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Editorial on the Research Topic

Information extraction for health documents

Electronic health records (EHRs) gained a central role in many different medical and

clinical settings: they typically contain salient information on patients in the form of

unstructured, free-text data, such as clinical narratives, discharge summaries, outpatient care

reports, prescription drug records, notes on past treatments by emergency departments,

reports of laboratory studies, diagnostic texts associated with imaging, and more. All

mentioned sources contain unstructured data that are valuable in decision-making processes

and helpful in supplementing structured patient data: to figure out the relevance of

unstructured data, we can consider that these account for 80% of the total of health-related

data in a hospital (Kong, 2019). To make such information accessible, searchable, and

available to different applications, the text needs to be transformed into structured data

by many sorts of natural language processing (NLP), such as information extraction (IE)

techniques and concept normalization to a structured ontology.

In the last few years a shift of computational paradigms from symbolic to distributed

representations has deeply modified the landscape of the whole discipline of artificial

intelligence, including NLP, and their specializations focused on medical data, as well. In

short, this change in paradigms led to a dramatic increase in the level of performance ensured

by systems relying on deep learning (DL) architectures: this fact is confirmed if one considers

the architecture of the top-scoring systems involved in downstream tasks, such as GLUE and

SUPERGLUE (Wang et al., 2018, 2019). DL systems are characterized by many technical

changes; among the most prominent innovations, the costly feature selection of traditional

Machine Learning systems has been superseded by automatic computing devices [such as

the attention mechanism (Vaswani et al., 2017)], that are directly plugged into the system

at the architectural level (Hahn and Oleynik, 2020). Also, typical DL architectures such as

Transformers Networks (Devlin et al., 2018) are trained by employing huge amounts of

text data in the order of hundreds of billions of tokens. Dealing with medical language

requires models to deal with special linguistic phenomena, including telegraphic usages,

abbreviations, acronyms, and syntactically ill-formed constructions (Mensa et al., 2020).

Although some EHR data sets have been made available, such as i2b2 (Uzuner et al.,

2011) and MIMIC (Johnson et al., 2016, 2018), these do not suffice to train models

exclusively on medical data. To overcome these limitations, embeddings originally trained
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on general language may be adapted to the medical language (Hahn

and Oleynik, 2020). The medical setting is generally affected

by the sparsity of corpora. There is broad consensus on the

fact that insufficient clinical data sets are available in the

public domain, primarily due to privacy issues and institutional

concerns (Friedman et al., 2013), and that the inaccessibility of

large-scale de-identified clinical corpora prevents clinical NLP from

fully exploiting the architectures to date available.

Although various approaches have been proposed to cope

with such limitations, e.g., based on transfer learning and

domain adaptation to tailor pre-trained language models to the

medical domain and on federated learning to deal with privacy

issues (Cheng et al., 2020), many issues still require deepening

research to provide equitable, secure, and ethical access to data.

This Research Topic presents three works dealing with specific

tasks, such as clinical concept recognition, the elaboration of

clinical trials, and the automatic handling of numerical codes

within EHRs.

Many approaches can be adopted to extract information

from medical records. The contribution from Lossio-Ventura

et al. focuses on clinical concept recognition, which constitutes

the attempt to extract specific conceptual information from

EHRs. The authors investigated six systems [CLAMP (Soysal

et al., 2018), cTAKES (Savova et al., 2010), MetaMap (Jonquet

et al., 2009), NCBO Annotator (Aronson and Lang,

2010), QuickUMLS (Soldaini and Goharian, 2016), and

ScispaCy (Neumann et al., 2019)] against two benchmarks

widely adopted in the field [i2b2 (Uzuner et al., 2011) and MIMIC-

III (Johnson et al., 2016, 2018)]. The concept to be extracted are

divided into four categories, namely: problem, treatment, test and

anatomy. CLAMP achieved the best exact and inexact matching

performance, with an F-score of 0.70 and 0.94, respectively. The

authors also selected a subset of the MIMIC data to evaluate the

systems on six characteristic challenges often found in medical

texts. In particular, the six systems were executed on the sentences

that contained negations, abbreviations, severity, ambiguity, and

misspellings, showing that no single system excelled against all

challenges. Instead, each system performed differently in particular

tasks, showing that further work is required to develop algorithms

that are resilient against this type of challenge.

The contribution from Luechtefeld et al. tackles instead a

common issue concerning biomarker clinical trials publications:

biomarker-based outcomes and eligibility criteria are very relevant

in cancer clinical trials. However, most of the biomarker

analyses reported for these trials are often difficult to access

and with no controlled data access. Authors tackle this issue

by proposing a new approach to semi-automating normalized,

open-access data tables from published clinical trials of metastatic

prostate cancer (mCRPC), employing a data curation and SER

platform (Bozada et al., 2021). The authors extracted 585 hazard

ratios, response rates, duration metrics, and 543 adverse events

from 13 publications covering 10 clinical trials publication

concerning mCRPC. The relevance of this data is shown by

illustrating several use cases, such as the analyses of trial

methods, comparison of treatment hazard ratios, and association

of treatments with adverse events.

Finally, the paper from Deng and Denecke proposes a solution

for common issues in medical procedures. Numerical codes

often represent clinical procedures/injuries/body parts in medical

documents to facilitate many processes, such as billing, quality

assurance, and statistical analysis. These codes are often organized

in taxonomies with hundreds or thousands of nodes, so the

manual selection from human operators is intuitively unfeasible.

Authors focus on using CHOP, the Swiss classification of surgical

interventions system, which physicians use in daily practice to

classify clinical procedures. The CHOP comprises more than

14,000 different classes at six levels. It aids operators in the code

selection via a rule-based system composed of encoding experts and

a manual search in the CHOP catalog. The authors investigate the

possibility of automatic CHOP code generation based on a short

query to enable automatic support of the manual classification.

A thorough evaluation of many hierarchical classification systems

shows that the per-node binary classification outperforms the

non-terminal multi-class classification with an F1-micro measure

between 92.6 and 94%.
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