.sim$sims.list$B)
[1]), nrow = p))), 
                    y1ik = as.vector(LV1.sim$sims.list$B)), aes(x=i, y=y1ik)) + 
   geom_boxplot(aes(fill = 'lightgreen')) +  
   labs(y = expression(paste(y[ik]^(1), '[%]'))) +  
   theme(axis.text=element_text(size=12),  
         axis.title=element_text(size=18,face="bold"),  
         legend.text=element_text(size=12),  
         legend.title=element_text(size=12, face="bold"),  
         axis.title.x=element_blank()) + 
   geom_point(data = data.frame(x = as.character(LVDT), y = yijk),  
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              aes(x=x, y=y, color = 'darkred'), size = 3) +  
   scale_fill_identity(name='Boxplot', guide='legend',labels = c('Bayesian')) + 
   scale_colour_manual(name='Points', values=c('darkred'='darkred'),  
                       labels=c('Raw data')) +  
   geom_hline(yintercept = 1, size = 1.05) +  
   geom_hline(yintercept = c(0.99, 1.01), size = 1.05, lty = 4) 
detach(data1) 
 
sim.mB <- c() 
sim.sr <- c() 
sim.sR <- c() 
LV <- c() 
pD <- c() 
DIC <- c() 
Par <- matrix(nrow = q, ncol = 8) 
TP <- matrix(nrow = q, ncol = 4) 
B <- c() 
myplots <- list() 
 
for(w in 1:q){ 
  data1 <- data3[data3$Jump == j[w],c(1,4)] 
  attach(data1) 
  data <- list (p=p, n=n, yik=t(structure(.Data=(yijk-1), .Dim=c(n,p)))) 
  inits <- function(){ 
    list(B = rnorm(p, 0, 100), mu.B = rnorm(1, 0, 1),  
    sigma.R = runif(1, 0, 100), sigma.r = runif(1, 0, 100)) 
  } 
  LV1.sim <- bugs(data, inits, model.file = "C:/PhD/Thesis/LVDT_model.txt", 
                  parameters=c("B", "mu.B", "sigma.R", "sigma.r"), n.iter=1500) 
  l <- length(LV1.sim$sims.list$B[,1]) 
  LV <- c(LV, rep(j[w], l)) 
  sim.B <- data.frame(as.vector(1+LV1.sim$sims.list$B),  
           as.vector(t(matrix(rep(i, l), nrow = p))), rep('Bayesian', l))  
  myplots[[w]] <- ggplot(data = data.frame(i = as.vector(t(matrix(rep(i, dim(LV
1.sim$sims.list$B)[1]), nrow = p))), 
y1ik = as.vector(LV1.sim$sims.list$B+1)), aes(x=i, y=y1ik)) +  
           geom_boxplot(aes(fill = 'lightgreen')) +  
           labs(y=expression(paste(y[ik]^(j),'[%]')), title=paste('j =', w)) +  
           theme(axis.text=element_text(size=12),  
           axis.title=element_text(size=18,face="bold"),  
           legend.text=element_text(size=12),  
           legend.title=element_text(size=12, face="bold"), 
           axis.title.x=element_blank()) + geom_hline(yintercept=1,size=1.05) +
  
           geom_hline(yintercept = c(0.99, 1.01), size = 1.05, lty = 4) +  
           geom_point(data = data.frame(x = as.character(LVDT), y = yijk),  
                      aes(x=x, y=y, color = 'darkred'), size = 3) +  
           scale_fill_identity(name = 'Boxplot', guide = 'legend', 
                               labels = c('Bayesian')) + 
           scale_colour_manual(name = 'Points', values =c('darkred'='darkred'),
  
                               labels = c('Raw data')) 
 
  sim.mB <- c(sim.mB, LV1.sim$sims.list$mu.B+1) 
  sim.sr <- c(sim.sr, LV1.sim$sims.list$sigma.r) 
  sim.sR <- c(sim.sR, LV1.sim$sims.list$sigma.R) 
  DIC <- c(DIC, LV1.sim$DIC) 
  pD <- c(pD, LV1.sim$pD) 
  Par[w, 1:2] <- c(LV1.sim$mean$mu.B+1, LV1.sim$sd$mu.B) 
  Par[w, 3:4] <- c((LV1.sim$mean$sigma.r/LV1.sim$sd$sigma.r)^2,  
                   LV1.sim$mean$sigma.r/LV1.sim$sd$sigma.r^2) 
  Par[w, 5:6] <- c((LV1.sim$mean$sigma.R/LV1.sim$sd$sigma.R)^2,  
                   LV1.sim$mean$sigma.R/LV1.sim$sd$sigma.R^2) 
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  Par[w, 7:8] <- c(LV1.sim$mean$sigma.r, LV1.sim$mean$sigma.R) 
  #trueness: 
  TP[w,1:2] <- round(quantile(LV1.sim$sims.list$mu.B-1, c(.025, .975)),3) 
  #repeatability: 
  TP[w,3] <- round(quantile(LV1.sim$sims.list$sigma.r, .95),4) 
  #reproducibility 
  TP[w,4] <- round(quantile(LV1.sim$sims.list$sigma.R, .95),4) 
  #Equipments' bias 
  B <- LV1.sim$mean$B 
  detach(data1) 
} 
multiplot(plotlist = myplots[2:q], cols = 1) 
gg_color_hue <- function(n) { 
  hues = seq(15, 375, length = n + 1) 
  hcl(h = hues, l = 65, c = 100)[1:n] 
} 
hue <- gg_color_hue(q) 
ggplot(data = data.frame(mB = sim.mB,  
                         Jump = rep(as.vector(t(matrix(rep(j, l), nrow=q))))),  
       aes(mB, fill=Jump, colour=Jump)) + geom_density(adjust = 1, alpha=0.1) +
  
  labs(x = expression(paste(mu[B], ' [mm]'))) + xlim(0.990, 1.010) +  
  stat_function(fun = dnorm, args = list(mean = Par[1,1], sd = Par[1,2]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dnorm, args = list(mean = Par[2,1], sd = Par[2,2]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dnorm, args = list(mean = Par[3,1], sd = Par[3,2]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dnorm, args = list(mean = Par[4,1], sd = Par[4,2]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold"),  
        legend.text=element_text(size=12),legend.title=element_text(size=12)) +
  
  geom_hline(yintercept = 0, size = 1.05) 
p1 <- ggplot(data = data.frame(sr = sim.sr,  
                    Jump =rep(as.vector(t(matrix(rep(j, l), nrow = q))))),  
             aes(sr, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x = expression(paste(sigma[r], ' [mm]'))) +  
  stat_function(fun = dgamma, args = list(shape = Par[1,3], rate = Par[1,4]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[2,3], rate = Par[2,4]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[3,3], rate = Par[3,4]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[4,3], rate = Par[4,4]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold"),  
        legend.text=element_text(size=12),legend.title=element_text(size=12)) + 
  ylim(0, 2250) + xlim(0, 0.012) + geom_hline(yintercept = 0, size = 1.05) 
p2 <- ggplot(data = data.frame(sR = sim.sR,  
                        Jump = rep(as.vector(t(matrix(rep(j, l), nrow = q))))),
  
             aes(sR, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x = expression(paste(sigma[H], ' [mm]'))) +  
  stat_function(fun = dgamma, args = list(shape = Par[1,5], rate = Par[1,6]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[2,5], rate = Par[2,6]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[3,5], rate = Par[3,6]),  
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                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[4,5], rate = Par[4,6]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold"),  
        legend.text=element_text(size=12),legend.title=element_text(size=12)) + 
  ylim(0, 2250) + xlim(0, 0.012) + geom_hline(yintercept = 0, size = 1.05) 
grid.arrange(p1,p2, ncol = 2) 
TableHB <- data.frame(j =1:q, LV = j, pD =pD, DIC =DIC, mB =round(Par[,1],4),  
                      sr = round(Par[,7],4), sH = round(Par[,8],4)) 
colnames(TableHB) <- c('j',paste0('Level','^','(j)'), paste0('pD','^','(j)'), p
aste0('DIC','^','(j)'), paste0('m[B]','^','(j)'), paste0('s[r]','^','(j)'), pas
te0('s[H]','^','(j)')) 
grid.newpage() 
grid.table(TableHB, theme = tt) 
 
A <- data.frame(1:q, j, round(TableHB[, 5:7] - data.frame(mj, srj, sRj),5)) 
colnames(A) <- c('j', 'Level^(j)', paste0('Delta~m[B]','^','(j)'), paste0('Delt
a~s[r]','^','(j)'), paste0('Delta~s[H]','^','(j)')) 
grid.newpage() 
grid.table(A, theme = tt) 
 
A <- data.frame(mj, srj, sRj) 
colnames(A) <- c('m[B]', 's[r]', 's[H]') 
A <- data.frame(t = c(as.vector(as.matrix(A)),  
                      as.vector(as.matrix(TableHB[,5:7]))), 
           theta = rep(as.vector(t(matrix(rep(colnames(A),q), ncol = q))),2), 
           j = rep(j, 2*3), Model = c(rep("ANOVA", 3*q), rep("Bayesian", 3*q))) 
A$theta <- ordered(A$theta, levels = c('m[B]', 's[r]', 's[H]')) 
ggplot(A, aes(x = j)) +  
  geom_point(aes(y =t, colour =Model), size =3, position =position_dodge(0.5))+
  
  scale_colour_manual(values = c("darkgreen", "darkred")) +  
  facet_wrap(~theta, ncol = 3, scales="free_y", labeller = label_parsed) + 
  labs(y = expression(E(theta)), x = "j", colour = "Model") +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold"),  
        legend.text=element_text(size=12), legend.title=element_text(size=12),  
        strip.text.x=element_text(size=15, color='darkorange', face="bold")) 
 
colnames(TableHB)[dim(TableHB)[2]] <- paste0('s[L]','^','(j)') 
grid.newpage() 
grid.table(TableHB, theme = tt) 
TableHB <- data.frame(TableHB,  
                      round(sqrt(TableHB$`s[r]^(j)`^2+TableHB$`s[L]^(j)`^2),4)) 
colnames(TableHB) <- c('j',paste0('Level','^','(j)'), 
                       paste0('p[D]','^','(j)'), paste0('DIC','^','(j)'),  
                       paste0('m[B]','^','(j)'), paste0('s[r]','^','(j)'),  
                       paste0('s[L]','^','(j)'), paste0('s[H]','^','(j)')) 
grid.newpage() 
grid.table(TableHB, theme = tt) 
 
A <- data.frame(sLj, sRj) 
colnames(A) <- c('s[L]', 's[H]') 
A <- data.frame(t = c(as.vector(as.matrix(A)),  
                      as.vector(as.matrix(TableHB[,7:8]))), 
           theta = rep(as.vector(t(matrix(rep(colnames(A),q), ncol = q))),2), 
           j = rep(j, 2*2), Model = c(rep("ANOVA", 2*q), rep("Bayesian", 2*q))) 
A$theta <- ordered(A$theta, levels = c('s[L]', 's[H]')) 
ggplot(A, aes(x = j)) +  
  geom_point(aes(y =t, colour =Model), size =3, position =position_dodge(0.5))+
  
  scale_colour_manual(values = c("darkgreen", "darkred")) +  
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  facet_wrap(~theta, ncol = 3, scales="free_y", labeller = label_parsed) + 
  labs(y = expression(E(theta)), x = "j", colour = "Model") +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold"),  
        legend.text=element_text(size=12), legend.title=element_text(size=12),  
        strip.text.x=element_text(size=15, color='darkorange', face="bold")) 

 

### Hierarchical model with repeatability, homogeneity and inter-equipments  
### parameters. 
TableHB2 <- TableHB 
sim.mB <- c() 
sim.sr <- c() 
sim.sL <- c() 
sim.sR <- c() 
Par<-matrix(nrow = q, ncol = 8) 
 
for(w in 1:q){ 
 data1 <- data3[data3$Jump == j[w],c(1,4)] 
 attach(data1) 
 data <- list (p=p, n=n, yik=t(structure(.Data=yijk-1, .Dim=c(n,p)))) 
 inits <- function(){ 
   list(B = rnorm(p, 0, 100), mu.B = rnorm(1, 0, 1),  
        sigma.L = runif(1, 0, 100), sigma.r = runif(1, 0, 100)) 
 } 
 R1.sim <- bugs(data, inits, model.file = "C:/PhD/Thesis/LVDT_repr.txt", 
                parameters = c("B", "mu.B", "sigma.L", "sigma.r", "sigma.R"),  
                n.iter = 1500) 
 TableHB2[w,3] <- R1.sim$pD 
 TableHB2[w,4] <- R1.sim$DIC 
 TableHB2[w,5] <- round(R1.sim$mean$mu.B+1 ,4) 
 TableHB2[w,6] <- round(R1.sim$mean$sigma.r,4) 
 TableHB2[w,7] <- round(R1.sim$mean$sigma.L,4) 
 TableHB2[w,8] <- round(R1.sim$mean$sigma.R,4) 
 sim.mB <- c(sim.mB, R1.sim$sims.list$mu.B+1) 
 sim.sr <- c(sim.sr, R1.sim$sims.list$sigma.r) 
 sim.sL <- c(sim.sL, R1.sim$sims.list$sigma.L) 
 sim.sR <- c(sim.sR, R1.sim$sims.list$sigma.R) 
 Par[w, 1:2] <- c(R1.sim$mean$mu.B+1, R1.sim$sd$mu.B) 
 Par[w, 3:4] <- c((R1.sim$mean$sigma.r/R1.sim$sd$sigma.r)^2,  
                  R1.sim$mean$sigma.r/R1.sim$sd$sigma.r^2) 
 Par[w, 5:6] <- c((R1.sim$mean$sigma.L/R1.sim$sd$sigma.L)^2,  
                  R1.sim$mean$sigma.L/R1.sim$sd$sigma.L^2) 
 Par[w, 7:8] <- c((R1.sim$mean$sigma.R/R1.sim$sd$sigma.R)^2,  
                  R1.sim$mean$sigma.R/R1.sim$sd$sigma.R^2) 
 detach(data1) 
 } 
TableHB    #Homogeneity evaluated out of the Bayesian model 
#  j Level^(j) p[D]^(j) DIC^(j) m[B]^(j) s[r]^(j) s[L]^(j) s[H]^(j) 
#1 1       3»2    18.09  -666.4   1.0017   0.0021   0.0052   0.0056 
#2 2       4»3    16.12  -600.2   0.9987   0.0034   0.0039   0.0052 
#3 3       5»4    18.31  -679.3   0.9994   0.0019   0.0052   0.0055 
#4 4       6»5    17.36  -616.6   1.0003   0.0030   0.0046   0.0055 
TableHB2   #Homogeneity evaluated within the Bayesian model 
#  j Level^(j) p[D]^(j) DIC^(j) m[B]^(j) s[r]^(j) s[L]^(j) s[H]^(j) 
#1 1       3»2    18.09  -666.4   1.0017   0.0021   0.0052   0.0056 
#2 2       4»3    16.12  -600.2   0.9987   0.0034   0.0039   0.0052 
#3 3       5»4    18.31  -679.3   0.9994   0.0019   0.0052   0.0055 
#4 4       6»5    17.36  -616.6   1.0003   0.0030   0.0046   0.0055 
grid.newpage() 
grid.table(TableHB2, theme = tt) 
l <- length(R1.sim$sims.list$B[,1]) 
 
sim.sr <- data.frame(sim.sr, rep(as.vector(t(matrix(rep(j, l), nrow = q))))) 
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colnames(sim.sr) <- c('sr', 'Jump') 
p1 <- ggplot(sim.sr, aes(sr, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x = expression(paste(sigma[r], ' [mm]'))) +  
  stat_function(fun = dgamma, args = list(shape = Par[1,3], rate = Par[1,4]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[2,3], rate = Par[2,4]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[3,3], rate = Par[3,4]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[4,3], rate = Par[4,4]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18, face="bold"),  
        legend.text=element_text(size=12), legend.title=element_text(size=12),  
        legend.position = 'bottom') + ylim(0, 2250) + xlim(0, 0.012) +  
  geom_hline(yintercept = 0, size = 1.05) 
sim.sL <- data.frame(sim.sL, rep(as.vector(t(matrix(rep(j, l), nrow = q))))) 
colnames(sim.sL) <- c('sL', 'Jump') 
p2 <- ggplot(sim.sL, aes(sL, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x = expression(paste(sigma[L], ' [mm]'))) +  
  stat_function(fun = dgamma, args = list(shape = Par[1,5], rate = Par[1,6]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[2,5], rate = Par[2,6]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[3,5], rate = Par[3,6]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[4,5], rate = Par[4,6]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18, face="bold"),  
        legend.text=element_text(size=12), legend.title=element_text(size=12),  
        legend.position = 'bottom') + ylim(0, 2250) + xlim(0, 0.012) +  
  geom_hline(yintercept = 0, size = 1.05) 
sim.sR <- data.frame(sim.sR, rep(as.vector(t(matrix(rep(j, l), nrow = q))))) 
> colnames(sim.sR) <- c('sR', 'Jump') 
p3 <- ggplot(sim.sR, aes(sR, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x = expression(paste(sigma[H], ' [mm]'))) +  
  stat_function(fun = dgamma, args = list(shape = Par[1,7], rate = Par[1,8]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[2,7], rate = Par[2,8]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[3,7], rate = Par[3,8]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[4,7], rate = Par[4,8]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18, face="bold"),  
        legend.text=element_text(size=12), legend.title=element_text(size=12),  
        legend.position = 'bottom') + ylim(0, 2250) + xlim(0, 0.012) +  
  geom_hline(yintercept = 0, size = 1.05) 
grid.arrange(p1,p2,p3, ncol = 3) 
 
#Accuracy_table 
TableHU2 <- data.frame(j = 1:q, j, pD = TableHB2[,3], DIC = TableHB2[,4], 
+                      d = format(round(t(apply(X = matrix(sim.mB-1, ncol = q),
 2, function(x) quantile(x,c(.025, .975),na.rm=T))),3), nsmall = 3),  
                       Ur = format(round(apply(X = matrix(sim.sr$sr, ncol = q),
 2, function(x) quantile(x,.95,na.rm=T)),4), nsmall = 4), 
                       Ur = format(round(apply(X = matrix(sim.sR$sR, ncol = q),
 2, function(x) quantile(x,.95,na.rm=T)),4), nsmall = 4)) 
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colnames(TableHU2) <- c('j',paste0('Level','^','(j)'), 
                       paste0('p[D]','^','(j)'), paste0('DIC','^','(j)'),  
                       paste0('hat(delta)[lower]','^','(j)'),  
                       paste0('hat(delta)[upper]','^','(j)'),  
                       paste0('U[r]','^','(j)'), paste0('U[H]','^','(j)')) 
grid.newpage() 
grid.table(TableHU2, theme = tt) 
### Proper prior 
TableHB3 <- TableHB2 
sim.mB <- c() 
sim.sr <- c() 
sim.sL <- c() 
sim.sR <- c() 
Par<-matrix(nrow = q, ncol = 8) 
sim.B <- c() 
 
for(w in 1:q){ 
  data1 <- data3[data3$Jump == j[w],c(1,4)] 
  attach(data1) 
  data <- list (p=p, n=n, yik=t(structure(.Data=yijk-1, .Dim=c(n,p)))) 
  inits <- function(){ 
    list(B = rnorm(p, 0, 100), mu.B = runif(1, -0.003, 0.003),  
    sigma.L = runif(1, 0, .004), sigma.r = runif(1, 0, .006)) 
  } 
  R1.sim <- bugs(data, inits, model.file = "C:/PhD/Thesis/LVDT_proper.txt", 
                 parameters = c("B", "mu.B", "sigma.L", "sigma.r", "sigma.R"),  
                 n.iter = 1500) 
  TableHB3[w,3] <- R1.sim$pD 
  TableHB3[w,4] <- R1.sim$DIC 
  TableHB3[w,5] <- round(R1.sim$mean$mu.B+1, 4) 
  TableHB3[w,6] <- round(R1.sim$mean$sigma.r,4) 
  TableHB3[w,7] <- round(R1.sim$mean$sigma.L,4) 
  TableHB3[w,8] <- round(R1.sim$mean$sigma.R,4) 
  sim.mB <- c(sim.mB, R1.sim$sims.list$mu.B+1) 
  sim.sr <- c(sim.sr, R1.sim$sims.list$sigma.r) 
  sim.sL <- c(sim.sL, R1.sim$sims.list$sigma.L) 
  sim.sR <- c(sim.sR, R1.sim$sims.list$sigma.R) 
  Par[w, 1:2] <- c(R1.sim$mean$mu.B+1, R1.sim$sd$mu.B) 
  sim.B <- c(sim.B, as.vector(R1.sim$sims.list$B)) 
  Par[w, 3:4] <- c((R1.sim$mean$sigma.r/R1.sim$sd$sigma.r)^2,  
                   R1.sim$mean$sigma.r/R1.sim$sd$sigma.r^2) 
  Par[w, 5:6] <- c((R1.sim$mean$sigma.L/R1.sim$sd$sigma.L)^2,  
                   R1.sim$mean$sigma.L/R1.sim$sd$sigma.L^2) 
  Par[w, 7:8] <- c((R1.sim$mean$sigma.R/R1.sim$sd$sigma.R)^2,  
                   R1.sim$mean$sigma.R/R1.sim$sd$sigma.R^2) 
  detach(data1) 
+ } 
TableHB2    #improper prior 
#  j Level^(j) p[D]^(j) DIC^(j) m[B]^(j) s[r]^(j) s[L]^(j) s[H]^(j) 
#1 1       3»2    18.09  -666.4   1.0017   0.0021   0.0052   0.0056 
#2 2       4»3    16.12  -600.2   0.9987   0.0034   0.0039   0.0052 
#3 3       5»4    18.31  -679.3   0.9994   0.0019   0.0052   0.0055 
#4 4       6»5    17.36  -616.6   1.0003   0.0030   0.0046   0.0055 
TableHB3    #proper prior 
#  j Level^(j) p[D]^(j) DIC^(j) m[B]^(j) s[r]^(j) s[L]^(j) s[H]^(j) 
#1 1       3»2    18.15  -665.9   1.0016   0.0021   0.0051   0.0055 
#2 2       4»3    16.08  -600.2   0.9987   0.0034   0.0039   0.0052 
#3 3       5»4    18.09  -679.8   0.9994   0.0019   0.0052   0.0055 
#4 4       6»5    17.30  -616.7   1.0003   0.0030   0.0045   0.0054 
ggplot(data = data.frame(y = c(sim.B+1, sim.mB),  
theta = c(rep(as.vector(t(matrix(rep(i, l), nrow = p))), q),  
              as.vector(t(matrix(rep(paste0('m[B',1:q,']'), l),q)))), 
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j = c(as.vector(t(matrix(rep(j, l*p),q))), as.vector(t(matrix(rep(j, l),q))))),
  
  aes(y, fill = theta, colour = theta)) + geom_density(adjust =1, alpha =0.1) + 
  facet_wrap(~j) + labs(x = expression(paste(y, ' [mm]'))) + 
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18, face="bold"),  
        legend.position = 'bottom') + geom_hline(yintercept = 0, size = 1.05) 
 
l <- length(R1.sim$sims.list$B[,1]) 
p1 <- ggplot(data = data.frame(mB = sim.mB,  
                      Jump =rep(as.vector(t(matrix(rep(j, l), nrow = q))))),  
             aes(mB, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x=expression(paste(mu[B],' [mm]'))) + xlim(0.994,1.006) + ylim(0,2300) + 
  stat_function(fun = dnorm, args = list(mean = Par[1,1], sd = Par[1,2]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dnorm, args = list(mean = Par[2,1], sd = Par[2,2]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dnorm, args = list(mean = Par[3,1], sd = Par[3,2]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dnorm, args = list(mean = Par[4,1], sd = Par[4,2]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18, face="bold"),  
        legend.position = 'none') + geom_hline(yintercept = 0, size = 1.05) 
sim.sr <- data.frame(sim.sr, rep(as.vector(t(matrix(rep(j, l), nrow = q))))) 
colnames(sim.sr) <- c('sr', 'Jump') 
p2 <- ggplot(sim.sr, aes(sr, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x = expression(paste(sigma[r], ' [mm]'))) +  
  stat_function(fun = dgamma, args = list(shape = Par[1,3], rate = Par[1,4]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[2,3], rate = Par[2,4]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[3,3], rate = Par[3,4]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[4,3], rate = Par[4,4]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold"),  
        legend.text=element_text(size=12), legend.title=element_text(size=12),  
        axis.text.y = element_blank(), axis.title.y = element_blank(),  
        axis.ticks.y = element_blank()) + ylim(0, 2300) + xlim(0, 0.012) +  
  geom_hline(yintercept = 0, size = 1.05) 
sim.sL <- data.frame(sim.sL, rep(as.vector(t(matrix(rep(j, l), nrow = q))))) 
colnames(sim.sL) <- c('sL', 'Jump') 
p3 <- ggplot(sim.sL, aes(sL, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x =expression(paste(sigma[L],' [mm]'))) + xlim(0,0.012) + ylim(0,2300) +
  
  stat_function(fun = dgamma, args = list(shape = Par[1,5], rate = Par[1,6]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[2,5], rate = Par[2,6]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[3,5], rate = Par[3,6]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[4,5], rate = Par[4,6]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18, face="bold"),  
        legend.position = 'none') + geom_hline(yintercept = 0, size = 1.05) 
sim.sR <- data.frame(sim.sR, rep(as.vector(t(matrix(rep(j, l), nrow = q))))) 
colnames(sim.sR) <- c('sR', 'Jump') 
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p4 <- ggplot(sim.sR, aes(sR, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x = expression(paste(sigma[H], ' [mm]'))) +  
  stat_function(fun = dgamma, args = list(shape = Par[1,7], rate = Par[1,8]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[2,7], rate = Par[2,8]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[3,7], rate = Par[3,8]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[4,7], rate = Par[4,8]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold"),  
        legend.text=element_text(size=12), legend.title=element_text(size=12),  
        axis.text.y = element_blank(), axis.title.y = element_blank(),  
        axis.ticks.y = element_blank()) + ylim(0, 2300) + xlim(0, 0.012) +  
  geom_hline(yintercept = 0, size = 1.05) 
grid.arrange(p1,p2,p3,p4, ncol = 2) 
 
#Accuracy description of the whole product line 
p1 <- ggplot(data = data.frame(mB = sim.mB-1,  
             Jump =rep(as.vector(t(matrix(rep(j, l), nrow = q))))),  
             aes(mB, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x =expression(paste(delta,' [mm]'))) +xlim(-0.006,0.006) +ylim(0,2300) + 
  stat_function(fun = dnorm, args = list(mean = Par[1,1]-1, sd = Par[1,2]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dnorm, args = list(mean = Par[2,1]-1, sd = Par[2,2]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dnorm, args = list(mean = Par[3,1]-1, sd = Par[3,2]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dnorm, args = list(mean = Par[4,1]-1, sd = Par[4,2]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18, face="bold"),  
        legend.position = 'none') + geom_hline(yintercept = 0, size = 1.05) 
p2 <- ggplot(sim.sr, aes(sr, fill = Jump, colour = Jump)) +  
  geom_density(adjust = 1, alpha = 0.1) +  
  labs(x = expression(paste(sigma[r], ' [mm]'))) +  
  stat_function(fun = dgamma, args = list(shape = Par[1,3], rate = Par[1,4]),  
                col = hue[1], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[2,3], rate = Par[2,4]),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[3,3], rate = Par[3,4]),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  stat_function(fun = dgamma, args = list(shape = Par[4,3], rate = Par[4,4]),  
                col = hue[4], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold"),  
        legend.position = 'none', axis.text.y = element_blank(),  
        axis.title.y = element_blank(), axis.ticks.y = element_blank()) +  
  ylim(0, 2300) + xlim(0, 0.012) + geom_hline(yintercept = 0, size = 1.05) 
grid.arrange(p1,p2,p4, ncol = 3) 
 
#Accuracy_table 
TableHU3 <- data.frame(j = 1:q, j, pD = TableHB2[,3], DIC = TableHB2[,4], 
                       d = format(round(t(apply(X = matrix(sim.mB-1, ncol = q),
 2, function(x) quantile(x,c(.025, .975),na.rm=T))),3), nsmall = 3),  
                       Ur = format(round(apply(X = matrix(sim.sr$sr, ncol = q),
 2, function(x) quantile(x,.95,na.rm=T)),4), nsmall = 4), 
                       Ur = format(round(apply(X = matrix(sim.sR$sR, ncol = q),
 2, function(x) quantile(x,.95,na.rm=T)),4), nsmall = 4)) 
colnames(TableHU3) <- colnames(TableHU2) 
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grid.newpage() 
grid.table(TableHU3, theme = tt) 
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### 3 levels hierarchical model 
 
data1 <- data3[ ,c(1,2,4)] 
data1 <- data1[order(data1$Jump, data1$LVDT),] 
attach(data1) 
data <- list (p=p, q=q, n=n, xkij = structure(.Data = yijk, .Dim=c(n,p,q))) 
data 
#$p 
#[1] 18 
# 
#$q 
#[1] 4 
# 
#$n 
#[1] 4 
# 
#$xkij 
#, , 1 
# 
#      [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  …  [,14] [,15] [,16] [,17] [,18] 
#[1,] 1.000 1.003 0.998 1.005 1.004 0.998  …  0.999 1.009 1.001 0.995 0.995 
#[2,] 1.003 0.996 0.999 1.005 1.003 0.999  …  0.998 1.009 1.001 0.995 0.995 
#[3,] 1.002 0.999 0.999 1.009 1.004 1.003  …  0.999 1.009 1.003 1.002 0.996 
#[4,] 1.002 0.997 1.001 1.008 1.004 0.999  …  0.998 1.009 1.003 0.999 0.998 
# 
#, , 2 
# 
#      [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  …  [,14] [,15] [,16] [,17] [,18] 
#[1,] 1.001 0.994 0.999 0.997 0.994 0.999  …  0.992 1.005 1.001 0.999 0.991 
#[2,] 1.001 1.001 1.000 0.992 0.994 0.999  …  1.003 1.006 1.004 1.000 1.005 
#[3,] 1.002 0.998 1.000 0.999 0.996 1.003  …  1.001 1.006 1.001 1.000 0.989 
#[4,] 1.004 1.001 1.000 0.994 0.996 1.000  …  1.000 1.006 1.004 1.003 0.990 
# 
#, , 3 
# 
#      [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  …  [,14] [,15] [,16] [,17] [,18] 
#[1,] 0.996 1.001 0.995 0.996 0.993 0.995  …  0.992 0.991 1.000 0.999 1.006 
#[2,] 0.997 1.004 0.999 0.998 0.993 0.998  …  0.992 0.992 0.992 1.000 1.006 
#[3,] 0.996 1.003 0.999 0.996 0.993 0.998  …  0.990 0.994 0.996 0.997 1.008 
#[4,] 0.996 1.006 0.999 0.996 0.990 0.996  …  0.990 0.993 0.995 0.997 1.006 
# 
#, , 4 
# 
#      [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  …  [,14] [,15] [,16] [,17] [,18] 
#[1,] 1.003 0.995 0.999 1.005 1.003 1.001  …  1.001 0.989 0.992 1.001 1.000 
#[2,] 1.004 1.003 0.999 1.007 1.001 1.000  …  1.003 0.990 0.994 1.000 1.000 
#[3,] 1.003 1.001 1.000 1.005 1.004 1.003  …  0.998 0.994 0.991 1.003 1.001 
#[4,] 1.003 0.994 1.000 1.011 1.004 1.001  …  0.995 0.992 0.994 1.006 1.001 
 
# Testing the data input with just one parameter for the reference value 
inits <- function(){ 
  list(B = rnorm(p, 0, .01), mu.B = rnorm(1, 0, .01),  
       sigma.R = runif(1, 0, 10), sigma.r = runif(1, 0, 10)) 
} 
LV.sim <- bugs(data, inits, model.file = "C:/PhD/Thesis/LVDT_full1.txt", 
               parameters = c("B", "mu.B", "sigma.R","sigma.r"), n.iter = 1500) 
LV.sim$mean$mu.B                  #same results 
#[1] 1.001711 
LV.sim$mean$sigma.r               #same result 
#[1] 0.002105952 
#LV.sim$mean$sigma.R               #same result 
[1] 0.005169028 
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# Full model 
 
data <- list (p=p, q=q, n=n, xkij = structure(.Data = yijk-1, .Dim=c(n,p,q))) 
inits <- function(){ 
  list(B = matrix(rnorm(p*q, 0, 1.0E-6), nrow = p, ncol = q),  
       mu.B = rnorm(q, 0, 1.0E-6), m = runif(1, -.003, 0.003),  
       sigma.L = runif(1, 0, 0.006), sigma.r = runif(1, 0, 0.004)) 
 } 
FB.sim <- bugs(data, inits, model.file = "C:/PhD/Thesis/LVDT_full.txt", 
               parameters = c("B","mu.B","m","sigma.r","sigma.L","sigma.R"),  
               n.iter = 1000) 
mBj <- round(FB.sim$mean$mu.B+1,4) 
rownames(mBj) <- paste0('m[B]','[',1:4,']') 
grid.newpage() 
grid.table(t(mBj), theme = tt)  
 
l <- length(FB.sim$sims.list$m) 
l <- data.frame(theta =c(FB.sim$sims.list$m+1,  
                         as.vector(FB.sim$sims.list$mu.B+1)), 
                Parameters =c(rep('m[P]', l),  
                         as.vector(t(matrix(rep(paste0('m[B',1:4,']'),l),q))))) 
ggplot(data = l, aes(theta, fill = Parameters, colour = Parameters)) +  
  geom_density(adjust = 1, alpha = 0.3) + labs(x = expression(theta)) +  
  theme(axis.text=element_text(size=15),  
        axis.title=element_text(size=18, face="bold"),  
        legend.text=element_text(size=18), legend.position = 'bottom') +  
  scale_colour_discrete(name = "",  
                        labels = c(expression(mu[B1]), expression(mu[B2]),  
                                   expression(mu[B3]), expression(mu[B4]),  
                                   expression(mu[P]))) + 
  scale_fill_discrete(name = "",  
                      labels = c(expression(mu[B1]), expression(mu[B2]),  
                                 expression(mu[B3]), expression(mu[B4]),  
                                 expression(mu[P]))) + 
  stat_function(fun = dnorm, args = list(mean = FB.sim$mean$m+1,  
     sd = FB.sim$sd$m), col = gg_color_hue(q+1)[5], lwd = 1.2, lty = 4) + 
  stat_function(fun = dnorm, args = list(mean = FB.sim$mean$mu.B[1]+1,  
     sd = FB.sim$sd$mu.B[1]), col = gg_color_hue(q+1)[1], lwd = 1.2, lty = 4) + 
  stat_function(fun = dnorm, args = list(mean = FB.sim$mean$mu.B[2]+1,  
     sd = FB.sim$sd$mu.B[2]), col = gg_color_hue(q+1)[2], lwd = 1.2, lty = 4) +
  
  stat_function(fun = dnorm, args = list(mean = FB.sim$mean$mu.B[3]+1,  
     sd = FB.sim$sd$mu.B[3]), col = gg_color_hue(q+1)[3], lwd = 1.2, lty = 4) +
  
  stat_function(fun = dnorm, args = list(mean = FB.sim$mean$mu.B[4]+1,  
     sd = FB.sim$sd$mu.B[4]), col = gg_color_hue(q+1)[4], lwd = 1.2, lty = 4) + 
  geom_hline(yintercept = 0, lty = 4, size = 1.05) + xlim(.994, 1.006) 
p1 <- ggplot(data = data.frame(delta = FB.sim$sims.list$m), aes(delta)) +  
  geom_density(adjust = 1, alpha = 0.3, fill = hue[1]) + ylim(0, 3000) + 
  labs(x = expression(paste(delta, ' [mm]'))) + xlim(-0.0075, 0.0075) +  
  stat_function(fun = dnorm, args = list(mean = FB.sim$mean$m,  
                sd = FB.sim$sd$m), col = hue[1], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold")) +  
  geom_hline(yintercept = 0, size = 1.05) 
a <- (FB.sim$mean$sigma.r/FB.sim$sd$sigma.r)^2 
b <- FB.sim$mean$sigma.r/FB.sim$sd$sigma.r^2 
p2 <- ggplot(data = data.frame(s.r = FB.sim$sims.list$sigma.r), aes(s.r)) +  
  geom_density(adjust = 1, alpha = 0.3, fill = hue[2]) + ylim(0, 3000) + 
  labs(x = expression(paste(sigma[r], ' [mm]'))) + xlim(0, 0.015) +  
  stat_function(fun = dgamma, args = list(shape = a, rate = b),  
                col = hue[2], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
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        axis.title=element_text(size=18,face="bold")) +  
  geom_hline(yintercept = 0, size = 1.05) 
a <- (FB.sim$mean$sigma.R/FB.sim$sd$sigma.R)^2 
b <- FB.sim$mean$sigma.R/FB.sim$sd$sigma.R^2 
p3 <- ggplot(data = data.frame(s.H = FB.sim$sims.list$sigma.R), aes(s.H)) +  
+   geom_density(adjust = 1, alpha = 0.3, fill = hue[3]) + ylim(0, 3000) + 
  labs(x = expression(paste(sigma[H], ' [mm]'))) + xlim(0, 0.015) +  
  stat_function(fun = dgamma, args = list(shape = a, rate = b),  
                col = hue[3], lwd = 1.2, lty = 4) +  
  theme(axis.text=element_text(size=12),  
        axis.title=element_text(size=18,face="bold")) +  
  geom_hline(yintercept = 0, size = 1.05) 
grid.arrange(p1,p2,p3, ncol = 3) 
 
#Accuracy_table 
TableFB <- data.frame(pD = FB.sim$pD, DIC = FB.sim$DIC, 
 d = format(round(t(quantile(FB.sim$sims.list$m, c(.025, .975))),4), nsmall=4), 
 Ur = format(round(quantile(FB.sim$sims.list$sigma.r, .95), 4), nsmall = 4), 
 UH = format(round(quantile(FB.sim$sims.list$sigma.R, .95), 4), nsmall = 4)) 
colnames(TableFB) <- c('p[D]', 'DIC', 'hat(delta)[lower]', 'hat(delta)[upper]',
  
                       'U[r]', 'U[H]') 
grid.newpage() 
grid.table(TableFB, theme = tt) 
 
#Empirical Cumulative Distribution Function 
P = ecdf(FB.sim$sims.list$m) 
l <- round(P(0.0039)-P(-0.0039), 3) 
P = ecdf(FB.sim$sims.list$sigma.R) 
l <- c(l, round(P(0.006), 3)) 
l <- data.frame(A = c('Trueness', 'Precision homogeneity'),  
                theta = paste(c('±0.004', '<0.006'), 'mm'),  
                C.P = paste(100*l, '%')) 
colnames(l) <- c('Accuracy', 'hat(theta)', 'C.P.') 
grid.newpage() 
grid.table(l, theme = tt) 
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9 ANNEX D: R SCRIPT FOR THE PROFICIENCY TESTING 

library(R2OpenBUGS) 
library(coda) 
library(ggplot2) 
library(ggrepel) 
library(grid) 
library(gridExtra) 
 
data3<-read.table("LVDT.txt",header = TRUE, dec = ",") 
data3 <- data3[-which(data3$LVDT==data3$LVDT[length(data3$LVDT)]),] 
 
str(data3) 
data3 <- data3[order(data3$LVDT, data3$Jump),] 
 
i<-levels(as.factor(data3$LVDT)) 
print(p<-length(i))       #nr. of "Laboratories" = nr. of LVDTs 
j<-levels(data3$Jump) 
k<-levels(data3$round) 
print(n<-length(k))       #nr. of replicates 
 
proficiency <- rbind(data3[c(data3$Jump==j[1]) ,c(1,2,4)], data3[c(data3$Jump==
j[2]) ,c(1,2,4)]) 
proficiency <- as.matrix(proficiency[order(proficiency$Jump, proficiency$LVDT),
]) 
rm(data3) 
proficiency <- data.frame(proficiency, stringsAsFactors = FALSE) 
proficiency$yijk <- as.numeric(proficiency$yijk) 
proficiency$LVDT <- as.numeric(proficiency$LVDT) 
 
j<-levels(as.factor(proficiency$Jump)) 
print(q<-length(j))       #nr. of testing levels 
 
 
 
### Drawn out data of 2nd brand from a population spreading similarly than the 
Instron one 
set.seed(1)  
tm1  <- 1.000 
tsL1 <-  .005 
tsr1 <-  .003 
rmB1 <- round(rnorm(q, tm1, tsL1),4) 
print(B1 <- c(round(rnorm(p, rmB1[1], tsL1), 3), round(rnorm(p, rmB1[2], tsL1),
 3))) 
print(yijkz <- matrix(t(matrix(rep(B1, n), ncol = n)), ncol = 1)) 
t <- p*q*n 
for(w in 1:t){ 
  yijkz[w] <- rnorm(1, yijkz[w], tsr1) 
} 
print(yijk <- c(proficiency$yijk, round(yijkz, 3))) 
 
tm2  <- 1.006 
tsL2 <-  .004 
tsr2 <-  tsr1 
rmB2 <- round(rnorm(q, tm2, tsL2),4) 
print(B2 <- c(round(rnorm(p, rmB2[1], tsL2), 3), round(rnorm(p, rmB2[2], tsL2),
 3))) 
print(yijkz <- matrix(t(matrix(rep(B2, n), ncol = n)), ncol = 1)) 
for(w in 1:t){ 
  yijkz[w] <- rnorm(1, yijkz[w], tsr2) 
} 
print(yijk <- c(yijk, round(yijkz, 3))) 
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print(LVDT <- max(proficiency$LVDT)+1) 
LVDT <- matrix(t(matrix(rep(LVDT:(LVDT+p-1), n), ncol = n)), ncol = 1) 
LVDT <- rep(LVDT, q) 
print(L <- max(LVDT)+1) 
L <- matrix(t(matrix(rep(L:(L+p-1), n), ncol = n)), ncol = 1) 
L <- rep(L, q) 
print(LVDT <- c(proficiency$LVDT, LVDT, L)) 
rm(L) 
Jump <- rep(c(rep(j[1], n*p), rep(j[2], n*p)), q) 
print(Jump <- c(proficiency$Jump, Jump)) 
Brand <- c(rep("Instron", p*q*n), rep("Best", p*q*n), rep("Biased", p*q*n)) 
str(proficiency <- data.frame(yijk, LVDT, Jump, Brand)) 
proficiency$LVDT <- as.factor(proficiency$LVDT) 
str(proficiency) 
 
i <- levels(proficiency$LVDT) 
z <- levels(proficiency$Brand) 
print(r <- length(z)) 
 
data<-proficiency[proficiency$Jump==j[1],] 
ggplot(data=data, aes(yijk)) + geom_histogram( 
  bins = round(sqrt(length(data$yijk)),0), aes(x=yijk, y=..density..), 
  alpha = 0.5) + geom_density(aes(x=yijk, y=..density..), adjust = 1,  
  alpha = 0, size = 1.05) + theme(axis.text = element_text(size=15),  title = e
lement_text(size=24), 
  axis.title=element_text(size=18,face="bold"), legend.text=element_text(size=1
5), legend.title=element_text(size=15) 
  ) + labs(x =expression(x[kiz]), title = paste0('Histogram (level: ', j[1],')'
) 
  ) + xlim(.98, 1.02)  
ggplot(data=data, aes(yijk, colour = Brand, fill = Brand)) + geom_histogram( 
  bins = round(sqrt(length(yijk)/r),0), aes(x=yijk, y=..density..), alpha = 0.3 
  ) + geom_density(aes(x=yijk, y=..density.., colour = Brand), alpha = 0, size 
= 1.05 
  ) + theme(axis.text = element_text(size=15), axis.title=element_text(size=18,
face="bold" 
  ), legend.text=element_text(size=15), legend.title=element_text(size=15),  ti
tle = element_text(size=15) 
  ) + labs(x =expression(x[kiz]), title = paste0('Histogram (level: ', j[1],')'
)) + xlim(.98, 1.02)  
y <- qnorm(c(0.25, 0.75), mean = mean(data$yijk), sd = sd(data$yijk)) 
x <- qnorm(c(0.25, 0.75)) 
slope <- diff(y)/diff(x) 
int <- y[1] - slope * x[1] 
#dev.off() 
ggplot(data) +stat_qq(aes(sample = yijk)) + geom_abline(slope = slope, 
  intercept = int, lty = 4, size = 1.05) + theme(axis.text = element_text( 
  size=15), axis.title=element_text(size=18,face="bold"),  title = element_text
(size=15) 
  ) + labs(y =expression(x[kiz]), title = paste0('QQ-plot (level: ', j[1],')'))
 + ylim(.98, 1.02)  
g <- ggplot(data) + stat_qq(aes(sample = yijk, colour = Brand)) + theme( 
  axis.text = element_text(size=15),  title = element_text(size=15), axis.title
=element_text(size=18,face="bold" 
  ), legend.text=element_text(size=15), legend.title=element_text(size=15)) + l
abs( 
  y =expression(x[kiz]), title = paste0('QQ-plot (level: ', j[1],')')) + ylim(.
98, 1.02)  
gg_color_hue <- function(n) { 
  hues = seq(15, 375, length = n + 1) 
  hcl(h = hues, l = 65, c = 100)[1:n] 
} 
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for(w in 1:r){ 
  y <- qnorm(c(0.25, 0.75), mean = mean(data$yijk[data$Brand==z[w]]), sd = sd(d
ata$yijk[data$Brand==z[w]])) 
  slope <- diff(y)/diff(x) 
  int <- y[1] - slope * x[1] 
  g <- g + geom_abline(slope = slope, intercept = int, colour = gg_color_hue(r)
[w]) 
} 
g 
rm(x, y, slope, int) 
 
data<-proficiency[proficiency$Jump==j[2],] 
ggplot(data=data, aes(yijk)) + geom_histogram( 
  bins = round(sqrt(length(data$yijk)),0), aes(x=yijk, y=..density..), alpha = 
0.5 
  ) + geom_density(aes(x=yijk, y=..density..), adjust = 1, alpha = 0, size = 1.
05 
  ) + theme(axis.text = element_text(size=15),  title = element_text(size=15), 
  axis.title=element_text(size=18,face="bold"), legend.text=element_text(size=1
5), legend.title=element_text(size=15) 
  ) + labs(x =expression(x[kiz]), title = paste0('Histogram (level: ', j[2],')'
) 
  ) + xlim(.98, 1.02)  
ggplot(data=data, aes(yijk, colour = Brand, fill = Brand)) + geom_histogram( 
  bins = round(sqrt(length(yijk)/r),0), aes(x=yijk, y=..density..), alpha = 0.3 
  ) + geom_density(aes(x=yijk, y=..density.., colour = Brand), alpha = 0, size 
= 1.05 
  ) + theme(axis.text = element_text(size=15), axis.title=element_text(size=18,
face="bold" 
  ), legend.text=element_text(size=15), legend.title=element_text(size=15),  ti
tle = element_text(size=15) 
  ) + labs(x =expression(x[kiz]), title = paste0('Histogram (level: ', j[2],')'
)) + xlim(.98, 1.02)  
y <- qnorm(c(0.25, 0.75), mean = mean(data$yijk), sd = sd(data$yijk)) 
x <- qnorm(c(0.25, 0.75)) 
slope <- diff(y)/diff(x) 
int <- y[1] - slope * x[1] 
#dev.off() 
ggplot(data) +stat_qq(aes(sample = yijk)) + geom_abline(slope = slope, 
 intercept = int, lty = 4, size = 1.05) + theme(axis.text = element_text( 
 size=15), axis.title=element_text(size=18,face="bold"),  title = element_text(
size=15) 
 ) + labs(y =expression(x[kiz]), title = paste0('QQ-plot (level: ', j[2],')')) 
+ ylim(.98, 1.02)  
g <- ggplot(data) + stat_qq(aes(sample = yijk, colour = Brand)) + theme( 
  axis.text = element_text(size=15),  title = element_text(size=15), axis.title
=element_text(size=18,face="bold" 
  ), legend.text=element_text(size=15), legend.title=element_text(size=15)) + l
abs( 
  y =expression(x[kiz]), title = paste0('QQ-plot (level: ', j[2],')')) + ylim(.
98, 1.02)  
for(w in 1:r){ 
  y <- qnorm(c(0.25, 0.75), mean = mean(data$yijk[data$Brand==z[w]]), sd = sd(d
ata$yijk[data$Brand==z[w]])) 
  slope <- diff(y)/diff(x) 
  int <- y[1] - slope * x[1] 
  g <- g + geom_abline(slope = slope, intercept = int, colour = gg_color_hue(r)
[w]) 
} 
g 
rm(x, y, slope, int) 
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### Proficiency ISO 13528 
 
A <- proficiency$LVDT[Jump==j[1]] 
AOV1 <- aov(proficiency$yijk[Jump==j[1]]~A, contrasts = list(A = "contr.sum")) 
print(m1 <- AOV1$coefficients[1]) 
print(s2d1 <- summary(AOV1)[[1]]$'Mean Sq'[1]) 
print(s2r1 <- summary(AOV1)[[1]]$'Mean Sq'[2]) 
print(p1 <- summary(AOV1)[[1]]$'Df'[1]+1) 
print(n1 <- summary(AOV1)[[1]]$'Df'[2]/p1+1) 
print(sL1 <- round(sqrt((s2d1-s2r1)/n1),3)) 
A <- proficiency$LVDT[Jump==j[2]] 
AOV2 <- aov(proficiency$yijk[Jump==j[2]]~A, contrasts = list(A = "contr.sum")) 
print(m2 <- AOV2$coefficients[1]) 
print(s2d2 <- summary(AOV2)[[1]]$'Mean Sq'[1]) 
print(s2r2 <- summary(AOV2)[[1]]$'Mean Sq'[2]) 
print(p2 <- summary(AOV2)[[1]]$'Df'[1]+1) 
print(n2 <- summary(AOV2)[[1]]$'Df'[2]/p2+1) 
print(sL2 <- round(sqrt((s2d2-s2r2)/n2),3)) 
 
y1 <- AOV1$coefficients+AOV1$coefficients[1] 
print(y1 <- as.vector(c(y1[2:(r*p)], -sum(AOV1$coefficients[2:length(AOV1$coeff
icients)])+AOV1$coefficients[1]))) 
### Proof 
y1 - as.vector(tapply(proficiency$yijk, list(proficiency$LVDT, proficiency$Jump
), mean))[1:(r*p)] 
sp1 <- tsL1 
z1 <- (y1 - 1)/sp1 
 
y2 <- AOV2$coefficients+AOV2$coefficients[1] 
print(y2 <- as.vector(c(y2[2:(r*p)], -sum(AOV2$coefficients[2:length(AOV2$coeff
icients)])+AOV2$coefficients[1]))) 
### Proof 
y2 - as.vector(tapply(proficiency$yijk, list(proficiency$LVDT, proficiency$Jump
), mean))[(r*p+1):(2*r*p)] 
sp2 <- tsL1 
z2 <- (y2 - 1)/sp2 
 
Z<-data.frame(z1, z2, i, Brand[c(1:p,((q*n*p)+1):((q*n+1)*p),((2*q*n*p)+1):((2*
q*n+1)*p))]) 
colnames(Z)[4] <- "Brand" 
gg_circle <- function(r, xc, yc, color, type, fill=NA, ...) { 
  x <- xc + r*cos(seq(0, pi, length.out=100)) 
  ymax <- yc + r*sin(seq(0, pi, length.out=100)) 
  ymin <- yc + r*sin(seq(0, -pi, length.out=100)) 
  annotate("ribbon", x=x, ymin=ymin, ymax=ymax, size = 1.2, color=color, linety
pe=type, fill=fill, ...) 
} 
ggplot(Z, aes(x = z1, y = z2)) + geom_point(mapping = aes(color = Brand),  
  shape = 1, size = 4.5, stroke = 2) + geom_text_repel(aes(label=i), size = 6 
  ) + gg_circle(r=2, xc=0, yc=0, color='gray30', type = 'dashed' 
  ) + gg_circle(r=3, xc=0, yc=0, color='gray30', type = 'solid' 
  ) + theme(axis.text = element_text(size=18), axis.title=element_text(size=21,
face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18) 
  ) + labs(y = expression(z^("2")), x =expression(z^("1"))) + geom_hline( 
  yintercept = 0, linetype="dashed") + geom_vline(xintercept = 0, linetype="das
hed")  # + scale_color_brewer(palette="Set1")  
 
sigma1 <- round(as.vector(tapply(proficiency$yijk, list(proficiency$LVDT, profi
ciency$Jump), sd))/sqrt(n-1),4) 
sigma2 <- sigma1[(p*r+1):(p*r*q)] 
sigma1 <- sigma1[1:(p*r)] 
X <- Z 
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X$z1 <- X$z1*sp1+1 
X$z2 <- X$z2*sp2+1 
X <- data.frame(X, sigma1, sigma2) 
colnames(X)[1:2]<-c('x1','x2') 
 
ggplot(X, aes(i, x1, colour=Brand)) + geom_errorbar(aes(ymin = x1-sigma1, ymax 
= x1+sigma1), size = 1.05) + theme(title=element_text(size=18,face="bold"), 
  axis.text.x = element_text(angle = 90, hjust = 1), axis.text = element_text(s
ize=18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18)) + labs
( 
  y = expression(x[i]^("1")), x = expression(LVDT[i]), title = paste0('level: '
, j[1]) 
  ) + geom_point(size=3, shape=21, fill="white", stroke = 1.5) + geom_hline( 
  yintercept = c(1-2*sp1, 1, 1+2*sp1), color='gray30', lty = 4, size = 1.05) + 
geom_hline( 
  yintercept = c(1-3*sp1, 1+3*sp1), color='gray30', size = 1.05) + scale_y_cont
inuous(limits = c(.98, 1.02)) 
ggplot(X, aes(i, x2, colour=Brand)) + geom_errorbar(aes(ymin = x2-sigma2, ymax 
= x2+sigma2), size = 1.05) + theme(title=element_text(size=18,face="bold"), 
  axis.text.x = element_text(angle = 90, hjust = 1), axis.text = element_text(s
ize=18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18)) + labs
( 
  y = expression(x[i]^("2")), x = expression(LVDT[i]), title = paste0('level: '
, j[2]) 
  ) + geom_point(size=3, shape=21, fill="white", stroke = 1.5) + geom_hline( 
  yintercept = c(1-2*sp1, 1, 1+2*sp1), color='gray30', lty = 4, size = 1.05) + 
geom_hline( 
  yintercept = c(1-3*sp1, 1+3*sp1), color='gray30', size = 1.05) + scale_y_cont
inuous(limits = c(.98, 1.02)) 
 
 
   
### Proficiency Hierarchical Bayesian model 
#   2-hierarchical levels model 
t=p*r 
print(data <- list (t=t, n=n, xki = structure(.Data = -1+proficiency$yijk[profi
ciency$Jump==j[1]], .Dim=c(n,t)))) 
inits <- function(){ 
  list(B = rnorm(t, 0, .003), mu = rnorm(1, 0, .003), sigma.L = runif(1, 0, 0.0
05), sigma.r = runif(1, 0, 0.003))  
} 
Pr1.sim <- bugs(data, inits, model.file = "D:/Giuse/Istruzione/Università/Dotto
rato di ricerca - Matematica/Progetti/05 PhD/LVDT_proficiency-2.txt", 
                parameters = c("B", "mu", "sigma.r", "sigma.L", "sigma.R"), n.i
ter = 1000) 
rm(data) 
print(Pr1.sim, digits.summary = 3)  
 
print(data <- list (t=t, n=n, xki = structure(.Data = -1+proficiency$yijk[profi
ciency$Jump==j[2]], .Dim=c(n,t)))) 
Pr2.sim <- bugs(data, inits, model.file = "D:/Giuse/Istruzione/Università/Dotto
rato di ricerca - Matematica/Progetti/05 PhD/LVDT_proficiency-2.txt", 
                parameters = c("B", "mu", "sigma.r", "sigma.L", "sigma.R"), n.i
ter = 1000) 
rm(data) 
print(Pr2.sim, digits.summary = 3)  
 
X$x1 <- round(Pr1.sim$mean$B, 4)+1 
X$x2 <- round(Pr2.sim$mean$B, 4)+1 
X$sigma1 <- round(Pr1.sim$sd$B, 4) 
X$sigma2 <- round(Pr2.sim$sd$B, 4) 
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ggplot(X, aes(i, x1, colour=Brand)) + geom_errorbar(aes(ymin = x1-sigma1, ymax 
= x1+sigma1), size = 1.05) + theme(title=element_text(size=18,face="bold"), 
  axis.text.x = element_text(angle = 90, hjust = 1), axis.text = element_text(s
ize=18), axis.title=element_text(size=24,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18)) + labs
( 
  y = expression(x["·i"]^("1")), x = expression(LVDT[i]), title = paste0('level
: ', j[1]) 
  ) + geom_point(size=3, shape=21, fill="white", stroke = 1.5) + geom_hline( 
  yintercept = c(1-2*sp1, 1, 1+2*sp1), color='gray30', lty = 4, size = 1.05) + 
geom_hline( 
  yintercept = c(1-3*sp1, 1+3*sp1), color='gray30', size = 1.05) + scale_y_cont
inuous(limits = c(.98, 1.02)) 
ggplot(X, aes(i, x2, colour=Brand)) + geom_errorbar(aes(ymin = x2-sigma2, ymax 
= x2+sigma2), size = 1.05) + theme(title=element_text(size=18,face="bold"), 
  axis.text.x = element_text(angle = 90, hjust = 1), axis.text = element_text(s
ize=18), axis.title=element_text(size=24,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18)) + labs
( 
  y = expression(x["·i"]^("2")), x = expression(LVDT[i]), title = paste0('level
: ', j[2]) 
  ) + geom_point(size=3, shape=21, fill="white", stroke = 1.5) + geom_hline( 
  yintercept = c(1-2*sp1, 1, 1+2*sp1), color='gray30', lty = 4, size = 1.05) + 
geom_hline( 
  yintercept = c(1-3*sp1, 1+3*sp1), color='gray30', size = 1.05) + scale_y_cont
inuous(limits = c(.98, 1.02)) 
 
Z$z1 <- (X$x1-1)/sp1 
Z$z2 <- (X$x2-1)/sp2 
ggplot(Z, aes(x = z1, y = z2)) + geom_point(mapping = aes(color = Brand),  
  shape = 1, size = 4.5, stroke = 2) + geom_text_repel(aes(label=i), size = 6) 
+  
  gg_circle(r=2, xc=0, yc=0, color='gray30', type = 'dashed') +  
  gg_circle(r=3, xc=0, yc=0, color='gray30', type = 'solid') +  
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18),  
  axis.title=element_text(size=21,face="bold"), legend.text=element_text(size=1
8), legend.title=element_text(size=18)) +  
  labs(y = expression(z^("2")), x =expression(z^("1")), title = 'Bayesian model
', caption = paste0("Solid line: 3z","\n","Dot-dashed line: 2z")) +  
  geom_hline(yintercept = 0, linetype="dashed") + geom_vline(xintercept = 0, li
netype="dashed")  # + scale_color_brewer(palette="Set1")  
 
 
 
### Graphical concistency technique and outliers detection test 
## Mandel's h statistics 
# ISO 5725-2 
library(metRology) 
library(outliers) 
H <- data.frame(h1 = (y1-m1)/sd(y1-m1), h2 = (y2-m2)/sd(y2-m2), 
                LVDT = as.factor(levels(proficiency$LVDT)),  
                Brand = c(rep('Instron', p), rep('Best', p), rep('Biased', p))) 
S <- qmandelh(c(.025,.975), p1) #stragglers 
O <- qmandelh(c(.005,.995), p1) #outliers 
Consistency <- rep('Medium', p1) 
Consistency[which(H$h1<O[1]|H$h1>O[2])] <- rep('Low', length(which(H$h1<O[1]|H$
h1>O[2]))) 
Consistency[which(H$h1>=S[1]&H$h1<=S[2])] <- rep('High', length(which(H$h1<O[1]
|H$h1>O[2]))) 
H <- data.frame(H, Consistency) 
p1 <- ggplot(H, aes(x=LVDT, y=h1, label=round(h1,2))) +  
  geom_point(stat='identity', aes(col=Consistency), size=9) + 
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  geom_segment(aes(x=LVDT, xend=LVDT, y=0, yend=h1)) + 
  geom_text(color="black", size=4) + ylim(-3.5, 3.5) + facet_wrap(~Brand,scales
="free_x") +  
  theme(title=element_text(size=15,face="bold"), axis.text.x = element_text(ang
le = 90, hjust = 1 
  ), axis.text = element_text(size=15), axis.title=element_text(size=15,face="b
old"),  
  legend.text=element_text(size=15), legend.title=element_text(size=15), strip.
text.x = element_text(size = 15)) +  
  labs(y = expression(h[i]^("1")), x = expression(LVDT[i]), title = paste0('lev
el: ', j[1])) +  
  scale_color_manual(values=gg_color_hue(r)[c(2,1,3)]) +  
  geom_hline(yintercept = c(S,0), color='gray30', lty = 4, size = 1.05) +  
  geom_hline(yintercept = O, color='gray30', lty = 1, size = 1.05) 
rm(Consistency) 
Consistency <- rep('Medium', p2) 
Consistency[which(H$h2<O[1]|H$h2>O[2])] <- rep('Low', length(which(H$h2<O[1]|H$
h2>O[2]))) 
Consistency[which(H$h2>=S[1]&H$h2<=S[2])] <- rep('High', length(which(H$h2>=S[1
]&H$h2<=S[2]))) 
H$Consistency <- Consistency 
p2 <- ggplot(H, aes(x=LVDT, y=h2, label=round(h2,2))) +  
  geom_point(stat='identity', aes(col=Consistency), size=9) + 
  geom_segment(aes(x=LVDT, xend=LVDT, y=0, yend=h2)) + 
  geom_text(color="black", size=4) + ylim(-3.5, 3.5) + facet_wrap(~Brand,scales
="free_x") +  
  theme(title=element_text(size=15,face="bold"), axis.text.x = element_text(ang
le = 90, hjust = 1 
  ), axis.text = element_text(size=15), axis.title=element_text(size=15,face="b
old"),  
  legend.text=element_text(size=15), legend.title=element_text(size=15), strip.
text.x = element_text(size = 15)) +  
  labs(y = expression(h[i]^("2")), x = expression(LVDT[i]), title = paste0('lev
el: ', j[2])) +  
  scale_color_manual(values=gg_color_hue(r)[c(2,1,3)]) +  
  geom_hline(yintercept = c(S,0), color='gray30', lty = 4, size = 1.05) +  
  geom_hline(yintercept = O, color='gray30', lty = 1, size = 1.05) 
grid.arrange(p1,p2, nrow = 2) 
#Youden plot 
H <- H[,1:4] 
ggplot(H, aes(x = h1, y = h2)) +  
  geom_point(mapping = aes(color = Brand), shape = 1, size = 4.5, stroke = 2) +
  
  geom_text_repel(aes(label=i), size = 6) +  
  gg_circle(r=S[2], xc=0, yc=0, color='gray30', type = 'dashed') +  
  gg_circle(r=O[2], xc=0, yc=0, color='gray30', type = 'solid') +  
  theme(axis.text = element_text(size=18), axis.title=element_text(size=21,face
="bold"), legend.text=element_text(size=18), legend.title=element_text(size=18)
) +  
  labs(y = expression(h[i]^("2")), x =expression(h[i]^("1")), title = 'ISO 5725
-2', caption = paste0("Solid line: 3z","\n","Dot-dashed line: 2z")) +  
  geom_hline(yintercept = 0, linetype="dashed") +  
  geom_vline(xintercept = 0, linetype="dashed") 
 
 
 
### Proficiency testing according to Bayesian formulation 
H <- data.frame(h1 = (Pr1.sim$mean$B-mean(Pr1.sim$mean$B))/sd(Pr1.sim$mean$B-me
an(Pr1.sim$mean$B)), 
                h2 = (Pr2.sim$mean$B-mean(Pr2.sim$mean$B))/sd(Pr2.sim$mean$B-me
an(Pr2.sim$mean$B)), 
                LVDT = as.factor(levels(proficiency$LVDT)),  
                Brand = c(rep('Instron', p), rep('Best', p), rep('Biased', p))) 
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l <- dim(Pr1.sim$sims.list$B)[1] 
L <- as.vector(matrix(rep(H$LVDT,l), ncol = p*r, byrow = TRUE)) 
L <- data.frame(x = as.vector(Pr1.sim$sims.list$B)+1, LVDT = L, Brand = c(rep('
Instron',l*p), rep('Best',l*p), rep('Biased',l*p))) 
p1 <- ggplot(L, aes(x, colour = LVDT)) + geom_density(adjust = 4.5, alpha = 0.1
) + 
  labs(x = expression(paste(chi[i]^("1"), ' [mm]')), title = paste0('level: ', 
j[1])) + xlim(0.980, 1.020) + 
  facet_wrap(~Brand,scales="free_x") + stat_function( fun = dnorm, args = list(
mean = Pr1.sim$mean$mu+1, sd = Pr1.sim$mean$sigma.L), col = 'black', lty = 4, l
wd = 1.05) +  
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="null", strip.text.x = element_text(size = 18))  
y <- qnorm(c(0.25,0.75), mean=Pr1.sim$mean$mu+1, sd=sqrt(mean(Pr1.sim$sd$B^2))) 
x <- qnorm(c(0.25, 0.75)) 
slope <- diff(y)/diff(x) 
int <- y[1] - slope * x[1] 
p3 <- ggplot(L, aes(col = LVDT)) + stat_qq(aes(sample = x)) + facet_wrap(~Brand
,scales="free_x") + 
  geom_abline(slope = slope, intercept = int, lty = 4, size = 1.05) +  
  theme(axis.text = element_text(size=15), axis.title=element_text(size=18,face
="bold"),  title = element_text(size=15), legend.position="null", strip.text.x 
= element_text(size = 18)) +  
  labs(y =expression(paste(x[ki]^("1"), ' [mm]')), title = paste0('QQ-plot (lev
el: ', j[1],')')) + ylim(.98, 1.02)  
 
l <- dim(Pr2.sim$sims.list$B)[1] 
L <- as.vector(matrix(rep(H$LVDT,l), ncol = p*r, byrow = TRUE)) 
L <- data.frame(x = as.vector(Pr2.sim$sims.list$B)+1, LVDT = L, Brand = c(rep('
Instron',l*p), rep('Best',l*p), rep('Biased',l*p))) 
p2 <- ggplot(L, aes(x, colour = LVDT)) + geom_density(adjust = 4.5, alpha = 0.1
) + 
  labs(x = expression(paste(chi[i]^("2"), ' [mm]')), title = paste0('level: ', 
j[2])) + xlim(0.980, 1.020) + 
  facet_wrap(~Brand,scales="free_x") + stat_function( fun = dnorm, args = list(
mean = Pr2.sim$mean$mu+1, sd = Pr2.sim$mean$sigma.L), col = 'black', lty = 4, l
wd = 1.05) +  
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="null", strip.text.x = element_text(size = 18))  
grid.arrange(p1,p2, nrow = 2) 
 
y <- qnorm(c(0.25,0.75), mean=Pr2.sim$mean$mu+1, sd=sqrt(mean(Pr2.sim$sd$B^2))) 
x <- qnorm(c(0.25, 0.75)) 
slope <- diff(y)/diff(x) 
int <- y[1] - slope * x[1] 
p4 <- ggplot(L, aes(col = LVDT)) + stat_qq(aes(sample = x)) + facet_wrap(~Brand
,scales="free_x") + 
  geom_abline(slope = slope, intercept = int, lty = 4, size = 1.05) +  
  theme(axis.text = element_text(size=15), axis.title=element_text(size=18,face
="bold"),  title = element_text(size=15), legend.position="null", strip.text.x 
= element_text(size = 18)) +  
  labs(y =expression(paste(x[ki]^("2"), ' [mm]')), title = paste0('QQ-plot (lev
el: ', j[2],')')) + ylim(.98, 1.02)  
grid.arrange(p3,p4, nrow = 2) 
 
L<-L[1:t,] 
L$x<-Pr1.sim$mean$B+1 
L$LVDT<-levels(L$LVDT) 
L$Brand <- c(rep('Instron',p), rep('Best',p), rep('Biased',p)) 
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y <- qnorm(c(0.25, 0.75), mean = Pr1.sim$mean$mu+1, sd = Pr1.sim$mean$sigma.L) 
x <- qnorm(c(0.25, 0.75)) 
slope <- diff(y)/diff(x) 
int <- y[1] - slope * x[1] 
p3 <- ggplot(L) + stat_qq(aes(sample = x)) + 
  geom_abline(slope = slope, intercept = int, lty = 4, size = 1.05, col = 'dark
red') +  
  theme(axis.text = element_text(size=15), axis.title=element_text(size=18,face
="bold"),  title = element_text(size=15), legend.position="null", strip.text.x 
= element_text(size = 18)) +  
  labs(y =expression(paste(x['·i']^("1"), ' [mm]')), title = paste0('QQ-plot (l
evel: ', j[1],')')) + ylim(.98, 1.02)  
y <- qnorm(c(0.25, 0.75), mean = Pr2.sim$mean$mu+1, sd = Pr2.sim$mean$sigma.L) 
L$x<-Pr2.sim$mean$B+1 
slope <- diff(y)/diff(x) 
int <- y[1] - slope * x[1] 
p4 <- ggplot(L) + stat_qq(aes(sample = x)) + 
  geom_abline(slope = slope, intercept = int, lty = 4, size = 1.05, col = 'dark
red') +  
  theme(axis.text = element_text(size=15), axis.title=element_text(size=18,face
="bold"),  title = element_text(size=15), legend.position="null", strip.text.x 
= element_text(size = 18)) +  
  labs(y =expression(paste(x['·i']^("2"), ' [mm]')), title = paste0('QQ-plot (l
evel: ', j[2],')')) + ylim(.98, 1.02)  
grid.arrange(p3,p4, ncol = 2) 
 
mean(Pr1.sim$mean$B)+1 
Pr1.sim$mean$mu+1 
mean(Pr2.sim$mean$B)+1 
Pr2.sim$mean$mu+1 
 
ggplot(H, aes(x = h1, y = h2)) +  
  geom_point(mapping = aes(color = Brand), shape = 1, size = 4.5, stroke = 2) +
  
  geom_text_repel(aes(label=i), size = 6) +  
  gg_circle(r=S[2], xc=0, yc=0, color='gray30', type = 'dashed') +  
  gg_circle(r=O[2], xc=0, yc=0, color='gray30', type = 'solid') +  
  theme(axis.text = element_text(size=18), axis.title=element_text(size=21,face
="bold"), legend.text=element_text(size=18), legend.title=element_text(size=18)
) +  
  labs(y = expression(h[i]^("2")), x =expression(h[i]^("1"))) +  
  geom_hline(yintercept = 0, linetype="dashed") +  
  geom_vline(xintercept = 0, linetype="dashed") 
Consistency <- rep('Medium', p*r) 
Consistency[which(H$h1<O[1]|H$h1>O[2])] <- rep('Low', length(which(H$h1<O[1]|H$
h1>O[2]))) 
Consistency[which(H$h1>=S[1]&H$h1<=S[2])] <- rep('High', length(which(H$h1<O[1]
|H$h1>O[2]))) 
H <- data.frame(H, Consistency) 
p1 <- ggplot(H, aes(x=LVDT, y=h1, label=round(h1,2))) +  
  geom_point(stat='identity', aes(col=Consistency), size=9) + 
  geom_segment(aes(x=LVDT, xend=LVDT, y=0, yend=h1)) + 
  geom_text(color="black", size=4) + ylim(-3.5, 3.5) + facet_wrap(~Brand,scales
="free_x") +  
  theme(title=element_text(size=15,face="bold"), axis.text.x = element_text(ang
le = 90, hjust = 1 
  ), axis.text = element_text(size=15), axis.title=element_text(size=15,face="b
old"),  
  legend.text=element_text(size=15), legend.title=element_text(size=15), strip.
text.x = element_text(size = 15)) +  
  labs(y = expression(h[i]^("1")), x = expression(LVDT[i]), title = paste0('lev
el: ', j[1])) +  
  scale_color_manual(values=gg_color_hue(r)[c(2,1,3)]) +  



University of Turin and Politecnico di Torino  Page 119 

  geom_hline(yintercept = c(S,0), color='gray30', lty = 4, size = 1.05) +  
  geom_hline(yintercept = O, color='gray30', lty = 1, size = 1.05) 
rm(Consistency) 
Consistency <- rep('Medium', p*r) 
Consistency[which(H$h2<O[1]|H$h2>O[2])] <- rep('Low', length(which(H$h2<O[1]|H$
h2>O[2]))) 
Consistency[which(H$h2>=S[1]&H$h2<=S[2])] <- rep('High', length(which(H$h2>=S[1
]&H$h2<=S[2]))) 
H$Consistency <- Consistency 
p2 <- ggplot(H, aes(x=LVDT, y=h2, label=round(h2,2))) +  
  geom_point(stat='identity', aes(col=Consistency), size=9) + 
  geom_segment(aes(x=LVDT, xend=LVDT, y=0, yend=h2)) + 
  geom_text(color="black", size=4) + ylim(-3.5, 3.5) + facet_wrap(~Brand,scales
="free_x") +  
  theme(title=element_text(size=15,face="bold"), axis.text.x = element_text(ang
le = 90, hjust = 1 
  ), axis.text = element_text(size=15), axis.title=element_text(size=15,face="b
old"),  
  legend.text=element_text(size=15), legend.title=element_text(size=15), strip.
text.x = element_text(size = 15)) +  
  labs(y = expression(h[i]^("2")), x = expression(LVDT[i]), title = paste0('lev
el: ', j[2])) +  
  scale_color_manual(values=gg_color_hue(r)[c(2,1,3)]) +  
  geom_hline(yintercept = c(S,0), color='gray30', lty = 4, size = 1.05) +  
  geom_hline(yintercept = O, color='gray30', lty = 1, size = 1.05) 
grid.arrange(p1,p2, nrow = 2) 
 
H <- data.frame(H, Dh1 = H$h1-(y1-m1)/sd(y1-m1), Dh2 = H$h2-(y2-m2)/sd(y2-m2)) 
 
p1 <- ggplot(H, aes(x=LVDT, y=Dh1, label=round(Dh1,2))) +  
  geom_point(stat='identity', aes(col=Consistency), size=9) + 
  geom_text(color="black", size=4) + ylim(-0.03, 0.03) + facet_wrap(~Brand,scal
es="free_x") +  
  theme(title=element_text(size=15,face="bold"), axis.text.x = element_text(ang
le = 90, hjust = 1 
  ), axis.text = element_text(size=15), axis.title=element_text(size=15,face="b
old"),  
  legend.text=element_text(size=15), legend.title=element_text(size=15), strip.
text.x = element_text(size = 15)) +  
  labs(y = expression(Delta~h[i]^("1")), x = expression(LVDT[i]), title = paste
0('level: ', j[1])) +  
  scale_color_manual(values=gg_color_hue(r)[c(2,1,3)])  
p2 <- ggplot(H, aes(x=LVDT, y=Dh2, label=round(Dh2,2))) +  
  geom_point(stat='identity', aes(col=Consistency), size=9) + 
  geom_text(color="black", size=4) + ylim(-0.03, 0.03) + facet_wrap(~Brand,scal
es="free_x") +  
  theme(title=element_text(size=15,face="bold"), axis.text.x = element_text(ang
le = 90, hjust = 1 
  ), axis.text = element_text(size=15), axis.title=element_text(size=15,face="b
old"),  
  legend.text=element_text(size=15), legend.title=element_text(size=15), strip.
text.x = element_text(size = 15)) +  
  labs(y = expression(Delta~h[i]^("2")), x = expression(LVDT[i]), title = paste
0('level: ', j[2])) +  
  scale_color_manual(values=gg_color_hue(r)[c(2,1,3)]) 
grid.arrange(p1,p2, nrow = 2) 
#Youden plot 
H <- H[,1:4] 
ggplot(H, aes(x = h1, y = h2)) +  
  geom_point(mapping = aes(color = Brand), shape = 1, size = 4.5, stroke = 2) +
  
  geom_text_repel(aes(label=i), size = 6) +  
  gg_circle(r=S[2], xc=0, yc=0, color='gray30', type = 'dashed') +  
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  gg_circle(r=O[2], xc=0, yc=0, color='gray30', type = 'solid') +  
  theme(axis.text = element_text(size=18), axis.title=element_text(size=21,face
="bold"), legend.text=element_text(size=18), legend.title=element_text(size=18)
) +  
  labs(y = expression(h[i]^("2")), x =expression(h[i]^("1")), title = 'Bayesian
 framework', caption = paste0("Solid line: 3z","\n","Dot-dashed line: 2z")) +  
  geom_hline(yintercept = 0, linetype="dashed") +  
  geom_vline(xintercept = 0, linetype="dashed") 
rm(S,O, Consistency, p1, p2, p3, p4) 
 
 
## Grubbs test 
round(qmandelh(c(0, 1) - c(-1, 1)*.05/t, t),3) # critical values for stragglers 
round(qmandelh(c(0, 1) - c(-1, 1)*.01/t, t),3) # critical values for outliers 
#p.value for Single Grubbs test 
round(grubbs.test(Pr1.sim$mean$B+1, type = 10)$p.value,4)   
round(grubbs.test(y1, type = 10)$p.value,4)                 
round(grubbs.test(Pr2.sim$mean$B+1, type = 10)$p.value,4) 
round(grubbs.test(y2, type = 10)$p.value,4) 
#proof 
(1-pmandelh((max(Pr2.sim$mean$B+1)-mean(Pr2.sim$mean$B+1))/sd(Pr2.sim$mean$B),t
))*t 
#p.value for Double Grubbs test 
round(grubbs.test(Pr1.sim$mean$B+1, type = 11)$p.value,4)   
round(grubbs.test(y1, type = 11)$p.value,4)  
grubbs.test(Pr1.sim$mean$B+1, type = 11) 
grubbs.test(y1, type = 11) 
round(grubbs.test(Pr2.sim$mean$B+1, type = 11)$p.value,4)   
round(grubbs.test(y2, type = 11)$p.value,4)  
grubbs.test(Pr2.sim$mean$B+1, type = 11) 
grubbs.test(y2, type = 11) 
 
 
 
###  3-hierarchical levels model 
 
data <- list(p=p, r=r, n=n,  
          xkiz = structure(.Data = -1+proficiency$yijk[proficiency$Jump==j[1]],
  
          .Dim=c(n,p,r))) 
inits <- function(){ 
  list(B = matrix(rnorm(p*r, 0, 1.0E-6), nrow = p, ncol = r),  
       mu.Bz = rnorm(r, 0, 1.0E-6), sigma.Lz = runif(r, 0, 0.006),  
       m = runif(1, -.002, 0.002), sigma.rz = runif(r, 0, 0.004))  
} 
Pr1.sim <- bugs(data, inits, model.file="C:/PhD/Thesis/LVDT_proficiency-3.txt", 
                parameters = c("B", "mu.Bz", "sigma.Lz", "sigma.Rz", "m",  
                               "sigma.rz"), n.iter = 1000) 
rm(data) 
data <- list (p=p, r=r, n=n,  
          xkiz = structure(.Data = -1+proficiency$yijk[proficiency$Jump==j[2]],
  
          .Dim=c(n,p,r))) 
Pr2.sim <- bugs(data, inits, model.file="C:/PhD/Thesis/LVDT_proficiency-3.txt", 
                parameters = c("B", "mu.Bz", "sigma.Lz", "sigma.Rz", "m",  
                               "sigma.rz"), n.iter = 1000) 
rm(data) 
x1 <- c(y1, 1+as.vector(round(Pr1.sim$mean$B, 4))) 
x2 <- c(y2, 1+as.vector(round(Pr2.sim$mean$B, 4))) 
sigma1 <- c(sigma1, as.vector(round(Pr1.sim$sd$B, 4))) 
sigma2 <- c(sigma2, as.vector(round(Pr2.sim$sd$B, 4))) 
Model <- c(rep("Sample mean", p*r), rep("Bayesian mean", p*r)) 
LVDT <- c(i, i) 



University of Turin and Politecnico di Torino  Page 121 

Brand <- rep(c(rep('Instron', p), rep('Best', p), rep('Biased', p)), 2) 
x1 <- data.frame(x1, x1-sigma1, x1+sigma1, LVDT, Brand, Model) 
x2 <- data.frame(x2, x2-sigma2, x2+sigma2, LVDT, Brand, Model) 
colnames(x1)[1:3] <- c('x', 'xmin', 'xmax') 
colnames(x2)[1:3] <- c('x', 'xmin', 'xmax') 
 
p1 <- ggplot(x1,aes(x = LVDT, y = x, ymin = xmin, ymax = xmax, color = Model, s
hape = Model) 
  ) + geom_point(position=position_dodge(width=1), size = 4.5) + geom_errorbar(
position=position_dodge(width=1), size =1.2 
  ) + theme(title=element_text(size=18,face="bold"), axis.text.x = element_text
(angle = 90, hjust = 1 
  ), axis.text = element_text(size=18), axis.title=element_text(size=21,face="b
old"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="bottom", strip.text.x = element_text(size = 18)) + labs( 
  y = expression(x[i]^("1")), x = expression(LVDT[i]), title = paste0('level: '
, j[1]) 
  ) + geom_hline(yintercept = c(1-2*sp1, 1, 1+2*sp1), color='darkred', lty = 4,
 size = 1.2) + geom_hline( 
  yintercept = c(1-3*sp1, 1+3*sp1), color='darkred', size = 1.2) + scale_y_cont
inuous( 
  limits = c(.98, 1.02)) + facet_wrap(~Brand,scales="free_x")  
hline.data <- data.frame(z = c(rmB1[1], rmB2[1], mean(x1$x[x1$Brand==z[3]])), B
rand = z)  
p1 + geom_hline(aes(yintercept = z), hline.data, color='gray30', lty = 4, size 
= 1.2) 
#+ scale_color_brewer(palette="Dark2")  
 
p2 <- ggplot(x2,aes(x = LVDT, y = x, ymin = xmin, ymax = xmax, color = Model, s
hape = Model)) +  
  geom_point(position=position_dodge(width=.5), size = 4.5) +  
  geom_errorbar(position=position_dodge(width=.5), size =1.2) +  
  theme(title=element_text(size=18,face="bold"), axis.text.x = element_text(ang
le = 90, hjust = 1 
  ), axis.text = element_text(size=18), axis.title=element_text(size=21,face="b
old"),  
legend.text=element_text(size=18), legend.title=element_text(size=18), legend.p
osition="bottom", strip.text.x = element_text(size = 18)) + labs( 
  y = expression(x[i]^("2")), x = expression(LVDT[i]), title = paste0('level: '
, j[2]) 
) + geom_hline(yintercept = c(1-2*sp1, 1, 1+2*sp1), color='darkred', lty = 4, s
ize = 1.2) + geom_hline( 
  yintercept = c(1-3*sp1, 1+3*sp1), color='darkred', size = 1.2) + scale_y_cont
inuous( 
    limits = c(.98, 1.02)) + facet_wrap(~Brand,scales="free_x")  
hline.data <- data.frame(z = c(rmB1[2], rmB2[2], mean(x2$x[x2$Brand==z[3]])), B
rand = z)  
p2 + geom_hline(aes(yintercept = z), hline.data, color='gray30', lty = 4, size 
= 1.2) 
 
Z$z1 <- (as.vector(1+Pr1.sim$mean$B)-1)/sp1 
Z$z2 <- (as.vector(1+Pr2.sim$mean$B)-1)/sp2 
 
ggplot(Z, aes(x = z1, y = z2)) +  
  geom_point(mapping = aes(color = Brand), shape = 1, size = 4.5, stroke = 2) +
  
  geom_text_repel(aes(label=i), size = 6) +  
  gg_circle(r=2, xc=0, yc=0, color='gray30', type = 'dashed') +  
  gg_circle(r=3, xc=0, yc=0, color='gray30', type = 'solid') +  
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18),  
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  axis.title=element_text(size=21,face="bold"), legend.text=element_text(size=1
8), legend.title=element_text(size=18)) +  
  labs(y = expression(z^("2")), x =expression(z^("1")), title = 'Bayesian model
 4.16', caption = paste0("Solid line: 3z","\n","Dot-dashed line: 2z")) +  
  geom_hline(yintercept = 0, linetype="dashed") +  
  geom_vline(xintercept = 0, linetype="dashed")  # + scale_color_brewer(palette
="Set1")  
 
Instron <- data.frame(mu1 = c(round(1+Pr1.sim$mean$mu.Bz[1],3),1.002), sr1 = c(
round(Pr1.sim$mean$sigma.rz[1],4), 0.0021), sL1 = c(round(Pr1.sim$mean$sigma.Lz
[1],4), 0.0052), sR1 = c(round(Pr1.sim$mean$sigma.Rz[1],4), 0.0056), mu2 = c(ro
und(1+Pr2.sim$mean$mu.Bz[1],3), 0.999), sr2 = c(round(Pr2.sim$mean$sigma.rz[1],
4), 0.0034), sL2 = c(round(Pr2.sim$mean$sigma.Lz[1],4), 0.0039), sR2 = c(round(
Pr2.sim$mean$sigma.Rz[1],4), 0.0052)) 
colnames(Instron) <- c(paste0('x[1]','^','(1)'), paste0('sigma[r[1]]','^','(1)'
), paste0('sigma[L[1]]','^','(1)'), paste0('sigma[R[1]]','^','(1)'), paste0('x[
1]','^','(2)'), paste0('sigma[r[1]]','^','(2)'), paste0('sigma[L[1]]','^','(2)'
), paste0('sigma[R[1]]','^','(2)')) 
row.names(Instron) <- c('Model 4.16','Model 3.15') 
tt <- ttheme_default(colhead=list(fg_params = list(parse=TRUE))) 
grid.newpage() 
grid.table(Instron, theme = tt) 
 
Bz <- c(as.vector(1+Pr1.sim$sims.list$mu.Bz), as.vector(1+Pr2.sim$sims.list$mu.
Bz)) 
l <- length(Pr1.sim$sims.list$mu.Bz[,1]) 
Brand <- c(rep('Instron', l), rep('Best', l), rep('Biased', l)) 
Level <- c(rep(j[1], l*r), rep(j[2], l*r)) 
Bz <- data.frame(Bz, Brand, Level) 
 
ggplot(Bz, aes(Bz, fill = Brand, colour = Brand)) + geom_density(adjust = 1, al
pha = 0.1) + 
  labs(x = expression(paste(chi['··z'], ' [mm]'))) + xlim(0.990, 1.010) + ylim(
0, 450) + 
  facet_wrap(~Level,scales="free_x") +  
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="bottom", strip.text.x = element_text(size = 18))  
#+  stat_function(fun = dnorm, args=list(mean=Pr1.sim$mean$mu.Bz[1], sd=Pr1.sim
$sd$mu.Bz[1])) 
 
Bz$Bz <- c(Pr1.sim$sims.list$sigma.Lz, Pr2.sim$sims.list$sigma.Lz) 
p1 <- ggplot(Bz[Bz$Level==j[1],], aes(Bz, fill = Brand, colour = Brand)) + geom
_density(adjust = 1, alpha = 0.1) + 
      labs(x = expression(paste(sigma[L], ' [mm]')), title = paste0('level: ', 
j[1])) + ylim(0, 2250) + xlim(0.0015, 0.0105) + 
      theme(title=element_text(size=18,face="bold"), axis.text = element_text(s
ize=18), axis.title=element_text(size=18,face="bold"),  
      legend.text=element_text(size=18), legend.title=element_text(size=18), le
gend.position="bottom", strip.text.x = element_text(size = 18)) 
p2 <- ggplot(Bz[Bz$Level==j[2],], aes(Bz, fill = Brand, colour = Brand)) + geom
_density(adjust = 1, alpha = 0.1) + ylim(0, 2250) + xlim(0.0015, 0.0105) + 
  labs(x = expression(paste(sigma[L], ' [mm]')), title = paste0('level: ', j[2]
)) +  
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="bottom", strip.text.x = element_text(size = 18)) 
a1 <- (Pr1.sim$mean$sigma.Lz/Pr1.sim$sd$sigma.Lz)^2 
b1 <- Pr1.sim$mean$sigma.Lz/Pr1.sim$sd$sigma.Lz^2 
a2 <- (Pr2.sim$mean$sigma.Lz/Pr2.sim$sd$sigma.Lz)^2 
b2 <- Pr2.sim$mean$sigma.Lz/Pr2.sim$sd$sigma.Lz^2 
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C <- gg_color_hue(r) 
C <- C[c(3,1,2)] 
for(w in 3:1){ 
  p1 <- p1 + stat_function(fun = dgamma, args = list(shape = a1[w], rate = b1[w
]), col = C[w], lwd = 1.05, lty = 4) 
  p2 <- p2 + stat_function(fun = dgamma, args = list(shape = a2[w], rate = b2[w
]), col = C[w], lwd = 1.05, lty = 4) 
  } 
grid.arrange(p1,p2, ncol = 2) 
 
Bz$Bz <- c(as.vector(Pr1.sim$sims.list$sigma.rz), as.vector(Pr2.sim$sims.list$s
igma.rz)) 
p1 <- ggplot(Bz[Bz$Level==j[1],], aes(Bz, fill = Brand, colour = Brand)) + geom
_density(adjust = 1, alpha = 0.1) + 
  labs(x = expression(paste(sigma[r], ' [mm]')), title = paste0('level: ', j[1]
)) + ylim(0, 2250) + xlim(0.0015, 0.0105) + 
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="bottom", strip.text.x = element_text(size = 18)) 
p2 <- ggplot(Bz[Bz$Level==j[2],], aes(Bz, fill = Brand, colour = Brand)) + geom
_density(adjust = 1, alpha = 0.1) + ylim(0, 2250) + xlim(0.0015, 0.0105) + 
  labs(x = expression(paste(sigma[r], ' [mm]')), title = paste0('level: ', j[2]
)) +  
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="bottom", strip.text.x = element_text(size = 18)) 
a1 <- (Pr1.sim$mean$sigma.rz/Pr1.sim$sd$sigma.rz)^2 
b1 <- Pr1.sim$mean$sigma.rz/Pr1.sim$sd$sigma.rz^2 
a2 <- (Pr2.sim$mean$sigma.rz/Pr2.sim$sd$sigma.rz)^2 
b2 <- Pr2.sim$mean$sigma.rz/Pr2.sim$sd$sigma.rz^2 
for(w in 3:1){ 
  p1 <- p1 + stat_function(fun = dgamma, args = list(shape = a1[w], rate = b1[w
]), col = C[w], lwd = 1.05, lty = 4) 
  p2 <- p2 + stat_function(fun = dgamma, args = list(shape = a2[w], rate = b2[w
]), col = C[w], lwd = 1.05, lty = 4) 
} 
grid.arrange(p1,p2, ncol = 2) 
 
Bz$Bz <- c(as.vector(Pr1.sim$sims.list$sigma.Rz), as.vector(Pr2.sim$sims.list$s
igma.Rz)) 
p1 <- ggplot(Bz[Bz$Level==j[1],], aes(Bz, fill = Brand, colour = Brand)) + geom
_density(adjust = 1, alpha = 0.1) + 
  labs(x = expression(paste(sigma[H], ' [mm]')), title = paste0('level: ', j[1]
)) + ylim(0, 2250) + xlim(0.0015, 0.0105) + 
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="bottom", strip.text.x = element_text(size = 18)) 
p2 <- ggplot(Bz[Bz$Level==j[2],], aes(Bz, fill = Brand, colour = Brand)) + geom
_density(adjust = 1, alpha = 0.1) + ylim(0, 2250) + xlim(0.0015, 0.0105) + 
  labs(x = expression(paste(sigma[H], ' [mm]')), title = paste0('level: ', j[2]
)) +  
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="bottom", strip.text.x = element_text(size = 18)) 
a1 <- (Pr1.sim$mean$sigma.Rz/Pr1.sim$sd$sigma.Rz)^2 
b1 <- Pr1.sim$mean$sigma.Rz/Pr1.sim$sd$sigma.Rz^2 
a2 <- (Pr2.sim$mean$sigma.Rz/Pr2.sim$sd$sigma.Rz)^2 
b2 <- Pr2.sim$mean$sigma.Rz/Pr2.sim$sd$sigma.Rz^2 
for(w in 3:1){ 
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  p1 <- p1 + stat_function(fun = dgamma, args = list(shape = a1[w], rate = b1[w
]), col = C[w], lwd = 1.05, lty = 4) 
  p2 <- p2 + stat_function(fun = dgamma, args = list(shape = a2[w], rate = b2[w
]), col = C[w], lwd = 1.05, lty = 4) 
} 
grid.arrange(p1,p2, ncol = 2) 
 
Bz <- Bz[1:(2*l),c(1,3)] 
Bz$Level <- c(rep(j[1],l), rep(j[2],l)) 
Bz$Bz <- c(1+Pr1.sim$sims.list$m, 1+Pr2.sim$sims.list$m) 
p1 <- ggplot(Bz[Bz$Level==j[1],], aes(Bz)) + geom_density(adjust = 1, alpha = 0
.1) + 
  labs(x = expression(paste(mu, ' [mm]')), title = paste0('level: ', j[1])) + x
lim(.990, 1.010) + ylim(0, 450) + 
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="bottom", strip.text.x = element_text(size = 18)) +  
  stat_function(fun = dnorm, args = list(mean = 1+Pr1.sim$mean$m, sd = Pr1.sim$
sd$m), col = 'darkred', lwd = 1.2, lty = 4)  
p2 <- ggplot(Bz[Bz$Level==j[2],], aes(Bz)) + geom_density(adjust = 1, alpha = 0
.1) + 
  labs(x = expression(paste(mu, ' [mm]')), title = paste0('level: ', j[2])) + x
lim(.990, 1.010) + ylim(0, 450) +  
  theme(title=element_text(size=18,face="bold"), axis.text = element_text(size=
18), axis.title=element_text(size=18,face="bold"),  
  legend.text=element_text(size=18), legend.title=element_text(size=18), legend
.position="bottom", strip.text.x = element_text(size = 18)) + 
  stat_function(fun = dnorm, args = list(mean = 1+Pr2.sim$mean$m, sd = Pr2.sim$
sd$m), col = 'darkred', lwd = 1.2, lty = 4)  
grid.arrange(p1,p2, ncol = 2) 
rm(l, Brand, Level, C) 
 
p1 <- data.frame(matrix(nrow = 3, ncol = 4)) 
row.names(p1) <- c('Instron','Best', 'Biased') 
p2 <- p1 
alfa <- .05 
for(w in 1:r){ 
p1[w,1:2] <- format(round(quantile(Pr1.sim$sims.list$mu.Bz[,w], (c(0,1)-c(-1,1)
*alfa/2)), 3), nsmall = 3) 
p2[w,1:2] <- format(round(quantile(Pr2.sim$sims.list$mu.Bz[,w], (c(0,1)-c(-1,1)
*alfa/2)), 3), nsmall = 3) 
p1[w,3] <- format(round(quantile(Pr1.sim$sims.list$sigma.rz[,w], (1-alfa)), 4),
 nsmall = 4) 
p2[w,3] <- format(round(quantile(Pr2.sim$sims.list$sigma.rz[,w], (1-alfa)), 4),
 nsmall = 4) 
p1[w,4] <- format(round(quantile(Pr1.sim$sims.list$sigma.Rz[,w], (1-alfa)), 4),
 nsmall = 4) 
p2[w,4] <- format(round(quantile(Pr2.sim$sims.list$sigma.Rz[,w], (1-alfa)), 4),
 nsmall = 4) 
} 
colnames(p1) <- c(paste0('hat(delta)[z[lower]]','^','(1)'), paste0('hat(delta)[
z[upper]]','^','(1)'), paste0('U[r[z]]','^','(1)'), paste0('U[R[z]]','^','(1)')
) 
colnames(p2) <- c(paste0('hat(delta)[z[lower]]','^','(2)'), paste0('hat(delta)[
z[upper]]','^','(2)'), paste0('U[r[z]]','^','(2)'), paste0('U[R[z]]','^','(2)')
) 
grid.newpage() 
grid.table(p1, theme = tt) 
grid.newpage() 
grid.table(p2, theme = tt) 
 
USL <- +0.01 
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LSL <- -0.01 
for(w in 1:r){ 
  s3 <- quantile(Pr1.sim$sims.list$sigma.Rz[,w], round(1-(1-pnorm(3))*2,4)) 
  p1[w,1] <- format(round((USL-LSL)/(2*s3), 3), nsmall = 3) 
  p1[w,2] <- format(round(min(c((USL-Pr1.sim$mean$mu.Bz[w])/s3, (Pr1.sim$mean$m
u.Bz[w]-LSL)/s3)), 3), nsmall = 3) 
  rm(s3) 
  s3 <- quantile(Pr2.sim$sims.list$sigma.Rz[,w], round(1-(1-pnorm(3))*2,4)) 
  p1[w,3] <- format(round((USL-LSL)/(2*s3), 3), nsmall = 3) 
  p1[w,4] <- format(round(min(c((USL-Pr2.sim$mean$mu.Bz[w])/s3, (Pr2.sim$mean$m
u.Bz[w]-LSL)/s3)), 3), nsmall = 3) 
  rm(s3) 
  } 
colnames(p1) <- c(paste0('hat(R)[p[z]]','^','(1)'), paste0('hat(R)[pk[z]]','^',
'(1)'),  
                  paste0('hat(R)[p[z]]','^','(2)'), paste0('hat(R)[pk[z]]','^',
'(2)')) 
grid.newpage() 
grid.table(p1, theme = tt) 

  



University of Turin and Politecnico di Torino  Page 126 

10 BIBLIOGRAPHY 

[1] A. M. H. van der Veen, «Bayesian analysis of homogeneity studies in the production of 
reference materials», Accreditation Qual. Assur., vol. 22, n. 6, pagg. 307–319, dic. 2017. 

[2] «News from the JCGM-WG1 2017», pag. 3. 
[3] «JCGM_100_2008_E.pdf».  
[4] «JCGM_200_2012».  
[5] «UNI EN ISO 7500-1:2016». feb-2016. 
[6] «ISO 306:2013(en), Plastics — Thermoplastic materials — Determination of Vicat softening 

temperature (VST)». Available at: https://www.iso.org/obp/ui/#iso:std:iso:306:ed-5:v1:en. 
[7] «ISO 5725-3:1994(en), Accuracy (trueness and precision) of measurement methods and 

results — Part 3: Intermediate measures of the precision of a standard measurement 
method». Available at: https://www.iso.org/obp/ui/#iso:std:iso:5725:-3:ed-1:v1:en. 

[8] M. Cox e K. Shirono, «Informative Bayesian Type A uncertainty evaluation, especially 
applicable to a small number of observations», Metrologia, vol. 54, n. 5, pag. 642, 2017. 

[9] «ISO 13528:2015(en), Statistical methods for use in proficiency testing by interlaboratory 
comparison». Available at: https://www.iso.org/obp/ui/#iso:std:iso:13528:ed-2:v2:en. 

[10] D. Lunn, C. Jackson, N. Best, A. Thomas, e D. Spiegelhalter, The BUGS Book: A Practical 
Introduction to Bayesian Analysis. CRC Press, 2012. 

[11] «ISO 5725-1:1994(en), Accuracy (trueness and precision) of measurement methods and 
results — Part 1: General principles and definitions».  

 Available at: https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en. 
[12] «ISO 5725-2:1994(en), Accuracy (trueness and precision) of measurement methods and 

results — Part 2: Basic method for the determination of repeatability and reproducibility of a 
standard measurement method».  

 Available at: https://www.iso.org/obp/ui/#iso:std:iso:5725:-2:ed-1:v1:en. 
[13] «ISO 5725-4:1994(en), Accuracy (trueness and precision) of measurement methods and 

results — Part 4: Basic methods for the determination of the trueness of a standard 
measurement method».  

 Available at: https://www.iso.org/obp/ui/#iso:std:iso:5725:-4:ed-1:v1:en. 
[14] «ISO 5725-5:1998(en), Accuracy (trueness and precision) of measurement methods and 

results — Part 5: Alternative methods for the determination of the precision of a standard 
measurement method».  

 Available at: https://www.iso.org/obp/ui/#iso:std:iso:5725:-5:ed-1:v1:en. 
[15] «ISO 5725-6:1994(en), Accuracy (trueness and precision) of measurement methods and 

results — Part 6: Use in practice of accuracy values».  
 Available at: https://www.iso.org/obp/ui/#iso:std:iso:5725:-6:ed-1:v1:en. 
[16] M. Gasparini, Modelli probabilistici e statistici con temi d’esame. CLUT, 2015. 
[17] J. L. Devore e K. N. Berk, Modern Mathematical Statistics With Applications, 2 edizione. New 

York ; London: Springer Verlag, 2011. 
[18] S. R. Searle, G. Casella, e C. E. McCulloch, Variance Components. John Wiley & Sons, 

2009. 
[19] M. J. Crawley, The R Book, 2 edizione. Wiley, 2012. 
[20] T. Hothorn e B. S. Everitt, A Handbook of Statistical Analyses Using R. CRC Press, 2006. 
[21] E. O. Doebelin, A. Cigada, e M. Gasparetto, Strumenti e metodi di misura. Materiali didattici 

on-line, 2 edizione. Milano: McGraw-Hill Education, 2008. 
[22] P. McCullagh e J. A. Nelder, Generalized Linear Models, Second Edition, 2 edition. Boca 

Raton: Chapman and Hall/CRC, 1989. 
[23] L. Deldossi e D. Zappa, «ISO 5725 and GUM: comparison and comments», Accreditation 

Qual. Assur., vol. 14, n. 3, pagg. 159–166, mar. 2009. 
[24] T. Bayes, «LII. An essay towards solving a problem in the doctrine of chances. By the late 

Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. 
S», Philos. Trans., vol. 53, pagg. 370–418, gen. 1763. 

[25] «JCGM_101_2008_E.pdf». . 



University of Turin and Politecnico di Torino  Page 127 

[26] C. Elster e B. Toman, «Bayesian uncertainty analysis for a regression model versus 
application of GUM Supplement 1 to the least-squares estimate», Metrologia, vol. 48, n. 5, 
pag. 233, 2011. 

[27] C. Elster, «Bayesian uncertainty analysis compared with the application of the GUM and its 
supplements», Metrologia, vol. 51, n. 4, pag. S159, 2014. 

[28] C. Elster e B. Toman, «Bayesian uncertainty analysis under prior ignorance of the measurand 
versus analysis using the Supplement 1 to the Guide : a comparison», Metrologia, vol. 46, n. 
3, pag. 261, 2009. 

[29] I. Lira e D. Grientschnig, «Equivalence of alternative Bayesian procedures for evaluating 
measurement uncertainty», Metrologia, vol. 47, n. 3, pag. 334, 2010. 

[30] J. M. Bernardo e A. F. M. Smith, Bayesian Theory. John Wiley & Sons, 2009. 
[31] D. Spiegelhalter, A. Thomas, N. Best, e D. Lunn, WinBUGS user manual. version, 2003. 
[32] A. E. Gelfand e A. F. M. Smith, «Sampling-Based Approaches to Calculating Marginal 

Densities», J. Am. Stat. Assoc., vol. 85, n. 410, pagg. 398–409, giu. 1990. 
[33] G. Casella e E. I. George, «Explaining the Gibbs Sampler», Am. Stat., vol. 46, n. 3, pagg. 

167–174, ago. 1992. 
[34] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, e E. Teller, «Equation of 

State Calculations by Fast Computing Machines», J. Chem. Phys., vol. 21, n. 6, pagg. 1087–
1092, giu. 1953. 

[35] S. OpenBUGS e M. N. Thomas, «Package ‘R2OpenBUGS’», 2013. 
[36] D. B. Rubin, «Inference and missing data», Biometrika, vol. 63, n. 3, pagg. 581–592, 1976. 
[37] «JCGM_102_2011_E.pdf». . 
[38] L. Breiman e P. Spector, «Submodel selection and evaluation in regression. The X-random 

case», Int. Stat. Rev. Int. Stat., pagg. 291–319, 1992. 
[39] A. Gelman, «Prior distributions for variance parameters in hierarchical models (comment on 

article by Browne and Draper)», Bayesian Anal., vol. 1, n. 3, pagg. 515–534, 2006. 
[40] D. W. Tholen, «ISO/IEC 17043: the new International Standard for proficiency testing», 

Accreditation Qual. Assur., vol. 13, n. 12, pagg. 727–730, dic. 2008. 
[41] M. Thompson, S. L. Ellison, e R. Wood, «The international harmonized protocol for the 

proficiency testing of analytical chemistry laboratories (IUPAC Technical Report)», Pure Appl. 
Chem., vol. 78, n. 1, pagg. 145–196, 2006. 

[42] W. R. Thompson, «On a Criterion for the Rejection of Observations and the Distribution of the 
Ratio of Deviation to Sample Standard Deviation», Ann. Math. Stat., vol. 6, n. 4, pagg. 214–
219, 1935. 

[43] P.-T. Wilrich, «Critical values of Mandel’s h and k, the Grubbs and the Cochran test statistic», 
AStA Adv. Stat. Anal., vol. 97, n. 1, pagg. 1–10, gen. 2013. 

[44] F. E. Grubbs, «Sample Criteria for Testing Outlying Observations», Ann. Math. Stat., vol. 21, 
n. 1, pagg. 27–58, mar. 1950. 

[45] G. Barbato, E. M. Barini, G. Genta, e R. Levi, «Features and performance of some outlier 
detection methods», J. Appl. Stat., vol. 38, n. 10, pagg. 2133–2149, ott. 2011. 

 

  



University of Turin and Politecnico di Torino  Page 128 

ACKNOWLEDGEMENTS 

Firstly, I would like to express my sincere gratitude to my advisor Prof. Roberto Fontana for the 
continuous support of my Ph.D study and related research, for his patience, motivation, and 
immense knowledge. His guidance and his passion for Statistics helped me in all the time of 
research and writing of this thesis. I could not have imagined having a better advisor and mentor 
for my Ph.D study. 

My sincere thanks also goes to Prof. Giulio Barbato and Dr. Francesca Pennecchi, for their 
insightful comments and encouragement, but also for their hard questions which incented me to 
widen my research from various perspectives. 

I thank to INSTRON, the company I work with, that gave me the opportunity of realizing this 
crazy dream: being a PhD researcher while I was working on company projects. In particular, I am 
grateful to the general manager Stefano Vergano who always put his trust on me, encouraging and 
supporting my creativity and to my colleague Andrea Calzolari for the stimulating discussions and 
his availability on guiding me in the entrenched world of the international standards. 

I would also like to thank my dear friend Andrea, for providing me with stead fast support and 
continuous encouragement throughout my years of study.  

Finally, I must express my very profound gratitude to my parents that taught me to drop that 
craze for foundation-stones, and put the finishing touch to each one of my projects and my 
brothers for supporting me spiritually throughout writing this thesis. 

Last but not the least, a special thanks goes to my wife Martina for standing beside me 
throughout my career and especially while I was writing this thesis. She has been my inspiration 
and motivation for continuing to improve my knowledge and move my career forward. She is my 
rock, and I dedicate this book to her. 

 

 


