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a b s t r a c t 

We analyze a two-sector stochastic economic growth model of green transition with pol- 

lution externalities and foreign capital. The final good is produced by combining dirty and 

clean inputs, with different implications on pollution accumulation. Pollution negatively 

affects production capabilities and can be reduced by switching to the clean input. The 

clean input is produced by using the dirty input and the foreign capital received (in the 

form of dirty input). Random shocks make the effective economy’s ability to transition to 

green activities highly uncertain, eventually undermining its economic development. Such 

a setting gives rise to a dynamic system represented by a three dimensional affine iterated 

function system. We show that the economy’s steady state is represented by an invariant 

measure supported on a compact set, characterizing its fractal nature and showing that its 

attractor may be a distorted Sierpi ́nski tetrahedron. 
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1. Introduction 

Since Boldrin and Montrucchio’s seminal work [5] , the analysis of complexity and chaos in macroeconomic dynamics has

received ever growing interest [6,31,34] . A large share of the literature has focused on stochastic economic growth models

showing that they may give rise to nontrivial dynamics eventually converging to invariant measures supported on fractal

sets, characterizing the properties of such invariant measures in terms of singularity and absolute continuity along with

those of the fractal features of the steady states [27–30,32] . Most works focus on traditional one- or two-sector growth

models in which economic dynamics are entirely described by (physical and human) capital accumulation and can be rep-

resented by a one or two-dimensional affine iterated function systems (IFS) converging to singular measures supported on

either the Cantor set or the Sierpi ́nski gasket [15,16,18,24] . Very few works extend the traditional growth framework to an-

alyze also environmental and sustainability problems by accounting for pollution accumulation, showing that the support

of the invariant measure could even resemble the Barnsley’s fern [17,36] . Due to the growing importance of environmental

considerations for the future prospects of economic development, in this paper we wish to contribute to this latter branch

of the literature by analyzing a stochastic growth model of green transition in a developing country to explore the fractal

properties of the steady state of more sophisticated economic growth models with environmental feedback effects. 
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own sole responsibility. 
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Since polluting emissions in developing countries are expected to increase by more than 50% in the next decades [7,12] ,

in order to ensure the sustainability of the world economy it is essential that industrialized countries and international

organizations promote and support a process of green transition in poor countries. For example, in recent climate change

negotiations industrialized countries have committed to mobilize a substantial amount of resources to address the needs of

developing countries and favor mitigation and adaptation policies through the means of development aid and foreign direct

investments. However, despite the rhetoric, reality is much different. The development aid effectively in place in developing

countries are still to a large extent devoted to projects financing traditional economic activities, such as transportation,

building infrastructure and mining, and only a very limited part is employed in green activities, such as favoring access to

clean water, biodiversity, CO 2 reduction and soil conservation [10] . The effects of foreign direct investment are even more

problematic: as extensively discussed in the pollution haven literature, regulation and distorted incentives in industrialized

countries may push local firms to relocate their activities in poor economies exporting dirty technologies and increasing

emissions in such countries [8,23] . Therefore, future development prospects in developing countries are highly uncertain,

and as a consequence so are those of the entire world economy. In order to consider the effects of development aid and

foreign direct investments on the economic and environmental performance of developing countries we extend traditional

growth models to account for foreign capital. 

Specifically, we focus on a developing country and its transition towards green activities, and in particular on the effects

of the foreign capital it receives, inclusive of development aid and foreign direct investments, on such a transitional pro-

cess. We consider a two-sector economy in which one sector produces the final consumption good while the other a clean

production factor. The final good is produced by combining two perfectly substitutable inputs, a dirty and a clean input,

which differ only in their environmental implications: while the dirty input generates polluting emissions deteriorating en-

vironmental quality, the clean input is completely emissions-free. In particular, the use of the dirty input in the production

process contributes to accumulate pollution, which in turn negatively affects the economy’s ability to produce the final good

through a production externality. However, the dirty input can also be used to produce the clean input which by being to-

tally environmental friendly does not lead to undesirable side-effects on production capabilities. Therefore, a share of the

dirty input, along with a share of the foreign capital received (in the form of dirty input), is allocated to produce the clean

input lowering thus environmental footprints. The amount of foreign capital received, its productivity in the production of

the clean input, and its environmental efficiency are subject to random shocks due to political, technological and environ-

mental issues. The existence of such shocks make the effective economy’s ability to transition to green activities highly

uncertain, eventually undermining its entire economic development. Such a setting gives rise to a dynamic system which

can be described by the means of a three dimensional affine IFS, which by borrowing from the mathematics literature (see,

among others, [1–4,9,11,13,14,20–22,25,26,33,35,37] ), can be analyzed to characterize its steady state outcome along with

its fractal nature. We show that, under a suitable parameter configuration, the attractor of such a three dimensional IFS is

a distorted copy of the Sierpi ́nski tetrahedron and we establish a novel mathematical result that simplifies the process of

establishing whether the associated invariant measure is singular. To the best of our knowledge, no other paper has thus far

explored the possibility that the fractal attractor of economic growth models may have a three dimensional representation. 

The paper proceeds as follows. Section 2 introduces our framework which consists of a two-sector stochastic growth

model of green transition with pollution externalities and foreign capital, showing that the economy’s steady state is repre-

sented by an invariant measure supported on a compact set. Section 3 briefly reviews the theory on IFS which we need in

our analysis. Section 4 recalls the characteristics of the classical Sierpi ́nski tetrahedron. Section 5 shows that, under some

conditions on parameters, the fractal attractor of our dynamic system may resemble a (possibly highly) distorted of copy

of the classical Sierpi ́nski tetrahedron. Section 6 presents concluding remarks and proposes directions for future research.

Technicalities are postponed to the Appendix. 

2. The model 

We analyze a two-sector model of economic growth with environmental feedback effects, and for the sake of simplicity

we consider a purely dynamic setting abstracting completely from agents’ optimization. The unique final consumption good,

y t , is produced through a linear production function combining two perfectly substitutable inputs, a dirty input (i.e., capital

or fossil fuels), k t , and a clean input (i.e., renewable energy), g t . A certain share 0 < u < 1 of the dirty input is invested

to produce the clean input, thus only the remaining share 1 − u is devoted to the production of the consumable good.

Therefore, the final output is produced according to the following technology: y t = a (1 − u ) k t + bg t , where a > 0 and b > 0

measure the productivity of the two factors. The use of the dirty input in production activities generates emissions which

increase pollution, p t , which in turn reduces production by a random factor β t ≥ 0 via an additive productivity shock. Net (of

pollution externality) output is thus given by: ˜ y t = y t − βt p t . The clean input is produced according to a linear production

technology employing only a given share of the dirty input as follows: x t = duk t , where x t is the newly produced quantity

and d > 0 quantifies the productivity in the clean input sector. Foreign capital, f t , inclusive of development aid and foreign

direct investments, is received through a transfer of the dirty input from industrialized countries. A share 0 < v < 1 of such

foreign (dirty) input is devoted to the accumulation of the dirty input and the remaining share 1 − v to produce the clean

input with random productivity e t ≥ 0. 

The dirty input accumulates due to saving and foreign capital while is reduced by depreciation as follows: k t+1 = s ̃  y t +
v f t + (1 − δk ) k t , where 0 < s < 1 is the saving rate, ˜ y t net output, and δk > 0 the dirty input depreciation rate. Similarly, the
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clean input accumulates due to the devoted investment and foreign capital while it is reduced by depreciation as follows:

g t+1 = x t + (1 − v ) e t f t + (1 − δg ) g t , where δg > 0 is the clean input depreciation rate. Pollution increases with the emissions

associated with the use of dirty input and foreign capital in the production process, and decreases due to the ability of

the natural ecosystem to absorb pollution as follows: p t+1 = γt k t + μt f t + (1 − η) p t , where γ t ≥ 0 and μt ≥ 0 quantify the

random environmental inefficiency associated with the use of the dirty input and foreign capital respectively, and η > 0 is

the natural decay rate of pollution. Therefore, given the initial conditions k 0 , g 0 and p 0 , our model economy can be described

by the following system of three difference equations: { 

k t+1 = s [ a ( 1 − u ) k t + bg t − βt p t ] + ( 1 − δk ) k t + v f t 
g t+1 = duk t + ( 1 − δg ) g t + ( 1 − v ) e t f t 
p t+1 = γt k t + μt f t + ( 1 − η) p t 

(1)

Some comments are needed in order to clarify our setting and assumptions. (i) The linearity of the output production

function in the dirty and clean inputs implies that the two production factors are perfectly substitutable, and thus the econ-

omy is able to produce a positive amount of the consumable good by employing only one of two inputs. We may think

of this as a scenario in which the production of the final good requires electricity, which may be alternatively generated

through fossil fuels or renewable sources. (ii) The possibility to produce the clean input by employing only the dirty in-

put builds on this type of interpretation allowing thus our model to describe the transition from fossil fuels to renewable

energy. For example, polluting machines can be used to set up photovoltaic plans allowing to produce clean energy which

can be used to produce consumable goods reducing polluting emissions. (iii) The assumption that foreign capital takes the

form of the dirty input is consistent with empirical evidence regarding the functioning of developing aid and foreign direct

investments in the real world [10,23] . (iv) The assumptions that pollution negatively affects only the production of the fi-

nal good and that the clean input is entirely emissions-free are mere simplifying hypotheses. Relaxing them to allow for a

detrimental effect of pollution also in the clean sector and for the generation of emissions also with the use of the clean

input in the production process will not modify our main conclusions. 

To emphasize the affine features of system (1) it is convenient to isolate all three variables, k t , g t and p t , from their

coefficients and from the additive constants and rewrite it as follows: { 

k t+1 = s [ a ( 1 − u ) + 1 − δk ] k t + sbg t − sβt p t + v f t 
g t+1 = duk t + ( 1 − δg ) g t + ( 1 − v ) e t f t 
p t+1 = γt k t + ( 1 − η) p t + μt f t . 

(2)

We assume that some of the parameters in (2) represent random exogenous shocks, so that they can have different values

according to different realizations of such shocks. Specifically, we shall assume that the economy is affected by N exogenous

shocks determining the values of some of the parameters f t , e t , μt , β t and γ t . The stochastic process generating the sequence

of shocks will be assumed to be i.i.d. so that each realization will occur with a constant probability p i satisfying 0 < p i < 1,

for i = 1 , . . . , N, and such that 
∑ N 

i =1 p i = 1 (see [19] , for a generalization in which probabilities are state dependent). Hence,

the parameter vector ( f t , e t , μt , β t , γ t ) will take on N values ( f i , e i , μi , β i , γ i ), for i = 1 , . . . , N, independently on time t .

Under these assumptions the dynamics described by (2) represent what is often referred to as an iterated function system

with probabilities (IFSP) and turn out to be more conveniently handled in matrix form according to: [ 

k t+1 

g t+1 

p t+1 

] 

= 

⎡ 

⎣ 

a kk 
i 

a kg 
i 

a kp 
i 

a gk 
i 

a gg 
i 

a gp 
i 

a pk 
i 

a pg 
i 

a pp 
i 

⎤ 

⎦ 

[ 

k t 
g t 
p t 

] 

+ 

[ 

z k 
i 

z g 
i 

z p 
i 

] 

for i = 1 , . . . , N, (3)

where the matrix’s coefficients are a kk 
i 

≡ a kk = s [ a ( 1 − u ) + 1 − δk ] , a 
kg 
i 

≡ a kg = sb, a 
kp 
i 

= −sβi , a 
gk 
i 

≡ a gk = du, a 
gg 
i 

≡ a gg =(
1 − δg 

)
, a 

gp 
i 

≡ a gp = 0 , a 
pk 
i 

= γi , a 
pg 
i 

≡ a pg = 0 and a 
pp 
i 

≡ a pp = ( 1 − η) , while the additive constants are z k 
i 

= v f i , z 
g 
i 

=
( 1 − v ) e i f i and z 

p 
i 

= μi f i . When the dynamics are stochastic and evolve according to a law of the type defined in (3) the

long-run equilibrium steady state ceases to be a fixed point in the common sense and becomes an invariant measure sup-

ported on some compact set called attractor [16,27] . 

3. Mathematical preliminaries 

We now briefly review some well known results in the IFSP literature, and specifically we discuss the main definitions

and results on IFSP, their attractor, the invariant measure supported on it and its singularity vs. absolute continuity. A huge

literature is available on such topics; the reader is referred to, among others, [1–4,9,11,14,20–22,25,26,33,35,37] . For a recent

comprehensive and detailed treatment see [13] . We also present an original extension of these basic results ( Corollary 3 )

that will be useful for our subsequent analysis. 

3.1. Iterated function systems 

Let ( X , d ) denote a compact metric space. An N -map Iterated Function System (IFS) on X , w = { w 1 , . . . , w N } , consists of N

contraction mappings on X , i.e., w : X → X, i = 1 , . . . , N, with contraction factors c ∈ [0, 1) (see [1,3,11,13] ). Associated with
i i 
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an N -map IFS one can define a set-valued mapping ˆ w on the space H ( [ a, b ] ) of nonempty compact subsets of X as follows:

ˆ w ( S ) := 

N ⋃ 

i =1 

w i ( S ) , S ∈ H ( [ a, b ] ) . (4) 

The following two results state a convergence property of an N -map IFS towards its attractor. More properties and results

can be found in [1,11] , and [13] . 

Theorem 1 [11] . For A, B ∈ H ( X ) , 

h 

(
ˆ w ( A ) , ˆ w ( B ) 

)
≤ ch ( A, B ) where c = max 

1 ≤i ≤N 
c i < 1 

and h denotes the Hausdorff metric on H ( X ) . 

Corollary 1 [11] . There exists a unique set A ∈ H ( [ a, b ] ) , the attractor of the IFS w , such that 

A = ˆ w ( A ) = 

N ⋃ 

i =1 

w i ( A ) . 

Moreover, for any B ∈ H ( [ a, b ] ) , h 
(
A, ˆ w 

t ( B ) 
)

→ 0 as t → ∞ . 

3.2. Iterated function systems with probabilities and their invariant measure 

An N -map Iterated Function System with Probabilities (IFSP) ( w , p ) is an N -map IFS w with associated probabilities p =
{ p 1 , . . . , p N } satisfying 0 < p i < 1, for i = 1 , . . . , N, and such that 

∑ N 
i =1 p i = 1 . 

Let M ( X ) denote the set of probability measures on (Borel subsets of) X and d MK the Monge-Kantorovich distance on

this space: For μ, ν ∈ M ( X ) , with Monge-Kantorovich metric, 

d MK ( μ, ν) = sup 

f∈ Lip 1 ( X ) 

[ ∫ 
f d μ −

∫ 
f d ν

] 
. 

where Lip 1 ( X ) = { f : X → R | | f ( x ) − f ( y ) | ≤ d ( x, y ) } . The metric space ( M ( X ) , d MK ) is complete [1,11,13] . 

The Markov operator associated with an N -map IFSP is a mapping M : M → M , defined as follows: For any μ ∈ M ( X ) ,

and for any measurable set S ⊂ X , define a measure ν = Mμ as: 

ν( S ) = ( Mμ) ( S ) = 

N ∑ 

i =1 

p i μ
[
w 

−1 
i ( S ) 

]
. 

The following results show that the Markov operator has a unique invariant measure μ̄ and it is globally attracting. 

Theorem 2 [11] . For μ, ν ∈ M ( X ) , 

d MK ( M μ, M ν) ≤ cd MK ( μ, ν) . 

Corollary 2 [11] . There exists a unique measure μ̄ ∈ M ( X ) , the invariant measure of the IFSP ( w , p ), such that 

μ̄( S ) = ( M ̄μ) ( S ) = 

N ∑ 

i =1 

p i μ̄
(
w 

−1 
i ( S ) 

)
. 

Moreover, for any ν ∈ M ( X ) , d MK 

(
μ̄, M 

t ν
)

→ 0 as t → ∞ . 

Theorem 3 [11] . The support of the invariant measure μ̄ of an N-map IFSP ( w , p ) is the attractor A of the IFS w , i.e., 

supp μ̄ = A. 

3.3. Singular invariant measures 

When a IFSP ( w , p ) describes the dynamics of an economy the invariant measure μ̄ associated to ( w , p ) can be interpreted

as the stochastic long-run equilibrium (steady state) of such an economy. If X = R 

n the invariant measure μ̄ can be either

absolutely continuous or singular with respect to the n -dimensional Lebesgue measure, according to the following general

definitions. 

Definition 1. Two positive measures μ and ν defined on a measurable space ( �, �) are called singular if there exist two

disjoint sets A and B in � whose union is � such that μ is zero on all measurable subsets of B while ν is zero on all

measurable subsets of A . This is denoted by μ ⊥ ν . 
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Table 1 

parameters’ values for the N = 4 maps w i characterizing the IFS generating the standard 

Sierpi ́nski tetrahedron. 

i a kk 
i 

a gg 
i 

a pp 
i 

a kg 
i 

a kp 
i 

a gk 
i 

a gp 
i 

a pk 
i 

a pg 
i 

z k 
i 

z g 
i 

z p 
i 

1 
1 

2 

1 

2 

1 

2 
0 0 0 0 0 0 0 0 0 

2 
1 

2 

1 

2 

1 

2 
0 0 0 0 0 0 

1 

2 
0 0 

3 
1 

2 

1 

2 

1 

2 
0 0 0 0 0 0 

1 

4 

√ 

3 

4 
0 

4 
1 

2 

1 

2 

1 

2 
0 0 0 0 0 0 

1 

4 

1 

4 
√ 

3 

1 √ 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 2. If μ and ν are two measures defined on a measurable space ( �, �), we say that μ is absolutely continuous

with respect to ν if μ( A ) = 0 for any A ∈ � such that ν( A ) = 0 . The absolute continuity of μ with respect to ν is denoted

by μ�ν . 

This distinction is crucial as in the latter case, whenever � = X = R 

n , � consists of the Borel subsets of R 

n and ν is the n -

dimensional Lebesgue measure, μ̄ can be represented by a density depending on some parameters, while in the former case

there is no simple way to represent it—one actually has to list all its values on every point in its support. The mathematical

literature so far has dealt with this issue by trying to characterize absolute continuity vs. singularity of μ̄ in terms of the

parameters characterizing the IFS ( w , p ) (see, e.g. , [16,18,27] ). 

We now focus our attention on the case of affine IFSP on X = R 

n . La Torre et al. [18] has proved the following theo-

rem that will allow us to study possible singularity properties of the invariant measure in the examples of the following

Section 5 built by means of IFSP in X = R 

3 . In what follows let w i ( x ) = A i x + b i , where A i are ( n × n ) matrices and b i ∈ R 

n ,

for i = 1 , 2 , . . . , N, in a fashion similar to the expression in (3) , and p i be the associated probabilities. The following result

states a sufficient condition for the singularity of the invariant measure of an affine IFSP. 

Theorem 4 (La Torre. et al., [18] ) Let ( w , p ) = { w 1 , w 2 , . . . , w N ; p 1 , p 2 , ..., p N } be an affine IFSP on R 

n having maps w i : R 

n →
R 

n defined by w i ( x ) = A i x + b i , for i = 1 , 2 , . . . , N, and let p = ( p 1 , p 2 , . . . , p N ) be t he associated probability weights. If 

| det ( A 1 ) | p 1 | det ( A 2 ) | p 2 · · · | det ( A N ) | p N < p p 1 
1 

p p 2 
2 

· · · p p N 
N 

(5)

then the invariant measure μ̄ defined by ( w , p ) is singular. 

The following corollary provides a lower bound for the RHS in (5) that will be useful in the subsequent sections, where

we will be dealing with three-dimensional attractors and invariant measures supported on them. 

Corollary 3. The IFSP ( w , p ) considered in Theorem 4 has a singular invariant measure μ̄ whenever 

| det ( A 1 ) | p 1 | det ( A 2 ) | p 2 · · · | det ( A N ) | p N ≤ e −
N 
e 
 ( 0 . 6922 ) 

N 
. (6)

Proof. See the Appendix. �

The lower bound in the RHS of condition (6) is a rough estimate; however it will be enough to establish singularity of

all the invariant measures we will obtain in our simulations in the next sections. 

4. The standard Sierpi ński tetrahedron 

As our goal is to build three-dimensional attractors that resemble the well known Sierpi ́nski tetrahedron by means of

the affine IFS (3) , before tackling such a construction we first recall how the tetrahedron can be obtained from an affine IFS.

Abstracting from probabilities, the IFS that generates the Sierpi ́nski tetrahedron in R 

3 consists of N = 4 affine maps w i : R 

3 →
R 

3 that have the following matrix representation: [ 

k t+1 

g t+1 

p t+1 

] 

= w i 

( [ 

k t 
g t 
p t 

] ) 

= 

⎡ 

⎣ 

a kk 
i 

a kg 
i 

a kp 
i 

a gk 
i 

a gg 
i 

a gp 
i 

a pk 
i 

a pg 
i 

a pp 
i 

⎤ 

⎦ 

[ 

k t 
g t 
p t 

] 

+ 

[ 

z k 
i 

z g 
i 

z p 
i 

] 

for i = 1 , . . . , 4 , (7)

where we use the ( k t , g t , p t ) notation for the variables consistent with our economic model defined by (3) . The standard

Sierpi ́nski tetrahedron is characterized by six edges of size 1 and has its base on the Sierpi ́nski triangle of vertices (0, 0),

(1, 0) and ( 1 
2 

, 

√ 
3 

2 
) , so that its vertices in R 

3 are (0, 0, 0), (1, 0, 0), ( 1 
2 

, 

√ 
3 

2 
, 0) and ( 1 

2 
, 1 √ 

12 
, 

√ 

2 
3 
) . Table 1 reports the values for

the matrix coefficients and the vector of additive constants z k 
i 
, z 

g 
i 
, z 

p 
i 

required by the IFS (7) to generate it recursively.

Specifically, the matrix is diagonal having all terms in its diagonal equal to 1 
2 and 0 elsewhere, while the crucial parameters

turn out to be the additive terms z k 
i 
, z 

g 
i 

and z 
p 
i 

. Clearly, under the parameterization of Table 1 the IFS (7) is a contraction. 
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Table 2 

parameters’ values for the N = 4 maps w i characterizing the IFS generating a Sierpi ́nski tetrahedron 

shifted inside the positive orthant. 

i a kk 
i 

a gg 
i 

a pp 
i 

a kg 
i 

a kp 
i 

a gk 
i 

a gp 
i 

a pk 
i 

a pg 
i 

z k 
i 

z g 
i 

z p 
i 

1 
1 

2 

1 

2 

1 

2 
0 0 0 0 0 0 

1 

4 

1 

4 

1 

4 

2 
1 

2 

1 

2 

1 

2 
0 0 0 0 0 0 

3 

4 

1 

4 

1 

4 

3 
1 

2 

1 

2 

1 

2 
0 0 0 0 0 0 

1 

2 

√ 

3 + 1 

4 

1 

4 

4 
1 

2 

1 

2 

1 

2 
0 0 0 0 0 0 

1 

2 

√ 

3 + 1 

4 
√ 

3 

√ 

3 + 2 
√ 

2 

4 
√ 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The standard Sierpi ́nski tetrahedron, however, does not provide an appropriate reference point for our economic dynam-

ics described by (3) because for values of the variables ( k t , g t , p t ) in a neighborhood of the vertex (0, 0, 0)—i.e. , the origin—a

value sufficiently large for parameters s and β i might push the capital into negative territory. Therefore, we shall consider

the same tetrahedron defined by the parameterization in Table 1 but shifted inside the positive orthant by the constant
1 
2 with respect to all three variables k t , g t and p t : specifically, we will focus on the tetrahedron with vertices ( 1 2 , 

1 
2 , 

1 
2 ) ,

( 3 2 , 
1 
2 , 

1 
2 ) , (1 , 

√ 

3 +1 
2 , 1 2 ) and (1 , 

√ 

3 +1 

2 
√ 

3 
, 

√ 

3 +2 
√ 

2 

2 
√ 

3 
) having parameter values listed in Table 2 , where the slopes—the contraction

factors—of the maps w i are the same as in Table 1 and only the additive constants z k 
i 
, z 

g 
i 

and z 
p 
i 

change their values. 

It is well known that the standard Sierpi ́nski tetrahedron has Hausdorff dimension given by ln 4 
ln 2 

= 2 ; that is, it is a

three-dimensional object having the same consistency of a surface. In fact, if all points are projected onto a plane that is

parallel to two of the outer edges, they exactly fill a square of side length 

1 √ 

2 
without overlap. Moreover, without making

any assumption on the probability vector ( p 1 , p 2 , ..., p 4 ) to be associated to the maps w i defined in (7) for the parameters’

values provided in both Tables 1 and 2 so to get a full IFSP, we can directly apply Corollary 3 to establish that the invariant

measure μ̄ generated by any IFSP as in (7) is always singular , for any choice on the probabilities p 1 , p 2 , ..., p 4 . To see this,

note that the determinant of the matrices A i in (7) are the same for all i = 1 , ..., 4 and equal to det (A i ) ≡ det (A ) = ( 1 2 ) 
3 = 

1 
8 

so that condition (6) boils down to 

| det ( A 1 ) | p 1 | det ( A 2 ) | p 2 · · · | det ( A 4 ) | p 4 = 

(
1 

8 

)p 1 + p 2 + ···+ p 4 
= 

1 

8 

= 0 . 125 < e −
4 
e 
 0 . 2296 (8) 

and the singularity property is established for any probability vector ( p 1 , p 2 , ..., p 4 ). 

By exploiting the “transform” routine in Maple, which is capable of transforming three-dimensional graphic objects in

R 

3 , we built a simple procedure to approximate the standard Sierpi ́nski tetrahedron by iterating the set-valued map defined

in (4) . Our procedure produces 4 modified copies of any geometric object in R 

3 recognizable by Maple by applying the

transformation through the N = 4 maps defined in (7) according to operator (4) . Fig. 1 plots the first 6 iterations of operator

(4) according to such a procedure starting from the full tetrahedron with vertices ( 1 2 , 
1 
2 , 

1 
2 ) , ( 

3 
2 , 

1 
2 , 

1 
2 ) , (1 , 

√ 

3 +1 
2 , 1 2 ) and

(1 , 
√ 

3 +1 

2 
√ 

3 
, 

√ 

3 +2 
√ 

2 

2 
√ 

3 
) . 

5. Sierpi ński-tetrahedron-like attractors 

We now exploit the construction behind the standard Sierpi ́nski tetrahedron presented in the previous section to build

an IFS that embeds the assumptions of the economic model described in Section 2 and turns out to be a version of the

IFS (7) —with parameter values slightly different from those in Table 2 —capable of generating a distorted version of the

Sierpi ́nski tetrahedron as the asymptotic attractor of our model economy. The striking difference between the IFS (2) —or

(3) —and the IFS (7) with parameters defined in Table 2 is the presence of some mixed nonzero multiplicative coefficients

in the matrix in place of the zeros featured by Table 2 . We will keep such nonzero values small in order to build affine IFS

that generate dynamics somewhat resembling those required to obtain the Sierpi ́nski tetrahedron as an attractor. 

We pursue such a goal through two examples characterized by opposite approaches. In the first one, after setting pa-

rameters β i , γ i , s , a , u , δg , η, δk and v arbitrarily, we will compute the random additive constants z k 
i 
, z 

g 
i 

and z 
p 
i 

in order to

obtain exactly the vertices of the (shifted) standard Sierpi ́nski tetrahedron as the four fixed points of the four maps w i in

the IFS (7) , and, finally, we will determine the unique values of the remaining parameters ( f i , e i , μi ) compatible with these

z k 
i 
, z 

g 
i 

and z 
p 
i 

values. In the second example, on the contrary, we first set all parameters β i , γ i , s , a , u , δg , η, δk , v , f i , e i and

μi arbitrarily, and next use such values to evaluate the four (deterministic) fixed points associated to each map w i in (7) ,

for i = 1 , . . . , 4 ; the latter will then be used as the vertices of the non-standard full tetrahedron to be employed as initial

geometric object for the iterations of operator (4) according to our Maple procedure. 
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Fig. 1. first 6 iterations of our algorithm to approximate the Sierpi ́nski tetrahedron starting from the full tetrahedron with vertices 
(

1 
2 
, 1 

2 
, 1 

2 

)
, 
(

3 
2 
, 1 

2 
, 1 

2 

)
, (

1 , 
√ 

3 +1 
2 

, 1 
2 

)
and 

(
1 , 

√ 
3 +1 

2 
√ 

3 
, 

√ 
3 +2 

√ 
2 

2 
√ 

3 

)
. 

 

 

 

 

 

5.1. Using the standard Sierpi ́nski tetrahedron as reference point 

In our first exercise we assume that the shocks on the final good production and on the environmental inefficiency

associated with the use of the dirty input are deterministic and constant over time, i.e. , we set 

βi ≡ β = 

1 

5 

and γi ≡ γ = 

1 

10 

. 

Moreover, we assume 

s = a = u = δg = η = 

1 

2 

and b = d = 

1 

5 

, 

which imply that the diagonal coefficients a 
gg 
i 

≡
(
1 − δg 

)
and a 

pp 
i 

≡ ( 1 − η) are both 

1 
2 , as desired, while a kk 

i 
≡

s [ a ( 1 − u ) + 1 − δk ] = 

1 
2 as well whenever 

δk = 

5 

8 

. 

Note that under such parameterization the mixed coefficients are kept small in absolute value, as a 
kg 
i 

≡ sb = 

1 
10 , a 

kp 
i 

≡ −sβ =
− 1 

10 , a 
gk 
i 

≡ du = 

1 
10 and a 

pk 
i 

≡ γ = 

1 
10 , while still a 

gp 
i 

= a 
pg 
i 

= 0 . 

In order to choose the values for the random additive constants z k 
i 
, z 

g 
i 

and z 
p 
i 

in this first example we set the steady state

values 
(
k ∗

i 
, g ∗

i 
, p ∗

i 

)
of the N = 4 maps w i in the IFS to be the vertices 

(
1 
2 , 

1 
2 , 

1 
2 

)
, 
(

3 
2 , 

1 
2 , 

1 
2 

)
, 

(
1 , 

√ 

3 +1 
2 , 1 2 

)
and 

(
1 , 

√ 

3 +1 

2 
√ 

3 
, 

√ 

3 +2 
√ 

2 

2 
√ 

3 

)
of the full tetrahedron used as initial set in the approximation of the fractal provided by Fig. 1 (g), which is generated by the

IFS defined by the parameters’ values in Table 2 . In other words, we solve 

⎧ ⎪ ⎨ 

⎪ ⎩ 

k ∗
i 

= a kk 
i 

k ∗
i 
+ a kg 

i 
g ∗

i 
+ a kp 

i 
p ∗

i 
+ z k 

i 

g ∗
i 

= a gk 
i 

k ∗
i 
+ a gg 

i 
g ∗

i 
+ z g 

i 

p ∗
i 

= a pk 
i 

k ∗
i 
+ a pp 

i 
p ∗

i 
+ z p 

i 

⇐⇒ 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

z k 
i 

= 

1 

2 

k ∗
i 
− 1 

10 

g ∗
i 
+ 

1 

10 

p ∗
i 

z g 
i 

= − 1 

10 

k ∗
i 
+ 

1 

2 

g ∗
i 

z p 
i 

= − 1 

10 

k ∗
i 
+ 

1 

2 

p ∗
i 

with respect to z k 
i 
, z 

g 
i 

and z 
p 
i 

for all steady state (the 4 tetrahedron vertices) values 
(
k ∗

i 
, g ∗

i 
, p ∗

i 

)
for i = 1 , . . . , 4 . The whole set

of parameter values is reported in Table 3 . 
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Table 3 

parameters’ values for the N = 4 maps w i characterizing the IFS generating a distorted Sierpi ́nski tetrahe- 

dron starting from the standard tetrahedron shifted inside the positive orthant. 

i a kk 
i 

a gg 
i 

a pp 
i 

a kg 
i 

a kp 
i 

a gk 
i 

a gp 
i 

a pk 
i 

a pg 
i 

z k 
i 

z g 
i 

z p 
i 

1 
1 

2 

1 

2 

1 

2 

1 

10 
− 1 

10 

1 

10 
0 

1 

10 
0 

1 

4 

1 

5 

1 

5 

2 
1 

2 

1 

2 

1 

2 

1 

10 
− 1 

10 

1 

10 
0 

1 

10 
0 

3 

4 

1 

10 

1 

10 

3 
1 

2 

1 

2 

1 

2 

1 

10 
− 1 

10 

1 

10 
0 

1 

10 
0 

10 − √ 

3 

20 

3 + 5 
√ 

3 

20 

3 

20 

4 
1 

2 

1 

2 

1 

2 

1 

10 
− 1 

10 

1 

10 
0 

1 

10 
0 0.5528 0.2943 0.5582 

Table 4 

values of the foreign capital, f i , its random productivity for the clean input, e i , 

and the random environmental inefficiency associated with the use of foreign 

capital, μi , for v = 

1 

3 
and corresponding to each random shock realization i = 

1 , . . . , 4 . 

i f i e i μi 

1 0.75 0.4 0.2667 

2 2.25 0.0667 0.0444 

3 1.242 0.7051 0.1209 

4 1.6583 0.2662 0.3366 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To conclude, we can choose any (constant) value for the deterministic parameter 0 < v < 1 , the share of foreign (dirty)

input devoted to the accumulation of the dirty input, k t , and solve the system { 

v f i = z k 
i 

( 1 − v ) e t f t = z g 
i 

μt f t = z p 
i 

(9) 

with respect to foreign capital, f i , its random productivity to produce the clean input, e i , and the random environmental

inefficiency associated with the use of foreign capital, μi , in each random realization i = 1 , . . . , 4 by using the 
(
z k 

i 
, z 

g 
i 
, z 

p 
i 

)
values in the last three columns of Table 3 . Following this approach we find 4 triples ( f i , e i , μi ), each corresponding to a

realization of the random shocks, for i = 1 , . . . , 4 . For example, by setting v i ≡ v = 

1 
3 , Table 4 lists the corresponding ( f i , e i ,

μi ) values solving system (9) in each random realization i = 1 , . . . , 4 . 

In this example the matrix of the affine maps w i in the IFS (7) is still constant through all shocks configurations, although

it is not diagonal anymore; specifically, according to the values in Table 3 : 

A i ≡ A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

2 

1 

10 

− 1 

10 

1 

10 

1 

2 

0 

1 

10 

0 

1 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Therefore, again without making any assumption on the probability vector ( p 1 , p 2 , ..., p 4 ) to be associated with the maps

w i to get a full IFSP, we can directly apply Corollary 3 to establish that the invariant measure μ̄ generated by any IFSP

(7) is always singular , for any choice on the probabilities p 1 , p 2 , ..., p 4 . In fact, the determinant of A above turns out to be

the same as that of the diagonal matrix that generates the standard Sierpi ́nski tetrahedron, det ( A ) = 

1 
8 , so that condition

(6) still holds and coincides with (8) . 

Fig. 2 plots the first 6 iterations of operator (4) according to our Maple procedure starting from the full tetrahedron with

vertices ( 1 2 , 
1 
2 , 

1 
2 ) , ( 

3 
2 , 

1 
2 , 

1 
2 ) , (1 , 

√ 

3 +1 
2 , 1 2 ) and (1 , 

√ 

3 +1 

2 
√ 

3 
, 

√ 

3 +2 
√ 

2 

2 
√ 

3 
) . The distorting effect of the nonzero mixed coefficients a 

kg 
i 

,

a 
kp 
i 

, a 
gk 
i 

and a 
pk 
i 

is immediately seen in Fig. 2 (b) already after the first iteration: the first four smaller tetrahedra generated by

the transformation appear to wander around the vertices of the initial tetrahedron and are being rotated counterclockwise.

Moreover, by taking a perspective of the same prefractals from a different angle, Fig. 3 shows that the smaller tetrahe-

dra arising after each iteration of operator (4) become more flattened along the direction crossing the positive orthant of

variables ( k , g ) from north-west to south-east and stretched along the direction entering the same orthant from the origin. 

5.2. A more general example 

In the second example we assume that parameters β i and γ i are random, while parameter f i , the amount of foreign

capital, will be kept constant. Moreover, now we follow a different approach as we first choose the values of the four random
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Fig. 2. first 6 iterations of our algorithm to approximate the distorted Sierpi ́nski tetrahedron generated by the IFS (7) with the coefficients’ values provided 

by Table 3 starting from the full tetrahedron with vertices 
(

1 
2 
, 1 

2 
, 1 

2 

)
, 
(

3 
2 
, 1 

2 
, 1 

2 

)
, 

(
1 , 

√ 
3 +1 
2 

, 1 
2 

)
and 

(
1 , 

√ 
3 +1 

2 
√ 

3 
, 

√ 
3 +2 

√ 
2 

2 
√ 

3 

)
. 

Fig. 3. same construction as in Fig. 2 but with a view of the same prefractals from a different perspective. 

 

 

 

 

 

 

 

exogenous shocks configurations, that is, the values of parameters ( e i , μi , β i , γ i ), and next evaluate the four (deterministic)

fixed points associated with each map w i in (7) , for i = 1 , . . . , 4 ; the latter will be the vertices of the non-standard full

tetrahedron that will be employed as initial geometric object for the iterations of operator (4) according to our Maple

procedure. Specifically, we keep the same constant values s = a = u = δg = η = 

1 
2 , b = d = 

1 
5 , δk = 

5 
8 , and v i ≡ v = 

1 
3 as in

the first example, while we now assume that f i is constant (deterministic) as well by setting f i ≡ f = 1 . For the random

parameters representing the exogenous shocks realizations ( e i , μi , β i , γ i ) we consider four possible scenarios: 

1. A ‘best possible world’ type scenario characterized by high productivity of foreign capital, e i , and no damage both on

production, β i , and on the environment, γ i and μi , represented by the parameter values reported in the first row of

Table 5 ; 
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Table 5 

values of the foreign capital’s productivity, e i , damage on 

production due to pollution, β i , impact of pollution on pro- 

duction, γ i , and the environmental inefficiency associated 

with the use of foreign capital, μi , corresponding to each 

random shock realization i = 1 , . . . , 4 . 

i e i β i γ i μi 

1 1 0 0 0 

2 
1 

2 

1 

5 

1 

10 

1 

10 

3 
1 

2 

1 

10 

1 

5 

1 

5 

4 
1 

4 

1 

2 

1 

2 

1 

2 

Table 6 

parameters’ values for the four maps w i characterizing the IFS (7) associated to the ran- 

dom shocks’ values reported in Table 5 . 

i a kk 
i 

a gg 
i 

a pp 
i 

a kg 
i 

a kp 
i 

a gk 
i 

a gp 
i 

a pk 
i 

a pg 
i 

z k 
i 

z g 
i 

z p 
i 

1 
1 

2 

1 

2 

1 

2 

1 

10 
0 

1 

10 
0 0 0 

1 

3 

2 

3 
0 

2 
1 

2 

1 

2 

1 

2 

1 

10 
− 1 

10 

1 

10 
0 

1 

10 
0 

1 

3 

1 

3 

1 

10 

3 
1 

2 

1 

2 

1 

2 

1 

10 
− 1 

20 

1 

10 
0 

1 

5 
0 

1 

3 

1 

3 

1 

5 

4 
1 

2 

1 

2 

1 

2 

1 

10 
− 1 

4 

1 

10 
0 

1 

2 
0 

1 

3 

1 

6 

1 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. An intermediate scenario characterized by average productivity of foreign capital, e i , high damage on production, β i , and

average damage on the environment, γ i and μi , represented by the parameter values reported in the second row of

Table 5 ; 

3. Another intermediate scenario characterized by average productivity of foreign capital, e i , low damage on production,

β i , and high damage on the environment, γ i and μi , represented by the parameter values reported in the third row of

Table 5 ; 

4. A catastrophic scenario characterized by low productivity of foreign capital, e i , together with disruptive damage both on

production, β i , and on the environment, γ i and μi , represented by the parameter values reported in the fourth row of

Table 5 . 

The parameters’ values listed in Table 5 lead to the values of the matrix coefficients and additive constants for the IFS

(7) reported in Table 6 . 

In this example the matrix of the affine maps w i in the IFS (7) is not constant but it depends on each shock realization;

that is, according to the values in Table 6 , there are four different matrices: 

A 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

2 

1 

10 

0 

1 

10 

1 

2 

0 

0 0 

1 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, A 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

2 

1 

10 

− 1 

10 

1 

10 

1 

2 

0 

1 

10 

0 

1 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, A 3 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

2 

1 

10 

− 1 

20 

1 

10 

1 

2 

0 

1 

5 

0 

1 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, A 4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

2 

1 

10 

−1 

4 

1 

10 

1 

2 

0 

1 

2 

0 

1 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

However, Corollary 3 can still be applied to establish that, again without making any assumption on the probability vector

( p 1 , p 2 , ..., p 4 ) to be associated with the maps w i to get a full IFSP, the invariant measure μ̄ generated by the IFSP (7) having

parameter values as in Table 6 is singular , for any choice on the probabilities p 1 , p 2 , ..., p 4 . In fact, det ( A 1 ) = 0 . 12 , det ( A 2 ) =
det ( A 3 ) = 0 . 125 and det ( A 4 ) = 0 . 1825 , so that 

| det ( A 1 ) | p 1 | det ( A 2 ) | p 2 | det ( A 3 ) | p 3 | det ( A 4 ) | p 4 = ( 0 . 12 ) 
p 1 ( 0 . 125 ) 

p 2 ( 0 . 125 ) 
p 3 ( 0 . 1825 ) 

p 4 

< ( 0 . 1825 ) 
p 1 + p 2 + ···+ p 4 = 0 . 1825 < e −

4 
e 
 0 . 2296 

and condition (6) holds also in this example. 

Unlike the construction of the first example in which we have taken the vertices of the standard Sierpi ́nski tetrahedron

shifted inside the positive orthant as the fixed points of the four maps w i for the IFS and then calculated the maps’ param-

eter values which are consistent with them, in this case we follow the opposite route and evaluate the fixed points of the
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Fig. 4. first 6 iterations of our algorithm to approximate the attractor of the IFS (7) with the coefficients’ values provided by Table 6 starting from the full 

tetrahedron with vertices (0.9722, 1.5278, 0), (0.76, 0.8187, 0.352), (0.76, 0.8187, 0.704) and (0.1598, 0.3653, 1.1598). 

Fig. 5. same construction as in Fig. 4 but with a view of the same prefractals from a different perspective. 

 

 

 

 

 

 

four maps w i defined by the parameter values already set in Table 6 . Specifically, for i = 1 , . . . , 4 we solve the four systems ⎧ ⎨ 

⎩ 

(
a kk 

i 
− 1 

)
k + a kg 

i 
g + a kp 

i 
p + z k 

i 
= 0 

a gk 
i 

k + 

(
a gg 

i 
− 1 

)
g + a gp 

i 
p + z g 

i 
= 0 

a pk 
i 

k + a pg 
i 

g + 

(
a pp 

i 
− 1 

)
p + z p 

i 
= 0 

with respect to k , g and p for the parameter values in Table 6 to find the four fixed points 
(
k ∗

1 
, g ∗

1 
, p ∗

1 

)
= ( 0 . 9722 , 1 . 5278 , 0 ) ,(

k ∗2 , g 
∗
2 , p 

∗
2 

)
= ( 0 . 76 , 0 . 8187 , 0 . 352 ) , 

(
k ∗3 , g 

∗
3 , p 

∗
3 

)
= ( 0 . 76 , 0 . 8187 , 0 . 704 ) and 

(
k ∗4 , g 

∗
4 , p 

∗
4 

)
= ( 0 . 1598 , 0 . 3653 , 1 . 1598 ) . 

Such four vector values are used to define the tetrahedron that will be taken as initial condition in the same Maple

recursive procedure already used in previous attractor approximations. The resulting first 6 iterations of operator (4) gen-

erated by our Maple procedure in this case are shown in Figs. 4 and 5 , which report the same prefractals, only observed

from different perspectives. Clearly, as the nonzero mixed matrix coefficients a 
kg 
i 

, a 
kp 
i 

, a 
gk 
i 

and a 
pk 
i 

now have different values

in different shock realizations, and in some scenarios are larger in magnitude than in the previous example, the dynamics
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generated by this IFS produce a more complex evolution pattern than that reported in Figs. 2 and 3 , as, after the t th itera-

tion, the initial tetrahedron, already exhibiting a sharp and streamlined shape itself, happens to be recursively sliced into 4 t 

smaller and thinner copies resembling ever sharper blades, some of which are also being rotated along different directions. 

Note that, unlike the IFS generating the standard Sierpi ́nski tetrahedron in Fig. 1 , whose prefractals are all contained in

the full initial tetrahedron having as its vertices the four fixed points of the maps w i , in Figs. 2–5 the prefractals’ components

wander all around the vertices of the initial tetrahedron because of the rotations induced by the mixed coefficients a 
kg 
i 

, a 
kp 
i 

,

a 
gk 
i 

and a 
pk 
i 

(either deterministic or stochastic). As a result, after each iteration all prefractal’s components are being scattered

around inside a set which is larger the initial tetrahedron; such a feature is clearly more evident in Figs. 4 and 5 . 

6. Conclusion 

Since polluting emissions in developing countries are expected to increase substantially in the future, in order to ensure

a sustainable process of economic development at world level it is essential that industrialized economies support the green

transition in developing countries. In order to shed some light on this issue, we analyze the implications of foreign capital

on the economic development of a developing economy transiting from dirty to clean activities in a two-sector stochastic

economic growth model with pollution externalities. Output is produced by combining dirty and clean inputs with the

latter being completely emissions-free, while the clean input is produced by using the dirty input. Foreign capital (in the

form of dirty input), inclusive of development aid and foreign direct investments, is partly allocated to the production of the

clean input. Such a setting gives rise to a dynamic system represented by a three dimensional affine IFS. We show that the

economy’s steady state is represented by an invariant measure supported on a compact set, characterizing its fractal nature

and showing that (under a specific parametrization) its attractor may look like a distorted Sierpi ́nski tetrahedron. 

To the best of our knowledge, our paper is the first work investigating the possibility that the fractal attractor of stochas-

tic economic growth models may be have a three dimensional representation. In order to do so we have kept the model as

simple as possible but it would be interesting to extend it along different directions to capture some other aspects of the

problem under investigation. The Sierpi ́nski tetrahedron is the natural candidate to start the analysis of three dimensional

fractal attractors but it may also be worthwhile to explore whether economic growth models may give rise to other more

complicated, but well known, attractors, like the Sierpi ́nski pyramid or the Menger sponge. The analysis has been carried

out in a purely dynamic setting abstracting completely from agents’ optimization while it may also be interesting to assess

whether and how optimal saving and investment decisions may change our conclusions. These further issues are left for

future research. 
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Appendix. Technical Appendix 

Proof of Corollary 3. We just need to show that e −
N 
e is a lower bound for the term p 

p 1 
1 

p 
p 2 
2 

· · · p 
p N 
N 

for any choice of proba-

bilities p 1 , ..., p N satisfying 0 < p i < 1, for i = 1 , . . . , N, and such that 
∑ N 

i =1 p i = 1 . To this purpose we consider the generalized

open cube 

	 = { ( p 2 , ..., p N ) : 0 < p i < 1 , i = 1 , . . . , N } 
and solve min ( p 1 ,...,p N ) ∈ 	 ln 

(
p 

p 1 
1 

p 
p 2 
2 

· · · p 
p N 
N 

)
, which is equivalent to min ( p 1 ,...,p N ) ∈ 	

(
p 

p 1 
1 

p 
p 2 
2 

· · · p 
p N 
N 

)
. Note that 

ln 

(
p 

p 1 
1 

p 
p 2 
2 

· · · p 
p N 
N 

)
= p 1 ln p 1 + p 2 ln p 2 + · · · + p N ln p N is strictly convex as sum of strictly convex functions of

each variable p i ; therefore 
(

p ∗
1 
, . . . , p ∗

N 

)
= arg min ( p 1 ,...,p N ) ∈ 	 ln 

(
p 

p 1 
1 

p 
p 2 
2 

· · · p 
p N 
N 

)
is unique provided it exists. FOC 

on p 1 ln p 1 + p 2 ln p 2 + · · · + p N ln p N yields 
(

p ∗
1 
, . . . , p ∗

N 

)
= 

(
e −1 , . . . , e −1 

)
, which is the unique (interior) solu-

tion of min ( p 1 ,...,p N ) ∈ 	 ln 

(
p 

p 1 
1 

p 
p 2 
2 

· · · p 
p N 
N 

)
= min ( p 1 ,...,p N ) ∈ 	

(
p 

p 1 
1 

p 
p 2 
2 

· · · p 
p N 
N 

)
, to which corresponds the minimum 

value 
(
e −1 

)e −1 (
e −1 

)e −1 

· · ·
(
e −1 

)e −1 

= e −
N 
e . As 

∑ N 
i =1 e 

−1 = 

N 
e � = 1 for any N ∈ N , the open simplex 


 = 

{ 

( p 2 , ..., p N ) : 0 < p i < 1 , i = 1 , . . . , N, 

N ∑ 

i =1 

p i = 1 

} 

is a proper subset of the open cube 	 which does not contain the point 
(

p ∗
1 
, . . . , p ∗

N 

)
= 

(
e −1 , . . . , e −1 

)
. Therefore, necessarily

p 1 p 2 p N − N 
e 
p 

1 
p 

2 
· · · p 

N 
> e for any ( p 2 , ..., p N ) ∈ 
 and the proof is complete. �
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