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We present a novel construction of the QCD equation of state (EoS) at finite baryon density. Our
work combines a recently proposed resummation scheme for lattice QCD results with the universal
critical behavior at the QCD critical point. This allows us to obtain a family of equations of
state in the range 0 ≤ µB ≤ 700 MeV and 25 MeV ≤ T ≤ 800 MeV, which match lattice QCD
results near µB = 0 while featuring a critical point in the 3D Ising model universality class. The
position of the critical point can be chosen within the range accessible to beam-energy scan heavy-
ion collision experiments. The strength of the singularity and the shape of the critical region are
parameterized using a standard parameter set. We impose stability and causality constraints and
discuss the available ranges of critical point parameter choices, finding that they extend beyond
earlier parametric QCD EoS proposals. We present thermodynamic observables, including baryon
density, pressure, entropy density, energy density, baryon susceptibility and speed of sound, that
cover a wide range in the QCD phase diagram relevant for experimental exploration.

I. INTRODUCTION

The determination of the multi-dimensional QCD
phase diagram is one of the main ingredients in un-
derstanding matter under extreme conditions of tem-
perature and density, such as those created in heavy-
ion collision experiments taking place at the Relativis-
tic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC). In nature, this kind of matter could be
present in the core of neutron stars, and also in a primor-
dial phase that permeated the universe a few microsec-
onds after the Big Bang. To determine the QCD phase
diagram we need to explore the thermodynamic behavior
of strongly interacting matter, including its phase struc-
ture, equation of state (EoS) and critical phenomena [1].

In its most common representation [2, 3], which in-
volves temperature and baryon chemical potential or
baryon density, the EoS at low net-baryon density is well
understood. It exhibits a smooth crossover from a hadron
gas to a quark-gluon plasma [4–8] with a pseudo-critical
temperature of T0 = 158.0± 0.6 MeV [9], and can be de-
termined from first principles through lattice QCD simu-
lations [5, 10–15]. Several QCD models predict that the
smooth crossover can turn into a first-order phase tran-
sition at high densities, thus implying the existence of a
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critical point on the QCD phase diagram [16–19]. The
search for the critical point is at the core of the Beam
Energy Scan II (BESII) at RHIC, which completed data
taking recently. The role of theorists in this program is to
provide crucial tools to simulate and interpret the data.
The equation of state is one of the fundamental quantities
needed in the hydrodynamic description of the heavy-ion
collision evolution.
Lattice simulations at finite chemical potential face

challenges because of the fermion sign problem [20–
23], which renders traditional numerical techniques pro-
hibitively costly. Despite recent developments in meth-
ods to directly simulate at finite chemical potentials, such
as reweighting [24–26], these are still limited to small vol-
umes and rather coarse lattices. This has so far prevented
realistic direct simulations in the most intriguing region
of the QCD phase diagram. Therefore, the expected first-
order phase transition from hadron gas to quark-gluon
plasma at high density, as well as the critical point ter-
minating this transition [1, 18] are still out of the reach
of lattice simulations. Extrapolation techniques, such as
Taylor expansion [8, 27–33], analytic continuation from
imaginary chemical potential [6, 9, 12, 34–39] and Padé
approximation [15, 40], are usually employed to extend
lattice QCD thermodynamic results to finite densities.
However, they are limited in their applicability to small
chemical potentials.
An important tool for the theoretical interpretation of

experimental results are hydrodynamic simulations
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[41–48], which describe the evolution of the fireball pro-
duced in heavy-ion collisions. Although modifications to
the relativistic viscous hydrodynamic approach are re-
quired close to the critical point [41, 49], it is crucial
that the equation of state (EoS) used in these simulations
encompasses all existing theoretical knowledge and accu-
rately represents the singularity related to the QCD crit-
ical point in a predetermined and adjustable way. More-
over, the EoS as well as the properties of partons and
their interactions are probed directly within microscopic
transport approaches, wherein partonic and hadronic de-
grees of freedom are propagated explicitly [50].

In an attempt to provide a tool to address these issues,
the BEST collaboration developed a family of equations
of state, based on the lattice QCD Taylor expansion, with
a 3D Ising model critical point which matches lattice re-
sults at low chemical potential [51–54]. However, this ap-
proach is limited to µB ≤ 450 MeV, because unphysical
oscillation inherited from the Taylor expansion appear in
some observables at large µB [51, 55].

It is important to note that the temperature of the
hypothetical chiral critical point should not exceed the
critical temperature of the chiral phase transition (for
mu = md = 0) T 0

c = 132+3
−6 MeV [56, 57]. Lattice QCD

simulations disfavor the existence of the critical point
at µB ≤ 300 MeV [9]. Besides, several recent results
seem to converge in predicting a critical point location
at 560 ≤ µB ≤ 650 MeV [58–62]. For this reason, and
to properly support the BESII at RHIC that can cover
a range up to µB ≲ 700 MeV, the BEST collaboration
EoS needs to be extended to larger values of µB . While
some results exist in the literature [63], where a critical
scaling function was developed on top of an EoS with a
smooth crossover between hadrons and quarks, here we
follow the same strategy as the BEST collaboration EoS:
we introduce the 3D Ising critical point into a lattice-
QCD-based EoS. However, instead of using the Taylor
expansion method, we build our EoS on the basis of the
new expansion scheme developed in [13, 14]. This will
allow us to reach a value of chemical potential µB ∼ 700
MeV.

The manuscript is organized as follows. In section II
we recall the lattice QCD approaches: Taylor expan-
sion and alternative T -expansion scheme developed by
the Wuppertal-Budapest lattice QCD collaboration in
[13, 14]. Section III focuses on the mapping of the 3D
Ising model onto the QCD coordinates. Moving on to
section IV, we discuss the merging of the lattice QCD
equation of state with the critical one. In section V,
we present the thermodynamic quantities with a critical
point, and in section VI we explore the constraints on
the parameter space. Conclusions and outlook will be
provided in section VII. Finally, in Appendix A,B and
C we provide detailed derivation for the formulas used.
The code that generates the family of equations of state
presented in this paper can be downloaded from [64].

II. LATTICE EQUATION OF STATE

A. Taylor Expansion

Taylor expansion is the most straightforward way to
extend the equation of state to finite µB . It consists of
a sum of all pressure derivatives (susceptibilities), com-
puted on the lattice at µB = 0, multiplied by powers of
a dimensionless expansion parameter

(
µB

T

)
. Because of

charge conjugation symmetry, only even susceptibilities
contribute

P (T, µB)

T 4
=

∑
n=0

1

2n!
χ2n(T, µB = 0)

(µB

T

)2n

, (1)

where the coefficients are:

χn(T ) =

(
∂n

∂(µB/T )n
P (T, µB)

T 4

)
µB=0

.

In this paper, we will focus on the baryon density,
which is defined as the first derivative of the pressure
with respect to µB :

nB(T, µB)

T 3
=

∂

∂(µB/T )

P (T, µB)

T 4

=

∞∑
n=1

1

(2n− 1)!
χ2n(T )

(µB

T

)2n−1

. (2)

To completely evaluate the baryon density in Eq. (2), we
would need all the coefficients computed on the lattice,
which are not readily available due to limitations in com-
putational power. Currently, coefficients are available at

finite lattice spacing up to order O
(
µB

T

)6
[65, 66] and

even O
(
µB

T

)8
[12, 15], and in the continuum limit in a

smaller volume [67], which leads to the following limita-
tions of the method:

• The chemical potential range is limited to µB

T < 3,
despite large computational power [15, 40].

• At large µB/T , some observables exhibit unphysi-
cal, “wiggly” behavior due to the truncation of the
Taylor series [51, 55].

• The inclusion of an additional higher-order term
does not improve this behavior.

• The Taylor expansion struggles to account for a
transition temperature that depends on the chemi-
cal potential, since it is performed at constant tem-
perature. In [68], the Taylor expansion was tested
for finite isospin chemical potential by comparing
it to the direct lattice simulation, and a breakdown
was observed at the critical chemical potential.
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The above limitations make it difficult to model and
constrain the existence of the critical point if it is located
at high density. In [51–54], the BEST collaboration ex-
ploited the universality class of the 3D Ising model to
introduce a critical point into the equation of state by
separating the free energy density into a critical contri-
bution and a non-critical one, so that the sum of the Tay-
lor expansion coefficients up to O((µB/T )

4) reproduces
the lattice results. For the baryon density, this procedure
works as follows

nB(T, µB) = T 3
2∑

n=1

1

(2n− 1)!
χnon−Ising
2n (T )

(µB

T

)2n−1

+
T 4
C

T
nIsing
B (T, µB) (3)

where nIsing
B is the contribution to the baryon density with the

singular behavior appropriate for the 3D Ising critical point,
and the coefficients χnon−Ising

n (T ) satisfy

χlat
n (T ) = χnon−Ising

n (T ) +
T 4
C

T 4
χIsing
n (T )

for n = 0, 2, 4, where χlat
n (T ) are the input from lattice

QCD and χIsing
n (T ) represent the critical contribution to the

expansion coefficients. Although this construction works well,
it was observed that at large values of µB , wiggles appear
in the thermodynamic observables, particularly the baryon
density and speed of sound, for some parameter choices. This
is due to the truncation in the Taylor expansion of the non-
Ising contribution to the observables, which limits the current
applicability of this equation of state.

B. T ′-Expansion Scheme

To address some of the limitations of the Taylor expan-
sion outlined above, the Wuppertal-Budapest lattice QCD
collaboration developed a novel resummation scheme, which
can reach higher values of chemical potential and handle the
QCD transition line [13, 14]. The scheme is based on the ob-
servation [13] that the crossover in terms of the scaled baryon
density TχB

1 /µB as a function of T looks very similar at dif-
ferent (imaginary) values of scaled chemical potential µB/T ,
with most of the difference being a µB-dependent shift of T
– see Fig.1.

This observation can be formalized by expressing baryon
density nB ≡ χB

1 T
3 in the form

T
χB
1 (T, µB)

µB
= χB

2 (T
′, 0) (4)

which defines the “rescaled temperature” T ′(T, µB). At µB =
0, T ′ is the same as T . At non-zero µB function T ′(T, µB) is
such that the crossover in terms of TχB

1 (T, µB)/µB occurs at
the same T ′ and has the same shape. The function T ′ can be
then expanded in powers of µB/T at fixed T :

T ′(T, µB) = T

[
1 + κBB

2 (T )
(µB

T

)2
+ κBB

4 (T )
(µB

T

)4
+ ...

]
(5)

where the Taylor expansion coefficients κBB
2 , etc. are almost

constant as functions of T in the transition region, while the
rapid changes in EoS associated with the crossover are mostly
captured by the function χ2(T

′, 0) (see Fig.2 below.).

FIG. 1. Upper panel: scaled baryon density χB
1 (T, µB)/µ̂B ,

as a function of temperature for different values of scaled
imaginary baryon chemical potential µ̂B ≡ µB/T (labeled us-
ing different colors). Lower panel: the same quantity, but
with the temperature rescaled by a factor 1 + κµ̂2

B , with
κ = 0.0205. In terms of the rescaled temperature the curves
representing different µ̂B collapse onto the same curve. The
points labeled µ̂B = 0 correspond to the limit µB → 0 which
is the baryon number susceptibility χB

2 (T, 0) (The figure is
taken from Ref. [13]).

The “T ′-expansion” scheme is essentially a re-shuffling of
the Taylor expansion in Eq.(2), and the coefficients κBB

n (T )
can be expressed in terms of the susceptibilities χ2n(T ):

κBB
2 (T ) =

1

6T

χB
4 (T )

χB
2

′
(T )

(6)

κBB
4 (T ) =

1

130TχB
2

′
(T )3

(
3χB

2

′
(T )2χB

6 (T )− 5χB
5

′′
χB
4 (T )

4
)
.

These coefficients were obtained in high-statistics lattice QCD
simulations [13]. As expected, compared to the sharply ris-
ing χB

2 (T ), κ
BB
2 shows a very mild temperature dependence

around the transition region, which makes the T ′-expansion
scheme more favorable than the Taylor expansion since it does
not introduce the wiggly behavior in the EoS at large µB .
Moreover, the fact that κ4 is shown in [13] to be consistent
with zero hints at a faster convergence compared to the Taylor
series.
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These results agree with the one used in [32] for “lines of
constant physics” calculated up to O(µ4

B). As suggested in
[13], as long as χB

1 /µ̂B is a monotonic function of T , the
finite-density physics can be encoded into the T ′(T, µB) func-
tion. As a result, we can embed the singularity associated
with the critical point and the first-order phase transition
into T ′(T, µB), as we will show in Section IV.

C. Lattice data

Lattice results for the susceptibility χB
2 (T, 0) ≡ χB

2 (T )
and coefficients κBB

2 (T ) are available only over a limited
range of (discrete) temperatures. To obtain a smooth de-
scription of the equation of state in the temperature range
25MeV ≤ T ≤ 800 MeV, we first merge the lattice results at
finite temperature and µB = 0 with 2+1 flavors and physi-
cal quark masses from the Wuppertal-Budapest Collaboration
[5, 10, 12, 30] with the hadron resonance gas (HRG) model
results [69], which provide a good description of the thermo-
dynamics up to T = 120 MeV, using the most up to date
particle list (list PDG2021+) [70, 71]. We then fit these re-
sults to cover a large range of temperatures.

For convenience we introduce an auxiliary variable x =
T

200MeV
. For χB

2,lat(T ), we employ four free parameters di,
such that the crossover occurs at x ≈ d1, and its width ∆x ∼
d1/d2 is controlled by d2 ≫ 1, while d3

(
1− d24

x2

)
provides

large-x asymptotics:

χB
2,lat(T ) =

(
2mp

πx

)3/2
e−mp/x

1 +
(

x
d1

)d2 + d3
e−d24/x

2−d45/x
4

1 +
(

x
d1

)−d2
(7)

where, mp denotes the proton mass (in units of 200 MeV),
and the first term, typically very small, yields the correct
low-temperature asymptotics for χB

2 in QCD, representing the
nonrelativistic contribution of nucleons/antinucleons. Best-fit
coefficients for χB

2,lat(T ) are listed in Table I, and the resulting
parametrization is shown in the top panel of Fig. 2.

d1 d2 d3 d4 d5
0.73 11.19 0.32 0.20 0.69

TABLE I. Coefficients of the parameterized χB
2,lat(T ) in

Eq. (7) for 25 MeV ≤ T ≤ 800 MeV

For κBB
2 , we employ a rational fit, enforcing the expected

small-x linear behaviour and the large-x κBB
2 ∼ Ax2 depen-

dence, with A = χB
4,SB/(12d3d

2
4), where χB

4,SB is the fourth
baryon susceptibility in the infinite-temperature limit.

κBB
2 (T ) =

a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5

b0 + b1x+ b2x2 + a5/Ax3
(8)

and again x = T
200MeV

. Best-fit parameters for κBB
2 (T ) are

listed in Table II, and the resulting parametrization is shown
in the bottom panel of Fig. 2.

III. MAPPING THE 3D ISING MODEL TO QCD

Close to the critical point, the correlation length of a
thermodynamic system diverges, making microscopic (short-
distance) features irrelevant. Consequently, systems with

a1 a2 a3 a4 a5 b0 b1 b2 b3
0.48 -0.64 0.52 -0.78 0.53 11.9 -9.62 -7.51 10.8

TABLE II. Coefficients of the parameterized form for κB
2 (T )

from Eq (8) for 25 MeV ≤ T ≤ 800 MeV given as a ratio.

FIG. 2. Top panel: parameterized baryon susceptibility
χB
2,lat(T ) (black curve), in the range 25MeV < T < 800MeV.

The Stefan-Boltzmann (SB) limit value is shown in green.
Bottom panel: parametrized alternative expansion coefficient
as a function of the temperature. In both panels, the solid
blue curve corresponds to the hadron resonance gas (HRG)
model prediction, while the red dots represent continuum ex-
trapolated lattice QCD results.

similar global symmetries exhibit similar, universal behav-
ior, even though they may differ in their microscopic degrees
of freedom. Well-known examples of this phenomenon in-
clude liquid-gas and ferromagnetism, which share critical ex-
ponents within the same universality class as the 3D Ising
model [72, 73]. The critical point of Quantum Chromody-
namics (QCD), if it exists, also belongs to the 3D Ising model
universality class [74]. Hence, its critical behavior is char-
acterized by the same critical exponents, which describe the
scaling of physical quantities in the thermodynamic variables
near the critical point [74].

A. Scaling: 3D Ising Model

In this work, we employ the same form of the scaling equa-
tion of state as used in the BEST collaboration equation of
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state. The parameterization of magnetization, denoted by
M , reduced temperature (r) and external magnetic field (h)
in terms of additional scaling variables R and θ, is given as
follows [51, 75–80]:

M = M0R
βθ (9)

h = h0R
βδh̃(θ) (10)

r = R(1− θ2). (11)

The given parameterization involves an odd function h̃(θ) =
θ(1 + aθ2 + bθ4), where a = −0.76201 and b = 0.00804. The
critical exponents for the 3D Ising model are β = 0.326 and
δ = 4.80. It’s worth noting that R is required to be non-
negative (R ≥ 0), and |θ| should be less than or equal to

the first non-trivial zero of h̃(θ), denoted as θ0 ≃ 1.154. To
fix the values of the normalization constants M0 and h0, two
conditions M(r = −1, h = 0+) = 1 and M(r = 0, h = 1) ∝
sgn(h)|h|1/δ are used. These conditions result in M0 = 0.605
and h0 = 0.394. It is important to note that this parametric
representation gives a non-globally invertible mapping from
(R, θ) 7→ (r, h). The critical point is located at (r = 0, h = 0),
and when r < 0, there is a smooth transition (crossover),
while r > 0 corresponds to a first-order phase transition.

In this parameterization form, the pressure is defined in
terms of the most singular part of the Ising Gibbs free energy
G(R, θ):

G(R, θ) = h0M0R
2−α(θh̃(θ)− g(θ)) , (12)

where

g(θ) = c0 + c1(1− θ2) + c2(1− θ2)2 + c3(1− θ2)3 ,

c0 =
β

2− α
(1 + a+ b) ,

c1 = −1

2

1

α− 1
((1− 2β)(1 + a+ b)− 2β(a+ 2b) ,

c2 = − 1

2α
(2βb− (1− 2β)(a+ 2b)) ,

c3 = − 1

2(α+ 1)
b(1− 2β) ,

with α = 0.11 another critical exponent, related to β, δ by the
relation 2− α = β(δ + 1).

B. Mapping 3D Ising coordinates to QCD
coordinates

To map from the 3D Ising model to QCD, we employ a
two-step non-universal mapping, as shown in Fig. 3. This
process involves transforming the 3D Ising control parame-
ters, namely the reduced temperature (r) and the external
magnetic field (h), initially into the T ′-expansion scheme co-
ordinates represented by the ”rescaled temperature” (T ′) and
the squared baryon chemical potential (µ2

B) using Eq. (13)
below. Subsequently, using the relation between T and T ′,
we map these coordinates to the QCD parameters, specifi-
cally the temperature (T ) and the baryon chemical potential
(µB). To ensure that the transition of the Ising model (h = 0)
aligns with the QCD crossover line, we apply the following

transformation:

T ′ − T0

TCT ′
,T

= −w′h sinα′
12

µ2
B − µ2

BC

2µBCTC
= w′(−rρ′ − h cosα′

12) (13)

where T0 is the transition temperature at µB = 0, TC and
µBC are the temperature and chemical potential at the critical
point, T ′

,T ≡ (∂T ′/∂T )µ at the critical point, and the free
parameters w′, ρ′, and α′

12 act as scaling factors for variables
r and h. w′ determines the size of the critical region, and ρ′

modifies its shape. The scaling can also be accomplished by
modifying the angle α′

12. These free parameters can easily be
related to the ones used by the BEST Collaboration [51] in the
linear mapping shown in Eq. (C1). By linearizing Eq. (13)
around the critical point, and comparing to the coefficients of
r and h in Eq. (C1), we obtain the following relations between
w′, ρ′, α′

12 and w, ρ, α1, α2:

tanα′
12 = tanα1 − tanα2 (14a)

w′ = w
1

cosα1

√
(cosα1 cosα2)2 + (sinα12)2 (14b)

ρ′ = ρ
cos2 α1√

(cosα1 cosα2)2 + (sinα12)2
. (14c)

The parameters (w, ρ) act as scaling factors for the vari-
ables r and h, where w determines the size of the critical re-
gion, and ρ modifies its shape. The difference α12 between α2

and α1 also controls the strength of the discontinuity. Equa-
tions (14) can be inverted to give:

tanα2 = tanα1 − tanα′
12; (15a)

w = w′ cosα′
12

√
1 + (tanα1 − tanα′

12)
2; (15b)

ρ = ρ′
1

cosα1 cosα′
12

√
1 + (tanα1 − tanα′

12)
2
. (15c)

A more concise way of converting from one set of param-
eters to another is as follows. First, find α′

12 from α2 using
Eq. (15a). Then use it to find w′ from

w′ cosα′
12 = w cosα2 . (16)

Then find ρ′ by solving

ρ′w′ = ρw cosα1 . (17)

It is also important to identify the parameters that control
the strength of the discontinuity, which can be clearly seen
in the expansion of the specific heat at constant pressure Cp.
The leading singular behavior of Cp is given by:

Cp = T 3

(
(sc/nc) sinα1 − cosα1

w sinα12

)2

Ghh

(
1 +O(rβδ−1)

)
(18)

in terms of the standard BEST collaboration parameters [51],
where Ghh is the order parameter susceptibility in the Ising
model, while sc and nc are the critical entropy and baryon
density respectively. Since Ghh is the same for all mapping
parameters, we can use the coefficient in front of it as a “uni-
versal” measure of the strength of the singularity. It is then
obvious that the strength measured that way depends on α12

and w (at fixed α1) only via the combination w sinα12.
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FIG. 3. The top-left plot represents the 3D Ising model axes, with a critical point located at (r = 0, h = 0). The top-right
plot displays the T ′-expansion scheme coordinates, with a critical point at (T ′ = T0, µB = µBC). Finally, the bottom plot
corresponds to the QCD coordinates, featuring a critical point located at (TC , µBC). The parameters in red µBC , w

′, ρ′ and
α′
12 are the free parameters.

The mapping in Fig. 3 comes with inherent advantages.
The tunable free parameters can be guided by physics, such as
the physical value of the quark masses, stability, and causal-
ity of the equation of state [73]. This feature enables us to
transport any physical quantity in 3D Ising to any point in
the QCD phase diagram, and as the mapping is an even func-
tion in the baryon chemical potential, it ensures the expected
charge conjugation symmetry.

C. Transition Line

With the mapping defined in Eq.(13), the location of the
transition line in the phase diagram is naturally determined.
The transition line TC(µBC) is such that TC and µBC have
to satisfy T ′(T, µB) = T0, where T0 is the crossover temper-
ature at µB = 0. For convenience, we use the pseudo-critical
temperature related to chiral symmetry restoration T0 = 158
MeV computed from the lattice in [9]. In addition, for sim-
plicity, we identify T ′ with T ′

lat(T, µB) in [13] up to second
order in µB/T . From Eq. (12), we make use of the mapping
to express the critical pressure P crit as a function of temper-
ature and chemical potential:

P crit(T, µB) = −T 4G(R(T, µB), θ(T, µB)) . (19)

The critical baryon density is then defined as

χcrit
1 =

ncrit
B (T, µB)

T 3
=

∂(P crit(T, µB)/T
4)

∂(µB/T )

∣∣∣
T
. (20)

With this mapping the critical point is also forced to sit
on the transition line by construction. Therefore, the number
of free parameters is reduced since the critical temperature
follows from the choice of critical chemical potential, and the
angle α1 is given by the slope of the transition line at the
critical point:

α1 = tan−1

(
2κ2(TC)µBC

TCT ′
,T

)
. (21)

In this paper, we illustrate two choices of critical baryon
chemical potential. The first one, used mainly for compari-
son with the BEST collaboration EoS, is µBC = 350 MeV,
giving TC = 140 MeV and α1 = 6.7◦. For the first choice of
parameters, we show in Fig. 4 contours of equal normalized
critical pressure, in the r−h, T ′−µ2

B and T −µB planes. The
first order transition line is shown as a red solid line, and the
critical point corresponds to a black dot. We show positive
and negative values of µB , corresponding to positive and neg-
ative baryon chemical potentials, to illustrate the symmetry of
QCD under baryon-and-antibaryon exchange. This symme-
try arises naturally from the selection of a quadratic mapping
of the chemical potential in Eq. (13). For the same choice
of parameters, in Fig. 5 we show the critical baryon density,
which develops a discontinuity for µB > µBC , as required
for a first order transition. With the second choice we place
the critical point in a region which goes beyond the limits
of the BEST collaboration EoS: we choose µBC = 500 MeV,
corresponding to TC = 116 MeV and α1 = 11.2◦.
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FIG. 4. The figure comprises three contour plots of the critical (singular) contribution to pressure, in three different coordinate
systems related to each other by transformations shown in Fig.3. The top-left plot uses the Ising model coordinates (h, r),
with the critical point located at (0, 0). The top-right plot uses coordinates (T/T ′

,T , µ
2
B/(2µBC)), with the critical point at

(T0/T
′
,T , µBC/2). The bottom plot shows the same pressure in QCD coordinates (µ, T ), featuring critical points located at

(µBC = ±350 MeV, TC = 140.1 MeV). In all panels, the black dot represents the critical point and the red solid line denotes
the first-order transition line.

IV. EQUATION OF STATE: MERGING THE
LATTICE DATA AND THE CRITICAL POINT

SINGULARITY

It is important to keep in mind that equation (4) is the
definition of T ′(T, µB). Since the function χB

2 (T
′, 0) is an-

alytic (smooth crossover), the singularity in nB due to the
critical point and the first-order transition must be carried by
T ′(T, µB). Since the singularity of nB is inherited from the
singularity of the pressure via Eq. (20), we can determine the
corresponding singularity in T ′ via equation (4).

We shall separate the baryon density into a regular and
singular parts: nB = nreg

B + ncrit
B , where ncrit

B is defined by
Eq.(20). Similarly, we separate T ′: T ′ = T ′

reg + T ′
crit. Since

ncrit
B vanishes at the critical point we can expand χB

2 in Eq.(4)
and obtain the relationship between T ′

crit and ncrit
B :

T ′
crit(T, µB) =

(
∂χB

2 (T, 0)

∂T

∣∣∣
T0

)−1
ncrit
B (T, µB)

T 3 × (µB/T )
(22)

Of course, the Taylor expansion of T ′
crit is different from Eq.(5)

inferred from lattice data. However, we can always choose the
regular T ′

reg contribution so that the Taylor expansion of the
full T ′ agrees with the lattice. To match lattice results at low
(µB/T ), since κ

BB
4 (T ) is consistent with zero, we can truncate

the Taylor expansion in Eq.(5) and define

T ′
lat(T, µB) = T

(
1 + κBB

2 (T )
(µB

T

)2)
. (23)

We can then write

T ′(T, µB) = T ′
lat(T, µB)︸ ︷︷ ︸

lowest orders in (µB/T )

+

T ′
crit(T, µB)− Taylorn≤2[T

′
crit(T, µB)]︸ ︷︷ ︸

higher orders in (µB/T )

, (24)

which has the same singularity as T ′
crit and the same truncated

Taylor expansion as T ′
lat.

The last term in Eq.(24) represents the Taylor-expansion
of T ′

crit(T, µB), which we will carry out to order O((µB/T )
2)

and truncate beyond that order. Using Eq.(22) we find:

Taylorn≤2[T
′
crit] =

(
∂χB

2,lat(T )

∂T

∣∣∣∣
T0

)−1 [
∂ncrit

B /T 3

∂(µB/T )

∣∣∣∣
µ̂B=0

+
1

3!

∂3ncrit
B /T 3

∂(µB/T )3

∣∣∣∣
µ̂B=0

(µB

T

)2 ]
. (25)

One can thus identify the regular contribution T ′
reg, using

Eq.(24), as T ′
reg = T ′

lat − Taylorn≤2[T
′
crit].

At this point, inserting Eq. (24) in (4) completely de-
fines the baryon density with a critical point for a chosen
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FIG. 5. Critical baryon density for the chosen parameters w =
2, ρ = 2, α12 = 900 with the critical point at µBC = 350 MeV
and TC = 140 MeV. For µB < µBC , no significant changes
occur, indicating a smooth crossover transition. However, for
µB > µBC , a distinct jump appears, marking the transition
as first-order.

set of critical point parameters. As an example, we show in
Fig. 6 the baryon density as a function of the temperature,
for different values of µB/T , for a critical point located at
µBC = 350 MeV, resulting in TC = 140 MeV, α1 = 6.65◦,
with α2 = α1 − α12, α12 = 90◦, w = 2 and ρ = 2. We
compare these results with lattice QCD results obtained in
Ref. [13] from the alternative expansion scheme. Notably, we
can see that our results are not in tension, within error bars,
with the lattice ones, even when a critical point is placed in
the chemical potential regime accessible to the extrapolation.

FIG. 6. Baryon density as a function of the temperature,
for different values of µB/T . Solid lines correspond to the
equation of state with a critical point located at µBC = 350
MeV resulting in TC = 140 MeV, α1 = 6.650, with α2 =
α1 − α12, α12 = 900, w = 2 and ρ = 2. They are compared
to lattice QCD results from Ref. [13] obtained using the T ′-
expansion scheme, shown as bands indicating the errors due
to Taylor expansion truncation.

V. RESULTS : THERMODYNAMICS

In this section, we calculate all thermodynamic observables.
From Eq. (4), the baryon density nB(T, µB) in temperature
and chemical potential is readily provided, and the pressure
P (T, µB) is obtained through simple integration:

P (T, µB)

T 4
= χB

0,lat(T, 0) +
1

T

∫ µB

0

dµ′
B
nB(T, µ

′
B)

T 3
. (26)

The integration constant χB
0,lat(T, 0) is the pressure at µB = 0,

for which we employ lattice QCD results from Ref. [10].
Entropy density, energy density and second baryon suscep-

tibility are derivatives of pressure and baryon density, defined
as:

s(T, µB)

T 3
=

1

T 3

∂P (T, µB)

∂T

∣∣∣
µB

(27)

ϵ(T, µB)

T 4
= −P (T, µ̂B)

T 4
+

s(T, µ̂B)

T 3
+ µ̂B

nB(T, µ̂B)

T 3
(28)

χB
2 (T, µB) =

∂(nB(T, µB)/T
3)

∂µB/T

∣∣∣∣
T

(29)

which we implement through Eqs. (B1) and (B2). In
Figs. 7, 8, 9, and 10 we show the baryon density, pressure,
second baryon susceptibility and energy density, respectively,
as functions of the temperature, for different values of the
baryon chemical potential. These correspond to a critical
point located at µBC = 500 MeV, resulting in TC = 117 MeV
and α1 = 11◦. Additionally, we have w = 15, ρ = 0.3, and
α12 = α1, meaning α2 = α1 − α12 = 0.

FIG. 7. Baryon density as a function of the temperature for
different baryon chemical potentials. As expected, a discon-
tinuity appears when µB > µBC , where the transition is first
order. The critical point is located at µBC = 500 MeV, result-
ing in TC = 117 MeV and α1 = 11◦. Additionally, we have
w = 15, ρ = 0.3, and α12 = α1, meaning α2 = α1 − α12 = 0.

VI. CONSTRAINTS ON THE EOS

In this manuscript, we obtain a family of equations of state
which depend on the free parameters µBC , w, ρ and α12 in-
troduced by the mapping in Eq. (3). However, the values of
these parameters can be guided by physics and the current
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FIG. 8. Pressure as a function of the temperature for different
baryon chemical potentials. The critical point manifests itself
less clearly in the pressure, which only develops a kink for
µB > µBC . The plot corresponds to the same parameters as
the ones used in Fig. 7.

FIG. 9. Second order baryon susceptibility as a function of
the temperature for different baryon chemical potentials. This
quantity represents the measure of how baryon density reacts
to an increase in chemical potential. A divergence is expected
at the critical point, which can be seen for µB = µBC =
500MeV. The plot corresponds to the same parameters as
the ones used in Fig. 7.

knowledge from experiments, in order to constrain them and
obtain a physical equation of state that describes strongly
interacting matter.

A. Lattice Results

While our equations of state depend on the free parameters
at high µB , we require that they all reproduce lattice QCD
results for pressure and its µB derivatives up to 4th order at
µB = 0. This can be inferred from Fig. 6, where we compare
our baryon density (exhibiting a discontinuity at µB > µBC)
with the lattice QCD results from Ref. [13]: within error-
bars, our discontinuity does not contradict the results from
lattice QCD.

FIG. 10. Energy density as a function of the temperature
for different baryon chemical potentials. This quantity also
shows a discontinuity for µB > µBC . The plot corresponds to
the same parameters as the ones used in Fig. 7.

B. Physical Quark masses

In Ref. [73], a thorough investigation was conducted re-
garding the linear mapping from Ising to QCD introduced in
Refs. [51, 81]. This study effectively explored the scenario
in which the critical point closely approaches the tricritical
point, revealing a universal dependence of the mapping pa-
rameters on the quark mass mq. Notably, when the critical
point resides in the proximity of the tricritical point, the angle
denoted as α12 between the lines of r = 0 and h = 0 within the
(T, µB) plane decreases, exhibiting a behavior proportional to

m
2/5
q . For a physical quark mass mq, the angle α12 ≈ α′

12 as
in (C7a) needs to be small, approximately equal to α1.

C. Stability and Causality

The non-universal mapping from (r, h) to (T, µB) leaves
open the selection of free parameters. While the angle α12

can be constrained by the physical value of the quark masses,
there is no physical guidance for the scaling parameters (w, ρ).
Potentially, some choices of parameters would lead to an un-
stable equation of state.

For a valid equation of state, certain conditions must be
met. We require that the pressure is a monotonically increas-
ing function of T and µB , which means positivity of baryon
density, entropy density, energy density, speed of sound, and
baryon number susceptibility everywhere in the (T, µB) plane
[82] ranging from 0 < µB < 700 MeV and 25MeV < T < 800
MeV. This can be summarized in two conditions: positivity
of the second baryon susceptibility χ2 and of the specific heat
at constant volume cV , which can be written as [83]:

cV (T, µB) =
T
χB
2

[
∂s
∂T

χB
2 −

(
∂nB
∂T

)2]
. (30)
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Additionally, to uphold causality, the speed of sound

c2s(T, µB) =

(
∂p

∂ϵ

)
s/n

=
n2 ∂2p

∂T2 − 2sn ∂2p
∂T∂µB

+ s2 ∂2p

∂µ2
B

(ϵ+ p)

(
∂2p
∂T2

∂2p

∂µ2
B

−
(

∂2p
∂T∂µB

)2)
(31)

must fall within the range 0 ≤ c2s ≤ 1. The behavior of the
speed of sound as a function of T and µB can be seen in Fig.
11. It exhibits a dip at the critical point, where it vanishes.
We show in Fig. 12 a landscape of acceptable (blue triangles)
and pathological (red squares) choices for the parameters w
and ρ, for a critical point located at µBC = 500 MeV, which
corresponds to TC = 117 MeV and α1 = 11◦. Additionally,
we have α12 = α1, meaning α2 = α1 − α12, while w and ρ
are varied in the range w = 2.5− 22.5, ρ = 0.1− 1.3. Similar
plots, comparing our parameter landscapes to the ones from
the BEST collaboration EoS, are discussed in Appendix C.

FIG. 11. Speed of sound as a function of temperature and
baryon chemical potential. This quantity shows a pronounced
at the critical point. The plot corresponds to the same pa-
rameters as the ones used in Fig: 7.

FIG. 12. Landscape plot in the range w = 2.5−22.5, ρ = 0.1−
1.3 at fixed values of µBC = 500 MeV, TC = 117 MeV, α1 =
110 and α12 = α1. Red squares correspond to a pathological
choice of parameters in the range µB = {0, 700 MeV}, while
the blue dots represent acceptable ones.

VII. SUMMARY AND CONCLUSIONS

Determining the QCD equation of state, in particular, es-
tablishing the existence of the QCD critical point and pinning
down its location, is a major goal of heavy-ion collision ex-
periments. The strategy based on comparing predictions of
hydrodynamics sensitive to EoS with experiment requires a
parametric family of EoS which can be fed into a hydrody-
namic code. In this paper, we introduced a novel framework
for constructing such a family of QCD equations of state.

Our framework improves on the BEST collaboration ap-
proach [51] by introducing several significant innovations.
This allows us to achieve coverage over a wider range of the
QCD phase diagram relevant for critical point searches.

The main innovation in our paper is merging the universal
critical point singularity with the implementation of the T ′-
expansion scheme [13]. The T ′-expansion scheme takes into
account the observation that the temperature driven crossover
looks remarkably similar at different chemical potentials, the
main difference being a shift of the crossover temperature with
increasing µB . The “rescaled temperature” T ′(T, µB) defined
in Eq.(4) carries information about the dependence of the
position and the shape of the crossover at different µB . Since
this dependence is relatively slow, the expansion of T ′, as
in Eq.(5), is much better controlled than the expansion of
quantities such as χB

2 , which vary rapidly at the crossover.

We introduce the critical singularity into the function
T ′(T, µB), while making sure that the Taylor expansion coef-
ficients (at µB = 0) still agree with the lattice data.

Another innovation, relative to the BEST EoS framework,
is the mapping of the Ising coordinates r and h into QCD
coordinates T and µ2

B , instead of µB . This takes care of the
charge conjugation symmetry and the associated curvature of
the QCD pseudocritical line.

We check the novel framework by calculating quantities
which must obey thermodynamic inequalities. Of course, for
sufficiently large µB or for sufficiently strong critical point sin-
gularity, the framework will show its limitations by violating
these inequalities. However, the range of parameters where
the novel framework is thermodynamically consistent is larger
than the same range for the BEST collaboration EoS family.

In particular, our framework allows us to provide thermo-
dynamically consistent EoS in the range µB = 0− 700 MeV,
extending beyond the BEST EoS range µB = 0 − 450 MeV.
In addition, the range for critical point parameters w and ρ
is also extended compared to the one for the BEST EoS at
similar values of T and µB .

There are several potential avenues for further improve-
ment. Since the approach is still based on the Taylor expan-
sion, necessarily truncated based on the availability of the
lattice data, it inevitably breaks down at sufficiently large
µB . It might be possible to introduce additional resumma-
tion techniques dealing with these limitations at larger µB .
In addition, the true EoS of QCD possesses the well known
periodicity in the complex plane: µB → µB+2πT i due to the
quantization of the baryon number. This periodicity could
also be implemented. We leave these and further improve-
ments to future work.
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Appendix A: Taylor expansion of the critical
contribution

Here we present the formula and derivation for
Taylor[T ′

crit(T, µB)]. Since in our approach T ′
lat(T, µB) is trun-

cated up to κ2(T ), we need the Taylor[T ′
crit(T, µB), n = 2] =

a0(T )+a2(T )
(
µB
T

)2
, such that we match that same order by

construction, while the higher order contributions come from
the critical part. The coefficients a0 and a2 are then given by;

a0(T ) =

(
∂χ2

∂T

∣∣∣∣
T0

)(
∂ncrit

B (T, µB)

∂(µB/T )

) ∣∣∣∣
µB/T=0

(A1)

a2(T ) =

(
∂χ2

∂T

∣∣∣∣
T0

)(
1

3!

∂3ncrit
B (T, µB)

∂(µB/T )3

) ∣∣∣∣
µB/T=0

(A2)

Appendix B: Computing thermodynamics

From Eq. (4), we obtain Eq. (B1) and Eq. (B2), which
are derivatives of the baryon density with respect to chemical
potential and temperature, respectively

∂nB(T, µB)

∂(µB/T )
= χB

2,lat(T
′)T 3+

µB

T

∂χB
2,lat(T )

∂T

∣∣∣∣
T ′

∂T ′

∂(µB/T )
T 3 (B1)

∂nB(T, µB)

∂T
= 2

nB(T, µB)

T
+

µB

T

∂χ2,lat(T )

∂T

∂T ′

∂T
T 3 (B2)

Then entropy is computed from the integral of Eq. (B2) using

s(T, µB) = 4T 3χB
0,lat(T ) + T 4χ

B
0,lat(T )

dT∫ µB

0

dµ′
B
∂nB(T, µ

′
B)

∂T
(B3)

All thermodynamic quantities, calculated in this paper as
functions of temperature and chemical potential, are shown in

Figures 7-10 and 13-16 for slices at constant µB in the main
text and 3D plots in the Appendix, respectively.

Appendix C: Comparison with BEST EoS

In [51, 73, 82], a linear map from Ising to QCD with six
parameters was utilized.

T − TC = TCw(rρ sinα1 + h sinα2)

µB − µBC = TCw(−rρ cosα1 − h cosα2). (C1)

By making use of the following equations for the slopes at
the critical point:

dT

dµB

∣∣∣
h=0

= − tanα1 (C2)

dT

dµB

∣∣∣
r=0

= − tanα2 (C3)

and linearizing Eq. (13) around the critical point and using

T ′
lat = T

(
1 + κ2(T )

(
µB
T

)2)
,

1

T ′
,T

∆T ′

∆µB
=

∆T

∆µB
+

2κ2(T )µB

T ′
,TT

(C4)

At h = 0, we get Eq.(21):

tanα1 =
2κ2(TC)µBC

T ′
,TTC

(C5)

At r = 0, we get Eq. (14a):

tanα′
12 = tanα1 − tanα2 (C6)

Using simple trigonometric relations and Eq.(16) and Eq.(17),
we find (14b) and (14c).

Then, we approximate for either small angles or large an-
gles:

• For small angles:

α′
12 ≈ α12 ; (C7a)

w′ ≈ w ; (C7b)

ρ′ ≈ ρ ; (C7c)

• For α1 ≪ 1 and α12 = 90◦:

α′
12 ≈ 90◦ − α1 ; (C8a)

w′ ≈ w ; (C8b)

ρ′ ≈ ρ . (C8c)

In Figures 17 and 18, we compare the stability parameter
landscape in w and ρ for our approach to the ones from the
BEST collaboration EoS. In Fig. 17, the Ising model axes
are chosen to be orthogonal to each other. However, since
physically motivated values of the angle α12, characterizing
the shape of the critical region, are small [73], it is important
that the improvement in the w and ρ ranges is especially
pronounced for small angle α12, as shown in Fig.18 for α2 = 0,
i.e., α12 = α1. From these figures it is clear that the quadratic
mapping in Fig: 3 has more acceptable points than the linear
mapping in [51].
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FIG. 13. Baryon density as a function of temperature and chemical potential for the same parameters as in Fig. 7, with a zoom
into the critical region.

FIG. 14. Second baryon number susceptibility as a function of temperature and chemical potential for the same parameters as
in Fig. 7, with a zoom into the critical region
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FIG. 17. Comparison of the stability plots for w and ρ with the new mapping (Quadratic) on the left panel and the BEST
mapping (Linear) [51] on the right. The blue points represent acceptable parameters, while the red points denote unacceptable
ones for µBC = 350MeV, TC = 140.073MeV, α1 = 6.653◦, κ = 0.02633 with α12 = 90◦ for µB = {0, 450MeV}. Blue triangles
on the left panel indicate parameters that are acceptable in the new mapping, while they were not in the BEST collaboration
mapping.

FIG. 18. Comparison of the stability plots for w and ρ with the new mapping (Quadratic) on the left panel and the BEST
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µB = {0, 450MeV}. Blue triangles on the left panel indicate parameters that are acceptable in the new mapping, while they
were not in the BEST collaboration mapping.
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