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Abstract RNA splicing is an essential part of eukaryotic gene expression. Although the

mechanism of splicing has been extensively studied in vitro, in vivo kinetics for the two-step

splicing reaction remain poorly understood. Here, we combine transient transcriptome sequencing

(TT-seq) and mathematical modeling to quantify RNA metabolic rates at donor and acceptor splice

sites across the human genome. Splicing occurs in the range of minutes and is limited by the speed

of RNA polymerase elongation. Splicing kinetics strongly depends on the position and nature of

nucleotides flanking splice sites, and on structural interactions between unspliced RNA and small

nuclear RNAs in spliceosomal intermediates. Finally, we introduce the ‘yield’ of splicing as the

efficiency of converting unspliced to spliced RNA and show that it is highest for mRNAs and

independent of splicing kinetics. These results lead to quantitative models describing how splicing

rates and yield are encoded in the human genome.

DOI: https://doi.org/10.7554/eLife.45056.001

Introduction
Transcription of eukaryotic genes produces precursor RNA molecules that are processed by splicing.

Splicing is a two-step reaction that results in the removal of introns from precursor RNA and the for-

mation of mature RNA with joined exons. Splicing is catalyzed by the spliceosome, a dynamic ribo-

nucleoprotein machine assembled from small nuclear ribonucleoprotein complexes (snRNPs) and

several non-RNP factors (Herzel et al., 2017; Wahl et al., 2009). In metazoa, the majority of the

introns are excised by the major spliceosome, whereas a minority is removed by the minor spliceo-

some (Will and Lührmann, 2011). Spliceosomes are recruited through conserved RNA elements, the

5´-splice site at the exon-intron border (donor site), the 3´-splice site at the intron-exon border

(acceptor site), and the branch point, which is followed by a polypyrimidine track (Coolidge et al.,

1997; Turunen et al., 2013) and located ~18–40 nucleotides (nt) upstream of the acceptor site

(Ruskin and Green, 1985; Ruskin et al., 1985; Taggart et al., 2012). Additional RNA sequences

such as splicing enhancers and silencers are found in both introns and exons and can influence the

choice between splice sites (Zhu et al., 2001).

In recent years, the intricate mechanisms of splicing were investigated with a combination of

structural and functional studies (Mayerle and Guthrie, 2017; Shi, 2017; Wilkinson et al., 2018;

Will and Lührmann, 2011). The spliceosome assembles in a stepwise manner, adopting different

intermediates with varying composition, conformation, and interactions between RNAs and proteins

(Will and Lührmann, 2011). Assembly of the major spliceosome begins with recognition of the

donor site by U1 snRNP (Kondo et al., 2015; Lerner et al., 1980; Seraphin and Rosbash, 1989;

Zhuang and Weiner, 1986). The U2 auxiliary factor then binds to the poly-pyrimidine track and the

acceptor site (Valcárcel et al., 1996; Zamore and Green, 1989; Zamore et al., 1992) generating

the E complex. U2 snRNP then binds the branchpoint, resulting in the A complex (Konarska and

Sharp, 1986; Perriman and Ares, 2010). In the A complex, U1 snRNA binds the donor site and U2
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snRNA binds the branchpoint, rendering the branchpoint adenosine base available for interaction

with the acceptor site (Berglund et al., 2001; Query et al., 1994). Binding of the U4/U5/U6 tri-

snRNP leads to the B complex (Bertram et al., 2017a), which is first activated (Bact) and then con-

verted to the catalytically active B* complex. In the B* complex, the donor site is positioned close to

the branchpoint in a RNA network formed between the precursor RNA and U2, U5 and U6 snRNAs

(Zhang et al., 2018).

The activated spliceosome catalyzes intron removal in two steps, which are both transesterifica-

tion reactions. In the first step, the 2´-hydroxyl group of the branchpoint adenosine serves as a nucle-

ophile to attack the donor site and to generate a cleaved 5´-exon and the lariat intermediate. This

leads to the C complex (Zhan et al., 2018) that is then rearranged to form the C* complex, which is

catalytically active to carry out the second step. In the C* complex, the ends of exons to be joined

are juxtaposed (Bertram et al., 2017b; Zhang et al., 2017), and this enables the 3´-hydroxyl group

of the last nucleotide of the 5´-exon to attack the acceptor site, leading to exon ligation and excision

of the intron lariat. The resulting P complex contains the ligated exons, which are subsequently

released, completing the splicing process (Bai et al., 2017; Wilkinson et al., 2017).

Taken together, extensive in vitro studies have strongly advanced our understanding of the splic-

ing process, but the kinetics and mechanisms of splicing in vivo remain far less understood. Although

biochemical assays show that splicing can occur in the absence of transcription, in vivo splicing hap-

pens mainly co-transcriptionally, when newly transcribed RNA is still attached to RNA polymerase II

(Pol II) and chromatin (for review see Alexander and Beggs, 2010; Bentley, 2014; Saldi et al.,

2016). Furthermore, compromising Pol II transcription elongation increases alternative splicing

(de la Mata et al., 2003; Dujardin et al., 2014; Ip et al., 2011; Pagani et al., 2003), providing evi-

dence that an optimal elongation rate is essential for a co-transcriptional splicing (Davis-

Turak et al., 2018; Fong et al., 2014). Native elongating transcript sequencing in human cells (NET-

seq) indicates that splicing occurs soon after introns are synthesized (Mayer et al., 2015;

eLife digest Genes are portions of DNA that carry the instructions to build proteins. In

particular, they are formed of segments called exons, which contain the protein-building

information, and of non-coding segments known as introns. Exons and introns alternate within a

gene.

To create a given protein, the cell first uses an enzyme, Polymerase II, to copy the entire related

gene – including introns and exons – into a molecule of ribonucleic acid, or RNA. As the gene is

copied, a machine called the spliceosome comes onto the RNA molecule to remove the introns and

create the final RNA template used to produce proteins.

The spliceosome works by recognizing specific sequences that signal the border between introns

and exons. Once the machine is bound to these ‘splice sites’ on each side of an intron, it brings the

two neighboring exons close together and cuts out the intron. The two ends of the exons are then

attached together. Previous studies have measured how fast introns are removed, but it remained

unclear how long it takes to cut individual splice sites genome-wide.

To address this question, Wachutka, Caizzi et al. combined a mathematical approach with a

biochemical method that purifies newly made RNA in human cells. The experiments showed that it

only took a few minutes to cut most splice sites. Cutting splice sites that bordered very long introns

was slower, presumably because the Polymerase II took longer to produce these introns. In addition,

the genetic sequences of the splice sites affected the time it took to remove the introns: some made

it harder for the spliceosome to recognize where to cut, but others made it easier.

Mistakes in removing introns from RNA can lead to producing abnormal proteins, and many

diseases such as cystic fibrosis and Duchenne muscular dystrophy can be caused by such errors. In

particular, small changes in the sequences at the splice sites or in the surrounding areas can create

problems when it comes to eliminating introns. Decrypting the dynamics of intron cutting and

removal may give scientists new insight into the molecular causes of cystic fibrosis and many other

genetic disorders.

DOI: https://doi.org/10.7554/eLife.45056.002
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Nojima et al., 2015). Further, the combination of single molecule intron tracking (SMIT) and long

read sequencing in yeast shows that splicing is 50% complete when Pol II is 45 nt downstream the

acceptor spice site (Oesterreich et al., 2016).

Despite these advances, the in vivo kinetics of splicing remain poorly understood. In particular,

different estimates for splicing rates have been reported. Splicing rates have been measured for

selected endogenous human genes with the use of live cell imaging (Coulon et al., 2014;

Martin et al., 2013; Rino et al., 2014; Schmidt et al., 2011) or with a combination of cellular RNA

extraction and quantitative PCR (Pandya-Jones and Black, 2009; Singh and Padgett, 2009). Such

studies led to very different splicing rate estimates, ranging from 15 to 30 s (Huranová et al., 2010;

Martin et al., 2013; Rino et al., 2014) to 4.3-10 min (Coulon et al., 2014; Schmidt et al., 2011;

Singh and Padgett, 2009) per splicing event. These discrepancies may stem from the difference in

methods used, which can introduce perturbations, from the selection of genes studied, and from the

great variance in intron lengths between human genes.

Other studies have estimated in vivo splicing rates globally with the use of RNA sequencing tech-

nologies. The short sequence reads collected from steady-state in vivo samples reflect RNA synthe-

sis, splicing and degradation, which are entangled (Wachutka and Gagneur, 2017). In particular,

the ‘splicing efficiency’ is typically defined by the ratio of spliced over unspliced RNAs at steady

state (Braberg et al., 2013; Wilhelm et al., 2008). However, the same ratio has been successfully

employed to study RNA stability, with the assumption that unspliced RNA levels reflect RNA synthe-

sis and spliced RNA levels reflect the ratio of RNA synthesis over degradation (Gaidatzis et al.,

2015; Zeisel et al., 2011). This ambiguity in definitions and interpretations questions the use of

splicing efficiency and calls for alternative concepts and metrics. To overcome the limitations of

steady-state transcriptome sequencing, one approach is to sequence new transcripts from chroma-

tin-associated RNA fractions and compare them to cytoplasmic fractions, which led to splicing rate

estimates from 43 s (Davis-Turak et al., 2015) to 15–120 min (Bhatt et al., 2012; Pandya-

Jones et al., 2013) per splicing event.

An alternative method to investigate splicing kinetics in vivo is the use of metabolic RNA labeling

with 4-thiouracil (4sU) (Dölken et al., 2008; Rabani et al., 2011; Rabani et al., 2014;

Windhager et al., 2012) coupled to sequencing of the labeled RNA (4sU-seq). We previously com-

bined 4sU-seq with kinetic modeling to obtain RNA synthesis, splicing, and degradation rates in the

fission yeast S. pombe (Eser et al., 2016). Others have used 4sU-seq and similar approaches to

obtain median splicing rate estimates in human cells of 6.7 min (Mukherjee et al., 2017) or 14 min

(Rabani et al., 2014) per splicing event. However, 4sU-seq also introduces biases when applied to

the human system because the obtained data are artificially biased toward pre-existing 5’-regions of

the RNA due to the length of human genes (Schwalb et al., 2016). These RNA 5’-regions predate

the labeling time and are generally already observed to be spliced by 4sU-seq, leading to potential

errors in the rate estimates. As a result of these difficulties, in vivo splicing kinetics remain unclear,

and individual rate estimates for the two steps of splicing are lacking. However, such information is

highly desirable because it may be interpreted alongside the mechanistic information obtained in

vitro to provide a better understanding of the splicing process.

To study kinetics of splicing in vivo, we performed TT-seq (Schwalb et al., 2016) after different

4sU-labeling time points in human K562 cells. In contrast to 4sU-seq, the TT-seq protocol includes

RNA fragmentation before 4sU-labeled RNA is purified and sequenced. This is a crucial step that

eliminates 5’ regions of nascent RNAs that were already transcribed, and spliced, prior to incorpo-

ration of the label, and thus removes the 5’-bias. We developed a computational approach that esti-

mates the metabolic rates of single phosphodiester bonds. This approach enabled uncoupled

quantification of donor- and acceptor-specific kinetics and to relate these to the two transesterifica-

tion reactions and to the contribution of single nucleotides in spliceosome intermediates defined by

structural studies. Moreover, to calculate the amount of precursor RNA successfully spliced into

mature RNA, we introduced the ‘splicing yield’ as the conversion efficiency of unspliced to spliced

RNA. As a result, our analysis provides genome-wide metabolic rates for donor and acceptor splice

sites and identifies RNA-RNA interactions in the spliceosome that could contribute to in vivo splicing

kinetics. Furthermore, we provide genome-wide estimates of the splicing yield that is not biased by

splicing kinetics. From this work emerges a comprehensive global view of splicing kinetics and yield

in human cells.
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Results

RNA labeling monitors intron removal
To monitor global RNA metabolism in human cells, we performed TT-seq analysis in K562 cells after

different times of RNA labeling with 4-thiouracil (4sU) (Figure 1A). We previously showed that such

a labeling time series can estimate splicing rates in the yeast S. pombe (Eser et al., 2016). We

exposed K562 cells to 500 mM of 4sU for a labeling time of 2, 5, 10, 15, 20, 30, or 60 min, isolated

RNA, and conducted both TT-seq and total RNA-seq (Figure 1A). On average, we obtained 250 mil-

lion and 55 million 150-nucleotide (nt) paired-end reads for each of the TT-seq and RNA-seq
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Figure 1. TT-seq monitors human RNA splicing. (A) Experimental design. TT-seq and RNA-seq were performed after 2, 5, 10, 15, 20, 30 and 60 min of

4sU-labeling in human K562 cells. The number of reads spanning exon-intron/intron-exon splice-sites (non-split reads) gradually decrease with longer

labeling duration, while exonic reads and reads spanning exon-exon junctions (split reads) increase during the time course, converging to levels similar

to RNA-seq. (B) Coverage track of MYNN gene for 2, 5, 10, 15, 20, 30 and 60 min of 4sU-labeling followed by TT-seq and 2 min of 4sU-labeling

followed by total RNA-seq. (C) Distribution of non-split reads (left) and split-reads (right) in previously published 4sU-seq (orange) and TT-seq (blue)

(Schwalb et al., 2016) split by quartiles of the transcription start site to donor splice-site distance. Black bars represent the median values for each

group. Lower and upper boxes are the first and third quartile, respectively. (D) Fractions of novel splicing events detected in intragenic and intergenic

genomic regions. Solid boxes represent known exons, dashed boxes represent novel exons. (D based on Supplementary file 1).

DOI: https://doi.org/10.7554/eLife.45056.003

The following figure supplement is available for figure 1:

Figure supplement 1. TT-seq is highly reproducible and captures newly synthesized RNAs.

DOI: https://doi.org/10.7554/eLife.45056.004

Wachutka et al. eLife 2019;8:e45056. DOI: https://doi.org/10.7554/eLife.45056 4 of 52

Tools and resources Computational and Systems Biology Genetics and Genomics

https://doi.org/10.7554/eLife.45056.003
https://doi.org/10.7554/eLife.45056.004
https://doi.org/10.7554/eLife.45056


samples, respectively. We next mapped TT-seq and RNA-seq data to the human genome

(Materials and methods). The experiments were highly reproducible (Figure 1—figure supplement

1A). Visual inspection of the mapped reads revealed strong TT-seq signals in transcribed regions

covering both introns and exons (Figure 1B), whereas RNA-seq data covered mainly exons

(Figure 1B, Figure 1—figure supplement 1B). The relative number of intronic reads in TT-seq data

decreased with 4sU-labeling time, whereas the signal for exons increased. These observations were

consistent with capture of newly synthesized precursor RNA because spliced introns are more rapidly

degraded than exons that are maintained in mature, stable RNA. Thus, our time series data con-

tained information about the kinetics of precursor RNA splicing that we exploited further.

New and alternative splice sites
We first analyzed our TT-seq data for the occurrence of reads that are informative of precursor RNA

splicing, that is reads spanning exon-exon boundaries (‘split reads’) and reads spanning exon-intron

(‘donor’) and intron-exon (‘acceptor’) boundaries (‘non-split reads’). Using a threshold of at least 10

split reads for an exon-exon boundary, we found 341,855 putative introns (Materials and methods).

The relative number of these non-split reads compared to split reads was highest after 2 min of 4sU-

labeling and progressively decreased with longer labeling times, eventually converging to a similar

coverage as in the RNA-seq samples (Figure 1—figure supplement 1C). Coverage with split reads

decreased with the distance to the transcription start site (TSS) in 4sU-seq data but not in TT-seq

data (Figure 1C, data from Schwalb et al., 2016), suggesting that the previously reported estima-

tion of splicing rates with 4sU-seq (Mukherjee et al., 2017; Rabani et al., 2014), overestimated

splicing rates for 5’ introns compared to 3’ introns. With the use of TT-seq we could avoid a 5’-bias

in splicing rate estimations.

About one half of the putative introns (177,322) mapped to splice sites that had been annotated

in the database of transcribed regions GENCODE (Materials and methods), whereas the other half

did not (164,533). Of these putative introns that had not been previously annotated as splice sites in

GENCODE, more than 99% represented introns ending with the GT|AG canonical dinucleotides.

Moreover, 21% represented new combinations of already annotated donors and acceptors

(Figure 1D). Furthermore, 18% map to a non-annotated donor site and to a previously annotated

acceptor site, 22% to a non-annotated acceptor site and to a previously annotated donor site. Inter-

estingly, another 38% mapped to both non-annotated donor sites and non-annotated acceptor sites.

Of these, about one half was located within an annotated GENCODE gene (intronic), whereas the

other half was located in regions of the genome not annotated in GENCODE (intergenic). Overall,

this analysis indicates that the number of splice sites has previously been underestimated, in agree-

ment with recent studies that integrated very large datasets of the public RNA-seq repository

(Nellore et al., 2016) or studies that used full-length mRNA sequencing (Anvar et al., 2018).

Kinetic modeling
Defining the kinetics of RNA synthesis, splicing, and degradation from short-read-based protocols is

inherently ambiguous due to the many RNA species overlapping any genomic position, including

precursor RNAs and multiple splice isoforms. In the future, quantitative and high-throughput full-

length transcriptome sequencing may become available to improve the situation; however, co-tran-

scriptional alternative splicing would still cause ambiguities. We have therefore shown it is accurate

to analyze the metabolism of phosphodiester bonds rather than RNA species themselves

(Wachutka and Gagneur, 2017). Following this idea, we modeled the steady-state rates of synthesis

and degradation (or equivalently cleavage) of each of three different phosphodiester bonds individu-

ally: the exon-intron bond at the donor site, the intron-exon bond at the acceptor site, and the bond

between the two joined exons after successful exon ligation to yield product RNA (Figure 2A left,

Appendix). We refer to these definitions throughout when we use the terms ‘splicing kinetics’ or

‘splice site kinetics’.

We then considered the metabolism of these three phosphodiester bond types at steady-state.

Synthesis balances out degradation at steady-state for any molecular species, independently of the

kinetics. The steady-state synthesis rate (amount produced per unit of time) and the steady-state

degradation rate (ratio of steady state amount by the steady-state synthesis rate) are defined quanti-

ties without any assumption on the kinetics (Appendix). Synthesis of the donor and acceptor bonds
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reflects precursor RNA synthesis. Cleavage of the donor bond is caused by either splicing or by pre-

cursor RNA degradation. The half-life of those donor bonds that get spliced depends on intronic

transcription at least up to the branchpoint and on the first transesterification step. Cleavage of the

acceptor bond is caused by either splicing or by precursor RNA degradation. The half-life of those

acceptor bonds that get spliced is determined by the first and the second transesterification step
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Figure 2. Estimation of RNA metabolic rates at individual phosphodiester bonds. (A) Definition of kinetic

parameters at the level of individual phosphodiester bonds enables independent estimation of the rates of donor

(red) and acceptor (blue) bond half-life and of junction (product, green) formation (left). Reads covering the introns

were extracted and divided into three classes: reads starting at the upstream exon and extending into the intron

(red), reads starting within the intron and extending to the downstream exon (blue) and reads mapped to the

upstream and downstream exon but gaping the intron (green). Theoretical analytical curves as well as the curves

corrected for cross-contamination for TT-seq and RNA-seq are shown. Sequencing depth-normalized counts are

provided for both replicates (circle, triangle). Estimated standard errors are depicted in grey. A dip in expectation

value of the junction count was observed at 30 min 4sU-labeling time due to variation of cross-contamination

across samples (unlabeled RNA in TT-seq samples), (right). (B–D) Violin plots representing the distribution of

synthesis rate (B), average donor and acceptor bond half-life (C) and junction bond half-life (D) for mRNAs

(n = 8,770), lincRNAs (n = 204), antisense RNAs (asRNA, n = 162) and other ncRNAs (n = 290). Black bars represent

the median values for each group. Lower and upper boxes are the first and third quartile, respectively. (B–D based

on Supplementary file 3).

DOI: https://doi.org/10.7554/eLife.45056.005

The following figure supplement is available for figure 2:

Figure supplement 1. Details on kinetic modeling of RNA metabolic rates.

DOI: https://doi.org/10.7554/eLife.45056.006
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but not by intronic transcription. Synthesis of the junction bond is the outcome of completed splic-

ing. Cleavage of the junction bond indicates RNA degradation (Materials and methods, Appendix).

Our experimental design includes the injection of labeled and unlabeled spike-ins at constant

concentrations in all samples, prior to the purification step. These spike-ins allowed for estimating

the variations in sequencing depth as well as the overall newly synthesized RNA fraction of every

sample (Materials and methods). The unlabeled spike-ins also allowed estimating the amount of

cross-contamination, that is of unlabeled RNAs that are purified and which can represent a large

fraction of all RNA-seq reads at short labeling durations (Materials and methods). These technical

parameters estimated from the spike-ins read counts were then used as covariates to model

expected read counts of all three types of bonds in each sample.

Application and testing of the kinetic model
Using these considerations, we fitted the abundance of each of these three types of bonds with a

first-order kinetic model for a total of 162,134 donor, 177,543 acceptor and 156,825 junction bonds

that showed at least 100 supporting reads across the full dataset (Figure 2A right, Materials

and methods, Appendix). Overall, TT-seq read counts agreed with the expected counts of our

kinetic model (Figure 2A central column, Figure 2—figure supplement 1A). The synthesis rates for

donors and acceptors, and the product half-life inferred from distinct splice junctions (Materials

and methods) agreed well, demonstrating the robustness of our approach (Spearman rank correla-

tion >0.33 for synthesis time downstream of the first exon, p<2 � 10�16 and Spearman rank correla-

tion >0.76 for half-life, p<2 � 10�16, variation of 180% fold for synthesis rate, and 32% fold for half-

life, Materials and methods, Figure 2—figure supplement 1B). Variations were larger for synthesis

rates because these estimates are in a first approximation proportional to the coverage in the short-

labeled TT-seq samples and are therefore more sensitive to sequencing biases. In contrast, half-lives,

which are in a first approximation proportional to the ratio of coverages in short-labeled TT-seq sam-

ples and in RNA-seq, better control for sequencing biases.

We furthermore conducted extensive simulations to assess the performance and limitations of the

fitting procedure to estimate the rates when the ground truth is known. We simulated counts based

on the estimated distributions of synthesis rates, splicing half-times and half-life times based on the

experimental data. Based on simulated data, our method leads to unbiased estimates of ground

truth synthesis rates (Appendix 1—figure 12), splicing half-time and half-life time (Appendix 1—fig-

ure 13) with high precision compared to the dynamic range. Also, we used simulations to explore

how estimation accuracy is affected when using data with much lower read coverage or for

extremely slow or fast rates. These simulations showed that lowering the total read coverage cut-off

below 100 reads would lead to relative errors typically surpassing 100% (median, Appendix 1—fig-

ure 23). These simulations also showed that estimations of half-lives shorter or much longer than our

labeling durations (shorter than 1 min or longer than 3 days) would lead to median error surpassing

100% (Appendix 1—figure 24).

First-order kinetic models are simple models that grossly model the underlying biochemical pro-

cesses. We also investigated two alternative models that potentially capture more complex kinetics.

The first one is a delay differential equation model for donor bond kinetics that modeled the time to

transcribe the intron up to the branchpoint with a delay, followed by first-order kinetics for the first

transesterification step (Appendix). Simulations indicated that identifying the parameters of this

delay differential equation model is difficult (Appendix 1—figures 2, 20–22) because the data do

not support distinguishing the contribution of transcription from the one of the first transesterifica-

tion step. However, fitting a first order kinetic model on data simulated according to the delay differ-

ential equation model showed that the estimated donor bond half-life approximately equated the

sum of the intronic transcription delay and the half-time of the first transesterification step (Appen-

dix 1—figure 5, yet usually underestimating with a median relative level of 0.89). The second alter-

native model is a coupled differential equation model for the junction bonds that modeled junction

formation as the outcome of a first-order kinetics splicing process rather than as a constant. Simula-

tions showed that the data did not allow to easily distinguish this coupled kinetics from first-order

kinetics (Appendix 1—figure 3). Moreover, the junction bond half-life estimated by the first order

kinetics model approximately equated the sum of the splicing half-time and of the half-life of the

processed RNA (Appendix 1—figure 7, yet usually overestimating with a median relative level of
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1.2). Unless specifically mentioned, we used the first order kinetics model in the remaining analyses

because of its robustness and its approximate equivalence with alternative models (Appendix).

Splicing times are in the range of minutes
Based on GENCODE annotation, the analyzed bonds mapped to 8,770 mRNAs, 162 RNAs antisense

to protein-coding genes (asRNA), 204 long intergenic non-coding RNAs (lincRNA), and 290 other

non-coding RNAs (Figure 2—figure supplement 1C). When averaged within major isoforms (Materi-

als and methods), synthesis rates and half-lives of donors and acceptors ranged over two orders of

magnitude (42-fold and 48-fold change, 90% equi-tailed range), whereas the junction bond half-life

spanned only slightly over one order of magnitude (8.1-fold 90% equi-tailed range, Figure 2B–D).

These major isoform aggregated rates generally agreed with previously reported splicing rates and
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Figure 3. Intron length influences splicing kinetics. (A) Number of introns against intron length. Dashed line

represents the minimum estimated intron length. (B) Distribution of donor and acceptor bond half-life for introns

split by intron length septiles. Black bars represent the median values for each group. Lower and upper boxes are

the first and third quartile, respectively. (C) Donor bond half-life against intron length for all observed introns,

minimum estimated intron length (black vertical line), and theoretical elongation boundary for a intronic

polymerase elongation rate of 4 kb min�1 (black lines) and 95% confidence interval estimates (dashed lines,

Materials and method). Colors encode data point density. (D) Distribution of half-life of donor (red) and acceptor

(blue) bonds for first and last introns in major isoforms compared to other introns. (A–D based on

Supplementary file 2).

DOI: https://doi.org/10.7554/eLife.45056.007

The following figure supplement is available for figure 3:

Figure supplement 1. Branchpoint-acceptor site distance.

DOI: https://doi.org/10.7554/eLife.45056.008
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RNA half-lives (Figure 2—figure supplement 1D; Mukherjee et al., 2017). Moreover, mRNAs were

spliced significantly faster (median of 7.2 min) than lincRNAs (median of 11 min, p<2 � 10�16) and

other non-coding RNAs (Figure 2C). Also, mRNAs had junction bonds with the longest half-lives

(median of 316 min) (Figure 2D), consistent with previous studies (Mukherjee et al., 2017;

Schlackow et al., 2017; Schwalb et al., 2016). Similar conclusions can be reached using site-specific

rates (Figure 2—figure supplement 1E–J). The obtained apparent splicing times in the range of

minutes agree with many previous estimates that were obtained using different methods, but argue

against fast splicing, within less than a minute, that was suggested by some studies (Carmo-

Fonseca and Kirchhausen, 2014).

Intron length constrains splicing times
Intron length has been suggested to affect splicing kinetics (Hicks et al., 2010; Khodor et al., 2011;

Pai et al., 2017; Proudfoot, 2003; Windhager et al., 2012), and we therefore investigated this fur-

ther. First, our de novo annotation of introns is in agreement with a minimal intron length of about

80 nt (Figure 3A), as expected from the spatial needs within the spliceosome (Ruskin et al., 1985;

Wieringa et al., 1984). Second, we find that among introns shorter than 2,000 nt, acceptor and

donor bond half-life showed similar distributions and decreased with increasing intron length

(Figure 3B). The reasons for why short introns are spliced more slowly than long ones remain to be

investigated. It is possible that for longer introns the splice site definition by the following exon facil-

itates splicing and that there are less restraints for splicing for longer introns. This observation also

strongly argues for pre-ordering of the spliceosome on the transcribing polymerase.

Our analysis also reveals that donor and acceptor bond half-lives differ for long introns. Among

introns longer than 2,000 nt, acceptor bond half-life plateaued at a median value of about 4 min,

whereas donor bond half-life increased with intron length up to a median value of about 8 min for

introns larger than 7,700 nt (last septile). A possible explanation for this significant difference is that

donor sites of long introns are transcribed much earlier than acceptor sites and splicing can only

start when the intron is transcribed. Indeed, the donor bond half-life is determined by the elongation

time needed to transcribe at least the branchpoint and by the first transesterification step, whereas

the acceptor bond half-life is determined by both the time for the first transesterification step and

for the second transesterification step to be completed. Assuming a maximum polymerase elonga-

tion velocity of 4 kb/min (Fuchs et al., 2014; Gressel et al., 2017; Jonkers and Lis, 2015;

Saponaro et al., 2014; Veloso et al., 2014), we observed very few introns violating this predicted

limit (Figure 3C). This limit for donor bond half-life affects only a small proportion of all introns (last

septile) so that, overall, there is no positive correlation between donor bond half-life and intron

length (Figure 3C). For shorter introns, the donor bond half-life and the acceptor bond half-life were

similar (Figure 3B), indicating that the second transesterification step is fast compared to the overall

splicing kinetics.

Another prediction of this model is that for slowly transcribed introns the donors should take lon-

ger to cleave than the acceptors. Consistent with this hypothesis, the median half-life was 2.5-fold

(p<2�10�16) longer for donor bonds than for acceptor bonds of first introns (Figure 3D), which are

known to be more slowly transcribed (Danko et al., 2013; Fuchs et al., 2014; Jonkers and Lis,

2015; Saponaro et al., 2014; Veloso et al., 2014). A small significant difference was also found for

the last intron (1.4-fold, p<2�10�16), which could reflect slower polymerases near the transcript end

or different kinetics of splicing of the last intron (Davis-Turak et al., 2015; Rigo and Martinson,

2008). In conclusion, these data show that donor half-life and thus the beginning of splicing is lim-

ited by transcription elongation for long introns. Taken together, our results are generally consistent

with the co-transcriptional nature of splicing and reveal that the length of the intron influences splic-

ing kinetics in at least two different ways.

Several snRNA interactions are related to donor cleavage kinetics
Whereas overall trends in splicing kinetics can be explained by global features such as intron length

and polymerase elongation velocity, the kinetics of splicing also critically depend on the RNA

sequence context around the donor, acceptor, and branchpoint. To gain insights into the sequence

determinants for splicing, we built a linear model (Materials and methods) that allowed us to esti-

mate changes in donor bond half-life as a function of single nucleotide changes relative to the
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consensus sequence. The single nucleotide model could explain 19% of the observed variance in

log-transformed donor bond half-life and achieved a median relative error for individual sites of

150%, which is small compared to the dynamic range across sites spanning two orders of magnitude

(Figure 4A). This analysis showed that nucleotide deviations from the consensus splice-site increase

donor bond half-life. These findings are consistent with evolutionary pressure for donor sequences

optimized for fast splicing.
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Figure 4. Sequence and structural contributions to donor bond half-life (related to the first catalytic step). (A) Measured donor bond half-life against

single nucleotide model prediction (median relative error of 150%, Spearman’s rank correlation r = 0.45, p<10�16). (B) Nucleotide frequency (middle

track) and prediction of the relative effect on donor bond half-life (upper track) for single nucleotide deviation from consensus sequence around donor,

acceptor splice-site and branchpoint. Grey color marks positions predicted to have no effect (Materials and methods). RNA map of base-pairing

interactions between four snRNAs (U1, U2, U5, U6) and precursor RNA sequences used in three published spliceosome structures of U1 snRNP binding

to 5´splice-site, B and C* complex (bottom track) (exon (blue), intron (red), U1 snRNA (light blue), U2 snRNA (green), U5 snRNA (orange), U6 snRNA

(yellow)). Canonical and non-canonical base-pairing interactions are depicted by black solid lines and black dots, respectively. (B based on

Supplementary file 4). (C) Structure of U1 snRNA interactions with precursor RNA 5´splice-site (Kondo et al., 2015). (D) Structure of U5 and U6 snRNA

interactions with precursor RNA in spliceosome B complex (Bertram et al., 2017a).

DOI: https://doi.org/10.7554/eLife.45056.009

The following figure supplement is available for figure 4:

Figure supplement 1. Effects of nucleotide changes on splicing kinetics as the spliceosome proceeds.

DOI: https://doi.org/10.7554/eLife.45056.010

Wachutka et al. eLife 2019;8:e45056. DOI: https://doi.org/10.7554/eLife.45056 10 of 52

Tools and resources Computational and Systems Biology Genetics and Genomics

https://doi.org/10.7554/eLife.45056.009
https://doi.org/10.7554/eLife.45056.010
https://doi.org/10.7554/eLife.45056


In order to elucidate the contribution a single nucleotide change might have on interactions

within the spliceosome, we compared our predicted single nucleotide effects with base interactions

observed in three different spliceosome structures (Figure 4B, bottom). Recognition of the donor

site by U1 snRNP plays a crucial role during early spliceosome assembly. RNA-RNA interaction

between precursor RNA and U1 snRNA are mainly stabilized through Watson-Crick interactions

(Figure 4C; Kondo et al., 2015). In our model, substitution of the highly frequent G at +1 or �1

from the donor site with a C resulted in an increase in bond half-life (Figure 4B), likely because C

cannot form a stable interaction with a C in the U1 snRNA, in agreement with previous in vitro stud-

ies (Kondo et al., 2015). In contrast, at position +3 from the donor site, a change from A to G has

100 m

1

10

100

1 k

100

Predicted acceptor bond half-life [min]

M
e

a
s
u

re
d

 a
c
c
e

p
to

r 
b

o
n

d
 h

a
lf
-l
if
e

 [
m

in
]

1

1 10

+1

A-BP

-1-2-3
+1

U2snRNA

U6snRNA

U5snRNA

5´

3`

3´

 Intron

5´SS

G+1

A-BP
U-1

U-2

C-3

U

A

G

Exon

A
0.

96
1.

00
1.

05
1.

02

1.
00

1.
18

1.
15

1.
26

0.
80

0.
92

1.
00

0.
84

1.
62

1.
14

1.
00

1.
37

1.
98

1.
85

2.
12

1.
00

1.
00

1.
42

1.
16

1.
37

1.
00

1.
15

1.
20

1.
15

1.
17

1.
27

1.
00

1.
24

1.
15

1.
13

1.
17

1.
00

1.
00

1.
05

1.
05

1.
00

0.
99

1.
06

1.
06

1.
00

1.
00

1.
05

1.
05

1.
00

1.
01

1.
06

1.
06

1.
00

0.
97

1.
01

1.
03

1.
00

1.
01

1.
06

1.
06

1.
00

0.
97

1.
05

1.
04

1.
00

1.
02

1.
04

1.
07

1.
00

0.
99

1.
04

1.
03

1.
00

1.
05

1.
10

1.
10

1.
00

1.
00

1.
07

1.
04

1.
00

0.
97

1.
10

1.
06

1.
00

0.
95

1.
00

1.
05

1.
01

1.
08

1.
21

1.
15

1.
00

0.
93

1.
00

1.
01

0.
97

1.
00

1.
53

1.
03

3.
12

0.
99

1.
00

1.
13

0.
98

1.
00

1.
00

1.
00

1.
00

1.
00

1.
04

1.
04

1.
00

1.
02

1.
05

1.
03

1.
00

1.
03

1.
03

1.
05

1.
00

1.
01

1.
05

1.
17

1.
00

1.
18

1.
00

3.
69

0.
98

1.
00

0.
80

3.
18

1.
08

3.
51

1.
28

1.
00

1.
32

1.
01

1.
07

1.
00

1.
13

1.
08

1.
03

1.
02

1.
00

1.
00

0.
93

0.
96

1.
00

0.
96

0.
92

0.
94

1.
00

1.
00

0.
95

0.
99

1.
00

1.
00

1.
00

1.
00

1.
07

1.
00

1.
00

1.
00

1.
00

-3 -2 -1 1 2 3 4 5 6 -1
5

-1
4

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 -4 -3 -2 -1 1 2 3 4 5 6

Donor Branchpoint Acceptor

A UCCUGGUAAGA

   GUGAAAGACA
. C* complex 

(Zhang et al. 2017)

T

G

C

A

1.00

0.50

0.00

UUCUUGUCUAUGAU

AUGAUGUCAUACUU

Effect on acceptor bond half-life 
<0.5 1 >2

C

1 2 3 4 5 6 -1
5

-1
4

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

B

D

10010

1A

1C

1T

-1A

-1C
-1T

-2C

-2G

-2T

-3G

0C

0G

0T

1A

1C

1T

2A

2C

2G

3C

3G

3T

4G

5C

6G

-1A

-1C

-1T

-2C

-2G

-2T

0.8

0.9

1.0

1.5

2.0

2.5

3.0

Effect on donor bond half-life
E

ff
e

c
t 
o

n
 a

c
c
e

p
to

r 
b

o
n

d
 h

a
lf
-l
if
e

Acceptor
Branchpoint
Donor

      0.7    1.0    1.5    2.0 2.53.0  4.0     6.0

Intron U2snRNA U6snRNA
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only a minor effect on the bond half-life (Figure 4B), likely because G can still form a non-canonical

base pair with U in the U1 snRNA (Kondo et al., 2015). These results suggest that interactions of

the precursor RNA donor region with U1 snRNA contribute to the observed donor bond half-lives.

After donor site recognition by U1 snRNP, the Prp28 RNA helicase mediates the exchange of U1

with U6 snRNP and the U4/U5/U6 tri-snRNP can stably bind the precursor RNA. In the resulting B

complex, the U5 stem loop interacts with the three terminal nucleotides of the 5´-exon, whereas the

U6 ACAGA helix is formed near the donor site (Figure 4D; Bertram et al., 2017a). Our results sug-

gest that U5 interactions may contribute to the kinetics of donor cleavage. For example, an A in the

position �3 relative to the donor site leads to faster donor bond half-life supposedly because this

enables base-pairing with U5 snRNA in the extended precursor RNA-U5 snRNA duplex.

Completion of step-one results in the C complex that is then converted to the activated C* com-

plex, which contains the two exon ends in close proximity for the step two reaction. RNA duplexes

are formed between the intron region close to the donor site and U6 snRNA and between the

branch site region and U2 snRNA (Figure 5A) (Zhang et al., 2017). We also found that interactions

in the C* complex were predictive of donor bond half-life (Figure 4D). In particular, changes in the

branchpoint adenine and at all positions �4 to +3 of the branchpoint show kinetic effects, except

for the positions �1 and +2 that are predicted to not contribute to donor bond half-life (grey

highlighting in Figure 4D). In agreement with the structural data, these nucleotides are also the only

two nucleotides in the vicinity of the branchpoint that do not interact with U2 in the C* complex

(Zhang et al., 2017). When compared to each other, the precursor RNA nucleotides interacting with

snRNAs during 5’ splice site recognition showed the strongest effects on donor bond half-life, fol-

lowed by nucleotides interacting in the B complex, and to a lesser extent the nucleotides interacting

in the C* complex (Figure 4—figure supplement 1A). Positions with no predicted contact in these

structures showed least effects (Figure 4—figure supplement 1A). These observations support our

kinetic modeling, but also argue that the structurally characterized spliceosomal complexes repre-

sent functional states.

Taken together, variation in the in vivo kinetics for the donor cleavage can in part be rationalized

with early interactions of precursor RNA with U1 snRNA, and with later U5 snRNA interactions

observed in structures of the B and Bact complexes. Moreover, the stability of the C* complex

appears to also affect donor bond half-life, possibly because it prevents the reverse reaction of

donor site cleavage (Tseng and Cheng, 2008). Since several precursor RNA positions are involved in

different types of interactions in different splicing intermediates, the observed overall kinetics of

donor cleavage reflect a combination of distinct microscopic rates, which cannot be distinguished by

our in vivo approach. Furthermore, not all observed effects of nucleotide changes could be

explained with available structures. For example, the first nucleotide of the downstream exon

(acceptor +1 position) was important for donor cleavage kinetics. Although it remains unclear why,

this could be related with co-transcriptional recruitment and recycling of splicing factors, maybe

favored by Pol II 3´splice-site pausing, similar to that suggested in Aitken et al. (2011).

Sequence and structural contributions to acceptor bond half-life
We also built a regression model predicting log-transformed acceptor bond half-life from sequence

(Figure 5B, 20% of variance explained, median relative error of 150%). Single nucleotide changes

around the acceptor site generally had larger effects on acceptor bond half-life, reflecting effects on

step two kinetics, whereas changes around the donor site had greater effects on donor bond half-

life, reflecting effects on step one kinetics (Figure 5C). The post-catalytic complex (P complex),

which is specific to step two splicing reaction, is not yet structurally characterized in human. Never-

theless, nucleotide changes that influence base pair interactions reported for the P-complex in S.

cerevisiae (Bai et al., 2017) showed stronger effects on the acceptor bond half-life than for the

donor bond half-life (Figure 4—figure supplement 1A). Nucleotide positions in the precursor RNA

that are not involved in base pair interaction with snRNAs in B-type and C* complex structures were

irrelevant for predicting acceptor bond half-life (grey highlighting in Figures 4B and 5C, feature

selection, Materials and methods).

Most nucleotides showed similar effects in the donor and acceptor bond half-life models but

some noticeable differences were observed between them (Figure 5D). Our results indicate that a

non-canonical G branchpoint does not affect acceptor bond half-life but increases donor bond half-

life. We also observed that the predominant G at the donor �1 nucleotide leads to fast donor
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cleavage kinetics but to slow acceptor cleavage kinetics, maybe because this interferes with position-

ing of the neighboring +1 donor nucleotide that serves as a nucleophile during step two. Despite

this disadvantage in acceptor cleavage kinetics, the donor �1 position is predominantly G, presum-

ably because this improves donor site recognition by base pairing with a C in U1 snRNA as

described above. Taken together, available structural information on the spliceosome help to
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Figure 6. Precursor RNA sequences contributions to splicing kinetics. (A) Schematic representation of the regions used for the octamer search

(BP = branchpoint, polyY = polyY track). In case of short intron, the regions 5’ downstream, 3’ upstream, and BP upstream were cropped to not extend

into the exonic regions. Poly-Y track was defined as the region from the branchpoint up to the acceptor site. (B–C) Proportion of variance explained by

the joint model (purple) for log-transformed donor (B) or acceptor (C) bond half-lives, as well as proportion of variance explained by individual features

(orange) and drop of the proportion of variance explained when individual features are removed from the joint model (green). 5´ds = 5´downstream, 3´

us = 3´upstream. (D) Effect on donor bond half-life of octamers matching to RNA-binding proteins (RBP, rows) motifs identified using the ATtRACT

database. Each column represents one octamer; the color depicts strength and direction of the effect. (E) Distribution of the phylogenetic conservation

score (PhastCons 100-way) of random octamers (green), significant octamers matching (red) and not matching (blue) the ATtRACT database of RNA-

binding motifs, estimated by region (column) and model (row). Black bars represent the median values for each group. Lower and upper boxes are the

first and third quartile, respectively. Stars above boxes depict pairwise significance levels by Wilcoxon signed rank test. (D based on

Supplementary file 5).

DOI: https://doi.org/10.7554/eLife.45056.012

The following figure supplement is available for figure 6:

Figure supplement 1. Predicted octamers show significant regulatory effects on donor and acceptor bond half-life.

DOI: https://doi.org/10.7554/eLife.45056.013
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rationalize some of the effects of base changes around splice sites. Even though the contributions of

several mechanistic processes to the observed kinetics cannot be disentangled, our results reveal

which nucleotide positions around splice sites are critical for fast splicing kinetics.
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Figure 7. Splicing yield differs between RNA classes. (A) Definition of synthesis rate at individual phosphodiester bonds enables the estimation of

splicing yield for acceptor splice sites (hacceptor). (B) Distribution of splicing yield of acceptor splice sites for introns of mRNAs (n=64,555), lincRNAs

(n=398) antisense RNAs (asRNA, n=265), and other ncRNAs (n=876) of major transcripts (Materials and methods) for GENCODE genes. Black bars

represent the median values for each group. Lower and upper boxes are the first and third quartile, respectively. (C–D) Distributions of the observed

acceptor spicing yield (C) and donor and acceptor bond half-life (D) of splice-sites split by major (U2-type) and minor (U12-type) spliceosome. (E). Single

nucleotide effects for branchpoint and acceptor splice site on hacceptor. Color depicts effect on yield relative to consensus nucleotide (Materials

and methods). Relative frequency of the nucleotides is shown for all modeled introns. (B–E based on Supplementary file 2).

DOI: https://doi.org/10.7554/eLife.45056.014

The following figure supplement is available for figure 7:

Figure supplement 1. Splicing yield is affected by intron length.

DOI: https://doi.org/10.7554/eLife.45056.015
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Regulatory precursor RNA motifs contribute to splicing kinetics
Splicing is modulated by auxiliary factors, including serine/arginine-rich proteins and hnRNPs (het-

erogeneous nuclear ribonucleoproteins), that bind to regulatory motifs around the splice sites

(Fu and Ares, 2014; Matlin et al., 2005; Wang and Burge, 2008). We therefore aimed to identify

putative regulatory motifs and to quantify their contribution to splicing kinetics. We derived two

extended models for donor and acceptor bond half-life including the single nucleotide effects in the

core regions investigated so far and all 65,536 possible RNA octamers in four extended intronic

regions, 100 nt downstream of the donor site, 100 nt upstream of the acceptor site, and 100 nt

upstream of the branchpoint and the region between branchpoint and acceptor site

(Figure 6A, Materials and methods). We also included intron length and GC content, but did not

include exonic regions, because this would require isoform annotations. Because of the very large

number of octamers, we used a feature selection method (Lasso regression), which yielded 551

octamers jointly predicting donor bond half-life and 2,319 octamers jointly predicting acceptor bond

half-life (Materials and methods).

Compared to the single nucleotide models, the extended models substantially increased the pro-

portion of variance explained from 19% to 26% for the log-transformed donor bond half-life and

from 20% to 29% for the log-transformed acceptor bond half-life (Figure 6B and C). These propor-

tions of variance increased when we restricted the analysis to junctions of major isoforms, showing

that the results are not over-estimated due to double counting of donors and acceptors belonging

to multiple exon junctions (donor bond half-life model by 1.3% and the acceptor bond half-life

model by 1.4%). Cumulatively, the proportions of variance explained of these non-overlapping

regions largely exceed the proportion of variance explained by the joint model, indicating wide-

spread co-occurrence of splicing-regulatory sequences across introns.

The improved prediction of the extended models over the single nucleotide models is mostly

attributable to the octamers of the extended intronic regions. The largest number of predictive

octamers identified by the donor bond half-life model was found in the 5’ donor site region (Fig-

ure 6—figure supplement 1A). This set of octamers was the most predictive feature for donor bond

half-life individually (19% of the variance) and the feature with the largest impact on variance when

dropped from the joint model (3% of the variance). In the acceptor bond half-life model, the regions

flanking the branchpoint and acceptor site contained most predictive octamers (Figure 6—figure

supplement 1A) and associated with largest proportion of variance explained (Figure 6C). More-

over, the effects of octamers on bond half-life were of similar order of magnitude than the effects of

single nucleotides in donor, acceptor and branchpoint sites for both categories (Figure 6—figure

supplement 1B, median effect for octamer 1.4%, median effect for nucleotide 5.4%). The drop of

proportion of variance explained when a feature was removed from the joint models were small

(between 0.0 and 3.4, Figure 6B and C) indicating of substantial correlation between the features.

These correlations could be technical in the case of overlapping regions, or the result of co-evolu-

tion. Altogether, these results show that the octamers in the extended intronic regions contribute to

splicing kinetics.

To identify putative regulatory factors that could bind to the predicted RNA octamers, we scored

the octamers binding affinities to the 159 human RNA-binding proteins of the ATtRACT database

(Giudice et al., 2016). We found 258 octamers predicted by the donor bond half-life model (47%

versus 42% of non-selected octamers, p=0.017, Fisher test) associating with 69 RNA-binding pro-

teins and 1,039 octamers identified by the acceptor bond half-life model (45% versus 42% of non-

selected octamers, p=0.007, Fisher test) associating with 99 RNA-binding proteins motifs

(Figure 6D, Figure 6—figure supplement 1C, relative position weight matrix score >0.9 and select-

ing for the 5% highest absolute scores, Materials and methods). Our results suggest that several ser-

ine/arginine-rich and hnRNP proteins (Supplementary file 5) regulate donor and acceptor bond

half-life in both positive and negative fashions, depending on the location of their binding site.

Octamers associated with the binding site of the polypyrimidine tract-binding protein Ptpb1 are pre-

dictive of short donor bond half-life when present between branchpoint and acceptor site but they

prolong the donor bond half-life when located near the donor site (Figure 6D). The remaining

octamers may reflect cis-regulatory elements bound by splicing factors that remain to be character-

ized. To address the evolutionary conservation of the identified octamers, we aligned them to con-

served sequences across 99 mammalian and other vertebrate genomes. Except for octamers
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predicted to affect donor bond half-life in the region 100 nt downstream of the donor site, the

remaining ones show significantly higher phylogenetic conservation compared to a negative control

of random octamers (Figure 6E), providing evidence of their biological significance.

Splicing yield differs between RNA classes
Cleavage of the phosphodiester bonds at the donor and acceptor sites can lead to ligation of the

two exon ends, thus completing splicing. However, cleavage of these bonds may also be non-pro-

ductive in the sense that exon ligation can fail and RNA may be degraded after cleavage. To account

for this, we defined the ‘splicing yield’ as the proportion of precursor RNA successfully converted

into spliced RNA (Figure 7A). A splicing yield of 1 means that all precursor RNAs that are synthe-

sized are also successfully spliced, whereas a splicing yield less than one means that only a fraction

of the precursor RNA is converted to spliced product. We estimated the splicing yield using the

junction bonds modeled with the coupled model and the acceptor bonds modeled with first-order

kinetics, because alternative kinetic models or using the donor bonds led to systematic biases

(Appendix). Hence, we did not computationally constrain our splicing yield estimates to be bounded

by 1. Due to estimation errors of the synthesis rates, yields sometimes turn out to be greater than 1.

We found that the splicing yield across sites was much higher for mRNAs (median = 1.2,

Figure 7B) than for antisense RNAs (median = 0.2), lincRNAs (median = 0.3), and other non-coding

RNAs (median = 0.5), suggesting that degradation pathways are competing with splicing more

intensively for non-coding RNAs than for coding RNAs. Moreover, the higher yield of mRNAs com-

pared to lincRNAs also held when stratifying by cumulative read coverage across all samples and by

half-life (Appendix 1—figures 26 and 27), two possible confounders associating with synthesis rate

estimation biases in simulations (Appendix). Furthermore, splicing yield was the same for the

139,344 (99.9%) introns harboring the canonical terminal dinucleotides GU and AG recognized by

the major spliceosome (U2-type) than for the 182 (0.1%) introns harboring the terminal dinucleotides

AU and AC recognized by the minor spliceosome (U12-type) (Figure 7C). Although introns targeted

by the minor spliceosome showed two-fold slower donor and acceptor bond half-lives compared to

those targeted by the major spliceosome (Figure 7D, Figure 7—figure supplement 1B), the minor

spliceosome nonetheless reached similar splicing yields.

To analyze how the nature of the splice sites contributes to splicing yield, we built a model that

allow us to predict splicing yield based on sequence (Figure 7E). Similar to the effects on bond half-

lives (Figure 4B, Figure 5C), deviations from the consensus sequence led to lower splicing yield. Fur-

thermore, nucleotides near a splice site showed stronger effects than more distant ones, suggesting

that the early recognition of donor and acceptor splice sites is a determinant for splicing yield. Taken

together, these results indicate that rate and yield are distinct aspects of splicing that may have

evolved independently and that the sequence around splice sites determines both the rate and the

yield of splicing.

Discussion
RNA splicing is an essential step of eukaryotic gene expression, but the in vivo kinetics of this two-

step process and its dependence on transcription remain poorly understood. Here, we have coupled

a metabolic RNA labeling time series to TT-seq analysis of new and total RNA to investigate RNA

metabolism in human cells. We have then used kinetic modeling based on a definition of RNA meta-

bolic rates at the level of individual phosphodiester bonds to provide rate estimations for cleavage

of phosphodiester bonds at donor and acceptor splice sites in human introns. The obtained splice

site cleavage rates, expressed as donor and accept bond half-lives, are free of ambiguities intro-

duced by other methods and are related to the independent contributions of the two splicing steps

in vivo.

The donor and acceptor bond half-lives were found to be generally in the range of minutes,

although we cannot exclude that we are missing a small population of quickly spliced introns. The

donor and acceptor bond half-lives were found to depend on intron length, on the nucleotide

sequence surrounding splicing sites, including the branchpoint, and on flanking octamer sequences

that may bind regulatory factors. This is consistent with a complex relationship between the splicing

machinery and its nuclear environment, in which splicing rates can be influenced not only by RNA

sequence but also by gene structure and chromatin landscape (Davis-Turak et al., 2018; Davis-
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Turak et al., 2015). In addition, we define the yield of successful splicing and show that it differs dra-

matically between different RNA classes.

Our results also provided insights into the nature and evolution of co-transcriptional splicing. Pre-

vious studies of splicing kinetics in mouse (Rabani et al., 2014) and fission yeast S. pombe

(Eser et al., 2016) all found that splicing is faster for shorter introns. A recently published study in

Drosophila (Pai et al., 2017) demonstrated that splicing is faster for intron-defined, short introns

(60–70 nt), whereas for exon-defined introns, splicing was faster for introns longer than 2,944 nt,

suggesting a complex relationship between splicing kinetics and intron length. We find here that

exon-defined splicing in human cells is fastest for introns with a length of around 2,000 nt, whereas

short introns (<140 nt) on average take about twice as long to be spliced. High spatial and temporal

resolution kinetics data coupled with focused analyses of these very short introns remain to be per-

formed for other species to understand how universal these observations are.

Another observation we made was that longer human introns (>10,000 nt) show increased donor

bond half-life, apparently because donor cleavage requires RNA polymerase II to first transcribe the

intron. This effect of transcription-limited splicing is observed at ~10% of human precursor RNA

introns, whereas most human introns are short enough so that their splicing kinetics are not limited

by transcription. How the polymerase elongation rate depends on the nature of the intron and how

this influences splicing remains to be investigated. The observed relationship between transcription

and splicing of coding RNAs extends to non-coding RNAs. We found that spliced coding RNAs and

spliced non-coding RNAs showed similar RNA synthesis rates (Figure 2C), whereas previous studies

reported considerably slower synthesis rates for mainly unspliced, non-coding RNAs

(Mukherjee et al., 2017).

Our definition of splice site-specific RNA cleavage rates also allowed for a comparison of kinetic

information in vivo with detailed structural knowledge of the spliceosome in different functional

states obtained in vitro. Structure-based interpretation of our nucleotide-resolution kinetic results

highlights the importance of interactions between snRNAs in the spliceosome and the precursor

RNA substrate and provides guidance for interpreting interactions in structures of the spliceosome

yet to be obtained. Our results suggest that the predicted interactions between the precursor RNA

and snRNAs in the P complex, which have presently only been obtained in yeast (Bai et al., 2017;

Wilkinson et al., 2017) may be similar in human. We show that different types of RNA-RNA interac-

tions observed at various stages of the process are related to the splice site cleavage time. In partic-

ular, RNA-RNA interactions must be of high enough affinity to allow for sufficiently specific

recognition of splice sites, yet the affinities must be in a range that also allows for rapid conversion

between subsequent states, which can show strongly altered RNA-RNA interactions. However, many

processes and factors contribute to the observed apparent splicing rates, and these must be disen-

tangled in the future.

Taken together, we have analyzed the metabolism of individual donor and acceptor splice sites in

vivo and provided quantitative models for how RNA splicing kinetics may be encoded in the human

genome. As we looked at a single growth condition, our models are derived from comparisons

across genes and essentially reflect the affinity of precursor RNAs to the core splicing machinery.

However, the experimental and computational methodology presented here could be applied to dif-

ferent cell types or under dynamic responses to reveal and quantify the role of splicing regulatory

factors and of their related binding sites. Another interesting future direction is the modeling of

alternative splicing, which is understood to be the outcome of competitions of alternative donor or

acceptor sites with various strengths. Our distinct models of donor and acceptor site kinetics may

help to build up such quantitative competition models. Eventually, quantifying the contribution of

individual bases to splicing rates, backed by structural and functional studies, may explain the

numerous contributions of splicing to the genetics of rare (López-Bigas et al., 2005) and common

(Li et al., 2016) diseases.

Materials and methods

Key resources table

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(Homo sapiens; female)

K562 chronic
myeloid leukemia
in blast crisis

DSMZ DSMZ Cat#
ACC-10,
RRID:CVCL_0004

Commercial
assay or kit

Plasmo Test
Mycoplasma
Detection Kit

InvivoGen,
San Diego, CA USA

rep-pt1

Commercial
assay or kit

Ovation Universal
RNA-Seq System

NuGEN, Leek,
The Netherland

0343–32

Chemical
compound, drug

4-thiouracil Carbosynth, UK NT06186 CAS 13957-31-8

Software STAR https://github.com
/alexdobin/STAR

RRID:SCR_015899

Software Picard http://broadinstitute.
github.io/picard/

RRID:SCR_006525

Software Salmon https://combine-lab.
github.io/salmon/

RRID:SCR_017036

Software glmnet https://cran.r-project.org/
web/packages/
glmnet/index.html

RRID:SCR_015505

Software PyMOL https://pymol.org/2/ RRID:SCR_000305

Software LaBranchoR https://kipoi.org/models/labranchor

Software CleTimer https://kipoi.org/models/CleTimer

Software rCube https://github.com/
gagneurlab/rCube

Last commit
number: 463119

Cell culture
K562 cells were obtained from DSMZ (DSMZ no.: ACC-10) and grown in RPMI 1640 medium

(Thermo Fisher Scientific, 31870–074) supplemented with 10% heat-inactivated fetal bovine serum

(Thermo Fisher Scientific, 10500–064) and 2 mM GlutaMAX (Thermo Fisher Scientific, 35050087) at

37˚C and 5% CO2. Cells were routinely verified to be free of mycoplasma contamination using

Plasmo Test Mycoplasma Detection Kit (InvivoGen, rep-pt1). K562 cells were authenticated at the

DSMZ Identification Service according to standards for STR profiling (ASN-0002).

TT-seq time series
TT-seq was performed as described (Schwalb et al., 2016), with minor modifications. Specifically,

2.5 � 107 cells from two biological replicates were used for each time point. Cells were exposed to

500 mM of 4-thiouracil (4sU, Carbosynth, NT06186) for 2, 5, 10, 15, 20, 30, 60 min at 37˚C and 5%

CO2. Cells were harvested by centrifugation at 600 g for 2 min at 37˚C. Cell pellets were lysed in 5

mL of QIAzol (Qiagen) and 150 ng of RNA spike-ins mix were added to each sample. RNA spike-ins

were produced in house, based on ERCC-RNA sequences (sequences of spike-ins are described in

Supplementary file 6). RNA spike-ins were produced as described (Schwalb et al., 2016). RNAs

were extracted using QIAzol according to the manufacturer’s instructions. RNAs were sonicated to

obtain fragments of <6 kbp using AFAmicro tubes in a S220 Focused-ultrasonicator (Covaris Inc,

parameters: 10 s, peak power 100, cycles 200, duty cycle 1%). The quality of RNAs and the size of

fragmented RNAs were checked using Fragment Analyzer. 1 mg of each of the sonicated RNAs was

stored at �80˚C as total RNA (RNA-seq) and later eluted with miRNAeasy Micro Kit (Qiagen,

217084) together with 4sU-labeled purified RNAs.

4sU-labeled RNAs were purified from 300 mg of each of the fragmented RNAs. Biotinylation and

purification of 4sU-labeled RNAs was performed as described (Dölken et al., 2008; Schwalb et al.,

2016). Biotinylated 4sU-labeled RNAs were separated from unlabeled RNAs with streptavidin beads

(Miltenyi Biotec, Bergisch Gladbach, Germany) and eluted in 100 mM DTT as described in
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Dölken et al. (2008) and Schwalb et al. (2016). 0.3M sodium acetate was added to 4sU-labeled

purified RNAs and to total RNAs prior RNA extraction. RNAs were extracted and eluted using miR-

NAeasy Micro Kit (Qiagen, 217084). The on-column DNAse I treatment (Qiagen, 79254) was per-

formed for 15 min at 25˚C. Prior to library preparation, total RNAs and 4sU-labeled purified RNAs

were quantified using Qubit. Enrichment of 4sU-labeled versus unlabeled RNAs was analyzed by RT-

qPCR using oligonucleotides amplifying selected regions of 4sU-labeled and unlabeled spike-ins

(sequences of oligonucleotides are described in Supplementary file 6). Only 4sU-labeled purified

samples showing DDCt changes from 4 to 6 were subjected to library preparation (total RNAs were

used as a control for normalization). 100 ng of input RNA was used for strand-specific library prepa-

ration according to the Ovation Universal RNA-seq System (NuGEN). Libraries were prepared using

random hexamer priming only. The size-selected libraries were analyzed on a Fragment Analyzer

before sequencing on the Illumina HiSeq 4000.

Read alignment and counting
Paired-end 150 bp reads with additional 6 bp of barcodes were obtained for each sample. Reads

were aligned using STAR version 2.5.0a (Dobin et al., 2013) in single pass mode. The genome Index

was built against the full GENCODE version 24 annotation and the hg38 (GRCh38) genome assem-

bly (Human Genome Reference Consortium) using 150 bp overhang size. Additional specified

parameters were alignSJDBoverhangMin 2, chimSegmentMin 15, chimScoreMin 15, chimScoreSepa-

ration 10, and chimJunctionOverhangMin 15. The aligned reads were filtered for duplicates using

Picard tools version 2.5.0 (https://broadinstitute.github.io/picard/) using the option MarkDuplicates

REMOVE_DUPLICATES = true. In average, each TT-seq sample yielded about 250 M reads and each

RNA-seq sample about 55 M reads. For each sample, ~90% of the reads could be uniquely mapped

to the reference genome. The duplication ratio was estimated to 55% by FastQC (https://www.bioin-

formatics.babraham.ac.uk/projects/fastqc/).

Using the rCube package (https://github.com/gagneurlab/rCube), all split reads (containing N

stretches in Cigar string) were extracted to create a database of potential introns (~341 k). The

obtained introns were classified relative to annotated introns and genetic elements from the GEN-

CODE annotation (version 24 obtained from https://www.gencodegenes.org/releases/24.html). For

each intron three characteristic counts were calculated: The numbers of reads starting in the

upstream exon and extending into the intron (‘donor’), the number of reads starting in the intron

and extending into the downstream exon (‘acceptor’), and all split reads matching the introns coor-

dinates (‘junction’). The reads were filtered using a bam quality score of 255. Reads having second-

ary alignment flag were discarded.

Estimation of sample normalization factors and cross-contamination
To estimate the sample normalization factors Fj that account for variations in sequencing depth as

well as the overall newly synthesized RNA fraction and the fraction of cross-contamination �j of non-

labeled reads in the TT-seq data, we modeled the expectation of counts Eij of spike-in i in sample

j using a statistical model similar to the one of Schwalb et al. (2016).

Eij ¼ Fjpij �j� di�j þ di
� �

(1)

�j is set to 1 for all RNA-seq samples, di is 0 for labeled spike-ins and 1 for unlabeled spike-ins.

The parameter pij is the condition and spike-in specific extraction probability. The difference with

(Schwalb et al., 2016) is to allow the parameter pij to be condition-specific (TT-seq or RNA-seq),

which turned out to model better cross-contamination of unlabeled RNA in the short duration TT-

seq libraries. We set pij ¼ pik for all sets of j and k belonging to either RNA-seq samples, TT-seq sam-

ples or if i belongs to a labeled spike-in. We assumed read count data to follow a negative binomial

distribution with a common dispersion parameter for all data. The model parameters and the disper-

sion parameter were fitted as generalized linear model using maximum likelihood.

Kinetic rate modeling and estimation
For each detected intron i we modeled the concentrations ci;l of each of three characteristic bonds

(donor, acceptor, junction) independently following a first order kinetic rate equation. Without loss
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of generality, we consider in the following just one of the three equations - the other two behave

the same.

d

dt
ci tð Þ ¼ ai �bici tð Þ (2)

We assume that all newly synthesized RNAs are labeled. The concentration of labeled bonds,

assuming an initial concentration of 0, follows:

ci t; labeledð Þ ¼
ai

bi

1� e�tbi

� �

(3)

Also, the old, non-labeled RNA decays exponentially as ci t; unlabeledð Þ ¼ ai

bi
e�tbi . Using the nor-

malization factor Fj of sample j, the labeling time tj and �j the cross-contamination of unlabeled

RNAs in the purified fraction, the concentration can be mapped to its expected count Ei;j:

Ei;j ¼
Fjai

bi

1 þ e�tjbi �j � 1
� �� �

forTT� seq;Ei;j ¼
Fjai

bi

forRNA� seq (4)

We modeled read counts using the negative binomial distribution, a count distribution often used

for RNA-seq data because it captures sampling noise and further sources of variations. The kinetic

parameters ai;bi are estimated by maximizing the log likelihood

l¼
P

i;j log NB ki;jjEi;j ai;bið Þ; �
� ��

, where ki;j are the observed counts, using the BFGS numerical optimi-

zation algorithm and using the dispersion parameter obtained from the spike-ins analysis. The opti-

mization was initialized 10 times with independent random parameters; the final solution comprises

the median of all ai;bi over the different runs to compensate for numerical instabilities. We removed

all donors, acceptors, junctions with too few counts (
P

j ki;j<100) from the modeling.

Using the table in Figure 2—figure supplement 1A we map the rates a;b to the characteristic

kinetic parameters of donor, acceptor, and junction. The whole modeling approach was imple-

mented in R and is available as apackage called rCube (https://github.com/gagneurlab/rCube).

Because the donor and acceptor bond half-life models work on a logarithmic scale, we present

model errors as multiplicative errors given by the equation median exp log y

ŷ

� �
�

�

�

�

�

�

� �� �

, with y as the

observation and y the prediction. More details about kinetic models are provided in the Appendix.

Determination of the major isoforms
We applied the software Salmon (Patro et al., 2017) (index kmer size = 31) to all RNA-seq samples

and mapped them against the full transcriptome of the GENCODE (Ver. 24) annotation. For each

gene, we selected the isoform with the maximum mean TPM value across all RNA-seq samples as

the major isoform. The major isoform was only used in the analyses in Figures 2B–D, 3D and

7B. Elsewhere, analyses were only relying on individual junction annotations.

Estimation of the relative uncertainty for the kinetic parameters
To estimate relative uncertainty of the kinetic parameters in a conservative way we assumed that all

donors and acceptors of the major isoform of a given GENCODE gene shared the same synthesis

rate equal to the transcription rate of the gene. We further assumed that all products (‘junctions’)

shared the same half-life equal to the mature RNA half-life. Because noise of these rate estimates is

typically multiplicative, we computed the standard errors of the logarithm of these rates and

reported relative uncertainties as the exponential of these standard errors.

Comparison of 4sU-seq and TT-seq
Alignment, counting and estimation of normalization and cross-contamination factors of the RNA-

seq data sets of Schwalb et al. (2016) was done as described above for our data. Counts for 4sU-

seq and TT-seq was normalized using K̂i;j ¼
Ki;j

Fj
�

�jKi;RNA�seq

FRNA�seq
, where i denotes the split / unsplit reads as

shown if Figure 2A for each intron of the major transcripts and j is the sample (4sU- / TT-seq and

replicate). Both replicates were pooled together.
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Branchpoint identification
Due to the limited availability of experimental branchpoint measurements, the prediction algorithm

LaBranchoR (Paggi and Bejerano, 2018) was utilized to predict branchpoint positions within introns.

We applied the model within the kipoi framework (http://kipoi.org/) to score the last 100 nucleotides

of each intron and took the nucleotide with the maximum score for being the utilized branchpoint.

The results were validated using experimental data of Mercer et al. (2015) where available.

Estimation of single nucleotide effects
We identified nucleotide positions not predictive of donor or acceptor bond half-life and estimated

the effect of the remaining single nucleotides on the donor bond half-life and on the acceptor bond

half-life by regression. To this end, we modeled log-transformed half-lives of the donor bonds (and

with a separate model of the acceptor bonds) as a weighted sum of each of the 20 nucleotides

upstream or downstream of the donor, acceptor site and branchpoint, as well as of the GC fre-

quency of the whole intron, the donor site, and the acceptor site. In this linear model, the reference

sequence was chosen to be the consensus sequence so that the coefficients can be interpreted as

the effects of substituting a consensus nucleotide to an alternative nucleotide. Lasso regression (Tib-

shirani, 1996) is a regularized linear regression method that can estimate some of the coefficients to

be exactly 0 and that is therefore often used to select explanatory variables. We performed Lasso

regression as implemented in glmnet (Friedman et al., 2010), choosing the largest shrinkage param-

eter at which the mean squared error (MSE) was within one standard error of the minimal MSE using

10-fold cross-validation. For donor bond half-life, as well as for acceptor bond half-life, the Lasso

regression fit led to several nucleotide coefficients to be exactly 0. We then removed all the nucleo-

tide positions where all single nucleotide effects had a coefficient equal to 0. Next, we estimated

the single nucleotide effects of all remaining positions as well as the effect of GC frequency of the

whole intron, the donor site, and the acceptor site on log-transformed donor and acceptor bond

half-lives using ordinary least squares regression.

Structures modeling
Images of spliceosome structures (PDB code 4PJO, 5O9Z, 5XJC) were drawn using Pymol (https://

pymol.org/).

Estimation of octamer effects and multivariate model
The number of occurrences of all 65,536 nucleotide octamers in the regions 15–100 nt downstream

of the donor site, 100 nt upstream of the branchpoint, all nucleotides between the branchpoint and

the five nt upstream of the acceptor site and 5–100 nt upstream of the acceptor site were counted

allowing for two mismatches. The 15 nt immediately downstream of the donor site or 5 nt upstream

of the acceptor site were excluded from the octamer search space because they were already incor-

porated in the single nucleotide model. Regions extending in the upstream or downstream exon

were cropped to keep them within the intron. The base 2 logarithm of octamer pseudo-counts log2

(count +1) were used as covariates together with the GC frequency of the intron and the GC fre-

quency of each region. The log-transformed donor/acceptor bond half-lives were the response vari-

able. Lasso regression was applied to each region independently with 5-fold cross-validation to

choose the optimal shrinkage parameter and select potential significant octamers. In a second step

all selected octamers of each region were used together with the single nucleotide model as well as

the GC frequency of the different regions, intron length and whether an intron is the first within the

major transcript in a joint model to refine the selection of octamers (Lasso 10-fold cross-validation).

Octamer match to ATtRACT database
We compared each octamer to all reported PWMs with at least 5 nucleotides of the ATtRACT data-

base and calculated the ratio between the probability of the best matching position (PWM-score)

and the highest possible probability for any octamer (RPM-score, Cook et al., 2011). Each octamer

was padded with an equal number of ‘N’s at both sides if the PWM was longer than the octamer.

We ranked all matches based on their RPM-score and kept only the best 5% for each PWM and

removed afterwards all matches with a RPM-score less than 0.9. The remaining matches were consid-

ered as hits.
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Phylogenetic conservation of octamers
To calculate the phylogenetic conservation score for each octamer, we retrieved the PhastCons 100-

way track (http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/), which reports

conservation across 99 vertebrates aligned to the human genome, and extracted the mean of all

nucleotides for all matching positions. Octamers of the region 100 nt downstream of the donor site

found to be predictive for donor site or acceptor bond half-life were also searched in the region 100

nt downstream of the donor site. Octamers of the region 100 nt upstream of the branchpoint or

acceptor site or between the branchpoint and the acceptor site found to be predictive for donor or

acceptor bond half-life were jointly searched in the region 100 nt upstream of the acceptor site,

since these three regions were strongly overlapping. We also included as list of 2000 random

octamers to estimate the background distribution in the same regions.

Calculation of splicing yield
We define the splicing yield of donor hdonor and acceptor hacceptor as follows:

hdonor ¼
P

acceptorf g
ajunction donor;acceptorð Þ

adonor

hacceptor ¼
P

donorf g
ajunction donor;acceptorð Þ

aacceptor

(5)

where adonor and aacceptor denote the synthesis rates of the donor site and of the acceptor site phos-

phodiester bond, respectively, and ajunction donor;acceptorð Þ denote the synthesis rate of the spliced

exon-exon phosphodiester bond utilizing the specified donor and acceptor. Since the first-order

kinetic model does systematically underestimate junction synthesis rates and overestimate donor

synthesis rates, we switched to the alternative kinetic models to estimate these rates. However, since

the first-order kinetic model is more robust and the acceptor kinetics do not include a delay we used

the first-order kinetic model for the estimation of the acceptor synthesis rate. We defined the intron

splicing yield h as the acceptor site splicing yield because its estimation is more robust compared to

the donor site splicing yield.

Code availability
All the code used for counting donor site, acceptor sites, and junction reads as well as estimating

the kinetic rates is available in the R package rCube (https://github.com/gagneurlab/

rCube; Wachutka et al., 2017). The single nucleotide model is shared in the model repository Kipoi

(http://kipoi.org/models/CleTimer/; Avsec et al., 2019).

Accession code
The sequencing data and processed files were deposited in NCBI Gene Expression Omnibus (GEO)

database under accession code GSE129635.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.45056.023

Notations, definitions, and relation to splicing quantities
found in literature

1.1 Definitions of parameters used in this study
We consider RNA metabolism in unsynchronized cells at steady state. Synthesis balances out

degradation at steady-state for any molecular species, independently of the kinetics. Denoting

the steady state concentration c and the steady-state synthesis rate a (amount produced per

unit of time) of such a molecular species of interest, we define the steady-state degradation

rate constant b, such that c ¼ a
b
. We underscore that these constants are defined at steady-

state without any assumption on the kinetics.

As molecular species of interest, we considered the donor (exon-intron), acceptor (intron-

exon) and junction (exon-exon) phosphodiester bonds. We defined for each of them their

corresponding rates (Appendix 1—table 1).

Appendix 1—table 1. Rate definitions of phophodiester bonds.

Phosphodiester bond Steady-state synthesis rate Steady-state degradation rate

Donor aD bD ¼ sD þ lD

Acceptor aA bA ¼ sA þ lA

Junction aJ bJ ¼ lJ

DOI: https://doi.org/10.7554/eLife.45056.024

We assume that the donor bond can only disappear by splicing with rate sD or by

precursor RNA degradation with rate lD. Similarly, we assume that the acceptor bond can

only disappear by splicing with rate sA or by precursor RNA degradation with rate lA. We

assume that the junction bond only disappears by mature RNA degradation with rate lJ .

We define the ‘splicing yield‘ of an acceptor bond hA as the fraction of acceptor bonds

that get spliced hA :¼ sA

sAþlA
. For an acceptor that is spliced with a single donor, this is

equivalently defined by the relation aJ ¼ hAaA because of flux balance at steady-state.

Generally, as acceptors can splice with multiple donors, we sum up the synthesis rates of the

different resulting junctions J, leading to:

hA :¼

P

J aJ

aA

(1.1)

The splicing yield for donor bonds hD is analogously defined.

1.2 Relation to steady-state quantities used in literature
In this section we are relating our parametrization defined in section 1.1 with other RNA-seq

based steady-state quantities typically found in the literature. Many studies used quantities

that combine donor and acceptor reads. A reasonable assumption is that RNA polymerase II

does not drop off during the transcription of an intron. With this assumption, steady-state

synthesis rates of the donor and of the acceptor of one intron are equal to the transcription

rate � ð� :¼ aD ¼ aAÞ. Moreover, the steady-state amount of donor and acceptor unsplit

RNA-seq reads of a same intron are often roughly equal, implying that the relative difference

of degradation rates of the donor and acceptor bonds are small compared to their average.

We define the average degradation rate of the donor and of the acceptor bond
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as s :¼ bAþbD

2
»bA »bD. Appendix 1—table 2 expresses several splicing quantities often

used in literature using these parameters and these assumptions.

Appendix 1—table 2. Relations of different splicing quantities. Square brackets stand for

concentrations. The lariat is a spliced-out intron, known to be quickly degraded. Because lariat

degradation rate may not be faster than splicing rate, we therefore consider it in the model of

the concentration of intronic reads.

Steady-state quantity Value

exon� intron bond½ � aD

bD
¼ aD

sDþlD
»

�
s

intron� exon bond½ � aA

bA
¼ aA

sAþlA
»

�
s

exon� exon bond½ � aJ

bJ
¼ �h

lJ

exon½ � »

�
s
þ �h

lJ

intron½ � »

�
s
þ lariat½ �

3’SS or 5´SS intron-exon ratio intron½ �
exon½ �

(Khodor et al., 2011)
»

1þ lariat½ �s
�

1þsh

l

Splicing efficiency exon�exon½ �
exon�intron½ �

(Převorovský et al., 2016)
»

s
lJh

Splicing Index exon�exon½ �
intron�exon½ �

(Schlackow et al., 2017)
»

s
lJh

DOI: https://doi.org/10.7554/eLife.45056.025

Note that these steady-state quantities combine effects of splicing, degradation and

splicing yield and are therefore not ideal to characterize splicing kinetics. For instance,

splicing efficiency can be affected by mature RNA degradation rate.

1.3 Percent spliced-in
One common metric used to quantify alternative splicing is the percent splice-in (psi)

(Schafer et al., 2015). Given three successive exons (1,2,3), PSI (	 is defined as the ratio of

inclusion split reads (n1;2; n2;3) and the sum of inclusion split reads and exclusion split reads

(n1;3).

	¼
n1;2 þ n2;3

n1;2 þ n2;3þ 2n1;3
(1.2)

We assume that we only have the two isoforms, including and excluding the middle exon

(2), such that n1;2 ¼ n2;3. Moreover, we assume no polymerase drop off such that all introns

are transcribed at the same rate. Further assuming that each junction is spliced at its splicing

rate constant s and degraded at the mature RNA degradation rate constant l, and that the

splicing yield is 1 for all sites, we obtain:

	¼

s1;2

l1;2
s1;2

l1;2
þ

s1;3

l1;3

(1.3)

The simple form of Equation 1.3 is a particular case that is based on many assumptions.

Nonetheless, it shows that  is not only determined by the relative splicing rates but also by

the relative stabilities of the isoforms. Steady-state data does not allow untangling these

quantities. Moreover, it shows that splicing yield is not a quantity that is redundant with 	.
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2 Kinetic models

2.1 Models for the donor bonds and for the acceptor bonds

2.1.1 Constant degradation rate
We used a model that assumes first order kinetics, that is with constant parameters aD

and bD. Denoting D½ � the concentration of donor bonds, we modelled:

d

dt
D½ � ¼ aD�bD D½ � ¼ �D�sD D½ ��lD D½ � (2.1)

This leads to:

D½ � ¼
aD

bD

1� e�bD t
� �

(2.2)

2.1.2 Constant splicing rate with a fixed delay
We also used a more complex model that takes into account that splicing can only be

completed after the transcription of the corresponding acceptor site, which introduces a

delay d. Assuming for the sake of simplicity that degradation exhibits the same time delay we

find:

bD ¼
0: t<d

bD

~

: t� d

� �

(2.3)

The resulting delayed differential equation model solves as:

D½ � ¼
aDt : t<d

aDdþ
aD

bD

~
1� e�bD

~

t�dð Þ
� �

: t� d

8

<

:

9

=

;

(2.4)

We show below that this model is difficult to fit on our data. Although there is no obvious

biophysical motivation for the delay to be equal for degradation and splicing, a more

complex model would need more parameters and be even more difficult to be fitted on our

data.

2.2 Models for the acceptor site
Since the acceptor site can be spliced immediately after its transcription, we did not consider

delayed models for the acceptor bonds. Instead, we only considered a first order kinetic

model with constant synthesis rate as in Equation (2.2).

2.3 Model for the junction bonds

2.3.1 Constant junction formation rate model
We used a model that assumes first order kinetics, that is with constant parameters aJ

and bJ . Denoting J½ � the concentration of junction bonds, we modelled:

d

dt
J½ � ¼ aJ �bJ J½ � (2.5)

which leads to:

J½ � ¼
aJ

bJ

1� e�bJ t
� �

(2.6)
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2.3.2 Coupled model
We also used a more complex model that describes the formation of junction bonds as the

outcome of splicing with a coupled first order kinetic model. Assuming that each acceptor

bond that disappears through splicing creates a junction, we have aJ ¼ sA A½ � in (2.6).

This leads to:

J½ � ¼
aJ

bJ bJ �bAð Þ
1� e�bAt
� �

bJ � 1� e�bJ t
� �

bA

� �

(2.7)

Because of possible alternative splicing, this model was fitted to the split reads data only,

that is without considering the unsplit reads of the corresponding donor and acceptor sites.

Below we show that the coupled model is difficult to fit and therefore we worked with the

constant rate model during our whole analysis except when calculating splicing yield.

To calculate the splicing yield hA of an acceptor as in Equation (1.1), we (i) estimated aJ

by fitting Equation (2.7) to the split reads of all junctions the acceptor is involved in, and (ii)

estimated aA using the first order kinetic model on intron-exon reads.

3 Comparison of the models

3.1 Parameter estimation
The constant rate models use only two parameters whereas the more complex models (the

delay model and the coupled splicing model) used three parameters. To compare how well

we can retrieve the model parameters from observed data, we simulated counts based on

typical synthesis, splicing, degradation and delay constants using typical negative binomial

noise and parameter ranges. We then tried to retrieve the parameters using a maximum

likelihood approach with random initialization. We compared the results to the ground truth

and found that the two-parameter models (Appendix 1—figure 1) were more accurately

fitted than the three-parameter models (Appendix 1—figures 2,3). All models showed an

unbiased estimate for the synthesis rate, which is important to calculate the splicing yield.

Appendix 1—figure 1. Evaluation of first order kinetic model fitting. Estimated synthesis rate

a (left) and phosphodiester bond half-life (log 2ð Þ
b

, right) on x-axis vs. simulated ground truth

synthesis rate and phosphodiester bond half-life. The red line shows the identity line y=x.

DOI: https://doi.org/10.7554/eLife.45056.026
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Appendix 1—figure 2. Evaluation of delay model fitting. Estimated splicing half-time (log 2ð Þ
b

),

synthesis rate a and delay time d on the x-axis vs. simulated ground truth half-life, synthesis

rate and delay. The red line shows the identity line. Most estimates are close to the identity

line except for the delay.

DOI: https://doi.org/10.7554/eLife.45056.027

Appendix 1—figure 3. Evaluation of coupled model fitting. Estimated synthesis rate a,

splicing half-time (log 2ð Þ
bA

) and junction bond half-life (log 2ð Þ
bJ

) on the x-axis vs. simulated ground
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truth synthesis rate, splicing half time and half-life time. The red line shows the identity. Most

estimates are unbiased but show a high degree variation.

DOI: https://doi.org/10.7554/eLife.45056.028

3.2 Relation between the parameters of the different models
Since the two-parameter models are more accurately fitted than the three-parameter

models, we investigated the validity of approximations relating the parameter of the two-

parameter models to those of the three-parameter models.

For the donor bonds, we asked how well the sum of the delay d and the splicing half-time
log 2ð Þ

bD

~
is approximated by the donor bond half-life log 2ð Þ

bD
estimated by the constant rate model.

For the junction bonds, we asked how well the sum of the splicing half-time log 2ð Þ
bA

and the

mature RNA half-life log 2ð Þ
bJ

is approximated by the junction bond half-life estimated by the

constant rate model. To assess how many introns are affected by potential biases of using

the constant rate model instead of the more complex models, we created histograms of the

estimated error for each model parameter given the observed distribution of synthesis rates,

splicing times and half-lives (Appendix 1—figures 4–7). To get a distribution for the delay,

the intron length was divided by an assumed polymerase velocity of 4 kb/min (Jonkers et al.,

2014; Gressel et al., 2017). Compared to our estimated measuring precision of 180% fold

for synthesis and 32% fold for half-life, the absolute errors are negligible for the synthesis

rates and for the splicing half-time.

Appendix 1—figure 4. Estimated bond synthesis rate error for delay model. Histogram of the

ratio of estimated and true synthesis rate of donors simulated with the delay model. The

median error is 1.08.

DOI: https://doi.org/10.7554/eLife.45056.029
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Appendix 1—figure 5. Estimated bond half-life error for delay model. Histogram of the ratio

of donor bond half-life estimated using a first order kinetic model and the sum of the true

splicing half-time and delay of donors simulated using a delay model. The median error is

0.89.

DOI: https://doi.org/10.7554/eLife.45056.030

Appendix 1—figure 6. Estimated bond synthesis rate error for the coupled model. Histogram

of the ratio of estimated and true synthesis rate of junctions based on the coupled model.

The median error is 0.8.

DOI: https://doi.org/10.7554/eLife.45056.031
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Appendix 1—figure 7. Estimated bond half-life error for coupled model. Histogram of the

ratio of junction bond half-life estimated with a first order kinetic model and the sum of the

true processed RNA half-life and of the splicing half-time of junction data simulated with a

coupled model. The median error is 1.2.

DOI: https://doi.org/10.7554/eLife.45056.032

3.3 Experimental data
To further assess whether all three models give similar estimations on real data, we applied

the donor models to all donor sites as well as the junction models to all junctions

(Appendix 1—figures 8–15). The results were similar in all models and showed only

marginal differences. However, synthesis rates and half-lives were systematically

underestimated or overestimated. This has no relevance if rates are only compared within

one model, but needs to be taken into account if acceptor and junction rates are compared,

as in the case of splicing yield. Therefore, we based our splicing yield estimates on the more

complex models.
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Appendix 1—figure 8. Synthesis rate comparison of delay and constant rate model. Synthesis

rate estimated with the constant splicing rate model (y-axis) vs. synthesis rate estimated with

the delay model (x-axis) for the donor bond based on the observed experimental data.

DOI: https://doi.org/10.7554/eLife.45056.033

Appendix 1—figure 9. Donor bond half-life comparison of delay and constant rate model.

Donor bond half-life estimated with the constant splicing rate model (y-axis) vs. the sum of

the splicing half-time and delay estimated with the delay model (x-axis) for the donor bond

(right) based on the observed experimental data.

DOI: https://doi.org/10.7554/eLife.45056.034

Wachutka et al. eLife 2019;8:e45056. DOI: https://doi.org/10.7554/eLife.45056 37 of 52

Tools and resources Computational and Systems Biology Genetics and Genomics

https://doi.org/10.7554/eLife.45056.033
https://doi.org/10.7554/eLife.45056.034
https://doi.org/10.7554/eLife.45056


Appendix 1—figure 10. Synthesis rate comparison of coupled and constant rate model.

Estimated synthesis rate of the constant splicing rate model (y-axis) vs estimated synthesis

rate of the coupled model based on the observed experimental data.

DOI: https://doi.org/10.7554/eLife.45056.035

Appendix 1—figure 11. Junction bond half-life comparison of delay and constant rate model.

Junction bond half-life estimated with the constant splicing rate model (y-axis) vs. the sum of

splicing half-time and half-life estimated with the coupled model (x-axis) based on the

observed experimental data.

DOI: https://doi.org/10.7554/eLife.45056.036
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Appendix 1—figure 12. Synthesis rate precision of rate estimation procedure. Estimated

synthesis rate based on simulated counts on the x-axis vs. the ground truth synthesis rate for

donor, acceptor and junctions.

DOI: https://doi.org/10.7554/eLife.45056.037

Appendix 1—figure 13. Splicing half-time precision of rate estimation procedure. Estimated

half splicing time for donor and acceptor as well as half-life for junctions based on simulated

counts on the x-axis vs. the ground truth.

DOI: https://doi.org/10.7554/eLife.45056.038
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Appendix 1—figure 14. Donor synthesis rate vs. acceptor synthesis rate within the same

intron.

DOI: https://doi.org/10.7554/eLife.45056.039

Appendix 1—figure 15. Acceptor synthesis rate vs. junction synthesis rate within the same

intron.

DOI: https://doi.org/10.7554/eLife.45056.040
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4 Quality of fits

4.1 Simulated vs. fitted rates
To assess whether our method is able to estimate synthesis and degradation rates from

ground truth, we simulated counts based on the estimated distributions of synthesis rates,

splicing half times and half-lives based on the experimental data. Based on simulated data,

our method is an unbiased estimator of ground truth synthesis rates (Appendix 1—figure

12), splicing half-time and half-life (Appendix 1—figure 13) with high precision compared to

the dynamic range.

4.2 Agreement of kinetic parameters donor, acceptor and junction
model
Under the assumption that RNA polymerase II does not drop off during the transcription of

one intron, the donor and acceptor synthesis rate are equal (Appendix 1—figure 14),

whereas the junction synthesis rate reduced by the splicing yield (Appendix 1—figure 15).

4.3 Expected vs. observed counts
Comparisons of the predicted expected counts of the constant rate model with our observed

experimental counts are shown in Appendix 1—figures 16 (donor), Appendix 1—figures 17

(acceptor) and Appendix 1—figures 18 (junctions).

Normalization was based on spike-ins. Therefore, errors in spike-ins quantification possibly

led to off centred the density plots. Indeed, the non-centred scatterplot showed deviation

compatible with the bins they were created, {2 min}, {5 min, 10 min}, {15 min, 20 min}, {30

min, 60 min}.
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Appendix 1—figure 16. Comparison of expected counts of the constant rate model with

observed experimental counts. Expected donor counts based on the constant rate model vs.

the experimentally observed counts.

DOI: https://doi.org/10.7554/eLife.45056.041
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Appendix 1—figure 17. Comparison of expected counts of the constant rate model with

observed experimental counts. Expected acceptor counts based on the constant rate model

vs. the experimentally observed counts.

DOI: https://doi.org/10.7554/eLife.45056.042
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Appendix 1—figure 18. Comparison of expected counts of the constant rate model with

observed experimental counts. Expected junction counts based on the constant rate model

vs. the experimentally observed counts.

DOI: https://doi.org/10.7554/eLife.45056.043

4.4 Poor identifiability of splicing half-time and delay
In order to estimate splicing half-time and delay using our experimental data, we fitted a

delay model. Although from theory we should be able estimate half splicing time and delay

based on the delay model, the low numbers of data points and the noise of our data is too

limiting to distinguish between linear or exponential start of the donor read population. This

is supported by the bimodal distribution of the maximum likelihood estimate for the delay

(Appendix 1—figure 2). If we fit a delay model to the donor site we would ideally expect

that the donor delay correlates with intron length and the splicing half-time of the donor and

acceptor sites correlate. Only for this analysis, we fitted the delay model also to the acceptor

site. However, we found that the estimated delay or splicing half-time of the donor and

acceptor sites of one junction correlates only little (Appendix 1—figures 19–21). Their sum

however correlates much more, showing that we actually can measure the sum of delay and

splicing half-time but not each one alone (Appendix 1—figure 22).
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Appendix 1—figure 19. Acceptor vs. donor synthesis rate estimation based on the fixed delay

model.

DOI: https://doi.org/10.7554/eLife.45056.044

Appendix 1—figure 20. Acceptor vs. donor splicing half-time estimation based on the fixed

delay model.

DOI: https://doi.org/10.7554/eLife.45056.045
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Appendix 1—figure 21. Acceptor vs. donor delay estimation based on the fixed delay model.

DOI: https://doi.org/10.7554/eLife.45056.046

Appendix 1—figure 22. Acceptor vs. donor sum of splicing half-time and delay estimation

based on the fixed delay model.

DOI: https://doi.org/10.7554/eLife.45056.047

5 Limits of the model
We simulated counts based on the constant rate model given a large range of log-uniform

distributed bond synthesis rates (10�5 – 100 1/cell/ min) and bond half-lives (10�3 - 7 � 10�6

min). Based on this data we investigated the typical lower bound of reads necessary in all

samples to proper model the kinetics a bond (Appendix 1—figure 23). We find that using a
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lower cut-off of 100 reads (after the 6th ventile) allows us to estimate the kinetics with a

typical error below 100%.

Appendix 1—figure 23. Relative synthesis rate and half-life error vs. the accumulative bond

read count accumulated in all samples and binned in its ventiles. The first bin comprises the

first two ventiles.

DOI: https://doi.org/10.7554/eLife.45056.048
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To test the shortest and longest bond half-lives our experimental approach is able to

capture and model properly we stratified the results also by bond half-live. We proceeded

similarly with the bond synthesis rates. We found that most of our modelled data lies within a

range where the median relative error of synthesis rates and half-lives is below 100% or 30%

respectively (Appendix 1—figure 24, 25). We note that the errors given for the

stratifications by bond half-life and synthesis are inflated for real world data, because the

simulation is based on half-lives and synthesis rates that were drawn independently and more

extreme than our real world data.
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Appendix 1—figure 24. Relative synthesis rate and half-life error vs. the bond half-life binned

in its ventiles.

DOI: https://doi.org/10.7554/eLife.45056.049
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Appendix 1—figure 25. Relative synthesis rate and half-life error vs. the bond synthesis rate

binned in its ventiles.

DOI: https://doi.org/10.7554/eLife.45056.050

6 4sU incorporation
For our analysis we did not consider the time until the labeled uracil 4sU gets available to the

transcription machinery (by diffusion and import). The lag is a constant that is the same for all
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genes. Note that this time has to be very short since labeled RNA was detected after 2 min

labeling.

Assuming that only a fraction of all transcripts incorporates 4sU, this would lead to an

underestimation of the synthesis rates (e.g. a labeling efficiency of 90% would results in a

10% underestimation of the rate), given that the labeling efficiency is constant over all

samples. However, it does not affect estimation of the half-lives nor of the splicing yields.

Indeed, the kinetic models are then modeling the kinetics of the labelled fraction of the RNA

species rather than the overall RNA species. These kinetics differ from the kinetics of the

overall RNA species only by different synthesis rates.

7 Splicing yield
Splicing yield is computed by independently estimating the synthesis rate of the precursor

(using unsplit reads of the acceptor bond) and of the mature RNA (using split reads) and

taking the ratios (Materials and methods). Due to estimation errors, these ratios may turn out

to be greater than 1. Simulations (section 5) showed that cumulative read coverage across all

samples as well half-life can lead to bias estimates of synthesis rates. We therefore

investigated whether this could confound our observation that non-coding RNAs show lower

yield than mRNAs. However, the higher yield of mRNA versus non-coding RNA was

recapitulated when stratifying by these possible confounders (Appendix 1—figures 26, 27).

Appendix 1—figure 26. Splicing yield distribution (boxplot) of lincRNA (red) and mRNA (blue)

stratified by bins of cumulative number of reads across all samples. Although yield correlates

negatively with the cumulative number of reads, indicative of potential estimation bias, the

mRNA yield remains higher than the lincRNA yield in every stratum.

DOI: https://doi.org/10.7554/eLife.45056.051
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Appendix 1—figure 27. Splicing yield distribution (boxplot) of lincRNA (red) and mRNA (blue)

stratified by bins of acceptor bond half-life. Although yield correlates negatively with acceptor

bond half-life (for half-life larger than 16 min), indicative of potential estimation bias, the

mRNA yield remains higher than the lincRNA yield in every stratum.

DOI: https://doi.org/10.7554/eLife.45056.052
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