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REVIEWED BY

Marta Berrocal-Lobo,
Polytechnic University of Madrid, Spain
Daniela Minerdi,
University of Turin, Italy

*CORRESPONDENCE

Katalin Posta
Posta.Katalin@uni-mate.hu

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Plant Symbiotic Interactions,
a section of the journal
Frontiers in Plant Science

RECEIVED 16 September 2022

ACCEPTED 09 November 2022
PUBLISHED 06 December 2022

CITATION

Duc NH, Vo HTN, van Doan C,
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Volatile organic compounds (VOCs), a bouquet of chemical compounds

released by all life forms, play essential roles in trophic interactions. VOCs

can facilitate a large number of interactions with different organisms

belowground. VOCs-regulated plant-plant or plant-insect interaction both

below and aboveground has been reported extensively. Nevertheless, there

is little information about the role of VOCs derived from soilborne pathogenic

fungi and beneficial fungi, particularly mycorrhizae, in influencing plant

performance. In this review, we show how plant VOCs regulate plant-

soilborne pathogenic fungi and beneficial fungi (mycorrhizae) interactions.

How fungal VOCs mediate plant–soilborne pathogenic and beneficial fungi

interactions are presented and the most common methods to collect and

analyze belowground volatiles are evaluated. Furthermore, we suggest a

promising method for future research on belowground VOCs.

KEYWORDS

belowground volatile organic compounds, arbuscular mycorrhizal symbiosis,
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Introduction

Volatile organic compounds (VOCs) are a mixture of low molecular-weight

compounds originating from different types of organisms (Maffei et al., 2011). Under

biotic (insects, beneficial fungi, pathogenic fungi, bacteria) and abiotic (heat, drought, UV

radiation) stresses, plants often release complex VOC bouquets. Plant VOCs are essential in

communication between plants and other organisms (Dudareva et al., 2006), which has

been demonstrated in the laboratory and in agricultural systems (Kessler and Baldwin,

2001; Baldwin et al., 2002; Turlings and Erb, 2018). In previous research, volatiles emitted
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from microorganisms such as bacteria and fungi have been

investigated less than VOCs emitted from plants (Effmert et al.,

2012; Junker and Tholl, 2013; Weisskopf, 2013; Penuelas

et al., 2014).

Microbial VOCs are released by microorganisms such as

bacteria and beneficial and pathogenic fungi (Korpi et al., 2009;

Thorn and Greenman, 2012). Volatile organic compound profiles

can be substantially altered by pathogen-derived VOCs, and can

therefore function as biomarkers for detection, differentiation, and

characterization or even forecast of early infections (Li et al., 2019;

Hamow et al., 2021). More than 100 bacteria and fungi produce

soil microbial VOCs (Effmert et al., 2012), and approximately 250

fungal VOCs have been described (Morath et al., 2012; Roze et al.,

2012). Plants can perceive microbial VOCs from a distance and

prime plant responses to microorganisms (Bailly and Weisskopf,

2012; Effmert et al., 2012; Bitas et al., 2013; Schmidt et al., 2015).

Microbial VOCs can potentially mediate plant–microbe

interactions (Moisan et al., 2020a; Moisan et al., 2020b; Xu

et al., 2021). Microbial VOCs can diffuse through the soil

environment and potentially affect plant growth and defense

(Piechulla et al., 2017; Tyagi et al., 2018). Bacterial VOCs can

increase plant growth and trigger systemic resistance and also

influence motility and antibiotic resistance in other bacteria (Ryu

et al., 2003; Ryu et al., 2004; Lee et al., 2012; D’Alessandro et al.,

2014; Park et al., 2015). Similarly, VOCs emitted by pathogenic

and beneficial microorganisms can promote plant growth

(Velásquez et al., 2020b), and microbial volatiles can improve

plant tolerance and sustain plant growth (Liu and Zhang, 2015;

Jalali et al., 2017; Camarena-Pozos et al., 2019).

Volatile organic compounds can facilitate many interactions

between below- and aboveground organisms (Schulz and

Dickschat, 2007; Das et al., 2012; Junker and Tholl, 2013).

Compared with aboveground VOCs, belowground VOCs are

challenging to evaluate because of the nonhomogeneous soil

environment. The difficulty results in technical limitations in

collecting volatiles (Tholl et al., 2021). Since the first

investigation of Baldwin and Schultz (1983), VOC-regulated

plant–plant or plant–insect interactions both below and

aboveground have been investigated extensively (Bruce et al.,

2005; Baldwin et al., 2006; Kegge and Pierik, 2010; Clavijo

McCormick et al., 2012; Effah et al., 2019; Effah et al., 2022).

However, much less known about roles of VOCs originating

from soilborne pathogenic and beneficial fungi, particularly

mycorrhizae, in affecting plant performance. In addition, how

exposure to fungal VOCs affects plant resistance or tolerance to

aboveground and belowground herbivory has not been

addressed. This review shows (1) how plant VOCs mediate

plant–soilborne pathogenic and beneficial fungi (mycorrhizae)

interactions; (2) how fungal VOCs modulate plant–soilborne

pathogenic and beneficial fungi interactions and (3) we describe

the most common methods to collect and analyze belowground

volatiles and a promising method for future research on

belowground VOCs is introduced.
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Volatile organic compounds in
plant–pathogenic fungi interactions

Plant belowground volatile
organic compounds and effects
on fungal pathogens
Because of negative effects of chemical use in plant protection,

analyzing production patterns of VOCs in root tissues is

increasingly important because of potential VOC roles in

belowground biotic interactions, particularly those with fungal

pathogens. Numbers of root VOCs that have been identified and

investigated have increased in recent years. In 2015, relatively few

root volatiles (39 compounds) were known in maize, barley, bean

(Vicia faba), and Arabidopsis thaliana (reviewed by Schenkel

et al., 2015). However, hundreds more volatile compounds

emitted by roots of diverse plant species have since been

reported (Cordovez et al., 2017; Schenkel et al., 2018; Moisan

et al., 2019). With the model plant A. thaliana, the focus has been

on different functions of root volatiles in invasive and noninvasive

conditions (Casarrubia et al., 2016; Cordovez et al., 2017; Schenkel

et al., 2018; Moisan et al., 2019). Volatile organic compounds of

many other plants have also been investigated. Volatile organic

compounds in Solanaceae, including pepper (Capsicum annuum)

(Kihika et al., 2017) and tomato (Kihika et al., 2017; Kirwa et al.,

2018); Brassicaceae, including Brassica rapa (Moisan et al., 2020);

and the cucurbit family, including cucumbers Cucumis

metuliferus CM3 and line Xintaimici in relation to Meloidogyne

incognita (Xie et al., 2022), as well as those in non-cultivated

plants, including spotted knapweed Centaurea stoebe (Gfeller

et al., 2019), have been scanned and investigated for antifungal

activity or ability to increase plant defense against pathogens and

herbivores. These root VOCs have been grouped into 15

biosynthetic origins/chemical classes in Figure 1 (Table S1).

Because of limited pesticide use for the control of fungal

pathogens, some antifungal VOCs may be promising control

agents. However, antimicrobial activity of VOCs can vary with

origin, dose, and application form, and possible phytotoxic effects

and effects on human health of antifungal VOCs need to be

investigated in order to develop effective and safe biocontrol

strategies (Kaddes et al., 2019a).

Volatile organic compounds are classified into different

chemical groups depending on plant species, genotype, sex,

development stage (Table 1 and Table S1) (Schenkel et al.,

2015; Delory et al., 2016a; Delory et al., 2016b; Kihika et al.,

2017; Kindlovits et al., 2018; Murungi et al., 2018; Xie et al.,

2022). One of the most common groups is terpenoids, which

include the sesquiterpenes (E)‐b‐caryophyllene, daucadiene,
(E)‐a‐bergamotene, humulene, (E)‐b‐farnesene, and three

putative petasitene isomers (petasitene 1–3) and the

monoterpenes a‐pinene and b‐myrcene (Gfeller et al., 2019;

Gulati et al., 2020). In Achillea collina, active volatile constituents
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included alismol, (E)-b-farnesene, b-sesquiphellandrene and

neryl esters, heptadecen-7-one, albene and b-pinene, linoleic
acid, 2,4,6-decatrienoic acid piperideide, sterols, and some

triterpenes (Kindlovits et al., 2018). Other major groups of

root volatiles include aldehydes, alcohols, n-alkanes, and

ketones. Following strong mechanical injury in barley plants at

each developmental stage, the four main volatile aldehydes were

characterized and included hexanal, (E)-hex-2-enal, (E)-non-2-

enal, and (E,Z)-nona-2,6-dienal (Delory et al., 2016a). The

volatile organic compounds released by roots vary depending

on the biotic stress agent that is causing damage to the plant.

Tomato roots infected by Fusarium oxysporum emit VOCs such

as benzonitrile, benzothiazol, dimethyl trisulfide, and formic

acid, which have antifungal activities, and a terpene-like

compound, which activates antagonistic response; whereas

healthy tomato plants release n-alkanes, beclomethasone

dipropionate, p-cymene, decanal, and 3-carene, which are

compounds without antimicrobial activity or special role

(Gulati et al., 2020). Belowground VOCs can affect root-

associated microbes, including belowground fungal pathogens.

Antimicrobial VOCs biosynthesized in natural hosts are

typically at low levels, but the substantial antagonistic activity

is promising. Contact-independent antagonisms by VOCs

indicate potential for a single application with uniform

exposure. Such exposure decreases the likelihood of unaffected

host microbial refugia being re-colonized by pathogens after
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dissipation or degradation of an inhibitory compound (Gabriel

et al., 2018). Black pepper-associated bacterium Pseudomonas

putida BP25 was isolated from a root endosphere, and

endophytic colonization by PpBP25 protected black pepper,

ginger, and Arabidopsis against Phytophthora capsici, Pythium

myriotylum, Giberella moniliformis, Rhizoctonia solani, Athelia

rolfsii, Colletotrichum gloeosporioides, and the plant parasitic

nematode Radopholus similis because of the release of volatile

substances such as pyrazine derivatives (Sheoran et al., 2015).

Pyrazine derivates such as 2,5-dimethyl pyrazine, 2-methyl

pyrazine, dimethyl trisulfide, 2-ethyl 5-methyl pyrazine, and 2-

ethyl 3,6-dimethyl pyrazine have in vitro inhibitory activity

against the oomycete pathogens Ph. capsici and P. myriotylum;

the fungal pathogens R. solani, C. gloeosporioides, A. rolfsii, G.

moniliformis, and Magnaporthe oryzae; the bacterial pathogen

Ralstonia pseudosolanacearum; and the plant parasitic nematode

Radopholus similis. (Kihika et al., 2017; Murungi et al., 2018) In

addition to pyrazine derivatives, the VOC dimethyltrisulfide of

BP25 exhibits soil fumigant activity against Ph. capsici; R. solani,

A. rolfsii, C. gloeosporioides, and G. moniliformis; and R. similis

(Agisha et al., 2019). Thus, P. putida BP25 and its VOCs have

promise as applications for eco-friendly disease management in

sustainable agriculture. Botrytis cinerea, a necrotrophic fungus

with a wide range of hosts, is extremely sensitive to

monoterpenes, such as (+)-limonene, in in vitro applications

(Simas et al., 2017), which inhibit fungal mycelial growth and
FIGURE 1

Diversity of plant root VOCs, 155 volatile compounds from different plants collected from 2016 to 2022.
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spore germination. The eight-carbon oxylipin 1-octen-3-ol is the

primary factor suppressing conidia germination and mycelial

growth of Aspergillus nidulans (Herrero-Garcia et al., 2011).

Two organic esters (methyl pro-2-enoate and methyl

propanoate) suppress mycelial growth of the fungi Fusarium

culmorum and Cochliobolus sativus when in direct contact,

whereas with indirect contact, the VOCs cause a decrease in

the outflow of K+ ions into the intracellular medium and an

increase in the permeability of pathogenic spore membranes

(Kaddes et al., 2019b). Because activity of proton pumps must

guarantee the efflux of H+ ions into the intracellular medium to

retain electrical charges on either side of the membrane at

equilibration in order to adjust for K+ imbalance, dramatic

changes can occur in the pH of the intracellular medium and

prohibit spore germination (Kaddes et al., 2019b). Therefore,
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roles of root volatiles in regulating belowground microbiomes

via effects on microbial communities and attraction of beneficial

microbial species have been the focus of research. Despite the

bright prospects to control fungal diseases, applications of

belowground volatiles in sustainable agriculture need to be

investigated further (Sharifi et al., 2022).
Effects of volatile organic compounds
produced by fungal pathogens on plants

Pathogenic fungi obtain nutrients by either feeding on living

host plant cells (biotrophic pathogens) or killing cells

(necrotrophic pathogens). Notably, volatile compounds

emitted by pathogenic fungi are different from those emitted
TABLE 1 Plant root VOCs and its properties.

Plant VOC compounds Properties References

Carex arenaria g-capro; g-deca; g-nonalactone attract benefit bacteria from bulk soil Schulz-Bohm et al., 2017

Cucumis metuliferus
CM3

Creosol attract and kill M. incognita Xie et al., 2022

Poplar salicylaldehyde play a role as a nematicide Lackus et al., 2018

Cucumis metuliferus
CM3

Benzene, (methoxymethyl) repel M. incognita Xie et al., 2022

Pepper Thymol repel root-knot, cyst, and stubby root
nematodes

Kihika et al., 2017

Centaurea stoebe;
tomato

(E)‐b‐caryophyllene; daucadiene; (E)‐a‐
bergamotene; humulene; (E)‐b‐farnesene;

petasitene 1–3; b‐myrcene

effect on the germination and growth of
different sympatric neighbors

Gfeller et al., 2019; Gulati et al., 2020

Centaurea stoebe;
tomato; spinach;
pepper; poplar

a‐pinene Kihika et al., 2017; Murungi et al., 2018;
Lackus et al., 2018; Gfeller et al., 2019;

Gulati et al., 2020

Cucumber line
Xintaimici, Tomato,
spinach; pepper

Tridecane attract second-stage larvae (J2) of M.
incognita; Simas et al., 2017

Kihika et al., 2017; Murungi et al., 2018; Xie
et al., 2022

Tomato; Pepper p-cymene Kihika et al., 2017; Gulati et al., 2020

Tomato Sabinene Murungi et al., 2018

Tomato, spinach;
pepper

Limonene; 2-(methoxy)-3-(1 methylpropyl)
pyrazine

Kihika et al., 2017; Murungi et al., 2018

Tomato, spinach 2-isopropyl-3-methoxypyrazine Murungi et al., 2018

Cucumis metuliferus
CM3

2-Penten-1-ol, (Z)- Xie et al., 2022

Cucumber line
Xintaimici; pepper;
tomato

Methyl salicylate Kihika et al., 2017; Murungi et al., 2018; Xie
et al., 2022

Cucumis metuliferus
CM3

1-Nonyne improvement plant resistance to M. incognita Xie et al., 2022

Carex arenaria Benzonitrile Schulz-Bohm et al., 2017

Carex arenaria Benzofuran Schulz-Bohm et al., 2017

Not given Limonene inhibited the fungal mycelial growth and spore
germination of Botrytis cinerea

Simas et al., 2017

Barley methy pro-2-enoate and methyl propanoate suppressed the mycelial growth and prohibited
spore germination of Fusarium culmorum and

C. sativus

Kaddes et al., 2019b

Tomato benzonitrile, benzothiazol, dimethyl trisulfide Antifungal activity to Fusarium oxysporum Gulati et al., 2020
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by plant roots (Schenkel et al., 2015; Gulati et al., 2020). Among

pathogen genera, fungal volatile compounds have been

characterized for many species (Fiers et al., 2013; Casarrubia

et al., 2016; Werner et al., 2016; Cordovez et al., 2017; Cordovez

et al., 2018; Martıń-Sánchez et al., 2020; Moisan et al., 2020).

Pathogen-produced VOCs have low chemical diversity and are

most likely used as info-chemicals or chemical stimuli to attract

or repel interacting organisms (Gulati et al., 2020). Pathogenic

fungi and the volatiles emitted by such fungi negatively affect

plant growth. Fungal volatile compounds such as 1-octen-3-ol,

2-phenylethanol, 3-methyl-1-butanol, 1-hexanol, 3-octanol, 3-

octanone, and trans-2-octenal (Table 2) are classified as

phytotoxic (Werner et al., 2016). The compound 1-octen-3-ol

represses root growth and causes cotyledon bleaching of A.

thaliana seedlings at low concentrations via H2O2 production

(Splivallo et al., 2007) and impairs seed germination (Lee et al.,

2014). Volatiles emitted by the belowground fungal pathogens

Serratia plymuthica and F. culmorum affect root and shoot

growth of maize by limiting the availability of micronutrients

such as Fe, Zn, Cu, and Mo (Table 2) in roots (Martıń-Sánchez

et al., 2020). The fungus F. acuminatum releases volatiles into

soil that prohibit growth and decrease shoot length and root

surface area and biomass in tomato (Gulati et al., 2020). The

fungi F. culmorum and Cochliobolus sativus produce VOCs that

decrease leaf surface area and mean root length in barley (Fiers

et al., 2013). Volatiles emitted by the pathogenic fungi R. solani

and F. oxysporum f. sp. raphani decrease the root growth rate of

B. rapa seedlings (Moisan et al., 2021).

In addition to negative effects on plants, many pathogenic

fungal VOCs are growth manipulators, because the VOCs affect

plant architecture and increase growth (Werner et al., 2016).

Many of those VOCs are alcohols, pyrones, phenols,

sesquiterpenes, ketones, and aldehydes, which can affect plant

growth and architecture (Casarrubia et al., 2016; Cordovez et al.,

2018; Fincheira and Quiroz, 2018; Moisan et al., 2019). Volatile

organic compounds emitted by the fungal root pathogen R.

solani promote in vitro growth of early developmental stages of

A. thaliana by altering root architecture and increasing root

biomass (Cordovez et al., 2017) and increase root growth of B.

rapa (Moisan et al., 2020a). Increases in growth can benefit

pathogens by enlarging the habitat for pathogenic colonization

of surfaces and survival (Cordovez et al., 2017; Moisan et al.,

2019; Moisan et al., 2020). Fungal volatiles emitted by R. solani

and Phoma leveillei stimulate not only plant growth but also

flowering by accelerating plant bolting and bud and flower

production, which improves reproductive success (Moisan

et al., 2019). The ability of fungal pathogens to modulate plant

growth via VOCs is likely widespread, because VOCs act as an

“alert” signal to plants, which accelerate growth by upregulating

genes involved in auxin or cytokinin signaling while

downregulating genes involved in ethylene or jasmonic acid

signaling (Sanchez-Lopez et al., 2016; Cordovez et al., 2017;

Martıńez-Medina et al., 2017b; Li and Kang, 2018).
Frontiers in Plant Science 05
Fungal VOCs increase plant protection by inducing host

defense systems and resistance against pathogens via different

mechanisms (Werner et al., 2016). One important mechanism

is to change the balance of K+ ions flow and disturb the pH

gradient, which inhibits fungal mycelial growth and spore

germination (Kaddes et al., 2019b). Naphthalene and

monoterpenes (p-cymene, 3-carene) produced in tomato

roots in response to F. oxysporum have antibacterial effects

(Gulati et al., 2020). Plant VOC emission profiles can also

change after infection with a fungal pathogen, leading to

chemical protection in plants and preventing further fungal

pathogen colonization or attracting specific beneficial

microorganisms with antifungal properties (Schulz-Bohm

et al., 2017; Gulati et al., 2020).

Notably, soilborne pathogenic fungi can improve plant

resistance to above- and belowground herbivory. Resistance to

the cabbage root fly Delia radicum (Diptera: Anthomyiidae) and

the large cabbage white butterfly Pieris brassicae (Lepidoptera:

Pieridae) increase with exposure to volatiles of the pathogenic

fungi R. solani, F. oxysporum, Ulocladium atrum, and P. leveillei

(Moisan et al., 2019). Fungal VOCs also negatively affected D.

radicum development rate and P. brassicae caterpillar

performance (Cordovez et al., 2017; Moisan et al., 2019;

Moisan et al., 2020b). Exposure of roots to fungal VOCs can

alter primary and lateral root architecture, which leads to

changes in plant chemistry and morphological characteristics

and negatively affects the performance of root herbivores by

delaying insect growth and accumulation of body mass

(Ditengou et al., 2015; Casarrubia et al., 2016). Fungal VOCs

can also promote the accumulation of glucosinolates in leaves or

main roots, which diminishes leaf caterpillar performance or

slows larval development (Aziz et al., 2016). In addition, volatiles

produced by soilborne fungi can affect nematode development

and behavior. Volatiles emitted by some F. oxysporum strains

inhibit egg hatch in the root-knot nematode Meloidogyne

incognita and slow development of the cyst nematode

Heterodera schachtii (Terra et al., 2018; Moisan et al., 2021).

Thus, volatiles from soilborne fungi not only negatively affect or

modulate plant growth but also diffuse through the soil matrix to

help plants attract disease antagonists or natural enemies

for defense.
Volatile organic compounds in
mycorrhizal symbiosis
Volatile organic compounds during
mycorrhizal establishment

Arbuscular mycorrhizal fungi (AMF) in the phylum

Glomeromycotina are ubiquitous soil microorganisms and

obligate root symbionts inhabiting almost all terrestrial
frontiersin.org
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TABLE 2 Fungal VOCs and its effect to plant host.

Plant host/fungi VOC compounds Properties References

Maize/ Serratia plymuthica;
Fusarium culmorum

Not given Iimited the availability of micronutrients such as Fe, Zn, Cu, and Mo in the root Martıń-
Sánchez et al.,
2020

Tomato/ Fusarium oxysporum branched alcane, dodecane,
eicosane, docosane, naphthalene,
beclomethasone dipropionate

Prohibited plant growth and curtailed shoot length and root parameters, as well as
lessened root surface and biomass

Gulati et al.,
2020

Brassica rapa/ R. solani,
Fusarium oxysporum f.sp.
raphani

3-octanol, 3-octanone Diminished the root growth rate of Brassica rapa seedlings Moisan et al.,
2021

A. thaliana/ R. solani 1-octen-3-ol, 2-phenylethanol, 3-
methyl-1-butanol, 1- hexanol, 3-
octanol, 3-octanone, trans-2-
octenal

Inhibited plant growth Werner et al.,
2016;
Cordovez
et al., 2017

A. thaliana/ R. solani Unidentified Plant growth promoted by altering root architecture and enhancing root biomass;
reduced aboveground resistance to the herbivore Mamestra brassicae

Cordovez
et al., 2017

Brassica rapa/ R. solani,
Fusarium oxysporum,
Ulocladium atrum and Phoma
leveillei

Not given Stimulated root and plant growth, flowering, accelerating plant bolting, bud and
flower production, improved reproductive success; enhanced plant resistant to
cabbage root fly Delia radicum and large cabbage white butterfly Pieris brassicae

Moisan et al.,
2020a

Brassica rapa / F. oxysporum Not given Inhibited root-knot nematode M. incognita egg hatching and development of cyst
nematode Heterodera schachtii

Terra et al.,
2018; Moisan
et al., 2021

Arabidopsis/ Penicillium
aurantiogriseum

Not given modify root metabolism and architecture, and improve nutrient and water use
efficiencies

Garcıá-Gómez
et al., 2020

-/ Fusarium culmorum a-Terpinene, b-Phellandrene, 3-
Carene, and Camphene

Reduced swimming and swarming motility bacteria, Collimonas pratensis Ter291
and Serratia plymuthica PRI-2C

Schmidt et al.,
2016

Tricholoma vaccinum (EM
fungi)

Produced monoterpene limonene,
sesquiterpene b-barbatene

Antimicrobial activity Abdulsalam
et al., 2021

Tilia americana/Tuber borchii
(EM fungi)

Produced 29 volatiles including
alcohols, aldehydes, and ketones

These VOCs may facilitate ectomycorrhizal fungi establishment Menotta et al.,
2004

Populus/Laccaria bicolor (EM
fungi)

Released sequiterpene thujopsene Increased Populus lateral root formation and root hair length in the pre-symbiotic
phase, facilitating ectomycorrhizal fungi establishment

Ditengou
et al., 2015

Tricholoma vaccinum (EM
fungi)

Emitted geosmin Improved sporulation and spore germination in AMF. This volatile may also be
important in ectomycorrhizal fungi establishment

Abdulsalam
et al., 2021

Rhizophagus irregulari (AMF) Produced unknown volatiles Directly suppressed growth and extension of fungal pathogens, F. oxysporum, F.
graminearum, Verticillium dahlia, Rhizoctonia solani

Zhang et al.,
2018

Gigaspora margarita (AMF) Emitted unknown volaties Increased density and number of lateral roots of A. thaliana (non-host plant for
AMF) and Lotus japonicus

Sun et al.,
2015

-/ AM genus Glomus Not given Improved biotic stress tolerance in an array of plants attacked by herbivores Dowarah
et al., 2021

Medicago truncatula/
Rhizophagus irregularis

Specifically released limonene This volatile may help plant recognize the symbiotic mycorrhizal fungi Dreher et al.,
2019

Tomato /R. irregularis Increased methyl salicylate Attracted the aphid parasitoid Aphidius ervi Volpe et al.,
2018

Asclepias curassavica
/Funneliformis mosseae

Increased 3-hexenyl acetate, hexyl
acetate, methyl salicylate

modified plant attractiveness to insect behavior Meier and
Hunter, 2019

Grapevine/F. mosseae Increased benzaldehyde, geraniol,
2–hexenal, 3–hexenal

Improved plant defenses against pathogen/herbivore attack
Improved plant defences against pathogen/herbivore attack

Velásquez
et al., 2020b

Elymus nutans/ F. mosseae Increased D-Limonene, p-Xylene,
1,3-Diethylbenzene

Zhang et al.,
2022

Grapevine/ F.. mosseae C13–norisoprenoid b–ionone
decline

Improved plant resistance to water stress Ju et al., 2018

Medicago sativa /Rhizophagus
irregularis

Volatization of inorganic Asenic Decreased As toxicity in the host plant Li et al., 2021
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ecosystems. The AMF establish symbiotic associations with

approximately 80% of vascular plants and with approximately

90% of agricultural plants (Smith and Read, 2008). In the

mutualistic association, the fungal partner receives up to 20%

of total photosynthates (Allen et al., 2003) and lipids (Bravo

et al., 2017) from the host, whereas the plant increases mineral

nutrient and water uptake through mycorrhizal hyphae

networks (Smith and Read, 2008). Arbuscular mycorrhizal

fungi account for 5% to 36% of total soil biomass and 9% to

55% of soil microbial biomass (Olson et al., 1999), and 1 gram of

soil contains 10 to 100 m of mycorrhizal hyphae (Gilbert and

Johnson, 2017). Mycorrhizal fungal symbionts are important in

environmental ecology and agricultural ecosystems, because

AMF are ubiquitous and are involved in nutrient cycles

(Azcon-Aguilar and Miguel-Barea, 2015).

Establishing arbuscular mycorrhizae (AM) involves a

sequence of genetically controlled phases that commences with

pre-symbiotic molecular crosstalk resulting in reciprocal

perception, followed by host root cells proceeding with

considerable functional and structural alterations to

accommodate the fungi (Choi et al., 2018). Level of nutrient

availability is determinant in establishment and development of

mycorrhizal symbiosis. In the mutualistic association, fungi and

plants perceive one another via interacting molecular signals

(Bonfante and Genre, 2015). Before physical contact,

strigolactones released from host roots in response to

inorganic phosphorus starvation induce AM spore

germination, hyphae production, and branching to physically

contact roots (Ho-Plágaro and Garcı ́a-Garrido, 2022).

Moreover, flavonoids, 2-hydroxy fatty acids, polyamines, and

cutin monomers are among the active plant compounds

influencing hyphal elongation or branching (Becard et al.,

1992; Ghachtouli et al., 1995; Akiyama et al., 2005; Nagahashi

and Douds, 2011; Wang et al., 2012; Gutjahr and Parniske,

2013). The AM hyphopodium penetrates into roots and forms

arbuscles where nutrients and photosynthates are exchanged

(Nadal and Paszkowski, 2013). The AMF develop extensive

extraradical hyphal networks in soil, which affect other

organisms and root physiology as well as pattern of

root exudation.

Although important advances in understanding the molecular

regulation of AM symbiosis have been achieved (Ho-Plágaro and

Garcıá-Garrido, 2022), there is little information on VOCs during

mycorrhization. Sun et al. (2015) showed that germinating spores of

the AMF Gigaspora margarita emit unidentified volatiles, which

increase density and number of lateral roots in A. thaliana (non-

host plant for AMF) and Lotus japonicus (Table 2). Fungi also

modulate host root orientation by releasing sporal VOCs that alter

the branch angle of lateral roots, thereby increasing the chances of

AM hyphae contacting roots in the rhizosphere (Sun et al., 2015).

Because auxins regulate the branch angle of lateral roots, VOCs can

trigger the auxin signaling pathway in plants (Roychoudhry et al.,

2013). Expression profiles of genes associated with AM
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establishment and lateral root formation in L. japonicus indicate

that the gene LjCCD7, an important component of the strigolactone

synthesis pathway, is stimulated by fungal VOC signals (Sun et al.,

2015). Mycorrhizal VOCs increase strigolactone biosynthesis and

root proliferation, and secretion of such VOCs in the rhizosphere

facilitates AM hyphal identification of roots and increases root

colonization. Plant hormones and root volatiles and exudates are

important factors modulating interactions between host plants and

AMF. Exogenous abscisic acid (ABA) application to mother spores

of Rhizophagus irregularis substantially increases daughter spore

production, and hairy root volatiles considerably increase pre-

symbiotic sporulation (Liu et al., 2019). Plants can distinguish

between symbiotic and pathogenic interactions in the early stages

of colonization and respond by releasing different root VOCs

depending on whether the colonization is beneficial or pathogenic

(Dreher et al., 2019). Indeed, 93 VOCs exhibit differential responses

in Medicago truncatula roots treated by the root pathogen

Aphanomyces euteiches or the mycorrhizal fungus R. irregularis.

Several VOCs are released specifically in response to R. irregularis,

such as limonene, which could be a result of the action of specific

receptors on plasma membranes (Dreher et al., 2019). Therefore,

specific receptors for AMF activate the common symbiotic signaling

pathway for symbiotic interactions (Parniske, 2008).

Ectomycorrhizal (EM) symbiosis is another very common

mycorrhiza–plant interaction. Many ectomycorrhizal ascomycetes

and basidiomycetes form symbioses with approximately 6000 tree

species, including beeches, dipterocarps, eucalypts, oaks, pines, and

poplars (Brundrett, 2002; Van Der Heijden et al., 2015). In contrast

to arbuscular mycorrhizae, ectomycorrhizae support hosts by

generating hyphal networks (known as the Hartig net) that

surround epidermal cells of emerging lateral roots (Smith and

Read, 2010; Tedersoo et al., 2010). A complex signaling dialogue

between host plant and fungus is necessary to establish EM.

Menotta et al. (2004) showed that 29 volatile compounds,

including alcohols, aldehydes, and ketones, are produced during

the interaction between the host plant Tilia americana and

Tuber borchii at the pre-symbiotic stage of EM establishment.

Terpenoids such as 1-pentanol, 2,3-dimethyldecane, and p-

isopropylbenzaldehyde—which are the most diffusible

compounds in soil (Hiltpold and Turlings, 2008)—are involved in

the interaction and therefore may be good candidates for

belowground signaling during plant–EM interactions. Indeed,

Ditengou et al. (2015) found that those volatiles have roles in the

pre-symbiotic communication between roots of a Populus host and

the fungus Laccaria bicolor. The sequiterpene thujopsene generated

by the fungus increases Populus lateral root formation and root hair

length in the pre-symbiotic phase and thus facilitates EM

establishment. In addition, thujopsene induces the formation of

superoxide anion radicals in the meristematic zone of root tips,

whereas the prohibition of fungal sesquiterpene synthesis by

lovastatin decreases lateral root formation. Recently, the EM

fungus Tricholoma vaccinum was found to release geosmin

(Abdulsalam et al., 2021), which improves sporulation (Bentley
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and Meganathan, 1981) and spore germination in AMF

(Carpenter-Boggs et al., 1995). Therefore, geosmin may be also

important in EM formation.
Mycorrhizae shape the
rhizosphere microbiome

The extensive hyphal network that develops during

mycorrhizal colonization alters root morphology and

architecture (Schellenbaum et al., 1991; Norman et al., 1996)

and increases soil biological activity by what is called the

“mycorrhizosphere effect” (Linderman, 1988). Thus, the

mycorrhizosphere effect affects soil microbial communities.

Mycorrhization causes changes in components of root

exudates and therefore shapes soil microbial communities

(Badri and Vivanco, 2009). The antifungal activities of

mycorrhizal root exudates also promote disease resistance.

Zhang et al. (2012) showed that Glomus versiforme changes

the exudation pattern of cotton roots and contributes to

bioactive effects on Verticillium dahliae conidial germination.

Similarly, direct antibiotic activity of exudates originating from

tomato roots colonized by AMF toward F. oxysporum f. sp.

lycopersici has been observed, with nonvolatile citrate and

chlorogenic acid as the antifungal substances (Hage-Ahmed

et al., 2013). Zhang et al. (2018) demonstrated that

R. irregularis symbionts emit undefined volatile compounds

that directly suppress growth and extension of fungal

pathogens such as F. oxysporum, F. graminearum, V. dahliae,

and Rhizoctonia solani. Furthermore, Tricholoma vaccinum (EM

fungus) produces VOCs that include the monoterpene limonene

and the sesquiterpene b-barbatene, which have antimicrobial

properties (Abdulsalam et al., 2021). Notably, plants in natural

communities participate in shared or common mycorrhizal

networks that enlarge areas accessed by root systems and allow

linkages with other plants (Johnson and Gilbert, 2015). In

forests, trillions of mycorrhizal rootlets from various forest

trees are interconnected by hyphae of different EM fungal

species to form extraradicular mycorrhizal networks or wood-

wide webs (Selosse et al., 2006; Klein et al., 2016). Molecules

likely transported by mycorrhizal networks include small RNAs,

hormones or hormone metabolites , ions, peptides ,

allelochemicals, and particularly defense signals that prime

plant resistance to pathogens and herbivores (Johnson and

Gilbert, 2015; Hettenhausen et al., 2017; Song et al., 2019;

Alaux et al., 2020).

Remarkably, mycorrhizal symbiosis changes plant hormonal

homeostasis (Ho-Plágaro and Garcıá-Garrido, 2022), because

phytohormones are involved in transient plant defense

responses essential for homeostatic establishment between

AMF and host. Plant hormones can also regulate VOC

production in plants. Ethylene, influenced by mycorrhizal

colonization (Ludwig-Müller, 2010), not only functions as a
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phytohormone to modulate volatile biosynthesis but is also

emitted into the rhizosphere as a VOC (Chen et al., 2020).

Ethylene released from roots or in soil treatments increases the

diversity of soil microbes by increasing the number of keystone

taxa, such as Pseudolabrys spp. (Alphaproteobacteria),

Dokdonella spp. (Gammaproteobacteria), and Catenulispora

spp. (Actinobacteria), which leads to changes in soil

microbiomes because of changes in production of antibiotics

or microbial growth stimulators (Chen et al., 2020). Ethylene

also modulates VOC biosynthesis and emissions in plants. For

example, ethylene inhibits VOC biosynthesis in potato (Dawood

et al., 2014) and rice (Mujiono et al., 2020) subjected to flooding

stress. Activation of the salicylic acid (SA) signaling pathway

modifies root exudate profiles, which affects soil microbiomes

(Martıńez-Medina et al., 2017a; Jacoby et al., 2020). Arbuscular

mycorrhizal colonization can decrease SA contents in plants,

whereas the colonization rate can be inhibited by constitutive SA

biosynthesis (Medina et al., 2003). Plant roots can emit large

quantities of SA. The SA is dispersed over several centimeters

and is transformed into its volatile derivatives, which then alter

the structure of microbial communities (Dehimeche et al., 2021;

Kong et al., 2021). Notably, Pons et al. (2020) found that

phytohormones including cytokinin (isopentenyl adenosine),

an auxin (indole-acetic acid), gibberellin (gibberellin A4), and

ethylene are also produced by the AM fungus Rhizophagus

irregularis. Similarly, the EM fungus Tricholoma vaccinum

emits ethylene and excretes ABA, SA, jasmonates, and indole-

3-acetid acid (Abdulsalam et al., 2021). Thus, root VOC

emissions are affected by the mycorrhizosphere effect and

mycorrhiza-induced changes in phytohormone homeostasis

during colonization from the first stage to later stages. In

addition, during colonization, mycorrhizal volatiles are

released with broad-spectrum and long-term fungistatic

efficacy (Zhang et al., 2018). Overall, common mycorrhizal

networks (AMF) and wood-wide webs (EM fungi) shape

microbiomes in the mycorrhizosphere.
Mycorrhiza-induced plant volatiles
against abiotic and biotic stresses

Arsenic (As) is a prevalent toxic element in natural

surroundings and is also used in various industries. The

enormous anthropogenic discharge has led to As accumulation

in the environment, particularly in waters and soils, seriously

threatening crop cultivation and human health in recent decades

(Zhao and Wang, 2020). Notably, Li et al. (2021) identified an

AM association associated with As volatilization. In in vitro

cultivation with intact Medicago sativa plants colonized by R.

irregularis, the AM symbiosis methylates and volatilizes

inorganic As to a variety of organic forms, including

dimethylarsinic acid, dimethylarsine, and trimethylarsine,

modulated by RiMT-11 (a gene of R. irregularis encoding the
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methyltransferase type 11 protein). As a result, the AM

symbiosis increased host plant tolerance to As stress. In the

process of detoxification, methylation can produce trivalent

methylarsenites as intermediate products, which are even more

toxic than inorganic As (Li et al., 2021). The methyltransferase

evolved to generate extremely toxic trivalent As species that

acted as antibiotics to destroy competitors in the primitive

anaerobic earth (Chen et al., 2017). As atmospheric oxygen

levels increased, the trivalent forms were oxidized to pentavalent

methylarsenicals, which converted methylation into a process of

detoxification. Because AMF are very ancient symbiotic fungi,

whether As methylation capability originally evolved to benefit

both plants and AMF by eliminating pathogenic microbes

remains a topic of great interest.

Mycorrhizae affect concentrations and composition of root

VOCs in various plant species such as Sorghum bicolor (Sun and

Tang, 2013),Medicago truncatula (Dreher et al., 2019), and Vitis

vinifera (Velásquez et al., 2020a). In addition, mycorrhizal effects

on VOC production differ depending on the AMF species (Sun

and Tang, 2013; Volpe et al., 2018) and the plant species (Meier

and Hunter, 2019). The mycorrhizal fungus genus Glomus may

increase biotic stress tolerance in various plants attacked by

herbivores (Dowarah et al., 2021).

Methyl salicylate synthesized from SA modulates plant

defenses to environmental stresses and disease resistance by

stimulating defensive compound production or by activating

SA-signaling defense (Raskin, 1992). Mycorrhiza-induced

increases in methyl salicylate may be important, because it is a

volatile that is an elicitor linked with induced resistance to plant

diseases and has been used in plant protection (Tang et al., 2015;

Kalaivani et al., 2016). Methyl salicylate can control some aphid

species and prevents attacks on host plants (Sasso et al., 2007;

Babikova et al., 2014). Under drought stress and aphid

infestation, increases in methyl salicylate levels in mycorrhizal

plants led to greater attraction of the aphid parasitoid Aphidius

ervi than that in nonmycorrhizal ones (Volpe et al., 2018).

In addition to methyl salicylate, mycorrhizal colonization

increases other volatiles associated with plant defenses against

pathogen/herbivore attack or drought stress, including

benzaldehyde, geraniol, (E)–2–hexenal, and 3–hexenal in

grapevine plants (Velásquez et al., 2020b). Application of C6–

volatiles, such as (E)– 2–hexenal, leads to increased resistance

against the necrotrophic fungus B. cinerea (gray mold) in

Arabidopsis by suppressing fungal development and triggering the

plant defense response (Shiojiri et al., 2006). Benzaldehyde is a VOC

with nematicidal and antifungal properties (Shaukat et al., 2005),

and geraniol is associated with plant defense, triggering apoptosis–

like cell death, with fragmentation of nuclei and DNA (Izumi et al.,

1999). Geraniol may be in high concentrations in various plant

organs because it is a precursor for diverse monoterpenes

(D’Onofrio et al., 2016), whereas benzenic compounds are the

major components of some essential oils and are linked to plant
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defense and reproduction (Dudareva et al., 2004; Carvajal

et al., 2016).

D-Limonene, p-xylene, and 1,3-diethylbenzene increase in

Elymus nutans plants colonized with AMF (Zhang et al., 2022).

Under insect attack, 1,3-diethylbenzene and D-limonene can be

generated to strengthen plant defenses and repel insects (Agut

et al., 2015; Kigathi et al., 2019; Mitra et al., 2021). The

compound p-xylene is primarily an attractant to natural

enemies of herbivorous insects (Li et al., 2022). Levels of

monoterpenes increase substantially in Funneliformis mosseae-

colonized roots of grapevine (Velásquez et al., 2020a).

Terpenoids are important in above- and belowground

tritrophic interactions, because terpenoids attract parasitoids

and predators of herbivorous insects (Palma et al., 2012;

Penuelas et al., 2014). Notably, there are increases in

monoterpene alcohols associated with plant defense, such as

p-mentha-1.8-dien-7-ol, myrtenol, and p-cymen-7-ol.

Monoterpenes of p-menthane are widely dispersed in plants

and are major components of various essential oils and plant

extracts with biological activity in plant defense (Lange, 2015).

Terpenoids are also associated with function and formation of

mycorrhizal symbiosis. Terpenoid accumulation is observed in

AM roots of many plants, particularly in root cortical cells with

collapsed arbuscules (Akiyama and Hayashi, 2002; Fester et al.,

2002). In addition, mycorrhization causes a sharp increase in

transcripts of two early enzymes (DXS and DXR) of the 2-

methyl-D-erythritol-4-phosphate pathway in host roots (Walter

et al., 2000; Hans et al., 2004). Nevertheless, mechanisms

associated with fluxes of volatile terpenoids with different roles

in mycorrhizal symbiosis remain unknown (Kapoor et al., 2017).
Methodology on belowground
research of volatile
organic compounds

Volatile organic compounds are typically released as a blend

of compounds that is diluted in the environment around a plant.

In recent years, evidence increasingly shows that belowground

plant VOCs have important roles in trophic interactions.

Although advances have been made in techniques to sample

aboveground VOCs (Raguso and Pellmyr, 1998; Tholl et al.,

2006; Penuelas et al., 2014; Materic et al., 2015), sampling

belowground volatiles is more difficult because of the

nonhomogeneous trapping environment (van Dam et al.,

2016; Tholl et al., 2021; Sharifi et al., 2022).

Understanding the roles of belowground VOCs in

belowground communication networks is attracting increased

attention (van Doan et al., 2021). It is necessary to invest in

advanced methodology and instrumentation to capture and fully

analyze belowground VOCs (Sharifi et al., 2022). Currently,
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most research on root VOCs uses ground root material with the

caveat that the total profile of volatiles in root tissue was

analyzed rather than emissions of volatiles (Gfeller et al.,

2019). However, the approach can detect chemicals that may

be not induced by major root damage (Tholl et al., 2021). In this

section, we describe the most challenges in sampling

belowground volatiles and the recent progress in sampling and

analyzing belowground VOCs; we further describe a promising

experimental design for future research on belowground VOCs.

Compared with volatiles in relatively homogeneous

aboveground environments, belowground VOCs are a mixture

of volatiles from plant roots, bacteria, fungi, parasites,

herbivores, and predators (Delory et al., 2016a; van Dam et al.,

2016). Therefore, it is difficult to evaluate the exact effects of

specific original VOCs on trophic interactions. It may be

necessary to distinguish among origins of VOCs when the goal

is to assess effects of fungal VOCs on plant–root–insect

interactions. Effects of fungal VOCs may be synergistic or

antagonistic, depending on whether VOCs originate from

roots, insects, or other soilborne organisms. In addition,

belowground VOCs are not only diluted by the surrounding

environment (Turlings et al., 2012; Tang et al., 2019; Ehlers et al.,

2020; Erktan et al., 2020; Wester-Larsen et al., 2020) but also

depend on microbes such as those producing and consuming

VOCs (Raza et al., 2016; Bier et al., 2017; Schenkel et al., 2018;

Abis et al., 2020; Gutiérrez-Santa et al., 2020). Therefore, a

sampling method suitable to collect targeted belowground

VOCs is required that can overcome the challenges of a

nonhomogeneous environment (van Dam et al., 2016; Tholl

et al., 2021).

The method used to sample belowground VOCs strongly

depends on the research purpose. However, there are two main

approaches to analyze root volatiles. Volatile organic

compounds are measured either directly in the soil matrix or

after root excavation, extraction, and analysis under lab

conditions. In this review, the aim was to explain the most

applicable methods to directly collect belowground volatiles in

the soil matrix (Gfeller et al., 2019; van Doan et al., 2021; Tholl

et al., 2021), and describe a detailed comparison between the

approaches (Table 3). There are two approaches to measure

VOCs, with one method a dynamic “push–pull” system and the

other a passive method using solid-phase microextraction

(SPME) (Tholl et al., 2021).

The technique using a “push–pull” system collects all

belowground VOCs, including those emitted from roots,

soilborne organisms, and soil matrix), by using clean-air

flow through the belowground system, with VOCs trapped

by a Super-Q filter (Figure 2) (Hiltpold et al., 2011; van Doan

et al., 2021). Briefly, spherical pots are connected to multiple

air delivery systems, and volatiles are trapped on Super-Q

filters (25 mg of Super-Q adsorbent, 80–100 mesh; Alltech

Assoc., Deerfield, IL, USA). Cleaned humidified air is pushed

through the system at a rate of 1 L min-1 and pulled through
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Super-Q traps at a rate of 0.7 L min-1. After collection, Super-

Q filters are rinsed with 150 mL of dichloromethane. N-octane

and nonyl-acetate (Sigma, Buchs, Switzerland) are added as

internal standards (200 ng in 10 mL of dichloromethane). Root

volatiles are analyzed by a gas chromatograph coupled to a

mass spectrometer (GC-MS, Agilent 7820A GC coupled to an

Agilent 5977E MS; Agilent Technologies, Santa Clara, CA,

USA). Putative volatile identification is obtained by

comparing mass spectra with those of the NIST05 Mass

Spectra Library (van Doan et al., 2021). Other sorbent

materials are also frequently used in dynamic approaches to

trap VOCs and are summarized by Tholl et al. (2006);

however, Tenax TA and Carbopack B are used even in

passive methods to sample belowground VOCs (Martı ́n-
Sánchez et al., 2020).

Of possible passive sampling methods, a less complex system

is one in which an SPME fiber (coated with 100-mm
polydimethylsiloxane; Supelco, Bellefonte, PA, USA) is

inserted into a gap of a pot and exposed to belowground

VOCs for 60 min at room temperature and then transferred to

another pot for 60 min to collect VOCs (Figure 3). An incubated

fiber is immediately analyzed by GC-MS using an Agilent 7820A

GC interfaced with an Agilent 5977E MSD. Volatile organic

compounds are tentatively identified by comparing mass spectra

to library entries of the National Institute of Standards and

Technology (NIST 14) and an external standard library (Gfeller

et al., 2019). The advantage of such a system is that all emerging

VOCs from the belowground mixture are collected, and thus,

most VOCs are generated by targeted organisms. However,

using SPME is at best a semi-quantitative approach, and

depending on VOC composition, different SPME fibers should

be tested because of differences in fiber affinity for classes of

VOC compounds. In addition, extraction times and

temperatures are important and need to be optimized, because

high temperatures and long extraction times cause desorption of

VOCs that have relatively low fiber affinity or low boiling point

from an SPME fiber during extraction.

To understand the mechanisms of belowground VOCs in

ecosystems, we need to measure the belowground VOCs directly

measured in a certain time. Danner et al. (2012; 2015) directly

measured VOCs released from root herbivore damage in

cuvettes on the top of the soil at the stem and root interface.

Acton et al. (2018) measured VOCs by using airflow generated

in a root glass chamber filled with a potting substrate. All

belowground VOCs emitted to the environment in a certain

time can be measured by proton transfer reaction mass

spectrometry (PTR-MS) (Majchrzak et al., 2018; Tholl et al.,

2021; Sharifi et al., 2022).

The PTR-MS method also has disadvantages, because it

characterizes only mass-to-charge ratio (m/z) of VOCs and

not the exact molecular identity. In addition, one molecular

formula may represent different structures, which cannot be

discriminated by PTR-MS. Some small-chain alkanes are also
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FIGURE 2

Volatile organic compound (VOC) emissions from roots, soilborne organisms, and soil matrix are collected by a push–pull system. The VOCs are
trapped by a Super-Q trap.
TABLE 3 Advantages and disadvantages of dynamic and passive methods to collect volatile organic compounds (VOCs) in belowground environments.

Method to collect
belowground
VOCs

Advantages Disadvantages After sampling/pre-analysis process

Dynamic sampling
(Tholl et al., 2021)
Gas chromatography–
mass spectrometry
(GC-MS),
Pull/push–pull systems
(Adsorbent traps,
Trapping Super-Q)

➢Separate sampling and analysis times
➢Controlled collection and pre-
concentration of VOCs
➢Quantitative and qualitative analyses
➢Repeatable sample analysis
➢Application of miniature devices
(e.g., Super-Q trap)

➢High Cost
➢More challenging to apply
in the field or other places
➢Sampling requires
equipment (pumps, flow
meters, charcoal filters, VOC
traps)
➢Use of organic solvents in
solvent elution and liquid
injection

➢Method collects volatile mixtures, need to future step to distinguish
original VOCs
➢Trap>>elute traps with solvents for liquid injection or use thermal
desorption of traps>>GC-MS or Gas Chromatography–Time-of-
Flight Mass Spectrometry (GCxGC-Tof MS) analysis

Passive sampling (Tholl
et al., 2021)
GC-MS, SPME,
Polytetrafluoroethylene
(PTFE) tubing

➢Low cost
➢Miniature sampling devices,
sensitive, cost effective
➢No consumption of organic solvents,
clear spectrum of VOCs without
solvent background interference
➢Sampling is a snapshot of the VOC
current state rather than for a time
interval

➢Separate sampling and
analysis times
➢One-time only sample
analysis due to thermal
desorption (SPME)
➢Limited quantitative
analysis
➢Adsorbent preference for
analytes

➢Method collects volatile mixtures>> directly measure with thermal
desorption of fibers or tubing>>GC-MS or GCxGC-Tof MS analysis
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not detected by the technique. Therefore, the PTR-MS method is

generally used simultaneously with GC-MS to determine

chemical identities of volatiles from the m/z data (Sharifi

et al., 2022).

The challenge with passive and dynamic methods is in

collecting the many different original belowground VOCs and

establishing emission origins. To meet the challenge, a new

experimental setup and methods can be optimized to minimize

the disadvantages of the two approaches (Figure 4). An

experimental system can be set up in which both sampling

approaches are used simultaneously, and different treatments

or events (blank pot with soil only, healthy plant, plant exposed

to fungi, plant exposed to belowground herbivore, plant

exposed to fungi and belowground herbivore) are used to

compare differences in VOCs. After comparison and

subtraction of VOC patterns of different events, emission

origins and abundance of VOCs can be established. Sharifi

et al. (2022) presented an in-situ design suitable for sampling
Frontiers in Plant Science 12
b e l o w g r o u n d VOC s t h a t u s e d a p e r f o r a t e d

polytetrafluoroethylene (PTFE) tube exposed to communities

of plant roots and soil microorganisms. The tube is placed in a

pot before sowing seeds to avoid disturbing the soil and

rhizosphere when belowground VOCs are collected.

Belowground VOCs are collected by an SPME syringe

extracted via a network of tubing. To separate the original

VOCs, an experimental setup is suggested according to Sharifi

et al. (2022) that can continuously sample different treatments

or events by SPME fibers inserted into PTFE tube systems.

After collection of VOCs, SPME fibers are analyzed in a cyclic

manner by GC-MS or GCxGC-TOF-MS. The tube systems can

also be sampled by a dynamic approach in which different

treatments are connected by motor rotation switch valves to a

PTR-MS. With this approach, SPME collections obtained by

frequent static sampling cycles can provide a good

approximation of real-time resolution in emissions of

individual VOCs, in addition to VOC composition and
FIGURE 3

Volatile organic compound (VOC) emissions from roots, soilborne organisms, and soil matrix are collected by a passive system. VOCs are
trapped by a solid phase micro extraction (SPME) fiber. Polytetrafluoroethylene (PTFE).
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FIGURE 4

Schematic illustration of an in-situ design to collect and analyze belowground volatile organic compounds (VOCs) by a combined technique.
Original VOCs are distinguished by subtracting chromatographic peaks of certain events.
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abundance. The PTR-MS can characterize actual real-time

continual emissions of different events. After subtraction and

comparison of different events, VOC origins and emissions can

be characterized on the basis of the combined sampling and

analysis methods to yield a highly accurate approximation of

VOC patterns and emission origins (Figure 4).
Conclusion and future perspectives

Volatile organic compounds emitted by plant roots and

pathogenic and beneficial fungi, particularly mycorrhizal

fungi, can shape trophic interactions in belowground

systems. Fungal VOCs mediate plant growth, metabolites,

and consequences of interactions between insects, pathogens,

and plants. In this review, an approach using combined

methods is proposed to collect VOCs and analyze the effect

of each originated VOC in real-time. With the approach, the

effect of each originated VOC on belowground trophic

interactions can be precisely evaluated. Because of the

essential roles of VOCs in inter- and intraspecific

communication, using VOCs of certain fungal species may

be a promising and sustainable way to reduce the incidence of

diseases derived from soilborne phytopathogens. In addition,

using fungal VOCs to increase plant tolerance against abiotic

stresses is an area for future research with great potential.

Despite various reports on interactions between belowground

VOCs derived from fungi and plants and root VOCs and

fungi that result in benefits for one or both partners, the

actual mechanisms involved remain unknown. Therefore, the

molecular mechanisms responsible for volatile production by

VOC producers (plants and fungi, including fungal

symbionts), perception by VOC receivers, and genetic

reprogramming of VOC receivers need to be investigated

further. Moreover, there are few reports on VOCs during

mycorrhization, which should be a research area with great

potential interest because of the importance of AMF in

agriculture and ecosystems. In addition, most knowledge on

VOC emissions by fungi is based on single strains under

laboratory conditions, which can differ from rhizospheric

conditions with complex microbial communities. Therefore,

to facilitate practical VOC application, inoculated strains

should be integrated into complex rhizosphere communities

in order to mimic the natural conditions in soil.
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