
PhD School in Physics
University of Turin

Universality and Factorization
of Hadronic Scattering Processes

in a TMD Approach

Andrea Simonelli

Supervisor: Prof. Mariaelena Boglione

External examiners: Prof. Alessandro Bacchetta
Prof. Leonard Gamberg

This dissertation is submitted for the
Doctor of Phylosophy Degree in Physics

September 2021



Universality and Factorization of hadronic scattering processes
in a TMD approach

Andrea Simonelli

Abstract

Factorization theorems allow to separate out the universal, non-perturbative content of the hadronic
cross section from its perturbative part, which can be computed in perturbative QCD, up to the desired
order. In this thesis, I will frame the known TMD factorization theorems into a more general context,
within which I derive a rigorous proof of factorization of the e+e−→ hX cross section, sensitive to
the transverse momentum of the detected hadron with respect to the thrust axis. I will show how this
leads to three different kinematic regions, each associated to a different factorization theorem. In
one of these regions, the factorization theorem has a new structure, which shares the features of both
TMD and collinear factorization. In the corresponding cross section, the role of the rapidity cut-offs
is investigated, as their physical meaning becomes increasingly evident.
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Introduction

To understand how matter around us is made and how it keeps together, we rely on Quantum Chromo
Dynamics (QCD), the theory of strong interactions where quarks and gluons are the elementary
building blocks. Although its Lagrangian is well known, QCD is a very complex, self-interacting
theory, which cannot be solved exactly. Quarks and gluons are the elementary fields of the theory, but
there is no way to observe them directly. In fact, scattering experiments based on strong interactions
result in jets of hadrons, which are bound states of the elementary quanta. The exact mechanism
that governs how a quasi-free gas made up of quarks and gluons becomes a totally different state
composed by hadronic matter is still not understood. Many models and theories have been proposed
over the last 40 years, but none of them has yet been capable to catch all the features concerning
confinement and hadronization.

Modern studies of high energy QCD processes are based on factorization theorems, that play a
pivotal role in the study of strong interactions, as they allow to write the cross sections of hadronic
processes in a form suitable for phenomenological analyses. Perturbative QCD alone is not sufficient
to exploit the whole theory’s predictive power since, even at lowest orders, several physical observables
are affected by uncanceled infrared divergences. Through the factorization procedure, the divergent
contributions are separated from the finite, computable parts and are collected into universal factors,
as they can be extracted from a small set of experimental data and then used to predict any other
observable that requires their contribution. Crucially, if universality is preserved, then the theory
can be predictive. Therefore, research in this field is two-folded: in addition to the pure theoretical
investigation, aimed to provide a solid proof of factorization of the processes that still lack of a
proper factorization theorem, the phenomenological applications of the theory are fundamental in the
extraction of universal non-perturbative factors.

If Q is some typical hard energy scale for a certain process (c.m. energy, momentum transfer,
etc...), then, at the cost of an error suppressed by powers of m/Q, where m is a typical low energy
(hadronic) mass scale (typically around ∼ 1 GeV) , a factorization theorem recasts the cross section
in terms of a convolution of contribution s which can be classified in terms of the following three
categories:

1



Introduction

1. Hard part. It corresponds to the elementary subprocess and it provides the signature of the
process, as it identifies the partonic scattering uniquely. It is fully computable in perturbation
theory in terms of Feynman diagrams, up to the desired accuracy.

2. Collinear parts. These contributions are associated to the initial and/or final state hadrons of
the process and contain the collinear divergences related to the massless particles emitted along
the hadron direction. Each of them corresponds to a bunch of particles strongly boosted along
this direction, which move almost collinearly, very fast. Due to their characteristic divergences,
collinear parts cannot be fully computed in perturbation theory: their non-perturbative content
has to be extracted from experimental data. Among all the particles in the collinear group,
two of them deserve special attention: the reference hadron and the reference parton. If the
collinear group refers to the initial state of the process, the reference hadron coincides with the
initial hadron and the reference parton is the parton confined inside it that is struck in the hard
scattering; if the collinear group refers to the final state, the reference hadron is the detected
hadron and the reference parton is the fragmenting parton, i.e. the particle that initiates the
hadronization process.

3. Soft part. It embeds the contribution due to the soft gluon radiation that connects the collinear
parts and that flows through the detector. It contains soft divergences and carries non-
perturbative information, therefore it cannot be computed in perturbation theory. And it
cannot be directly extracted from data, either, as the energy of the soft radiation is so low that
detectors are not sensitive to it. Since the collinear parts interact among each other only through
soft gluons, their contribution can affect the cross section in a non-trivial way. Moreover, the
soft part is always associated with the collinear terms and there is no way to extract them
separately. This is sometimes referred to as “the soft factor problem”.

As long as the physical observable are not sensitive to the transverse motion of the partons inside their
parent hadron, the factorization procedure can be carried on rather simply, giving solid factorization
theorems for a large set of processes. Since the information on the transverse motion of partons is
neglected, such theorems are often labeled as “collinear". Many famous observables are known to
obey to a collinear factorization theorem. Well known examples are for instance the cross section of
Deep Inelastic Scattering (DIS) and e+e− annihilation [1–6]. In all these cases the contribution of the
soft part is trivial. In particular, any time in addition to the collinear partons there are real emissions
with large transverse momentum (compared to Q), the soft factor fully factorizes and its value reduces
to unity. This is due to the fact that the soft gluons are kinematically overpowered and do not correlate
the collinear parts anymore: in this way each collinear cluster of partons is totally independent from
any other. As a consequence, only hard and collinear contributions appear explicitly in the final cross
section. The great success of collinear factorization over the past forty years lays in its simplicity.
In any collinear factorized cross section, it is always possible to associate each collinear part with
a Parton Distribution Function (PDF) or a Fragmentation Function (FF), depending on whether the
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Introduction

associated reference hadron is in the initial or in the final state, respectively. Furthermore, the hard
part is just the partonic version of the full process and then it is often referred as partonic cross section.
As an example of a collinearly factorized process, one could consider the case of e+e− scattering
where two spinless hadrons hA and hB are produced in the final state, in a configuration in which they
are at wide angles but far from being back-to-back, in the center of mass frame (which, in this case,
corresponds to the lab frame). The resulting cross section is given by (see for instance Eq. (12.84) in
Ref. [7]):

dσ

(d3 p⃗A
EA

)(d3 p⃗B
EB

)
= ∑

jA, jB

∫ dẑA

ẑ2
A

dhA/ jA(ẑA)︸ ︷︷ ︸
coll.

∫ dẑB

ẑ2
B

dhB/ jB(ẑB)︸ ︷︷ ︸
coll.

dσ̂ jA, jB

(d3⃗kA
εA

)(d3⃗kB
εB

)︸ ︷︷ ︸
hard

, (1)

where dσ̂ is the partonic cross section, while dhi/ ji(ẑi), for i = A, B, are the FFs associated to the
outgoing hadrons, with momenta p⃗A and p⃗B, and to the fragmenting partons of flavor jA and jB,
corresponding to the two collinear parts of the cross section of the process.

When the 3D-motion of partons is considered, finding a way to properly separate the various con-
tributions a very tough task. On the other hand, Transverse Momentum Dependent (TMD) observables
expose a much richer structure that may disclose some of the inner properties of hadronization and
confinement. When the information on transverse motion survives in the final result, the corresponding
factorization theorem is usually labeled as “TMD". In such cases, the soft factor does not reduce to
unity, and soft gluons have a non-trivial impact on the cross section, as they correlate the collinear
parts. This correlation originates from momentum conservation laws in the transverse direction. In
fact, with no real emissions carrying large transverse momentum entering into the game, the low
transverse momentum components of soft and collinear particles cannot be neglected anymore. As
a consequence, it is not possible to associate a PDF or a FF to the collinear contributions: parton
densities are now related to different and more general objects, known as Transverse Momentum
Dependent parton functions, either TMD PDFs or TMD FFs depending on whether they refer to
an initial or a final state hadron. As an example of a TMD factorized process, one can once again
consider the production of two spinless hadrons from an e+e− scattering where, this time, the two
hadrons are almost back-to-back in the e+e− center of mass frame. The full cross section is given by
(see for instance Eq. (13.31) in Ref. [7]):

W µ ν(Q, pA, pB) =
8π3zAzB

Q2 ∑
f

Hµ ν

f , f
(Q)︸ ︷︷ ︸

hard

×

×
∫

d2⃗kA,hT d2⃗kB,hT S(⃗qhT − k⃗A,hT − k⃗B,hT )︸ ︷︷ ︸
soft

DhA/ f (⃗kA,hT )DhB/ f (⃗kA,hT )︸ ︷︷ ︸
coll.

,

(2)

where Hµ ν

f , f
(Q) is the hard part, S represents the soft factor and the functions Dhi/ f , for i = A, B, are

the TMD FFs associated to the outgoing hadrons and to the fragmenting partons of flavor f and f̄ .
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Notice that it is kinematics, and hence ultimately the hard part, that determines which fatorization
scheme has to be used: if the two hadrons are back-to-back then TMD factorization, Eq. (2), must be
applied, otherwise collinear factorization, Eq. (1), will be appropriate. Same process, two different
factorization theorems. This is the most common situation. In fact, in general, one hadronic scattering
process does not cover one single kinematic region: it rather extends over different kinematical
ranges, all of them contributing to the final cross section. Therefore, each factorization theorem is
associated to a certain kinematic configuration, which is determined by the values of the measured
observables. For instance, in the case of e+e− into two hadrons, the observable that discriminates
between collinear and TMD regime is the relative angle of hA and hB, which is related to the ratio
of the transverse momentum qT of the virtual boson produced in the leptonic scattering and the
c.m. energy Q. When qT/Q is large enough, the two hadrons are not back-to-back and collinear
factorization of Eq. (1) holds. On the other hand, when qT << Q, the process is in the TMD regime
and the TMD factorization theorem of Eq. (2) should be used. This introduces a major issues in the
phenomenological analyses. In fact, the factorization procedure does not provide the boundaries of the
different kinematic configurations contributing to a process. For instance, there is no way to decide
“how small" qT/Q must be in order to apply the TMD formalism. However, since the ultimate aim
is to predict a cross section valid over the whole qT spectrum, it is extremely important that the two
regimes can be matched in the intermediate region. This is still an open problem in SIDIS, which has
a structure analogous to that of e+e−→ hA hB.

The problem of the matching is just one of the main issues related to TMD factorization. Another
urgent question is whether it can be extended to other processes, beyond the known cases. Until
the end of 2018, one of the processes that were still lacking of a solid factorization theorem was
e+e− annihilation into a single hadron, sensitive to the transverse momentum of the detected hadron
with respect to the axis of the jet of particles to which it belongs. At the beginning of 2019, the
BELLE collaboration at KEK published the results of the measurements of this cross section [8], with
the transverse momentum of the observed hadron measured with respect to the thrust axis. This is
one of the measurements which go closer to being a direct observation of a partonic variable, the
transverse momentum of the hadron with respect to its parent fragmenting parton, and they have
indeed triggered a great interest of the high energy physics community, especially among the experts
in the phenomenological study of TMD phenomena and factorization [9–18].

In this thesis, I propose the first proof of the factorization of such a QCD process, within a
formalism inspired to the Collins-Soper-Sterman (CSS) factorization scheme. In particular, I show
that, if the size of the transverse momentum of the detected hadron is neither too large to affect
significantly the topology of the final state nor too small to be sensitive to the deflection due to soft
radiation, then the cross section of e+e−→ hX factorizes in a convolution between a partonic cross
section, fully computable in perturbation theory, and a TMD Fragmentation Function. This is a new
kind of structure, never encountered before in any known factorization theorem. It is a sort of hybrid of
TMD and collinear factorization, and for this reason it will be dented as “collinear-TMD factorization
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theorem”. One of its most relevant features is related to the treatment of rapidity divergences. These
arise as unregulated infinities into soft and collinear parts and they are due to the approximations
introduced by the factorization procedure. Despite the various long-distance contributions are rapidity
divergent, the full factorized cross-section is finite. Therefore, the rapidity divergences must cancel in
the convolutions of the final result. There are many ways to regulate them. In Collins factorization
formalism, they are regulated by tilting the Wilson lines associated to the soft contributions off the
lightcone. This operation is totally analogous to the insertion of a sharp rapidity cut-off that prevents
the integrations on rapitidities to diverge. Clearly, whatever regulator is used, one expects that the final
cross section will not depend on it. However, for the collinear-TMD factorization theorem devised
for e+e−→ hX this does not happen. One could claim that this is a symptom of non-consistency
of the corresponding factorization theorem (see for instance Ref. [17]). I do not interpret this as a
failure of the factorization itself, but rather as a limit of the Collins factorization formalism in this
particular process. In fact, even just from a simple kinematical study, it is clear that the rapidity cut-off
is intimately related to the thrust, which in this case is measured. Hence, there must be a way to give
it a physical meaning, beyond the role of a mere divergence regulator.

Like other hadronic processes, also e+e− → hX can occur in different kinematic regions. In
particular, I show that in total there are three of them for a 2-jet final state, each one associated to a
different factorization theorem. In particular, when the transverse momentum of the detected hadron
is sensitive to the deflection caused by the soft radiation, the resulting factorization theorem has a
structure very similar to a TMD factorized cross section. Instead, when the transverse momentum
of the detected hadron is large enough to significantly affect the topology of the final state (and,
ultimately, the measured value of thrust) the factorization theorem does not involve TMD FFs anymore.
I will call these two kinematical ranges Region 1 and Region 3, respectively. The intermediate region
discussed in the previous paragraph, called Region 2, is the widest in terms of phase space and also
the most interesting from the point of view of the factorization theorems, as it embeds the properties
of both TMD and collinear factorization schemes. This matches with the nomenclature introduced in
Ref. [17].

The framework presented in this thesis not only includes the well-known TMD factorization
theorems developed for e+e− annihilation into two back-to-back hadrons, SIDIS and Drell-Yan into a
more general context, but it also extends the investigation of TMD physics beyond these benchmark
processes, firstly by developing proper factorization theorems for e+e−→ hX . Furthermore, it could
allow to study a much wider set of processes, also involving more than two TMD functions. For
these reasons, this approach looks very promising and it may hopefully be one of the future keys to
fundamental QCD issues.

5





Chapter 1

Universality in hadronic scattering
processes

1.1 Introduction

The factorization procedure proposed by Collins, Soper and Sterman in the ’80s [19–21] has become
the benchmark for all the successive approaches designed to provide factorization theorems for
hadronic processes. The most recent and complete form of such factorization procedure was devised
by John Collins in its book “Foundations of Perturbative QCD" [7] and in the following I will refer
to this scheme as the “Collins factorization formalism". A detailed illustration of this approach can
be found in Appendix A. The Collins factorization formalism correctly reproduces the well-known
collinear factorization theorems; in addition, and most importantly, it can successfully be applied to
develop TMD factorization theorems for three observables: e+e− annihilation into two back-to-back
hadrons, SIDIS and Drell-Yan. However, its extension to other observables sensitive to TMD physics
is problematic[22, 7, 12, 23, 14].

In this chapter, I will investigate the causes of such difficulties, tracing them back to the property
of universality of soft and collinear terms in the factorized cross sections. In particular, potentially
dangerous universality-breaking effects arise from soft gluon emissions, encoded into the soft factor
of the process. Usually, such contributions are re-absorbed into the TMDs definition, but I will show
how this method fails when applied to hadronic processes different from those mentioned above, i.e.
to processes which belong to a different "hadron-class", as I will explain in detail in Section 1.4.

This chapter follows closely the content of the paper “Universality-breaking effects in e+e−

hadronic production processes" [12]. It is organized as follows. In the first part, Sections 1.2 and 1.3,
I will briefly review the main features of the Collins factorization formalism, focusing on the soft
and collinear contributions, associated to long-distance and non-perturbative effects. I will give the
most general formal definitions of the soft factor and of the collinear factor, trying to highlight their
physical intuitive interpretation, that is often slightly overlooked in related literature. In Section 1.4 I
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Universality in hadronic scattering processes

will explore the properties of universality of soft and collinear parts. Hadronic processes are classified
according to the general structure induced by the universal factors that contribute to their cross sections.
The usual definition of TMDs is framed into this scheme in Section 1.4.1, while in Section 1.4.2 I will
show how this definition must be necessarily modified for the development of a TMD factorization
theorem for e+e−→ hX , where the soft gluons contribute to the final cross section in a different and
non-trivial way.

1.2 Soft Factor

From the point of view of the soft gluons, each collinear group is simply a bunch of particles strongly
boosted in a certain direction. The boost is so strong that the soft gluons are only sensitive to the color
charge and to the direction of the collinear particles. As a consequence, the propagation of collinear
particles is well approximated by a Wilson line in the direction of the corresponding collinear group,
usually represented by double lines, see Appendix A. In the massless limit, the versor which identifies
this direction is light-like. However, a light-like Wilson line brings unregulated rapidity divergences.
In the Collins factorization formalism, these divergences are regulated by tilting each Wilson line
associated to the soft factor from its reference direction wi to the direction ni. Such operation is
analogous to the introduction of a rapidity cut-off yi, in order to constrain the particles directed along
the i-th direction to have a rapidity smaller than yi. The final result for the cross section should not
depend on these rapidity cut-offs, which then have to be removed in the final stage of the computation.
Later on, I will show how this is not always the case, as there are special observables that, after being
factorized, maintain a residual dependence on the rapidity regulator.

The transverse momentum space is the natural place for explicit perturbative computations, as
Feynman diagrams are usually written in terms of momentum variables. Therefore, in principle,
it would be the natural choice for introducing the definition of the ingredients concurring to the
factorized cross section. However, these terms will have to be formally defined in the bT space, i.e.
the Fourier conjugate space of the transverse momentum. If k⃗S,T is the total transverse momentum of
the real soft radiation flowing through the detector, then the soft factor of a generic process is defined
as:

S(0)(kS,T ; µ, yi, jk) =
∫ dk+S dk−S

(2π)D

∣∣∣∣∣
NO S.I.

, (1.1)

8



1.2 Soft Factor

where D is the dimension of space time (D = 4− 2ε in dimensional regularization) and {yi} are
Lorentz invariant combinations of the rapidity cut-offs (i = 1, . . .N where N is the number of collinear
parts in the process). The dependence on the parton-types j1 . . . jN of the partons associated to the
collinear parts is only on their color representation (fermions or gluons). In this regard, notice that the
soft factor is a matrix in color space, that depends on the soft transverse momentum only through its
modulus. In fact, since all the collinear information is replaced by spinless eikonal propagators, k⃗S,T

is the only vector appearing in the soft factor. Therefore, S is always rotational invariant and depends
only on the modulus |⃗kS,T |= kS,T . The label “NO S.I.” reminds us not to consider the Wilson lines
self energies. This implies that N = 1 is excluded, since it would correspond only to a Wilson line self
energy-like contribution. Finally, this definition refers to a soft factor bare w.r.t. UV renormalization,
as expressed by the label “(0)" . Even if kS,T must be small by power counting, the function in
Eq. (1.1) can be analytically continued outside of the soft region, where the power counting weight
does not apply anymore. As long as kS,T is an external variable, this anomalous behavior can hardly
be seen. However, the proper definition of the soft factor is in the Fourier conjugate space of kS,T ,
where the transverse momentum becomes an integration variable. Stretching kS,T to infinity, well
outside of the soft region, will produce poles that can be interpreted as UV divergences.

The definition of Eq. (1.1) must be intended as an operative definition, useful to compute explicitly
the soft factor at perturbative level. However, already at this stage, the main characteristic of the
soft factor are perfectly evident. In fact, S is sensitive to the number N ≥ 2 of collinear groups, each
one associated to a reference hadron h. Therefore it is not totally blind to the rest of the process, but
carries some residual information about the overall process. Clearly this property affects crucially the
level of universality of soft factors. For this reason, in what follows I will always add a label “N-h” to
the soft factor S in order to take into account this dependence.

The formal definition of the soft factor is given in terms of the impact parameter b⃗T , the Fourier
conjugate variable to k⃗S,T . Here, the soft factor is expressed as the vacuum expectation value of a
product of Wilson lines. In the following, the Fourier transformed quantities will be labeled by a tilde.
We have:

S̃N-h(bT ; µ, yi, jk) =
∫

dD−2⃗kS,T ei⃗ kS,T ·⃗bT SN-h(⃗kS,T , µ, yi, jk) =

= ZS(µ, yi, jk)⟨0|
N

∏
i=1

Wji(∞, −⃗bT/2; ni(yi))
†

N

∏
k=1

Wjk(∞, b⃗T/2; n j(y j))|0⟩ |NO S.I.. (1.2)

The Wilson line Wji(∞, b⃗T/2; ni) goes from b⃗T/2 towards infinity in the direction of ni, which is
off the light-cone thanks to the rapidity cut-off yi, and has the color representation associated to the
parton type ji. The factor ZS is the UV renormalization factor that cancels the poles generated when
the kS,T -integration region stretches outside of the soft region. Hence, differently from the definition
given in Eq. (1.1), this time the soft factor is UV-renormalized.
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Universality in hadronic scattering processes

Fig. 1.1 Leading regions for the soft factor, SN-h, at small bT .

The Fourier transform in Eq. (1.2) acts as an analytic continuation of the function S for any value
of the soft transverse momentum. In fact, when the soft factor is Fourier transformed, the total soft
transverse momentum k⃗S,T is integrated out and its dependence is replaced by b⃗T . Roughly speaking,
at fixed bT all momenta with kS,T ≤ 1

bT
become accessible. This implies that when bT is small kS,T

can be very large, well beyond the original definition of the soft momentum region. As already
pointed out, one of the consequences of such operation is the generation of UV divergences which
will have to be canceled order by order by the UV counterterm ZS. Then, at large kS,T , i.e. at small
bT , there must be some hard factor that accounts for the UV behavior of the soft factor. Moreover,
in this region the whole structure of the soft factor is modified and includes also the convolution of
collinear and soft terms. All these parts can be disentangled by applying the factorization procedure to
the soft factor itself, in the small-bT regime, as pictorially represented in Fig. 1.1. The hard factor is
associated to the external Wilson line vertices and contains hard subgraphs with highly virtual loops.
There is a collinear subgraph corresponding to each Wilson line and all of them are connected by the
soft subgraph. Furthermore, if the entering transverse momentum ks is large enough, there can be
more hard subgraphs Cα with production of final-state jets of high transverse momentum. In this case
collinear factorization holds and the soft factor (the lowest subgraph in Fig. 1.1) is unity. In each of
these jet there is a fully inclusive sum/integral over final states, hence the sum-over-cuts argument
presented in Ref. [7] allows us to consider them as being far off-shell and part of the hard factor,
generating a “partonic cross section", i.e. a fully perturbative representation of the whole soft factor.
Furthermore, there is no convolution between the hard part and the collinear factors Ci, since the cut
eikonal propagators that exit from the hard subgraphs do not carry momentum (k̂i ·wi = 0). In fact, the
kinematic approximator associated to the hard factor suppresses all the weak components of collinear
momenta, leaving to survive only those related to the reference direction of the collinear group. It also

10



1.2 Soft Factor

removes all the rapidity cut-offs. This is represented by the “hat" on the momenta exiting the hard
subgraph in Fig. 1.1. As a consequence, all the collinear parts are integrated 2-h soft factors and are
unity as well. Therefore, the only remaining effective region is the hard factor with all the extra hard
jets, giving the perturbative version of the original SN-h. This function can be computed by using
web technologies (see for example Ref. [24–27]): it exponentiates, and the exponent is given by the
sum of all the (multiparton) webs, i.e. closed sets of Feynman diagrams related by permutations on
the external lines. Schematically:

SN-h(bT ; µ, yi, jk)
low bT∼

∫
dD−2⃗kS,T ei⃗ kS,T ·⃗bT exp

 ∑
W∈webs

∑
d,d′∈

graphs of W

Fd(kS,T ; µ, yi, jk)R(W)
d,d′ cd′

 ,

(1.3)

where R(W)
d,d′ is the mixing matrix that combines the kinematic and color factors, F and c respectively,

of the diagrams belonging to the web W.

Eq. (1.3) provides a formula for the soft factor in the small-bT region, but it cannot be trusted at
large values of bT . However, factorization gives no indication on where the perturbative region ends.
Therefore, without any hint on the boundaries of the small-bT regime, one has to separate it from
the large-bT region by hand. An easy method consists in modifying the functional dependence of
S̃N-h with respect to b⃗T by introducing a function b⃗⋆T (⃗bT ) such that it coincides with b⃗T at small bT ,
while at large bT it is no larger than a certain bmax. A possible choice, according to Ref. [19, 21, 7]1,
is given by:

b⃗⋆T (bT ) =
b⃗T√

1+b2
T/b2

max

(1.4)

Then, by dividing and multiplying S̃N-h by its small-bT behavior, we can obtain an expression which
holds valid at any value of bT :

S̃N-h(bT ; µ, yi, jk) = S̃N-h(b
⋆
T ; µ, yi, jk) ×

S̃N-h(bT ; µ, yi, jk)

S̃N-h(b
⋆
T ; µ, yi, jk)

=

=
∫

dD−2⃗kS,T ei⃗ kS,T ·⃗b⋆T exp

 ∑
W∈webs

∑
d,d′∈

graphs of W

Fd(kS,T ; µ, yi, jk)R(W)
d,d′ cd′

×MS(bT ; µ, yi, jk),

(1.5)

where MS(bT ; µ, {yi}i=1...N , { ji}i=1...N) is the fully non-perturbative function that models the N-h
soft factor at large bT , while the whole perturbative content is gathered in the webs.

1Different prescriptions can be found in the literature, see for example Ref. [28]
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Universality in hadronic scattering processes

In the t’Hooft limit2, the soft factor is strongly simplified. Regarding the perturbative part, the
only surviving diagrams are planar and the exponentiation becomes trivial. Furthermore, We can
also make some guess on the non-perturbative part which is, in principle, a fully arbitrary function,
since there is no way to extract it independently from experiments. In this limit the non-perturbative
contribution of S̃N-h only regards the incoherent emission of free glueballs, of every possible kind 3.
The function that models this kind of emission is a Poisson distribution, similarly to what happens
for photons in QED. In this regard, lattice QCD could play an important role for investigating the
properties of the long-distance behavior of N-h soft factors.

1.2.1 2-h Soft Factor

When the process involves two collinear parts, the soft factor connecting them is S̃2-h. In this
configuration, there is always a reference frame where the two directions for the collinear parts can be
identified to the plus and the minus directions. Following the Collins factorization formalism, the
Wilson lines are tilted with respect to these light-like directions by introducing two rapidity cut-offs
y1 and y2. The original plus and minus directions are restored if the cut-offs are removed, i.e. by
taking the limits y1→+∞ and y2→−∞. In total, there are four Wilson lines, two on each side of the
final state cut. The only relevant case for applications involves Wilson lines that replace fermionic
collinear partons. Hence, in the following I will drop the dependence on the parton types for simplicity.
Furthermore, the 2-h soft factor is color singlet, proportional to the identity matrix in color space,
i.e. (S̃2-h)

i
j ∝ δ i

j. Then, S̃2-h is defined as the coefficient in front of the delta function. By using the
definition in Eq. (1.2) I have:

S̃2-h(bT ; µ, y1− y2) = ZS(µ, y1− y2)×

× TrC

NC
⟨0|W (−⃗bT/2, ∞; n1(y1))

†W (⃗bT/2, ∞; n1(y1))×

×W (⃗bT/2, ∞; n2(y2))
†W (−⃗bT/2, ∞; n2(y2))|0⟩ |NO S.I., (1.6)

where NC is the number of colors available for quarks and antiquarks (3 in QCD). The Eq. (1.6)
describes a loop for the full path outlined by the Wilson lines. It starts (e.g.) from −⃗bT/2 and goes
to b⃗T/2, passing through ∞, along the almost plus direction n1. Then it comes back, again passing
through ∞, along the almost minus direction n2. Notice that the only Lorentz invariant combination
for a function depending on two rapidities (e.g. y1 and y2) is their difference (e.g. y1− y2). It is
possible to write the evolution equation for S2-h in the bT -space with respect to both rapidity cut-offs,
y1 and y2, using a single rapidity-independent kernel K̃(bT ; µ), often referred to as “Collins-Soper

2NC→ ∞ and αS NC is fixed.
3In order to preserve unitarity the sum must run over all the possible final states.
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1.2 Soft Factor

kernel" or “soft kernel" defined as [7]:

lim
y2→−∞

∂ log S̃2-h(bT ; µ, y1− y2)

∂y1
=

1
2

K̃(bT ; µ), (1.7a)

lim
y1→+∞

∂ log S̃2-h(bT ; µ, y1− y2)

∂y2
=−1

2
K̃(bT ; µ) . (1.7b)

It has an anomalous dimension γK :

dK̃(bT ; µ)

d log µ
=−γK(αS(µ)), (1.8)

where γK depends on µ through the strong coupling αS and is independent of bT . Then, K̃ can be
written as:

K̃(bT ; µ) = K̃(bT ; µ0)−
∫

µ

µ0

dµ ′

µ ′
γK(αs(µ

′)). (1.9)

For large values of (y1− y2), the solution to the evolution equations Eqs. (1.7) is given by:

S̃2-h(bT ; µ, y1− y2) = S̃2-h(bT ; µ0, 0)exp
{

y1− y2

2
K̃(bT ; µ)

}
+O

(
e−(y1−y2)

)
, (1.10)

where the reference values of the RG scale and of the rapidities are chosen to be µ0 and y1,0 = y2,0,
respectively. In the solution of the evolution equation, two functions appear: the fixed scale soft
factor S̃2-h(bT ; µ0, 0) and the soft kernel K̃(bT ; µ). Both of them can be separated in terms of their
perturbative and non-perturbative contents by using the b⋆ prescription, similarly to what was done in
Eq. (1.5):

S̃2-h(bT ; µ0, 0) = S̃2-h(b
⋆
T ; µ0, 0)MS(bT ) ; (1.11)

K̃(bT ; µ) = K̃(b⋆T ; µ)−gK(bT ) . (1.12)

Here, we are introducing the soft model MS, which parametrizes the non-perturbative behavior of the
2-h soft factor that does not exponentiate. This is a new non-perturbative function that will have to be
treated phenomenologically and that will play a pivotal role in the scheme presented in this thesis. On
the other hand, the function gK is a well-known object, representing the non-perturbative behavior of
the Collins-Soper kernel. In fact, it will also appear in the study of collinear parts, as I will show in
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Universality in hadronic scattering processes

the next section. Finally, consistency between Eqs. (1.5) and (1.10) requires that:

lim
y1→+∞
y2→−∞

∫
dD−2⃗kS,T ei⃗ kS,T ·⃗b⋆T exp

 ∑
W∈webs

∑
d,d′∈

graphs of W

Fd(kS,T ; µ, yi, jk)R(W)
d,d′ cd′

=
y1− y2

2
K̃(b⋆T ; µ);

(1.13a)

lim
y1→+∞
y2→−∞

MS(bT ; µ, y1− y2) = MS(bT )e−
y1−y2

2 gK(bT ); (1.13b)

S̃2-h(b
⋆
T ; µ0, 0) = 1. (1.13c)

Notice that the non-perturbative function MS(bT ; µ, y1− y2) loses its dependence on µ in the large
rapidity limit, as gK does not depend on the RG scale. The two non-perturbative functions MS and gK

should not contribute at small bT by definition, hence they have to be constrained so that gK(bT )→ 0
and MS(bT )→ 1 when bT → 0. Furthermore, since the Fourier transform of S̃2-h has to be well
behaved, the contribution of gK and MS should produce a proper suppression at large bT . Notice
that the factor in front of gK , being proportional to the difference of the rapidity cut-offs, is always
large and negative in the large rapidity cut-off limit. In conclusion, merging the results obtained in
Eqs. (1.9) – (1.13) and neglecting corrections that vanish in the large rapidity limit, the 2-h soft factor
in bT space can be written as:

S̃2-h(bT ; µ, y1− y2) = e−
y1−y2

2

[∫
µ

µ0
dµ ′
µ ′ γK(αS(µ

′))−K̃(b⋆T ; µ0)
]
MS(bT )e−

y1−y2
2 gK(bT ). (1.14)

This result shows that the soft factor itself can be factorized in a purely perturbative part, calculable
within pQCD, and a part which is genuinely non perturbative and, inevitably, will have to be committed
to a phenomenological model, in this case embedded in the functions MS(bT ) and gK(bT ).

Although the definition of Eq. (1.6) implies that S̃2-h = 1 at bT = 0, a direct fixed order perturbative
computation of K̃ does not reproduce the correct behavior in this region. In this regard, since the soft
factor is unity at bT = 0, then K̃ goes to zero at small bT , but an explicit calculation gives instead a
larger and larger value as bT decreases, forcing S̃2-h to vanish in bT = 0. This kind of problems arise
because the integrated soft factor can be defined through perturbative QCD only as a bare quantity. A
solution can be found by applying some regularization procedure, for instance one can modify the b⋆

prescription of Eq. (1.4) allowing for the introduction of a new parameter bMIN ̸= 0 that provides a
minimum value for bT (see Appendix A).

1.3 Collinear Parts and TMDs

Let’s now consider a generic collinear part. All the collinear particles are boosted very strongly in
the collinear group direction, that can be identified with the plus direction without loss of generality.

14



1.3 Collinear Parts and TMDs

To them, everything outside of the collinear group is moving very fast in the opposite direction, so
fast that the only surviving information is the color charge and the direction. In other words, as seen
from the collinear factor, the rest of the process is well approximated by a light-like Wilson line
flowing in the direction opposite to that of the collinear group, i.e. directed along the minus direction.
Assuming for simplicity that the reference parton is a quark, if k⃗T is the total transverse momentum of
the collinear group, then the collinear factor is defined as:

C(0)
j,h(ξ , k⃗T ; µ, yP,−∞) =

TrC

NC

∫ dk−

(2π)D



∣∣∣∣∣
NO S.I.

initial state,

1
ξ
×

∣∣∣∣∣
NO S.I.

final state,

(1.15)

where the color average TrC/NC is due to the fact that collinear factors are color singlets and,
analogously to the 2-h soft factor, they are defined as the coefficient in front of the delta in color
space. The Wilson lines are directed along the minus direction and are considered without self
energy contributions. Furthermore, similarly to the soft factor (see discussion below Eq. (1.1)), the
definition in Eq. (1.15) refers to bare quantities, as expressed by the label “(0)". Therefore, it should
be considered as an operative definition, useful to perform explicit perturbative computations. The
variable ξ is the light-cone fraction of the momentum k of the reference parton, quark of flavor j, with
respect to the momentum P of the reference hadron h, µ is the renormalization scale at which C is
evaluated and yP is the (very large) rapidity of the reference hadron. The definition of ξ in the initial
and final state is given by:

ξ =


x = k+

P+ initial state hadron;

z = P+

k+ final state hadron,
(1.16)

Notice that in the collinear factors we have indicated the full vectorial dependence on k⃗T . Differently
from the soft case, here the transverse momentum is not the only available vector: there is also at least
one more vector, the momentum of the reference hadron, allowing for interesting interplay effects
between, e.g. the spin of the parton and the hadron momentum, that constitute the core of all the rich
phenomenology related to spin physics. The other important difference with soft factors regards the
relation of collinear parts with the rest of the process. As opposed to the soft factor, the collinear
factor C defined in Eq. (1.15) is totally blind to the rest of the process. It only depends on its intrinsic
variables, as the collinear momentum fraction and the total transverse momentum. This property
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Universality in hadronic scattering processes

generates different degrees of universality between soft and collinear contributions and it will be
central in defining a criterion to classify general hadronic processes.

In the Fourier conjugate space, collinear parts are formally defined in terms of QCD operators.
We have:

C̃ j,h(ξ , b⃗T ; µ, yP,−∞) =
∫

dD−2⃗kT ei⃗ kT ·⃗bT C j,h(ξ , k⃗T ; µ, yP,−∞) =

= ZC(µ, yP,−∞)Z2 (αS(µ))
TrC

NC

∫ dx−

2π
eik+ x−×

×



⟨P(h)|ψ(0)(−x/2)Wj(−x/2, x/2; w)ψ(0)(x/2)|P(h)⟩ |NO S.I. initial state,

1
ξ
×∑

X
⟨P(h), X ; out|ψ(0)(−x/2)Wj(−x/2,∞; w)†|0⟩×

× ⟨0|Wj(x/2,∞; w)ψ
(0)(x/2)|P(h), X ; out⟩ |NO S.I.

final state,

(1.17)

where x = (0,x− ,⃗bT ) and w is the light-like minus direction of the Wilson line. Since the Wilson lines
are defined with bare gluon fields, the (anti)quark fields in the previous definitions are bare too. The
wave-function renormalization counterterm Z2 restores the renormalized fermion fields. The factor
ZC is the UV-counterterm that, order by order, cancels the poles generated by the stretching of the
integration outside the collinear momentum region defined through power counting. Its role is totally
analogous to the UV-counterterm introduced for soft factors in Eq. (1.2).

Differently from the soft case, here there is another type of unregulated divergences due to
the light-like direction of the Wilson line. In fact, this implies that the collinear group defined
by C, strongly boosted along the plus direction, includes also particles with a low, or even a very
large negative rapidity. This contradiction reflects in the computation by inducing the presence of
unregulated infinities, known as rapidity divergences. In the Collins factorization formalism, this
problem is solved by subtracting out these unphysical contributions from the collinear factor. The
subtraction term coincides with the overlapping of the collinear momentum region with the soft
momentum region and hence it describes particles which are soft-collinear: being collinear, they see
the rest of the process flowing fast along the opposite (minus) direction, but being soft, they feel the
collinear group as if it were strongly boosted along the plus direction. Therefore, such subtraction
term is a 2-h soft factor (see Eq. (1.6)), with a light-like Wilson line pointing in the minus direction
and a Wilson line slightly tilted off the plus direction. This tilting introduces a rapidity cut-off y1

that regulates all the rapidity divergences associated with the definition of Eq. (1.17). Therefore, in
one shot, the subtraction mechanism regulates the rapidity divergences of collinear factors and also
cancels the double counting of the soft-collinear contributions. As a result, the subtracted collinear
factors will give a correct description of truly collinear particles, i.e. quanta with low transverse
momentum and large positive rapidity. In fact, after subtraction, the particles in C can only have a
rapidity y such that y1 < y < yP ∼+∞. Hence if y1 is chosen to be sufficiently large, only strongly
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1.3 Collinear Parts and TMDs

boosted particles in the plus direction contribute to C, according to the naive physical intuition. The
final definition of the subtracted collinear factor is:

C̃sub
j,h (ξ , b⃗T ; µ, yP− y1) = Zsub

C (µ, yP− y1)Z2 (αS(µ)) lim
yu2→−∞

C̃(0)
j,H(ξ , b⃗T ; µ, yP− yu2)

S̃(0)2-h(bT ; µ, y1− yu2)
. (1.18)

where the label “(0)" means that the corresponding factors are bare functions of bare fields.

Having given the general definition of collinear factors, TMDs can be obtained quite straightfor-
wardly. In fact, as C is an operator acting onto the space of Dirac spinors, it belongs to the Clifford
algebra built from the Dirac matrices {γµ}. Neglecting all the dependences on partonic and hadronic
variables, the expansion on the basis of this algebra gives:

Csub = S I+V µ
γµ +A µ

γ
5

γµ + iP γ
5 + iT µ ν

σµ νγ
5. (1.19)

The TMDs are related to the coefficients S ,V , . . . ,T µ ν of the expansion. Such coefficients can be
further expanded in terms of all the Lorentz tensors contributing to the leading twist approximation
(see e.g. Ref. [29]). This allows to isolate all the dependence on the vector part of b⃗T leaving a set
of scalar functions depending only on the modulus bT . These scalar functions are the TMDs. For
example, the coefficient of γ+ defines the unpolarized TMDs and the Sivers function:

V + =
TrD

4

(
γ
+Csub

)
=

 f1− 1
M |⃗ST × k⃗T | f⊥1T initial state ,

D1− 1
M |⃗ST × k⃗h,T |D⊥1T final state .

(1.20)

The definition in Eq. (1.18) naturally extends to TMDs:

C̃sub
j,H (ξ , bT ; µ, yP− y1) =

TrD

4

(
Γ C̃sub

j,H (ξ , b⃗T ; µ, yP− yu2)
) leading

twist coeff. =

= (ZTMD)(µ, yP− y1)Z2 (αS(µ)) lim
yu2→−∞

TrD
4

(
Γ C̃(0)

j,H(ξ , b⃗T ; µ, yP− yu2)
) leading

twist coeff.

S̃(0)2-h(bT ; µ, y1− yu2)
=

= (ZTMD)(µ, yP− y1)Z2 (αS(µ)) lim
yu2→−∞

C̃ j,H(ξ , bT ; µ, yP− y1))

S̃(0)2-h(bT ; µ, y1− yu2)
(1.21)

where Γ is the proper Dirac matrix combination to extract the desidered TMD and ZTMD is its own UV
counterterm. The label “leading twist coeff." means that the TMDs are obtained, after the projection
onto the Clifford Algebra, as the coefficients of the expansion at leading twist. The operator definition
of TMD as given in Eq. (1.21), which follows directly from the TMD factorization will be referred to
as the factorization definition. Notice that within this definition, the TMD describes purely collinear
particles, as all the soft-collinear contributions have been subtracted out.
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In this section, the TMDs have been presented as totally process-independent objects. However,
the expansion of Eq. (1.19) also includes terms which do not obey to time-reversal invariance, even at
leading twist. TMDs associated to such terms change sign under time reversal transformations, hence
are called T-odd TMDs. They are particularly relevant in processes involving initial state hadronic
interactions, as Drell-Yan and proton-proton collisions. In fact, the property of being T-odd crucially
follows from the action of the time reversal operator on the direction of the Wilson lines appearing into
the TMD definition. In particular, future pointing Wilson lines, associated to final state interactions,
are mapped into (sign reversed) past pointing Wilson lines, associated to initial state interactions
[30]. An important consequence is that T-odd TMD PDFs, when extracted from SIDIS, have the
opposite sign with respect to the same TMDs extracted from Drell-Yan [31–35]. Such effects concern
controlled and calculable violation of universality, as the TMDs in different reactions can be related
to each other [7].

1.3.1 Evolution Equations for TMDs

In the factorization definition4 of TMDs, Eq. (1.21), a 2-h soft factor appears as a consequence of
the subtraction mechanism. Therefore, the results of Section 1.2.1 can be used to write the evolution
equation (Collins-Soper evolution) for C̃ with respect to the rapidity cut-off y1. On the other hand,
the evolution with respect to the scale µ (i.e. the Renormalization Group evolution) is ruled by the
anomalous dimension γC. The equations are given by:

∂ logC̃ j,h(ξ , bT ; µ, ζ )

∂ log
√

ζ
=

1
2

K̃(bT ; µ), (1.22a)

∂ logC̃ j,h(ξ , bT ; µ, ζ )

∂ log µ
= γC

(
αS(µ),

ζ

µ2

)
, (1.22b)

which, for later convenience, have been re-written in terms of a new variable, ζ , defined as follows:ζ = (Mh x)2 e2(yP−y1) initial state hadron;

ζ =
(

Mh
z

)2
e2(yP−y1) final state hadron,

(1.23)

where Mh is the mass of the reference hadron, while x and z are the light-cone fractions of the
momentum of the reference parton with respect to the hadron. Thanks to the definitions in Eq. (1.16),
in both initial and final states the following relation holds: ζ = 2(k+)2e−2y1 . Together with the RG
evolution of K̃ given in Eq. (1.8), the CS evolution of γC follows from Eqs. (1.22):

∂γC
(
αS(µ), ζ/µ2

)
∂ log

√
ζ

=−1
2

γK(αS(µ)), (1.24)

4In the following, I will drop the superscript “sub" since, from now on, I will always refer to subtracted quantities.
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which gives:

γC
(
αS(µ), ζ/µ

2)= γC (αS(µ), 1)− 1
4

γK(αS(µ)) log
ζ

µ2 . (1.25)

Finally, it is a standard result that the solution of TMDs evolution equations reads [7, 36, 37]

C̃ j,h(ξ , bT ; µ, ζ ) =
(
C̃ k

j (b
⋆
T ; µ0, ζ0)⊗ ck,h(µ0)

)
(ξ )︸ ︷︷ ︸

TMD at reference scales

×

× exp
{

1
4

K̃(b⋆T ; µ0) log
ζ

ζ0
+
∫

µ

µ0

dµ ′

µ ′

[
γC(αS(µ

′), 1)− 1
4

γK(αS(µ
′)) log

ζ

µ ′2

]}
︸ ︷︷ ︸

Perturbative Sudakov Factor

×

× (MC) j,h (ξ , bT ) exp

{
−1

4
gK(bT ) log

ζ

ζ 0

}
︸ ︷︷ ︸

Non-Perturbative content

(1.26)

where the standard choices for the reference values of the scales are5:

µ0 = µb =
2e−γE

b⋆T
; (1.27a)

ζ0 = µ
2
b ; (1.27b)ζ 0 = (Mh x)2 initial state;

ζ 0 =
(

Mh
z

)2
final state.

(1.27c)

In the solution of the evolution equation the b⋆T prescription, Eq. (1.4), has been used in order to
separate the perturbative from the non-perturbative content, in complete analogy to what was done
for the soft factor in Section 1.2.1. In particular, in Eq. (1.26), the non-perturbative behavior of the
TMD is described by two functions. The first is gK , the same function that appears in Eq. (1.14),
describing the long-distance behavior of the Collins-Soper kernel. The second is the TMD model
function (MC) j,h (ξ , bT ), that embeds the genuine non-perturbative behavior of the TMD. It is the
collinear counterpart of the soft model but, in contrast, MC does not depend only on bT , but also on
the collinear momentum fraction ξ , the flavor of the reference parton and the type of reference hadron
associated to the collinear part. By definition, the model should not influence the TMD at small bT .
Furthermore, since the Fourier transform of the TMD has to be well behaved, the model should be
sufficiently suppressed at large bT

6. These properties restrict the behaviour of the non-perturbative

5Notice that the reference value of ζ is different in the perturbative and in the non-perturbative parts.
This follows from the application of the evolution equation to C̃(ξ , b⃗T ; µ0, ζ0)/C̃(ξ , b⃗⋆T ; µ0, ζ0), which gives
MC(bT ) exp(−1/4gK(bT ) logζ0/ζ 0) .

6Although the function gK gives a suppression factor in Eq. (1.26), it is modulated by (minus) the logarithm of ζ and
consequently it may create problems when the rapidity cut-off becomes too low.

19



Universality in hadronic scattering processes

function MC at small and large bT as follows

lim
bT→0

MC(. . . , bT ) = 1; lim
bT→∞

MC(. . . , bT ) = 0. (1.28)

The small-bT perturbative behavior is obtained with a procedure analogous to that used for soft factors.
Also in this case, the Fourier transform acts as an analytic continuation of the TMD (and in general of
the collinear factors) outside the collinear momentum region defined by power counting. Then, in the
small-bT region, the TMDs can be further factorized in order to expose their hard, soft and collinear
contributions. Once again, this gives a collinear factorization theorem that leads to a convolution of a
finite (calculable in perturbative QCD) hard coefficient C with the TMD integrated over k⃗T , which
are the usual PDFs and FFs. The structure is the Operator Product Expansion (OPE) in the r.h.s of the
first line in Eq. (1.26):

C̃ j,h(ξ , bT ; µ, ζ )
low bT∼

∼
(
C̃ k

j (bT ; µ, ζ )⊗ ck,h(µ)
)
(ξ ) =


(
C̃ k

j (bT ; µ, ζ )⊗ fk/h(µ)
)
(x) initial state,

z−2+2ε

(
dh/k(µ)⊗ C̃ k

j(bT ; µ, ζ )
)
(z) final state.

(1.29)

where C̃ k
j are the Wilson Coefficients of the OPE, which are matrices in the flavor space. A sum

over flavor k is implicit. In the second line of Eq. (1.29) I distinguish the Wilson Coefficients of the
initial state from those corresponding to the final state according to the position of their upper and
lower flavor indices. For more details on the convolutions see Appendix A. The integrated TMDs
are indicated by lowercase letters; in particular ck,h denotes a generic integrated TMD, while f and d
label usual PDFs and usual FFs, respectively.

Finally, a comment on integrated TMDs. Their definition suggests that they must coincide with
the Fourier transformed TMDs in bT = 0. However, perturbative QCD fails to give the right result
in bT = 0 because of the new UV divergences introduced by the integral over the whole range of kT .
The most evident signal of this problem is that C̃ goes to zero as bT → 0 and the usual collinear PDFs
and FFs are not recovered. This problem is completely analogous to that encountered in Section 1.2.1
and it can be solved in a similar way, by defining a regularization procedure for the definition of the
integrated TMDs (see Appendix A).

1.4 N-h Universality and Process Classification

The soft and collinear factors presented in the previous Sections play a leading role in the study
of non-perturbative QCD. In fact, they encode the long-distance phenomena at the heart of the
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hadronization and confinement and hence they offer a unique perspective to investigate the inner
properties of strong interactions, through the phenomenological analysis of hadronic processes. The
universality of the non-perturbative part of the factorized cross section is then a necessary requirement
to have a predictive theory. In fact, if the non-perturbative quantities had to be extracted again for
each individual process, the phenomenological analysis of a hadronic cross sections would be reduced
to a mere fit of experimental data.

However, soft and collinear factors have a different level of universality. If being universal is the
property of being totally process-independent, then only collinear parts (and by extension TMDs) can
satisfy this requirement7. In fact, the factorization definition, introduced in Eq. (1.21), implies that
TMDs are completely blind to the global features of the process, like kinematics, as they depend only
on their internal variables, i.e. the collinear momentum fraction ξ and the transverse momentum k⃗T

of the reference hadron with respect to the reference parton. On the other hand, as pointed out in
Section 1.2, soft factors are not completely process-independent. In fact, they depend on the number
N of the collinear factors involved in the factorized cross section, each related to its reference parton
of type j and to its reference hadron h. Therefore, they are not insensitive to the kinematics of the
process in which they appear, because they depend both on the number of the Wilson lines replacing
the collinear parts and also on their color representation, which is fixed by the parton type j and
differs from quark and gluons. However, at fixed N and for reference partons of the same kind, soft
factors are actually the same, modulo crossing symmetry. Clearly, this is a lower level of universality
compared to collinear factors.

Since N is the number of reference hadrons participating to the hadronic process, in the following
I will define this property as N-h universality. Hence, schematically:

process dependent
(hard parts) <

N-h universal
(soft factors) <

universal
(TMDs) (1.30)

where the symbol “<" means “less universal than" and TMDs are intented to be defined through the
factorization definition of Eq. (1.21). Eq. (1.30) introduces a hierarchy based on universality. The
lowest level is occupied by quantities, like the hard part, that are completely process dependent but
fully computable in perturbation theory. At the top of the hierarchy there are quantities, like collinear
factors and TMDs, that are absolutely process independent: they carry non-perturbative information
but their universality properties guarantee that they can be extracted from one particular process and
then used in any other. In the middle there are quantities which are only N-h universal, like soft
factors. As they carry non-perturbative information, they cannot be computed perturbatively. They too
have to be extracted from experimental data, but they can only be used for the processes involving the
same number of collinear groups. As a consequence, N-h universality can be exploited to introduce a
general way to classify hadronic processes. Formally, a process belongs to the N-h class if it globally
involves N collinear parts, which can appear in the initial and/or in the final state, in all possible

7Here, I am not considering the violation of universality associated with T-odd TMDs, discussed at the end of Section 1.3.
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Universality in hadronic scattering processes

combinations and for all the allowed kind of reference partons. This is a very simple criterion, as
it does not take into account anything but the numbers of hadrons appearing in the signature of the
hadronic process. Then, for instance, e− p→ π X and p p→ µ− µ+ belong to the 2-h class, while
p p→ π X belongs to the 3-h class. Furthermore, kinematics is not considered for this classification.
Therefore, the processes are classified independently of the factorization scheme (collinear or TMD)
required to get the corresponding factorization theorems. For example, e+e− → h1 h2 belongs to
the 2-h class when the two hadrons are almost back-to-back, where TMD factorization holds, but
also when the two hadrons are far from the back-to-back configuration, where instead collinear
factorization works.

Different N-h class means different soft factors, as SN-h is N-h universal (modulo crossing
symmetry and the possible color representations of its Wilson lines). However, belonging to different
N-h classes does not affect the the universality of the TMDs, as long as they are defined through
Eq. (1.21). This is a crucial issue. In fact, the definition commonly used for TMDs differs from the
factorization definition introduced in the previous section, as it combines purely collinear facors with
S̃2-h factors. This is mainly due to historical reasons, since originally TMDs were defined within the
2-h class, in order to make the related TMD factorization theorems suitable for phenomenological
analyses of SIDIS and e+e−→ h1 h2 X processes.

1.4.1 The 2-h Class

Until 2019, when the BELLE Collaboration provided the first measurement of the e+e−→ hX cross
section, differential in the transverse momentum of the detected hadron with respect to the thrust
axis [8], only three processes were almost exclusively used to study TMD physics:

• e+e− annihilation into two almost back-to-back hadrons;

• Semi-Inclusive DIS (SIDIS) for small values of transverse momentum of the detected hadron,

• Drell-Yan scattering, for small values of transverse momentum of the lepton pair

These three processes involve in total two collinear parts, distributed in all the possible combinations
among initial and/or final state. Therefore, the triplet {l l→ h1 h2; l h1→ l h2; h1 h2→ l l} forms the
2-h class and all these three processes share the same8 soft factor S̃2-h. This result can be proved
formally, see for instance Ref. [7]. Their TMD factorization theorems can be schematically written as:

dσ2-h

dξ1 dξ2 dq⃗T
= Hprocess

∫
d2⃗bT e−i⃗qT ·⃗bT C̃2(ξ2, bT , yh2− y2) S̃2-h(bT , y1− y2)C̃1(ξ1, bT , ,yh1− y1)

(1.31)

8Notice that in this case charge conservation allows only two fermions as reference partons.
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1.4 N-h Universality and Process Classification

where ξi for i = 1, 2 is the light-cone momentum fraction of hadron hi with respect to the associ-
ated reference parton, while q⃗T is the transverse momentum of the virtual boson that mediates the
interaction. In e+e−→ h1 h2 it is related to the relative angle between the two hadrons, in SIDIS
it is proportional to the transverse momentum of the detected hadron and in Drell-Yan scattering
it is the transverse momentum of the lepton pair. Then the TMD factorization theorems presented
in Eq. (1.31) are valid when qT is small compared to the hard energy scale Q that characterizes the
process (c.m. energy in e+e− annihilation and Drell-Yan scattering, total momentum transfer in
SIDIS). In Eq. (1.31), Hprocess is the process-dependent hard factor. The soft gluon contributions are
encoded into the soft factor S̃2-h, defined formally in Eq. (1.6) and written explicitly as solution of
the evolution equations in Eq. (1.14). The two TMDs C̃1 and C̃2 are associated to the two hadrons h1

and h2 and describe pure collinear particles, as they are defined through the factorization definition
of Eq. (1.21), which leads to the form presented in Eq. (1.26). By using the given definitions for the
soft factor and the TMDs, the cross section of Eq. (1.31) does not depend on the rapidity cut-offs y1

and y2. In total, there is a minimum of four non-perturbative functions that need to be extracted from
experimental data:

• gK(bT ) defined in Eq. (1.12), that describes the long-distance (large bT ) behavior of the Collins-
Soper kernel;

• The soft model MS(bT ) introduced in Eq. (1.11), that encodes the long-distance behavior of the
non-exponentiating part of S̃2-h;

• The two TMD models Mi(ξi, bT ), that play the same role of the soft model in the TMDs. In
principle, besides the dependence on bT , they can depend also on the light-cone momentum
fraction ξi, on the flavor of the reference parton and on the type of reference hadron, see
Eq. (1.26)

Clearly, the phenomenological extraction of three unknown multivariate functions is a very difficult
task, even combining all the available data on the three reference hadron processes. In particular, MS is
really problematic. It is not associated directly to the observed hadrons and it is always entangled with
the TMD models. This is due to the intrinsic correlation between the two collinear parts induced by the
soft factor in Eq. (1.31). In conclusion, to make the formula in Eq. (1.31) suitable for phenomenology,
we should try and reduce the number of non-perturbative unknown functions.

Remaining within the 2-h class, a brilliant way to solve this problem is to absorb the contribution
of the soft factor into the TMDs. Let’s consider the combination of soft and collinear contributions in
Eq. (1.31); by writing explicitely the factorization definition of the TMDs we have:

C̃2(ξ2, bT , yh2− y2) S̃2-h(bT , y1− y2)C̃1(ξ1, bT , yh1− y1) =

= lim
yu1→+∞

yu2→−∞

C̃uns.
2 (ξ2, bT , yu1− yh2)

S̃2-h(bT , yu1− y2)
S̃2-h(bT , y1− y2)

C̃uns.
1 (ξ1, bT , yh1− yu2)

S̃2-h(bT , y1− yu2)
(1.32)
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All three soft factors in the previous equations have the same functional form, but they are functions
of different combinations of rapidities. Therefore, they can be re-organized by re-defining the TMDs
as (see for instance [7, 37]):

C̃ sqrt
1 (ξ1, b⃗T ; µ, yh1− yn) =

= lim
yu1→+∞

yu2→−∞

C̃uns.
+ (ξ1, b⃗T ; µ, yh1− yu2)

√
S̃2-h(bT ; µ, yu1− yn)

S̃2-h(bT ; µ, yu1− yu2) S̃2-h(bT ; µ, yn− yu2)
, (1.33a)

C̃ sqrt
2 (ξ2, b⃗T ; µ, yn− yh2) =

= lim
yu1→+∞

yu2→−∞

C̃uns.
2 (ξ2, b⃗T ; µ, yu1− yh2)

√
S̃2-h(bT ; µ, yn− yu2)

S̃2-h(bT ; µ, yu1− yu2) S̃2-h(bT ; µ, yu1− yn)
. (1.33b)

This TMD definition is often referred to as the square root definition. There are many advantages
to it. First of all, a single rapidity cut-off yn is sufficient to regularize all rapidity divergences.
Furthermore the Collins-Soper evolution equations are unified and symmetrized. The product of
Eqs. (1.33a) and (1.33b) reproduces the same combination of Eq. (1.32). As a consequence, the 2-h
cross sections assume a “Parton-Model"-like structure, where all soft gluons are reabsorbed into the
TMD definition, very convenient for phenomenological applications:

dσ2-h

dξ1 dξ2 dq⃗T
= Hprocess

∫
d2⃗bT e−i⃗qT ·⃗bT C̃2(ξ2, bT , yh2− y2) S̃2-h(bT , y1− y2)C̃1(ξ1, bT , ,yh1− y1) =

= Hprocess

∫
d2⃗bT e−i⃗qT ·⃗bT C̃sqrt

2 (ξ2, bT , yh2− yn)C̃sqrt
1 (ξ1, bT , ,yh1− yn). (1.34)

This re-definition of collinear factors actually decreases by one the number of non-perturbative
unknown functions to be extracted from experimental data. In particular, the soft model MS is
absorbed by the TMD models Mi. This result can be obtained by comparing directly the factorization
definition of Eq. (1.21) with the square root definition of Eq. (1.33a) (the comparison with Eq. (1.33b)
is totally analogous). Since the unsubtracted TMDs are the same in the two definitions [7], the
comparison proceeds straighforwardly by exploiting the expression given for the 2-h soft factor in
Eq. (1.14). We have:

C̃ sqrt(ξ , b⃗T ; µ, yP− yn)

C̃(ξ , b⃗T ; µ, yP− y1)
=

= lim
yu1→+∞

yu2→−∞

√
S̃2-h(bT ; µ, yu1− yn)

S̃2-h(bT ; µ, yu1− yu2) S̃2-h(bT ; µ, yn− yu2)
S̃2-h(bT ; µ, y1− yu2) =

=
√

MS(bT )× e
(y1−yn)

2 K̃(b⋆T ; µ) e−
(y1−yn)

2 gK(bT ) , (1.35)
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This is an exact result, since all the neglected errors of order O (e−y1 , e−yn) As a consequence, the
two definitions are related as:

C̃ sqrt(ξ , b⃗T ; µ, yP− y1) =
√

MS(bT )×C̃(ξ , b⃗T ; µ, yP− y1) . (1.36)

Therefore, the TMDs defined with the square root definition are obtained from the TMDs defined
with the factorization definition simply multiplying them by a square root of the soft model MS. This
is a very important result, as it shows that the choice of TMD definition only affects the long-distance
behavior of the TMDS (at large bT ) while having no impact on the perturbative part. Consequently,
in momentum space, C sqrt will differ from C mainly in the small kT region. In other words, the
absorption of the soft gluons contributions into the collinear parts can be interpreted as a deformation
of the TMD models, which in the two definitions are related as9:

M sqrt
C (ξ , bT ) = MC(ξ , bT )×

√
MS(bT ) , (1.37)

where the dependence of MC on the flavor of the reference parton and on the kind of reference hadron
has been omitted for simplicity. Then, the fact that the product of C̃ sqrt

1 and C̃ sqrt
2 gives exactly the

same combination of Eq. (1.32) follows straightforwardly, since:

M2(ξ2, bT )MS(bT )M1(ξ1, bT )≡M sqrt
2 (ξ2, bT )M sqrt

2 (ξ1, bT ). (1.38)

In conclusion, the square root definition offers an ideal framework to perform the phenomenological
study of the 2-h class of processes since, as a result of the manipulations that lead to Eq. (1.38),
it succeeds in reducing the number of unknown non-perturbative functions appearing in the cross
section.However, the square root definition makes it impossible to disentangle the non-perturbative
soft effects due to MS which, instead, remains explicit when using the factorization definition for
the TMD. Distributing the 2-h soft factor to the two TMDs as in Eq. (1.34) lowers their level of
universality, as it contaminates the truly universal collinear parts with an object like S̃2-h which is
universal only inside the 2-h class. On the other hand, abandoning the square root definition of the
TMDs in favor of the factorization definition, will force us to face the soft factor problem and take a
new (and potentially very hard) challenge: reformulating the way we do phenomenology, in terms of
newly defined fundamental objects, where the soft factors are modeled explicitly rather than absorbed
in the definition of the TMDs.

9This relation holds only in one direction: if TMDs are re-defined through the square root definition, then their non-
perturbative models are related to their counterparts in the factorization definition through Eq. (1.37). However, there are
cases in which MC is multiplied by

√
MS but the definition of Eqs. (1.33) is not recovered.
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1.4.2 The 1-h Class

Processes that involve only one reference hadron are DIS and l+l−→ hX , where one single hadron
appears either in the initial state or in the final state. Any TMD observable derived from them
necessarily requires the measurement of one additional quantity, to specifies the direction with respect
to which the transverse momentum is considered. In the 2-h class this is not necessary, as the
direction of one of the hadrons provides a natural reference. The direction of the relevant parton is
indeed the most natural choice to investigate the 3D structure of hadrons and, for annihilation events,
this direction coincides with the axis of the jet in which the hadron is detected. In such case, the
determination of the thrust axis is a valuable experimental estimate of the fragmenting parton direction
(see Appendix B). In the Collins factorization formalism this additional variable is not taken into
account, since the reference parton can be directed along any direction as long as it does not deviate
too much from that of the reference hadron. The implementation this kind of information into the
formalism presented in Sections 1.2 and 1.3 will be investigated in the next Chapters.

Furthermore, the two above mentioned processes of the 1-h class have another common feature.
Both in DIS and in e+e−→ hX there is always at least one collinear factor which is not associated
to any observed hadron. This peculiar situation appears anytime real emissions, carrying a large
transverse momentum, are produced in the hard scattering. Then, each of these highly transverse
partons generate an independent jet of particles in the final state. If no hadrons are detected in
these jets, then the associated collinear factors do not have any reference hadron. At any order
in perturbation theory, there is no final state escaping the cut and the whole collinear subgraph is
completely crossed by it. As a consequence, the collinear divergences associated to the collinear
factor can be consistently avoided by deforming all the integration contours in the UV momentum
region. The neat effect is that such collinear contributions become fully perturbative objects, as well
as the hard factor. For a rigorous proof see Ref. [7]. Therefore, in the following, I will refer to these
highly transverse jets as “hard jets". The processes belonging to the 1-h class are, intrinsically, much
more inclusive than those belonging to the 2-h class. Therefore, they always present (at least one)
perturbative collinear factor, even when kinematics forbids the production of hard jets, i.e. for small
values of momentum transfer in DIS or for a 2-jet final state topology in annihilation processes. This
is pictorially represented in Fig. 1.2.

On the other hand, the role of soft gluons in the 1-h class is not so obvious. In general, when
TMD effects are not considered, if there is at least one hard jet, then the whole soft factor of the
process becomes trivial. This is a fundamental issue in deriving collinear factorization theorems and
can easily be understood in terms of momentum conservation. In fact, the soft transverse momentum
is inevitably overpowered by the large transverse momentum of the parton that generates the hard
jet, and hence it can be neglected. As a consequence, the soft factor is integrated and becomes unity.
This follows straightforwardly from the operator definition of Eq. (1.2) and it is shown explicitly for
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(a) (b)

Fig. 1.2 Pictorial representation of hadronic tensors in DIS (a) and in l+l−→ hX (b). In both cases, a
parton generated in the hard scattering is associated to a collinear factor completely crossed by the
final state cut and hence computable in perturbation theory. The soft gluon emissions are not shown.

S̃2-h in Appendix A. For a rigorous proof see Ref. [7]. When the soft factor is trivial, it is common
to gather all the perturbative collinear factors associated with the hard jets together with the hard
subgraph, in order to join all the perturbative contributions into a single object, which plays the role
of a partonic cross section. However, when TMD effects are taken into account, there are kinematics
configurations that forbid the production of hard jets but nevertheless still allow for the presence of a
perturbative collinear factor. In this cases, the soft transverse momentum is unavoidably connected to
the transverse momentum of the collinear parton associated with the jet, and hence it can be somehow
accessed experimentally. This issues will be addressed in the next Chapter, where I will consider the
case of e+e−→ hX , in the case where the thrust axis is determined.

1.5 Conclusions

Following the Collins factorization formalism, soft factors and TMDs are defined as in Section 1.2
and 1.3, respectively. They both are fundamental objects in developing factorization theorems, as
they encode the non-perturbative behavior of QCD. They are universal, but in a different manner:
while TMDs are truly universal objects and once extracted they can be used in any cross section that
requires their contribution, soft factors have a minor degree of universality. They can be considered
universal in the same sense of TMDs only for processes with the same number N of collinear parts.
Such property has been defined “N-h universality" in Section 1.4 and hadronic processes have been
classified in N-h classes according to it. The 2-h class is a particularly relevant case, since the classic
TMD factorization theorems for e+e− annihilation into two hadrons, SIDIS and Drell-Yan have
been determined within it. For this reason, the commonly used definition for the TMDs is not the
factorization definition presented in Eq. (1.21), but rather the square root definition of Eqs. (1.33), in
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which the soft factor S̃2-h appearing in the 2-h cross sections is absorbed into the TMDs themselves.
Such re-definition of collinear factors is optimal for the 2-h class, as it beautifully simplifies the 2-h
cross section making it suitable for phenomenological applications as shown in Section 1.4.1. As long
as we restrict to 2-h processes, the square root definition constrains the phenomenological analyses
enough to allow for the extraction of the non-perturbative functions appearing in the cross sections, at
the cost of a total loss of information about the long-distance behavior of the soft factor, since the soft
model MS is completely absorbed into the TMDs and does not play an active role in the factorization
theorems anymore.

In the next Chapters, I will consider e+e− → hX , which is a 1-h process. Therefore, it must
present a soft factor different from S̃2-h. The square root definition of TMDs cannot be extended
to this process straightforwardly, as we have at most to compensate for the differences of the soft
gluons contribution. The methodology proposed in this thesis aims to follow a different approach.
Instead of using the TMDs defined with the usual square root definition, I will adopt the factorization
definition as fundamental. In this way, TMDs keep their universality and can be used also outside
the 2-h class. Also, soft factors are promoted from mysterious black boxes to active characters
in phenomenological analyses. In fact, in this framework their non-perturbative content must be
extracted from experimental data as well as that of the TMDs. In particular, combining the data
of e+e−→ hX with the data of 2-class processes, it would be possible to access directly to MS. In
other words, in this framework phenomenological analyses are constrained not by decreasing the
number of non-perturbative unknown functions, but instead by increasing the number of processes
that can be exploited. In this regards, Eqs. (1.36) and (1.37) are particularly important from the
phenomenological point of view, as they relate the TMDs obtained from data analyses based on the
square root definition to the TMDs extracted using the factorization definition. The simple relation
between the two definitions allows to profit of the past experience and to benefit of all the results
obtained in previous analyses, while extending the scheme to all those processes which could not be
considered before, because they belong to a different hadron class. Special experimental efforts will
be required in order to gather a large number of high quality data corresponding to several different
processes, which will then be analyzed simultaneously in a completely consistent framework. The
latest analyses of the BELLE Collaboration and the current plans towards the realization of a new
Electron Ion Collider (EIC) are indeed moving towards this direction [8, 38–40].
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Chapter 2

e+e−→ hX as a 1-h class process

2.1 Introduction

Recently, the BELLE collaboration has measured e+e− → hX cross section, as a function of PT ,
the transverse momentum of the detected hadron with respect to the thrust axis [8] at a c.m. energy
of about 10 GeV. This can be considered a break-through measurement in the investigation of the
3D structure of hadrons, as it offers a direct glance to the transverse motion of the fragmenting
partons. Here the role of partons transverse momenta can be explored through a slightly different
perspective with respect to the usual TMD processes that, during the last twenty years, have become
the benchmark of TMD studies:, e+e−→ h1 h2, SIDIS and Drell-Yan scattering. These data [8], rich
of information and characterized by very high statistics, might allow to perform phenomenological
analyses of an unprecedented quality. On the other hand, the theory community has been facing
several difficulties in developing suitable TMD factorization theorems for this process, which hides a
series of pitfalls that other TMD processes do not present.

The Collins factorization formalism, as presented in Ref. [7], cannot be directly applied to
e+e− → hX . According to the classification introduced in Section 1.4, having only one hadron
detected in the final state, the process considered by BELLE falls into the 1-h class. Therefore, the
contribution of the soft gluons is described by a soft factor different from that appearing into the
2-h cross sections. As a consequence, the cross section of e+e−→ hX cannot be casted in a form
that allows to define the TMDs in the conventional way, i.e. by including part of the soft radiation
generated in the process inside the TMDs themselves through the square root definition, Eq. (1.33).
This is a serious impediment which endangers the possibility to exploit the valuable information
encoded in the BELLE experimental data in phenomenological studies. On the other hand, the
factorization definition introduced in Eq. (1.21) preserves the universality properties of the TMDs
by leaving out any process-dependent soft content. One intriguing consequence of adopting this
definition is that soft factors must now play an active role in phenomenological analyses, as their
non-perturbative content has to be extracted from experimental data as well as the TMDs.
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e+e−→ hX as a 1-h class process

Event-shape variables are extremely important tools for studying hadronic processes, as they are
safe from soft and collinear divergences and have reduced experimental uncertainties. In particular,
one of the most used event-shape variables is thrust, defined in Eq. (B.13). Its value T describes the
topology of the final state of the process, ranging from T = 0.5 for a perfectly spherical symmetric
distribution to T = 1. for an exactly pencil-like event. In the intermediate configurations, the particles
in the final state group gather and generate the jets: thrust keeps track of the number of jets, which
decreases as T increases. In particular, the number of jets corresponds to the total number of collinear
factors in the final state, whether they are associated to a reference hadron or not. Therefore, the
classification of hadron processes is not affected by the value of T . In other words, e+e− → hX
belongs to the 1-h class regardless of its final state topology.

The measurement of thrust is crucial to get a TMD observable from e+e− annihilation into a
single hadron. In fact, the thrust axis provides a valid estimate of the axis of the jet in which the
hadron is detected, which coincides with the direction of the fragmenting parton (see Appendix B for
further details). Hence, according to the discussion in Section 1.4.2, the determination of the thrust is
that further information that specifies the direction with respect to which the transverse momentum of
the detected hadron has to be considered. On the other hand, the value of T also introduces a further
correlation among the momenta generating the soft and the collinear subgraphs, in addition to the
usual correlation induced by momentum conservation.

The aim of this thesis, and in particular of the following Chapters, is to provide a consistent
framework in which solid TMD factorization theorems can be developed for the e+e−→ hX scattering
process, on the basis of the definitions presented in Chapter 1. The factorized cross section will be
differential in three variables:

• The fractional energy zh of the detected hadron, defined in Eq. (B.7);

• The thrust T , defined in Eq. (B.13);

• The transverse momentum PT of the detected hadron with respect to the thrust axis, assumed to
be the direction of the jet to which h belongs, the same direction of the fragmenting parton.

A very detailed description of the e+e−→ HX kinematics, with special focus on the configuration of
the BELLE experiment, is presented in Appendix B.

2.2 General structure of the cross section

Regardless of the final state topology, the general structure of the cross section of e+e−→ hX is given
by the Lorentz contraction of a leptonic tensor Lµ ν , corresponding to the initial state configuration,
together with the hadronic tensor W µ ν

h , which describes the strong-interaction contribution to the
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process. Labeling P the momentum of the detected hadron, we have:

dσ(
d3P⃗/2EP

)
LAB

d2P⃗T dT
=

4α2

Q6 Lµ νW µ ν

h . (2.1)

where the Lorentz invariant phase space measure of P is intended to be expressed in the LAB-frame:(
d3P⃗
2EP

)
LAB

=
Q2

8
zh dzh dcosθ dφ

[
1+O

(
M2

h
Q2

)]
, (2.2)

where θ is the angle of the detected hadron relative to the electron, while φ is its angle with respect to
the X-axis in the LAB-frame. The cross section measured by BELLE is insensitive to the value of θ ,
as well as the azimuthal angle1 φ , hence in the final result they will be integrated out. Therefore:

dσ

dzh d2P⃗T dT
= zh

α2

2Q4

∫ 2π

0
dφ

∫ 1

−1
d cosθ Lµν W µ ν

h (zh, T, P⃗T ). (2.3)

These angular integrations can be easily carried out after giving the explicit definitions of the leptonic
and the hadronic tensor.

The leptonic tensor is defined as the lowest order of the electromagnetic vertex e+e−→ γ⋆ with
unpolarized leptons, and it is given by:

Lµν = lµ

1 lν
2 + lµ

2 lν
1 −gµν l1 · l2, (2.4)

where, as in Appendix B, l1 and l2 are the momenta of the electron and the positron, respectively.

The hadronic tensor W µ ν

h depends on the momentum P of the outgoing hadron and on the
momentum q of the boson connecting the initial with the final state. Furthermore, it encodes the
whole dependence on the thrust T , as it describes the final state contribution to the process. Its formal
definition is:

W µ ν

h (P, q, T ) =

= 4π
3
∑
X

δ (pX +P−q) δ (T −Tdef.(pX , P))⟨0| jµ(0)|P, X , out⟩⟨P, X , out| jν(0)|0⟩=

=
1

4π
∑
X

∫
d4zeiq·z

δ (T −Tdef.(pX , P))⟨0| jµ (z/2) |P, X , out⟩⟨P, X , out| jν (−z/2) |0⟩, (2.5)

where jµ are the electromagnetic currents for the hadronic fields and Tdef. corresponds to the definition
of thrust given in Eq. (B.13). The final state is represented as |P, X , out⟩ and corresponds to the
topology associated with the thrust value and to the measured transverse momentum of the hadron

1This is significant only if the X-axis in the LAB-frame can be defined unambiguously, as in the case of polarized
leptons.
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e+e−→ hX as a 1-h class process

with respect to the thrust axis. The factor 1/(4π) in the last line coincides with the normalization used
in Ref. [7]. The definition of Eq. (2.5) is hardly usable for explicit computational purposes. For this
reason, it is useful to decompose the hadronic tensor in terms of Lorentz-invariant structure functions:

W µ ν

h =

(
−gµ ν +

qµqν

q2

)
F1,h +

(
Pµ −qµ P·q

q2

)(
Pν −qν P·q

q2

)
P ·q

F2,h. (2.6)

Then, the projections of W µ ν

h onto its relevant Lorentz tensors are:

−gµ νW µ ν

h = 3F1,h +
zh

2
F2,h +O

(
M2

Q2

)
; (2.7a)

PµPν

Q2 W µ ν

h =
(zh

2

)2 [
F1,h +

zh

2
F2,h

]
+O

(
M2

Q2

)
, (2.7b)

and they are much easier to be computed explicitly in perturbation theory.

Given the Lorentz structures of the leptonic tensor, Eq. (2.4), and of the hadronic tensor, Eq. (2.6),
it is quite easy the derivation the following decomposition into transverse (T) and longitudinal (L)
contributions of the full differential cross section:

2π
dσ

dzh d cosθ dφ d2P⃗T dT
=

3
8
(1+ cos2

θ)
dσT

dzh d2P⃗T dT
+

3
4

sin2
θ

dσL

dzh d2P⃗T dT
. (2.8)

By using this expression, the integrations over φ and θ of Eq. (2.3) are straightforward. The result is:

dσ

dzh d2P⃗T dT
=

dσT

dzh d2P⃗T dT
+

dσL

dzh d2P⃗T dT
. (2.9)

Moreover, by exploiting the Eqs. (2.7), the transverse and the longitudinal components of the cross
section can be related to the structure functions of the hadronic tensor:

1
σB

dσT

dzh d2P⃗T dT
= zh F1,h(zh, P⃗T , T ); (2.10a)

1
σB

dσL

dzh d2P⃗T dT
=

zh

2

(
F1,h(zh, P⃗T , T )+

zh

2
F2,h(zh, P⃗T , T )

)
, (2.10b)

where σB is the Born cross section:

σB =
4πα2

3Q2 . (2.11)

An interesting case occurs when the projection of the hadronic tensor with respect to Pµ Pν ,
Eq. (2.7b), is zero (or can be neglected). In this case, the two structure functions are not independent
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2.3 Leading momentum regions in e+e−→ hX

Fig. 2.1 Leading momentum regions for the hadronic tensor W µ ν

h . The hard subgraphs, one on
each side of the final state cut, are labeled by H. The soft subgraph, labeled by SNjets , represent the
contribution of the soft gluons. It has as many Wilson lines as the number of jets in the final state.
The collinear subgraphs are labeled by Ci, for i = 1, . . .Njets. Only C1 contains non-perturbative
contributions.

anymore and in fact F2,h =− 2
zh

F1,h. As a consequence, the hadronic tensor can be written as:

W µ ν

h;(T ) = Hµν

T F1,h, (2.12)

where I defined the transverse tensor:

Hµν

T =

[
−gµν +

Pµqν +Pνqµ

P ·q
−q2 PµPν

(P ·q)2

]
. (2.13)

Furthermore, the longitudinal cross section vanishes. Hence, in this case the detection of a hadron
perpendicular to the beam axis is suppressed.

2.3 Leading momentum regions in e+e−→ hX

The topology of the final state is determined by the value of thrust T : the closer T to 1, the lower
the number Njets of observed jets. The minimum Njets = 2 corresponds to a 2-jet configuration while
the limit Njets→ ∞ is associated with an homogeneous spherical distribution of particles. In e+e−

annihilation, the 2-jet case is the most probable configuration, as any further jet is associated to an
extra power of αS at partonic level. However, in this section we will not fix Njets, in order to work in
the most general case.
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e+e−→ hX as a 1-h class process

The general structure of the hadronic tensor W µ ν

h in terms of its hard, soft and collinear contribu-
tions is represented in Fig. 2.1, where each blob corresponds to a leading momentum region. The delta
on thrust in Eq. (2.5) introduces a correlation among the total collinear and soft momenta flowing
into the corresponding subgraph. As a consequence, each blob in Fig. 2.1 acquires a dependence on
T . The hard subgraph H represents the production of Njets partons dressed with all the required far
off-shell virtual corrections. Its dependence on T is trivial, as in H the thrust is fixed to the value that
it would acquire for an exact Njets-configuration, i.e. T = 1 for Njets = 2, T ∼ 2/3 for Njets = 3 and so
on. Each parton exiting from the hard subgraph generates a collinear factor which results in a jet of
particles. Therefore, in total there are Njets collinear factors, all equipped with the proper subtraction
of the soft-collinear overlapping terms as in Eq. (1.21). Furthermore, there is a soft subgraph SNjets

that correlates the collinear contributions. It has as many Wilson lines as Njets
2. The thrust dependence

encoded into soft and collinear contribution gives the deviation from the exact value associated with
the hard scattering that reproduces the observed topology of the final state. For instance, in the 2-jet
case T is close, but not exactly equal, to 1, and this value is obtained only after considering the proper
contributions of soft and collinear emissions. The pictorial representation of Fig. 2.1 corresponds to
the following equation:

W µ ν

h (zh, P⃗T , T ) = ∑
Njets≥2

∑
j1

∫ dDk1

(2π)D ∑
j2

∫ dDk2

(2π)D

Njets

∏
α=3

∫ dDkα

(2π)DCα(kα) jα

×TrD

{
P1C1(k1, P) j1P1Hµ

j1,... jNjets
(k̂1, . . . k̂Njets)P2C2(k2) j2P2 (H†)ν

j1 ... jNjets
(k̂1, . . . k̂Njets)

}
×
∫ dDkS

(2π)DSNjets; j1 ... jNjets
(kS)δ (q− k1− k2−∑

α

kα − kS)

×δ

(
P⃗T

[
1+O

(
P2

T

Q2

)]
+

P+

k+1
k⃗T (⃗k1,T , k⃗S,T )

)
δ
(
T −Tdef.(k1, k2, . . . , kNjets , kS)

)
, (2.14)

All quantities in the above equation are computed in the h-frame, where the detected hadron has
no transverse momentum and it is directed along the plus direction. However, the hadronic tensor
depends on PT , which is the transverse momentum of the detected hadron in the parton frame, where it
is the fragmenting parton that has zero transverse component. In the last line of the previous equation,
the first delta function sets the relation between the measured transverse momentum P⃗T of the detected
hadron and the transverse momentum k⃗T of the fragmenting parton, according to Eq. (B.11). Both of
them are considered with respect to the thrust axis, although in different frames. Notice that k⃗T does
not necessarily coincide with the total transverse momentum k⃗1,T entering into the collinear factor C1

associated to the detected hadron. In fact, it can also depend on the total soft transverse momentum
k⃗S,T , when the direction of the thrust axis is modified by soft recoiling.

Following the Collins factorization formalism, in the hard contributions H (and its h.c.), the parton
momenta are approximated and only their leading components are considered. This is the meaning of

2Notice that SNjets is a matrix in color space. All its color indices are contracted with the hard subgraphs and the whole
hadronic tensor is colorless, as required.
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2.3 Leading momentum regions in e+e−→ hX

the “∧" hats on them. In practice, the momentum k̂α is kα projected onto the reference direction wα

of its corresponding collinear part:

k̂α = wα

kα ·wα

wα ·wα

, (2.15)

where wα is the direction opposite to wα . More details can be found in Appendix A. Since the
reference frame of the fragmenting parton corresponds (by definition) with the hadron frame, the
reference direction of C1 is the plus direction w1 = (1, 0, 0⃗T ) and hence the approximated momentum
of the fragmenting quark is simply k̂1 = k+1 w1. Kinematics impose constraints on the possible values
that k+1 can assume, since P+ < k+1 < P+/zh (see Appendix B.).

In addition to the thrust dependence, each collinear factor C j is a function of the total entering
momentum k j and on the type j of the corresponding parton (either a gluon or a quark/antiquark
of flavor j/ j̄), and, being color singlets, they are averaged over the color of the initiating parton.
Among them, C1 and C2 are associated to the fermionic legs of the quark and the antiquark. Charge
conjugation sets j2 = j1. Furthermore, they appear associated to the fermionic projectors, Pi and Pi for
i = 1, 2, which connect them to the hard parts. See Appendix A for more details on the factorization
procedure. Since the hard part and the collinear parts are computed in the same frame, the expressions
for these projectors are simply:

Pi =
/wi /wi

2
and Pi =

/wi /wi
2

, (2.16)

where the direction wi indicates the direction opposite to wi. The projectors defined above will be
fundamental in extracting the leading twist FFs of the quark and the anti-quark in the cross section.
All the other collinear parts, Cα , are generated by gluons. In this case, the role of the fermionic
projectors of Eq. (2.16) is played by a gluon density matrix ρ j′ j that encodes the information about
the gluon polarization.

Among all collinear factors, only C1 is really relevant for studying the non-perturbative effects of
hadronization. In fact, all the Ci ̸=1 are completely crossed by the final state cut apart from C1, as the
detected hadron h is not included in the sum over final states. As discussed in Section 1.4.2, collinear
factors not associated to any reference hadron are suppressed in the collinear region they are supposed
to describe, since order by order in perturbation theory the integrations contours can be deformed
away from the collinear singularity. Consequently, they are effectively full perturbative contributions,
in the same sense of the hard factors. They only contribute to the thrust distribution, without affecting
the dependence on PT and zh of the final cross section. For instance, in the 2-jet case, C2 is the only
one among these perturbative collinear factors. Later on, we will see how its contribution is reduced
to the usual jet thrust function defined in Eq. (D.12).

Since C1 is the only relevant non-perturbative contribution to the cross section, all the infor-
mation about the hadronization process in encoded into it. Therefore, one would expect to find a
straightforward relation between C1 and the TMD FF which describes how the detected hadron h
originates from the fragmentation of a parton of type j1. However, according to the definitions given
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e+e−→ hX as a 1-h class process

in Section 1.3, TMDs depend only on the intrinsic variables of the collinear group to which they
are associated, i.e. the collinear momentum fraction and the relative transverse momentum between
reference hadron and reference parton. Any further dependence on the global properties of the process
undermines their universality properties. For instance, an eventual dependence on thrust would link
the TMDs to the topology of the final state, reducing their applicability to a few, specific kinematic
configurations. Therefore, to get a factorization theorem involving a proper TMD FF, we will remove
any T -dependent term from C1 (or any k1 dependence in the condition that fixed the thrust). This is
our first hypothesis on the hadronic tensor:

H.1 The fragmentation process is insensitive to the topology of the final state, or, equivalently, the
radiation collinear to the detected hadron does not affect the experimentally measured value of
thrust. As a consequence, C1 does not depend on T .

Later on in this Chapter, this hypothesis will be reconsidered and slightly softened. Finally, in
Chapter 3, it will be abandoned and I will show how in the 2-jet configuration there is a kinematic
region where the dependence on thrust must be kept inside C1. This of course does not lead to a TMD
FF in the final cross section. For the moment being, we will just assume that this first hypothesis
holds as specified in H.1.

Much less trivial is the role of soft gluons in Eq. (2.14). They are described by the soft factor
SNjets , which is defined exactly as in Eq. (1.2) but modified to allow for the dependence on thrust,
constrained to the value that T assumes in the soft momentum region. The full computation of the
soft factor SNjets according to its most general definition, Eq. (1.2), will be presented in Chapter 3, for
the relevant case of a 2-jet final state topology. For the moment being, I will show how it is possible
to deal with SNjets by exploiting momentum conservation and some further considerations in order to
avoid its explicit, general calculation.

First of all, let’s consider the case in which the number of observed jets is greater than two,
i.e. Njets > 2. In this case, each perturbative collinear factor must be associated to a hard jet, i.e.
generated by a parton with a large transverse momentum (of order Q). This is necessary to have
at least three distinct and independent jets of particles in the final state. However, all these hard
jets are evenly distributed in 3D-space. In fact, given that k1,T and kS,T are much lower than Q,
momentum conservation implies that the sum of all transverse momenta of the hard jets is small too,
as k⃗1,T + k⃗S,T +∑

Njets
α k⃗α,T = 0. Despite this, Cα is still a perturbative object and this holds because,

order by order, it is possible to deform the momenta circulating in Cα away from the collinear
singularity into the UV region. In this sense, we are allowed to consider k⃗α,T as a large transverse
momentum. Therefore, it is possible to make the sum ∑

Njets
α k⃗α,T as large as we wish, by applying a

suitable deformation to the related integration contours. The problem is that this operation breaks the
momentum conservation. It can be considered valid only if also the soft transverse momentum can
be deformed and considered large, in order to compensate the change induced by the vectors k⃗α,T .
Then, in the momentum conservation k⃗1,T is overpowered by the UV-sized momenta and hence the
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corresponding delta can be written as:

δ

(⃗
k1,T +

Njets

∑
α=2

k⃗α,T + k⃗S,T

)
∼ δ

(
Njets

∑
α=2

k⃗UV
α,T + k⃗UV

S,T

)
, for Njets > 2. (2.17)

where the label “UV" reminds us to consider k⃗α,T and k⃗S,T in the UV momentum region. Then, if the
deformation of k⃗S,T is allowed, the soft factor has to be considered a fully perturbative object, on the
same footage of the factors Cα . Consequently, the contribution of soft gluons, although non-trivial,
turns out to be totally computable in perturbation theory. We can follow the same strategy of collinear
factorization and gather all the perturbative contributions (hard subgraphs, the factors Cα , SNjets) in a
single thrust-dependent function playing the role of the partonic cross section. The structure of the
final cross section will be the same of that obtained in a collinear factorization scheme but, due to the
dependence on the transverse momentum of the detected hadron, the interpretation will be TMD.

If the deformation of the soft transverse momentum is not allowed, the final factorization theorem
will look different. This happens when the soft transverse momentum has to be considered as an
external variable, with its size fixed so that it belongs to the power counting region, i.e. kS,T ≪ Q.
In this case, it cannot be deformed anymore. This is the configuration in which the soft gluon
emissions are able to generate a sensitive deflection of the detected hadron, affecting the measured
value of the observed PT . In fact, in this case, the transverse momentum of the detected hadron is
strongly correlated with the soft transverse momentum, which is then constrained by experimental
measurement. In the following, we will assume that this is not the case, by requiring our second
hypothesis:

H.2 The soft gluon emissions do not affect the size of the measured PT . As a consequence, the soft
factor is a fully perturbative thrust-dependent function.

In Chapter 3 I will drop H.2 in order to develop a TMD factorization theorem suitable for the kinematic
configuration sensitive to soft gluons emissions, in the case of a 2-jet final state. This case is indeed
emblematic and represents the benchmark for this kind of calculations. In this configuration there are
no hard jets, as the antiquark is emitted backward with respect to the fragmenting quark; hence, it must
carry a low transverse momentum to satisfy momentum conservation. Nevertheless, its transverse
momentum k⃗2T can be deformed into the UV region. As in the general case, the soft transverse
momentum needs to be deformed too, in order to preserve momentum conservation. Therefore, the
analogue of Eq. (2.17) can be written as:

δ

(⃗
k1,T + k⃗2,T + k⃗S,T

)
∼ δ

(⃗
kUV

2,T + k⃗UV
S,T

)
, (2.18)

Later on, I will show that, if H.2 holds true, the contribution of soft gluons in the 2-jet case is indeed
described by the usual soft thrust function, defined in Eq. (D.6).
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Another consequence of the validity of H.2 is that any information about k⃗S,T inside the delta that
relates the measured PT to the transverse momentum of the fragmenting parton can be neglected. In
other words, in the last line of Eq. (2.14) we can set k⃗T ≡ k⃗1,T .

As a consequence of the application of the kinematic requirements H.1 and H.2, the residual
dependence of the cross section on the weak components of k1, k−1 and k1T , is relagated to C1, which
is connected to the rest of the process only through a convolution on k+1 .

2.4 Collinear-TMD factorization theorem

Following the discussion in the previous Section, if the two hypothesis H.1 and H.2 hold, then
the structure of the factorized cross section is analogous to that obtained from a classic collinear
factorization theorem, where all the fully perturbative contributions are gathered in the so-called
partonic cross section. This represents the full process at parton level and is completely computable by
using perturbation theory techniques. Besides the hard subgraphs, the partonic cross section includes
also all the perturbative collinear factors associated to the production of hard jets and the soft factor,
all thrust-dependent functions predicted, order by order, solely by pQCD. Differently from the usual
collinear factorization theorems, however, the final cross section is sensitive to TMD effects, encoded
into the collinear subgraph associated to the detected hadron. This contribution is therefore related to
a TMD FF.

Then, the final structure results in some sort of hybrid version of collinear and TMD factorization,
from now on indicated as collinear-TMD. The hadronic tensor can hence be written as:

W µ ν

h (zh, P⃗T , T ) = ∑
j1

∫ P+/zh

P+
dk+1 δ

(
P⃗T

[
1+O

(
P2

T

Q2

)]
+

P+

k+1
k⃗1,T

)

×
∫ dk−1 dD−2⃗k1,T

(2π)D TrD

{
P1C1(k1, P) j1,HP1H

µ ν

j1 (Q, k+1 , T )
}
. (2.19)

In the above equation, all the contributions that can be totally predicted by perturbative QCD have been
collected in the factor H µ ν . Notice that, while the collinear part C1 depends on all the components
of k1, this fully perturbative term depends only on its leading component, k+1 ≡ k̂1. Then, C1 and
H µ ν are not completely disentangled, because a convolution over k+1 will survive. In the following
the index “1" related to the fragmenting parton will be dropped, as it has become redundant.

Let’s focus first on the contribution given by the collinear factor. Applying the fermionic projectors
and parity conservation, the only surviving contribution in the case of e+e−→ hX is the coefficient
of γ− in the expansion of Eq. (1.20):

PC(k, P) j,hP = γ
− TrD

4
{

γ
+C(k, P) j,h

}
. (2.20)
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The Dirac trace of γ+C(k, P) j,h defines two TMD FFs (as in Eq. (1.20)):

1
ẑ

∫ dk−

(2π)D
TrD

4
{

γ
+C(k, P) j,h

}
=

= D1,h/ j(ẑ, |− ẑ k⃗T |)−
1

Mh
|⃗ST × k⃗T |D⊥1T,h/ j(ẑ, |− ẑ k⃗T |), (2.21)

where the components of the fragmenting parton momentum k are evaluated in the hadron-frame
(see Appendix B). Mh and S⃗T are the mass and the transverse spin of the detected hadron, while
ẑ = P+/k+ is the collinear momentum fraction of the hadron h with respect to the fragmenting parton.
It is the partonic version of zh. The function D1,h/ j is the unpolarized TMD FF, while D1T,h/ j is the
Sivers-like TMD FF. In the following, the sum of their contributions in the second line of Eq. (2.21)
will be collectively indicated D j,h(ẑ,−ẑ k⃗T ).

Notice that the TMDs in Eq. (2.21) are defined according to the factorization definition of
Eq. (1.21). Therefore, as there is no non-perturbative soft contribution, the rearrangement of soft
factors commonly applied to a 2-h class cross sections cannot take place. As a consequence, the final
cross section will not contain any TMD defined through the square root definition of Eq. (1.33).

Eq. (2.20) implies that the Dirac trace in Eq. (2.19) acts on the matrix γ− from Eq. (2.20) and on
the fully perturbative factor H µ ν . This leads to the definition of the partonic tensor Ŵ µν

j , which is
the partonic counterpart of the hadronic tensor W µν

h :

Ŵ µ ν

j ( k̂, q, T ) = TrD

{
k+γ

−H µ ν

j (Q, k+, T )
}
, (2.22)

where k̂ = k+ w1 (see below Eq. (2.15) ) and hence k+γ− = /̂k = ∑spin u( k̂ )u( k̂ ). Eq. (2.22) is the
algebraic expression corresponding to the pictorial representation given in Fig. 2.2. The role of the
detected hadron is now played by the fragmenting parton, that has momentum k̂ directed along the
plus direction. Analogously to the structure of the hadronic tensor presented in Fig. 2.2, the partonic
tensor is composed by hard, soft and collinear contributions. All this terms are fully perturbative
thrust-dependent functions. The hard subgraphs, labeled by V and V ⋆ in Fig. 2.2, are associated to
the dressing with virtual emissions of the hard vertex. The soft gluon emissions are described by the
perturbative soft factor SNjets . Also, there are as many perturbative collinear factors, labeled by Ji, as
the number of detected jets. Notice that, when Njets = 2, there is only the contribution JB associated
to the backward radiation. Moreover, since Ŵ µν

j is meant to represent the whole process at parton
level, there is also a contribution associated to the radiation collinear to the fragmenting parton. Such
term in the final cross section overlaps the collinear momentum region covered by the TMD FF and
hence it must be equipped with a proper subtraction procedure, which will be described in the next
subsection. For the moment being, the partonic tensor (and, by extension, the partonic cross section)
is intended to be already subtracted.
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e+e−→ hX as a 1-h class process

Njets > 2 Njets = 2

Fig. 2.2 Leading regions for the partonic tensor Ŵ µ ν

j in the case of a multi-jet configuration (left
panel) and for a 2-jet configuration (right panel). All the blobs are associated to thrust-dependent
functions. The blobs labeled by V (and its complex conjugate) are associated to the virtual dressing
of the hard vertex, while those labeled by Ji are related to the radiation along the i-th direction. In
the 2-jet case the label “B" stand for “backward radiation". The soft gluon emissions are described
by the perturbative thrust-dependent function SNjets . Being the partonic representation of the whole
process, there is also a blob, labeled by J1, describing the radiation collinear to the fragmenting parton
of momentum k̂. Such contribution in the final cross section overlaps the collinear momentum region
covered by the TMD FF and hence it must be equipped with a proper subtraction procedure.

By inserting Eq. (2.20) and Eq. (2.22) into the expression of the hadronic tensor given in Eq. (2.19),
we obtain:

W µ ν

h (zh, P⃗T , T ) =

= ∑
j

∫ 1

zh

dẑ
ẑ

Ŵ µ ν

j (zh/ẑ, Q, T )
∫

dD−2⃗kT

(
ẑ D j,h(ẑ,−ẑ⃗ kT ),

)
δ

(
P⃗T

[
1+O

(
P2

T

Q2

)]
+ ẑ k⃗T

)
=

= ∑
j

∫ 1

zh

dẑ
ẑ2 Ŵ µ ν

j (zh/ẑ, Q, T )D j,h(ẑ, P⃗T )

[
1+O(

P2
T

Q2 )

]
. (2.23)

where in the last step we used the delta function and set the space-time dimension3 to D = 4.

From the last expression given for the hadronic tensor, it is quite easy to recover the final factorized
cross section. The partonic analogue of Eq. (2.1) defines the partonic cross section:

dσ̂ j

d3⃗k̂/2Ek̂ dT
=

2α2

Q6 Lµ νŴ µ ν

j . (2.24)

3The final result is UV finite.
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It represents the partonic process e+e−→ j X , where j identifies the type of the fragmenting parton,
of momentum k̂. The Lorentz invariant phase space in the l.h.s of Eq. (2.24) can be written as:

d3⃗k̂
2Ek̂

=
1
2

d|⃗̂k| |⃗̂k|dcosθ dφ =
Q2

8
zh

ẑ
d
(

zh

ẑ

)
dcosθ dφ , (2.25)

with θ and φ being the same angles appearing in Eq. (2.2), as the momentum of the fragmenting
parton is approximated in such a way to be directed in the same direction of the detected hadron. In
conclusion, the final result for the factorized cross section is:

dσ

dzh d2P⃗T dT
= ∑

j

∫ 1

zh

dẑ
ẑ

dσ̂ j

d(zh/ẑ)dT
D j,h(ẑ, P⃗T )

[
1+O(

P2
T

Q2 ,
M2

h
Q2 )

]
. (2.26)

This is the announced collinear-TMD factorization theorem. It has the same structure of the classic
collinear factorized cross sections; however, instead of being a convolution between a partonic cross
section and a FF, Eq. (2.26) it contains the convolution of a partonic cross section with a TMD FF.
Schematically:

Collinear factorization Collinear-TMD factorization
σ̂ j⊗ dh/ j︸︷︷︸

FF

σ̂ j⊗ Dh/ j︸︷︷︸
TMD FF

As in usual collinear factorization theorems, the partonic cross section must be equipped with a proper
subtraction mechanism in order to cancel the double counting due to the overlapping with the collinear
momentum region. This issue will be addressed in Section 2.4.1.

Moreover, as already stressed, the TMDs in Eq. (2.26) are defined through the factorization
definition of Eq. (1.21) instead of the commonly used square root definition of Eq. (1.33). This is a
general feature of collinear-TMD factorization theorems. In fact, since the soft gluon contribution
is totally perturbative, there are no other non-perturbative terms a part from those encoded into the
TMDs. In practice, the TMD model extracted from e+e− → hX is different from that extracted
from e+e−→ h1 h2, since the latter contains part of the information associated with the soft gluon
emissions that correlate the two collinear parts related to the two hadrons, i.e. a square root of the
soft model MS, as explicitly shown in Eq. (1.37). This is particularly relevant when performing a
phenomenological analysis that combines data of single- and double hadro-production, or, more
generally, when comparing the TMDs extracted from a collinear-TMD factorization theorem as that
in Eq. (2.26) with the TMDs historically defined in the 2-h class. In these regards see, for example,
two different approaches adopted in Refs. [9, 18].

The factorization theorem presented in Eq. (2.26) contains the full vectorial dependence on the
transverse momentum P⃗T of the detected hadron. However, the azimuthal angle in the X Y -plane of
the parton frame cannot be determined experimentally and hence the only dependence on P⃗T is on
its modulus. In fact, the only angular dependence in the TMD contribution D j,h may originate from
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e+e−→ hX as a 1-h class process

the Sivers-like contribution |⃗ST × P⃗T | (see Eq. (2.21)). On the other hand, as explained in Ref. [38],
the transverse spin of the hadron is orthogonal to its transverse momentum with respect to the axis
of the jet, identified with the thrust axis. Hence |⃗ST × P⃗T |=±ST PT for any choice of the X-axis in
the parton frame. Therefore, the integration over the azimuthal angle associated to P⃗T is trivial and
results just in a 2π factor on the r.h.s of Eq. (2.26). Consequently, the factorization theorem can also
be written as:

dσ

dzh dP2
T dT

= π ∑
j

∫ 1

zh

dẑ
ẑ

dσ̂ j

d(zh/ẑ)dT
D j,h(ẑ, PT )

[
1+O(

P2
T

Q2 ,
M2

h
Q2 )

]
. (2.27)

where:

D j,h(ẑ, PT ) = D1,h/ j(ẑ, PT )∓
ẑ

Mh
ST PT D⊥1T,h/ j(ẑ, PT ). (2.28)

Finally, according to Section 1.3, since TMDs are properly defined in the Fourier conjugate space,
it is more convenient to write the cross section using their bT -space counterparts, given by:

D j,h(ẑ,PT )

[
1+O(

P2
T

Q2 )

]
=
∫ d2⃗bT

(2π)2 ei P⃗T
ẑ ·⃗bT D̃ j,h(ẑ, bT ), (2.29)

where the factor 1/ẑ in the Fourier factor is due to the change of variables from k⃗T (h-frame) to P⃗T

(p-frame), as b⃗T has been defined as the variable conjugate to k⃗T . Finally, the factorization theorem
can also be written as:

dσ

dzdP2
T dT

= π ∑
j

∫ 1

zh

dẑ
ẑ

dσ̂ j

d(zh/ẑ)dT

∫ d2⃗bT

(2π)2 ei P⃗T
ẑ ·⃗bT D̃ j,h(ẑ, bT )

[
1+O(

M2
h

Q2 )

]
. (2.30)

From Eq. (2.29) and also comparing the last version of the factorization theorem with Eqs. (2.26)
and (2.27), it appears as if the Fourier transform had absorbed the corrections to the final result of order
O
(
P2

T/Q2
)
. As stressed in the first chapter, the Fourier transform acts as an analytic continuation

extending the TMD also beyond the original momentum region. This is an important effect to keep
in mind when performing any phenomenological application based on formulae like Eq. (2.30). In
fact, the TMD is originally modeled in the bT -space and afterward tested on data, in the transverse
momentum space. Therefore, the cross section showed in Eq. (2.30), even if formally well defined for
any value of PT , can only be trusted where PT ≪ Q or, more precisely, where PT ≪ P+ = zh Q/

√
2,

which is the actual condition that allows to consider the outgoing hadron as a collinear particle,
according to the power counting rules.
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2.4 Collinear-TMD factorization theorem

2.4.1 Subtraction Mechanism and Rapidity cut-offs

The collinear-TMD factorization theorems devised above show a rather simple structure, and phe-
nomenological analyses based on them surely benefits from it. However, there are two issues that
in the previous sections have not be considered. The first is the need for a subtraction procedure of
the partonic cross section. As already stressed, having arranged the terms in the final result as in
Eq. (2.26) leads to an overlapping between the momentum regions covered by the TMD FF and the
partonic cross section. Secondly, in all the formulas provided above, the TMDs have been presented
as depending only on transverse momentum and collinear momentum fraction. However, from
Section 1.3, we known that TMDs are also equipped with a rapidity cut-off y1 (alternatively written as
ζ as in Eq. (1.23)). This is required in the subtraction mechanism of the overlapping between soft and
collinear momentum regions, as y1 acts as a lower bound for the rapidity of the particles described by
the TMD, which are supposed to be collinear, hence very fast moving along their reference direction.
On the other hand, physical observables should not depend on the regularization procedure used to
weight the divergences encountered in their computations. Rapidity divergences are not an exception.
However, clearly, the factorization theorems presented in Section 2.4 do not satisfy this requirement.
In fact, the TMD FFs have a very specific dependence on ζ , given by their Collins-Soper evolution
equation presented in Eq. (1.22). The partonic cross section surely cannot evolve in the opposite way,
as it does not depend on bT .

This is one of the issues, possibly the most important, related to collinear-TMD factorization
theorems. Later on in this Chapter and more deeply in the next, I will show how a dependence
on the rapidity cut-off survives in the factorized cross section presented in this section, despite the
cancellation of all the UV and rapidity divergences. This fact has been recently interpreted as an
inconsistency of the factorization theorem [17]. However, in this thesis I will follow a different
approach, mostly because a clear signal of the failure of the factorization procedure would be the
presence of uncancelled divergences in the final cross section, which here is not that case. The only
possibility to give a consistent interpretation of a factorization theorem in the form of Eq. (2.26)
is to reconsider the role of the rapidity cut-offs. In particular, I will take their explicit presence in
the final result as an indication to promote them from mere computational tools to quantities with
a deeper physical meaning. From now on, this will be a leitmotiv throughout this thesis, and it will
be investigated more and more deeply, as the factorization procedure presented here becomes more
accurate.

The unsubtracted partonic tensor Ŵ µν ;uns.
j has been defined in Eq. (2.22). It represents the process

γ⋆→ j X , where j identifies the type of the fragmenting parton, either the flavor of a (anti)quark or
a gluon. Its leading regions are represented in Fig. 2.2. However, the definition of Eq. (2.22) is not
particularly useful for direct computation. It is actually much easier to derive the partonic analogue of
the hadronic tensor W µν

h from its factorization theorem in Eq. (2.23). This can be obtained by making
the following replacements:
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• The fragmenting parton plays the role of the detected hadron, hence h 7→ j. Moreover zh 7→ z =
k+/q+ = zh/ẑ and also P⃗T 7→ k⃗T .

• The radiation collinear to j is generated by a parton of momentum k′. Then the collinear
momentum fraction becomes ẑ 7→ ρ = k+/k′+.

• The transverse momentum k⃗′T is the total transverse momentum entering the collinear factor,
therefore, according to the definitions given in Section 1.3, it must be equal to the transverse
momentum of the fragmenting parton (provided that the soft recoiling of the thrust axis is
not considered). Hence for the delta function we have the replacement δ

(
P⃗T + ẑ k⃗T

)
7→

δ

(⃗
k′T − k⃗T

)
.

Applying these replacements to Eq. (2.23) gives:

W µν ;uns.
j (z, k⃗T , T ) = ∑

i

∫ 1

z

dρ

ρ
Ŵ µ ν

i (z/ρ, Q, T )
(

ρ Di, j(ρ,−ρ k⃗T ),
)
, (2.31)

which is the partonic version of Eq. (2.23) and gives the unsubtracted partonic tensor in transverse
momentum space. The collinear-TMD structure of the factorization theorem derived for the hadronic
tensor is inherited by its partonic counterpart. In Eq. (2.31) all the quantities are totally computable in
perturbation theory. In particular, the function Di, j is the j-from-i TMD FF contribution in momentum
space, defined as the partonic version of Eq. (1.15). The Eq. (2.31) encodes the subtraction procedure,
as the subtracted partonic tensor is identified with the coefficient Ŵ µ ν

i in the convolution with the
TMDs.

Despite its simplicity, Eq. (2.31) presents some delicate issues that must be considered carefully.
First of all, the subtracted partonic tensor must be a finite quantity, which means that it must not show
any poles in ε when dimensional regularization is applied. On the other hand, TMD FFs are collinearly
divergent. Therefore, such collinear divergence should be passed on also to by the unsubtracted
partonic tensor on the l.h.s. of Eq. (2.31). Moreover, as their hadronic counterparts, the functions Di, j

are properly defined in the Fourier conjugate space to k⃗T . Hence, the expression of Eq. (2.31) should
be given in bT space, in order to deliver a suitable procedure for the determination of the coefficients
Ŵ µ ν

i . This operation is less trivial than it looks. The Fourier transform of Di, j gives the bare TMD
FF contribution, which must be renormalized with the proper UV-counterterm ZTMD; i, j. Therefore,
since the l.h.s. of Eq. (2.31) is UV-finite, the subtracted partonic tensor Ŵ µ ν

i has to be considered a
bare quantiti too, which needs a renormalization factor that exactly compensate that of the TMDs, i.e.
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Z−1
TMD; i, j. In practice, in the bT space we have:

˜̂W µν ;uns.

j (ε; z, b⃗T , T )︸ ︷︷ ︸
coll. divergent

= ∑
i

∫ 1

z

dρ

ρ
Ŵ µν ,(0)

i (ε; z/ρ, T )︸ ︷︷ ︸
UV divergent

ρ D̃(0)
i, j (ε; ρ, b⃗T )︸ ︷︷ ︸

UV divergent and coll. divergent

=

= ∑
i,k, l

∫ 1

z

dρ

ρ

[
Ŵ µν

k (z/ρ, T )Z−1
TMD; i,k(ε)

] [
ZTMD; i, l(ε) ρ D̃l, j(ε; ρ, b⃗T )

]
= ∑

k

∫ 1

z

dρ

ρ
Ŵ µν

k (z/ρ, T )ρ D̃k, j(ε; ρ, b⃗T )︸ ︷︷ ︸
coll. divergent

, (2.32)

where we used ∑i Z−1
TMD; i,k ZTMD; i, l = δk, l . The previous equation gives the operative definition to

compute the subtracted partonic tensor at any order in perturbation theory. In fact, at order αn
S we

have:

Ŵ µν ; [n]
j (z, T ) = ˜̂W µν ;uns.; [n]

j (ε; z, b⃗T , T )−∑
k

n

∑
m=1

∫ 1

z

dρ

ρ
Ŵ µν ; [n]

k (z/ρ, T )
(

ρ D̃[m]
k, j(ε; ρ, b⃗T )

)
,

(2.33)

The explicit NLO expression for the gluon-from-quark and quark-from-quark unpolarized TMD FFs
are collected in Appendix A.3.

Eq. (2.32) embeds the procedure commonly applied to RG-renormalize the partonic cross sections
in collinear factorization, highlighting once again the hybrid nature of collinear-TMD factorization
theorems. As a consequence, the subtracted partonic tensor has an anomalous dimension equal and
opposite to the anomalous dimension of the TMD FFs, which depends only on the type j of the
fragmenting parton:

∂

∂ log µ
log
(

Ŵ µν

j (z/ρ, T )
)
=−γ

( j)
D . (2.34)

This property will be explicitly verified in the 2-jet case later on in this chapter. Therefore, the final
factorized cross section is RG-invariant:

∂

∂ log µ

(
dσ

dzh d2P⃗T dT

)
= 0. (2.35)

The role played by the rapidity cut-offs is much less obvious and the derivation of some kind
of CS-evolution for the final cross section can be hardly guessed just by inspection of Eq. (2.31).
For this reason, let’s consider again the leading region structure of the unsubtracted partonic cross
section depicted in Fig. 2.2. Each blob, except V and V ⋆ associated to the pure virtual hard vertex, is
equipped with proper rapidity cut-offs. The soft contribution SNjets depends on all of them, because its
Wilson lines are tilted off the corresponding reference directions. On the other hand, each perturbative
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e+e−→ hX as a 1-h class process

collinear factor Ji depends only on the associated rapidity cut-off yi, because of the subtraction of
the soft-collinear terms as in Eq. (1.21). All these rapidity cut-offs, except y1 which is associated to
the radiation collinear to the fragmenting parton, are combined in such a way that Ŵ µν ;uns.

j does not
depend on them. This is the consequence of not integrating over k⃗′T in the J1 blob. Then, y1 appears in
two different places: the soft function and the collinear factor, J1. On the other hand, also the TMD
FFs depend on y1. In the subtractions, the cancellation between the dependence on y1 in Ŵ µν ;uns.

j

and in D̃i, j is not exact; hence, the subtracted partonic tensor is left with a remaining dependence on
the rapidity cut-off. In fact, the subtraction removes the overlapping between the “hard"4 and the
collinear momentum region, but does not affect the soft momenta. Therefore, the dependence of SNjets

on y1 is uncanceled.
Differently from the dependence on the RG-scale, the dependence on the rapidity cut-off of the

subtracted partonic tensor cannot compensate that of the TMDs. In fact, the CS-evolution presented
in Eq. (1.22) is ruled by the soft kernel K̃ which depends on bT . Hence, the CS-evolution of Ŵ µν

j is
inevitably different, as the subtracted partonic tensor does not depend on the transverse momentum.
As a consequence, the final factorized cross section is not CS-invariant:

∂

∂ log
√

ζ

(
dσ

dzh d2P⃗T dT

)
̸= 0. (2.36)

Therefore, in the factorized cross section all the rapidity divergences have been canceled, but an
unexpected dependence on the regulator is left in the final result. As discussed at the beginning of
this section, this will not be interpreted as a failure of the factorization procedure, but instead as an
opportunity to investigate the inner physical nature of the rapidity cut-offs. An observable sensitive
both to TMD effects and to thrust offers a beautiful chance to proceed along this path. In fact, there
must be an intrinsic relation between the rapidity cut-off used in the Collins factorization formalism
and the (experimentally accessible) thrust, T . There is a simple kinematic argument that naively shows
this relation. In fact, if yP is the rapidity of the detected hadron, then, neglecting all mass corrections,
its minimum value is associated to the value of T . In fact, there is a kinematic constraint on PT/zh,
which cannot be larger than

√
1−T Q, see Ref. [17]. This follows directly from the definition of

thrust in Eq. (B.13). Therefore, in the parton frame:

yP =
1
2

log
P+

P−
= log

zh Q√
P2

T +M2
h

≥−1
2

log(1−T )+O

(
M2

h

P2
T

)
, (2.37)

Then, thrust acts as a rapidity cut-off, since yP can be considered a good estimate for the rapidity of
all the particles belonging to the same collinear group of the detected hadron. This role of thrust will
be confirmed later in explicit computations. However, within the Collins formalism, it is not possible
to set the precise relation between y1 and T . In this regard, Eq. (2.37) should be considered just as
a naive argument based only on kinematics, without claiming to be formally well founded. In any

4Here “hard" means the momentum region covered by the fully perturbative partonic tensor.
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case, since the rapidity cut-off and the thrust are intimately related, the hypotesis H.1 can be slightly
softened: the collinear factor associated to the TMD FFs can depend on the topology of the final state,
but only through the rapidity cut-off.

In any case, if y1 can somehow be associated to a measured quantity, it cannot simply be a
mere computational tool: instead it should be promoted to an actual physical observable. Notice
that this is a new feature. In the past, different methods to regulate rapidity divergences have been
developed, and one of the most elegant is the Rapidity Renormalization Group (RRG), used mainly in
SCET-based approaches to factorization, see Refs. [41, 42]. In this approach, rapidity divergences
are regularized applying a procedure totally analogous to that used for UV divergences, i.e. by
introducing an auxiliary scale ν , that is the counterpart of µ , and taking the derivative with respect
to logν , which plays the role of the CS-evolution. The collinear and TMD factorization theorems
obtained with RRG match exactly those derived within the Collins formalism. [43, 44]. Therefore,
collinear-TMD factorization must produce a cross section which is not RRG-invariant. Such issue is
never encountered with the scale µ , as any physical observable is RG-invariant. This holds because µ

actually is an auxiliary scale and there is no way to relate it to an observable. experimental measure.
Therefore the nature of the scale ν must be deeply different from its RG counterpart. By extension,
wherever the regularization procedure is used to treat rapidity divergences, the regulator must acquire
a real physical meaning and collinear-TMD factorized observables, like the cross section presented in
Eq. (2.27), may be the necessary tools to investigate this important feature.

In the following two sections I will investigate the physical meaning of the rapidity cut-off by using
two different methods, suitable for the LO and NLO of the collinear-TMD cross section presented in
Eqs. (2.30), for a 2-jet topology of the final state.

2.5 The role of rapidity cut-offs in the lowest order cross sections

In this section, I will present a first attempt to assign more physical significance to the rapidity cut-off.
The procedure illustrated here should be viewed as a phenomenological tool that makes the TMDs
invariant with respect to the choice of the rapidity cut-off, useful for a LO analysis of the cross section
presented in Eq. (2.26). Notice that the transformation presented in this section has nothing to do
with the Rapidity Renormalization Group (RRG) mentioned in the previous Sections, used mainly in
SCET-based approaches to factorization (see for instance Refs. [41, 42]).

The roughest approximation of the collinear-TMD factorized cross section presented in Eq. (2.26)
is obtained by computing the partonic cross section at LO. The result can be found in Eq. (C.7). We
will consider the case of a spinless detected hadron for simplicity. As a consequence, the Sivers-like
contribution in Eq. (2.21) vanish, and only unpolarized TMD FFs appear in the cross section. Their LL
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approximation is given in Eq. (A.59). Therefore the cross section of Eq. (2.30) for spinless hadrons,
at LO and LL accuracy is given by:(

dσ

dzdP2
T dT

)LO, LL

=
4π2α2

3z2
hQ2 NC δ (1−T )

∫ d2⃗bT

(2π)2 ei P⃗T
zh
·⃗bT

(
∑

f
e2

f d f (zh, µb)

)

× exp
{

log
(

Q
µb

)
g1(x)+

1
4

log
(

ζ

Q2

)
gK

2 (x)
}

×MD1, f/h(zh, bT ) exp
{
−1

4
gK(bT ) log

(
z2

h
ζ

M2
h

)} [
1+O(

M2
h

Q2 )

]
, (2.38)

where we used the factorization theorem as expressed in Eq. (2.30). The main feature of Eq. (2.38)
is that the whole dependence on the rapidity cut-off is contained in the TMD FF. As expected, the
fìnal factorized cross section is RG-invariant (trivially in this case) but not CS-invariant. Also, since
the LO-LL approximation reduces the whole T -dependence in the final result to a delta function, the
kinematics argument of Eq. (2.37) that relates ζ to thrust cannot be used. Therefore, in this case, the
rapidity cut-off is a totally arbitrary number, unrelated to any experimentally measured quantity.

At this stage, any attempt to give a physical meaning to the cross section of Eq. (2.38) may seem
useless. In fact, such formula is hardly useful for phenomenological analyses, as it applies only to
strictly pencil-like configurations, where T = 1. Such events are unrealistic in real experiments and
the pencil-like configuration can only be considered as an ideal limit for a 2-jet topology. Nevertheless,
looking for a solution to this problem gives some interesting insights on the role of the rapidity cut-offs
in the Collins factorization formalism and provides a first attempt to assign them a deeper physical
meaning.

The cross section in Eq. (2.38) is not CS-invariant because TMDs are not invariant with respect to
the choice of the rapidity cut-off. This is not much of a problem, as TMDs are not physical observables
and they depend on µ as well as y1. Hence they can be considered at a fixed, and finite, value of y1.
However, they can be made rapidity cut-off invariant with respect to a new “symmetry" that mixes
their perturbative and non-perturbative content, based on a transformation related to a shift of the
rapidity cut-off.

The transformation rule for a shift in the rapidity cut-off follows from the behavior of TMDs
under the action of the CS-derivative and can easily be obtained from the solution of the evolution
equations in Eq. (1.26). Setting y1 to ŷ1 = y1−θ , where θ is some real number, and neglecting the
dependence on all variables except ζ , the TMD in bT -space transforms as:

C̃(ζ ) 7→ C̃(ζ̂ ) = C̃(ζ )exp
[

1
2

θ K̃
]
, (2.39)

Therefore, the full effect of this transformation is a dilation factor which depends on the soft kernel
K̃(bT , µ) and the shift parameter θ . The transformed TMD describes a different physical configuration,
as the rapidities of the collinear particles have been shrinked to a narrower range. In particular, as
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(a) (b)

Fig. 2.3 Pictorial representation of a TMD Fragmentation Function, in which the separation between
perturbative and non-perturbative regime is explicitly shown, corresponding to two different values of
the rapidity cut-off. In panel (a) the rapidity cut-off of the TMD FF is set to a generic value y1. In
panel (b) the rapidity cut off has been shifted to ŷ1 > y1. The two TMDs represent different physical
configurations, as the range spanned by the rapidities of the particles belonging to those TMDs are
different. The more y1 increases, the more the fragmentation mechanism approaches a 1-dimensional
configuration.

ŷ1 approaches +∞, as required by the Collins factorization formalism, the particles belonging to the
collinear group become more and more tightly aligned along their reference direction. In this sense,
in the limit of infinite rapidity cut-off, the collinear particle motion is basically 1-dimensional and
the 3D picture of the hadron structure may result altered. This is represented pictorially in Fig. 2.3.
Since the non-perturbative information about the 3D structure of the hadrons is encoded into the TMD
model MC, the transformation required to compensate the effect of the shift of the rapidity cut-off
of Eq. (2.39) can only be associated to MC. It cannot involve the other non-perturbative function
appearing in Eq. (1.26), gK , as it also appears in the 2-h soft factor and hence its modification would
reflect also on the soft gluons contributions. The resulting transformed TMD will describe the same
physical configuration of the initial TMD, because the alteration due to the tightened range of rapidity
will be totally reabsorbed by the transformed model. Then, for any θ < 0 such transformation is
defined as:

y1 7→Dθ (y1) = y1−θ , ; (2.40a)

MC 7→Dθ (MC) = MC exp
[
−1

2
θ K̃
]
. (2.40b)

The transformed model, Eq. (2.40b), has the same properties of Eq. (1.28). In fact, since the soft
kernel K̃ goes to zero at small bT , then the dilation factor is 1 for bT ∼ 0. Furthermore, since K̃ is
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basically negative, at large bT the dilation factor give an additional suppression beside those due to
the properties of gK and MC. Therefore, the transformation defined in Eq. (2.40b) is well defined only
for θ < 0, otherwise the behavior of the transformed model at large distances would be compromised.
On the other hand, a very large and positive θ would lead to a rapidity cut-off far from the limit
y1→+∞. Eqs. (2.40) define a new transformation. Due to the dilation factor in front of the model,
such transformation will be referred to as a rapidity dilation (RD) and indicated by Dθ . From the
definitions given above one can directly see that TMDs are invariant under rapidity dilations, or
RD-invariant:

C̃(ζ , MC) 7→ Dθ

(
C̃(ζ , MC)

)
= C̃

(
ζ e2θ , Dθ MC

)
= C̃(ζ , MC), for any θ < 0. (2.41)

Notice that being RD-invariant is different from being CS-invariant. In fact, rapidity dilations act not
only on the rapidity cut-off, but also on the non-perturbative TMD model, balancing the perturbative
and non-perturbative information in order to keep their combination invariant. Rapidity dilations
allow to consider the rapidity cut-off larger and larger, while keeping the naive physical picture
associated to the TMD to be the same. This is shown in Fig. 2.3, where panel (a) and panel and (b)
represent TMDs described by C(ζ , MD) and C(Dθ ζ , MD), respectively, with Dθ ζ < ζ . Interestingly,
this interpretation is totally equivalent to considering the two TMDs evaluated within the same range
of rapidity but associated to two different non-perturbative models, i.e. interpreting the TMD depicted
in panel (a) as described by C(Dθ ζ , Dθ MD) and the TMD in panel (b) as described by C(ζ ,Dθ MD).
Roughly speaking, the model associated with a certain choice describes how collinear particles with
rapidity in the range5 y1 ≤ y < ∞ behave in the non-perturbative regime. Notice that this picture is
closely reminiscent of the kinematics argument presented in Eq. (2.37), even if here it is not considered
at all. In fact, the higher the rapidity cut-off, the closer the hadronization process to a pencil-like
configuration.

Rapidity dilations have to be interpreted as a phenomenological tool. Two groups can indepen-
dently extract the same TMD from the same set of data for different values of the rapidity cut-off, for
instance by using a cross section like Eq. (2.38). Then, rapidity dilations set the relation between the
two TMD models derived from the two extractions. A detailed illustrtion of this mechanism can be
found in Ref. [12].

Not all quantities encountered in Chapter 1 are RD-invariant. In particular, rapidity dilations
have been defined in Eq. (2.40) to make invariant the TMDs as defined in Section 1.3, i.e. with the
reference direction coinciding with the plus direction. However, rapidity dilations do not commute
with the Z-axis reflection and TMDs associated to the minus direction are not RD-invariant. This is an
important issue, as the behaviour under z-axis reflection, which simply exchanges the plus and minus
directions, is particularly relevant for processes belonging to the 2-h class (see Sec. 1.4.1), where two
TMDs associated to opposite directions appear. If RZ is the Lorentz transformation that reverses the

5In the real world, quite different from the massless limit, the upper bound is yP, the large and positive rapidity of the
reference hadron.
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2.5 The role of rapidity cut-offs in the lowest order cross sections

Z-axis, then the rapidity of the reference hadron swaps its sign under the action of RZ . On the other
hand, the rapidity cut-off does not represent the rapidity of any real particle, but rather a mere number
that sets the minimum value that the rapidity of collinear particles can assume. Hence it is trivially
invariant under the action of Rz. However, the particles belonging to the collinear group associated
to the TMD in the minus direction should have a very large negative rapidity, consistent with the
limit y1→+∞. Therefore, a proper rapidity cut-off would be y2 =−y1, as if y1 had changed its sign.
Finally, the action of RZ gives: yP 7→ RZ (yP) =−yP;

y1 7→ RZ (y1) = y1
de f
= −y2.

(2.42)

As a consequence, the variable ζ for a TMD in the minus direction is obtained by simply replacing
ζ+ ∝ exp(yP− y1) with ζ− ∝ exp(y2− yP) and the full TMD transforms as:

C̃+(ζ+) 7→ RZ

(
C̃+(ζ+)

)
= C̃−(ζ−), (2.43)

where only the dependence on the rapidity cut-off has been made explicit.
As anticipated, the reflection with respect the Z-axis and rapidity dilations do not commute. In

fact, if the rapidity cut-off y1 of C̃+ is shifted, then the rapidity cut-off y2 of C̃− is shifted as well, but
with the sign reversed. This can easily be seen by a direct computation, with the help of Eqs. (2.40a)
and (2.42):

Dθ (y2) = Dθ (−y1) =−y1 +θ = y2 +θ . (2.44)

Therefore, according to Eq. (2.40b), the TMD model of C̃− transforms as:

Dθ (MC−) = MC− exp
[

1
2

θ K̃
]
. (2.45)

However, in the C̃− the rapidity cut-off appears with the opposite sign with respect to C̃+. Hence,
there is no more compensation between the rapidity shift and the transformed model, and the TMDs
defined along the minus direction are not invariant under rapidity dilations. In other words, RZ and
Dθ do not commute:

RZ Dθ C̃+(ζ+) = RZ C̃+(ζ+) = C̃−(ζ−); (2.46a)

Dθ RZ C̃+(ζ+) = Dθ C̃−(ζ−) = C̃−(ζ−)exp
[
θ K̃
]
. (2.46b)

Another relevant object which is not invariant under rapidity dilations is the 2-h soft factor (see
Eq. (1.14)). A rapidity dilation acts on S̃2-h only by shifting the two rapidity cut-offs y1 and y2, as
the soft model MS is not affected by the transformation defined in Eq. (2.40). Since Dθ (y1− y2) =
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y1− y2−2θ , the RD-transformation of the 2-h soft factor is given by:

Dθ S̃2-h = S̃2-h exp
[
−θ K̃

]
. (2.47)

As a consequence of Eqs. (2.41), (2.46b) and (2.47), the relevant structure appearing in the 2-h cross
sections, Eq. (1.31), is RD-invariant:

Dθ

(
C̃−(ζ−) S̃2-h(y1− y2)C̃+(ζ+)

)
=
(

C̃−(ζ−)exp
[
θ K̃
]) (

S̃2-h exp
[
−θ K̃

])
C̃+(ζ+)≡

≡ C̃−(ζ−) S̃2-h(y1− y2)C̃+(ζ+). (2.48)

In particular, notice that C̃+ is RD-invariant but not CS-invariant, C̃− and S̃2-h are nor RD-invariant
neither CS-invariant, the 2-h cross sections are both RD-invariant and CS-invariant.

2.6 The role of the rapidity cut-off beyond lowest order

The relation between the rapidity cut-off and thrust can hardly be appreciated in a trivial LO-LL ap-
proximation of the factorized cross section, Eq. (2.38), The rapidity dilations presented in Section 2.5
can give some hint about the physical interpretation of the rapidity cut-off in the Collins factorization
formalism, but do not relate ζ with T explicitly. Furthermore, they are not sufficient to explain the
cross section dependence on the rapidity cut-off beyond the lowest order. In fact in this case, as
explained in Section 2.4.1, also the (subtracted) partonic tensor depends on ζ but, differently from the
TMDs, it does not include any non-perturbative contribution that can reabsorb such dependence. In
terms of Section 2.5, it is nor RD-invariant, neither CS-invariant.

In this section, I will show how the relation between ζ and T can be made explicit by introducing
a topology cut-off that forces the partonic cross section to describe the proper final state configuration.
This is a further variable, not included into the original Collins factorization formalism. Without this
extra ingredient, it is not possible to recover a precise relation between the rapidity cut-off and thrust.
In particular, I will follow the approach presented in Ref. [13], which is a modified version of the
formal derivation of the factorization presented in this Chapter.

The starting point is the collinear-TMD factorization theorem of Eq. (2.26), but the partonic tensor
is computed in a non-conventional way. The idea takes inspiration from the available phase space for
three particles, which corresponds to a real gluon emission at NLO. Neglecting all the masses and by
labeling the three particles momenta as ki, the squared amplitude and the phase space will depend on
all the possible combination of their scalar products, which can be expressed in terms of the following
variables:

y1 =
2

Q2 k2 · k3 ; y2 =
2

Q2 k3 · k1 ; y3 =
2

Q2 k1 · k2 , (2.49)
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2.6 The role of the rapidity cut-off beyond lowest order

Fig. 2.4 The phase space available for the three final state massless particles of momenta k1, k2 and k3.
It cannot extend beyond the edge given by y2 = 1− y1 (or y3 = 0), due to momentum conservation.
The dashed red bands represent the quasi 2-jet configurations, where y1 and/or y2 are zero. The
sub-regions Ui correspond to a value of thrust given by τ = yi.

subject to the constraint ∑i yi = 1, due to the momentum conservation q = k1 + k2 + k3.
Therefore, when y1 → 0 or y2 → 0, the momentum k3 is collinear to k2 or to k1, respectively.

Instead, when both y1 → 0 and y2 → 0, the momentum k3 is soft. These are the configurations
corresponding to a 2-jet topology. A standard result regards the value of the thrust, which corresponds
to the minimum among the yi:

τ = min{y1, y2, y3} , (2.50)

where, as commonly set for a 2-jet topology, we have defined the variable τ = 1−T . Then the 2-jet
limit corresponds to τ = 0. Eq. (2.50) allows to divide the available phase space in three regions,
as shown in Fig. 2.4. One of the three particles plays the role of the fragmenting parton, therefore
it does not cross the final state cut. Assuming that k1 is not included in the sum over final states,
the integration over the phase space involves only k2 and k3, and it reduces to a single integration
over y2 after applying the momentum conservation delta. Furthermore, it must be equipped with the
condition that fixes thrust, according to Eq. (2.50). With only this limited information, the integration
is insensitive to TMD effects. Instead of keeping track of the total transverse momentum associated to
the radiation collinear to the fragmenting parton, the TMD dependence can be inserted “by hand"
introducing a topology cut-off τ⊥MAX sensitive to TMD effects. Such cut-off forces the phase space
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integration to be constrained inside the region denoted by the red bands in Fig. 2.4, by restricting the
values that τ can assume to be at most τ⊥MAX. Then, the limit τ⊥MAX→ 0 corresponds to the 2-jet limit.
In order to satisfy H.2, the topology cut-off should not act on soft radiation. Finally, the phase space
integration is given by:

ΠS

(
τ, τ

⊥
MAX

)
=

=
∫ d3−2ε⃗k2

(2π)3−2ε 2|⃗k2|
d3−2ε⃗k3

(2π)3−2ε 2|⃗k3|
(2π)4−2ε

δ (q− k1 + k2 + k3)θ

(
τ
⊥
MAX− τ

)
∑

i
δ (τ− yi) =

= (4π)
1
2

1
(4π)2 Sε Q−2ε

θ

(
τ
⊥
MAX− τ

)
(1− z)−ε×{

θ

(
z− 2

3

) ∫ 2− 1
z

1−z
z

dα α
−1−ε (1−α)1−ε

δ (τ− (1− z))︸ ︷︷ ︸
U1

+

+

[
θ

(
2
3
− z
) ∫ 1

2

0
+θ

(
z− 2

3

) ∫ 1−z
z

0

]
dα δ

(
α− τ

z

)
︸ ︷︷ ︸

U2

+

+

[
θ

(
2
3
− z
) ∫ 1

1
2

+θ

(
z− 2

3

) ∫ 1

2− 1
z

]
dα δ

(
α− (1− τ

z
)

)
︸ ︷︷ ︸

U3

}
α
−1−ε (1−α)1−ε , (2.51)

where the following change of variable has been applied:

y1 = 1− z, y2 = α z, y3 = z(1−α). (2.52)

The expression in Eq. (2.51) will be our “TMD-inspired" procedure to compute the NLO thrust-
dependent phase space integral. Then, we have to compute the square amplitudes corresponding
to the various allowed kinematics configurations to obtain the final expression for the unsubtracted
partonic tensor within this modified scheme. Notice that, with the procedure introduced above, the
factorization of W̃ µν ;uns. into its leading regions, as shown in Fig. 2.2(b), is achieved by letting the
topology cut-off tend to zero, instead of exploiting the action of the Collins kinematics approximators
(see Appendix A). This leads to an important difference with respect to the Collins factorization
formalism presented in Chapter 1: without the prescriptions offered by the canonical factorization
procedure, there is no trace of rapidity cut-offs. Their role is in fact played by the topology cut-off,
which takes the place of ζ . Therefore, this modified version of the formalism shed light on the relation
between the rapidity cut-off and the experimentally measured thrust, T .

In the following, I will briefly review the results of Ref. [13] by showing how the final factorized
cross section is derived in this approach.
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2.6 The role of the rapidity cut-off beyond lowest order

Fig. 2.5 The only 1-loop Feynman graph contributing to Ŵ µν
g , when the gluon is emitted by the quark.

The emission from the antiquark line is analogous.

2.6.1 Fragmenting Gluon in the Modified Formalism

In a 2-jet topology, the detected hadron is never a product of the fragmentation of a gluon. In fact,
of the two jets observed in the final state, one is initiated by the quark, the other by the antiquark.
Therefore, any explicit computation must show a suppression corresponding to this channel. In this
section, I will show how such suppression is naturally obtained in the modified formalism presented
in the previous discussion. Furthremore, being much simpler than the case of a fragmenting fermion,
the fragmentation of a gluon serves as an ideal framework to introduce the main features associated to
the computation of the final state tensor.

At 1-loop, the only Feynman diagram to be considered is represented in Fig. 2.5, where we
assume that the gluon is emitted from the quark line. The emission from the antiquark is totally
analogous. Even without performing an explicit computation, it is quite easy to deduce the reasons of
the suppression for this kinematics configuration in the 2-jet case. In fact, after emitting the gluon,
the fermion cannot deviate drastically from its original direction, otherwise it would generate a third
jet. Hence it can only proceed almost collinearly to the gluon. In principle, a 2-jet configuration may
be achieved also if the fermion becomes soft or if it is reflected backwards after the emission of the
gluon, but such configurations are suppressed by power counting. As a consequence, the only relevant
kinematical configuration in the 2-jet limit is given by the fermion being collinear to the emitted
fragmenting gluon. However, this is exactly the same configuration that has to be subtracted out in the
final result, in order to avoid double counting due to the overlapping with the collinear momentum
region.

The squared amplitude is given by:

Mµν ; [1]
g (ε; µ, {yi}) =





µν

, (2.53)
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where, according to standard conventions (see for instance Ref. [7]) the polarization vector e(k1, λ ) of
the on-shell fragmenting gluon is defined to have zero plus and minus components6. The projections
of Mµν ; [1]

g onto the relevant Lorentz structures are:

−gµνMµν ; [1]
g (ε; µ, {yi}) = H0 g2

µ
2ε 4CF

[
1+2

y1

(1− y1)2 − ε

]
y3

y2
; (2.54a)

k1,µ k1,ν

Q2 Mµν ; [1]
g (ε; µ, {yi}) = H0 g2

µ
2ε 2CF

1
1− ε

[
1+2

y1

(1− y1)2 y3− ε

]
y3, (2.54b)

where H0 has been defined in Eq. (C.8b). Notice that Eq. (2.54b) is regular in both y1 = 0 and y2 = 0,
consequently it is suppressed in the 2-jet limit. The unsubtracted partonic tensor is obtained by
integrating the Eqs. (2.54) over the phase space of Eq. (2.51), in the limit where the topology cut-off
τ⊥MAX vanishes. The only contribution that survives comes from the integration over the region denoted
by U2 for the projection onto the metric tensor of Eq. (2.54a). In fact, U2 corresponds to the kinematic
configuration where the emitting fermion is collinear to the fragmenting gluon and, as expected, it is
the only one not to be suppressed in the 2-jet limit. The result is:

αS

4π

(
−gµνŴ µν , [1]

g

)
τ⊥MAX→0
∼ H0

αS

4π
J[1]g/q (ε; τ, z) θ

(
τ
⊥
MAX− τ

)
, Re ε < 0, (2.55)

where J[1]g/q is the 1-loop gluon-from-quark fragmenting jet function, defined in Eq. (D.18). The
details of the calculation can be found in Ref. [13]. Now, we have to write the TMD dependence
on the topology cut-off explicitely. The fragmenting jet functions result from an integration over
the transverse momentum k⃗T entering into the subgraph associated to the radiation collinear to the
outgoing parton, in this case the fragmenting gluon. Such transverse momentum is related to thrust
through Eq. (D.17), which asserts that τ is proportional to kT/Q. Therefore, the power counting
region where kT ≪ Q corresponds to the 2-jet configuration. Despite this, the integration covers the
whole spectrum of kT . Hence, we can set the topology cut-off in such a way to force the transverse
momentum to stay inside the power counting region, by setting an upper limit, for instance equal to the
power counting energy scale λ << Q, used to indicate the size of the collinear momenta. This results
in replacing the combination of the gluon-from-quark fragmenting jet function with the topological
cut-off by the Fourier transform of the gluon-from-quark generalized fragmentation jet function [45],
which will be discussed in more detail in Chapter 3, with the further constraint kT ≤ λ on the size of
the transverse momentum. In practice:∫

d2−2ε⃗kT θ

(
τ
⊥
MAX− τ

)
7−→

∫
d2−2ε⃗kT ei⃗kT ·⃗bT θ

(
λ

2− k2
T
)
. (2.56)

6In general, the only requirement on e(k1, λ ) is k1 · e(k1, λ ) = 0 and e(k1, λ ) · e(k1, λ )⋆ = 1.
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Fig. 2.6 Action of the cut-off τMAX(λ ) on the phase space for the three final state particles, according
to Eq. (2.59). In this case λ = 0.1Q. Notice that the red region shrinks as λ/Q→ 0.

The neat effect is that the limit τ⊥MAX→ 0 is replaced by the limit λ → 0. Therefore, in this formalism,
the unsubtracted partonic tensor is still the partonic counterpart of the whole process, but with the
transverse momentum of the fragmenting parton constrained inside the power counting region.

The application of Eq. (2.56) into Eq. (2.55) is equivalent to making the following substitution:

J[1]g/q (ε; τ, z) θ

(
τ
⊥
MAX− τ

)
7−→ J[1]g/q,mod. (ε; τ, z, λ ) = J[1]g/q (ε; τ, z) θ

(
λ 2

Q2 −
1− z

z
τ

)
, for λ → 0.

(2.57)

This expressions defines the modified gluon-from-quark fragmenting jet function at 1-loop. Notice
that the whole bT -dependence is washed away in the limit λ → 0. The ε-expansion of the previous
expression is not straightforward, because of the interplay between the thrust distributions associated
with J[1]g/q and the Heaviside theta containing the cut-off. The result is:

αS

4π
J[1]g/q,mod. (ε; τ, z, λ ) =

=
αS

4π
2CF Sε θ(1− z)

1+(1− z)2− εz2

z2

(
−1

ε
− log

µ2

λ 2

)
δ (τ)+O

(
λ 2

Q2

)
+O (ε) , Re ε < 0.

(2.58)

Comparing Eq. (2.58) to the analogous term in Eq. (2.55), the relation between the topology cut-off
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τ⊥MAX and the IR power counting scale can expressed explicitly:

λ 2

Q2 −
1− z

z
τ > 0⇒


0≤ z≤ 1

1+λ 2/Q2 and 0≤ τ ≤ z
1−z

λ 2

Q2 ≡ τ⊥MAX(λ )

1
1+λ 2/Q2 ≤ z≤ 1 and 0≤ τ ≤ 1

(2.59)

Notice that this choice sets τ⊥MAX = 1 only in a thin slice of the phase space, where z is very close to 1.
This fact will be crucial in the fragmenting fermion case, as z→ 1 is the effect of a soft approximation
which should not effect the action of the topology cut-off according to H.2. Furthermore, τ⊥MAX→ 0
consistently implies λ 2/Q2→ 0 as expected. Finally, the unsubtracted partonic tensor computed in
the modified formalism is:

Ŵ µν , [1],uns.
g,mod. (ε; z, τ; λ ) = Hµ ν

T F̂ [1],uns.
1, g,mod.(ε; z, τ; λ ), Re ε < 0, (2.60)

where:

F̂ [1],uns.
1, g,mod.(ε; z, τ; λ

2/Q2→ 0) =
H0

2
J[1]g/q,mod. (ε; τ, z, λ ) Re ε < 0. (2.61)

and the transverse tensor Hµ ν

T has been defined in Eq. (2.13).

The subtraction mechanism in this modified formalism is totally analogous to the procedure
described in Section 2.4.1. The only difference is in the Fourier transform: instead of covering the
whole range in kT , it stops at kT = λ according to Eq. (2.56). Assuming a spinless detected hadron,
for simplicity, the modified version of the subtraction term is given by the modified version of the
Fourier transform of the gluon-from-quark unpolarized TMD FF Dg/q, which has been computed at
1-loop in transverse momentum space in Eq. (A.39). Againg, all the bT -dependence is suppressed by
powers of λ 2/Q2. We have:

αS

4π
D̃[1]

g/q;mod.(ε; z, λ ) =
∫

d2−2ε⃗kT ei⃗kT ·⃗bT D[1]
g/q(ε; z, kT )θ

(
λ

2− k2
T
)
=

=
αS

4π
2CF Sε

1+(1− z)2− εz2

z3

(
−1

ε
− log

µ2

λ 2

)
+O

(
λ 2

Q2

)
+O (ε) , Re ε < 0. (2.62)

Therefore, the modified version of the 1-loop subtracted partonic tensor descends directly from
Eq. (2.33) and it is given by:

Ŵ µν ; [1]
g,mod.(z, τ, λ ) = Ŵ µν , [1],uns.

g,mod. (ε; z, τ; λ )−∑
k

∫ 1

z

dρ

ρ
Ŵ µν ; [0]

k (z/ρ, τ)
(

ρ D̃[1]
g/k;mod.(ε; ρ, λ )

)
=

= Hµ ν

T
H0

2

[
J[1]g/q,mod. (ε; τ, z, λ )−δ (τ)zD̃[1]

g/q;mod.(ε; z, λ )
]
≡

≡ Hµ ν

T F̂ [1]
1, g,mod.(z, τ; λ ) = O

(
λ 2

Q2

)
, (2.63)
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Fig. 2.7 The 1-loop Feynman graphs contributing to Ŵ µν

f .

where we used the expression of Eq. (C.6) for the partonic tensor at LO. Notice that Ŵ µν ; [0]
k is not

affected by the modified formalism as its final state configuration is pure 2-jet. Eq. (2.63) implies a
partonic cross section suppressed by O

(
λ 2

Q2

)
as well:

dσ̂
[1]
g,mod.

dzdT
= σB z F̂ [1]

1, g,mod.(z, τ; λ ) = O

(
λ 2

Q2

)
. (2.64)

As expected, the fragmenting gluon configuration is suppressed for a 2-jet topology. Most importantly,
in this modified formalism such suppression is given by the limit λ → 0 which is ultimately related to
the limit τ⊥MAX→ 0 by Eq. (2.59). Therefore, this is the explicit realization of the expected topological
suppression.

2.6.2 Fragmenting Fermion in the Modified Formalism

In this case, the detected hadron is produced by the fragmentation of a fermion of flavor f , assumed
to be a quark for simplicity. The case of a fragmenting antiquark is totally analogous. This is the first
non-trivial contribution to the thrust-dependence of the final cross section. Furthermore, the modified
formalism applied to this kinematic configuration leads to an explicit relation between the topology
cut-off and the rapidity cut-off, which turns into a relation with an experimentally accessible quantity,
i.e. thrust.

The contribution of the virtual gluon emission (the hard vertex V is represented in Fig. 2.2b) is
associated to a pure pencil-like final state; hence it is not relevant for the action of the topology cut-off.
The 1-loop result can be found in Appendix C. Therefore, in the following I will focus on the real
gluon emission contribution, associated to the two Feynman graphs represented in Fig. 2.7. The 2-jet
configuration are obtained when the gluon is collinear to the antiquark (backward radiation), when it
is soft and when it is emitted collinearly to the fragmenting quark. The squared amplitudes are given
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by:

Mµν ; [1]
f ,real (ε; µ, {yi}) =

=


+h.c.+ +



µν

(2.65)

which leads to the following projections onto the relevant Lorentz structures:

−gµ νMµν , [1]
f ,real (ε; µ, {yi}) = H0, f g2 8CF µ

2ε

[(
y3

y1 y2
− ε

)
+

(1− ε)

2

(
y1

y2
+

y2

y1

)]
; (2.66a)

k1,µk1,ν

Q2 Mµν , [1]
f ,real (ε; µ, {yi}) = H0, f g2 2CF µ

2ε y3. (2.66b)

where H0, f is defined in Eq. (C.8b). Analogously to the procedure adopted in the previous section,
the unsubtracted partonic tensor in the modified formalism is obtained by integrating Eqs (2.66) over
the phase space given in Eq. (2.51), in the limit τ⊥MAX→ 0. Then, thanks to the identification between
the topology cut-off and the IR power counting scale λ presented in Eq. (2.59), the result is intended
as the limit λ → 0.

The integration of (2.66b) is suppressed in the topology limit because it is non-singular for
vanishing y1 and/or y2. The result of the integration of Eq. (2.66a) is:

−gµνŴ µν , [1],uns.
f ,real,mod. (ε; z, τ; λ ) =

= H0, f

[
δ (1− z)

(
S[1](ε; τ)+ J[1]B (ε; τ)

)
+ J[1]q/q,mod(ε; τ, z, λ )

]
, Re ε < 0, (2.67)

where we have used τ⊥MAX(λ )δ (1−z) = 1, which ensures H.2 is valid. The details of the computation
can be found in Ref. [13]. The expression in Eq. (2.67) encodes all the expected contribution associated
to a 2-jet topology. The functions JB and S are, respectively, the (backward) jet thrust function and the
soft function commonly found in thrust-dependent cross sections in the 2-jet limit. They are defined
in Eqs. (D.12) and (D.6) [46–48]. In the modified formalism, such contributions are totally insensitive
to the action of the topology cut-off. On the other hand, the modified quark-from-quark fragmenting
jet function Jq/q,mod is associated to the configuration where the gluon is emitted collinearly to the
fragmenting quark. Hence, it inevitably overlaps with the same momentum region of the TMD FFs in
the final cross section. Its 1-loop expression is given by:

J[1]q/q,mod(ε; τ, z, λ ) = Jq/q(ε; τ, z)θ

(
λ 2

Q2 −
1− z

z
τ

)
, (2.68)
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The ε-expansion of the previous expression is totally not straightforward, as in addition to the thrust
distributions, in this case there are also terms proportional to z-distributions and the interplay between
such contributions and the cut-off condition makes the computation highly non-trivial. The result is7:

αS

4π
J[1]q/q,mod(ε; τ, z, λ ) =

1
z

αS

4π
Z[1]

q/q,coll(ε; z)δ (τ)+

+
αS

4π
2CF Sε δ (1− z)

{
δ (τ)

[
2
ε2 +

1
ε

(
3
2
+2log

(
µ2

Q2

))]
− 2

ε

(
1
τ

)
+

}
+

+
αS

4π
2CF Sε

{
δ (τ)

[
−δ (1− z) log

(
λ 2

µ2

)(
log
(

λ 2

µ2

)
−2log

(
µ2

Q2

))
+

1− z
z

(
1+ log

(
λ 2

µ2

))
+

+2
(

1
1− z

)
+

log
(

λ 2

µ2

)]
−2δ (1− z)

(
1
τ

)
+

log
(

µ2

Q2

)
+2δ (1− z)

(
logτ

τ

)
+

}
, Re ε < 0.

(2.69)

where Zq/q,coll is the UV counterterm of quark-from-quark FFs, defined in Eq. (A.54). Notice that it
encodes the collinear divergence of the quark-from-quark TMD FF and hence it will vanish in the
subtraction. Finally, including also the contribution from the virtual gluon emission of Eq. (C.15), the
unsubtracted partonic tensor for the fragmenting fermion in the modified formalism is given by:

Ŵ µν , [1],uns.
f ,mod. (ε; z, τ; λ ) = Hµν

T F̂ [1],uns.
1, f ,mod(ε; z, τ; λ ) (2.70)

where:

F̂ [1],uns.
1, f ,mod(ε; z, τ; λ ) =

H0, f

2

[
δ (1− z)

(
δ (τ)V [1](ε)+S[1](ε; τ)+ J[1]B (ε; τ)

)
+ J[1]q/q,mod(ε; τ, z, λ )

]
(2.71)

Following the same argument used for the fragmenting gluon case, the subtraction term is the
modified Fourier transform of the quark-from-quark TMD FF defined in Eq. (A.54). Analogously to
its canonical counterpart, the result gives the bare quantity; however, the UV counterterm needed for
the renormalization is exactly the same as that given in Eq. (A.50). Finally, we have:

αS

4π
D̃[1],(0)

q/q;mod.(ε; z, ζ , λ ) =
∫

d2−2ε⃗kT ei⃗kT ·⃗bT D[1]
q/q(ε; z, kT , ζ )θ

(
λ

2− k2
T
)
=

=
1
z2

αS

4π
Z[1]

q/q,coll(ε; z)− αS

4π
Z[1]

q/q,TMD(ε)δ (1− z)+

+
αS

4π
2CF Sε

{
1
2

δ (1− z)
[

log2
(

λ 2

µ2

)
+2log

(
λ 2

µ2

)
log
(

ζ

λ 2

)]
+

+
1
z2 −

1
z
+

(
1
z2 +

1
z
+

2
(1− z)+

)
log
(

λ 2

µ2

)}
, Re ε < 0. (2.72)

7In Ref. [13] not all the non-leading divergences in log(λ 2/Q2) have been considered. This produces a missing
cancellation among the z-dependent terms which results in a non-trivial dependence on z in the final result.
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Clearly, the renormalized version of the previous equation is obtained by adding the UV counterterm
Z[1]

q/q,TMD. Moreover, if the subtraction is performed with the bare quantity, also the partonic tensor
will need a renormalization and its UV counterterm will be exactly opposite to the UV counterterm
of the modified TMD. This is in agreement with the procedure adopted to renormalize the partonic
tensor in the canonical formalism, as presented in Eq. (2.32).

In conclusion, the renormalized partonic tensor for the case of a fragmenting quark is obtained as:

Ŵ µν , [1]
f ,mod.(z, τ; ζ , λ ) =

= Ŵ µν , [1],uns.
f ,mod. (ε; z, τ; λ )−∑

k

∫ 1

z

dρ

ρ
Ŵ µν ; [0]

k (z/ρ,τ)
(

ρ D̃[1]
q/q;mod.(ε; ρ, ζ , λ )

)
=

= Hµν

T
H0, f

2

[
δ (1− z)

(
δ (τ)V [1](ε)+S[1](ε; τ)+ J[1]B (ε; τ)

)
+

+ J[1]q/q,mod(ε; τ, z, λ )−δ (τ)zD̃[1]
q/q;mod.(ε; ρ, ζ , λ )

]
≡ Hµν

T F̂ [1]
1, f ,mod(z, τ; λ ), (2.73)

where:

F̂ [1]
1, f ,mod(z, τ; ζ , λ ) =
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+
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log
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− log2

(
µ2

Q2

))
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τ

)
+

−4
(

logτ
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)
+

]
. (2.74)

Then, the final result for the NLO partonic cross section follows straightforwardly:

dσ̂
[1]
f ,mod.

dzdT
= σB z F̂ [1]

1, f ,mod(z, τ; ζ , λ ). (2.75)

Notice that the z-dependence is trivial: in the final cross section the behavior in z is entirely described
by the TMD FFs. Furthermore, this final result is a finite quantity, as all the divergences have been
canceled. There is still track of the regulators: µ for the UV divergences and ζ for the rapidity
divergences. The latter, in particular, originates from the subtraction term, as the matrix elements
contributing to the modified TMD are the same of the canonical Collins formalism. The action of the
RG easily takes care of the dependence on µ which can be set to Q as usual. However, as expected,
the final cross section is not CS-invariant and the modified partonic cross section as well as the TMD
FFs depend on ζ . Differently to the canonical formulation of the factorization theorem, in this case
there is also the topology cut-off λ playing its role in the game. It has a double function: on one
side it forces the modified partonic cross section to describe the 2-jet region, on the other side it
constrains the total transverse momentum of the radiation collinear to the detected hadron to be in the
power counting region. This last feature is crucial, as, for on-shell particles, a constraint on transverse
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2.6 The role of the rapidity cut-off beyond lowest order

momentum automatically leads to a constraint on rapidity (and vice-versa). Then, the transverse
momentum of the emitted gluon (see Fig. 2.7) is constrained by kT ≤ (1− z)

√
ζ ≤

√
ζ and also by

kT ≤ λ . This means that the topology cut-off plays the same role of the canonical rapidity cut-off and
hence they can be set to be the same, ζ = λ .

The double nature of the topology cut-off makes it more flexible than ζ . Its direct relation to the
topology of the process can be made more explicit by exploiting the kinematic argument of Eq. (2.37).
In fact, on one side kT ≤ PT/zh ≤

√
τ Q, on the other kT ≤ λ and the natural choice for the topology

cut-off is λ =
√

τ Q. Therefore, the limit λ → 0 literally corresponds to the 2-jet limit. Summarizing:

ζ = λ =
√

τ Q−→ y1 =−
1
2

logτ, (2.76)

in total agreement with the kinematics argument. Also, Eq. (2.76) matches with the naive picture
of Fig. 2.3. In fact, the canonical limit on the rapidity cut-off y1→ ∞ in this modified formalism
corresponds to the 2-jet limit τ → 0 and the rapidity cut-off is linked directly to the experimentally
measured value of thrust. The more y1 approaches infinity, the narrower the jet in which the hadron is
detected, approaching the pencil-like configuration.

The practical implementation of the relation in Eq. (2.76) into a fixed order computation is hardly
viable. The NLO expression of the modified partonic cross section shows that all the dependence
on λ (and ζ ) is embedded in the logarithms in the coefficient of δ (τ). Therefore, a straightforward
substitution λ 2 = τ Q2 into Eq. (2.74) cannot be implemented, as it would lead to ill-defined terms as
δ (τ) log(τ). This is the same kind of trouble that would appear if y1 =+∞ is set straightforwardly
in the final factorization theorem of Eq. (2.26). Ultimately, this problems opens the question of the
implementation of a proper thrust resummation8 for a cross section as that in Eq. (2.74). A simple
short-cut consists in staying away from the dangerous region near τ = 0 and writing the fixed order
cross section neglecting all contributions associated to a pencil-like configuration. This can be easily
obtained by removing the whole δ (τ) term and the “plus" signs from the thrust distributions in
Eq. (2.74). Then, the final result has a very simple expression:

dσ̂
[1]
f ,mod.

dzdT
=−σB e2

f CF NC δ (1− z)
3+8logτ

τ
. (2.77)

As long as the phenomenological analyses do not include data associated to very large values of T ,
this formula for the partonic cross section is expected to apply. Even if this result has been found
within a modified version of the canonical factorization formalism, I will show in Chapter 3 that the
same partonic cross section can be derived without introducing a topology cut-off.

8In Ref. [13] a resummed expression is obtained by considering λ and τ independent untill the very end of the
computation and using the relation λ =

√
τ Q only in the final result, written as the solution of a proper evolution equation

with respect to the topology cut-off. This produces an exponentially suppressed term in the partonic cross section,
unfortunately not powerful enough to describe the behavior around T ∼ 1.
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By using the NLO partonic cross section of Eq. (2.77) and the NLL unpolarized TMD FF presented
in Eq. (A.60), we can write the collinear-TMD factorized cross section of Eq. (2.30) at NLO-NLL
accuracy for a 2-jet final state configuration:

dσ

dzdP2
T dT

NLO, NLL
= − 4π2α2

3z2
h Q2 CF NC

3+8log(1−T )
1−T
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·⃗bT

∑
f

e2
f

(
dh/ f (zh, µb)+

+
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4π
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1+O(

M2
h

Q2 )

]
, (2.78)

where we have set µ = Q thanks to RG-invariance and ζ = (1−T )Q2 from the relation of Eq. (2.76).

2.7 Conclusions

The factorization of the e+e−→ hX cross section, sensitive to the transverse momentum PT of the
detected hadron with respect to the thrust axis, represents a really hard challenge from the theoretical
point of view. According to the classification of Section 1.4, this process belongs to the 1-h class. This
fact has important consequences that make its factorization properties deeply different from those of
the TMD processes belonging to the 2-h class. If the radiation collinear to the jet in which the hadron
is detected does not affect the experimental measurement of thrust ( H.1) and if the soft radiation does
not affect the experimental measurement of PT ( H.2), then the factorization theorem (see Eq. (2.26))
assumes a hybrid form between the usual collinear factorization and TMD factorization. It has the
same structure of a collinear factorized cross section but here the fully perturbative partonic cross
section is convoluted with a TMD FF, rather than a FF, which must be extracted from experimental
data. For this reason, such hybrid factorization theorem has been called “collinear-TMD".

There are two remarkable features associated with this hybrid collinear-TMD factorized cross
section. The first is that the TMD FFs appearing in the final result are not defined in the usual
way, through the square root definition, Eq. (1.33), devised for 2-h class TMD cross sections. This
definition cannot be applied to 1-h processes, as there is no other non-perturbative contribution besides
that of the TMD itself. Instead, the TMDs appearing in Eq. (2.26) are defined according to the
factorization definition presented in Eq. (1.21). They describe only particles collinear to the detected
hadron, without including any information about the soft radiation of the process. In fact, all the soft
contributions are embedded perturbatively inside the partonic cross section. This must be taken into
account when performing any phenomenological study. The TMD FFs extracted in this way will
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differ by a square root of the soft model MS from those obtained by fitting SIDIS and e+e−→ h1 h2

data.
The other issue involves the role of the rapidity cut-offs in collinear-TMD factorization theorems.

In fact, both the TMD and the partonic cross section show a dependence on the rapidity cut-off ζ

appearing into the TMDs definition. However, the final cross section cannot be CS-invariant, mainly
because the CS-evolution of the TMDs is bT -dependent while the partonic cross section depends only
on the collinear momentum fraction and on thrust. For the lowest order computation, the rapidity
dilations presented Section 2.5 offer a viable solution, at least to the phenomenological level. However,
their action is not useful when higher ordercorrections are taken into account. In this Chapter and
throughout this thesis, I will not interpret the dependence on the rapidity cut-off of the final result
as an inconsistency of the factorization procedure. In fact, there is a intimate connection between ζ

and the topology of the final state, which ultimately relates the rapidity cut-off to the thrust. This
connection does not appears explicitly within the Collins factorization formalism. However, if an
additional topology cut-off is inserted into the factorization procedure, then this somehow takes the
place of ζ and has the added benefit of being directly related to thrust. This approach has been shown
in Section 2.6 to NLO, for a 2-jet final state configuration. In this modified formalism, the rapidity
cut-off is finally set to τ Q2 and hence the 2-jet limit τ → 0 corresponds explicitly to the canonical
limit y1→ ∞ of the Collins formalism. This solution cannot be implemented straightforwardly into
the fixed order partonic cross section, as it would expose the rapidity divergences in T = 1. However,
it offers the possibility to shed light on the real physical meaning of the rapidity cut-off. It cannot be
considered as a mere computational tool introduced solely to regulate the rapidity divergences. More
appropriately, it should be assigned a specific physical meaning, given its relation to the measured
value of thrust.

The collinear-TMD factorization theorem presented in this chapter offers a unique perspective on
this issue. In fact, the conventional TMD factorization theorems provide CS-invariant cross sections,
where the whole dependence on the rapidity cut-off is completely washed out in the interplay between
TMDs and the contribution of the soft gluons. Instead, collinear-TMD factorized cross sections make
such dependence explicit, providing a concrete tool to investigate the physical meaning behind the
regulators of rapidity divergences.
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Chapter 3

Kinematics regions in a 2-jet topology

3.1 Introduction

The collinear-TMD factorization theorem devised for e+e− → hX in the previous Chapter has
been obtained within the Collins factorization formalism, by making use of very general properties
associated to the interplay between the hard, soft and collinear contributions to the cross section,
and also with the help of some additional assumptions on the role of soft and collinear radiation in
the actual experimental measurement. In particular, we have required that the transverse motion of
the particles radiated collinearly to the detected hadron does not modify the final state topology of
the event (H.1), and also that the transverse momenta of the soft gluons do not deflect the trajectory
of the detected hadron (H.2). This kind of “top-down" approach is very powerful, as it allows us
to avoid the traps and threats that a “bottom-up" approach, entirely based on perturbation theory,
could present. On the other hand, the steps of the factorization proof are much clearer within a
“bottom-up" approach, where the various contributions can be readily disentangled and made more
explicit transparent, order by order in pQCD. The downside of this methodology is that perturbative
computations may be remarkably difficult, especially when the formalism has to be adapted to include
one additional observable variable, in this case thrust. Of course, under the same assumptions. both
schemes should ultimately return the same result.

The purpose of this Chapter is to show an alternative road to factorization, through a “bottom-up"
approach. I will present the explicit calculation of the leading contributions to the partonic version
of the whole process, which corresponds to the partonic tensor introduced in the previous Chapter,
at NLO in the perturbative QCD expansion and for the relevant case of a 2-jet configuration. The
results will then be generalized to all orders. I will show how, following this alternative procedure,
all the results of Chapter 2 can be recovered. Moreover, I will also consider the cases in which the
additional approximations H.1 and H.2 are removed. This will lead to three different factorization
theorems, each corresponding to a different kinematic region. In this regard, the results of Chapter 2
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will be associated to Region 2, where both the kinematic requirements hold true. These results are
crucial for phenomenological analyses, as they provide a criterion for data selection which ensures
that the appropriate factorization theorem is applied to the right data subset. I will also provide
an algorithm based on the 1-loop computation that allows to identify each kinematical region by
comparing properly defined ratios involving measured quantities, like zh, PT and T .

3.2 Conventions and nomenclature

As extensively discussed in Section 2.3, the leading momentum regions for e+e−→ hX involve hard,
soft and collinear contributions, and each term can be expanded in series of αS and approached within
perturbative QCD. Such decomposition can be performed explicitly, order by order, by applying
the kinematics approximators defined in Ref. [7] and reviewed in Appendix A. I will follow the
conventions introduced in Appendix D, where a label “◦" is used to specify when an approximator
has to be applied without its rapidity cut-off. This is a relevant issue only for soft and soft-collinear
approximators, as the unsubtracted collinear parts are already defined without rapidity cut-offs.
Moreover, I will denote the two hemispheres defined by the thrust axis as SA and SB, where the first
is the hemisphere in which hadron h is detected. In the case of soft radiation, the particles can be
emitted either in SA or in SB with the same probability. Therefore, the soft approximators are equipped
with a further label “+" or “−" as an indication of the hemisphere in which the particle is emitted.
Finally, following the nomenclature introduced in Appendix A, the various subgraphs singled out by
the action of the approximators will be labeled as “A", “B", “S" or “H", depending, respectively, on
whether the particles circulating inside them are collinar to the fragmenting parton, collinear to the
backward direction, soft or hard (far off-shell).

Not all the contributions singled out by the factorization procedure are relevant for the study of
TMD effects. Since each of them returns a picture of the whole process in a specific momentum region,
they all depend somehow on the transverse momentum of the fragmenting parton k⃗T . Sometimes
such dependence is trivial, as for the case of the backward emitted radiation. In other cases, the
relevance for the TMD physics depends on whether the considered term contributes significantly
to the transverse deflection from the thrust axis of the detected hadron. Leaving aside the reasons
that allow to consider a certain contribution relevant or not for studying TMD effects, if a term is
“TMD-relevant" then it must be considered in the Fourier conjugate space of k⃗T , as this is the natural
framework in which TMDs and soft factors are defined (see Sections 1.2 and 1.3). On the other
hand, if a term is “TMD-irrelevant" then it must be integrated over the whole spectrum of transverse
momentum, which is equivalent to washing out the information on k⃗T . In this section, I will refer
to TMD-relevant (Fourier transformed) quantities as “factors" and, if not specified differently, I
will indicate them with capital Greek letters. Instead, I will refer to TMD-irrelevant (⃗kT integrated)
quantities as “functions" and, if not already defined differently, I will indicate them with capital italics
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Latin letters. The following scheme summarizes the notation:

TMD-relevant←→
∫

d2−2ε⃗kT ei⃗kT ·⃗bT ←→ factor
(capital Greek letters)

TMD-irrelevant←→
∫

d2−2ε⃗kT ←→ function
(capital italics Latin letters)

Notice that the contributions of the momentum region corresponding to particles moving collinearly
to the fragmenting parton are always TMD-relevant, as they embody the core and essence of the TMD
effects. On the other hand, contributions associated to backward radiation are always TMD-irrelevant,
trivially because, being emitted into the hemisphere opposite to the detected hadron, they cannot affect
its transverse motion. Therefore, being TMD-relevant or not is crucial only for soft (and soft-collinear)
momentum regions, as soft radiation emitted in the hemisphere SA may (or may not) contribute to
the transverse momentum of the detected hadron. Clearly, this is strictly connected to the validity of
the assumption H.2. Finally, since this Chapter is devoted to the computation of the partonic version
of the whole process, I will drop the label “uns." from the partonic tensor, meaning that it contains
also the information encoded into the (partonic version of) the TMD FFs, which ultimately causes an
overlap in the final factorized cross section. On the other hand, in all those cases in which I refer to a
subtracted quantity, I will add an explicit label “sub."

3.3 A benchmark study: the fragmenting gluon case

The “bottom-up" approach to the factorization procedure discussed in this chapter involves the
solution of some very tough integrals, due to the non-trivial interplay between thrust and transverse
momentum dependence. The solution of such integrals require non-standard techniques, even just for
a NLO approximation. Therefore, it is convenient to show the procedure and some of this advanced
mathematical tools in the simple case of a fragmenting gluon, in analogy to what was done within
the modified formalism framework in Section 2.6.1. This will serve as a benchmark study for the
treatment of the more relevant case of a fragmenting fermion, which actively contributes to the final
result. Clearly, we have to recover the expected result also in this “bottom-up" approach. For a 2-jet
final state, one jet is generated by a quark, the other by its corresponding antiquark, while the chance
of a jet being produced by a gluon is strongly suppressed.

For the case of a fragmenting gluon, there is only one Feynman diagram to be considered, shown
in Fig. 2.5. The corresponding squared amplitude has been presented in Eqs. (2.53), (2.54). The
expression of the phase space is similar to Eq. (2.51), however, instead of introducing an artificial
TMD-sensitive topology cut-off as in Section 2.6, we explicitly keep track of the total transverse
momentum of the radiation collinear to the fragmenting parton. This is realized by the partonic
version of the condition that sets the relation between the transverse momentum P⃗T of the detected
hadron and the transverse momentum k⃗T of the fragmenting parton. As discussed in Section 2.4.1,
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this condition just sets k⃗T equal to the total transverse momentum k⃗′T entering into the A-subgraph.
Therefore, with respect to Eq. (2.51), we have to implement the following replacement:

θ

(
τ
⊥
MAX− τ

)
7−→ δ

(⃗
kT − k⃗′T

)
(3.2)

Since the definition of the A-subgraph depends on the action of the kinematics approximator, the
expression of k⃗′T can be different for each leading momentum region. In fact, the action of TR modifies
any element involved into the calculation of the partonic tensor, not only the squared amplitudes.
Also the momentum conservation delta and the condition that fixes the thrust must be modified
consistently. Apart from these differences in the procedure of the computation, all the considerations
of Section 2.6.1 hold. In particular, the power counting suppresses both the configurations in which
the emitting fermion reflects backward (action of TB) and when it turns soft (action of TS), regardless
of the hemisphere in which it is directed. Therefore, the only leading momentum region is realized by
the fermion being collinear to the fragmenting gluon, obtained through the action of TA. Therefore we
have:

Ŵ µν , [1]
g (ε; z,τ,kT ) = TA

[
Ŵ µν , [1]

g (ε; z,τ,kT )
]
+power suppressed

corrections , (3.3)

where the TA approximator gives:

TA

[
Ŵ µν , [1]

g (ε; z,τ,kT )
]
= ∑

f

∫ dk+

k+
⋆Ŵ µν , [0]

f (k+, Q)Γ
[1]
g/q

(
ε; k+/k′+, kT , τ

)
=

= ∑
f

∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)Γ

[1]
g/q (ε; ρ, kT , τ) , (3.4)

where, as discussed in Section 2.4.1, the collinear momentum fractions are defined as z = k+/q+ and
ρ = k+/k′+. Moreover, ⋆W µν , [0]

f is the partonic tensor at LO, computed in Eq. (C.6), but considered
without its (trivial) dependence on thrust, as the whole τ-content is included into the function Γg/q.
This is the 1-loop gluon-from-quark generalized fragmentation jet function (GFJF)1, defined as:

Γ
[1]
g/q (ε; z, kT , τ) =

∫ dk−

(2π)4−2ε

TrC

NC

TrD

4


γ
+


δ

(
τ− z

1− z
k2

T

Q2

)
=

=
αS

4π
2CFSε

Γ(1− ε)

π1−ε

µ2ε

k2
T

θ(1− z)
1+(1− z)2− εz2

z2 δ

(
τ− z

1− z
k2

T

Q2

)
. (3.5)

1In the literature [45, 17], the GFJFs are usually indicated by G . In this thesis I will be consistent with the nomenclature
introduced in Section 3.3. Furthermore, in analogy to TMD FFs the GFJFs are usually defined with a normalization factor
of 1/z, which here is not considered.
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3.3 A benchmark study: the fragmenting gluon case

Notice that this definition coincides with the transverse momentum space expression of the unsub-
tracted collinear parts, presented in Eq. (1.15), properly projected onto the relevant term of the Clifford
algebra basis and at leading twist (see Eq. (1.20), appropriately modified to be suitable for gluons).
Differently from the objects defined in Chapter 1, in Eq. (3.5) there is, in addition, the explicit thrust-
dependence. Without the condition that fixes the thrust, Eq. (3.5) would be extactly the definition of
the gluon-from-quark TMD FF in momentum space (a part from a normalization factor 1/z), as can
be verified by comparing this expression with Eq. (A.39). However, in transverse momentum space is
(paradoxically) difficult to capture the size of the overlapping between the collinear momentum region
covered by the partonic tensor and the TMD FFs. In the following, I will investigate this issue in the
Fourier conjugate space of k⃗T , where TMDs are properly defined. In fact, according to discussion in
Section 3.2, the action of TA gives always a TMD-relevant term.

The delta function in Eq. (3.5) fixes the relation between τ and kT . In particular, as already noticed
in Section 2.6, the 2-jet limit τ → 0 corresponds to the power counting region kT ≪ Q. This bond
breaks down when we Fourier transform Γg/q, since this operation inevitably stretches the transverse
momentum beyond the power counting region. As a consequence, the result of the F.T. will also
include contributions that are outside the 2-jet region. Naively, we may expect that in bT -space the
2-jet limit corresponds to the large-bT region. In the following, this will be verified explicitly. The
Fourier transform gives:

Γ̃
[1]
g/q (ε; z, bT , τ) =

=
αS

4π
2CFSε

(
µ

Q

)2ε 1+(1− z)2− εz2

z2

(
1− z

z

)−ε

θ(1− z) τ
−1−ε

0F1

(
1− ε;−τ

1− z
z

b2

4

)
.

(3.6)

where b = bT Q and the hypergeometric function can also be written as:

0F1

(
1− ε;−τ

1− z
z

b2

4

)
= Γ(1− ε)

(
b
2

√
τ

1− z
z

)ε

J−ε

(
b

√
τ

1− z
z

)
(3.7)

Now, we may be tempted to expand the hypergeometric function in powers of τ in Eq. (3.6) and
assume the lowest order in τ provides a good description of the 2-jet region. However, this also
implies that b << 1, which naively does not correspond to the power counting region of small kT . This
confirms that in the Fourier conjugate space, the 2-jet limit is much less trivial than in the transverse
momentum space. In fact, a proper treatment of this issue involves dealing with the ε-expansion of
Eq. (3.6) in terms of τ-distributions. In order to accomplish this, we will make use of a rather simple
trick, that can always be exploited in presence of functions of some variable x that varies in the range
[0,1], divergent at most as simple poles when x approaches 0. In fact, if f (x) is a function that behaves
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Fig. 3.1 The term τ−1−ε
0F1

(
1− ε;−τ

1−z
z

b2

4

)
in Eq. (3.6), (solid, blue line) is compared with its

small ε-expansion (orange, dashed line) given by Eq. (3.8). These lines are obtained by integrating
the r.h.s and l.h.s of Eq. (3.9) with a test function chosen as T (τ) = e−τ .

at most as ∼ 1/x when x→ 0, then we can recast it as:

f (x) = δ (x)
∫ 1

0
dα f (α)+( f (x))+ (3.8)

With this technique, we can reorganize the dependence on τ in Eq. (3.6) and disentangle it from the
dependence on b when τ = 0. After this operation we can then safely perform the ε-expansion.

τ
−1−ε

0F1

(
1− ε;−τ

1− z
z

b2

4

)
=

=−1
ε

1F2(−ε; 1− ε,1− ε;−1− z
z

b2

4
)δ (τ)+

(
τ
−1−ε

0F1

(
1− ε;−τ

1− z
z

b2

4

))
+

=

= δ (τ)

(
−1

ε
− 1− z

z
b2

4 2F3

(
1,1; 2,2,2;−1− z

z
b2

4

))
+

J0

(
b
√

τ
1−z

z

)
τ


+

+O (ε) (3.9)

where Re(ε)< 0 is required for convergence. We have pushed the expansion up to O(ε0) since the
remaining ε-dependent terms in Eq. (3.6) do not present any pole in ε .

Now we are ready to consider the large-bT limit, in order to bring the result back to the 2-jet
approximation. Let’s define for simplicity a = b2

4
1−z

z . Then, since z in the collinear region cannot be
too close to 1 (large values of z, z→ 1, can only be reached in the soft approximation), the limit a→∞

will correspond to the asymptotic behavior for large values of b. Finding the asymptotic behavior of
the term multiplying the δ (τ) in the last line of Eq. (3.9) is quite easy. In fact we have:

a 2F3 (1,1; 2,2,2;−a) =

= log
(
ae2γE

)
+

1
a3/4

1√
π

cos
(

2
√

a+
π

4

)
+O

(
1

a5/4 ×
oscillating
function

)
. (3.10)
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3.3 A benchmark study: the fragmenting gluon case

On the other hand, a proper estimation of the asymptotic behavior of the plus distribution in Eq. (3.9)
is much less trivial. Clearly, the Bessel function J0 behaves as ∼ a−1/2 for large-a. However, such a
rough estimation compromises the τ dependence, which becomes ∼ τ−5/4, not integrable anymore
for any test function T (τ). Such an operation should therefore be performed more carefully. With the
help of a test function T (τ), the following asymptotic series can be obtained by integrating N times
by parts:

∫ 1

0
dτ T (τ)

(
J0
(
2
√

aτ
)

τ

)
+

= SN(
√

a)+RN(
√

a). (3.11)

where we have introduced:

SN(
√

a) =
N−1

∑
j=0

(−1) j J j+1(2
√

a)
a( j+1)/2

d j

dτ j

(
T (τ)−T (0)

τ

)∣∣∣∣
τ=1

; (3.12)

RN(
√

a) = (−1)Na−N/2
∫ 1

0
dτ

dN

dτN

(
T (τ)−T (0)

τ

)
τ

N/2JN(2
√

aτ). (3.13)

The series SN→∞ diverges for any value of a, however its partial sums (for finite N) can be used to
compute the integral of Eq. (3.11) to any desired accuracy. In fact, RN is of order a−(N+1)/2−1/4

and can be made small at will. Furthermore, the derivative of the test function in Eq. (3.12) can be
rewritten as:

d j

dτ j

(
T (τ)−T (0)

τ

)
=

(−1) j j!
τ j

(
T (τ)−T (0)

τ
+

j

∑
k=1

(−1)k

k!
T [ j](τ)

τ1−k

)
. (3.14)

Hence, we can recast SN in the following form:

SN(
√

a) =
N−1

∑
j=0

j!
J j+1(2

√
a)

a( j+1)/2

[
−T (0)+

j

∑
k=0

(−1)k

k!
T [ j](1)
τ1−k

]
, (3.15)

which at level of distribution becomes:(
J0
(
2
√

aτ
)

τ

)
+

=
N−1

∑
j=0

j!
J j+1(2

√
a)

a( j+1)/2

[
−δ (τ)+

j

∑
k=0

1
k!

δ
[k](1− τ)

]
+O

(
a−

(3+2N)
4

)
, (3.16)

where δ [k](1− τ) is the k-th distributional derivative of δ (1− τ), which, setting τ = 1, produces
(boundary) terms that are not contributing to the 2-jet limit and hence that will be thrown away.
Notice that the integration of each side of Eq. (3.16) gives zero as required. Now, we have a correct
asymptotic expansion of the plus distribution appearing in the last line of Eq. (3.9). In the 2-jet

73



Kinematics regions in a 2-jet topology

0 20 40 60 80 100

-0.05

0.00

0.05

a

Eq.(3.17) a-asymptotic

Eq.(3.17) - lhs

Eq.(3.17) - rhs

Fig. 3.2 The distribution
(

J0(2
√

aτ)
τ

)
+

in Eq. (3.16), (solid, blue line) is compared with its large

b-expansion (orange, dashed line) as obtained in Eq. (3.17). These lines are obtained by integrating
with a test function chosen as T (τ) = e−τ .

approximation, its crudest estimation is given by:(
J0
(
2
√

aτ
)

τ

)
+

=−δ (τ)
J1(2
√

a)√
a

+O

(
1
a
×Bessel

function

)
= δ (τ)

1
a3/4

1√
π

cos
(

2
√

a+
π

4

)
+O

(
1

a5/4 ×
oscillating
function

)
(3.17)

Notice that this result cancels exactly the first correction to the logarithm in Eq. (3.10). This does not
happen by chance; it can be verified at any order O

(
a−k/4

)
, for k = 3, . . . ,2N, for any N. Finally, the

ε-expansion in the 2-jet limit for the l.h.s. of Eq. (3.9) is given by:

τ
−1−ε

0F1

(
1− ε;−τ

1− z
z

b2

4

)
2−jet
= δ (τ)

(
−1

ε
−2log

(
b
c1

)
− log

(
1− z

z

))
+

+O(ε)+O
(

b−
3+2N

2

)
, ∀ N = 0,1, . . . (3.18)

where c1 = 2e−γE . Inserting this result in Eq. (3.6), we can write the large-b asymptotic behavior
of Γ̃g/q (in the following expressed with the label “ASY"), which has to be considered as its 2-jet
approximation. We have:

Γ̃
[1],ASY
g/q (ε; z, bT , τ) = δ (τ)zD̃[1]

g/q (ε; z, bT )+O
(

b−
3+2N

2

)
, ∀ N = 0,1, . . . . (3.19)

where D̃g/q[1] the 1-loop gluon-from-quark TMD FF in bT -space as defined in Eq. (A.42). Notice
how the whole dependence on the thrust has been washed away in the 2-jet approximation. Finally:

˜̂W µν , [1]

g (ε; z,τ,bT ) = ∑
f

∫ dρ

ρ
∑

f

∫ dρ

ρ
Ŵ µν , [0]

f (z/ρ, Q, τ)
(

ρ D̃[1]
g/q (ε; z, bT )

)
+power suppressed

corrections .

(3.20)
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Fig. 3.3 The gluon-from-quark GFJF in Eq. (3.6), (solid, blue line) is compared to its 2-jet limit
(orange, dashed line) in the l.h.s. of Eq. (3.19). The plotted lines are obtained by integrating with a
test function chosen as T (τ) = e−τ .

Notice that the δ (τ) in Eq. (3.19) recreates the LO partonic tensor as defined in Eq. (C.6). The power
suppresed terms involve both the errors associated to the factorization procedure of Eq. (3.3), and also
the errors associated to the 2-jet limit of Eq. (3.19).

Eq. (3.20) is a crucial result. In the 2-jet limit, the 1-loop contribution of the fragmenting gluon
turns out to be simply the gluon-from-quark TMD FF, plus a remnant which is power suppressed.
Therefore, in bT -space, the overlapping with the contribution of the TMD FFs is self-evident. In fact,
the subtraction mechanism described in Section 2.4.1 simply returns the power suppressed terms of
Eq. (3.19). This means that the subtracted partonic tensor, which describes the “core" of the process,
is power suppressed in the 2-jet limit, recovering the same result obtained withing the modified
formalism of Section 2.6.1.

Most importantly, the result of Eq. (3.19) could have been obtained much more easily by neglecting
the condition on thrust from the very beginning, already in the transverse momentum space, Eq. (3.5).
This approximation is indeed the realization of assumption H.1. In fact, neglecting the relation
between collinear transverse momentum and thrust corresponds to the kinematic configuration in
which the detected hadron does not modifyvthe topology of the final statevand, ultimately, the
measured value of T . This circumstance happens any time the detected hadron does not have a
transverse momentum large enough to cause a significant spread of the jet to which it belongs to. The
jet could well be wide, but not due to the direction of the detected hadron.

When the detected hadron causes the jet spreading, then the whole final state is inevitably far from
the ideal pencil-like configuration, making the value of the thrust to decrease, as shown pictorially
in Fig. 3.4. If this is the case, then the relation between kT and τ in Eq. (3.5) cannot be neglected
anymore. Moreover, the large-bT limit is not a faithful representation of this kinematics configuration,
as the thrust cannot reach the ideal limit τ = 0 because of the size of kT , large enough to forbid a
pencil-like final state. In this case, the final result in bT -space is given by the Fourier transform of the
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Kinematics regions in a 2-jet topology

(a) (b)

Fig. 3.4 Pictorial representation of 2-jet configurations in which the assumption H.1 holds true (a)
and in which instead it is not valid (b). In the case (a) the detected hadron is rather close to the thrust
axis n⃗ and hence it does not affect the topology of the final state. In the case (b) the detected hadron
causes a significant spread of the jet which affects the final state configuration, and ultimately the
measured value of T .

gluon-from-quark GFJF of Eq. (3.6). Despite the differences with the case that lead to Eq. (3.19), the
conclusions are the same, since the subtraction mechanism has to be modified in order to be adapted to
this different kinematics configuration. In fact, the procedure discussed in Section 2.4.1 was devised
assuming that H.1 holds true. However, the modification is straightforward, as it is enough to replace
the TMD FFs with the GFJFs in the subtraction term of Eqs. (2.32) and (2.33), and hence also in the
factorization theorem in Eq. (2.26). In this case the final cross section is a convolution between a fully
perturbative partonic cross section and a generalized fragmentation jet function. I will consider this
different factorization theorem more in detail later on in this Chapter. For the moment being, it is
sufficient to notice that when this different subtraction procedure is applied to Eq. (3.6), the result is
trivially zero.

Therefore, also when H.1 is not satisfied, the detected hadron is not generated by the fragmentation
of a gluon in the 2-jet case.

3.4 Backward Radiation

In a 2-jet topology, the detected hadron is generated by the fragmentation of a fermion, which will
be assumed to be a quark of flavor f . The fragmentation of an antiquark is totally analogous. In
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3.4 Backward Radiation

this section I will consider the contribution of the radiation emitted in the direction opposite to the
fragmenting quark, which will be denoted as backward radiation. At 1-loop order, we have to consider
the two Feynman diagrams of Fig. 2.7, which lead to the squared amplitudes presented in Eqs. (2.65)
and (2.66). If the gluon is emitted in the SB-hemisphere, then there are two leading momentum
regions. The first is associated to the configuration in which the gluon is collinear to the antiquark and
is obtained through the action of the approximator TB. The other regards the emission of a soft gluon,
and it is given by applying the approximator T−S . These two momentum regions overlap, hence we
have to remove the double counting of the same contributions. The overlapping region is associated
to a gluon which can be considered soft-collinear: it has a very small energy but also a large (and,
in this case, negative) rapidity. Such contribution is obtained by the combination of approximators
TBTS ≡ TSTB. Notice that the label “−" is redundant in such combination, as the action of TB already
encodes the information about the selection of the hemisphere.

All these approximators act on the squared matrix elements as well as on the integration of the
phase space, as defined in the previous Section. In particular, in a backward approximation, there is
no transverse momentum flowing into the A-subgraph, and hence k⃗′T = 0. This confirms that all the
contributions associated to the backward radiation are TMD-irrelevant.

In conclusion, the 1-loop contribution of the backward radiation to the partonic tensor can be
written as:

Ŵ µν , [1]
f ,backward (ε; z,τ,kT ) =

(
T−S −TSTB +TB

)[
Ŵ µν , [1]

f (ε; z,τ,kT )
]
+power suppressed

corrections . (3.21)

In the following, the three contributions involved in the previous expression will be considered
separately.

Soft approximation
The action of T−S leads to the following approximation:

T−S
[
Ŵ µν , [1]

f (ε; z,τ,kT )
]
=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)S

[1]
− (ε;τ) δ

(⃗
kT

)
, (3.22)

where I used the same conventions adopted in the previous section. In the previous expression, I have
introduced the generalized soft thrust function S. Its definition is obtained by integrating (instead of
Fourier transforming) the 2-h soft factor, defined as in Eq. (1.1), with the further explicit dependence
on thrust, implemented as for the usual soft thrust function, defined as in Eq. (D.6). In practice, it is
defined modifying the usual soft thrust function by introducing the rapidity divergence regulator. In
the case of the Collins factorization formalism, this is achieved by tilting the two Wilson lines off
the light-cone, see Appendix A. Therefore, besides the dependence on thrust, S depends also on the
rapidity cut-offs.

The label “−" associated to the generalized soft thrust function in Eq. (3.22) reminds that only the
contribution associated to the hemisphere SB has to be taken into account. This is realized by imposing
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Kinematics regions in a 2-jet topology

that the rapidity of the backward radiations cannot be positive. At 1-loop order, it is sufficient to set
l− > l+, where l is the momentum of the radiated soft gluon. Therefore, we have:

S
[1]
− (ε; τ, y1, y2) =

=
∫ dDl

(2π)D θ
(
l−− l+

)
δ

(
τ− l+

q+

)


+h.c.


=

=
αS

4π
4CF Sε

(
µ

Q

)2ε

τ
−1−2ε

∫ 0

−∞

dy e2εy 1+ e−2(y1−y2)(
1− e−2(y1−y)

)(
1− e2(y2−y)

) +h.c., (3.23)

where in the last step we made a change of variables in order to expose the range of the rapidity of the
gluon y = 1

2 log
(

l+
l−

)
, which is negative as required for backward radiation. The integration gives:

∫ 0

−∞

dy e2εy 1+ e−2(y1−y2)(
1− e−2(y1−y)

)(
1− e2(y2−y)

) = 1
2

1+ e−2(y1−y2)

1− e−2(y1−y2)

1
1−2ε

×
{
− e−y2

[
2F1
(
1, 1+2ε; 2+2ε; e−y2

)
− 2F1

(
1, 1+2ε; 2+2ε;−e−y2

)]
+

+ e−y1
[

2F1
(
1, 1+2ε; 2+2ε; e−y1

)
− 2F1

(
1, 1+2ε; 2+2ε;−e−y1

)]}
=

=
1
2

(
1
ε
+
(
−e2y2

)ε
Γ(−ε)Γ(1+ ε)+O

(
e−2y1 , e2y2 , e−2(y1−y2)

))
. (3.24)

Inserting this result in Eq. (3.23) and neglecting the errors due to the vanishing rapidity cut-offs, we
obtain:

S
[1]
− (ε; τ, y2) =

αS

4π
2CF Sε

(
µ

Q

)2ε

τ
−1−2ε

(
1
ε
+
(
−e2y2

)ε
Γ(−ε)Γ(1+ ε)+h.c.

)
. (3.25)

Notice that whole dependence on the rapidity cut-off y1 is suppressed in the final result. Therefore, I
dropped it from the l.h.s of the previous equation. This is a general feature: only the dependence on
the rapidity cut-off relevant for the considered hemisphere survives. In fact, the analogous contribution
of the hemisphere SA to the generalized soft thrust function is obtained from Eq. (3.25) by replacing2

y2 with −y1:

S+ (ε; τ, y1) = S− (ε; τ,−y1) (3.26)

2Notice that this is the same replacement derived in Section 2.5 in studying the behavior of the TMDs under a Z-axis
reflection.
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3.4 Backward Radiation

There is a straightforward factorization theorem that relates the contributions of the two hemispheres
to the total generalized soft thrust function:

S(ε; τ, y1− y2) = S+ (ε; τ, y1)S− (ε; τ, y2) . (3.27)

Finally, it is interesting to point out that the result of Eq. (3.25) can be equivalently written as:

S
[1]
− (ε; τ, y2) = S[1]− (ε; τ)+

αS

4π
2CF Sε

(
µ

Q

)2ε

τ
−1−2ε

Γ(−ε)Γ(1+ ε)
((
−e2y2

)ε
+h.c.

)
, (3.28)

where S− ≡ 1
2 S is the backward radiation contribution to the usual 1-loop soft thrust function. If we

had removed the rapidity cut-offs from the very beginning in the definition of the generalized soft
thrust function, Eq. (3.23), this would have been the whole final result. However, retaining y1 and
y2 in the calculation leads to an extra term depending on the leading cut-off of the hemisphere, in
this case y2. Such extra term will have to cancel out when we will subtract the overlapping with the
collinear contribution.

Soft-collinear approximation (overlapping)
The action of TSTB produces the following approximation:

TSTB

[
Ŵ µν , [1]

f (ε; z,τ,kT )
]
=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)Y

[1]
− (ε;τ) δ

(⃗
kT

)
. (3.29)

In this expression I have introduced the soft-collinear thrust functions Y±. In particular, the contri-
bution associated to the hemisphere SB is involved in Eq. (3.29). Differently from S, this functions
does not have a counterpart among the usual thrust functions reviewed in Appendix D. It is defined as
the subtraction term of the TMDs3, Eq. (1.18), integrated (instead of Fourier transformed) over k⃗T ,
and modified to include the explicit dependence on the thrust, whose value is soft-approximated as
in Eq. (D.5). In practice, Y± are defined similarly to S, but tilting only the Wilson line pointing in
the reference direction indicated by the collinear approximator. Therefore, the soft-collinear thrust
functions acquire a dependence on the rapidity cut-off associated to the tilted Wilson line. At 1-loop

3The TMDs are intended defined in the factorization definition, Eq. (1.21).
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order and for the backward radiation contribution we have:

Y
[1]
− (ε; τ, y2) =

=
∫ dDl

(2π)D δ

(
τ− l+

q+

)


+h.c.


=

=
αS

4π
4CF Sε

(
µ

Q

)2ε

τ
−1−2ε

∫ +∞

−∞

dy e2εy 1(
1− e2(y2−y)

) +h.c. (3.30)

Notice that the action of TB makes the Heaviside theta that selects the (-)-hemisphere redundant,
as TBθ(l−− l+) = θ(l−). However this condition is already encoded into the requirement that the
emitted gluon is on-shell at the final state cut. As a consequence, differently from Eq. (3.23), the
integration on the rapidity of the gluon is unbounded from below. The integral in Eq. (3.30) has the
following solution:∫ +∞

−∞

dy e2εy 1(
1− e2(y2−y)

) = 1
2
(
e2y2
)ε
[Be2y2 (−ε, 0)−Be−2y2 (1+ ε, 0)] =

=
1
2
(
−e2y2

)ε
Γ(−ε)Γ(1− ε)+O

(
e2y2
)
, (3.31)

where B is the incomplete Beta function. Inserting this result into Eq. (3.30) we obtain:

Y
[1]
− (ε; τ, y2) =

αS

4π
2CF Sε

(
µ

Q

)2ε

τ
−1−2ε

Γ(−ε)Γ(1+ ε)
((
−e2y2

)ε
+h.c.

)
. (3.32)

As for the soft case, the analogous contribution in the opposite hemisphere, resulting from the action
of TSTA can be easily obtained from Eq. (3.32) by replacing y2 by −y1:

Y+ (ε; τ, y1) = Y− (ε; τ,−y1) (3.33)

Notice that if we had removed the rapidity cut-off from the very beginning, already in the definition of
Y in Eq. (3.30), then the integration over the rapidity of the emitted gluon would have been scaleless
and hence vanishing in full dimensional regularization. This is the reason for which the soft-collinear
thrust functions do not have a counterpart among the thrust-dependent functions usually encountered
in the factorization of e+e− annihilation processes.

In this case, the fact that r.h.s of Eq. (3.32) is non vanishing is crucial for the success of the
subtraction mechanism. In fact, the result found for Y− is exactly equal to the extra term, rapidity
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3.4 Backward Radiation

cut-off dependent, obtained in the calculation of S−, Eq. (3.28). Therefore:

S
[1]
− (ε; τ, y2)−Y

[1]
− (ε; τ, y2) = S[1]− (ε; τ) . (3.34)

In other words, the subtracted soft contribution associated to the backward emission, obtained through
the action of

(
T−S −TSTB

)
, is totally independent of the rapidity cut-off y2. Therefore, we can derive

the following factorization theorems, which generalize Eq. (3.34), as well as the analogous equation
holding for the SA-hemisphere, to all orders:

S+ (ε; τ) =
S+ (ε; τ, y1)

Y+ (ε; τ, y1)
; (3.35a)

S− (ε; τ) =
S− (ε; τ, y2)

Y− (ε; τ, y2)
. (3.35b)

In conclusion, this factorization theorems, together with Eq. (3.27), lead to:

S (ε; τ) =
S+ (ε; τ, y1)

Y+ (ε; τ, y1)

S− (ε; τ, y2)

Y− (ε; τ, y2)
. (3.36)

which encodes the relations between the usual soft thrust function and the soft and soft-collinear
thrust functions defined in this Section.

Collinear approximation
Finally, the effect of the action of the TB approximator gives:

TB

[
Ŵ µν , [1]

f (ε; z,τ,kT )
]
=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)J[1] (ε;τ) δ

(⃗
kT

)
. (3.37)

where J is the usual jet thrust function at 1 loop4, defined in Eq. D.12. In this case, we do not have
any rapidity cut-off, since in (unsubtracted) collinear parts the Wilson lines are defined along the
light-cone.

Final result for backward radiation
Combining the results above and inserting them into Eq. (3.21), we can write the final expression

for the contribution of the backward radiation to the partonic tensor. In transverse momentum space

4In principle, in the pure Collins factorization formalism, masses cannot be neglected in the collinear contributions.
However, since in this case we are dealing with rather low scales (Q∼ 10 GeV for the BELLE experiment) that prevent the
presence of heavy quarks, we will put all masses to zero
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we have:

Ŵ µν , [1]
f ,backward (ε; z,τ,kT ) =

=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)

[
S[1]− (ε; τ)+ J[1] (ε;τ)

]
δ

(⃗
kT

)
+power suppressed

corrections , (3.38)

where I used Eq. (3.34) to combine soft and soft-collinear contributions. The power suppressed terms
contains both the errors due to the approximations introduced by the factorization procedure and also
the terms neglected in the limit of large rapidity cut-off. Since the dependence on k⃗T is trivial, in
bT -space we have simply:

˜̂W µν , [1]

f ,backward (ε; z,τ,bT ) =

=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)

[
S[1]− (ε; τ)+ J[1] (ε;τ)

]
+power suppressed

corrections . (3.39)

3.5 Region 1: TMD factorization

The contributions associated to the radiation emitted in the same hemisphere of the detected hadron
are of course the most interesting. They encode the whole information on the TMD effects, hence they
are the keystone for exploring the rich kinematic structure underlying the process we are investigating.
The leading momentum regions are the counterpart of those considered in the previous section,
properly modified in order to describe the emission in the SA hemisphere. Therefore, when the emitted
gluon is soft, the partonic tensor is well approximated by the action of T+

S , while, when it is collinear
to the fragmenting quark, the approximation obtained through TA is faithful. Moreover, there is the
overlapping region between these two configurations, where the gluon is soft-collinear. In this case, it
has a very low energy but also a large (and positive) rapidity and the corresponding contribution is
well approximated by the action of TSTA ≡ TATS approximator. Therefore, the 1-loop contribution to
the partonic tensor of the radiation emitted into the SA-hemisphere (forward) can be written as:

Ŵ µν , [1]
f , forward (ε; z,τ,kT ) =

(
T+

S −TSTA +TA
)[

Ŵ µν , [1]
f (ε; z,τ,kT )

]
+power suppressed

corrections . (3.40)

The most important difference with respect to the cases discussed in Section 3.4 is in the role
that each of these contributions plays in the generation of significant TMD effects. In other words,
following the nomenclature introduced in Section 3.2, not all these three kinematics configurations
may be TMD relevant. Indeed, when the gluon is radiated collinearly to the fragmenting quark, it
contributes actively to the deflection of the detected hadron with respect to the thrust axis. Therefore,
as pointed out in Section 3.2, the action of TA produces a TMD-relevant term. For soft and soft-
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3.5 Region 1: TMD factorization

Fig. 3.5 Pictorial representation of leading momentum regions associated to the radiation in the SA

hemisphere in Region 1, where the assumption H.2 is false. If soft gluons are TMD-relevant, this
automatically extends to soft-collinear gluons, as collinear radiation is always TMD-relevant.

collinear gluons this is not as straightforward, first of all because, according to power counting, their
transverse momentum has a much smaller size than that of the collinear emission (see Appendix A).

In particular, we have founded the factorization theorem devised in Chapter 2 on the assump-
tion H.2 that the soft radiation did not affect the measured value of PT . The purpose of this section is to
derive a factorization theorem without this requirement, i.e. by considering the soft gluon contribution
as a TMD-relevant quantity. Notice that, if the soft contributions are TMD-relevant, automatically
also the overlapping soft-collinear momentum region must be considered TMD-relevant, as shown
pictorially in Fig. 3.5. In this case, the size of the transverse momentum of the detected hadron has to
be very small in order to be sensitive to soft radiation, which posses a very low transverse momentum
according to power counting rules. In other words, a sizeably large PT is the signal that soft gluons
are not contributing to TMD effects. As a consequence, the kinematic configuration discussed at the
end of Section 3.3, where the assumption H.1 is false, is automatically excluded as it requires larger
values of PT . Schematically, this can be expressed as:

H.2 false−→H.1 true. (3.41)

Of course, the previous argument can be reversed, leading to:

H.1 false−→H.2 true. (3.42)

Summarizing, these hypotheses cannot be false at the same time.
The kinematic region corresponding to these initial hypothesis ( H.2 false, H.1 true) will be

indicated as Region 1, following the same nomenclature introduced in Ref. [17]. Clearly, the final
factorization theorem derived for this region will be different from that presented in Eq. (2.26). In
fact, its structure will be much more similar to the standard TMD factorization theorems obtained for
2-h class cross sections presented in Section 1.4.1.
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Fig. 3.6 Pictorial representation of the effect of a TMD-relevant soft radiation. The final PT , measured
with respect to the thrust axis n⃗ , is the result of several deflections due to emission/absorption of
radiation. When the soft gluons (red) are TMD-relevant, they deflect the detected hadron affecting
its transverse momentum. This effect must be added to the analogous contributions of soft-collinear
gluons (orange) and collinear gluons (green).

Soft approximation
If the soft radiation is TMD-relevant, the action of T+

S gives a non-trivial dependence on k⃗T :

T+
S

[
Ŵ µν , [1]

f (ε; z,τ,kT )
]
=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)Σ

[1]
+ (ε;τ, kT ) , (3.43)

where I have introduced the soft thrust factor Σ. It is defined exactly as S̃2-h, presented in Sec-
tion 1.2.1, but with an explicit dependence on thrust implemented as in the usual soft thrust function,
through Eqs. (D.5). Therefore, Σ depends not only on the total soft transverse momentum and on the
rapidity cut-offs associated to the tilted Wilson lines, but also on τ . In Eq. (3.43) only the contribution
of the soft thrust factor to the SA hemisphere is involved. At 1-loop order it is defined in momentum
space as:

Σ
[1]
+ (ε;τ, kT , y1, y2) =

=
∫ dl+ dl−

(2π)D θ
(
l+− l−

)
δ

(
τ− l−

q−

)


+h.c.


=

=
αS

4π
2CF Sε

Γ(1− ε)

π1−ε
µ

2ε 1
k2

T

∫ +∞

0
dy

1+ e−2(y1−y2)(
1− e−2(y1−y)

)(
1− e2(y2−y)

)δ

(
τ− kT

Q
e−y
)
+h.c.

(3.44)

Notice how the Heaviside theta enforces the gluon to be emitted in the (+)-hemisphere. Moreover, in
analogy to the generalized soft thrust function S+ defined in Section 3.4, we should expect that only
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3.5 Region 1: TMD factorization

the rapidity cut-off relevant for the considered hemisphere (in this case y1) will contribute explicitly
to the final result.

The Fourier transform of the Eq. (3.44) can be written in the following form:

Σ̃
[1]
+ (ε;τ, bT , y1, y2) =

∫
d2−2ε⃗kT ei⃗kT ·⃗bT Σ

[1]
+ (ε;τ, kT , y1, y2) =

=
αS

4π
2CF Sε

(
µ

Q

)2ε

Γ(1− ε)
1+ e−2(y1−y2)

1− e−2(y1−y2)

(
b
c1

)ε

e−γE ε
τ
−1−ε×

×
(
Iε

(
τ b,e−2y1

)
− Iε

(
τ b,e−2y2

))
+h.c., (3.45)

where b = bT Q and where we have defined the integral:

Iε (a, r) =
∫ 1

0
dx

xε/2

x− r
J−ε

(
a√
x

)
(3.46)

The solution to this integral requires advanced mathematical tools and non-standard techniques.
Because of its importance, the procedure adopted for its solution is shown, step-by-step, in Appendix E.
Therefore, from Eqs. E.15 and (E.17), the integral appearing in Eq. (3.45) admit the following
solutions:

Iε(τ b, r1) =

(
τ b
2

)−ε 1
ε Γ(1− ε)

1F2

(
−ε;1− ε,1− ε;−τ2 b2

4

)
+

+

(
τ b
2

)ε

Γ(−ε)−2(−r1)
ε/2 K−ε

(
τ b√
−r1

)
+O(r1); (3.47a)

Iε

(
τ b,

1
r2

)
= O(r2), (3.47b)

where I set r1 = e−2y1 and r2 = e2y2 . As expected, the dependence on y2 vanishes in the limit y2→−∞

and the final result depends only on y1.
Inserting the Eqs. (3.47) into Eq. (3.45), we obtain the expression for the Fourier transform soft

thrust factor at 1-loop order:

Σ̃
[1]
+ (ε;τ, bT , y1) =

=
αS

4π
2CF Sε

(
µ

Q

)2ε
{

τ−1−2ε

ε
1F2

(
−ε;1− ε, 1− ε;−τ2 b2

4

)
+

+
1
τ

(
b
c1

)2ε

e−2γE ε
Γ(1− ε)Γ(−ε)−2τ

−1−ε
(
−e−2y1

)ε/2
K−ε

(
τb√
−r1

)
+

+O
(

e−2y1 , e2y2 , e−2(y1−y2)
)}

+h.c., (3.48)
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Fig. 3.7 The analytical behaviour of Σ̃
[1]
+ (ε;τ, bT , y1), (solid, blue line), is compared to its numerical

counterpart (orange, dashed line). These lines are obtained by integrating with a test function chosen
as T (τ) = e−τ .

where c1 = 2e−γE . The analogous contribution in the opposite hemisphere Σ̃− can be easily obtained
from Eq. (3.48) bt replacing y1 with −y2. This is a general property:

Σ̃− (ε;τ, bT , y2) = Σ̃+ (ε;τ, bT ,−y2) . (3.49)

Furthermore, a generalization of the factorization theorem in Eq. (3.27) holds for unintegrated
quantities:

Σ̃(ε;τ, bT , y1− y2) = Σ̃+ (ε;τ, bT , y1) Σ̃− (ε;τ, bT , y2) . (3.50)

In Eq. (3.48), only the first term presents the expected “soft" behavior for the thrust τ−1−2ε , i.e.
the same dependence shown by the usual soft thrust function at 1-loop order, Eq. (D.6). This will not
be of concern, as the extra terms will be canceled after the subtraction of the overlapping soft-collinear
contribution, similarly to what was done for the case of the backward radiation. For this reason, in the
following I will focus on the “pure soft" term, i.e. contribution in the first line of Eq. (3.48):

Σ̃
[1]
+;pure soft (ε;τ, bT ) =

αS

4π
4CF Sε

(
µ

Q

)2ε
τ−1−2ε

ε
1F2

(
−ε;1− ε, 1− ε;−τ2 b2

4

)
, (3.51)

where we also added its complex conjugate counterpart. Notice that without the hypergeometric
function 1F2, the soft thrust factor would be equal to the usual soft thrust function S+, restricted to the
SA hemisphere.

Following the same argument used for the benchmark case of the fragmenting gluon, since in
momentum space τ is proportional to the soft transverse momentum kT , then the 2-jet limit where
τ→ 0 corresponds to the power counting region where kT ≪Q. Therefore, after the Fourier transform,
the region of interest is at large-bT . Applying the trick of Eq. (3.8) we can write:
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Fig. 3.8 The “pure soft" thrust factor (solid, blue line), Eq. (3.51), is compared to its asymptotic
large-b behaviour (dashed, orange line), Eq. (3.53). These lines are obtained by integrating with a test
function chosen as T (τ) = e−τ .

τ−1−2ε

ε
1F2

(
−ε;1− ε, 1− ε;−τ2 b2

4

)
= δ (τ)

[
− 1

2ε2 2F3

(
−ε,−ε; 1− ε, 1− ε, 1− ε;−b2

4

)]
+

+

(
τ−1−2ε

ε
1F2

(
−ε;1− ε, 1− ε;−τ2 b2

4

))
+

=

= δ (τ)

[
− 1

2ε2 +
b2

8 3F4

(
1,1,1; 2,2,2,2;−b2

4

)]
+

+
1
ε

(
1
τ

)
+

−2
(

logτ

τ

)
+

+

(
τ

b2

4 2F3

(
1,1; 2,2,2;−τ2 b2

4

))
+

+O(ε) =

= δ (τ)

[
− 1

2ε2 + log2
(

b
c1

)]
+

1
ε

(
1
τ

)
+

+2 log
(

b
c1

)(
1
τ

)
+

+ terms suppressed
in the limit b→∞

+O(ε)

(3.52)

where in the second step we ε-expanded and in the last one we extracted the asymptotic behavior at
large-b. Finally:

Σ̃
[1],ASY
+;pure soft (ε;τ, bT ) =

αS

4π
4CF Sε

{
− 1

2ε2 δ (τ)+−1
ε

[
δ (τ) log

(
µ

Q

)
−
(

1
τ

)
+

]
+

+ log
(

bT µ

c1

)[
2
(

1
τ

)
+

+δ (τ)

(
log
(

bT µ

c1

)
−2log

(
µ

Q

))]}
. (3.53)

Soft-collinear approximation (overlapping)
As discussed at the beginning of this section, if the soft approximation gives a TMD-relevant

contribution the same must hold also for the soft-collinear momentum region. The result of the action
of TSTA gives:

TSTA

[
Ŵ µν , [1]

f (ε; z,τ,kT )
]
=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)ϒ

[1]
+ (ε;τ, kT ) , (3.54)
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where I have introduced the soft-collinear thrust factor ϒ±, whose SA-hemisphere contribution is
involved into Eq. (3.43). This object is defined in the same way of the subtraction term of the TMDs,
Eq. (1.21), but with in addition the dependence on thrust implemented as in Eq. (D.5). Therefore, ϒ±

depends on the total soft-collinear transverse momentum, on the rapidity cut-off associated to the
tilted Wilson line of its definition and also on the thrust. At 1-loop order, the forward hemisphere
contribution is then defined as:

ϒ
[1]
+ (ε;τ, kT , y1) =

=
∫ dl+ dl−

(2π)D δ

(
τ− l−

q−

)


+h.c.


=

=
αS

4π
2CF Sε

Γ(1− ε)

π1−ε
µ

2ε 1
k2

T

∫ +∞

−∞

dy
1

1− e−2(y1−y)
δ

(
τ− kT

Q
e−y
)
+h.c. (3.55)

Notice that, analogously to the case of backward radiation, in soft-collinear contributions the range of
the rapidity of the radiated particles is unconstrained. In fact, differently from Eq. (3.44), the rapidity
of the emitted gluon in Eq. (3.55) is unbounded from below. Its Fourier transform leads to:

ϒ̃
[1]
+ (ε; τ,bT y1) =

∫
d2−2ε⃗kT ei⃗kT ·⃗bT ϒ

[1]
+

(
ε; τ ,⃗kT y1

)
=

=
αS

4π
2CF Sε

(
µ

Q

)2ε

Γ(1− ε)

(
b
c1

)ε

e−εγE τ
−1−ε

∫
∞

0

xε/2

x− e−2y1
J−ε

(
τ b√

x

)
+h.c. (3.56)

The solution of the integral can be obtained through the same procedure used to solve the integration
in Eq. (3.46). The result can be found in Eq. (E.18) and it is given by:

∫
∞

0

xε/2

x− r1
J−ε

(
τ b√

x

)
=−2(−r1)

ε/2 K−ε

(
τ b√
−r1

)
+

(
τ b
2

)ε

Γ(−ε), (3.57)

where r1 = e−2y1 . This is an exact result, as there are no terms suppressed in the limit r1→ 0. Inserting
this result in Eq. (3.56) we obtain:

ϒ̃
[1]
+ (ε; τ,bT , y1) =

αS

4π
2CF Sε

(
µ

Q

)2ε
{

1
τ

(
b
c1

)2ε

e−2γE ε
Γ(1− ε)Γ(−ε)−

−2τ
−1−ε

Γ(1− ε)
(
−e−2y1

)ε/2
K−ε

(
τb√
−e−2y1

)}
+h.c. (3.58)

As anticipated above, the extra terms associated to an unexpected thrust dependence in Eq. (3.48) are
exactly canceled after subtraction of the soft-collinear found above. Therefore, only the “pure soft"
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term remains after elimination of the double counting:

Σ̃
[1]
+ (ε;τ, bT , y1)− ϒ̃

[1]
+ (ε; τ,bT , y1) = Σ̃

[1]
+;pure soft (ε;τ, bT , y1) . (3.59)

which is the analogous of Eq. (3.34). Such result, together with its counterpart in the opposite
hemisphere, can be generalized to all orders leading to the following factorization theorems:

Σ̃+;pure soft (ε;τ, bT ) =
Σ̃+ (ε;τ, bT , y1)

ϒ̃+ (ε; τ,bT , y1)
; (3.60a)

Σ̃−;pure soft (ε;τ, bT ) =
Σ̃− (ε;τ, bT , y2)

ϒ̃− (ε; τ,bT , y2)
. (3.60b)

Together with Eq. (3.50), these factorization theorems lead to:

Σ̃pure soft (ε;τ, bT ) =
Σ̃+ (ε;τ, bT , y1)

ϒ̃+ (ε; τ,bT , y1)

Σ̃− (ε;τ, bT , y2)

ϒ̃− (ε; τ,bT , y2)
. (3.61)

which is the counterpart of Eq. (3.36) for unintegrated quantities.

Finally, following the same procedure adopted so far, we have to study the large-bT behavior of
the soft collinear factor, as this is a faithful description of the 2-jet limit, provided that H.2 is false.
The large-b asymptotic of ϒ̃

[1]
+ can be obtained, once again, exploiting the trick of Eq. (3.8). Notice

that the two contributions in Eq. (3.58) are separately divergent as τ → 0, but their sum is integrable.
We have:

1
τ

(
b
c1

)2ε

e−2γE ε
Γ(1− ε)Γ(−ε)−2τ

−1−ε
Γ(1− ε)(−r1)

ε/2 K−ε

(
τb√
−r1

)
=

= δ (τ)
1
2

{
(−r1)

ε
Γ(1− ε)Γ(1+ ε)Γ(−ε)

[
Γ(−ε)

Γ(1− ε)2 1F2

(
−ε; 1− ε,1− ε;− b2

4r1

)
+

+

(
b
c1

)2ε

e−2εγE (−r1)
−ε G2,0

1,3

(
b2

4r1

∣∣∣∣∣ 1
0,0,−ε

)]
−

−
(

b
c1

)2ε

e−2εγE Γ(1− ε)Γ(−ε)

(
H−ε −2log

(
b
c1

)
+ logr1

)}
+

+

(
1
τ

(
b
c1

)2ε

e−2γE ε
Γ(1− ε)Γ(−ε)−2τ

−1−ε
Γ(1− ε)(−r1)

ε/2 K−ε

(
τb√
−r1

))
+

=

=
1

2ε2 δ (τ)+
1
ε

[
−
(

1
τ

)
+

+
1
2

log(−r1)δ (τ)

]
−2log

(
b
c1

) (
1
τ

)
+

−

−δ (τ)

[
log2

(
b
c1

)
− log

(
b
c1

)
log(−r1)

]
+ terms suppressed

in the limit b→∞
+O(ε) (3.62)
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Therefore, the contribution of soft-collinear gluons in a 2-jet configuration is obtained by inserting
this result into Eq. (3.58). We have:

ϒ̃
[1],ASY
+ (ε; τ,bT , y1) =

=
αS

4π
2CF Sε

{
1
ε2 δ (τ)+

1
ε

[
−2
(

1
τ

)
+

+δ (τ) log(e−2y1)+2δ (τ) log
(

µ

Q

)]
+

+2log
(

bT µ

c1

)[
−2
(

1
τ

)
+

+δ (τ)

(
log(e−2y1)− log

(
bT µ

c1

)
+2log

(
µ

Q

))]}
. (3.63)

Combining the result of Eq. (3.53) with Eq. (3.63) we can reconstruct the large-bT behavior of
the unsubtracted soft thrust factor:

Σ̃
[1],ASY
+ (ε;τ, bT , y1) = Σ̃

[1],ASY
+;pure soft (ε;τ, bT )+ ϒ̃

[1],ASY
+ (ε; τ,bT , y1) =

=−αS

4π
4CF

(
1
ε

y1 +2y1 log
(

bT µ

c1

))
δ (τ) = δ (τ) S̃[1],(0)2-h,+ (ε; bT , y1) , (3.64)

where S̃(0)2-h,+ is the contribution of the SA-hemisphere to the bare 2-h soft factor, as defined in
Eq. (1.6). From now on, it will be indicated as the5 (bare) forward soft factor. After adding the
proper counterterm Z+

S , the result of Eq. (3.64) can be directly compared with the 1-loop order of
S̃2-h presented in Eq. (A.11). This result will be crucial in devising a factorization theorem suitable
for Region 1. Moreover, thanks to the factorization theorems of Eqs. (3.50) and (3.61), Eq. (3.64) can
be generalized to all orders as:

Σ̃+ (ε;τ, bT , y1) 2-jet limit
∼ Σ̃

ASY
+ (ε;τ, bT , y1) = δ (τ)S̃(0)2-h,+ (ε; bT , y1) ; (3.65a)

Σ̃− (ε;τ, bT , y2) 2-jet limit
∼ Σ̃

ASY
− (ε;τ, bT , y2) = δ (τ)S̃(0)2-h,− (ε; bT , y2) , (3.65b)

where, by analogy, S̃2-h,− defines the backward soft factor. Furthermore, combining the theorems
above:

Σ̃(ε;τ, bT , y1− y2) 2-jet limit
∼ δ (τ)S̃(0)2-h (ε; bT , y1− y2) , (3.66)

where S̃2-h is the same soft factor appearing in 2-h cross sections, as showed in Section 1.4.1. In fact,
it is straightforward to show that S̃2-h is given by the product of the forward and the backward soft
factors, as shows the following factorization theorem:

S̃2-h(bT , µ, y1− y2) = S̃2-h,+ (ε; bT , µ, y1) S̃2-h,− (ε; bT , µ, y2) . (3.67)

5By writing explicitly “forward" or “backward" in the name of S̃2-h,+ the label “2-h" is redundant, as two hemispheres
can only be identified by two hadrons.
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3.5 Region 1: TMD factorization

Collinear approximation
The last contribution to the partonic tensor is associated to the radiation collinear to the frag-

menting quark, obtained through the action of TA. This is a TMD-relevant quantity by default. The
approximation gives:

TA

[
Ŵ µν , [1]

f (ε; z,τ,kT )
]
=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)Γ

[1]
q/q (ε; ρ, kT , τ) , (3.68)

where Γq/q is the quark-from-quark GFJF, which is diagonal in quark’s flavors. Analogously to
the gluon-from-quark GFJF presented in Section 3.3, Γq/q is defined in momentum space as the
unsubtracted collinear parts shown in Eq. (1.15), but in addition the explicit dependence on thrust is
implemented as in Eq. (D.17). At 1-loop order it is defined6 as:

Γ
[1]
q/q (ε; z, kT , τ) =

=
∫ dl−

(2π)D δ

(
τ− z

1− z
k2

T

Q2

)
TrC

NC

TrD

4
γ
+

 +h.c.+

=

=
αS

4π
2CF Sε

Γ(1− ε)

π1−ε
µ

2ε 1
k2

T

(
2

1− z
+(1− ε)

1− z
z

)
θ(1− z)δ

(
τ− z

1− z
k2

T

Q2

)
. (3.69)

Notice that without the delta that fixes the thrust, the previous expression would have coincided
with the unsubtracted quark-from-quark TMD FF in momentum space, see Eq. (A.51). Its Fourier
transform gives:

Γ̃
[1]
q/q (ε; z, bT , τ) =

=
∫

d2−2ε⃗kT ei⃗kT ·⃗bT Γ
[1]
q/q (ε; z, kT , τ) =

=
αS

4π
2CF Sε

(
µ

Q

)2ε

zε

(
2(1− z)−1−ε +(1− ε)

(1− z)1−ε

z

)
×

× τ
−1−ε

0F1

(
1− ε;−τ

1− z
z

b2

4

)
. (3.70)

The combination of τ−1−ε with the hypergeometric function 0F1 has already been computed in
Eq. (3.18). However, we derived this result for a function that was regular in z ∼ 1. Therefore,
we can use that solution only for computing the term proportional to (1− z)1−ε , but not for the
term proportional to (1− z)−1−ε . The combination (1− z)−1−ετ−1−ε

0F1 can be treated by using
a generalized version of the trick expressed in Eq. (3.8). However, the easiest way to obtain an
expansion in distributions of τ and z is to apply the usual trick of Eq. (3.8) to (1− z)−1−ε and τ−1−ε

6The definition is obtained by neglecting all the mass corrections, as in Eq. (3.37).
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separately:

zε (1− z)−1−ε
τ
−1−ε

0F1

(
1− ε;−τ

1− z
z

b2

4

)
=

=
1
ε2 δ (τ)δ (1− z)− 1

ε

[
δ (τ)

(
1

1− z

)
+

+δ (1− z)
(

1
τ

)
+

]
+

+δ (τ)

(
log(1− z)

1− z

)
+

−δ (τ)
logz
1− z

+δ (1− z)
(

logτ

τ

)
+

+

+

(
1

1− z

)
+

(
1
τ

)
+

J0

(√
τ

1− z
z

b

)
+O(ε). (3.71)

All the terms containing either δ (1−z) or δ (τ) are trivial, since the hypergeometric function evaluated
in τ = 0 and/or in z = 1 gives just one. The only non-trivial term is the last line of the previous
equation: (

1
1− z

)
+

(
1
τ

)
+

J0

(√
τ

1− z
z

b

)
. (3.72)

Next, we will make use of the following trick, valid for functions of a variable x that varies in the
range 0≤ x≤ 1, at most divergent as a simple pole at small values of x:(

1
x

)
+

f (x) = δ (x)
∫ 1

0
dα [ f (α)− f (0)]+

(
1
x

f (x)
)

+

. (3.73)

Proceeding in this way, we find:(
1

1− z

)
+

(
1
τ

)
+

J0

(√
τ

1− z
z

b

)
=

=

(
1

1− z

)
+

{
δ (τ)

[
−1− z

z
b2

4 2F3

(
1,1; 2,2,2;−1− z

z
b2

4

)]
+

(
1
τ

J0

(√
τ

1− z
z

b

))
+

}
.

(3.74)

The contribution multiplying δ (τ) can be treated similarly:(
1

1− z

)
+

[
−1− z

z
b2

4 2F3

(
1,1; 2,2,2;−1− z

z
b2

4

)]
=

= δ (1− z)

[
G3,0

1,3

(
b2

4

∣∣∣∣∣ 1
0,0,0

)
− π2

6
−2log2

(
b
c1

)]
+

(
−1

z
b2

4 2F3

(
1,1; 2,2,2;−1− z

z
b2

4

))
+

(3.75)

where G3,0
1,3 is a Meijer G-function. Since in Region 1 the hypothesis H.1 holds true (see Eq. (3.41)),

we have to determine the large-b asymptotic of Γ̃q/q. At large bT , the two terms in Eq. (3.75) behaves
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as:

G3,0
1,3

(
b2

4

∣∣∣∣∣ 1
0,0,0

)
− π2

6
−2log2

(
b
c1

)
=−π2

6
−2log2

(
b
c1

)
+ terms suppressed

in the limit b→∞
; (3.76a)(

−1
z

b2

4 2F3

(
1,1; 2,2,2;−1− z

z
b2

4

))
+

=

=−2log
(

b
c1

)(
1

1− z

)
+

−
(

log(1− z)
1− z

)
+

+
logz
1− z

+
π2

6
δ (1− z)+ terms suppressed

in the limit b→∞
.

(3.76b)

On the other hand, the contribution in the last line of Eq. (3.74) has to be computed carefully, as
it shows also a non-trivial dependence on τ besides that on z. A rather simple way to study such
contribution is to investigate its action on two test functions T (τ) and R(z). We have:

∫ 1

0
dzR(z)

(
1

1− z

)
+

∫ 1

0
dτT (τ)

(
1
τ

J0

(√
τ

1− z
z

b

))
+

=

=
∫ 1

0
dτ

T (τ)−T (0)
τ

{
R(1)

∫ 1

0

dz
1− z

[
J0

(√
τ

1− z
z

b

)]
+

+
∫ 1

0
dz

R(z)−R(1)
1− z

J0

(√
τ

1− z
z

b

)}
=

= R(1)
∫ 1

0
dτ

T (τ)−T (0)
τ

[
−2log

(
b
c1

)
− logτ

]
+ terms suppressed

in the limit b→∞
. (3.77)

Therefore, the difficult term in Eq. (3.74) can be approximated as:(
1

1− z

)
+

(
1
τ

J0

(√
τ

1− z
z

b

))
+

=

=−δ (1− z)
[

2log
(

b
c1

)(
1
τ

)
+

+

(
logτ

τ

)
+

]
+ terms suppressed

in the limit b→∞
. (3.78)

Combining together this result with Eqs. (3.76), we can finally write the large-b behavior of the
combination of distributions in Eq. (3.72):(

1
1− z

)
+

(
1
τ

)
+

J0

(√
τ

1− z
z

b

)
=

=−2log2
(

b
c1

)
δ (τ)δ (1− z)−2log

(
b
c1

)[
δ (τ)

(
1

1− z

)
+

+δ (1− z)
(

1
τ

)
+

]
−

−
[

δ (τ)

(
log(1− z)

1− z

)
+

−δ (τ)
logz
1− z

+δ (1− z)
(

logτ

τ

)
+

]
+ terms suppressed

in the limit b→∞
. (3.79)

Notice how the last line of the previous equation cancels exactly the terms in the third line of
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Fig. 3.9 The large-b behaviour of the term
( 1

1−z

)
+

( 1
τ

)
+

J0

(√
τ

1−z
z b
)

in Eq. (3.79) (solid, blue line),
is compared to its numerical counterpart (orange, dashed line). These lines are obtained by integrating
with two test functions, Tτ(τ) = e−τ and Tz(z) = e−(1−z).

Eq. (3.71). In fact:

zε (1− z)−1−ε
τ
−1−ε

0F1

(
1− ε;−τ

1− z
z

b2

4

)
=

=
1
ε2 δ (τ)δ (1− z)− 1

ε

[
δ (τ)

(
1

1− z

)
+

+δ (1− z)
(

1
τ

)
+

]
−

−2log2
(

b
c1

)
δ (τ)δ (1− z)−2log

(
b
c1

)[
δ (τ)

(
1

1− z

)
+

+δ (1− z)
(

1
τ

)
+

]
+

+ terms suppressed
in the limit b→∞

+O(ε). (3.80)

This result, together with Eq. (3.18), allows to determine the large-b asymptotic of Γ̃q/q:

Γ̃
[1],ASY
q/q (ε; z, bT , τ) =

=
1
z

Z[1]
q/q,coll. (ε; z)δ (τ)+

+
αS

4π
2CF Sε δ (1− z)

{
δ (τ)

[
2
ε2 +

1
ε

(
3
2
+4log

(
µ

Q

))]
+

2
ε

(
1
τ

)
+

}
+

+
αS

4π
2CF Sε

{
δ (τ)

[
2log

(
bT µ

c1

)(
2
(

1
1− z

)
+

+1− 1
z

)
−1+

1
z
−

−4δ (1− z) log
(

bT µ

c1

)(
log
(

bT µ

c1

)
−2log

(
µ

Q

))]
−4δ (1− z)

(
1
τ

)
+

log
(

bT µ

c1

)}
.

(3.81)

Notice that all the non-trivial z-dependence associated with the poles is encoded into the function
Zq/q,coll., which is the UV counterterm of the quark-from-quark collinear FF. This is not a coincidence,
but rather the 1-loop expression of a crucial factorization theorem.

94



3.5 Region 1: TMD factorization

In fact, in analogy to what was done with the soft momentum region, the “pure collinear"
radiation contribution is obtained after the subtraction of the overlapping terms in the soft-collinear
momentum region. Therefore, combining the result of Eqs. (3.81) and (3.63), we can write the
following expression for the subtracted collinear part:

Γ̃
[1],ASY
q/q (ε; τ, z, bT )−δ (1− z) ϒ̃

[1],ASY
+ (ε; τ,bT , y1) = δ (τ)zD̃[1],(0)

q/q (ε; z, bT , y1) , (3.82)

where D̃(0)
q/q is the bare quark-from-quark TMD FF in bT -space, presented in Eq. (A.56). It has both

its characteristic collinear divergence, encoded into Zq/q,coll., and also the divergences that have to UV-
renormalized by adding the counterterm Zq/q,TMD. By defining the subtracted quark-from-quark
GFJF as:

Γ̃
sub.
q/q (ε; z, kT , τ, y1) =

Γ̃q/q (ε; z, kT , τ)

ϒ̃+ (ε; τ,bT , y1)
(3.83)

which is totally analogous to the factorization definition of the TMDs introduced in Eq. (1.21), the
result of Eq. (3.82) can be generalized to all orders, leading to:

Γ̃
sub.
q/q (ε; z, kT , τ, y1) = 2-jet limit

∼ δ (τ)zD̃(0)
q/q (ε; z, bT , y1) (3.84)

This result, together with Eq. (3.66), will be crucial in developing a suitable factorization theorem for
Region 1.

Final result for forward radiation Combining all the results of this section and inserting them
into Eq. (3.40), we obtain the final expression for the contribution of the radiation emitted in the
SA-hemisphere to the partonic tensor. In bT -space we have:

˜̂W µν , [1]

f , forward (ε; z,τ,bT ) =

=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)

[
δ (1−ρ)

(
Σ
[1]
+ (ε;τ, kT )− ϒ̃

[1]
+ (ε; τ,bT , y1)

)
+ Γ̃

[1]
q/q (ε; τ, ρ, bT )

]
2-jet limit
∼

∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (τ)

[
δ (1−ρ) S̃[1],(0)2-h,+ (ε; bT , y1)+ρ D̃[1],(0)

q/q (ε; ρ, bT , y1)
]

(3.85)

Notice that the whole dependence on the rapidity cut-off y1 is washed out in the combination of
S̃2-h,+ and the TMD FF. Moreover, we could have obtain easily the same result by neglecting from
the very beginnin any relation between the thrust and the transverse momentum, in all the leading
momentum regions associated to the forward radiation. In fact, in Region 1 the detected hadron is so
close to the thrust axis that it cannot affect the final state topology by any means.
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3.5.1 Factorization theorem for Region 1

Now we have all the necessary ingredients to write the whole partonic tensor at 1-loop order. It is
the sum of the backward and the forward radiation expressed in Eqs. (3.38) and (3.85), respectively.
Furthermore, it must also include the contribution of the virtual gluon emission, which is given by the
1-loop vertex function in Eq. (C.15). In terms of kinematics approximators, this is the hard momentum
region, where the gluon is far off-shell. Therefore, it is well approximated by the action of TH :

˜̂W µν , [1]

f ,virtual (ε; z,τ,bT ) =
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)δ (τ)V [1](ε), (3.86)

where I used the fact that for virtual emissions, both the dependence on k⃗T and on the collinear
momentum fraction are trivial. Finally, the partonic tensor at 1-loop for Region 1 in bT -space is given
by:

˜̂W µν , [1]

f (ε; z,τ,bT ) =
˜̂W µν , [1]

f ,virtual (ε; z,τ,bT )+
˜̂W µν , [1]

f ,backward (ε; z,τ,bT )+
˜̂W µν , [1]

f , forward (ε; z,τ,bT ) =

= Hµν

T NC e2
f

∫ dρ

ρ
δ (1− z/ρ)

[
δ (1−ρ)δ (τ)V (ε)+δ (1−ρ)

[
J[1] (ε;τ)+S[1]− (ε; τ)

]
+

+δ (τ)
[
δ (1−ρ) S̃[1],(0)2-h,+ (ε; bT , y1)+ρ D̃[1],(0)

q/q (ε; ρ, bT , y1)
]]

=

= Hµν

T NC e2
f

[
δ (1− z)

(
δ (τ)V (ε)+ J[1] (ε;τ)+S[1]− (ε; τ)+δ (τ)S̃[1],(0)2-h,+ (ε; bT , y1)

)
+

+δ (τ)zD̃[1],(0)
q/q (ε; z, bT , y1)

]
, (3.87)

where we used the expression for the LO partonic tensor of Eq. (C.6). Notice that all the divergences
cancel each other, except for the characteristic collinear divergence of the TMD FF, which cannot be
dealt by pQCD. In fact, the explicit expression for the sum of all the contribution is:

˜̂W µν , [1]

f (ε; z,τ,bT )) = Hµν

T NC e2
f

[
1
z

Z[1]
q/q,coll. (ε; z)δ (τ)+

+
αS

4π
CF

{
δ (τ)

[
δ (1− z)

(
−9+

4π2

3
−4log2

(
bT µ

c1

)
−6log

(
µ

Q

)
+

+8log
(

bT µ

c1

)
log
(

µ

Q

)
−4log2

(
µ

Q

))
−8
(

1
1− z

)
+

log
(

bT µ

c1

)
+

+2
1− z

z

(
1−2log

(
bT µ

c1

))]
−δ (1− z)

(
3
(

1
τ

)
+

+4
(

logτ

τ

)
+

)}]
(3.88)
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Notice also that the previous expression is RG-invariant. Finally, it is important to stress that the
whole dependence on the collinear momentum fraction is encoded into the TMD FF. This result can be
easily generalized to all orders by reverting the prescriptions used to switch from the hadronic tensor
to the partonic tensor, illustrated in Section 2.4.1. Moreover, because of the divergence cancellation
showed in Eq. (3.88), we can drop the ε dependence from the various contributions appearing in the
final result and also the label “(0)" from the TMD and the forward soft factor. Therefore, the cross
section for e+e−→ hX in Region 1 factorizes as:

dσR1

dzh dP2
T dT

= σB πNC V
∫

dτS dτB J(τB)S−(τS)δ (τ− τS− τB)×

×
∫ d2⃗bT

(2π)2 ei P⃗T
zh
·⃗bT S̃2-h,+ (bT , ζ ) ∑

f
e2

f D̃h/ f (zh, bT , ζ ) . (3.89)

The rapidity cut-off has been recast into the variable ζ , defined as in Eq. (1.23). This factorized cross
section has been obtained by generalizing the 1-loop result. This is a potentially dangerous operation,
as new effects may rise at higher orders in perturbation theory. Region 1 is one of the cases where this
generalization has to be performed with special care. The reason is that the contribution of the soft
radiation is intrinsically asymmetric in this region, as the soft gluons emitted backward contribute only
to the thrust (but not to the transverse momentum of the detected hadron), while for the soft gluons
emitted forwardly the situation is exactly the opposite. If there are more than two gluons, they can
be emitted either in one hemispher or in the other. The asymmetry between these two configuration
produces new logarithmic terms due to the correlation between the emissions in different hemispheres.
Such terms are usually called Non-Global Logarithms (NGLs). The problem with NGLs is related to
their resummation, which involves non-perturbative effects. Their contribution can be included into
Eq. (3.89) as an extra factor, see for instance Refs. [49–52]. A correct treatment of NGLs is beyond
the purpose of this thesis and they will not be included in the final factorization theorems. In any
case, provided that a phenomenological analyses is performed at NLO-NLL accuracy, the formula
given in Eq. (3.89) can be considered sufficiently precise, as NGLs arise from NNLO corrections (and
beyond).

The same factorized cross section has been obtained within the framework of SCET in Ref. [17],
adopting a completely different approach. A similar factorization theorem has been addressed also in
Ref. [16].

The factorization theorem of Eq. (3.89) is profoundly different from that devised in Chapter 2.
The factorization theorem of Eq. (3.89) is profoundly different from that devised in Chapter 2. First
of all, the TMD FFs are not the only factors that encode non-perturbative effects. In fact, the forward
soft factor S̃2-h,+ has a non-trivial long-distance behavior as well. It can be written explicitly in terms
of its perturbative and non-perturbative contributions in analogy to the procedure adopted for the 2-h
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soft factor in Section 1.2.1. In fact, a CS-evolution equation for S̃2-h,+ can readily be written as:

∂

∂ log
√

ζ
S̃2-h,+ (bT , µ, ζ ) =−1

2
K̃ (bT , µ) . (3.90)

This is nothing else that the evolution equation with respect to y1 of the 2-h soft factor, Eq. (1.7a).
Notice that K̃ is the same Collins-Soper kernel appearing in the CS-evolution of the TMDs. Therefore,
by making use of the b⋆ prescription introduced in Chapter 1, the forward soft factor can be written as
a solution of Eq. (3.90):

S̃2-h,+ (bT , µ, ζ ) = e
1
4 log

(
ζ

Q2

)[∫
µ

µ0
dµ ′
µ ′ γK(αS(µ

′))−K̃(b⋆T ; µ0)
]√

MS(bT )e
1
4 log

(
ζ

Q2

)
gK(bT ), (3.91)

which must be compared to the corresponding expression obtained for S̃2-h in Eq. (1.14). In the
previous equation, the soft model of S̃2-h,+ is assumed to be insensitive to the hemisphere into which
the soft radiation is emitted. In fact, it depends only on bT , i.e. (simplifying) only on the transverse
momentum of the soft radiation. Therefore it is completely unaware of the plus and minus components,
which encode the selection of the emission direction. For this reason, in Eq. (3.91) we have simply
MS+ ≡

√
MS.

There is another crucial difference between the factorization theorems presented in Chapter 2
and those presented here, concerning the dependence on the rapidity cut-off. The cross section
for Region 1 is CS-invariant, and this has already been verified at partonic level, as pointed out at
the end of the previous Section. Indeed, the whole dependence on ζ disappear in the combination
S̃2-h,+ D̃h/ f (zh, bT , ζ ) of Eq. (3.89), even after generalizing to all orders,. This can be directly
checked by considering the solutions to the evolution equations for the forward soft factor and the
TMD FF, i.e. Eq. (3.91) and (1.26), respectively. We have:

S̃2-h,+ (bT , µ, ζ ) D̃h/ f (zh, bT , µ, ζ ) =
(
C̃ j/ f (b

⋆
T ; µb, ζb)⊗d j/h(µb)

)
(zh)×

× exp
{

1
4

K̃(b⋆T ; µb) log
Q2

ζb
+
∫

µ

µb

dµ ′

µ ′

[
γC(αS(µ

′), 1)− 1
4

γK(αS(µ
′)) log

Q2

µ ′2

]}
×

× (MC) j,h (zh, bT )
√

MS(bT )exp
{
−1

4
gK(bT ) logz2

h
Q2

M2
h
.

}
(3.92)

Despite this equation has been written for an unpolarized TMD FF, it is totally general and can be
applied to any TMD. Notice that the neat effect induced by S̃2-h,+ is a modification of the TMD
model, which is multiplied by a square root of MS. This is the same modification as that introduced in
2-h cross section in order to absorb the 2-h soft factor into the definition of the TMDs, see Eq. (1.37).
Such operation leads to the square root definition of the TMDs, reported in Eq. (1.33). However, in
this case the same trick cannot be applied, despite the final results look the same. In fact, naively,
one might expect that the square root definition of Eq. (1.33a) would correspond to the combination
appearing in the cross section corresponding to Region 1. This clearly cannot be possible, as the
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3.6 Region 2: collinear-TMD factorization

combination of Eq. (3.92) is CS-invariant, while the square root definitions obey to the CS-evolution
equations that regulate the behavior with respect to the rapidity cut-off yn. A direct comparison shows
that:

D̃sqrt
h/ f (zh, bT , µ, yn) = S̃2-h,+ (bT , µ, y1) D̃h/ f (zh, bT , µ, y1) exp

(
−yn

2
K̃(bT , µ

)
. (3.93)

Therefore, the square root definition and the combination of Eq. (3.92) coincide only if yn = 0.

In conclusion, Region 1 presents two main features which makes it profoundly different from the
factorization theorems of Chapter 2. From the point of view of the phenomenological analyses, the
TMD model Msqrt

D = MD×
√

MS as defined in the square root definition can easily be experimentally
accessed as a whole, but its two inner components cannot be disentangled. As for the 2-h cross
sections, there are in total three unknown non-perturbative functions, gK , MD and MS. The square root
definition is useful in that it effectively decreases the number of unknowns reducing them to Msqrt

D and
gK , as usually done in the standard TMD factorization theorems. Due to these analogies, I will refer
to the cross section for Region 1, presented in Eq. (3.89), as a TMD factorization theorem.

TMD and collinear-TMD factorizations do not differ only in their phenomenological applications.
They are different in the spirit. In fact, the rapidity cut-off is totally irrelevant in TMD factorization,
even when the thrust is measured. In this regard, notice that the kinematics argument of Eq. (2.37)
widely used to discuss the role of the rapidity cut-off in collinear-TMD factorization brakes down
when PT becomes too small, which is the main feature of Region 1. Therefore, TMD factorization can
play a leading role in the investigation of the role of soft physics, as all the interesting dependence on
the long-distances effects induced by soft radiations is encoded in the TMD factorized cross section.
However, it is totally blind to the effects associated to the rapidity cut-off. As widely discussed
in Sections 2.5 and 2.6, it should be assigned a proper physical meaning, given its relation to the
measured value of thrust in the collinear-TMD factorization theorems devised in Chapter 2.

3.6 Region 2: collinear-TMD factorization

In the previous section, all the contributions associated to the radiation emitted in the SA-hemisphere
have been considered TMD-relevant. Of course, this is not the only possibility. The main assumption
that leads to the TMD factorization theorem of Eq. (3.89) was due to relaxing the hypothesis H.2. As
stressed at the beginning of Section 3.5, if H.2 is false, automatically H.1 must be true. However,
if H.2 is true, then H.1 can be either true or false. In this section, I will consider the same starting
point of Chapter 2, i.e. that both hypotheses are valid ( H.2 true, H.1 true). Following the same
nomenclature of Ref. [17], the kinematic region corresponding to this choice will be indicated as
Region 2. Since the two approaches to factorization (top-down in the previous Chapter, bottom-
up in this one) have to produce the same result, in the following I will show how to recover the
collinear-TMD factorization theorem widely discussed in Chapter 2.
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Kinematics regions in a 2-jet topology

Fig. 3.10 Pictorial representation of leading momentum regions associated to the radiation in the
SA hemisphere in Region 2, where both assumptions H.1 and H.2 are true. The soft gluons are
TMD-irrelevant while soft-collinear and collinear guons participate actively in the production of TMD
effects.

In the kinematic Region 2, the soft radiation is not TMD-relevant. This means that PT must be
larger than in Region 1, although not large enough to significantly affect the topology of the final state,
otherwise H.1 would not be valid. Therefore, the two leading momentum regions, soft and collinear,
and the overlapping soft-collinear contributions have to be classified as in Fig. 3.10. In this case, the
soft radiation does not produce any significant TMD effect, hence it does not affect the experimentally
measured value of PT . On the other hand, soft-collinear and collinear emissions play an active role in
generating the transverse momentum of the detected hadron.

The 1-loop computation of the partonic tensor in Region 2 can be readily performed at this stage,
as all the necessary ingredients have been already introduced and worked out in the previous Sections.
In fact, all the contributions are anaogous to those of Region 1, except for the term associated to the
action of T+

S , as in this case the soft radiation is TMD-irrelevant. However, this easily follows from
the analogous result obtained in Section 3.4 for its opposite hemisphere counterpart, see Eq. (3.22).
In fact, we have:

T+
S

[
Ŵ µν , [1]

f (ε; z,τ,kT )
]
=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)S

[1]
+ (ε;τ) δ

(⃗
kT

)
, (3.94)

where S+ is the contribution of the SA hemisphere to the generalized soft thrust function at 1-
loop. Thanks to Eq. (3.26), we can use the solution found for S− in Eq. (3.25). Therefore, we can
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3.6 Region 2: collinear-TMD factorization

Fig. 3.11 Pictorial representation of the effect of the three kinds of radiation in Region 2. The final PT ,
measured with respect to the thrust axis n⃗ , is not affected by the emission/absorption of soft radiation,
as the soft gluons (red) are TMD-irrelevant. Instead, soft-collinear (orange) and collinear (green)
radiations produce the deflections that lead to the observed transverse momentum.

immediately write the bT -space expression for the partonic tensor at 1-loop in Region 2:

˜̂W µν , [1]

f (ε; z,τ,bT ) =

= Hµν

T NC e2
f

∫ dρ

ρ
δ (1− z/ρ)

[
δ (1−ρ)δ (τ)V (ε)+δ (1−ρ)

[
J[1] (ε;τ)+S[1]− (ε; τ)

]
+

+δ (1−ρ)S
[1]
+ (ε;τ, y1)+δ (τ)ρ D̃[1],(0)

q/q (ε; ρ, bT , y1)

]
=

= Hµν

T NC e2
f

[
δ (1− z)

(
δ (τ)V (ε)+ J[1] (ε;τ)+S[1]− (ε; τ)+S

[1]
+ (ε;τ, y1)

)
+

+δ (τ)zD̃[1],(0)
q/q (ε; z, bT , y1)

]
, (3.95)

where, as in Region 1, I used Eq. (3.82) to rearrange into the bare quark-from-quark TMD FF the
combination of the large-bT asymptotic behavior of the quark-from-quark GFJF and that of the
soft-collinear thrust factor. Notice that we could have obtained this result much more easily if we had
removed, from the very beginning, the connection between thrust and transverse momentum in the
two TMD-relevant contributions. This is a consequence of the validity of the assumption H.1. In fact,
if collinear radiations do not contribute to the measured value of thrust, then also the soft-collinear
emissions, that have a lower transverse momentum, cannot affect the topology of the final state.
Translated into the language of Chapter 2, Eq. (3.95) defines the 1-loop order of the subtracted
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Kinematics regions in a 2-jet topology

partonic tensor. In fact, applying the subtraction procedure described in Section 2.4.1, we obtain:

Ŵ µν , [1],sub.
f (z, τ) = Hµν

T NC e2
f

[
δ (1− z)δ (τ)V (ε)+δ (1− z)

[
S[1]− (ε; τ)+ J[1] (ε;τ)

]
+

+δ (1− z)S[1]+ (ε;τ, y1)−δ (τ)δ (1− z)Zq/q,TMD(ε; y1)

]
=

= Hµν

T NC e2
f

αS

4π
CF δ (1− z)

[
δ (τ)

(
−9+

2π2

3
+ log2

(
ζ

Q2

)
−6log

(
µ

Q

)
+

+4log
(

ζ

Q2

)
log
(

µ

Q

)
−4log2

(
µ

Q

))
−
(

1
τ

)
+

(
3+4log

(
ζ

Q2

))
−4
(

logτ

τ

)
+

]
. (3.96)

As anticipated in Chapter 2, the subtracted partonic tensor, properly renormalized, is a finite quantity.
All the UV and rapidity divergences have been canceled. Moreover, we can readily verify the RG-
invariance of the cross section by deriving the previous expression with respect to log µ: the result
is exactly minus the anomalous dimension of the TMD at 1-loop. However, the dependence on the
rapidity cut-off of Ŵ µν ,sub.

f is regulated differently than the CS-evolution of the TMDs as, clearly, it
does not depend on bT .

3.6.1 Factorization theorem for Region 2

The final factorized cross section valid in Region 2 is easily obtained by generalizing to all orders the
1-loop result of Eq. (3.95). As all divergences cancel among each other, I will drop the ε-dependence
in all terms involved in the final result.

dσR2

dzh dP2
T dT

= σB πNC V
∫

dτS+ dτS− dτB J(τB)S−(τS−)S+ (τS+ , ζ )δ (τ− τS+− τS−− τB)×

×
∫ d2⃗bT

(2π)2 ei P⃗T
zh
·⃗bT

∑
f

e2
f D̃h/ f (zh, bT , ζ ) . (3.97)

In this case, the generalization of the 1-loop computation gives the correct final result. In fact, in
Region 2 there is no asymmetry in the soft radiation, as it is considered TMD-irrelevant regardless of
whether it is emitted backward or forward with respect to the hemispheres identified by the thrust axis.
Therefore, Region 2 corresponds to the collinear-TMD factorization theorem obtained in Chapter 2,
by using a “top-down" approach.

In particular, the partonic cross section for a 2-jet topology of the final state can easily be
determined by comparing Eq. (3.97) with Eq. (2.30):

dσ̂ f

dzdτ
= σB NC V δ (1− z)e2

f

∫
dτS+ dτS− dτB J(τB)S−(τS−)S+ (τS+ , ζ )δ (τ− τS+− τS−− τB).

(3.98)
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3.7 Region 3: generalized collinear factorization

Notice that this is the expected decomposition for the fully perturbative content of the cross section in
the 2-jet limit, as shown in Fig. 2.2b.

All the issues discussed in the previous Chapter are therefore valid in Region 2. In particular, there
are two main features associated to the collinear-TMD factorization theorem of Eq. (3.97). The first
concerns the definition of the TMD FFs, which is the factorization definition of Eq. (1.21). Therefore,
a phenomenological analysis performed in Region 2 allows to access directly the TMD model MD,
which is not contaminated by any soft contribution. Secondly, the rapidity cut-off in Eq. (1.21) must
play a physical role, well beyond that of a mere computational tool, given its intimate connection with
the measured value of thrust. This feature has been widely discussed in Sections 2.5 and 2.6.

The most important consequence is that the thrust-resummation of the cross section in Eq. (3.97)
must somehow be influenced by this relation between ζ and T . However, in the Collins factorization
formalism this is never made explicit. Consequently, a formula like Eq. (3.97) can only be used for
values of thrust not too close to T = 1, where the resummation effects are significant. A simple way
to obtain a formula valid far enough from the pencil-like configuration is the procedure adopted in the
modified formalism described in Section 2.6, which consists in dropping the τ = 0 terms from the
fixed order computation of Eq. (3.96). This time, this procedure leaves an explicit rapidity cut-off,
i.e. the logarithmic term multiplying the τ-plus distribution in the last line of Eq. (3.96). Without a
further constraint (like, for example, the topology cut-off introduced in Section 2.6) ζ can only be
related to T through the naive kinematics argument of Eq. (2.37) and set as ζ = τQ2. Of course, this
identification can only be done after removing the τ = 0 terms, otherwise it would produce ill-defined
contributions like δ (τ) logτ . Following this approach, the expression in Eq. (3.96) leads to the same
formula found in the modified formalism and shown in Eq. (2.77).

3.7 Region 3: generalized collinear factorization

The last configuration to be considered corresponds to the case in which the hypothesis H.1 is false.
As already pointed out, this situation implies that the other assumption, H.2, holds true. The kinematic
region associated to this choice ( H.2 true, H.1 false) will be named Region 3, according to the
nomenclature of Ref. [17].

In Region 3, the transverse momentum of the detected hadron is large enough to affect significantly
the topology of the final state. This is the physical situation already described in Section 3.3 and
represented in Fig. 3.4. In this case, not only the transverse motion of the detected hadron is not
affected by soft radiation, but it is large enough to be insensitive also to soft-collinear emissions.
Therefore, as in Region 2 the soft contribution is TMD-irrelevant,as well as the overlapping region,
associated to soft-collinear radiation. This is represented pictorially in Fig. 3.12. As a consequence,
only collinear radiation produces significant TMD effects.
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Kinematics regions in a 2-jet topology

Fig. 3.12 Pictorial representation of leading momentum regions associated to the radiation in the SA

hemisphere in Region 3, where the assumption H.1 is false and H.2 is true. Both the soft and soft-
collinear gluons are TMD-irrelevant while only collinear guons participate actively in the production
of TMD effects.

This kinematic configuration will inevitably produce a different factorization theorem with respect
to the cross sections obtained in Chapter 2. Most importantly, this is the only kinematic region where
the TMD effects are not described by TMD FFs, but rather by GFJFs, which are as universal as the
TMDs but have a further dependence on the invariant mass of the jet to which they are associated. In
this case, the invariant mass of the jet is related to thrust as in Eq. (D.1).

The explicit computation at 1-loop order is straightforward, as all the necessary ingredients have
already be determined in the previous Sections. Since soft-collinear gluons are TMD-irrelevant,the
result of the action of TSTA is totally analogous to its opposite hemisphere counterpart, shown in
Eq. (3.30). In fact, the approximation gives:

TSTA

[
Ŵ µν , [1]

f (ε; z,τ,kT )
]
=
∫ dρ

ρ

⋆Ŵ µν , [0]
f (z/ρ, Q)δ (1−ρ)Y

[1]
+ (ε;τ) δ

(⃗
kT

)
. (3.99)

where Y+ is the soft-collinear thrust function associated to the hemisphere SA. This can easily be
related to the analogous contribution for the opposite hemisphere thanks to Eq. (3.33). Furthermore,
differently from the other kinematic regions, the only bT -dependent quantity, i.e. the quark-from-quark
GFJF defined in Eq. (3.69), should not be considered only at large bT , since in this case the thrust
cannot reach the ideal limit τ = 0 because of the size of kT (the same argument was already discussed
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3.7 Region 3: generalized collinear factorization

Fig. 3.13 Pictorial representation of the effect of the three kinds of radiation in Region 3. The
final PT , measured with respect to the thrust axis n⃗ , is non affected by the emission/absorption of
soft and soft-collinear radiation as the soft gluons (red) and the soft-collinear gluons (orange) are
TMD-irrelevant. The transverse motion of the detected hadron is only produced by collinear radiation
(green).

in Section 3.3). Therefore, the 1-loop order of the partonic tensor in Region 3 is given by:

Ŵ µν , [1]
f (ε; z,τ,kT ) =

= Hµν

T NC e2
f

∫ dρ

ρ
δ (1− z/ρ)

[
δ (1−ρ)δ (τ)V (ε)+δ (1−ρ)

[
J[1] (ε;τ)+S[1]− (ε; τ)

]
+

+δ (1−ρ)S[1]+ (ε;τ)+ Γ̃
[1]
q/q (ε; ρ, bT , τ)

]
=

= Hµν

T NC e2
f

[
δ (1− z)

(
δ (τ)V (ε)+ J[1] (ε;τ)+S[1] (ε;τ)

)
+Γ

[1]
q/q (ε; z, kT , τ)

]
, (3.100)

where I used the SA-hemisphere counterpart of Eq. (3.34) to reorganize the soft and the soft-collinear
terms into the forward radiation contribution to the usual thrust function, which is then combined
with its counterpart in the opposite hemisphere. Therefore, the usual soft thrust function appears as a
fundamental ingredient of the partonic tensor in Eq. (3.100). Furthermore, notice that in this region
there is no trace of rapidity cut-offs, as all the soft and soft-collinear terms are integrated over the
transverse momentum.

Since GFJF are defined in kT -space, the previous expression is not Fourier transformed. The
Fourier transform allows to ε-expand Γq/q as shown in Eq. (3.71). Then, it is straightforward to show
that all the divergences (except the collinear pole characterizing the GFJF) cancel among themselves
also in Region 3.
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3.7.1 Factorization theorem for Region 3

The cross section for Region 3 is obtained by generalizing the 1-loop order result for the partonic
tensor of Eq. (3.100) to all orders. Since divergences cancel, the ε-dependence is dropped in all terms
involved in the factorization theorem. Then the final cross section is:

dσR3

dzh dP2
T dT

=

= σB πNC V zh

∫
dτS dτA dτB J(τB)S(τS) ∑

f
e2

f Γh/ f

(
zh,

PT

zh
, τA

)
δ (τ− τS− τA− τB), (3.101)

where the factor zh is the effect of the unconventional normalization used here for GFJFs. Notice
that the same factorized cross section has been obtained within the framework of SCET in Ref. [17],
adopting a completely different approach.

This cross section has a similar structure to the factorization theorem devised for Region 2. In fact,
naively Eq. (3.101) can be obtained from Eq. (3.100) by removing the rapidity cut-off and replacing
the TMD FFs with the corresponding GFJFs. We can even define the analogue of the partonic cross
section introduced in Chapter 2 by properly modifying the subtraction mechanism of Section 2.4.1.
The result would be the same of Eq. (2.31) but with the replacement:

ρ Di/ j(ρ, kT , ζ ) 7−→ Γ
[1]
i/ j (ρ, kT , τ) . (3.102)

Moreover, the hybrid nature of the collinear-TMD factorization theorem is “transferred" from the
structure of the cross section to its TMD part. In fact, GFJFs have all the features of the TMD FFs (they
depend on the transverse momentum of the fragmenting parton) and also some typical characteristics
of the usual FFs (their evolution is DGLAP-like). However, differently from the TMDs, GFJF are
defined without rapidity cut-off, since all the rapidity divergences are regulated by the additional
dependence on the invariant mass of the jet, a role played by thrust in this case. Therefore, they should
be considered more like a “generalized" version of usual FFs, and not as an extension of the TMD FFs.
For this reasons, I will refer to the cross section presented in Eq. (3.101) as generalized collinear
factorization theorem.

Despite the similarities, the factorization theorems of Region 2 and of Region 3 are remarkably
different. In fact, the factorized cross section of Eq. (3.101) is not of any use for the investigation of
the physical meaning of the rapidity cut-off, as all its contributions are defined without any explicit
rapidity regulator. Further considerations on GFJFs are beyond the purpose of this thesis. For more
details we refer to Ref. [45].
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3.8 Algorithm for Region selection

H.1 H.2
R1 true false
R2 true true
R3 false true

Table 3.1 Kinematic regions and initial assumptions.

3.8 Algorithm for Region selection

So far, three different factorization theorems corresponding to as many different kinematics regions
have been developed: TMD factorization for Region 1 in Eq. (3.89), collinear-TMD factorization
for Region 2 in Eq. (3.97) and generalized collinear factorization for Region 3 in Eq. (3.101). Each
region corresponds to a different physical configuration and, in particular, the transverse momentum
of the detected hadron increases as we move from region 1 to region 3. In fact, in region 1 the soft
radiation contributes actively to the transverse deviation of the hadron with respect to the thrust axis,
which must then have a low transverse momentum, otherwise it would not be sensitive to these tiny
corrections. On the other hand, in Region 3, the detected hadron has a transverse momentum large
enough to be among the causes of the spread of the jet in which it is detected, inevitably decreasing
the value of thrust. However, lacking a proper criterion to discriminate among the regions, these three
factorization theorems are hardly useful for phenomenological analyses. Moreover, the boundaries of
the three regions are not sharply defined, making the description of data difficult, especially in the
overlapping regions.

In order to define a suitable algorithm for selecting each individual region, it is useful to review
the approximations that lead to the three factorization theorems presented in this Chapter. Depending
on the initial assumptions H.1 and H.2, organized7 as in Tab. 3.1, the leading momentum regions
associated to the forward radiation contribute differently to the observed TMD effects and hence the
soft, soft-collinear and collinear terms can be classified on the basis of their TMD-relevance, as in
Tab. 3.2. In other words, Tab. 3.1 implies Tab. 3.2. Moreover, I have shown how the final results

T+
S TSTA TA

R1 TMD-relevant TMD-relevant TMD-relevant
R2 TMD-irrelevant TMD-relevant TMD-relevant
R3 TMD-irrelevant TMD-irrelevant TMD-relevant

Table 3.2 Kinematic regions and TMD-relevance. The symbol * reminds that the soft approximation
in this case only refers to gluons radiated in the same portion of space occupied by the jet in which is
detected the hadron h.

7Notice that the combination where both the initial assumptions are false does not correspond to any kinematic regions
as it is kinematically forbidden, see Eqs. (3.41) and (3.42).
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Kinematics regions in a 2-jet topology

could have been found by neglecting the correlation between thrust and transverse momentum from
the very beginning, at the level of definition of the various factors contributing to the forward radiation.
Such approximations make the perturbative computations much easier, as all the issues related to the
2-jet limit in bT -space clearly disappear when τ and kT are independent variables.

This is equivalent to implementing the following approximations in the definitions of the various
factors in transverse momentum space, Eqs. (3.44), (3.55) and (3.69):

δ

(
τ− l−

q−

)
= δ

(
τ− kT

Q
e−y
)
∼ δ (τ) both in Σ+ and in ϒ+; (3.103a)

δ

(
τ− z

1− z
k2

T

Q2

)
= δ

(
τ− (1− z)ze−2y)∼ δ (τ) in Γq/q, (3.103b)

where y is the rapidity of the emitted gluon. Analogously, the result of Region 2 could have been
obtained by leaving Σ+ unchanged and setting:

δ

(
τ− l−

q−

)
= δ

(
τ− kT

Q
e−y
)
∼ δ (τ) in ϒ+; (3.104a)

δ

(
τ− z

1− z
k2

T

Q2

)
= δ

(
τ− (1− z)ze−2y)∼ δ (τ) in Γq/q. (3.104b)

Finally, in Region 3 all the relations between thrust and transverse momentum have to be kept into the
definitions of the factors:

δ

(
τ− z

1− z
k2

T

Q2

)
= δ

(
τ− (1− z)ze−2y) not approximated in Γq/q. (3.105)

Eqs. (3.103), (3.104) and (3.105) follow directly from the classification of Tab. 3.2. The simplest
criterion consists in comparing the size of kT with respect to the typical scale induced by thrust. In
particular, in Region 1 Eq. (3.103a) can be interpreted as τ Q≪ kT , while, since in Region 3 the only
TMD-relevant quantity is left unapproximated, Eq. (3.105) can be interpreted as kT ∼

√
τQ, which is

also the maximum value kinematically allowed for PT . As a consequence, Region 2 covers the whole
intermediate configuration τ Q ≲ kT ≲

√
τQ. Notice that this interpretation is in agreement with the

size of the topology cut-off introduced in the modified formalism presented in Section 2.6. Since kT

is directly related to the transverse momentum PT of the detected hadron through Eq. (B.11), these
interpretations can be transferred to hadronic quantities. In particular:

R1 −→
PT

zh
≪ τ Q; (3.106a)

R2 −→ τ Q ≲
PT

zh
≲
√

τQ; (3.106b)

R3 −→
PT

zh
∼
√

τQ. (3.106c)
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This criteria use only the typical scales associated to the value of thrust, i.e. τ Q as a soft scale
and
√

τ Q as a collinear scales. These are the values commonly used as reference scales in thrust-
resummed quantities, see for instance Ref. [53]. Moreover, this has been proposed as a selection
criterion for BELLE data in Ref. [17]. In addition, since the factorized cross sections of Regions 1 and
2 involve TMD FFs, we should also add a cut in PT , because the Fourier transform acts as an analytic
continuation that extends unnaturally the TMDs beyond the (physical) small transverse momentum
region. In this case, the requirement comes directly from power counting:

PT ≪ P+ = zh
Q√

2
. (3.107)

The application of this algorithm to the BELLE data [8] in the 2-jet region, assumed to correspond to
0.7≤ T ≤ 1, produces the results shown in Fig. 3.14, where Regions 1, 2 and 3 have been color coded
to red, orange and green, respectively. The cut in PT for constraining the range of applicability of
TMDs is indicated by the red dashed vertical line. From the phenomenological point of view this kind
of data selection inevitably raises the issue of matching different regions, since Fig. 3.14 shows that
there are at least two different overlapping regions in each panel. The problem of matching different
kinematic regions, each corresponding to a different factorization theorem, is not new in the context
of TMD physics. This, in fact, has recently been one of the most debated issues when dealing with
phenomenological applications of 2-h cross sections, that have two distinct regimes associated to as
many factorization theorems: collinear factorization at large-qT and TMD factorization at small-qT ,
see Section 1.4.1. In the case of e+e−→ hX there are three different regions, making the matching
even more problematic. A suitable matching procedure has been proposed in Ref. [17].

The set of rules devised above is not the only possible choice to obtain a valid criterion to make a
selection on data. In particular, it oversimplifies the complex structure of the three kinematic regions,
as it only considers the typical thrust scale associated to the two leading momentum regions, soft
and collinear. Most importantly, the approximations of Eq. (3.106) do not take into account the
rapidity of the detected hadron, which, remarkably, is the crucial information to discriminate between
a configuration where the transverse deflection is due to soft and soft-collinear radiation and one in
which only soft-collinear emissions play an active role in generating TMD effects. This is of course
strictly connected to the boundary between Region 1 and Region 2. Therefore, in the following I
will present a different criterion which takes into account also the information encoded in the hadron
rapidity. It is devised on the basis of the 1-loop order computation, as the argument of the deltas
constraining thrust and transverse momentum are different at higher order in pQCD.

The approximations of Eqs. (3.103), (3.104) and (3.105) are considered the fundamental tool
to implement the selection algorithms. The partonic quantities in the deltas are promoted to their
hadronic equivalent, i.e z 7→ zh and kT 7→ PT/zh (see Section 2.4.1). Then, denominating yP the
rapidity of the detected hadron, Eq. (2.37), I introduce the following quantities:
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Fig. 3.14 BELLE data [8] selected according to the criteria of Eqs. (3.106). Red bins correspond to
Region 1, orange bins to Region 2 and green bins to Region 3. The shaded areas correspond to bins
outside the TMD-regime, where Eq. (3.107) is not satisfied. The purpose of this representation is to
capture at a glance how the three kinematic regions are distributed through the whole thrust spectrum,
for a 2-jet topology. Here we do not focus on the details of each thrust bin. A different and more
detailed representation can be found in Appendix F.
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• Soft Ratio rS, defined as:

rS =
PT

zh Q
e−yP . (3.108)

• Collinear Ratio rC, defined as:

rC = zh (1− zh)e−2yP . (3.109)

Then, by comparing these ratios to thrust, it is possible to obtain an algorithm that takes into account
also the role of soft-collinear radiation. In fact, we can write the analogue of Eqs (3.103), (3.104)
and (3.105), to the hadronic level, as follows.
Region 1 is characterized by:

rS(zh, PT )≪ τ both for soft and soft-collinear radiation; (3.110a)

rC(zh, PT )≪ τ for collinear radiation. (3.110b)

On the other hand, Region 2 is associated to:

rS(zh, PT )∼ τ for soft radiation; (3.111a)

rS(zh, PT )≪ τ for soft-collinear radiation; (3.111b)

rC(zh, PT )≪ τ for collinear radiation. (3.111c)

Finally, in Region 3 we have:

rS(zh, PT )∼ τ both for soft and soft-collinear radiation; (3.112)

rC(zh, PT )∼ τ for collinear radiation. (3.113)

Therefore, Region 3 is the only kinematic region where rS is never neglected. This constitutes the first
rule:

1. If rS≪ τ we can only be either in Region 1 or in Region 2, but not in Region 3.

Next, a small soft ratio characterizes both Region1 and Region 2, which can be discriminated according
to the rapidity of the detected hadron. In particular, if the soft ratio is small because of the size of
PT/zh, regardless of the rapidity yP, then rS will be denoted as momentum dominated. In this case
we are in Region 1, because the soft ratio is neglected even if the rapidity is large, i.e. both for soft
and soft-collinear radiation. If instead the smallness of the soft is due to the largeness of the rapidity
yP, then rS will be denoted as rapidity dominated. In this case we are in Region 2, as rS can be
neglected only when the rapidity is large, i.e. only for soft collinear radiation.

In order to discriminate between these two configurations, we can compare the contributions of
the transverse momentum and the rapidity to the soft ratio and write the second rule:
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Fig. 3.15 Flow-chart representation of the algorithm based on soft and collinear ratios.

2. If PT
zh Q ≪ e−yP the soft ratio is momentum dominated and we are in Region 1. Otherwise the

soft ratio is rapidity dominated and we are in Region 2.

This exhausts all the possibilities implied by the first rule. When rS ∼ τ the first rule is violated. In
this case Region 1 is automatically excluded as it is the only kinematic region where the soft ratio is
always considered small, both for soft and soft-collinar radiation. Therefore, we have the third rule:

4. If rS ∼ τ we can only be either in Region 2 or in Region 3, but not in Region 1.

Next, the size of the collinear ratio discriminates between Region 2 and Region 3. In fact, if also the
collinear ratio cannot be neglected, i.e. rC ∼ τ , then we are in Region 3. Otherwise we are in Region
2. This generates the last rule:

5. If rC≪ τ we are in Region 2, otherwise we are in Region 3.

A similar set of criteria based on kinematic ratios was proposed for SIDIS in Refs. [54, 55].
This algorithm is represented graphically in Fig. 3.15. Notice how, within this criterion, Region

2 can be reached following two different routes, while Region 1 and Region 3 can only be reached
through one path. This is in agreement with the naive expectation that Region 2 corresponds to the
dominant kinematic configuration, as it describes the “intermediate" situation where PT is neither
too small (as in Region 1) nor too large (as in Region 3). This automatically influences the data
selection, showed in Fig. 3.16. Differently from the rough algorithm of Fig. 3.14, here there is a neat
prevalence of orange bins, corresponding to Region 2. Most importantly, there are monocromatic
panels where only one kinematic configuration is realized. This is an incredibly big advantage for
phenomenological analyses, as it overcomes the issue of matching, which concerns only the panels
where more than one Region (i.e. color) appears.
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Fig. 3.16 BELLE data [8] selected according represented in Fig. 3.15. Red bins correspond to Region
1, orange bins to Region 2 and green bins to Region 3. The shaded areas correspond to bins outside
the TMD-regime, where Eq. (3.107) is not satisfied. The purpose of this representation is to capture
at a glance how the three kinematic regions are distributed through the whole thrust spectrum, for a
2-jet topology. Here we do not focus on the details of each thrust bin. A different and more detailed
representation can be found in Appendix F.
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Leaving aside Region 3 (green bins) which is not described by factorization theorems involving
TMD FFs, the great opportunity offered by the algorithm presented above is in its application for the
comparison between Region 1 and Region 2, corresponding to red and orange bins, respectively. In
fact, as discussed at the end of Section 3.5.1, the TMD factorization theorem devised for Region 1
allows to access the square root model Msqrt

D , while the collinear-TMD factorization theorem obtained
for Region 2 gives the chance to extract directly the TMD model MD. A direct comparison can shed
light on the (still unknown) soft model MS, which deforms the TMDs defined by the square root
definition. Since the algorithm presented in this Section allows to bypass the matching issues in a
rather large number of bins, this comparison can safely be carried out.

Finally, it is important to stress again that the soft model is the same unknown function which
appears in the 2-h cross sections. Its independent extraction from a process which belongs to another
hadron class is promisingly one of the most powerful phenomenological tools for future studies.

3.9 Conclusions

The “bottom-up" approach to factorization is extremely powerful, as it allows us to construct the
factorization theorems, piece by piece, starting from the full QCD Feynman diagrams. The structure of
the final factorized cross section becomes transparent even at relatively low orders in the perturbative
expansion. In this Chapter, I have applied this procedure to e+e− → hX , for a 2-jet final state
configuration, with a twofold purpose.

First of all, explicit perturbative computations require to extend the definitions given for the soft
factors and for the TMDs in Chapter 1, in order to take into account also the dependence on thrust. This
operation produces a large variety of integrated and unintegrated objects that not only generalize the
definitions of soft factors and TMDs, but also include and extend the usual thrust-dependent functions,
usually encountered in the study of e+e− annihilation processes. All these new thrust-dependent
operators have been defined and computed at 1-loop in Section 3.5.

Secondly, the “bottom-up" approach has been adopted to recover the results of Chapter 2, where
instead a “top-down" procedure was applied. Not only the same collinear-TMD factorization theorem
comes out in a natural way from explicit perturbative computations, but it is framed in a much
more general context where other kinematic configurations are generated and lead to different
factorization theorems. In fact, the whole proof of factorization devised in Chapter 2 was founded
on two assumptions: the transverse momentum of the detected hadron is neither too large to affect
significantly the topology of the final state (H.1), nor too small to be considered affected by the
emission/absorption of soft radiation (H.2). Modifying this initial hypothesis inevitably leads to a
different factorization theorem, which corresponds to a different kinematic region. Since these two
assumptions cannot be false at the same time, there are in total three different kinematic regions,
defined as:
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• Region 1, corresponding to set H.1 true and H.2 false, treated in Section 3.5. In this region the
soft radiation participates actively to TMD effects. In fact, the resulting factorization theorem
is very similar to the standard TMD factorized cross section known to hold in the 2-h class,
than to the case studied in Chapter 2. In fact, the TMD FFs describing the non-perturbative
hadronization process that generates the detected hadron appears in the cross section as if they
were defined through the square root definition used in e+e−→ h1 h2, SIDIS and Drell-Yan
scattering. Their TMD model, which describes their characteristic long-distance behavior, is
contaminated by the non-perturbative content of the soft radiation by a square root of the soft
model, confirming that in Region 1 soft emissions play a leading role in generating TMD effects.
Thanks to all these similarities, we can identify the factorized cross section obtained for Region
1 as a TMD factorization theorem.

• Region2, corresponding to the case in which both the hypotheses hold true, treated in Section 3.6.
This is the same initial set-up of Chapter 2 and in fact the same collinear-TMD factorization
theorem is recovered.

• Region 3, corresponding to set H.1 false and H.2 true, treated in Section 3.7. Here all the effects
of soft and even soft-collinear radiation are irrelevant for TMD effects, as their contribution can
be neglected, given the (large) size of the transverse momentum of the detected hadron. Since in
this case the measured value of thrust takes part in the collinear radiation contribution, the final
factorization theorem cannot involve TMD FFs. In fact, they are replaced by the corresponding
GFJFs, defined similarly to the (unsubtracted) TMDs but with a further dependence on the
invariant mass of the jet to which they are associated. The hybrid nature of the collinear-TMD
factorization theorems is totally encoded in these functions, which share both characteristics
of the TMD FFs, and also of the usual FFs. However, they are very different from TMDs,
as in their definition there is no trace of any rapidity cut-off, as all the rapidity divergences
are naturally regulated by the further dependence on the invariant jet mass. For this reason,
GFJFs should be considered more as a generalized version of the usual FFs than an extended
counterpart of the TMDs. Therefore, the factorized cross section devised for Region 3 has been
denoted as a generalized collinear factorization theorem.

As all these kinematic regions contain different kind of information on TMD physics, it is extremely
important to devise a solid methodology to identify them unequivocally among the large set of data
provided by BELLE Collaboration [8]. In Section 3.8 I show how a standard algorithm based only
on the typical soft and collinear energy scales associated to the value of thrust does not catch all the
features encoded into the rich structure behind a process like e+e−→ hX . Therefore, I propose a
finer algorithm that allows to select the data taking into account not only soft and collinear radiation,
but also the role of soft-collinear emissions. With this criteria, there is a rather large amount of data
which is described by a single factorization theorem, bypassing all the issues related to the matching
procedure to describe data at the boundaries of the corresponding kinematic regions. This is a very
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promising phenomenological tool, as the direct comparison between an extraction made in Region
1 and another made in Region 2 would shed light on the effects of the soft radiation in the standard
TMD factorization.
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The factorization of hadronic processes is one of the most important tools in the study of strong
interactions. In fact, any modern approach to QCD must wisely balance what can be predicted
exclusively by perturbation theory and what has to determined with different, non-perturbative
techniques. Incredible efforts are currently undertaken to push perturbative computations to higher
and higher perturbative orders, and to improve phenomenological analyses to obtain an ever increasing
accuracy in the extractions of non-perturbative, universal functions. These twofolded endeavor has
its point of contact in the factorization theorems, where a cross section is carefully cast in such a
way that all the universal non-perturbative content is singled out from whatever can be predicted by
making use of perturbative QCD.

One of the most interesting cases to which the factorization procedure can be applied regards
the study of the effects of the transverse motion of the partons confined inside the hadrons. In fact,
such transverse momentum dependent effects offer an incredibly rich source of physical information,
as they disclose the entire 3-dimensional structure of hadrons. In the past years, proper TMD
factorization theorems have been devised, within different approaches, mainly for three reference
hadronic processes: e+e− annihilation into two back-to-back hadrons, Semi-Inclusive DIS at small
values of momentum transfer and Drell-Yan scattering for a back-to-back lepton pair. The universal,
non-perturbative content involved in the cross sections of these three processes has been organized
into TMD parton densities, which generalize the commonly used collinear PDFs and FFs, accounting
for the dependence on the transverse momentum of partons inside the hadron. These results have been
a breakthrough both from the theoretical and from the phenomenological point of view, as they have
extended and generalized the original factorization theorems sensitive only to collinear momentum
fractions.

With the increment of the experimental potentialities, the variety of accessible hadronic processes
is quickly increasing, making it necessary to develop suitable factorization theorems based on rigorous
proofs, which are progressively becoming more and more complex from the computational point of
view. Nowadays, in addition to the above mentioned reference processes, there are other interesting
processes that encode valuable TMD information. In particular, the cross section measured by the
BELLE Collaboration [8] has triggered a great interest among the experts of TMD phenomena.
This process is a e+e− annihilation into a single hadron h, where the transverse momentum of h is
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measured with respect to the thrust axis. Despite this might look as a rather simple hadronic process, it
is actually very hard to give a rigorous proof of the factorization of its cross section in terms of known
universal functions. The lack of any publication on this subject until the summer of 2020 [12, 16]
testifies the level of difficulty of this task.

This thesis has the ambitious purpose to exploit the Collins factorization formalism [7] to devise a
rigorous factorization theorem for the cross section of e+e−→ hX . This goal can be achieved only
after a careful review of the building blocks appearing in a factorized cross section. In Chapter 1 I
present the most general definitions of soft and collinear factors in terms of light-cone momentum
fraction and transverse momentum. In particular, a consequence of these definitions is that only TMDs
can be considered truly universal objects, provided they are defined by the factorization definition
presented in Eq. (1.21). In fact, soft factors depend inevitably on the total number N of collinear
contributions involved in the process, each one associated to a reference hadron experimentally
accessible: the target for TMD PDFs, the detected hadrons for TMD FFs. This property, indicated
as N-h universality, induces a classification on hadronic processes, which can then be organized in
N-h classes, according to their soft content. Processes belonging to different N-h classes must show
a different contribution of the soft radiation; hence, ultimately, they lead to different factorization
theorems. In particular, the three benchmark processes for TMD factorization belong to the 2-h class,
while the process considered by BELLE belongs to the 1-h class. Therefore, its factorized cross
sections should show different structures. Moreover, TMDs have been historically defined in a way
suitable for the three reference processes, by absorbing part of the soft radiation contribution inside
their definition, which consequently does not coincide with the factorization definition presented in
Section 1.3. This commonly used definition has been referred to as “square root” definition all along
this thesis. Being specifically devised for the 2-h class, it cannot be extended straightforwardly to
e+e−→ hX .

This totally general considerations are the background on which any factorization theorem should
necessarily be founded. In Chapter 2 I have shown how these ideas can successfully be applied through
a “top-down" factorization approach to e+e−→ hX . As long as the transverse momentum of the
detected hadron is neither too large to affects significantly the topology of the final state, nor too small
to be sensitive to the deflections due to the emission/absorption of soft radiation, the factorization
procedure leads to a new, and somehow unexpected, structure of the final cross section. It is a sort
of hybrid of collinear and TMD factorization. It encodes the same structure of a collinear factorized
cross sections, but the partonic cross section is convoluted with a TMD FF instead of a collinear
FF. I denoted this as “collinear-TMD factorization” theorem. This is perhaps the most important
result presented in this thesis; hence, an entire Chapter is devoted to investigation of the features and
properties of this new kind of factorization theorem. First of all, according to expectations, the TMD
FFs appearing in the final cross section must be defined by the factorization definition. Therefore,
from the phenomenology point of view, the TMD FFs extracted from SIDIS and e+e−→ h1 h2 cannot
be used straightforwardly within the factorization theorem presented in Eq. (2.26). Furthermore, the
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final cross section is not CS-invariant, as both the partonic cross section and the TMD FFs depend on
the rapidity cut-off introduced by the factorization procedure to regularize the rapidity divergences.
I do not interpret this as a failure or an inconsistency of the factorization theorem, but rather as an
opportunity to study new aspects of TMD physics, that standard TMD factorization theorems cannot
describe. In fact, there is a strong connection between the rapidity cut-off and the measured value of
thrust, as it can easily be deduced by a simple kinematic argument: the rapidity of the detected hadron
(provided the two initial assumptions on the size of its transverse momentum hold true) has a natural
lower limit fixed by thrust. Therefore, if the rapidity cut-off can be somehow linked to a measurable
quantity, it cannot be considered as a mere computational tool, but instead it should be assigned a
specific physical meaning. Detailed investigation of this physical meaning may shed light on totally
new aspects of the hadronization mechanism and on the confinement of partons. The collinear-TMD
factorized cross section devised for e+e−→ hX is then the first physical observable that can disclose
the deeply hidden features of strong interactions.

In Chapter 3 I apply a “bottom-up" approach to the factorization of the e+e−→ hX cross section,
by constructing the factorization theorem piece by piece, starting from the full QCD Feynman
diagrams and proceeding order by order in perturbation theory. This alternative road to factorization
is extremely powerful, as the structure of the factorized cross section becomes transparent even at
low orders in the perturbative expansion. Of course, given the same initial assumptions on the size of
the transverse momentum of the detected hadron, this approach has to lead to the same results of the
“top-down" approach. This has been explicitly verified by generalizing to all orders the 1-loop result
for the partonic version of the process.

Furthermore, I have also considered the possibilities related to different choices of initial hypothe-
ses. Therefore, the collinear-TMD factorization theorem was framed in a general context where other
kinematic configurations lead to different factorization theorems. There are in total three kinematic
regions. In Region 1, the transverse momentum of the detected hadron is low enough to be sensitive
to soft radiation. As a result, soft gluons play an active role in generating TMD effects and the final
cross section is more similar to the usual 2-h class factorization theorems. In fact, the TMD model is
modified by the same non-perturbative soft contribution that appears in the commonly used square
root definition. Therefore, the factorized cross section valid for Region 1 can be considered a TMD
factorization theorem. Region 2 is the intermediate configuration that produces the collinear-TMD
factorization theorem discussed above. Finally, in Region 3 the transverse momentum of the detected
hadron is large enough to produce significant effects to the topology of the final state. Therefore,
the fragmentation process shows a thrust-dependence that is absent is the definition of the TMD. As
a consequence, the corresponding factorized cross section involves generalized Fragmentation Jet
Functions (GFJFs) instead of TMD FFs. As GFJFs are more similar to a generalized version of the
usual collinear FFs than to an extended definition of TMDs, I have denoted the Region 3 cross section
as “generalized collinear factorization theorem”.
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Finally, I have proposed an algorithm to select data according to the corresponding kinematic
regions. This can be an extremely powerful tool for phenomenological analyses, as it allows to bypass
the long-standing problem of matching different kinematic regions. In particular, comparing the results
of the extraction of the TMD FFs from Region 1 and Region 2, it will be possible to shed light on
the role of soft radiations in generating TMD effects, as such a combined phenomenological analysis
can in principle allow to access and extract the soft model, MS. Moreover, after the non-perturbative
building blocks of the standard TMD factorization will have been determined, the general scheme
proposed in this thesis could be extended to many other hadronic processes, possibly involving more
than two TMDs.

In conclusion, the work presented in this thesis looks incredibly promising. Not only because it
presents new kinds of observables, like the collinear-TMD factorized cross section of e+e−→ hX ,
which may describe some interesting and still unknown features of non-perturbative QCD, but also
because the general approach devised in this thesis gives top priority to the universality properties of
the non-perturbative objects involved in the factorization procedure. Hopefully, in the future, these
new perspectives may disclose the inner, unrevealed secrets of strong interactions.
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Appendix A

Review of the Collins formalism

This Appendix is a short review of the kinematics approximators defined in [7] that have been widely
used all along this paper. Their definition is based on the power counting rules:

1. Given the typical (large) energy scale Q of a process, the hard, collinear and soft momenta are
weighted as:

Phard ∼ (Q,Q,Q);

Pcoll. ∼ (Q,λS,λ );

Psoft ∼ (λS,λS,λS);

(A.1)

where λ << Q is some IR energy scale and λS = λ 2/Q. Such scaling allow to classify sets
of subgraphs inside a generic Feynman diagram. According to this classification, the hard
subgraph will contain particles carrying hard momenta and so on.

2. Any extra collinear line attached to the hard subgraph gives a suppression. Extra means any
line besides the minimal number of fermions required by the kinematics of the process and any
number of scalar polarized gluons.

3. Any soft line attached to the hard subgraph gives a suppression.

4. Any fermionic line connecting collinear and soft subgraphs gives a suppression.

All the gluons connecting soft and collinear subgraphs and hard and collinear subgraphs are collected
into Wilson lines (or gauge links). They are path-ordered exponential operators defined as:

Wγ = P
{

exp
[
−ig0

∫ 1

0
ds γ̇

µ(s)Aa
(0)µ

(γ(s))ta

]}
, (A.2)

where γ is a generic path and P denotes the path ordering (i.e. when the exponential is expanded the
fields corresponding to higher values of s are to be placed to the left). The coupling constant and
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the gluon field are bare quantities, as indicated by the label “0". In the previous formula, ta are the
generating matrices of the gauge group, in the appropriate representation. The Wilson lines guarantee
that PDFs and FFs (in both collinear and TMD cases) are gauge invariant, by linking the quark to the
anti-quark fields. If this direction γµ is a straight line the Wilson line depends only on the endpoints
of the path and can be written in a compact way as:

Wn (x2, x1, n) = P
{

exp
[
−ig0

∫ x2

x1

dλ nµAa
(0)µ

(λn)ta

]}
, (A.3)

If the strongly boosted particle is a quark, the associated Feynman rules are:

=
i

k ·n+ i0
; (A.4)

=−ig0 nµ ta. (A.5)

In the Collins factorization formalism, the Wilson lines associated to soft contributions are tilted
off the light-cone. In the following, w1 = (1,0,⃗0T ) and w2 = (0,1,⃗0T ) will represent the plus- and
minus-directions respectively, while the tilted directions will be defined as:

n1 = (1,−e−2y1 ,⃗0T ), n2 = (−e2y2 ,1,⃗0T ). (A.6)

The auxiliary parameters y1 and y2 will acts as rapidity cut-offs and will regulate the rapidity diver-
gences due to the Wilson lines associated to the collinear contributions, which are straight along the
light-cone.

Since we are interested in 2-jet topologies, we will label the hemisphere associated with the
plus-direction as “A" and the opposite hemisphere as “B" (backward emission, along minus-direction).
Therefore, in each Feynman diagram we will identify an hard subgraph, labeled as “H", a soft
subgraph, labeled as “S" and two collinear subgraphs, labeled either “A" or “B" depending on the
leading direction of the collinear particles that flow inside them. The classification is not unique,
but depends on the kinematic configuration (or region R) associated to the particles involved. The
operation of choosing a certain kinamtic region “R" is defined to be the action of the kinematic
approximator TR. In practice, any generic TR is based on the following recipe:

1. In the collinear subgraphs approximate the circulating soft momenta as:

k ∼ w2
k ·n1

w2 ·n1
for A, k ∼ w1

k ·n2

w1 ·n2
for B. (A.7)
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2. In the hard subgraph neglect all the masses and approximate the circulating collinear momenta
as:

k ∼ w1
k ·w2

w1 ·w2
for A, k ∼ w2

k ·w1

w1 ·w2
for B. (A.8)

Notice that the circulating soft momenta are totally neglected in the hard subgraph.

3. The attachment of a soft gluon to a collinear subgraph is approximated as (Grammer-Yennie
approximation):

A(. . . ,k, . . .)µS(. . . ,k, . . .)µ ∼ A(. . . , k̂, . . .)µ
k̂µ n1,ν

k ·n1 + i0
S(. . . ,k, . . .)ν ,

B(. . . ,k, . . .)µS(. . . ,k, . . .)µ ∼ B(. . . , k̂, . . .)µ
k̂µ n2,ν

k ·n2 + i0
S(. . . ,k, . . .)ν .

(A.9)

where k̂ are the approximated momenta defined in Eq. (A.7) and the i0-prescription is correct
when the momentum k flows out of the collinear subgraph.

4. The attachment of a collinear gluon to the hard subgraph is approximated as (Grammer-Yennie
approximation):

H(. . . ,k, . . .)µA(. . . ,k, . . .)µ ∼ H(. . . , k̂, . . .)µ
k̂µ w2,ν

k ·w2 + i0
A(. . . ,k, . . .)ν ,

H(. . . ,k, . . .)µB(. . . ,k, . . .)µ ∼ H(. . . , k̂, . . .)µ
k̂µ w1,ν

k ·w1 + i0
B(. . . ,k, . . .)ν .

(A.10)

where k̂ are the approximated momenta defined in Eq. (A.8) and the i0-prescription is correct
when the momentum k flows out of the hard subgraph.

5. For a Dirac line leaving the hard subgraph and entering in the collinear-A subgraph, insert the
projector P = 1

2 γ+γ−. The same rule applies for a Dirac line leaving the collinear-B subgraph
and entering in the hard subgraph. For a quark line in the reverse direction, insert P = 1

2 γ−γ+.

Soft factors and collinear parts are functions initially defined only over a rather small region in
the transverse momentum space, according to power counting rules. The Fourier transform to the
impact parameter space can be regarded as a kind of analytic continuation, because at fixed bT we can
roughly access all transverse momenta with kT ≤ 1

bT
, even trespassing the original momentum region.

In particular, the small bT region is associated with large transverse momenta, where perturbative
QCD can be applied and a power expansion in αs allows us to perform explicit calculations. This can
be proved by a direct application of the factorization procedure to the small bT approximation of the
Fourier transformed function. For the soft factor this can be found in Section 1.2, while for collinear
parts see for instance Refs. [7, 56].
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(a) (b)

Fig. A.1 Feynman graphs contributing to the small bT behavior of the 1 loop soft factor S̃2-h. (a):
Virtual diagrams (zero in dimensional regularization). (b) Real diagrams.

Despite the undeniable advantage provided by the possibility to perform explicit calculations
in the small bT region, perturbative QCD is not enough to reproduce integrated quantities, which
correspond to the Fourier transformed functions evaluated in bT = 0. These can be recovered from
the operator definitions, that obviously give a non-perturbative, all-order point of view. Therefore in
bT = 0, Eqs. (1.2) and (1.6) simply confirm that the integrated soft factor is the identity matrix, while
Eq. (1.17) reproduces the integrated PDFs and FFs. The failure of perturbative QCD in bT = 0 is
due to the fact that the integral over k⃗T is intrinsically ill defined, since it extends well beyond the
physical momentum region where the TMDs and the soft factor are defined. As a consequence, new
UV divergences arise and the counterterms ZS and ZC in Eqs. (1.2) and (1.17) are not sufficient to
cancel them. Therefore, the perturbative approach lead to definition of integrated functions as bare
quantities and they need a renormalization in order to acquire physical meaning and reproduce the
correct results. In the following, such renormalization procedure will be investigated for both the 2-h
soft factor, in Section A.1 and the TMDs, in Section A.2. All the quantities computed in this section
will be function of bT , however when used into Eqs. (1.14), (1.26), such dependence must be replaced
by the b⋆ prescription.

In the last section A.3, I will review the explicit formulas for 1-loop FFs.

A.1 Small bT behaviour of 2-h Soft Factor

The Feynman graphs in Fig. A.1 show that in the small bT region the (renormalized) 2-h soft factor is
given by:

S̃2-h(bT , µ, y1− y2) = 1− αS(µ)

4π
8CF (y1− y2) log

(
bT µ

c1

)
+O

(
α

2
S , e−2(y1−y2)

)
, (A.11)

where c1 = 2e−γE . The perturbative expansion of the previous equation should be valid at small
bT ; however in this region log(bT µ/c1) becomes large and sufficiently near to bT = 0 it completely
oversizes αS so that the expansion becomes meaningless. Resummation in principle solves this
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A.1 Small bT behaviour of 2-h Soft Factor

problem. The soft kernel can be directly obtained from Eq. (A.11) by using Eqs. (1.7):

K̃(bT , µ) =−αS(µ)

4π
16CF log

(
bT µ

c1

)
+O

(
α

2
S
)
. (A.12)

This expressions implies that K̃(bT , µ) is large and positive as bT decreases. Therefore, the resummed
soft factor of Eq. (1.10) explodes in bT = 0, as in its exponent the soft kernel multiplies the rapidity cut-
off combination (y1− y2), which has to be intended as a large and positive number. An improvement
can be reached by providing a resummed version1 for K̃ by using its evolution equation solution,
Eq. (1.9). Given that the αS-expansion of the soft kernel has the following structure:

K̃(bT ; µ) = ∑
n=1

(
αS(µ)

4π

)n n

∑
l=0

K̃[n,l] logl
(

µ

µb

)
, (A.13)

where µb has been defined in Eq. (1.27)(a). On the other hand, the anomalous dimension γK is
expanded as:

γK(αS(µ)) = ∑
n=1

(
αS(µ)

4π

)n

γ
[n]
K , (A.14)

Therefore, Eq. (1.9) can be recasted as follows:

K̃(bT ; µ) = K̃(bT ; µb)−
∫

µ

µb

dµ ′

µ ′
γK(αs(µ

′)) =

= ∑
n=1

{(
αS(µ)

4π

)n

K̃[n,0]− γ
[n]
K

∫
µ

µb

dµ ′

µ ′

(
αS(µ

′)

4π

)n}
=

= ∑
l≥0

log−l
(

µ

µb

)
gK

l+2(x) = gK
2 (x)︸ ︷︷ ︸
LL

+
1

log
(

µ

µb

)gK
3 (x)︸ ︷︷ ︸

NLL

+ . . . (A.15)

where:

x =
αS(µ)

4π
log
(

µ

µb

)
, (A.16)

The recipe to reach the NLL accuracy is the following [57]:

• The anomalous dimension γK of the soft kernel is expanded up to 2-loops. The 1-loop coefficient
can be found directly obtained from Eq. (A.12). For 2-loops coefficient see for instance

1Actually, it is inappropriate to count the logs of a quantity, like the soft kernel, which is already the result of a
resummation procedure.
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Refs. [58, 56]:

γ
[1]
K = 16CF ; (A.17a)

γ
[2]
K = 2CACF

(
536

9
− 8π2

3

)
− 160

9
CF n f . (A.17b)

where n f is the total number of fermion fields considered.

• All the other quantities are expanded up to 1-loop. In this case the only other term is the part of
the soft kernel without logs, i.e. computed at reference scale µ = µb. At 1-loop it is just zero,
as follows from Eq. (A.12):

K̃[1,0] = 0; (A.18)

This recipe results in:

gK
2 (x) =

γ
[1]
K

2β0
log(1−2β0 x); (A.19a)

gK
3 (x) =

x2

1−2β0 x

[
γ
[1]
K

β1

β0
− γ

[2]
K +

1
x

K̃[1]
]
. (A.19b)

where β0 and β1 are the coefficients of the beta functions up to 2 loop:

β0 =
11
3

CA−
2
3

n f , (A.20a)

β1 =
34
3

C2
A−

10
3

CA n f −2CFn f . (A.20b)

Notice that the NLL expression of K̃ coincides with Eq. (A.12) in the limit αS→ 0. With this estimate,
the divergence of K̃ is much less severe but it is still there. An easy way to solve the problem and
ensure that the perturbative QCD computation agrees with the operator definition prediction is to
introduce a cut-off that prevents the soft transverse momentum to reach the UV region when it is
integrated out. This can be implemented in bT -space by introducing a new parameter bMIN ̸= 0 that
provides a minimum value for bT . A modification of the b⋆ prescription, Eq. (1.4), is a simple way to
insert this cut-off directly in the definition of the soft factor. For example, we can use the modified b⋆

prescription of Ref. [59]:

b⃗⋆T (bc(bT )) = b⃗⋆T

(√
b2

T +b2
MIN

)
. (A.21)

Then, the integrated soft factor is given by the unintegrated S̃2-h evaluated in b⋆T (bc(0)) = bMIN. If µ

can be considered a large energy scale (e.g. if it can be set equal to the hard energy scale Q of the
process) then we can set bMIN = c1/µ . Consequently, all logs in Eqs. (A.11) and (A.12) as well as the
soft kernel are zero in bT = 0, while the soft factor is unity Despite this kind of regularization has
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been devised for the 2-h soft factor, it applies equally well to the general soft factor SN-h, where N
can be any integer greater than 2.

A.2 Small bT behaviour of TMDs

Formally, the integrated TMD is the Fourier transformed TMD computed at bT = 0. In order to
recover this result from Eq. (1.26) by applying perturbative QCD, the Fourier transformed TMD has
to be renormalized, otherwise it would vanish in bT = 0. This can be guessed from the structure
of the perturbative Sudakov factor in Eq. (1.26). Differently from the soft case, in the exponent K̃
multiplies ∼ logζ ∝−y1. Therefore, in the large rapidity limit we have a suppression as bT → 0. A
more rigorous proof can be found for instance in Ref. [59]. Alternatively, it also follows from the
resummed expression of the TMD. By using also the results of the previous section, we can compute
the general resummed structure of the (perturbative) Sudakov factor. This operation is easily done by
separating out the part that depends on the rapidity cut-off ζ from the rest of the exponent appearing
in the perturbative Sudakov factor:

exp
{

1
4

K̃(bT ; µb) log
ζ

µ2
b
+
∫

µ

µb

dµ ′

µ ′

[
γD(αS(µ

′), 1)− 1
4

γK(αS(µ
′)) log

ζ

µ ′2

]}
=

= exp
{

1
2

K̃(bT ; µb) log
(

µ

µb

)
+
∫

µ

µb

dµ ′

µ ′

[
γD(αS(µ

′), 1)− 1
2

γK(αS(µ
′)) log

(
µ

µ ′

)]}
×

× exp
{

1
4

log
ζ

µ2

[
K̃(bT ; µb)−

∫
µ

µb

dµ ′

µ ′
γK(αS(µ

′))

]}
. (A.22)

Notice that the general structure for the resummed version of the last exponent has already been
given in Eq. (A.15). Therefore, we only have to focus on the second line of Eq. (A.22). The rapidity-
independent part of the TMD anomalous dimension (obtained setting ζ = µ2) has a small coupling
series totally analogous to that of the anomalous dimension of the soft kernel:

γC(αS(µ), 1) = ∑
n=1

(
αS(µ)

4π

)n

γ
[n]
C , (A.23)
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Therefore, the exponent in the second line of Eq. (A.22) can be recasted as:

1
2

K̃(bT ; µb) log
(

µ

µb

)
+
∫

µ

µb

dµ ′

µ ′

[
γD(αS(µ

′), 1)− 1
2

γK(αS(µ
′)) log

(
µ

µ ′

)]
=

= ∑
n=1

{
1
2

(
αS(µ)

4π

)n

K̃[n,0] log
(

µ

µb

)
+

+ γ
[n]
C

∫
µ

µb

dµ ′

µ ′

(
αS(µ

′)

4π

)n

− 1
2

γ
[n]
K

∫
µ

µb

dµ ′

µ ′

(
αS(µ

′)

4π

)n

log
(

µ

µ ′

)}
=

= ∑
l≥0

log1−l
(

µ

µb

)
gl+1(x) = log

(
µ

µb

)
g1(x)︸ ︷︷ ︸

LL

+g2(x)

︸ ︷︷ ︸
NLL

+ . . . (A.24)

where x has been defined in Eq. (A.16). Following the usual recipe to get the NLL accuracy, with:

γ
[1]
C = 6CF , (A.25)

both for TMD PDFs and TMD FFs, the functions g1 and g2 are given by:

g1(x) =
γ
[1]
K

4β0

[
1+

log(1−2β0 x)
2β0 x

]
, (A.26a)

g2(x) =
γ
[1]
K

4β0

β1

β0

[
x

1−2β0 x
+

1
2β0

(
log(1−2β0 x)+

1
2

log(1−2β0 x)2
)]
−

− γ
[2]
K

8β 2
0

[
2β0 x

1−2β0 x
+ log(1−2β0 x)

]
− γ

[1]
D

2β0
log(1−2β0 x). (A.26b)

Finally, up to NLL the perturbative Sudakov factor is:

pert. Sudakov
factor

low bT∼
(

bT µ

c1

) γ
[1]
K

4β0
× log

corrections. (A.27)

Therefore, the perturbative Sudakov factor produces a suppression as bT → 0. Notice that this holds
true independently from the rapidity cut-off.

The Wilson coefficients cannot modify this behavior. Their αS expansion has the following
structure:

C̃ j
f (ρ, bT ; µ, ζ ) =

∞

∑
n=0

(
αS(µ)

4π

)n 2n

∑
k=0

[k/2]

∑
l=0

C̃
j [n,k−l, l]

f (ρ) logk−l
(

µ

µb

)
logl

(
ζ

µ2
b

)
, (A.28)

where [k/2] denotes the integer part of k. If the scales are fixed according to the standard choices of
Eqs. (1.27), all the logs disappear and the only bT dependence in the Wilson coefficients is given by
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αS(µb). Hence, the TMD at reference scale (see Eq. (1.26)) can be written as:(
C̃ k

j (bT ; µb, ζb)⊗ ck,h(µb)
)
(ξ ) =

= ∑
n=0

(
αS(µb)

4π

)n(
C̃

j [n,0,0]
f ⊗ ck,h(µb)

)
(ξ ). (A.29)

Recalling that the convolution ⊗ of two generic functions f and g is defined as

( f ⊗g)(ξ ) =
∫ 1

x

dρ

ρ
f (ξ/ρ)g(ρ), (A.30)

and that the Wilson Coefficients of the final state have a normalization factor ρ2−2ε when the
convolution is made explicit (see for instance Ref. [58]) we have:

TMD at
reference scale

low bT∼


f j/h(x, µb)+O (αS(µb)) initial state

z−2+2εdh/ j(z, µb)+O (αS(µb)) final state,
(A.31)

where we used that the Wilson coefficients at lowest order are just delta functions, both in flavor
and in the collinear momentum fraction. Furthermore, since µb ∝ 1/bT , when bT → 0 the energy
scale becomes very large and αS can be really considered a small parameter and we are allowed to
neglect O (αS). Eq. (A.31), together with Eq. (A.27), implies the vanishing of the TMDs evaluated
in bT = 0, preventing finding the usual PDFs and FFs in contrast with the operator definition of
Eq. (1.17). Analogously to the soft factor case, this problem can be solved by introducing a new
parameter bMIN ̸= 0 that provides a minimum value for bT . This will act as a cut-off preventing the
collinear transverse momentum to reach the UV region in the integration. Then, the integrated TMD
is given by the unintegrated TMD evaluated in b⋆T (bc(0)) = bMIN ≡ c1/µ:

∫
d2−2ε⃗kT C f ,h(ξ , kT ; µ, ζ ) = C̃ f ,h(ξ , bMIN; µ, ζ ) =


f j/h(x, µ)× suppressed

terms initial state,

z−2+2εdh/ j(z, µ)× suppressed
terms final state.

(A.32)

The bMIN renormalization is not the only way to make sense of the integral over k⃗T . If TMDs are
not at the core of the factorization theorem under examination, a common renormalization procedure
is to define the integrated TMDs as the bare version of the usual PDFs or FFs. Formally:

∫
d2−2ε⃗kT C j,h(ξ , kT ; µ, ζ ) =


f (0)j/h(x, µ) initial state,

z−2+2εd(0)
h/ j(z, µ) final state.

(A.33)
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Here, the label “(0)" stands for bare functions of renormalized fields (that’s where the µ-dependence
on the r.h.s of the previous equations come from). In this form, it appears as the integration makes the
soft-collinear subtractions trivial, because the S2-h appearing in the factorization definition (Eq. (1.21))
is unity when integrated over all soft transverse momentum. To get renormalized quantities, we
have to cancel order by order the UV divergences introduced by the integration through an UV
counterterm, in the following indicated as Zcoll.. This will necessarily depend on the plus component
of the momentum of the reference parton, i.e. on the collinear momentum fraction ξ . Hence, the
renormalized quantities are not simple products of the bare quantities with the UV counterterm, like
in Eq. (1.21), but rather convolutions:

c j,h(ξ , µ) =
(
(Zcoll.)

k
j (αS(µ))⊗ c(0)k,h

)
(ξ ), (A.34)

where, as in Eq. (1.21), the label “(0)" denotes a bare quantity computed with bare fields. With this
definition, we can interpret the renormalized integrated TMDs as the usual PDFs and FFs used in
collinear factorized cross sections. Notice that the OPE of the TMDs at reference scale involves
renormalized PDFs and FFs, as the bare version of the Wilson coefficients can be trivially defined as
the “unsubtracted hard part" in the collinear factorization theorem that fixes the structure of TMDs at
small bT . In fact, straightforwardly:

C̃ j,h(bT ; µ, ζ )
low bT∼ C̃

k (0)
j (bT ; µ, ζ )⊗ c(0)k,h =

=
(
C̃

l (0)
j (bT ; µ, ζ )⊗

(
Z−1

coll.

) m
l (αS(µ))

)
⊗
(
(Zcoll.)

k
m (αS(µ))⊗ c(0)k,h

)
=

= C̃ m
j (bT ; µ, ζ )⊗ cm,h(µ), (A.35)

where the dependence on the collinear momentum fraction has been neglected for simplicity.

A.3 Unpolarized Fragmentation Functions in pQCD

This section is a review of the main formulas for Unpolarized Fragmentation Functions. I will focus
on the gluon-from-quark and the quark-from-quark case, as they are the only relevant configurations
for 1-loop analyses of e+e− annihilation. The cases quark-from-gluon and gluon-from-gluon can be
found in the related literature.

In the following, labeling k the total moment momentum entering in the collinear subgraph, the
momentum of the outgoing parton is P =

(
zk+, 0, 0⃗T

)
, where z is the light-cone momentum fraction.

All the quantities will be computed in the Collins renormalization scheme, which differs from MS
because the common factor:

Sε =
(4π)ε

Γ(1− ε)
(A.36)
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is not ε-expanded.
Often, we have to compute UV-counterterms. This will be achieved by constraining the integra-

tions on kT from µ to infinity. It is useful to recall:

∫
∞

µ

dk2
T
(
k2

T
)−1−ε

=
µ−2ε

ε
, Re(ε)> 0; (A.37a)∫

∞

µ

dk2
T
(
k2

T
)−1−ε

log
(

ζ

k2
T

)
= µ

−2ε

(
− 1

ε2 +
1
ε

log
(

ζ

µ2

))
, Re(ε)> 0. (A.37b)

Since TMDs are properly defined in bT -space, we also have to perform Fourier transforms. Useful
formulas are:

∫
d2−2ε⃗kT ei⃗kT ·⃗bT

1
k2

T
= Q−2ε π1−ε

Γ(1− ε)

(
b
c1

)2ε

e−2ε γE Γ(−ε)Γ(1− ε), Re(ε)< 0; (A.38a)∫
d2−2ε⃗kT ei⃗kT ·⃗bT

1
k2

T
log
(

ζ

k2
T

)
=

= Q−2ε π1−ε

Γ(1− ε)

(
b
c1

)2ε

e−2ε γE Γ(−ε)Γ(1− ε)

(
−H−1−ε +2log

(
b
c1

)
+ log

(
ζ

Q2

))
,

Re(ε)< 0; (A.38b)

where c1 = 2e−γE , b = bT Q, γE is the Euler-Mascheroni constant and H−1−ε is the harmonic number
evaluated at −1− ε .

A.3.1 Gluon-from-quark

The gluon-from-quark configuration starts from O(αS). Then, from the definition of Eq. (1.15), the
lowest order of the gluon-from-quark TMD FF in momentum space is:

αS

4π
D[1]

g/q(ε; z, k⃗T ) =
1
z

∫ dk+ dk−

(2π)D
TrC

NC

TrD

4


γ
+


=

=
αS

4π
2CF Sε

Γ(1− ε)

π1−ε
µ

2ε 1
k2

T

1+(1− z)2− ε z2

z3 θ(1− z). (A.39)

Notice that there are no soft-collinear subtractions for the 1-loop gluon-from-quark TMD FF, as the
configuration in which the emitting fermion turns soft or is reflected backward is suppressed by power
counting. Furthermore, since there are no contributions from virtual emissions, this function is already
renormalized, i.e. there is no need for a TMD UV counterterm ZTMD.
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According to the discussion in the end of the previous section, the integration of Dg/q over
transverse momentum gives the bare gluon-from-quark collinear FF, as in Eq. (A.33). Being a
scaleless integral, in full dimensional regularization the result is zero. However, the renormalized
gluon-from-quark collinear FF does not vanish, as it equals its UV counterterm. From Eq. (A.33):

αS

4π
d(0), [1]

g/q (ε; z) = z2−2ε

∫
d2−2ε⃗kT

αS

4π
D[1]

g/q(z, k⃗T ) = 0 =

=
αS

4π

[
d[1]

g/q(ε; z)−Z[1]
g/q,coll(ε; z)

]
(A.40)

Therefore, by using Eq. (A.37a):

αS

4π
d[1]

g/q(ε; z)≡ αS

4π
Z[1]

g/q,coll(ε; z) =−αS

4π
2CF

Sε

ε

1+(1− z)2

z
θ(1− z). (A.41)

On the other hand, the Fourier transform of Eq. (A.39) gives the gluon-from-quark TMD FF:

αS

4π
D̃[1]

g/q(ε; z, bT ) =
∫

d2−2ε⃗kT ei⃗kT ·⃗bT
αS

4π
D[1]

g/q(z, k⃗T ) =

=
αS

4π
Sε

(
µ

Q

)2ε ( b
c1

)2ε

e−2ε γE Γ(−ε)Γ(1− ε)
1+(1− z)2− ε z2

z3 θ(1− z) =

=
αS

4π

1
z2 Z[1]

g/q,coll(ε; z)+
αS

4π
2CF

(
1
z
−2log

(
bT µ

c1

)
1+(1− z)2

z3

)
. (A.42)

Notice that in the final result survives a pole in ε . This is the collinear divergence associated with
the FF, the cause of the the failure of pQCD in predicting such observables. The perturbative, finite,
quantities associated with TMDs are the Wilson coefficients. Once collinear and TMD parton densities
have been computed, the Wilson coefficient are determined through Eq. (A.35). For FFs, at 1-loop:

C̃
[1]
j/ f (z, bT ; µ, ζ ) = C̃[1]

j/ f (ε; z, bT ; µ, ζ )−
d[1]

j/ f (ε; z)

z2−2ε
(A.43)

For the gluon-from-quark configuration we have:

αS

4π
C̃

[1]
g/q(z, bT ) =

αS

4π
2CF

[
1
z
−2
(

log
(

bT µ

c1

)
− logz

)
1+(1− z)2

z3

]
. (A.44)

A.3.2 Quark-from-quark

For the quark-from-quark configuration, the computations are more difficult. The lowest order is just
a delta function, but for the O(αS) we have to consider both virtual and real gluon emission, besides
the non-trivial subtraction mechanism. For virtual gluon emissions, the bare unsubtracted collinear
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contribution is:

αS

4π
D(0), [1];unsub.

q/q,virtual (ε; z) =
1
z

δ
(
P+− zP+

) ∫ dDk
(2π)D

TrC

NC

TrD

4


γ
+


+h.c.=

=−αS

4π
4CF Sε µ

2ε

∫
∞

0
dk2

T
(
k2

T
)−1−ε

δ (1− z)
∫ 1

0
dα

α

1−α
. (A.45)

As in Eq. (A.33) the label “(0)" stands for bare functions of renormalized fields. To get the true bare
quantity, function of bare fields (labeled by “(0)"), we have to subtract the 1-loop wave function
renormalization factor:

αS

4π
Z[1]

2 (ε) =−αS

4π
CF

Sε

ε
. (A.46)

Since in Eq. (A.45) there is a scaleless integral, the previous equation is zero in full dimensional
regularization. However, there is also an unregulated rapidity divergence, which must be canceled in
the subtraction mechanism. The subtraction term is given by the following soft-collinear contribution:

αS

4π
S[1]2-h,virtual(ε) =

∫ dDk
(2π)D

TrC

NC




+h.c.=

=
αS

4π
4CF Sε µ

2ε

∫
∞

0
dk2

T
(
k2

T
)−1−ε

δ (1− z)
[

1
2

log
(

ζ

k2
T

)
−
∫ 1

0
dα

1
1−α

]
, (A.47)

where ζ is the rapidity cut-off, fixed as in Eq. (1.23). Notice that this term also presents an unregulated
rapidity divergence, that cancels exactly that in Eq. (A.45). Finally, the 1-loop subtracted bare virtual
contribution to the quark-from-quark TMD FF is:

αS

4π
D(0), [1]

q/q,virtual(ε; z) =
αS

4π

[
D(0), [1];unsub.

q/q,virtual (ε; z)−δ (1− z)S[1]2-h,virtual(ε)
]
=

=
αS

4π
4CF Sε µ

2ε

∫
∞

0
dk2

T
(
k2

T
)−1−ε

δ (1− z)
[

1− 1
2

log
(

ζ

k2
T

)]
= 0 =

=
αS

4π

[
D[1]

q/q,virtual(ε; z)−Z[1]
q/q,TMD(ε)δ (1− z)

]
= 0, (A.48)
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where Z[1]
q/q,TMD is related to the UV counterterm of D(0), [1]

q/q,virtual as:

Z[1]
q/q,TMD =

[
UV c.t. of D(0), [1]

q/q,virtual

]
−Z[1]

2 (A.49)

Then finally:

αS

4π
D[1]

q/q,virtual(ε; z) =
αS

4π
Z[1]

q/q,TMD(ε, ζ )δ (1− z) =
αS

4π
2CF Sε

{
− 1

ε2 +
1
ε

[
log
(

ζ

µ2

)
− 3

2

]}
.

(A.50)

Notice that Dq/q,virtual is also the virtual emission cotribution to the collinear quark-from-quark FF.

For real gluon emission, the bare unsubtracted collinear contribution is:

αS

4π
D(0), [1];unsub.

q/q, real (ε; z, kT ) =

=
1
z

∫ dk+dk−

(2π)D
TrC

NC

TrD

4
γ
+




+h.c.


+


=

=
αS

4π
2CF Sε

Γ(1− ε)

π1−ε
µ

2ε 1
k2

T

(
2

z(1− z)
+(1− ε)

1− z
z2

)
θ(1− z). (A.51)

As for the virtual case, there is an unregulated rapidity divergence in z= 1. The subtraction mechanism
solves the problem, as the soft-collinear contribution cancels exactly such divergence.

αS

4π
S[1]2-h, real(ε, kT ) =

∫ dk+dk−

(2π)D
TrC

NC




+h.c.=

=
αS

4π
2CF Sε

Γ(1− ε)

π1−ε
µ

2ε 1
k2

T

(
2
∫ 1

0
dα

1
1−α

− log
(

ζ

k2
T

))
. (A.52)

Therefore, the bare subtracted quark-from-quark TMD FF in momentum space is:

αS

4π
D(0), [1]

q/q, real(ε; z, kT , ζ ) =
αS

4π

[
D(0), [1];unsub.

q/q, real (ε; z, kT )−δ (1− z)S[1]2-h, real(ε, kT )
]
=

=
αS

4π
2CF Sε

Γ(1− ε)

π1−ε
µ

2ε 1
k2

T

(
2

z(1− z)+
+δ (1− z) log

(
ζ

k2
T

)
+(1− ε)

1− z
z2

)
. (A.53)
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A.3 Unpolarized Fragmentation Functions in pQCD

From Eq. (A.33), the integration over transverse momentum gives zero in full dimensional
regularization. Nevertheless, it gives the contribution of the real gluon emission to the bare colliner
quark-from-quark FF:

αS

4π
d(0), [1]

q/q, real(ε; z) = z2−2ε

∫
d2−2ε⃗kT

αS

4π
D(0), [1]

q/q, real(ε; z, kT , ζ ) = 0 =

=
αS

4π

{
d[1]

q/q, real(ε; z)−
[
UV c.t. of d(0), [1]

q/q, real

]}
. (A.54)

This result, together with the virtual emission contribution of Eq. (A.50), gives the renormalized quark-
from-quark collinear FF. Notice that we do not have to consider the quark self-energy contribution, as
it has been already included into the virtual emission term. Therefore:

αS

4π
d[1]

q/q(ε; z) =
[
UV c.t. of d(0), [1]

q/q, real

]
+D[1]

q/q,virtual(ε; z) =

=
αS

4π
Z[1]

q/q,coll(ε; z) =−αS

4π
2CF

Sε

ε

(
2

(1− z)+
−1− z+

3
2

δ (1− z)
)

(A.55)

Notice that the virtual and the real contributions for the integrated subtraction term are exactly equal
and opposite. Hence they cancel in the sum, Eq. (A.54). This explicit computation, shows that the
subtraction mechanism is trivial for integrated TMDs, as the soft factor appearing in the factorization
definition, Eq. (1.21), is unity.

The Fourier transform of Eq. (A.54) gives the bare quark-from-quark TMD FF in bT -space. By
using Eqs. (A.38) we have:

αS

4π
D̃(0), [1]

q/q, real(ε; z, bT , ζ ) =
∫

d2−2ε⃗kT ei⃗kT ·⃗bT
αS

4π
D(0), [1]

q/q, real(ε; z, kT , ζ ) =

=
αS

4π
Sε

(
µ

Q

)2ε ( b
c1

)2ε

e−2ε γE Γ(−ε)Γ(1− ε)×

×
[

2
z(1.− z)+

+(1− ε)
1− z

z2 +δ (1− z)
(
−H−1−ε +2log

(
b
c1

)
+ log

(
ζ

Q2

))]
=

=
αS

4π

[
−Z[1]

q/q,TMD(ε, ζ )δ (1− z)+
1
z2 Z[1]

q/q,coll(ε; z)
]
+

+
αS

4π
2CF

[
1
z2 −

1
z
−2log

(
bT µ

c1

)(
2

(1− z)+
+

1
z2 +

1
z

)
−

−2δ (1− z)
(

log
(

bT µ

c1

)
log
(

ζ

µ2

)
+ log2

(
bT µ

c1

))]
(A.56)

The renormalized quark-from-quark TMD FF is obtained by summing the virtual emission contribution
from Eq. (A.50). As for the case of integrated quantities, the wave function renormalization factor has
already been included into the virtual term. Notice how the combination of real and virtual emission
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Review of the Collins formalism

leaves only the collinear pole of the TMD, associated with Zq/q,coll:

αS

4π
D̃(0), [1]

q/q, real(ε; z, bT , ζ ) =
αS

4π

[
D̃(0), [1]

q/q, real(ε; z, bT , ζ )+D[1]
q/q,virtual(ε; z)

]
=

=
αS

4π

1
z2 Z[1]

q/q,coll(ε; z)+

+
αS

4π
2CF

[
1
z2 −

1
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−2log

(
bT µ

c1

)(
2

(1− z)+
+

1
z2 +

1
z

)
−

−2δ (1− z)
(

log
(

bT µ

c1

)
log
(

ζ

µ2

)
+ log2

(
bT µ

c1

))]
(A.57)

Finally, the quark-from-quark Wilson coefficient can be obtained by inserting Eq. (A.57) and
Eq. (A.54) into Eq. (A.43):

αS

4π
C̃

[1]
q/q(z, bT , ζ ) =

αS

4π
2CF

[
1
z2 −

1
z
−2
(

log
(

bT µ

c1

)
− logz

)(
2

(1− z)+
+

1
z2 +

1
z

)
−

−2δ (1− z)
(

log
(

bT µ

c1

)
log
(

ζ

µ2

)
+ log2

(
bT µ

c1

))]
(A.58)

A.4 Unpolarized Fragmentation Functions at LL and NLL accuracy

The TMDs expressed as solution of RG and CS evolution equations, Eq. (1.26), have the same
structure of resummed quantities and, indeed, they can be actually obtained through a resummation of
the soft gluons emissions in 2-h class cross sections. In fact, they have a reference scale piece, encoded
into the OPE, multiplying the exponential associated to the evolution-dependent part, encoded into
the Sudakov factor. Therefore, they should be computed by properly counting the large logarithms
in the exponent of the Sudakov factor. In the following, I will focus on the Unpolarized TMD FFs.
With the help of Eqs. (A.16) (A.26) and (A.19), besides the explicit expressions for the NLO Wilson
coefficients of Eqs. (A.44) and (A.58), we can easily build:

• The LL-accuracy by setting the Wilson coefficient to LO and the perturbative Sudakov factor at
LL:

D̃LL
1, f/h(z, bT ; µ, ζ ) =

1
z2 dh/ f (z, µb) exp

{
log
(

µ

µb

)
g1(x)+

1
4

log
(

ζ

Q2

)
gK

2 (x)
}
×

×MD1, f/h(z, bT ) exp
{
−1

4
gK(bT ) log

(
z2 ζ

M2
h

)}
. (A.59)
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A.4 Unpolarized Fragmentation Functions at LL and NLL accuracy

• The NLL-accuracy, by setting the Wilson coefficient to NLO and the perturbative Sudakov
factor at NLL:

D̃NLL
1, f/h(z, bT ; µ, ζ ) =

1
z2

(
dh/ f (z, µb)+

+
αS(µb)

4π

∫ 1

z

dρ

ρ

{
dh/ f (z/ρ, µb)

[
ρ

2 C
[1]
q/q(ρ)

]
+dh/g(z/ρ, µb)

[
ρ

2 C
[1]
g/q(ρ)

]})
×

× exp

log
(

µ

µb

)
g1(x)+g2(x)

1
4

log
(

ζ

Q2

)gK
2 (x)+

1

log
(

µ

µb

)gK
3 (x)

×
×MD1, f/h(z, bT ) exp

{
−1

4
gK(bT ) log

(
z2 ζ

M2
h

)}
(A.60)
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Appendix B

Kinematics of e+e−→ hX

The initial state of the hadronic process is an e+e− pair, where the electron has momentum l1 and
the positron l2. The two leptons annihilate in a virtual photon1 with momentum q, associated to a
total energy Q =

√
q2 available in the c.m. . The observed hadron, of momentum P, belongs to a jet

initiated by a parton produced in the e+e− annihilation of momentum k. The study of kinematics
is strictly connected to the choice of the frame. Clearly, this is completely arbitrary since the cross
section will be Lorentz invariant. Three main frames are useful in deriving the final form of the
factorized cross section.

1. Hadron frame, labeled by (h). This is the frame where the outgoing hadron h has no transverse
components and it moves very fast along the (positive) Z(h)-direction:

P⃗T,(h) = 0⃗T . (B.1)

Furthermore, since h is strongly boosted in the plus direction its plus component is very large,
of order ∼ Q. As a consequence, its minus component has to be very small in order to satisfy
the on-shell condition P2 = 2P+

(h) P−(h) = M2
h . Therefore, in this frame, the full four-momentum

P can be written as:

P =

(
P+
(h),

M2

2P+
(h)

,⃗0T

)
∼ Q

(
1,

M2

Q2 , 0
)
. (B.2)

The fragmenting parton belongs by definition to the same collinear group of the outgoing
hadron, hence it has a very large plus component, a low transverse momentum and an even
lower minus component. It is almost on-shell, with a very low virtuality. Neglecting all the
suppressed components, k and P become exactly collinear, i.e. k ∝ P. This can be made explicit
by setting:

k+(h) =
1
ẑ

P+
(h), (B.3)

1since the c.m. energy is around 10 GeV, heavy EW bosons are exluded.
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Kinematics of e+e−→ hX

Fig. B.1 Momentum flow that determines the kinematics boundaries on ẑ.

Therefore P∼ ẑ k, and

k =

(
P+
(h)

ẑ
, k−(h) ,⃗kT,(h)

)
∼ Q

(
1,

λ 2

Q2 ,
λ

Q

)
, (B.4)

where λ ≪ Q is the infrared scale introduced by power counting (see Appendix A). Since
power counting rules are defined in the hadron frame, this is the most appropriate frame where
to implement factorization. We can interpret ẑ as the collinear momentum fraction that the
outgoing hadron takes off the fragmenting parton. Clearly ẑ has kinematics boundaries, due
to the requirement that all the particles crossing the final state cut are physical, i.e. they have
positive energy. With the help of Fig. B.1 and by applying the power counting rules, we obtain
the following constraints:

• Positive energy for the final state of the jet

(k−P)0
(h) ∼ k+(h)−P+

(h) = P+
(h)

(
1
ẑ
−1
)
≥ 0, (B.5)

which gives ẑ≤ 1.

• Positive energy in the hard part of the process (given that q−(h) > 0)

(q− k)0
(h) ≥ 0→ q+(h)− k+(h) =

Q√
2

(
1−

P+
(h)

q+
1
ẑ

)
≥ 0. (B.6)

The fractional energy zh is defined as:

zh = 2
P ·q
q2 =

P+
(h)

q+
= 2

Ec.m.

Q
(B.7)

where Ec.m. is the energy of the detected hadron in the center of mass frame. Then
Eq. (B.6) gives the kinematics boundary: ẑ≥ zh, with zh ≤ 1.
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Fig. B.2 The LAB frame and the (h)-frame are both c.m. frames, but differ by a spatial rotation.

2. c.m. frame, labeled by (c.m.). In this frame the spatial momentum of q is zero

q⃗(c.m.) = 0⃗ . (B.8)

Since rotations send null spatial vectors into null spatial vectors, the condition in Eq. (B.8)
is defined modulo a rotation in space. Therefore, if we set the Z-axis of this frame to be the
direction of the outgoing hadron, we can identify the hadron frame with the c.m. frame and
apply power counting and the whole factorization procedure directly in this frame. This is a big
advantage, since usually the calculation of the hard part of the cross section is much easier in
the c.m. frame but in general it does not coincide with the hadron frame, which on the other
hand makes simpler the application of the factorization procedure2. Hence, from now on, we
will set c.m≡ (h).

Notice that the LAB frame, in which the Z-axis coincide with the beam axis, is a valid c.m.
frame but it is not the hadron frame, as they differ by a spatial rotation, as shown in Fig. (B.2).
The lepton pair is back-to-back in both the frames, but the direction of their spatial momenta is
different.

2For example, this is the case of e+e−→ hA hB X , with the two hadrons almost back-to-back. In this case, the hadron
frame is defined as the frame in which both hadrons have zero transverse momentum, i.e. where they are exactly back-to-
back. However, a spatial rotation can fix only one hadron and the c.m. frame cannot be identified with the (h)-frame. The
two frames are actually connected by a light boost in the transverse direction, where the boost parameter is (proportional
to) qT,(h). As a consequence, we need boost-dependent projectors connecting the collinear and the hard parts of the cross
section. In principle, we can use a boost also in the case of the production of a single hadron, however the boost will depend
on qT,(h) which, in this case, is not observed.
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3. Parton frame, labeled by (p). As explained in Ref. [7], in order to properly define a fragmenta-
tion function we need a frame in which the fragmenting parton has zero transverse momentum.
This is the parton frame, defined by requiring

k⃗T,(p) = 0⃗T . (B.9)

In principle we have two Lorentz transformations available that we can use to reach the parton
frame from the hadron frame: a rotation of the (small) angle between the fragmenting parton
and the outgoing hadron and a (light) transverse boost in the k⃗T,(h) direction. By defining
k⃗ = k⃗T,(h)/k+(h), the angle of the rotation is α = −

√
2k, while the parameter of the boost is

β⃗ =
√

2⃗k. The two choices give the same result:

k =

(
k+(h), k−(h)−

k2
T,(h)

2k+(h)
,⃗0T

)
p

+O

(
λ 2

Q2

)(
1,

λ 2

Q2 , 1
)

; (B.10)

P =

(
ẑ k+(h),

M2 + ẑ2 k2
T,(h)

2ẑ k+(h)
,−ẑ⃗ kT,(h)

)
p

+O

(
M2, λ 2

Q2

)(
1,

M2, λ 2

Q2 , 1
)
. (B.11)

Notice that the plus components remain the same in the two frames (apart from power suppressed
corrections). In this frame we can identify the Z(p)-axis as the axis of the experimental jet of
hadrons in which h is detected. In fact, all the (almost) collinear particles in the jet have been
generated by the same fragmenting parton and hence the sum of their spatial momenta has to
be equal to k⃗(p) = |⃗k| Ẑ(p), that lies on the (positive) Z direction in this frame.

Since, PT,(p) gives the transverse momentum of the outgoing hadron with respect the jet axis, its
measurement probes the transverse motion of the partons inside the detected hadron. However, the
determination of the jet axis is not easy. The direction of the fragmenting parton (positive Z(p)-axis)
coincides with the partonic thrust axis n̂part., which is the direction that maximizes the partonic thrust
T̂ defined as

T̂ =
∑i |⃗k(c.m.), i · n̂part.|

∑i |⃗k(c.m.), i|
, (B.12)

where the sum runs over all the partons produced in the hard scattering, and k⃗(c.m.), i ≡ k⃗(h), i is
the spatial momentum of the i-th outgoing in the c.m. frame. For example, in the case of two
(back-to-back) partons T̂ = 1 and n̂part. is the axis of the parton pair, while for three partons T̂ =

max{x1, x2, x3} ≥ 2/3, with xi = 2|⃗k(h), i|/Q, and n̂part. is the direction of the i-th parton. However, the
partonic thrust axis cannot be accessed experimentally. The thrust axis provided by the measurement
is the hadronic thrust axis n̂had., which is the direction that maximizes the hadronic thrust T defined as

T =
∑i |P⃗(c.m.), i · n̂had.|

∑i |P⃗(c.m.), i|
, (B.13)
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where now the sum runs over all the detected particles in the c.m. frame (e.g. the LAB frame).
The variable T describes the topology of the final state and it ranges from 0.5 to 1, where the lower
limit corresponds to a spherical distribution of final state particles, while the upper limit realizes a
pencil-like event. Its value is close to its partonic counterpart, but they are not the same. As shown
in Ref. [46], the observed distribution of hadronic thrust is related to the distribution with respect to
the partonic thrust (which can be computed in perturbation theory) by a correlation function C(T, T̂ )
that is sharply peaked around T ∼ T̂ . Therefore, the direction which maximizes the hadronic thrust is
approximately the same axis that maximizes the partonic thrust, i.e. n̂part. ∼ n̂had. ≡ n̂. The estimate
of how much they differ can be made more quantitative in the simple case of a 2-jet configuration.
In fact, in this case we have T̂ = 1 and T ∼ 1− (M2

1 +M2
2)/Q2 (see Ref. [46], where M1,2 is the

invariant mass of the hadronic jets. Hence T̂ −T ∼O(M2/Q2). This approximation is crucial for the
interpretation of the transverse momentum measured in the BELLE experiment. In fact, the transverse
momentum of the detected hadron with respect to the (hadronic) thrust axis can be really considered
as the transverse momentum with respect to the jet axis, the direction of the fragmenting parton.
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Appendix C

Virtual gluon emission up to NLO

In this section I will review the results for the contribution of the virtual vertex corrections in
e+e− annihilations up to NLO. Such contributions enter as fundamental functions appearing in the
factorization theorems. For instance, they are the vertex functions V and V ⋆ in the factorization of the
partonic tensor of e+e−→ hX for a 2-jet configuration, as depicted in Fig. 2.2b.

At lowest order (LO) the virtual emission contribution coincides with the LO partonic tensor in
the 2-jet topology case., as shown in Fig C.1. In fact, at LO the subtraction mechanism described in
the Section 2.4.1 is trivial. From Eq. (2.33) we have:

Ŵ µν ; [0]
j (z, T ) = ˜̂W µν ;uns.; [0]

j (z, T ). (C.1)

Notice that at LO the total transverse momentum of the radiation collinear to the fragmenting quark is
trivially zero, as there is no radiation at all. Therefore, in transverse momentum space the unsubtracted
partonic tensor multiplies a δ (⃗kT ) which gives just 1 after the Fourier transform. This is the reason of
the lack of any bT dependence in the previous equation. Moreover, the LO is finite and hence also
any ε-dependence has been removed. The r.h.s of the Eq. (C.1) is given by the lowest order Feynman
diagrams for the topology considered. The squared matrix element, summed over all spins and colors
of the fragmenting quark, is given by:

Mµν ; [0]
f (ε; µ, Q) = =

= e2
f ∑

s1,c
ūc, f (k1, s1)γ

µ /k2 γ
ν uc, f (k1, s1) = e2

f NC Tr{/k1 γ
µ /k2 γ

ν} , (C.2)
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Virtual gluon emission up to NLO

Fig. C.1 The lowest order Feynman graph contributing to the (unsubtracted) partonic tensor for a 2-jet
topology.

The projections onto the relevant Lorentz structures, as in Eqs. (2.7), are:

−gµνMµν ; [0]
f = 8e2

f NC(1− ε)k1 · k2 = 4e2
f NC(1− ε)Q2; (C.3)

k1,µ k1,ν

Q2 Mµ ν

f
[0] = 0, (C.4)

where we used momentum conservation k1 + k2 = q. Since the projection of Eq. (C.4) is zero, the
final state tensor will be written as in Eq. (2.12) and the partonic cross section will only have the
transverse projection. Moreover, the configuration described by Eq. (C.2) is an exact, pencil-like,
final state. Therefore the dependence on the thrust is trivially δ (1−T ). The phase space integral only
involves k2:

−gµνŴ µν [0]
f (ẑ, T ) =

=
1

4π

∫ dDk2

(2π)D

(
−gµνMµ ν

f
[0]
)
(2π)D

δ
(D) (q− k1− k2) (2π)δ

(
k2

2
)

θ(k+2 )θ(k−2 )δ (1−T ) =

= 2e2
f NC(1− ε)δ (1− z) δ (1−T ) = 2F̂ [0]

1, f , (C.5)

where the factor 1/(4π) is the normalization of the hadronic tensor fixed according to Eq. (2.5).
Finally:

Ŵ µ ν

f
[0](z, τ) = Hµν

T F̂ [0]
1, f (z, τ), (C.6)

where the transverse tensor Hµν

T has been defined in Eq. (2.13). The resulting partonic cross section
follows from Eq. (2.10a) and is given by:

dσ̂
[0]
f

dzdT
= σB z F̂ [0]

1, f (z, τ) =
4πα2

3Q2 e2
f NC δ (1− z) δ (1−T ) (C.7)
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where the Born cross section σB has been defined in Eq. (2.11). Hence the LO is in practice just a
constant. Then, it is useful to define the following quantities:

H0, f = e2
f 2NC (1− ε); (C.8a)

H0 = ∑
f

H0, f , (C.8b)

At Next-Lowest Order (NLO), the emitted gluon is virtual and the final state still hosts two
particles: the outgoing quark, of flavor f and momentum k1, and the antiquark crossing the final state
cut, of momentum k2. Momentum conservation sets q = k1 + k2. The 1-loop squared amplitude is
given by:

Mµ ν

f ,V
[1](ε; µ, Q) = +h.c.=

= e2
f

∫ d4−2ε l
(2π)4−2ε

ū(k1)(−ig0γ
αta)

i(/k1−/l )
(k1− l)2 + i0

γ
µ i(−/k2−/l )
(k2 + l)2 + i0

×

× (−ig0γ
β tb)/k2 γ

ν u(k1)
−igα β δab

l2 + i0
+h.c.=

= i e2
f g2

µ
2ε CF NC

∫ d4−2ε l
(2π)4−2ε

Tr
{
/k1 γα (/k1−/l )γµ (/k2 +/l )γα /k2 γν

}
[(k1− l)2 + i0] [(k2 + l)2 + i0] [l2 + i0]

+h.c. (C.9)

This expression can be properly simplified by decomposing the Dirac structure in its scalar, vector
and tensor parts, by using momentum conservation and the Passarino-Veltman reduction formula [60].
This leads to:

Mµ ν

f ,V
[1](ε; µ, Q) = Mµ ν

f
[0]V [1](ε; µ, Q), (C.10)

which simply asserts that the 1-loop squared matrix element for the virtual emission of a gluon is the
lowest order M[0]

f , computed in Eq. (C.2), “dressed" with the vertex factor V . As a consequence, the
corresponding contribution to the final state tensor will be simply proportional to the lowest order,
computed in Eq. (C.5). Hence:

W µν , [1]
f ,V (ε; z, τ, µ, Q) = Hµν

T F̂ [0]
1, f (z, τ)V [1](ε; µ, Q). (C.11)
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The 1-loop vertex factor is given by:

αS

4π
V [1](ε; µ, Q) = ig2

µ
2ε CF

{
−4(1− ε)2 I(3)0

2(1− ε)
+

+2Q2

[
I0 +

2
Q2 I(3)0 − (1− ε)

(
− 1

Q2

I(3)0
2(1− ε)

)]}
+h.c., (C.12)

where I introduced the integrals I0 and I(3)0 defined as:

I0 =
∫ d4−2ε l

(2π)4−2ε

1
[(k1− l)2 + i0] [(k2 + l)2 + i0] [l2 + i0]

=

=
i
ε

Γ(1+ ε)

(4π)2−ε
(−Q2)−1−ε B(−ε, 1− ε); (C.13)

I(3)0 =
∫ d4−2ε l

(2π)4−2ε

1
[(k1− l)2 + i0] [(k2 + l)2 + i0]

=

= i
Γ(ε)

(4π)2−ε
(Q2)−ε B(1− ε, 1− ε). (C.14)

Therefore:

αS

4π
V [1](ε; µ, Q) =−αS

4π
CF Sε

(
µ

Q

)2ε

(−1)−ε Γ(1− ε)3 Γ(1+ ε)

Γ(1−2ε)
×

×
(
− 2Γ(−ε)

ε Γ(1− ε)
+

(−1)−ε(3+2ε)Γ(ε)

(1−2ε)Γ(1+ ε)

)
+h.c.=

=−αS

4π
2CF Sε

[
2
ε2 +

2
ε

(
3
2
+ log

µ2

Q2

)
+8−π

2 +3log
µ2

Q2 +

(
log

µ2

Q2

)2
]

(C.15)

Finally, the contribution of the virtual gluon emission up to NLO is given by:

W µν

f ,V (ε; z, τ, µ, Q) = Hµν

T e2
f NC δ (1− z)δ (1−T )

(
1+

αS

4π
V [1](ε; µ, Q)

)
. (C.16)
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Appendix D

Thrust and 2-jet topology

In e+e− annihilation, the 2-jet case is the most probable configuration, as any further jet is associated
to an extra power of αS at partonic level. Therefore, often it is useful to define the variable τ = 1−T
and study the behavior of the cross section in the small-τ limit, which corresponds to a 2-jet topology
of the final state. In this case, the thrust axis n⃗ defines two opposite hemispheres: SA, which points
along the direction of the thrust axis, and SB, which points backwards, along the direction ⃗̄n opposite
to n⃗. Then, from Eq. (B.13) the value of τ is well approximated by the sum of the invariant masses of
the two jets produced in the final state (see Ref. [46, 47]):

τ =
M2

A
Q2 +

M2
B

Q2 . (D.1)

This relation is extremely important in perturbative calculations, since the invariant masses MA and
MB can be computed explicitly at partonic level by considering the full momentum flowing into each
hemisphere. Clearly, the r.h.s. of Eq. (D.1) is trivially zero only when all partons emitted into each
hemisphere are virtual. All other cases require at least one real emission. Therefore, at 1-loop level the
non-trivial configurations have three real particles in the final state. A 2-jet topology can be achieved
either when one of them is soft or when two of them move collinearly.

Despite its importance, the study of thrust is not covered by Collins factorization formalism, as
the soft and collinear factors defined in Sections 1.2 and 1.3 do not take it into account. However,
thrust can be introduced in the formalism thanks to Eq. (D.1), which relates it to the total momentum
flowing into soft and collinear contributions, with the further constraint of the hemisphere selection.
Actually, this further information is relevant only for soft radiation, which can really be emitted in
each hemisphere with the same probability. The collinear cases are simpler, as the property of being
collinear already constrain the particles to be emitted only into one hemisphere. Moreover, thrust
acts naturally as a rapidity cut-off and rapidity divergences are regulated by the topology of the final
state instead that by tilting the soft Wilson lines, see Appendix A. Therefore, usually rapidity cut-offs
are not included into a standard presentation of the thrust-dependent functions. The implementation
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Thrust and 2-jet topology

of the thrust-dependency into the “full" Collins factorization formalism, i.e. keeping all the rapidity
cut-offs, is investigated in Chapter 3. Notice that, again, this issue is relevant only for soft factors, as
the collinear contributions are already defined without rapidity cut-offs in the Collins factorization
formalism. In this section I will follow the standard methods by removing any track of the rapidity
regulators from the kinematics approximators TR reviewed in Appendix A, leaving to the thrust the
task to regulate the rapidity divergences. I will add a label “◦" to the approximators defined without
the rapidity cut-offs. Since only the approximators of soft momentum regions are affected by this
modification, at 1-loop we have trivially ◦TA ≡ TA and ◦TB ≡ TB.

In the following I will use the same conventions used through this thesis, labeling with k1, k2

and k3 the momenta of the quark, the antiquark and the gluon. The quark is assumed to generate
the collinear factor in the SA-hemisphere, while the antiquark generates the collinear factor in the
opposite direction. All the TMD effects are not considered in this section. Therefore, all the quantities
are integrated over k⃗T , the total transverse momentum entering into the relevant collinear subgraph.

D.1 Soft Thrust Function

The 1-loop soft thrust function S(ε, τ) is obtained as a result of the application of the soft approximator
◦TS, i.e. by eikonal-approximating the propagators of the quark and the antiquark along the plus- and
the minus-direction respectively. The soft approximation applied to the r.h.s of Eq. (D.1) gives:

k(S)1 =
(

q+, 0, 0⃗T

)
, (D.2)

k(S)2 =
(

0, q−, 0⃗T

)
, (D.3)

k(S)3 =
(

l+, l−, l⃗T
)
, (D.4)

where q+ = q− = Q/
√

2. Notice that the soft approximation leaves k3 unchanged in its functional
form, but the size of all its components are now of order λ 2/Q, where λ is a very low energy scale
according to power counting. Depending on the hemisphere in which the soft gluon has been emitted,
we have two different, equally probable, configurations:

τ = y(S)2 =
l−

q−
, if SA emission, i.e. l+ > l−; (D.5a)

τ = y(S)1 =
l+

q+
, if SB emission, i.e. l− > l+. (D.5b)
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D.2 Jet Thrust Function (backward emission)

Therefore, by defining the usual light-like directions w1 = (1, 0, 0⃗T ) and w2 = (0, 1, 0⃗T ), the 1-loop
soft thrust function is obtained as:

αS

4π
S[1](ε, τ) =

∫ dDl
(2π)D

TrC

NC

 +h.c.

 (2π)δ+
(
l2)×

×
[

δ

(
τ− l−

q−

)
θ
(
l+− l−

)
+δ

(
τ− l+

q+

)
θ
(
l−− l+

)]
=

=
αS

4π
8CF Sε

(
µ

Q

)2ε

τ
−1−2ε 1

ε
. (D.6)

Notice that all the divergences of S(ε, τ) are regulated by dimensional regularization, and we did not
encounter any unregulated rapidity divergence. As anticipated, this is due to the explicit presence of
τ , that acts as a regulator. In fact, the expression in Eq. (D.6) is divergent if either ε or τ vanish. The
ε-expansion of Eq. (D.6) follows from its integrability property. In fact, S[1](ε, τ) is integrable with
respect to τ , but its trivial expansion in powers of ε does not. This problem is solved by considering
an expansion in terms of τ distributions instead of functions. Then, one can easily prove that:

τ
−1−ε =−1

ε
δ (τ)+

(
1
τ

)
+

− ε

(
logτ

τ

)
+

+O
(
ε

2) , Re ε < 0, (D.7)

which is a easy application of the trick of Eq. (3.8).

D.2 Jet Thrust Function (backward emission)

The 1-loop jet thrust function J(ε, τ) is obtained by applying the collinear approximator either TA

or TB, i.e. eikonal-approximating the propagator of the parton that goes into the opposite (light-like)
direction. The jet thrust function is integrated over the associated collinear momentum fraction. In
the factorization of e+e−→ hX this is realized by the contribution of the radiation emitted backward
with respect to the detected hadron. Therefore, in the following I will consider the gluon collinear to
the antiquark, which is directed into the SB-hemisphere. The case of a gluon collinear to the quark is
totally analogous. The TB approximator applied to the momenta gives:

k(B)1 =
(

q+, 0, 0⃗T

)
, (D.8)

k(B)2 =

(
l2
T

2(q−− l−)
, q−− l−, −⃗lT

)
, (D.9)

k(B)3 =

(
l2
T

2l−
, l−, l⃗T

)
, (D.10)
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Thrust and 2-jet topology

As in the previous case, the backward approximation leaves k3 unchanged in its functional form,
but resizes its components as l+ ∼ λ 2/Q, l− ∼ Q and lT ∼ λ , where λ is a very low energy scale
according to power counting. The emission of the collinear gluon into the SA-hemisphere is suppressed
by the action of TB, therefore we only have to consider the emission in the SB-hemisphere:

τ = y(B)1 =
l2
T

Q2
q−

l−
1

1− l−
q−

, if SB emission, i.e. l− > l+. (D.11)

By defining k = k(B)2 + k(B)3 as the total momentum entering into the antiquark hemisphere, the 1-loop
jet thrust function is:

αS

4π
J[1](ε, τ) = 2(2π)D−1

∫ dk+ dD−2⃗kT

(2π)D

∫ dDk2

(2π)D ×

× TrC

NC

TrD

4
γ
−



 +h.c.

+

×

× (2π)δ+
(
k2

2
)
(2π)δ+

(
(k− k2)

2)
δ
(D−2)(⃗kT )δ

(
τ− k+

q+

)
θ
(
k−− k−2

)
=

=
αS

4π
4CF Sε

(
µ

Q

)2ε

τ
−1−ε

[
B(2− ε,−ε)+

1− ε

2
B(1− ε, 2− ε)

]
. (D.12)

Notice that in J(ε, τ) the thrust acts as a regulator for the rapidity divergences, as in Eq. (D.6). As
a consequence, there is no overlapping with the soft momentum region and, contrary to the Collins
factorization scheme, no subtraction is required.

D.3 Fragmenting Jet Function

The fragmenting jet function (FJF) J j/h describes the fragmentation of the parton j to the hadron h
and, iin addition to the light-cone momentum fraction, the invariant mass of the jet is measured [61].
In the following, I will review the 1-loop computation of their partonic version, focusing on the
gluon-from-quark and quark-from-quark case. Also, I assume that the gluon is emitted collinearly to
the quark, i.e. into the SA-hemisphere. Therefore, such functions are obtained through the action of
the approximator TA. From Eq. (D.1), the invariant mass of the the jet is M2

A = τ Q2 and hence the
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D.3 Fragmenting Jet Function

thrust-dependence will replace the dependence on MA. The action of TA gives the momenta:

k(A)1 =
(

zq+, 0, 0⃗T

)
, (D.13)

k(A)2 =
(

0, q−, 0⃗T

)
, (D.14)

k(A)3 =

(
(1− z)q+,

l2
T

2(1− z)q+
, l⃗T

)
, (D.15)

where z represents the fractional energy associated to the partonic process:

z =
2k1 ·q

q2 =
k+1
q+

. (D.16)

The emission of the collinear gluon into the SB-hemisphere is suppressed by the action of TA, hence
the only relevant configuration is given by:

τ = y(A)2 =
z

1− z
l2
T

Q2 , if SA emission, i.e. l+ > l−. (D.17)

In the following, k = k(A)1 +k(A)3 identifies the total momentum entering the considered SA-hemisphere.

D.3.1 Gluon-from-quark

The 1-loop gluon-from-quark fragmentation jet function is given by:

αS

4π
J[1]g/q(ε; τ, z) =

∫ dk−

(2π)D d2−2ε⃗kT
TrC

NC

TrD

4
γ
+




×

× (2π)δ
(
(k− k1)

2)
δ

(
τ− z

1− z
k2

T

Q2

)
θ(1− z) =

=
αS

4π
2CF Sε

(
µ

Q

)2ε

θ(1− z)
(

z
1− z

)ε 1+(1− z)2− εz2

z2 τ
−1−ε . (D.18)
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Thrust and 2-jet topology

D.3.2 Quark-from-quark

The case of a fragmenting fermion involves more Feynman graphs. The 1-loop quark-from-quark
fragmentation jet function is given by:

αS

4π
J[1]q/q(ε; τ, z) =

∫ dk−

(2π)D d2−2ε⃗kT ×

× TrC

NC

TrD

4
γ
+



 +h.c.

+

×

× θ(1− z)δ

(
τ− z

1− z
k2

T

Q2

)
=

=
αS

4π
4CF Sε

(
µ

Q

)2ε

θ(1− z)zε

[
(1− z)−1−ε +

1− ε

2
(1− z)1−ε

z

]
τ
−1−ε . (D.19)
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Appendix E

Solution of Integrals through Mellin
transforms

In this section, I present the solution of the non-trivial integral appearing in the Fourier transform of
the soft thrust factor in Section 3.5. The Mellin transform trick is taken from Ref. [62].

Consider the integral of Eq. (3.46). Its solution can be obtained by exploiting the convolution
property of the Mellin transforms:

∫
∞

0
dyh(y)g(ay) =

∫
δ+i∞

δ−i∞

du
2πi

a−uĥ(1−u)ĝ(u) (E.1)

where f̂ denotes the Mellin transform of the function f . The off-set δ in Eq. (E.1) is a real number
that lies in the intersection of the convergence region of ĥ and ĝ.

This property can be applied to Iεa, r if we first change variable x 7→ y−2. Then:

Iε (a, r) = 2
∫

∞

0
dy

y−1−ε

1− r y2 θ(1− y)︸ ︷︷ ︸
hε,r(y)

J−ε (ay)︸ ︷︷ ︸
gε (ay)

(E.2)

The Mellin transforms are:

ĥε,r(u) =−
1
r

1
3+ ε−u 2F1

(
1,

3+ ε−u
2

;
5+ ε−u

2
;

1
r

)
, for Re(u)< 3+Re(ε); (E.3)

ĝε(u) = 2−1+u Γ
(
− ε

2 +
u
2

)
Γ
(
1− ε

2 −
u
2

) , for Re(ε)< Re(u)<
3
2
. (E.4)
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Solution of Integrals through Mellin transforms

Fig. E.1 Graphical representation of the Mellin conjugate space. The integrand function in Eq. (E.8)
has two sets of poles in u = −2k + ε , for k ≥ 0 and in u = −2k− ε , for k ≥ 1. The first set is
due associated with the Gamma function Γ

(
− ε

2 +
u
2

)
, the second to the hypergeometric function.

The green strip between ε and 3/2 is the "strip of initial definition" (SID) and coincides with the
intersection of the convergence regions of the two functions gε and hε,r. The integration path must lie
into the SID. Finally, since the hypergeometric function produces an essential singularity in u→+∞,
we must close the contour to the left.

Therefore, we can choose Re(ε)< δ < 3/2. Finally:

Iε (a, r) =

=−1
r

∫
δ+i∞

δ−i∞

du
2πi

(a
2

)−u Γ
(
− ε

2 +
u
2

)
Γ
(
1− ε

2 −
u
2

) 1
2+ ε +u 2F1

(
1, 1+

ε

2
+

u
2

; 2+
ε

2
+

u
2

;
1
r

)
=

= S1(ε, a, r)+S2(ε, a, r) (E.5)

where we have defined the two series:

S1(ε, a, r) =−1
r

∞

∑
k=0

Res
u=−2k+ε

fε(u, r), (E.6)

S2(ε, a, r) =−1
r

∞

∑
k=1

Res
u=−2k−ε

fε(u, r) (E.7)

with:

fε(u, r) =
(a

2

)−u Γ
(
− ε

2 +
u
2

)
Γ
(
1− ε

2 −
u
2

) 1
2+ ε +u 2F1

(
1, 1+

ε

2
+

u
2

; 2+
ε

2
+

u
2

;
1
r

)
. (E.8)

Consider first S1. We have:

S1(ε, a, r) =−
(a

2

)−ε

rε
∞

∑
k=0

(−1)k

k!

(a
2

)2k
r−k 1

Γ(1+ k− ε)
B1/r(1+ ε− k,0) (E.9)
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If r = r1 ≡ e−2y1 , as in the first term of Eq. (3.45), we are interested in the limit r1→ 0. Since:

B1/r1(1+ ε− k,0) =

=−(−1)−ε+k Γ(2+ ε− k)Γ(−ε + k)
1+ ε− k

− r−1−ε+k
1

(
Γ(ε− k)Γ(2+ ε− k)

(1+ ε− k)Γ(1+ ε− k)2 r+O
(
r2

1
))

,

(E.10)

we have:

S1(ε, a, r1) =−(−1)−ε π

sin(επ)
rε/2

1 J−ε

(
a
√

r1

)
−

−
(a

2

)−ε 1
ε2Γ(−ε)

1F2

(
−ε; 1− ε,1− ε;−a2

4

)
+O

(
r2

1
)

(E.11)

On the other hand, if r = 1/r2 ≡ e−2y2 , as in the second term of Eq. (3.45) we are interested in the
limit r2→ 0. Since:

Br2(1+ ε− k,0) = r1+ε−k
2

(
1

1+ ε− k
+O (r2)

)
, (E.12)

Therefore:

S1

(
ε, a,

1
r2

)
=

=−
(a

2

)−ε 1
(1+ ε)Γ(1− ε)

1F2

(
−1− ε; 1− ε,−ε;−a2

4

)
r2 +O

(
r2

2
)
= O (r2) . (E.13)

Consider now S2. We have:

S2(ε, a, r) =− a
4r

(a
2

)ε

Γ(−1− ε)−
(a

2

)ε ∞

∑
k=2

1
k!

(a
2

)2k
r−k

Γ(−ε− k) =

=
(a

2

)ε

Γ(−ε)+
π

sin(επ)
rε/2Jε

(
a√
r

)
. (E.14)

If r = r1, we cannot expand anymore the previous result around r1 ∼ 0. However, if r = 1/r2, then
S2(ε, a, 1/r2) = O(r2) and it can be neglected. Notice that all the contributions involving y2 are
suppressed. Hence, only y1, the leading rapidity cut-off in the SA-hemisphere, will survive in the final
result. In fact, using Eqs. (E.11) (E.14), we have:

Iε(a, r1) =
π

sin(επ)
rε/2

1

[
Jε

(
a
√

r1

)
− (−1)−εJ−ε

(
a
√

r1

)]
+
(a

2

)ε

Γ(−ε)−

−
(a

2

)−ε 1
ε2Γ(−ε)

1F2

(
−ε;1− ε, 1− ε;−a2

4

)
+O(r1) (E.15)
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Solution of Integrals through Mellin transforms

where the combination of the Bessel-J functions can be rearranged as:

π

sin(επ)
rε/2

1

[
Jε

(
a
√

r1

)
− (−1)−εJ−ε

(
a
√

r1

)]
=−2(−r1)

ε/2 K−ε

(
a√
−r1

)
. (E.16)

The other integral instead is suppressed as r2→ 0:

Iε

(
a,

1
r2

)
= O(r2). (E.17)

The solution of the integral of Eq. (3.56) can be obtained through the same procedure used to
solve the integration in Eq. (3.46). The result is:

∫
∞

0

xε/2

x− r1
J−ε

(
a√
x

)
=−2(−r1)

ε/2 K−ε

(
a√
−r1

)
+
(a

2

)ε

Γ(−ε), (E.18)

Notice that, differently from Eqs. (E.15) and (E.17), this is an exact result.
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Appendix F

Color-coded representation of the
kinematic regions

In this Appendix I will present the same plots shown in Figs. 3.14 and 3.16, but from a different
perspective. Each panel corresponding to the set of criteria proposed in Ref. [17], see Eq. (3.106), will
be directly compared to the analogue panel obtained by applying the more refined algorithm proposed
in this thesis, shown in Fig. 3.15. As the size of these figures is augmented, all labels should result
more visible and easier to read. In the following plots, BELLE data [8] are presented according to the
color-coding associated to the three kinematic regions of e+e−→ hX . Red bins correspond to Region
1, orange bins to Region 2 and green bins to Region 3. Clearly, only thrust values corresponding
to 2-jet topologies are considered, namely all bins with 0.75 ≤ T ≤ 1.0. As far as zh is concerned,
all available bins are included. The shaded areas correspond to bins for which the value of PT falls
outside of the TMD-regime. The cut-off in PT of Eq. (3.107) is represented by a vertical blue line in
each panel. In the implementation of this cut, the symbol≪ “much smaller than" is rendered as "less
than 25%". Instead, for the algorithm of Fig. 3.15, the symbol≪ “much smaller than" is evaluated as
"less than 30%".

Some general features of the two different set of criteria for the data selections become evident
from the direct comparison. First of all, the criteria of Ref. [17] suggest a strong dominance of Region
1. Instead, with the more refined algorithm presented in this thesis, most of the BELLE data turn out
to belong to Region 2, as expected, while only the lower zh bins correspond to Region 1. This fits
perfectly with the physical expection that in Region 1 it is much easier for soft radiation to transversely
deflect a low-energetic hadron than in Region 2. On the other hand, the distribution of the green
bins, associated to Region 3, seem not to be affected by the two different kinds of data selection. In
both cases, Region 3 starts becoming relevant for TMD studies only at very large values of thrust. In
fact, green bins appear on the left of the cut in PT only in the very last bin, for T = 0.975. This fits
perfectly with the physical epectation that in Region 3 a hadron detected near the jet boundary can
hardly be associated to the “pure" TMD-regime, unless the jet is extremely narrow, i.e. at very large
values of thrust.
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Color-coded representation of the kinematic regions

Fig. F.1 BELLE data for thrust T = 0.750 selected according to the criteria of Eq. (3.106) (upper
panel) and to the algorithm of Fig. 3.15 (lower panel). Here Region 3 (green bins) is not realized. The
criteria of Ref. [17] suggest a total dominance of Region 1. Instead, with the more refined algorithm
presented in this thesis, we find that only the lower zh bins correspond to Region 1, while most of the
BELLE data belong to Region 2.
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Fig. F.2 BELLE data for thrust T = 0.825 selected according to the criteria of Eq. (3.106) (upper
panel) and to the algorithm of Fig. 3.15 (lower panel). Here Region 3 (green bins) is not realized. The
criteria of Ref. [17] suggest a total dominance of Region 1. Instead, with the more refined algorithm
presented in this thesis, we find that only the lower zh bins correspond to Region 1, while most of the
BELLE data belong to Region 2.
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Color-coded representation of the kinematic regions

Fig. F.3 BELLE data for thrust T = 0.875 selected according to the criteria of Eq. (3.106) (upper
panel) and to the algorithm of Fig. 3.15 (lower panel). Here Region 3 (green bins) is not realized.
The criteria of Ref. [17] suggest that Region 1 and Region 2 are equally distributed on the left of the
cut in PT . Therefore, a phenomenological analysis performed according to this criteria necessarily
requires a matching procedure in order to properly describe the bins at the boundaries between Region
1 and Region 2. Instead, with the more refined algorithm presented in this thesis, we find that only the
lower zh bins correspond to Region 1, while most of the BELLE data belong to Region 2. With this
selection, the issues related to the matching problem are less severe.
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Fig. F.4 BELLE data for thrust T = 0.925 selected according to the criteria of Eq. (3.106) (upper
panel) and to the algorithm of Fig. 3.15 (lower panel). Here Region 3 (green bins) is not realized. The
criteria of Ref. [17] suggest that Region 1 and Region 2 are both present on the left of the cut in PT .
Therefore, a phenomenological analysis performed according to this criteria necessarily requires a
matching procedure in order to properly describe the bins at the boundaries of Region 1 and Region 2.
Instead, with the more refined algorithm presented in this thesis, we find that only the lower zh bins
correspond to Region 1, while most of the BELLE data belong to Region 2. With this selection, the
issues related to the matching problem are less severe.
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Color-coded representation of the kinematic regions

Fig. F.5 BELLE data for thrust T = 0.925 selected according to the criteria of Eq. (3.106) (upper
panel) and to the algorithm of Fig. 3.15 (lower panel). Here Region 3 (green bins) appears together
with the other two kinematic regions. Both the criteria of Ref. [17] and the more refined algorithm
presented in this thesis suggest that all three regions are relevant in all the zh-bins. Therefore, in this
case, a proper matching procedure would be necessary to appropriately describe the transitions from
one region to the following one. Notice that there are two boundaries: one between Region 1 and
Region 2, and one between Region 2 and Region 3.
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