
Advances In Security Analysis
Techniques To Increase Privacy
And Security Of The Android

Ecosystem

Valerio Costamagna

Supervisor: Prof. F. Bergadano, Università degli studi di Torino, Italia

Examiners: Prof. Cosimo Anglano, Università Piemonte Orientale, Italia
Prof. Antonio Lioy, Politecnico di Torino, Italia
Prof. Dario Catalano, Università degli studi di Catania, Italia

Department of Computer Science
University of Torino

This dissertation is submitted to the department of Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
September 2018

Acknowledgements

I would like to take the opportunity to thank anyone who has supported me during
the last couple of years. The resolute presence of all of you made my journey as a PhD
student an unforgettable experience.

First, I would like to thank Prof. Dr. Francesco Bergadano for his time in assisting
me as advisor. In addition, thanks for your precious time spent in debating around
several computer security research topics.

I would also like to thank Prof. Dr. Bruno Crispo for the opportunity to join his
research group in Trento, an experience I would not want to miss. I would also like
to express my gratitude for sharing your invaluable time and experience in applied
computer security. Any place or time was the right one for discussing about arising
challenges, most of the ideas I am happy of have seen the light during lunch breaks.

In addition, I would like to thank Prof. Dr. Giovanni Russello for his contribution
as co-author and his countless advice that consolidated my research.

Furthermore, I would also like to express my gratitude for having had the opportunity
to work with highly skilled and motivated researchers from other institutions, including
Dr. Cong Zheng from Palo Alto Network and his colleagues as well as the colleagues
from University of Trento. Also, I would like to extend my thankful to the examiners
for the precious time dedicated to review and help with this dissertation.

Finally, last but not least, I am greatly in debt with my parents, you made all
this possible in the first place. Yet, I would like to express my delighted gratitude to
all of you, priceless friends close and far away that constantly make my life a better
experience. ROPtors never die.

Abstract

The proliferation of Android’s user base, unfortunately, has also made the devices
become prominent targets for a variety of attacks ranging from ex-filtration of users’
privacy-sensitive data or data encryption via ransomware as well as malicious apps
attempting to achieve privilege escalation attacks. Furthermore, identifying and
eliminating vulnerabilities is gaining in importance as a single missed flaw within
an application’s component can suffice for an attacker to fully achieve any privileges
granted to the attacked application.

This dissertation details our research on approaches and solutions aiming to improve
security and privacy of Android ecosystem at large by a combination of static and
dynamic analysis techniques. ARTDroid, a dynamic instrumentation framework
based on memory modifications has been proposed to ease intercepting of any calls
at runtime. ARTDroid relies on dynamic instrumentation and fully supports the
latest ART runtime running on any versions above to Android KitKat. Consequently,
we investigate how to combine static analysis results to drive application’s execution.
Typically dynamic analysis, and hybrid analysis too for that matter, brings the problem
of stimulating the application’s behavior which is a non-trivial challenge especially
for Android applications. To this end, we propose a backward slicing based targeted
inter component code paths execution technique, TeICC. TeICC leverages a backward
slicing mechanism to extract code paths starting from a target point in the application.
The extracted code paths are then instrumented and executed inside the application
context to capture sensitive dynamic behavior as well as to resolve dynamic code
updates and obfuscation. As dynamic instrumentation provides a variety of capabilities
to monitor and alter application’s behavior at runtime, we combine those in couple with
static analysis techniques and propose StadART an hybrid approach which combines
static and analysis to cover the inherent shortcomings of static analysis techniques to
analyze applications in the presence of dynamic code updates. To address the growing
demand for Mobile Application Management (MAM) capabilities, especially when
Bring Your Own Device (BYOD) mechanism is in place, we proceed to investigate
solutions that would allow enterprises to configure fine-grained security and privacy

vi

policies on employees’ devices. Existing MAM solutions provide policies that are
app-specific and often require the enterprise to acquire new applications. To be
managed by an MAM, the code of an application needs to be customised using specific
software development kits (SDKs) provided by MAM vendors, in general, application
customisations are not affordable due to the cost associated with maintenance and
support. Moreover developers might not be too keen to provide app source code to
the enterprise. To this end, we propose AppBox a novel app-level Mobile Application
Management (MAM) solution that enables enterprises to enforce custom security and
privacy policy at the minimum effort for the developers. Using AppBox , an enterprise
can customise any existing application, even highly-obfuscated ones, without using any
SDK or modifications to the application bytecode. The main idea of AppBox is to
provide a complete and accurate MAM app-level mechanism by altering a single line
in the application’s manifest file. Thanks to its novel approach, AppBox would enable
an enterprise to select any application from the market and to be able to perform
fine-grained customisations with minimum collaboration from the app developer. As
orthogonal research, we aim to improve the actual state-of-the-art of sandboxing
analysis services for Android applications. To this end we examine those artifacts
that provide information which may be exploited by malicious applications to detect
the analysis environment, thus concealing their malicious behavior. Our results raise
the alert for the usage-profile based fingerprinting hazard when developing mobile
sandboxes and sheds lights on how to mitigate similar hazards. The capability of
detecting malware apps by means of sandboxing analysis services provides a valuable
barrier against the proliferation of malware. Although, it is also relevant to identify
code vulnerabilities that may be exploited by malware apps as well as other malicious
actors to achieve device remote control. To this end, we investigate how to improve
code auditing of C++ codebase, in particular concerning the Android system services
C++ implementation. We propose OctoDroid a Clang based plugin for the Octopus
platform, a prominent static analysis tool based on the Code Property Graph (CPG)
representation. OctoDroid employs the Clang’s LibTooling library capabilities to
produce an augmented code that enable Octopus’s analysis of C++ code. OctoDroid

employs a two stages approach. First, OctoDroid performs the Class Hierarchy Analysis
(CHA) offered by Clang to build a class hierarchy graph including all those classes that
have been encountered by the Clang’s AST parser. Second, OctoDroid exploits the
Clang’s LibTooling library to apply code transformation. To help the Octopus’ analysis
we aim to transform virtual function calls into direct calls, applying a super set of the
possible targets according to the information provided by the class hierarchy graph.

vii

We evaluate our approach on the latest Android version available at the time of writing
(Android Oreo), our results show its effectiveness in discovering new vulnerabilities
as well as identifying well known ones published over the last years on the Android
bulletin.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 3
1.1 Motivation and Problem Statement . 6
1.2 Research Contributions . 9

1.2.1 Virtual-Method Hooking Framework on Android ART Runtime 9
1.2.2 Ensuring Execution of Targeted Code Paths during Dynamic

Analysis . 11
1.2.3 Handling Dynamic Code Updates Using a Combination of Static

and Dynamic Analysis . 12
1.2.4 Black-Box Mobile App Management Solution (MAM) For Stock

Android . 13
1.2.5 Evaluation of Practical Evasion of Dynamic Analysis Systems . 15
1.2.6 Discovering Vulnerabilities in Android C++ code via Code Prop-

erty Graph Analysis . 16

2 Background 19
2.1 Android . 19

2.1.1 Framework . 21
2.1.2 Binder . 22
2.1.3 Application . 23
2.1.4 Security Model . 25
2.1.5 Overview of Dynamic Code Update 26

2.2 Static Analysis . 31
2.3 Bypassing Static Analysis via Dynamic Code Update 33

2.3.1 Reflection-Bench . 33

x Table of contents

2.3.2 InboxArchiver: Test Malware using DCL 37
2.4 Dynamic analysis . 40

3 ARTDroid: A Virtual-Method Hooking Framework on Android ART
Runtime 43
3.1 Introduction . 43
3.2 Background . 44

3.2.1 ART Runtime . 45
3.2.2 Virtual-methods Invocation in ART 46

3.3 Framework Design . 48
3.4 Implementation . 50
3.5 Evaluation . 51

3.5.1 Performance Test . 51
3.5.2 Case Study . 53

3.6 Discussion . 54
3.7 Related Work . 56
3.8 Chapter Summary . 58

4 TeICC: Targeted Execution of Inter-Component Communications in
Android 59
4.1 Introduction . 60
4.2 Motivating example . 62
4.3 Our approach . 64

4.3.1 Slice Extraction . 64
4.3.2 Inter-Component Communication 65
4.3.3 Slice Execution . 66

4.4 Design and Implementation . 67
4.4.1 Overview . 67
4.4.2 Enhancement to Backward Slicer 68
4.4.3 Capturing Dynamic Behavior 68

4.5 Evaluation and Discussion . 70
4.6 Chapter Summary . 73

5 StaDART: Addressing the Problem of Dynamic Code Updates in the
Security Analysis of Android Applications 75
5.1 Introduction . 76
5.2 An Overview of StaDART . 79

Table of contents xi

5.3 Method Call Graph . 82
5.4 Implementation . 85

5.4.1 The server . 85
5.4.2 The client . 89

5.5 Evaluation . 92
5.6 Discussion . 96
5.7 Related Work . 97
5.8 Chapter Summary . 100

6 AppBox: Black-Box Mobile App Management Solution For Stock
Android 101
6.1 Introduction . 102
6.2 Application Scenario . 105
6.3 Requirements . 108
6.4 AppBox Architecture . 110

6.4.1 Preparation phase . 112
6.4.2 Distribution phase . 113
6.4.3 Execution phase . 114

6.5 AppBox Policy . 118
6.5.1 Policy Language . 118
6.5.2 Fine-Grained Access Control Policies 119
6.5.3 Policy Generation . 121

6.6 Evaluation . 123
6.6.1 Performance Overhead . 123
6.6.2 Effectiveness . 125
6.6.3 Applicability and Effectiveness 126

6.7 Chapter Summary . 129

7 Identifying and Evading Android Sandbox Through Usage-Profile
Based Fingerprints 131
7.1 Introduction . 131
7.2 Background and Motivation . 134

7.2.1 Android sandbox . 134
7.2.2 Evading technique . 135
7.2.3 Motivation . 135

7.3 System Implementation . 137
7.4 Results . 140

xii Table of contents

7.5 Defense . 145
7.6 Related Works . 146
7.7 Chapter Summary . 147

8 OctoDroid: Discovering Vulnerabilities in Android System Services
via Code Property Graphs 149
8.1 Introduction . 150
8.2 Background . 153

8.2.1 Clang and LibTooling . 153
8.2.2 Object-oriented language . 153
8.2.3 Android System Services . 154
8.2.4 Code Property Graphs . 156

8.3 Motivating Example . 158
8.4 Methodology . 161
8.5 OctoDroid . 165
8.6 Evaluation . 166
8.7 Related Work . 170
8.8 Chapter Summary . 172

9 Conclusions and Outlook 173
9.0.1 Future Directions . 175

References 177

List of figures

2.1 Android System Architecture . 20
2.2 Android Binder Mechanism . 22
2.3 Android Security model . 26
2.4 InboxArchiver . 39

3.1 ART Class type . 45
3.2 ART ArtMethod type . 46
3.3 Call to method getDeviceId . 46
3.4 Compiled native code of callGetDeviceId 47
3.5 App virtual memory layout . 50
3.6 ARTDroid configuration file . 53
3.7 Patch code for method getDeviceId . 54

4.1 SDG during the first and second iteration. Comp: Component 64
4.2 TeICC Design . 67

5.1 System Overview . 79
5.2 MCG of demo_app Obtained with a) AndroGuard b) StaDART after

Preliminary Analysis c) StaDART after Dynamic Analysis Phase 83
5.3 StaDART Workflow . 85
5.4 Prevalence of Reflection/DCL and StaDART effectiveness in expanding

MCG . 93
5.5 MCG Expansion . 93
5.6 MCG Expansion when apps use DCL 94
5.7 Increase in permission nodes. (L) Benign (R) Malicious apps 95

6.1 AppBox design phases: Preparation , Distribution and Execution. . . . 111
6.2 StubFactory and its components . 112
6.3 AppBox enforcing managed apps . 116

xiv List of figures

6.4 AppBox Policy Language . 118
6.5 AppBox Policies . 119
6.6 Policy generation mechanism. Res.: sets of Resource, Op: sets of operation122

7.1 The design of fingerprint collector . 137
7.2 Scouting apps generator . 137

8.1 Android Binder & System Services . 155
8.2 Template for taint-style vulnerability as a graph traversal in the query

language Gremlin . 157
8.3 Trivial code illustrating object-oriented features 159
8.4 Octpus query for 8.3 . 160
8.5 Trivial code in 8.3 transformed by OctoDroid 163
8.6 strong dynamic dispatching . 163
8.7 Trivial code in 8.6 transformed by OctoDroid 164
8.8 Octodroid design . 165
8.9 ICrypto.cpp. Binder related BnCrypto::decrypt 167
8.10 Crypto.cpp. Crypto implementation of the decrypt virtual function . . 167
8.11 CryptoPlugin.cpp. CryptoPlugin implementation of the decrypt virtual

function . 168
8.12 BnCrypto::onTransact transformed by OctoDroid 168
8.13 Crypto::decrypt trasformed by OctoDroid 169
8.14 Traversal query to discover the taint-style vulnerability in 8.13 169

List of tables

2.1 Analysis with State-of-the-art tools . 36
2.2 InboxArchiver: Analysis Results . 38

3.1 Performances . 53

4.1 DroidBench/ICC-Bench apps. ICC: # of implicit/explicit transitions
between components. 71

5.1 The List of Searched Patterns . 87

6.1 HTTP-Policy Generation - Intercepted APIs 121
6.2 BenchMark Apps Results For Nexus 5x (64 bit) 124
6.6 Percentage of Obfuscated Apps . 125
6.3 Native Micro-Benchmarks AppBox Performance, Compared against Boxify.125
6.7 Popular Apps We Used for Testing AppBox Applicability and Effectiveness127
6.4 Android API - Micro-Benchmark Results 128
6.5 Android APIs Monitored During Java Micro-Benchmarks 128

7.1 usage-profile Data . 138
7.2 Mobile Sandboxes employed for evaluation. (✗ means not available at

the time of writing) . 141
7.3 Contacts usage-profile Results . 143
7.4 SMS usage-profile Results . 144
7.5 Battery usage-profile Results . 144
7.6 Installed Apps usage-profile Results . 144

List of Publications

International Journal
1. Costamagna, V., Bergadano, F.: HOOKDROID: DALVIK DYNAMIC

INSTRUMENTATION FOR SECURITY ANALYTICS. – International
Journal on Information Technologies Security, 8(3). 2016.

2. Ahmad M., Bergadano F., Costamagna V., Crispo B., Zhauniarovich Y.:
StaDART: Addressing the Problem of Dynamic Code Updates in the
Security Analysis of Android Applications – (to appear in 2018 - IEEE
Transactions on Information Forensics Security.)

3. Bergadano F., Costamagna V., Crispo B., Russello G.: AppBox: Black-Box
Mobile App Management Solution (MAM) For Stock Android – (in
submission, 2018 - IEEE Transaction on Dependable and Secure Computing)

International Conference and Workshop
1. Costamagna, V., Zheng, C.: ARTDroid: A Virtual-Method Hooking

Framework on Android ART Runtime. – In IMPS@ ESSoS (pp. 20-28),
2016, April

2. Costamagna, V., Zheng, C., Huang, H.: Identifying and Evading Android
Sandbox Through Usage-Profile Based Fingerprints. – In Proceedings of
the First Workshop on Radical and Experiential Security (pp. 17-23). ACM.
2018, May.

3. Ahmad, M., Costamagna, V., Crispo, B., Bergadano, F.: TeICC: targeted
execution of inter-component communications in Android. – In Pro-
ceedings of the Symposium on Applied Computing, (pp. 1747-1752), ACM. 2017,

2 List of tables

April

4. Costamagna, V., Crispo, B., Bergadano, F.: OctoDroid: Discovering Vul-
nerabilities in Android System Services via Code Property Graphs. –
(in submission, 2018), Reversing and Offensive-oriented Trends Symposium 2018
(ROOTS), ACM

Chapter 1

Introduction

In recent years mobile devices have become more pervasive and ubiquitous than ever
before. Mobile devices are shipped with one of the available mobile operating systems
(OS), depending by the vendor. In this work we exclusively focus on the Android
platform. Since its introduction in 2008, Android has emerged as the leading operating
system used for handheld devices. Mobile devices provide a wide range of services via
installed applications (app in short) that offer a variety of capabilities (i.e., voice/video
recording, GPS navigation) and functionality (i.e., contacts and sms manager, calendar)
aiming to enrich users experience but also to manage and share critical and sensitive
user data.

Android applications are distributed via a centralized official market, the Google
Play Store (other not-official third-party markets are employed but nor recommended),
applications and updates are retrieved via the official system application which comes
pre-installed on all Android compatible devices. To guarantee the security of its users,
Android employs an automatic hybrid analysis system, named Google Bouncer, that
aims to detect potentially malicious applications before they reach the official market.
Most remarkable threats addressing the Android ecosystem, both enterprise and
customers, can be grouped into two sets. Those applications controlling and monitoring
the attacked device (i.e., rooting apps, intercepting apps) and those that aim to achieve
data ex-filtration to third-party servers of personal and sensitive data (i.e., contact
list, received sms, call history). Both class of threats may employ clever techniques in
order to get installed on the user devices, there have been several evidences of apps
that masquerade them-self offering an unsuspicious service (i.e., contact/sms manager,
in-app game) while under the hood they do sensitive data ex-filtration to malicious
third party servers. As consequence of the constant increasing amount of mobile
devices running the Android platform and its expansion over many market segments

4 Introduction

during the last few years (i.e., automotive, smart TV, wearable devices), several studies
have largely focused on security and privacy research fields. A remarkable number of
investigations have been focused on malware analysis mechanisms able to operate on
real-world devices or monitoring applications operating like an anti-virus countering
specific well known attacks. Yet, Android privacy issues have been addressed in order to
prevent sensitive data leakage which is a major threat for Android ecosystem. Despite
that Android apps have its own UID, private files space and specific set of privileges
specified within the Android manifest file, the permission mechanism employed by
Android does not allow for definition of custom fine-grained permissions. For instance,
any app that has received the appropriate permission may eventually retrieve any
information stored by the system contact manager, hence restricting specific contact
data access to a limited set of authorized apps represents a challenging task. Also,
designing a system-wise application able to monitor and prevent other application’s
behavior is a cumbersome task as all applications run within a sandbox enforced
both at kernel-space and at user-space. Perhaps there is no concept of assigning root
privilege to a certain application in Android. As result, practical dynamic analysis
on Android stock devices requires to overcome several challenges posed by the system
design itself without significant system performance degradation and without altering
the least-privilege model employed by Android platform which is a solid base for
security abstraction build on top of it.

As Android applications are mainly events-driven, the entire Android OS follows
the same paradigm, they require a different approach in order to achieve a complete
and precise analysis. In fact, there are a variety of either system and user events that
provide inputs that applications consume. For instance, applications can register several
callbacks to react to those events (i.e., incoming SMS/call), furthermore messages
are widely used as mean to share data and provide features for the app running on
the Android system. For these reasons, embracing all the layers that provide the
communications features represents a challenging task that requires an unified analysis
that takes in consideration both layers that provide communications and access to
system features (i.e, Java and native layers). Moreover, analyzing Android applications
without relying on system code modification, which include altering Android core
components code or introducing new component within the core to provide enforcing
capabilities, represent a quite challenging task due to the limited OS features that
an application could rely on in order to monitor and inspect third-party applications.
Applications’ analysis become even more cumbersome when they employ mechanisms
to enrich functionalities Yet, Android apps rely on user interactions as well as on input

5

from hardware sensors that are embedded within the devices. Moreover, Android
offers to developers different logic components in order to interface with the variety of
functionalities provide by the OS. Those components allow to easy the development of
Android applications and offer different functionalities by communicating with Android
system services via the Inter Procedure Communication (IPC) mechanism named
Binder, which constitutes another layer of abstraction. In fact, Android APIs exposed
to programmers makes developing apps completely agnostic to how the underlying
interaction is happening. Android applications rely on critical functionalities offered
by the Android framework which is also in charge of dispatching system events and
managing user interaction.

Different threats jeopardize the Android ecosystem, those that aim to target the
Android core components (i.e., components that allow to achieve a privilege escalation,
including the kernel-land as well) and those that address user applications. As a
privilege escalation attack allows the attacker to execute arbitrary code as privileged
user they represent a main threat in terms of breakage of the entire security mechanisms,
those flaws allowing privilege escalation attacks must be present in Android core services
that are maintained by Google itself. Android core components become attractive from
the attacker point of view when it comes to achieve total control over the target device.
In fact, Android core services are offering a wide range of critical and sensitive features
to the end user, thus representing a juicy target for vulnerability hunters. In contrast,
threats addressing the user sensitive data (i.e., SMS, contact list) as well as data
managed by user applications (i.e., instant messaging communications, private emails)
have as target third-party applications which run in user-space and were installed by
the user. In terms of privacy and security violations, not only spyware applications
constitute a risk to the users but even app’s security breach constitutes a sensible
attack surface. In fact, an application receives a variety of untrusted inputs either
via network layer (i.e, multi-media contents, emails, SMS, etc.) or exposing services
to other applications running on the user devices as well as offering interfaces to the
outside world (i.e., bluetooth, NFC, etc). As consequence, user applications are tasty
targets because a single bug in any of app’s components eventually leads to complete
leak of all app’s data. Android permission are defined for application so they do not
offer components granularity, a remote code execution bug in any app’s component
allows to execute any operations that has been granted to the attacked app. For
instance, breaking the security mechanism in place within an user application which is
able to retrieve user contacts allows to collect and exfiltrate those sensitive data via

6 Introduction

malicious applications that were not even allowed to access to such data in the first
place.

In addition, Android application developers are not limited to employ only Java
programming language, in fact Android offers the option to develop application function-
alities entirely as native code (C/C++) via the Java Native Interface (JNI) mechanism.
JNI offers an interface to developers for instantiating objects and invoking Java methods
via native code as well as calling native functions and sharing data from Java code.
The ability to employ native code within an Android app makes its analysis even more
cumbersome, moreover it introduces the chance that native vulnerabilities appear as
memory corruption or memory violation that otherwise would not occur thanks to the
memory restrictions imposed by the JVM.

1.1 Motivation and Problem Statement
The main question we therefore want to address is: given the intricate and complex
interaction happening across OS components and applications, what approaches would
allow to practically analyze real-world Android apps and how these would natively
support analysis on stock Android devices? These approaches should not be restricted
to any particular scenario nor supporting only a restricted set of Android devices.
Equally important, we need a solution which offers backward compatibility and re-
quires minimum efforts in both developing and deploying. Finally, a question of ease
of development and deployment remains: can we provide these approaches without
any changes to both the Android core system and the target application’s code? In
other words, can we offer an efficient solution that would apply on Android stock
devices, hence making our approach largely system agnostic aiming to present a novel
Mobile Application Management (in short MAM) solution for Bring Your Own Device
(BYOD) environments?
As orthogonal research topic, we want to investigate whether Android malware sandbox
analysis services were designed to be resilient to evasion attacks, the main question
we therefore want to address is: which artifacts and how to design them in order to
prevent analysis sandbox to be detected, thus evaded by applications?

As we started exploring the state of the art regarding Android apps analysis we
quickly realized that only a hybrid system as combination of static and dynamic
analysis approaches would offer the requested level of inspection in order to practically
analyze the app behaviour. We thus explore the Android internals, the role of security

1.1 Motivation and Problem Statement 7

components and how different crucial components interact controlling how the user
apps communicate.

The difficulty in instrumenting Android apps in order to monitor and restrict
runtime behaviour is the granularity at which we can insert monitoring code and
which components we require to change. A static instrumentation-based approach
[40, Api, 140, 53] may offer an acceptable solution for basic and simple applications,
but is definitely not suitable for enterprise scenarios where breaking the app’s signature
does not represent a viable solution. On the other hand, dynamic analysis often requires
consistent modifications to the underlying system and/or application [59, 117] which
is also a competitive limit in different scenarios, including enterprises that might not
be inclined to modify critical components as well as to enable rooting on employees
devices [123, 135].

An enterprise actor might be keen to be able to easily deploy and enforce fine-grained
privacy and security policy at runtime. In particular, when the BYOD approach is
in place as well as according to the recently published European Regulation GDPR.
To this end, enforcing customised security policies on stock Android devices, which
are those devices without any root privilege guaranteed to the end user, is a quite
challenging task. The main difficulty in analyzing an Android app is the intense
events-driven behaviour and user inputs that an app relies on to change its status. How
to characterize the whole behavior that an app eventually shows during its execution,
how to capture its inter-procedure communications and how to monitor its dynamic
behaviour via an effective and practical approach, those are the principal challenges
posed by the Android system design. Furthermore, stock Android does not offer any
runtime mechanisms for a third-party app to monitor and trace actions of other apps.
Due to secure isolation offered by Android’s UID-based sandboxing mechanism, apps
cannot elevate their privilege to root to monitor other apps that are running under a
different UID, e.g., like AV programs are allowed to do on a desktop OS.

As result, analyzing Android apps requires an unified approach which would take
in account different layers, both Java and native, offering inter-procedure program
analysis along with the capability of collecting app’s concrete status at runtime. The
main approaches offered by software testing research field employ two principal tech-
niques, static and dynamic analysis. Static analysis relies on the availability of all the
information at analysis time, hence, it suffers from dynamic features and unavailability
of information that are known only at execution time. Moreover, static analysis has
the limitation on analyzing apps when using techniques like code obfuscation, Java
reflection and dynamic code loading to cite a few. But, dynamic analysis can help

8 Introduction

in monitoring and tampering with android app’s behavior more precisely during its
execution. On the other hand, dynamic analysis suffers of code coverage issue that
limit the amount of code that the analysis is able to cover at runtime.

In this dissertation we provide an hybrid analysis to tackle disadvantages of static
analysis and take profit of dynamic analysis capabilities. Being able to design a
practical and effective framework for monitoring and analyzing Android apps allows
to offer a variety of services ranging from protecting user privacy as well as offering
high granularity as security countermeasure to data ex-filtration attacks. By static
analysis of interesting hot-points in the application (i.e.,callsite to Android APIs) we
are then able to guide the dynamic analysis in charge of enforcing fine-grained security
and privacy policy at runtime.

One of the main challenges associated with solutions based on dynamic analysis is
the triggering problem, i.e., apps require certain user/system events to follow specific
paths. Smartphones also accept a wide set of touch commands, such as swipe and tap,
which is unlike the traditional mouse and keyboard input. This added complexity can
complicate analysis, as it is hard to automatically traverse all possible execution paths.
In this direction, the key research goal is to advance the state-of-the-art research in
triggering mechanisms and design an intelligent and scalable solution for execution of
targeted inter component code paths in Android apps. State-of-the-art research shows
a number of triggering solutions, ranging from black- box to grey-box, for Android
apps with a varied degree of code coverage [97] [117] [150] . Code coverage is a well-
known limitation of dynamic analysis approaches. However, for the purpose of security
analysis rather than testing, it is required to stimulate/reach only specific points of
interest in the code rather than stimulating all the code paths in an app. In literature,
researchers have focused mainly on providing inputs to make an app follow a specific
path. Providing the exact inputs and environment becomes very hard as different
apps may require different execution environments. Moreover, not all inputs can be
predicted statically, because of obfuscation or other hiding techniques. In addition,
existing target triggering solutions, such as [116] and [37], are generally limited to code
execution inside a signal component of the app or do not handle the dynamic code
updates well.

In August 2015 Google has started publishing Android Security Advisories con-
taining vulnerabilities that were reported to the vendor by internal or third party
researchers, few years later the Android Security Reward program were launched as a
monetary (via bounty program) incentive to researcher whom reported vulnerabilities
addressing the Android platform. As further step toward making a secure platform

1.2 Research Contributions 9

running secure application, Google more recently also launched the Google Play Secu-
rity Reward Program which aims to further improve app security which will benefit
developers, Android users, and the entire Google Play ecosystem. Mobile devices are
also accessible, and vulnerable, through multiple (sometimes simultaneous) “connec-
tions” to the outside world, such as email, WiFi, GPRS, HSCSD, 3G, LTE, Bluetooth,
SMS, MMS, and web browsers. They also utilize a complex plethora of technologies
such as camera, compass, and accelerometers, which may also be vulnerable, e.g., via
drivers. The process of vulnerability mining is often composed by different steps as code
audit, reverse engineering and more recently fuzzing along with symbolic execution. In
different stages vulnerability mining relies on different code analysis techniques that
belongs to two categories: static and dynamic analysis. Each of those analysis comes
with its advantages and limitations according to the context where they are being
employed, the Android platform constitutes a peculiar execution environment that
is highly event-based and tightly dependent on user interaction. Moreover, the core
platform code is mainly written in C and C++ programming language, instead apps
are primarily developed in Java but not limited to, in fact native code is employed by
leveraging on the Java Native Interface (JNI). The process of mining vulnerabilities
when it comes to the Android platform might easily turn into a cumbersome challenge
which requires different approaches in order to be solved.

1.2 Research Contributions
This work proposes improvements to the modern analysis of Android applications,
mixing a combination of static and dynamic analysis. Perhaps, mixing static and
dynamic analysis produces more accurate results and allows to monitor the app being
analyzed collecting concrete runtime values. Although Android applications analysis
has been extensively studied in the last years, there are still several aspects that may
be significantly improved.

1.2.1 Virtual-Method Hooking Framework on Android ART
Runtime

We contribute a dynamic analysis framework for Android platform. It achieves dynamic
instrumentation by altering app’s virtual memory in order to insert dynamic hooks.
Thanks to this technique, we provide capabilities for monitoring and control ling app’s
behaviour at runtime without any modifications to both Android framework and app’s

10 Introduction

code. Dynamic instrumentation allows to divert the execution of the target method
to a custom user code, both Android framework’s and application’s methods can be
instrumented by in-memory manipulation altering the virtual-table in order to divert
the intended execution flow. As introduced in Android KitKat version, the Just-in-
Time (JIT) compilation of Dalvik bytecode has been replaced by the Ahead-of-Time
(AOH) compilation approach as employed by the new ART runtime. This means that
bytecode is compiled into native code as soon as the application is installed on the
device, as consequence most of the previous dynamic techniques for the Dalvik virtual
machine became ineffective.

The advantage of being able to dynamically instrument Android applications
running on ART runtime become quite relevant in several scenarios: code auditing, code
protection/isolation, malware analysis to name a few. In fact, being able to instrument
application’s behaviour at runtime permits to monitor and trace its execution observing
for anomaly behaviour or malicious patterns, moreover dynamic hooks combined along
with policy specification permits to achieve more fine-grained capabilities than the
ones actually offered by the platform itself.

As contribution this work propose an in-memory technique for instrumenting
Android applications which could provide a benefit for different applications.

First, from the data isolation prospective, fine-grained permissions capabilities
would provide a precise and effective mechanism for controlling and managing sensitive
data and operations where the end user is able to define custom policy labeling a
specific instance of a particular data (i.e., restrict access to private collection of pictures,
business contacts/sensitive SMS) without denying access to the whole set of data (i.e.,
camera roll, contacts list, SMS list). Thus, preventing a benign applications from
leaking sensitive data to third-party entities (i.e., via third-party libraries as observed
in many cases).

Second, controlled execution environments (i.e., sandbox) are employed by malware
analysts to confine suspicious code into an artificial environment in order to limit and
contain the damage caused by the malware, eventually. Preventing malware execution
effects (i.e., deleting/altering file, data ex-filtration, exploitation of known vulns) is a
key issue concerning malware analysis, along with another remarkable that concerns
its reproducibility. In the case of malware analysis is not always required to employ
bare-metal environments, in fact most of the time malware code is executed within a
VM or an emulator that offers more chances for kernel-level instrumentation or simply
runs modified version of Android framework. Although, as has been proved by several
publications [112, 79, 102, 89], it is practical to execute the code on a real-world device

1.2 Research Contributions 11

in order to prevent evasion by anti-emulation, artifacts detection, hardware inspection
techniques able to identify an emulated or virtual executing environment, thus apps
will show a benign behaviour instead of the malicious one.

Finally, another scenario that takes benefits from dynamic analysis is application’s
code auditing. Seeking for security defects requires a deeper knowledge about the
codebase (i.e., which components implement what logic, how the relevant flow is carried
in/out) and how its components interact, which can not be totally automated but
static and dynamic analysis could reduce the human effort by identifying those code
portion containing potential vulnerable code. To this end, our framework provides a
solution to intercept particular Android APIs for security purposes,in fact observing
runtime values and altering app’s execution allows to collect precious information about
its behaviour that are relevant to identify vulnerable patterns as well as allowing to
reverse engineering that particular app’s logic.

To summarize, this work makes the following contributions.

• We propose ARTDroid, a framework for hooking virtual-method calls without
any modifications to both the Android system and the app’s code.

• We discuss how ARTDroid is made fully compatible with any real devices running
the ART runtime with root privilege.

• We demonstrate that the hooking technique used by ARTDroid allows to intercept
virtual-methods called in both Java reflection and JNI ways.

• We discuss applications of ARTDroid on malware analysis and policy enforcement
in Android apps.

• We released ARTDroid as an open-source project 1.

1.2.2 Ensuring Execution of Targeted Code Paths during Dy-
namic Analysis

To address the triggering problem, peculiar for dynamic analysis, we apply our dynamic
technique for targeting execution of interesting code portion in order to isolating some
code by means of program slicing and then collect runtime values by targeted dynamic
analysis, the entire process requires only the app’s bytecode. The program slicing
technique allows to extract a particular portion of code which is involved in creating a
specific value, or participate in a specific call-site, that we are interested in analyzing.

1https://vaioco.github.io

https://vaioco.github.io

12 Introduction

This work contributes to achieve targeted execution of particular code in order
to incremental enhance the static analysis by means of runtime concrete values. In
particular, targeted execution allows to focus on analyzing only the portion code which
exposes the interesting behaviour. In fact a particular portion of the code might be
more relevant in terms of analysis, further reducing the amount of code to be analyzed
helps also in reducing the human effort required to accomplish the entire analysis.

Our targeted execution leverages a slicing-based analysis for the generation of
data-dependent slices for arbitrary methods of interest (MOI) and on execution of
the extracted slices for capturing their dynamic behavior. Motivated by the fact that
malicious apps use Inter Component Communications (ICC) to exchange data, our
main contribution is the automatic targeted triggering of MOI that use ICC for passing
data between components. Once, we identify the interesting slices we want to execute
them to capture concrete values. Thanks to our dynamic technique we do instrument
the original app’s entry-point in order to load the generated slice by means of dynamic
code loading capabilities and then, to jump directly to slice’s entry-point by means of
reflection. By going through repetitions of this process we can harvest runtime values
to improve our analysis results.

The main contributions in this regard are enlisted here.

• We extend the backward slicing mechanism to support ICC, i.e., extract slices
across multiple components. Moreover, we enhance SAAF to perform data flow
analysis with context-, path- and object-sensitivity.

• Targeted execution of the extracted inter-component slices without modification
to the Android framework.

• We design and implement a hybrid analysis system based on static data-flow
analysis and dynamic execution on real-world device for improved analysis of
obfuscated apps.

1.2.3 Handling Dynamic Code Updates Using a Combination
of Static and Dynamic Analysis

We propose a hybrid approach combining static and dynamic analysis to cover for the
inherent inability of static analysis to deal with dynamic code updates in Android
apps.

• We propose, design and implement StaDART, a system that interleaves static and
dynamic analysis in order to reveal the hidden/updated behavior. By utilizing

1.2 Research Contributions 13

ArtDroid, we avoid modifications to the Android framework and make it largely
frame- work independent. StaDART downloads and makes available for analysis
the code loaded dynamically, and is able to resolve the targets of reflective calls
complementing app’s method call graph with the obtained information. Therefore,
StaDART can be used in conjunction with other static analyzers to make their
analysis more precise.

• We integrate StaDART with DroidBot to make it fully automated and to ease the
evaluation. Moreover, we analyze a dataset of 2,000 real world apps (1,000 benign
and 1,000 malicious). Our analysis results show the effectiveness of StaDART in
revealing behavior which is otherwise hidden to static analysis tools.

• We plan to release our tool as open-source to drive the research on app analysis
in the presence of dynamic code updates.

1.2.4 Black-Box Mobile App Management Solution (MAM)
For Stock Android

Beside Android explosion in the consumer market, in the past decade mobile computing
has also became a way for employees of organizations of all sizes to do business
computing. In many cases, expensive company-owned laptops have been replaced by
cheaper phones and tablets often even owned by the employees, so called Bring Your
Own Device (BYOD). Business applications are quickly being rewritten to leverage
the power and the ubiquitous nature of mobile devices. Mobile computing is no longer
just another way to access the corporate network: it is quickly becoming the dominant
computing platform for many enterprises. In this scenario, it is important for the IT
security department of the enterprise to be able to configure secure policies for its
employees’ devices. Mobile Device Management (MDM) and Mobile App Management
(MAM) services are the de facto solutions for IT security administrators to enforce
such enterprise policies on mobile devices.

To this end, we further investigate how to apply dynamic instrumentation for
achieving fine-grained enforcing capabilities on Android stock devices. We propose
AppBox, a MAM solution that would enable an enterprise to select any app from the
market and to be able to perform customisation with minimum collaboration from the
app developer. Particularly, the developer will not have to disclose the app source code
to the enterprise nor should she be involved with code customisations for satisfying the
enterprise security requirements. Being able to define fine-grained policy and enforce

14 Introduction

them at runtime permits to isolate sensitive business data when shared among different
user apps and to restrict runtime behaviour according to specific constraints, which is
remarkable helpful especially when the BYOD approach is in place.

Our goal is twofold, ease to enable and maintain apps ready for enteprise-wise
capabilities and to offer an easy to deploy MAM solution that allows an enterprise to
enrich its apps park but still enforcing their internal policy on employees Android stock
devices. We propose a novel approach enabling developers to make their apps enterprise
ready by only changing one single line in the app manifest file, that in combination
with our dynamic instrumentation technique allows an enterprise to customise that
enterprise-ready application by defining fine-grained app specific policy.

Using AppBox , an enterprise can customise any existing app, even highly-obfuscated
ones, without using any SDK or modifications to the app code. AppBox allows an
enterprise to define and enforce app-specific security policies to meet its business-specific
needs. More importantly, AppBox works on any Android version without requiring
root privileges to control the app behaviour.

As for any other MAM solution, the basic assumption in AppBox is that the
enterprise trusts the developer to deliver a benign app and uses for customisation
purposes.

To summarise, our contributions can be listed as follows:

1. We propose AppBox as an MAM solution that enables an enterprise to customise
any Android app without modifying the app code. Unlike traditional enterprise
mobility management solutions, AppBox is able to enforce dynamic policies
without requiring integration with SDKs or other bytecode modifications. Thus,
it can work also on heavily obfuscated apps.

2. By using dynamic memory instrumentation, AppBox monitors and enforces
fine-grained security policies at both Java and native levels.

3. works on stock Android devices and does not require root privileges. This is ideal
especially for enterprises that support Bring Your Own Device (BYOD) policies.

4. We have implemented AppBox and performed several tests to evaluate its perfor-
mance and robustness on 1000 of the most popular real-world apps using different
Android versions, including Android Oreo 8.0.

5. We released AppBox as an open source project available at the following URL2.
2 https://vaioco.github.io/projects/

https://vaioco.github.io/projects/

1.2 Research Contributions 15

1.2.5 Evaluation of Practical Evasion of Dynamic Analysis
Systems

Antivirus companies, search engines, mobile application marketplaces, and the security
research community in general largely rely on dynamic code analysis systems that load
potentially malicious content in a controlled environment for analysis purposes. We
evaluate the state of the art of several on-line malware analysis services by collecting
artifacts exposed by those sandboxes.

We implemented a probe application that collects artifacts information and transmits
it to a server. The probe tool was implemented only in Java without employing reflection
or other mechanism that would flag the app as suspicious by the static analyzer. The
probe applications aim to collect runtime artifacts in order to give us some insights
about how those sandbox artifacts were designed, whether they are randomly generated
or have fixed values that does not change over different executions.

As artifacts one would define those which are most characteristic for the particular
context, we identify a remarkable number of Android artifacts that strongly character-
ized a real-world device allowing thus to detect those execution environment that might
be artificial as malware sandbox or runtime analysis systems. Then we investigate the
results discovering that most analyzed malware sandbox expose a quite predictable
execution environment where artifacts have fixed values, hence app being analyzed can
easily identify those artificial execution environment and evade them by exposing a
benign behaviour.

To summarize, this work makes the following contributions:

• 1) New problem. We propose a new Android sandbox fingerprinting technique,
which is based on the careless design of usage-profiles in most current sandboxes.
We observe that malware developers can collect usage-profile based fingerprints
from many Android sandboxes and then leverage these fingerprints to build a
generic sandbox fingerprinting scheme for the sandbox analysis evasion.

• 2) Implementation. We conduct a measurement on collecting usage-profile
based fingerprints on popular Android sandboxes. The results show that most
Android sandboxes designers have not protected these fingerprints by generating
the random fingerprints every time for running a different sample. Only few
sandboxes generate the random fingerprints, but these random fingerprints are
different from fingerprints in user’s real phones.

16 Introduction

• 3) Mitigations. We propose mitigations to further guide a proper design of
these sandboxes against this hazard.

1.2.6 Discovering Vulnerabilities in Android C++ code via
Code Property Graph Analysis

In this work we propose OctoDroid , a practical analysis tool combining the precise
parsing offered by Clang along with the graph-based analysis of Octopus platform.
OctoDroid aims to aid the uncovering of vulnerabilities in the Android system ser-
vice C++ implementation. System services employ as communication mechanism
the Binder IPC, which in turn add an opaque layer when it comes to discovering
vulnerability. In fact, the Binder IPC mechanism permits to invoke remote procedures
as they were local, basically it is a client/server communication via Binder messages,
so called Parcel. In [141, 143, 142] Yamaguchi et. al. proposed an innovative ap-
proach for modeling and discovering vulnerabilities employing Code Property Graphs
(CPGs), the implementation named Octopus has been released. Octopus aids the
analyst discovering vulnerability by query traversal on the CPG stored in a graph
database. The difficulty of parsing C++ is well-studied [? ?]. Octopus employs
a fuzzy parser based on island grammars [98] which performs analysis on selected
portion of the code rather than performing a detailed analysis of a complete source
code. The fuzzy parser allows to continue the analysis even in case of parsing issues
or in case of missing code portions. As natural consequence we noticed that Octopus
presents very low detection rate when it comes to analyzing C++ code base, mainly
as consequence of its parser’s design which sacrifices level of details in favor of tolerance.

OctoDroid compensates the Octopus’ fuzzy parser inherent incompleteness in analyz-
ing C++ code. OctoDroid allows to automatic modeling and discovering vulnerability
in Android system services C++ codebase. Differently from existing approaches based
on fuzzing, we focus on static exploration via CPGs which allows to traverse the
produced graphs in order to query for specific pattern that may lead to vulnerabilities.
We propose an uncouple design which via Clang’s LibTooling Class Hierarchy Analysis
(CHA) first builds the graph, then exploit collected information to enhance the static
analysis employed by Octopus platform analysis. We build the Class Hierarchy graph
by means of Clang’s LibTooling library. Then, we use LibTooling again to enhance the
code with the information collected in the previous stage. As result, the augmented
code would contain virtual function calls replaced with their corrispective explicit

1.2 Research Contributions 17

form(s), whenever it is possible. The augmented code can now be processed by the
Octopus’s fuzzy parser and then analyzed leveraging on the type information which has
been written explicitly in the augmented code. It is worth noting that OctoDroid on
one hand benefits from the clang’s Libtooling capabilities and on the other hand
exploits the Octopus’s fuzzy parser and analysis platform to perform query on the
augmented code.

We concretely show how OctoDroid can easily detect various already known security
bugs in Android system services and we demonstrate how OctoDroid minimize the
manual effort requested . We further show OctoDroid effectiveness by considering
recent uncovered vulnerabilities in native code which lead to memory corruption in
system services process.

To summarize, this work makes the following contributions:

• To our knowledge, OctoDroid is the first CPG-based tool that aims to enhance
Octopus analysis capabilities specifically for automatic modeling and discovering
of vulnerability in C++ code, in particular we targeted the Android system
services codebase.

• Unlike previous existing works, OctoDroid provides effective and practical anal-
ysis of Android system services codebase by means of Code Property Graph
representation. OctoDroid takes the advantage of Clang’s full parsing approach
to enhance the CPG by Class Hierarchy Analysis (CHA).

• We have implemented and evaluated OctoDroid on the latest Android Orio
codebase available at the time of writing. Our results show its effectiveness in
discovering new vulnerabilities.

• OctoDroid is opensource, available at the following URL3

Chapter 2

Background

This chapter explores the evolution of Android and introduces its architecture.
Although Android is built on top of Linux kernel, it has become an operating
system in a class by itself. Android introduces a vast collection of frameworks, as
well as a runtime (Dalvik/ART) to support them. We then turn to examine the
Android architecture, each layer is described in detail to set the foundation for
the deeper exploration carried out in the next chapters of this work. Then, we
consider and discuss static and dynamic analysis approaches and how they adapt
for the Android platform. In addition we consider a practical use case showing
main static analysis limitations when it comes to Android applications.

2.1 Android

Android is a modern operating system with a layered software stack, the following
Figure 2.1 illustrates its layers. The Android’s software stack can run on many
different hardware configurations.

20 Background

Fig. 2.1 Android System Architecture

Most of the user-facing features and enhancements in between versions have to do
with additional frameworks and APIs being added, with only a relatively small
portion of them at the system level. At the time of writing the latest Android
version is Oreo 8.1, API number 27.

Android applications allow developers to extend and improve the functionality of
a device without having to alter lower levels. In turn, the Android Framework
provides developers with a rich API that has access to all of the various facilities
an Android device has to offer (see 2.1.1). This includes building blocks to
enable developers to perform common tasks such as managing user interface (UI)
elements, accessing shared data stores, and passing messages between application
components.

The Android OS is based on a Linux kernel but offers a different application
abstraction than found in traditional Linux distributions. Android apps are
mostly written in Java and compiled into Dalvik bytecode to be executed by
the Dalvik Virtual Machine (DVM). Apps may optionally contain native code
components. Newer versions of Android 1 employ the Android Run Time (ART)
that converts bytecode to native code at install time (Ahead Of Time compilation).
Android apps are distributed as an APK file that basically is a ZIP file containing
the app’s bytecode (in classes.dex) and its resources.

1https://source.android.com/devices/tech/dalvik/

https://source.android.com/devices/tech/dalvik/

2.1 Android 21

The Android operating system utilizes two separate, but cooperating, permissions
models. At the low level, the Linux kernel enforces permissions using users and
groups. This permissions model is inherited from Linux and enforces access to
le system entries, as well as other Android specific resources. This is commonly
referred to as Android’s sandbox (see 2.1.4).

Although each app executes within a dedicated sandbox, Android allows apps
to communicate with each other through a well-defined Inter-Process Communi-
cation (IPC) mechanism, referred to as Binder (see 2.1.2). It provides message
passing (called parcels) taking care of migrating the execution of a request from
the requester to the target process transparently to the apps. The Binder system
includes a kernel module, accessed through the /dev/binder file. Communica-
tions between different components in the same app are handled by the Binder.

2.1.1 Framework

The glue between apps and the runtime, the Android Framework provides the
pieces for developers to perform common tasks and building Android applications.
The common framework packages are those within the android.* namespace, such
as android.content or android.telephony. Android also provides many standard
Java classes (in the java.* and javax.* namespaces), as well as additional third-
party packages. The Android Framework also includes the services used to
manage and facilitate much of the functionality provided by the classes within.

Even though almost all Android OS functionality above the kernel level is
implemented as system services, it is not exposed directly in the framework
but is accessed via facade classes called managers. Typically, each manager is
backed by a corresponding system service; for example, the BluetoothManager
is a facade for the BluetoothManagerService. System services implement most
of the fundamental Android features, including display and touch screen support,
telephony, and network connectivity and they are written in native code (C/C++).

With a few exceptions, each system service defines a remote interface that can be
called from other services and applications. Coupled with the service discovery,
mediation, and IPC provided by Binder, system services effectively implement
an object-oriented OS on top of Linux.

22 Background

2.1.2 Binder

While Android’s Binder is a new implementation, it’s based on the architec-
ture and ideas of OpenBinder. The Binder driver is the central object of the
framework, and all IPC calls go through it. Inter-process communication is im-
plemented with a single ioctl() call that both sends and receives data through
the binder_write_read structure.

Binder acts as a mediation point for all IPC. Access to system resources (e.g.,
GPS receivers, text messaging, phone services, and the Internet), data (e.g.,
address books, email) and IPC is governed by permissions assigned at install
time. The permissions requested by the application and the permissions required
to access the application’s interfaces/data are defined in its manifest file.

Application A Application B

Binder Client

IBinder {

transact()

}

Binder Server

Binder : IBinder {
 onTransact(){
 case CMD1:
 case CMD2:
} }

Binder Driver (/dev/binder)

Linux Kernel

Fig. 2.2 Android Binder Mechanism

As shown in Figure 2.3, when a process sends a message to another process, the
kernel allocates some space in the destination process’s memory, and copies the
message data directly from the sending process. It then queues a short message
to the receiving process telling it where the received message is. The recipient
can then access that message directly (because it is in its own memory space).
When a process is finished with the message, it notifies the Binder driver to mark
the memory as free.

Higher-level IPC abstractions in Android such as Intents (commands with associ-
ated data that are delivered to components across processes), Messengers (objects
that enable message-based communication across processes), and ContentProviders
(components that expose a cross-process data management interface) are built on
top of Binder. Additionally, service interfaces that need to be exposed to other

2.1 Android 23

processes can be de ned using the Android Interface Definition Language
(AIDL), which enables clients to call remote services as if they were local Java
objects. The associated aidl tool automatically generates stubs (client-side rep-
resentations of the remote object) and proxies that map interface methods to
the lower-level transact() Binder method and take care of converting parameters
to a format that Binder can transmit (this is called parameter marshalling/un-
marshalling). Because Binder is inherently typeless, AIDL-generated stubs and
proxies also provide type safety by including the target interface name in each
Binder transaction (in the proxy) and validating it in the stub.

2.1.3 Application

While all apps have the same structure and are built on top of the Android
framework, we distinguish between system apps and user-installed apps. System
apps are included in the OS image, which is read-only on production devices
(typically mounted as /system), and cannot be uninstalled or changed by users.
Therefore, these apps are considered secure and are given many more privileges
than user-installed apps. System apps can be part of the core Android OS or
can simply be pre-installed user applications, such as email clients or browsers.
User-installed apps are installed on a dedicated read-write partition (typically
mounted as /data) that hosts user data and can be uninstalled at will. Each
application lives in a dedicated security sandbox and typically cannot affect other
applications or access their data. Additionally, apps can only access resources
that they have explicitly been granted a permission to use. Privilege separation
and the principle of least privilege are central to Android’s security model, and
we will explore how they are implemented in 2.1.4.

Android apps are organised in components2 that permit to achieve different
functionalities. Android offers four types of components: Activity, Content
Provider, Service and Broadcast Receiver. The app’s user interface is composed of
a sets of activity components. Content provider components offer per-application
data servers that are queried by other installed apps. Service components are
intended for background processing. Broadcast receiver components handle
asynchronous messages across apps as well as Android system. An Android
Intent3 is used as a messaging object to request an action from another app

2https://developer.android.com/guide/components/index.html
3https://developer.android.com/guide/components/intents-filters.html

https://developer.android.com/guide/components/index.html
https://developer.android.com/guide/components/intents-filters.html

24 Background

component. Although intents facilitate communication between components in
several ways, there are three fundamental use cases: starting an activity, a service
or delivering a broadcast message.

Android apps require to define a special file called AndroidManifest.xml, known
as manifest[man], that contains specific meaningful information about the related
Android app. Every app must have a manifest file in its root directory because
the Android system needs to access its content before it can run any of the app’s
code. As a consequence, the manifest file cannot be obfuscated. The information
declared in the manifest cannot be changed at runtime: even dynamically loaded
code must comply with the permissions and the components defined in the app’s
manifest.

Android sharedUserId attribute. The manifest attribute android:sharedUserId,
introduced since the first Android version, is a feature that allows to execute
different apps under the same UID if and only if they are signed with the same
certificate. Once installed, apps that share the same UID will have access to
each other private data because they share the same Linux permissions set. This
feature is extensively used by Android for core framework services and system
apps. For instance, the Play Service and the Google location service use the
android:sharedUserId to request to run in the same process of the login service
to be able to sync data in the background, without user interaction. This feature
is available to and widely used also by third-party developers to update their
apps and shared libraries. Removing such features will have an important impact
on backward compatibility.

Android process attribute. The attribute android:process allows to ex-
ecute two different apps within the same process space. It can be specified
for any components in an app. Whenever the execution of a component is re-
quested, Android first looks for a running process matching the name specified in
android:process. If a process is found, then that process will be used to execute
the requested component. This avoids spawning a new process for a component if
there is already a running instance of that component. For instance, this is used
to reuse the background activity’s process when it is called in foreground again.

Java Native Interface. Android Application allows the inclusion of native
libraries (ELF shared objects) in application code, through the Java Native
Interface (JNI). From the Linux perspective, all executables are ELF binaries.
It is therefore not at all uncommon to see JNI used in applications optimizing

2.1 Android 25

for performance, or seeking resistance to reverse engineering. Google therefore
provides the Native Development Kit (NDK) (Android Developer), which devel-
opers can use to build native libraries (and binaries). Android’s critical system
component are implemented in C/C++, and are compiled into native binaries.
User applications are compiled into Dalvik bytecode, but the bytecode runs (or,
in ART, is compiled ahead-of- time) in the context of a Dalvik Virtual machine,
which is, in and of itself, an ELF binary. Thus, while most developers remain
oblivious to binaries, they nonetheless play an important role in Android.

2.1.4 Security Model

Android provides a sandbox for each installed app, as shown in Figure 2.3. To
enforce this isolation at the Linux kernel, Android assigns at install time a unique
User ID (UID) to each app. Moreover, since Android version 4.3, SELinux was
adopted with its Mandatory Access Control (MAC) model in order to enforce
a more fine-grained UID-based isolation and to harden the OS components
mitigating the risk of flawed and malicious code. In addition, Android combines
the traditional Linux permissions with a Mandatory Access Control (MAC)
mechanism at framework level. During install time, apps are assigned permission
labels representing the resources they can access during runtime. The developer of
an app must declare the permissions the app requires in its manifest file. SELinux
can operate in one of two global modes: permissive mode, in which permission
denials are logged but not enforced, and enforcing mode, in which denials are
both logged and enforced. SELinux also supports a per-domain permissive mode
in which specific domains (processes) can be made permissive while placing the
rest of the system in global enforc- ing mode. In the Android 5.0 L release,
Android moves to full enforcement of SELinux. This builds upon the permissive
release of 4.3 and the partial enforcement of 4.4. In short, Android is shifting
from enforcement on a limited set of crucial domains (installd, netd, vold and
zygote) to everything.

26 Background

Fig. 2.3 Android Security model

Android requires all APKs to be digitally signed with a certificate. A public-key
certificate contains the public key of a public/private key pair, as well as some
other metadata identifying the owner of the key. The owner of the certificate
holds the corresponding private key. When a developer signs an APK, the signing
tool attaches the public-key certificate to the produced APK. The public-key
certificate serves as a fingerprint that uniquely associates the APK to its developer
and his corresponding private key. This helps Android to ensure that any future
updates to that APK come from the original developer. In fact, developers
must use the same certificate throughout the lifespan of their apps to push new
versions of their apps to the users’ devices. In Android, a certificate authority
is not mandatory: typically the app certificates do not need to be signed by a
certificate authority and most developers use self-signed certificates.

2.1.5 Overview of Dynamic Code Update

Dynamic code updates techniques, such as reflection and dynamic class loading,
are used to extend apps’ functionality at runtime. Inherited from Java into the
Dalivk Virtual Machine (DVM), these features are equally supported by Dalvik’s
successor Android Runtime (ART). Android uses ART to run apps and system
services which uses ahead of time (AOT) compilation using a dex2oat tool to
convert DEX files into .oat binaries. ART is backward compatible with Dalvik
runtime and can execute apps compiled for the DVM.

A growing number of malware samples found in the Android ecosystem reveals
that malware developers bypass such vetting processes using various evasion
techniques. Previous research shows that the use of dynamic code update

2.1 Android 27

techniques along with various forms of obfuscation makes it extremely hard for
the state-of-the-art analysis tools to understand the behavior of an app [113, 32].

At the same time, previous approaches that enhanced static analyzers of Java code
in the presence of dynamic code update techniques (e.g., [45]) cannot be directly
applied to Android due to the differences in the platforms (in Android, load-time
instrumentation of classes is not available). Moreover, offline instrumentation also
cannot solve the problem because this approach breaks the application signature,
while some apps check it at runtime. If the signature does not correspond to some
hardcoded value they may refuse to work. In case of malicious apps this check
may be used to conceal illicit behavior. Follows an overview on each technique
for code updating.

Dynamic Class Loading

DCL provides flexibility to a developer to load classes at runtime. Similar to
Dalvik, ART allows a developer to load additional code obtained from alternative
locations at runtime [dcl]. It allows apps to load .zip, .jar and .apk files
containing a valid classes.dex file from outside the app code base, such as files
stored on the internal storage or downloaded from the network.

Android provides a set of class loaders, arranged in a hierarchical manner, which
are used to load classes to memory from internal storage. Every child class
loader holds a reference to its parent class loader where the root of the tree is
the BootStrap ClassLoader, which has a null reference to its parent. A common
interface required by all the class loaders is implemented by an abstract class
named ClassLoader whereas other specific class loaders are then derived from
ClassLoader, such as DexClassLoader, PathClassLoader, etc. ClassLoader pro-
vides methods such as loadClass(), findLoadedCalss() and defineClass(), which
allows a developer to load a class, search for loaded classes and define a class from
a byte sequence at runtime, respectively. Android also provides a class DexFile
whose methods can be used to load classes directly. However, these methods
require a reference to a class loader as an argument.

DCL is usually used for the following purposes:

Extensibility: As shared libraries help developers in building modular software,
DCL permits to easily extend the app’s capabilities such that developers can

28 Background

programmatically get new code running by loading it via different sources (i.e.,
network, persistent storage, etc.) at runtime.

App updates: Instead of distributing updated versions of the same app, func-
tionality provided by the current app is extended using updates downloaded
through the network and loaded dynamically using class loaders.

Common Frameworks: Depending upon functionality, apps might use certain
common frameworks, e.g., an advertisement framework, which shows advertise-
ments to the user. Common frameworks are installed as separate apps whose code
can be loaded dynamically by the reliant apps when needed. In the absence of
DCL, the functionality provided by the framework must have been implemented
in each of the reliant apps. Similarly, in the case of updating that common
functionality provided by the framework, only the framework needs to updated
rather than updating all the reliant apps.

In case of a class loading request, the current class loader first checks whether
the class has already been loaded or not. If it fails to find the class in the list of
the loaded classes, it requests its parent class loader to find out if the class has
already been loaded. This process continues until the request reaches the root of
the tree which tries to find the class. If the root of the tree is unable to find the
requested class, a ClassNotFoundException is thrown, which propagates back to
the initial class loader. This necessarily means that the class has neither been
loaded by the current class loader nor by its parents up till the root of the class
loaders tree. The current class loader then tries to load the class by itself. If it
fails to load the requested class, the ClassNotFoundException is released.

Java Reflection

Reflection is the ability of a program to treat its own code as data and manipulate
it during execution [44]. Using reflection, an app can reason about and modify its
execution state during runtime. The dynamically loaded code is usually accessed
using reflection. Android uses the same reflection APIs as used in Java.

In the following, the functionality provided by reflection APIs is outlined:

Retrieving Class Objects: All of the reflection operations start from java.lang.-
Class.Objects of this class represent all the classes and interfaces in a running

2.1 Android 29

app. Classes and interfaces that could be used to obtain reflective information
about other classes and objects are provided by the java.lang.reflect package.
Classes in the java.lang.reflect package are usually without any public constructor.
However, these classes can be instantiated by calling different methods on Class.
Based on the information, an object of Class can be retrieved in different ways.
It is clarified that an instance of Class is referred here as object while an instance
of the corresponding Class object is referred to as ’instance’. If an instance of a
Class object is available, its Class object can be retrieved by calling getClass()
method on the instance. If the type information of an object is available, the
corresponding Class object can be retrieved by appending .class to the class
type (and .TYPE for primitive types). A very common way to obtain Class ob-
jects, however, is to call Class.forName(className) where the string className
represents the name of the Class object. Once a Class object is retrieved, other
related classes can also be retrieved using methods such as getSuperClass(),
getClasses(), getDeclaredClasses(), etc.

Accessing Members: Once a Class object is retrieved, its members can also
be accessed using reflection APIs. These members can be fields, methods or
constructors. Field objects can be retrieved using getField(fieldName), where
the string fieldName represents the name of the field, and getDeclaredFields(),
which retrieves all the declared fields. Similarly, there are APIs to obtain the
type information of fields, and obtain and change field values as well. Hav-
ing a Class object, Constructor objects of this class can be retrieved using
the getConstructor(Class[] params), getConstructors(), or getDeclared-
Constructors() as well. Similarly, Method objects of a retrieved class can be ob-
tained using methods such as getMethod(methodName, params), getMethods(),
and getDeclaredMethods(), which return objects of the specific Method repre-
sented by the string methodName, all the public methods of the class, and all
the declared methods in the class, respectively.

Instance Creation and Method Invocation: An instance of a specific class
type can be created if the corresponding object of Class or Constructor is avail-
able. A default zero argument constructor of the class can be called using the
newInstance() method on the Class object whereas the constructor with param-
eters can be called using the newInstance(params) method on the Constructor
object. Both of these methods return instances of the given Class object. Sim-
ilarly, the methods obtained from the Class objects can be invoked using the
invoke(objectRef) method where the string objectRef represents a reference

30 Background

to the object on which the method is invoked.

In the following, we provide an overview of what reflection offers to a developer[139]:

Conversion from JSON and XML representation to Java objects: Re-
flection is heavily used in Android to automatically generate JSON and XML
representation from Java objects and vice-versa.

Backward compatibility: It is advised to use reflection to make an app
backward compatible with the previous versions of the Android SDK. In this
case, reflection is exploited either to call the API methods, which have been
marked as hidden in the previous versions of the Android SDK, or to detect if
the required SDK classes and methods are present.

Plugin and external library support: In order to extend the functionality of
an app, reflection APIs may be used to call plug-ins or external library methods
provided at runtime.

In general, we can conclude that dynamic code loading and reflection are
both highly useful and essential for apps, specifically Android apps. Thus,
the use of these evasion techniques in newly found malware is not surpris-
ing [Polkovnichenko and Boxiner].

2.2 Static Analysis 31

2.2 Static Analysis

In this section we introduce static analysis approaches for analyzing Android
apps, we discuss in brief main advantages and limitations that belong to each
approach. A complete and accurate evaluation of static analysis techniques is
out of the scope of this dissertation.

Static analysis examines a program without executing any code. Two Android
apps essential components are (I) the Android-Manifest.xml which describes
permissions, defines external libraries and app components (e.g., activity, service)
and (II) the classes.dex file that contains the app bytecode as DEX format. It is
worth of note that the app’s manifest must be present in clear text, thus even
highly obfuscated apps show this file in plain text as the Android system leverage
on this file in order to read and parse app’s components information.
Static analysis of Android apps mainly involve different representations when
it comes to bytecode analysis. The DEX files are often decompiled first into a
more comprehensible format. There are many level of formats, from low level
bytecode, to assembly code, to human-readable source code. Both PScout [36]
and AppSealer [147] use Soot directly on the dex to acquire Java bytecode, while
Enck et. al. in [58] uses ded/DARE. Alternatively, [61] decompiles dex into an
assembly-like code with dedexer, while others choose to study Dalvik bytecode
[82, 68, 147], smali [74, 151], or the source code [65, 55]. Android apps can also
be decompiled and reassembled either inserting or altering the bytecode [40],
operation that breaks the app’s signature.

To be able to effectively predict the app’s control flow, static analyses must not
only model app’s basic interaction with the Android framework (e.g., activity
lifecyle), but must also integrate further callbacks for system-event handling (e.g.,
for phone sensors like GPS), UI interaction, and others. Several approaches have
been published to address these challenges with a diversity range of sensitivity and
precision [35, 92, 108] and a variety of investigations show how those approaches
in turn fit properly according to the context. As proposed in [136], an approach
to conduct static analysis for security vetting of Android apps as well as ScanDal
[82] and others [84, 65] addressing privacy leak detection. Yet, ScanDroid [63]
proposed an automated security certification of Android applications which
relies on WALA for implementing data flow analysis on Java code and Chex
[92] presented a static analysis method to automatically vet Android apps for

32 Background

component hijacking vulnerabilities, that allow to gain unauthorized access to
protected or private resources through exported components in vulnerable apps.

In [86] Li et. al. have provided a systematic literature review on static analysis of
Android apps, they analyzed in deep several approaches and tools enumerating
keys aspect of each of them. In their comprehensive study they identified six fun-
damental categories including taint analysis [35, SuS, 147], abstract interpretation
[110, 82], symbolic execution [145], program slicing [74, 32], code instrumentation
[84, 134] and model checking [91, 60].

Particularly for Android, analyzing ICC/IPC is essential for understanding and
detecting stealth behaviors [77] and leaked information [84] as its IPC Binder
protocol is unique, a key part of the Android system, and much more powerful
and complex than most other IPC protocols. In one static study, Epicc [108]
created and analyzed a control-flow super graph to detect ICC information
leaks. While Epicc relied on Soot for majority of its needs, Amandroid used a
modified version of dexdump (i.e., dex2IR) to study inter-component data flows
[136]. Furthermore, while Epicc built control flow graphs, Amandroid built data
dependence graphs from each app’s ICC data flow graph.

Although static analysis could potentially reveal all possible paths of execution,
there are several limitations. Both benign and malicious developers use vari-
ous protection techniques, such as Java reflection, dynamic code loading and
code obfuscation [118], to prevent their apps from both reverse-engineering and
repackaging. [124, 81, 154, 119]. All static methods are vulnerable to obfus-
cations (e.g., encryption) that remove, or limit, access to the code. Similarly,
Java reflection and dynamic code loading techniques can dynamically launch
specific behaviors, which can be only monitored in dynamic analysis environment
instead of static analysis. Besides, in obfuscated apps, static analysis can only
check the API-level behaviors of apps rather than the fine-grained behaviors,
such as the URL in network connections and the phone number of sending
SMS behavior. While some static techniques are resilient to obfuscations, each
technique is vulnerable to a specific obfuscation method. For example, feature
based analysis is generally vulnerable against data obfuscation and, depending
on its construction, structural analysis is vulnerable to layout, data, and control
obfuscation [127].These limitations have long been the downfall of static anal-
ysis frameworks for traditional analyses [99] and mobile malware analysis [118, 74].

2.3 Bypassing Static Analysis via Dynamic Code Update 33

The analysis of Android apps becomes more and more difficult currently, the
dynamic analysis approach is usually coupled with the static approach for deeply
analyzing apps. Unless also a hybrid solution, no static framework can fully
analyze Android applications using full bytecode encryption or dynamic code
update.

2.3 Bypassing Static Analysis via Dynamic Code
Update

This section demonstrates how malware developers can evade static analysis
tools. Each feature, reflection and DCL, is discussed separately. In the first
subsection, we discuss Reflection-Bench (our benchmark of Android applications
to test static analysis for reflection resolution), whereas in the second subsection,
we discuss our sample test malware, InboxArchiver, which makes use of dynamic
code loading to evade current available online analysis systems.

2.3.1 Reflection-Bench

The usefulness of reflection in Android apps development is undoubted. However,
reflection’s inherent property to hinder static analysis of apps makes it attractive
for malware developers. Although, researchers have worked on app analysis in
the presence of reflection in Android apps, literature and the research community
still lacks a benchmark of apps which could be used as a test suite to determine
the effectiveness of app analysis tools in the presence of reflection. We present
reflection-bench, a set of Android apps, which use reflection to conceal information
leakage to make detection harder for static analyzers. Reflection-bench is designed
so that it can be used to test tools which perform taint analysis as well as those
that only generate call graphs for other forms of static analysis.

Overview: Reflection-bench consists of 14 apps which use reflection in various
forms to conceal information leakage and make the flow of the program ambiguous.
The hardness of resolving the targets of reflection depends upon the nature of
the arguments used in the reflection APIs. We divide them into two classes, i.e.,
statically available arguments (those string arguments which are provided as
part of the app package, e.g., strings defined inside the program, read from a

34 Background

file which is part of the app, etc.) and statically unavailable arguments (those
received over the network, read from files on disk, received from other apps, etc.).

Statically unavailable arguments can make it impossible for static analysis tools
to resolve reflection. In reflection-bench, we only consider the case of statically
available arguments. However, with each case the complexity is gradually in-
creased. In the first few cases, the arguments of reflection APIs are constant
strings assigned to program variables. In the latter cases, we consider reading
the arguments from a properties file (part of the APK file) and from a hashtable
defined inside the program. Moreover, we also consider the cases where the string
arguments are formed from the concatenation of multiple strings or decrypted
from encrypted strings using crypto APIs. In addition, we consider two levels of
complexity where in level one, reflection is used to call only the methods defined
inside the app and in level two, both the methods defined inside the program as
well as the sensitive APIs, which are responsible for leaking sensitive information,
are called through reflection.

Implementation: There are two major classes in each app, i.e, BaseClass and
MainActivity. BaseClass has two methods, where Method1 gets the device ID
using the getDeviceID API and stores it in a local field Str. Method2 gets
a string and sends it out using the sendTextMessage API. MainActivity calls
Method1 of BaseClass, gets its field Str and sends it to the Method2 of BaseClass
which leaks it out. In the following, we describe how different combinations of
reflection APIs are used in each case.

1 MainActivity retrieves the field Str of BaseClass using getField reflection
API.

2 MainActivity retrieves an instance of BaseClass using the reflection API
forName, creates its object using the newInstance API and gets its field
Str using the getField reflection API.

3 MainActivity retrieves an instance of BaseClass using the reflection API
forName, gets its Constructor using the getConstructor API, creates its
object using the newInstance API and gets its field Str using the getField
reflection API.

4 MainActivity retrieves an instance of BaseClass using the reflection API
forName, creates its object using the newInstance API and gets its field
Str using the getField reflection API. It also retrieves the methods of

2.3 Bypassing Static Analysis via Dynamic Code Update 35

BaseClass using the getMethod reflection API and calls them using the
invoke reflection API.

5 MainActivity retrieves an instance of BaseClass using the reflection API
forName, gets its Constructor using the getConstructor API, creates its ob-
ject using the newInstance API and gets its field Str using the getField re-
flection API. It also retrieves the methods of BaseClass using the getMethod
reflection API and call them using the invoke reflection API.
In the above cases, the names of the class "BaseClass", its methods and
its field are provided as static strings in the MainActivity class. In the
following, starting with Case 4 as a base, we try to acquire/generate these
names at runtime.

6 Reads the names of BaseClass, its methods and its field from a file.

7 Reads the names of BaseClass, its methods and its field from a Hashtable.

8 Constructs the names of BaseClass, its methods and its field from multiple
strings in the program.

9 Decrypts the encrypted names of BaseClass, its methods and its field using
Crypto APIs.
In all of the above cases, reflection APIs are only used in MainActivity
and the sensitive APIs, i.e., getDeviceId and sendTextMessage, are called
directly in BaseClass. In the following cases, we introduce reflection in
BaseClass too in addition to Case 4 .

10 BaseClass retrieves an instance of the TelephonyManager class using the
reflection API forName, creates its object using the newInstance API, gets
the sensitive APIs using the getMethod reflection API and calls them using
the invoke reflection API.
In the above case, we use static strings for the names of the class Telepho-
nyManager and the methods getDeviceId and sendTextMessage. In the
following we acquire/generate these names at runtime in addition to Case
10 .

11 Reads the names of TelephonyManager class, methods getDeviceId and
sendTextMessage from a file.

12 Reads the names of TelephonyManager class, methods getDeviceId and
sendTextMessage from a Hashtable.

36 Background

Table 2.1 Analysis with State-of-the-art tools

Apps Taint Analysis Call Graphs

F
lo

w
dr

oi
d

Ic
cT

a

A
m

an
dr

oi
d

SC
an

dr
oi

d

A
nd

ro
gu

ar
d

SA
A

F

DataFlow1 ✗ ✗ ✗ - NA NA
PlainStringsL1-1 ✗ ✗ ✗ - ✗ ✗

PlainStringsL1-2 ✗ ✗ ✗ - ✗ ✓

PlainStringsL1-3 ✗ ✗ ✗ - ✗ ✓

PlainStringsL1-4 ✗ ✗ ✗ - ✗ ✓

FileStringsL1-1 ✗ ✗ ✗ - ✗ ✗

HashtableStringsL1-1 ✗ ✗ ✗ - ✗ ✗

MultipleStringsL1-1 ✗ ✗ ✗ - ✗ ✗

EncryptedStringsL1-1 ✗ ✗ ✗ - ✗ ✗

PlainStringsL2-1 ✗ ✗ ✗ - ✗ ✗

FileStringsL2-1 ✗ ✗ ✗ - ✗ ✗

HashtableStringsL2-1 ✗ ✗ ✗ - ✗ ✗

MultipleStringsL2-1 ✗ ✗ ✗ - ✗ ✗

EncryptedStringsL2-1 ✗ ✗ ✗ - ✗ ✗

13 Constructs the names of TelephonyManager class, methods getDeviceId
and sendTextMessage from multiple strings inside the app.

14 Decrypts the encrypted names of TelephonyManager class, methods getDeviceId
and sendTextMessage using Crypto APIs.

Tools analysis results: We report the results of analysis on recent state-of-
the-art tools, e.g., Flowdroid [35], Androguard [3], Amandroid [136], SAAF [74],
SCandroid [63] and IccTa [84]. A summary of the results is provided in Table 2.1.
Those tools which perform taint analysis, such as Amandroid, etc., are analyzed
by performing taint analysis of the apps in reflection-bench. However, for those
tools which do not perform taint analysis, such as Androguard, etc., we analyze
them by generating call graphs of the apps using these tools. In Table 2.1, a ✓

in column X, indicates that the app is successfully analyzed by tool X, whereas,
a ✗ indicates otherwise.

2.3 Bypassing Static Analysis via Dynamic Code Update 37

These analysis results show that reflection makes static analysis of apps harder.
Specially, when the parameters of reflection APIs are not readily available in the
code, static analysis tools find it extremely hard to properly analyze apps.

2.3.2 InboxArchiver: Test Malware using DCL

App developers use dynamic code loading for various legitimate purposes, mainly
extending the functionality of the app. However, this feature can be used by
malware developers to bypass analysis tools deployed at the app markets. A
malware developer can submit a seemingly benign app with hidden malicious
functionality, i.e., obfuscated functionality to load additional code provided once
the app is installed on a user’s device. We demonstrate with our InboxArchiver
app how a malware developer can bypass analysis tools using DCL.

Overview: InboxArchiver is a simple app that reads the SMS inbox and sends
some statistics to a number provided by the user. These statistics include the
number of SMS messages sent to and received from certain numbers. A user
can configure InboxArchiver to receive a daily, weekly or monthly SMS message
containing these statistics. The malicious part of the app, however, downloads
some additional code from the Internet which contains other numbers potentially
owned by an adversary, loads this code using the DCL APIs and leaks these SMS
inbox statistics.

Implementation: The main features of InboxArchiver are the use of DCL and
reflection having encrypted strings representing the code paths, class names
and method names. This helps InboxArchiver to evade static analysis tools. In
order to evade dynamic analysis, it makes use of a simple delay technique where
again the APIs are called using reflection with encrypted parameters. It waits
for 10 minutes before downloading the malicious code from the Internet and
loading it using DCL. Although there are other more sophisticated anti-analysis
techniques available, such as emulator detection, root detection, etc., the use of
just a delay technique in InboxArchiver highlights the role of DCL/reflection in
evading analysis tools.

InboxArchiver consists of three main classes, i.e., a MainActivity class, a
MessageSender class and a Loader class. The MainActivity class presents
an interface to the user as shown in Figure 2.4. The MessageSender class,
which is a Service and runs in the background, is responsible for retrieving the

38 Background

Table 2.2 InboxArchiver: Analysis Results

Analysis System Analyzed Obfuscation DCL Malware
VirusTotal [130] ✓ ✗ ✗ ✗

UnDroid [und] ✓ ✓ ✗ ✗

AndroTotal [and] ✓ ✗ ✗ ✗

ds-andrototal [ds-] ✓ ✗ ✗ ✗

MobiSec Lab [mob] ✓ ✗ ✗ ✗

CopperDroid [128] Queued - - -
SandDroid [129] ✓ ✓ ✓ ✗

inbox statistics and sending it periodically to a pre-configured number. After
a certain delay, the MessageSender class instantiates an object of the Loader
class which handles the downloading of additional code from the Internet and
dynamically loading it using DCL APIs. It makes use of encrypted parameters
and encryption/decryption functionality provided by other auxiliary classes.

Analysis results: We uploaded InboxArchiver to a number of online Android
app analysis systems. Table 2.2 shows a summary of the obtained results.
Column Analyzed shows whether the app is properly analyzed or not. The
next two columns, Obfuscation and DCL, show if the analysis systems detect
obfuscation and the use of dynamic code loading, respectively. The last column
in the table represents the final remarks about the app.

Among the online analysis tools shown in Table 2.2, we did not receive any results
from CopperDroid and the app is still in the queue for more than a year now. All
other tools were unable to detect that the submitted app is malicious. VirusTotal
scanned the app with 54 antivirus tools, including BitDefender, GData, AVG,
Avast and Kaspersky, etc., and none of them labeled it suspicious. UnDroid and
SandDroid termed the app as obfuscated, while SandDroid could also detect
dynamic code loading in the app. However, it could not detect the loaded file
and analyze it.

2.3 Bypassing Static Analysis via Dynamic Code Update 39

Fig. 2.4 InboxArchiver

40 Background

2.4 Dynamic analysis

In this section we turn to describe and discuss dynamic analysis approaches for
analyzing Android applications. We succinctly present how dynamic analysis
provides to overcome some limitations of static analysis and discuss its different
applications for the Android platform.

Static analysis relies on the availability of all the information at analysis time,
hence, it suffers from dynamic features and unavailability of information that
are known only at execution time, e.g., the parameters used in the dynamic
code update APIs. In contrast to static analysis, dynamic analysis executes a
program and observes the results. Various dynamic analysis approaches have been
proposed for monitoring apps behavior at runtime, they can be organized in two
main categories: those that modify the Android platform [123, 59, 128, 149, 121,
72, 122, 48, 49] and those that operate at the application layer [40, 116, 56, 140,
38, 42]. Among the former belongs approaches altering the Android Framework,
instrumenting the APIs or other core components, as well as approaches that
operate at the kernel level. Instead, the latter category includes any approaches
that operate at user-space by means of app’s code instrumentation both statically
or dynamically as well as approaches that offer app virtualization [38] or dynamic
sandboxing via ptrace capabilities [42] to cite a few.

Applying considerable modifications to the Android platform, TaintDroid [59]
was among the first dynamic analysis tools allowing to track propagation of
information. Sources of sensitive information are typically the device sensors
or private user information, and sinks are network interfaces; thus the main
scope of TaintDroid is detection of privacy leaks. This approach is followed by
DroidScope [144]. DroidScope allows to emulate app execution and trace the
context at different levels of the Android software stack: at the native code level,
at the Dalvik bytecode level, at the system API level, and at the combination of
both native and Dalvik levels. Other approaches operate by requiring only little
modifications to the Android platform in order to acquire the root privilege [123]
or altering the ART compiler [39, 126] for monitoring target apps. Yet, emulator
and the ptrace capabilities are exploited to trace runtime execution [152, 128].
Those approaches offer remarkable security guarantees as strong boundaries are
defined by the monitoring system, but on the other hand they might not be
suitable for several scenarios where strong modifications to the Android platform

2.4 Dynamic analysis 41

or the root privilege would be avoided as they are hard to maintain and might
participate to increase the attack surface as overall.

A different line of investigations have proposed to alter the app’s code itself
in order to provide dynamic analysis capabilities. The technique for inserting
extra code into an application to observe its behavior is called instrumentation
and is becoming the common way for dynamic analysis of android applications.
Aurasium [140] presented the first app-based static instrumentation approach
allowing to monitor and alter app’s behavior at runtime without any modifications
to the Android platform. This approach based on altering app’s files has been
applied in several successive works as to insert Inline Reference Monitor (IRM)
within the app’s bytecode [53, 40], or modifying the bytecode to extract runtime
values as in [116] as well as sandboxing the application at both Java and native
layers [155]. One of the main and remarkable disadvantage of these approaches
is that altering the target app’s bytecode, or any of its files, changes also its
signature. Moreover, any static instrumentation based approach present the same
limitations as for static analysis, in fact those approaches need first to locate
the interesting code (e.g., call-site to Android APIs) in order to then apply the
instrumentation (i.e., IRM), thus they suffer from dynamic code update as well
as code obfuscation. To overcome this restrictions, dynamic instrumentation
approaches allow to place hooks dynamically. Dynamic instrumentation is a very
well known approach [93, 104, 47] for tracing and altering code behavior. Instead
of rewriting interesting call-site locations within the app’s bytecode, as app’s
bytecode static instrumentation does, the dynamic instrumentation approach
on the Android platform shows two main techniques: (I) leveraging on the root
privilege to interpose hooks via direct manipulation of target app’s process space
and (II) inserting a lightweight stub code within the target app that would
dynamically instrument its virtual memory setting dynamic hooks in place. It is
worth noting that the latter technique does not alter any bit of app’s bytecode,
but still it shares a remarkable limitation common to static instrumentation
approaches for the reason that it breaks the app’s signature. A completely
different approach based on app virtualization has been presented by Backes
et. al. in [38], it relies on the isolated_process Android feature and provides
a Broker core component that manages instances of virtualized apps bridging
communications back and forward to the Android platform. As enterprise-wise
solution, Wang et. al. proposed a dynamic security policy enforcement scheme
[135] via dynamic memory instrumentation.

42 Background

Dynamic analyses leads to under-approximates, as it is challenging to cover all
code, and thus tend to produce false negatives. Code coverage is a well-known
limitation of dynamic analysis approaches. However, it can be improved with
stimulation. As Android apps are highly interactive, many behaviors need to
be triggered via the interface, received intents, or with smart, automatic event
injectors [66, 94, 95, 88, 117, 150]. Furthermore, for the purpose of security
analysis rather than testing, it is required to stimulate/reach only specific points
of interest (POI) in the code rather than stimulating all the code paths in an app.
In literature, researchers have focused mainly on providing inputs to make an app
follow a specific path. Providing the exact inputs and environment becomes very
hard as different apps may require different execution environments. Moreover,
not all inputs can be predicted statically, because of obfuscation or other hiding
techniques.

Chapter 3

ARTDroid: A Virtual-Method
Hooking Framework on Android
ART Runtime

Various static and dynamic analysis techniques are developed to detect and ana-
lyze Android malware. Some advanced Android malware can use Java reflection
and JNI mechanisms to conceal their malicious behaviors for static analysis.
Furthermore, for dynamic analysis, emulator detection and integrity self-checking
are used by Android malware to bypass all recent Android sandboxes. In this
chapter we present ARTDroid, an framework for hooking virtual-method calls
under the latest Android runtime (ART). A virtual-method is called by the
ART runtime using a dispatch table (vtable). ARTDroid can tamper the vtable
without any modifications to both Android framework and app’s code. The
ARTDroid hooking framework can be used to build an efficient sandbox on real
devices and monitor sensitive methods called in both Java reflection and JNI
ways.

3.1 Introduction

The idea of hooking on ART is tampering the virtual method table (vtable) for
detouring virtual-methods calls. The vtable is to support the dynamic-dispatch
mechanism. And, dynamic dispatch, i.e., the runtime selection of a target
procedure given a method reference and the receiver type, is a central feature of

44 ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime

object-oriented languages to provide polymorphism. Since almost all Android
sensitive APIs are virtual methods, we can collect the apps behavior by using
ARTDroid to hook Android APIs methods.

To summarize, this work makes the following contributions.

– We propose ARTDroid, a framework for hooking virtual-method calls with-
out any modifications to both the Android system and the app’s code.

– We discuss how ARTDroid is made fully compatible with any real devices
running the ART runtime with root privilege.

– We demonstrate that the hooking technique used by ARTDroid allows to
intercept virtual-methods called in both Java reflection and JNI ways.

– We discuss applications of ARTDroid on malware analysis and policy en-
forcement in Android apps.

– We released ARTDroid as an open-source project 1.

The rest of this chapter is organized as follows. Section 3.2 introduces the
background about Android and the new Android runtime ART. The ARTDrod
framework is introduced in Sec. 3.3 and its implementation is discussed in
Sec. 3.4. Performance evaluation is presented in Sec. 3.5, and discussion and
applications are in Sec. 3.6. Section 3.7 discuss some related works, and we
conclude this chapter in Sec. 3.8.

3.2 Background

Android apps are usually written in Java and compiled to Dalvik bytecode (DEX).
To develop an Android app, developers typically use a set of tools via Android
Software Development Kit (SDK).

With Android’s Native Development Kit (NDK), developers can write native
code and embed them into apps. The common way of invoking native code on
Android is through Java Native Interface (JNI).

1https://vaioco.github.io

https://vaioco.github.io

3.2 Background 45

3.2.1 ART Runtime

ART, silently introduced in October 2013 at the Android KitKat release, applies
Ahead-of-Time (AoT) compilation to convert Dalvik bytecode to native code.

At the installation time, ART compiles apps using the on-device dex2oat tool
to keep the compatibility. The dex2oat is used to compile Dalvik bytecode and
produce an OAT file, which replaces Dalvik’s odex file.

Even Android framework JARs are compiled by the dex2oat tool to the boot.oat
file. To allow pre-loading of Java classes used in runtime, an image file called
boot.art is created by dex2oat. The image file contains pre-initialized classes
and objects from the Android framework JARs. Through linking to this image,
OAT files can call methods in Android framework or access pre-initialized objects.
We are going to briefly analyze the ART internals, using as codebase the Android
version 6.0.1_r10.

1 // C++ mirror of java.lang. Class
2 class MANAGED Class FINAL : public Object {
3
4 [...]
5 HeapReference <IfTable > iftable_ ;
6 HeapReference <String > name_ ;
7 HeapReference <Class > super_class_ ;
8 HeapReference < PointerArray > vtable_ ;
9 uint32_t access_flags_ ;

10 uint64_t direct_methods_ ;
11 uint64_t virtual_methods_ ;
12 uint32_t num_virtual_methods_ ;
13 [...]
14 }

Fig. 3.1 ART Class type

The ART runtime uses specific C++ classes to mirror Java classes and methods.
Java classes are internally mirrored by using Class2. In Figure 3.1, virtual-
methods defined in Class are stored in an array of ArtMethod* elements, called
virtual_methods_ (line 11). The vtable_ field (line 8) is the virtual method
table. During the linking, the vtable from the superclass is copied, and the
virtual methods from that class either override or are appended inside it. Basically,
the vtable is an array of ArtMethod* type. Direct methods are stored in the
direct_methods_ array (line 10) and the iftable_ array (line 5) contains
pointers to the interface methods. We leave interface-methods hooking for future

2art/runtime/mirror/class.h

46 ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime

work. The Figure 3.2 shows the definition of ArtMethod class3. The main
functionality of ArtMethod class is to represent a Java method.

1 class ArtMethod FINAL {
2 [...]
3 GcRoot < mirror :: Class > declaring_class_ ;
4 uint32_t access_flags_ ;
5 uint32_t method_index_ ;
6 [...]
7 struct PACKED (4) PtrSizedFields {
8 void* entry_point_from_interpreter_ ;
9 void* entry_point_from_jni_ ;

10 void* entry_point_from_quick_compiled_code_ ;
11 } ptr_sized_fields_ ;
12 }

Fig. 3.2 ART ArtMethod type

By definition, a method is declared within a class, pointed by the declaring_class_
field (line 3). The method’s index value is stored in the method_index_ field
(line 5). This value is the method’s index in the concrete method dispatch
table stored within method’s class. The access_flags_ field (line 4) stores
the method’s modifiers (i.e., public, private, static, protected, etc. . .) and the
PtrSizedFields struct, (line 7), contains pointers to the ArtMethod’s entry
points. Pointers stored within this struct are assigned by the ART compiler
driver at the compilation time.

3.2.2 Virtual-methods Invocation in ART

In this paragraph we describe how ART runtime invokes virtual-methods by choos-
ing the virtual-method android.telephony.TelephonyManager’s getDeviceId
as an example. Figure 3.3 shows that the getDeviceId method is invoked on
TelephonyManager object’s class (line 4). Figure 3.4 shows dumped compiled
codes for arm architecture by oatdump tool.

1 package org.sid. example ;
2 public class MyClass {
3 public String callGetDeviceId (TelephonyManager tm){
4 String imei = tm. getDeviceId ();
5 return imei;
6 }
7 }

Fig. 3.3 Call to method getDeviceId
3art/runtime/art_method.h

3.2 Background 47

1 CODE: (code_offset =0 x002d93b5 size_offset =0 x002d93b0 size =60) ...
2 0 x002d93b4 : f5bd5c00 subs r12 , sp , #8192
3 0 x002d93b8 : f8dcc000 ldr.w r12 , [r12 , #0]
4 suspend point dex PC: 0 x0000
5 GC map objects : v1 ([sp + #36]) , v2 (r6)
6 0 x002d93bc : e92d40e0 push {r5 , r6 , r7 , lr}
7 0 x002d93c0 : b084 sub sp , sp , #16
8 0 x002d93c2 : 1c07 mov r7 , r0
9 0 x002d93c4 : 9000 str r0 , [sp , #0]

10 0 x002d93c6 : 9109 str r1 , [sp , #36]
11 0 x002d93c8 : 1c16 mov r6 , r2
12 0 x002d93ca : 1c31 mov r1 , r6
13 0 x002d93cc : 6808 ldr r0 , [r1 , #0]
14 suspend point dex PC: 0 x0000
15 GC map objects : v1 ([sp + #36]) , v2 (r6)
16 0 x002d93ce : f8d00234 ldr.w r0 , [r0 , #564]
17 0 x002d93d2 : f8d0e02c ldr.w lr , [r0 , #44]
18 0 x002d93d6 : 47 f0 blx lr

Fig. 3.4 Compiled native code of callGetDeviceId

Before discussions on native code, in Fig. 3.4, we briefly introduce the devirtual-
ization. To speedup runtime execution, during the on-device compilation time,
virtual-methods calls are devirtualized. Devirtualization process uses method’s
index to point to the relative element inside the vtable within receiver instance’s
class. As result, compiled code contains static memory offset used to get the
called ArtMethod’s memory reference.

Now, we discuss the native code generated for the method callGetDeviceId. The
line 4 in Figure 3.3 is compiled in lines 11-18 in Figure 3.4. The TelephonyManager
instance (an Object4 type) is stored in the register r2. Then, the instance’s class
is retrived from address in r2 and stored in the register r0 (line 13). The method
getDeviceId (an ArtMethod type) is directly retrived (line 16) from memory using
a static offset from address stored in r0. Finally, the getMethodId’s entrypoint is
called using the ARM branch instruction blx (line 18). The entrypoint’s address
is also retrived by using a static memory offset from the ArtMethod reference
(line 17).

In Java, it is allowed to invoke a method dynamically specified using Java
Reflection.

Reflection calls managed by ART runtime use the function InvokeMethod5.
This function calls FindVirtualMethodForVirtualOrInterface which returns
a pointer to the searched method by looking in the vtable_ array of receiver’s
class.

4art/runtime/mirror/object.h
5art/runtime/reflection.cc

48 ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime

A Java method can also be invoked by native code using the Call<type>Method
family functions, exposed by JNI. For instance, function CallObjectMethod(JNIEnv*
env, jobject obj, jmethodID mid, ...) 6 is used to call a virtual-method
which returns an Object type. When a Java method is invoked from native
code using a function from Call<type>Method family, the ART runtime will go
through the vtable_ array to find a matched method matching.

There are two different ways to get a Java virtual-method’s reference. One is
through the reflection APIs exposed by java.lang.Class. For instance, the
method getMethod returns a reference which represents the public method with
a matched method signature. All java.lang.Class’ methods, which permits to get
a virtual-method reference, can use the virtual_methods_ array to lookup the
requested method. The other way is offered by the JNI function FindMethodID.
It searches for a method matching both the requested name and signature by
looking in the virtual_methods_ array within the class reference passed as
argument.

3.3 Framework Design

The goal of ARTDroid is to avoid both app’s and Android system code modifica-
tions. So, the design of ARTDroid is oriented towards directly modify the app’s
virtual-memory tampering with ART internals representation of Java classes and
methods. ARTDroid consists of two components. The first component is the
core engine written in C and the other one is the Java side that is a bridge for
calling from user-defined Java code to ARTDroid’s core. The core engine aims to:
find target methods’ reference in virtual memory, load user-supplied DEX files,
hijack the vtable and set native hooks. Moreover, it registers the native methods
callable from the Java side. ARTDroid is configured by reading a user-supplied
JSON formatted configuration file containing the target methods list.

Suppose that you want to intercept calls to a virtual-method. You have to define
your own Java method and override the target method by using ARTDroid API.
All calls to the target method will be intercepted and then go to your Java
method (we call it patch code). ARTDroid further supports loading patch code
from DEX file. This allows the “patch” code to be written in Java and thus

6art/runtime/jni_internal.cc

3.3 Framework Design 49

simplifies interacting with the target app and the Android framework (Context,
etc. . .).

ARTDroid is based on library injection and uses Android Dynamic Binary
Instrumentation toolkit[ADB] released by Samsung. The ABDI tool is used by
ARTDroid to insert trace points dynamically into the process address space.

ARTDroid requires the root privilege in order to inject the hooking library in
the app’s virtual memory, and the hooking library can be injected either in a
running app or in the Zygote[83] master process.

Now, we explain the framework design in figures. Figure 3.5(a) shows the app’s
memory layout without ARTDroid. The class TelephonyManager is loaded
within the boot image (boot.art). This Class contains both the vtable_ and
virtual_methods_ arrays where the pointer to method getDeviceId is stored. In-
stead, Figure 3.5(b) represent the app’s memory layout while ARTDroid hooking
library is enabled. First, the hooking library is loaded inside the app’s virtual
memory (step 1), and then ARTDroid loads the user-defined patch code by
DexClassLoader’s methods (step 2). After this, ARTDroid uses its internal
functions to retrive target methods reference. So, it can hook these methods by
both vtable_ and virtual_methods_ hijacking (step 3).

50 ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime

(a) ARTDroid not enabled

(b) ARTDroid enabled

Fig. 3.5 App virtual memory layout

As discussed in 3.2.2, the vtable_ array is used by the ART runtime to invoke
a virtual-method. Instead, the virtual_methods_ array is accessed to return a
virtual-method’s reference from memory. ARTDroid exploits these mechanisms to
hooking virtual-methods by both vtable_ and virtual_methods_ hijacking
means.

3.4 Implementation

To get the target method’s reference, ARTDroid uses the JNI function FindMethodID.

ARTDroid overwrites the target method’s entry within both the vtable_ and
virtual_methods_ array by writing the address of the method’s patch code.
The original method’s reference is not modified by ARTDroid and its address is

3.5 Evaluation 51

stored inside the ARTDroid’s internal data structures. This address will be used
to call the original method implementation.

When ARTDroid hooks a target method, all calls to that method will be in-
tercepted and they will go to the patch code. Then, the patch code receives
the this object and the target method’s arguments as its parameters. To call
the original implementation of target method, ARTDroid exports the function
callOriginalMethod to the Java patch code. Internally, ARTDroid’s core engine
calls the original method implementation using the JNI CallNonVirtual<type>Method
family of routines. These functions can invoke a Java instance method (non-static)
on a Java object, according to specified class and methodID.

The original method implementation is invoked by ARTDroid using its address
internally stored before the hooking phase. To guarantee a reliable hooking, ART-
Droid uses ADBI features to hook the functions of CallNonVirtual<type>Method
family. By doing this, all calls to these functions are checked by ARTDroid to
block calls to an hooked virtual-method only if these calls do not come from
ARTDroid’s core engine.

3.5 Evaluation

3.5.1 Performance Test

To measure the effectiveness of virtual-methods hooking, we firstly need a test
set of sensitive methods. SuSi[115] provides sensitive methods in Android 4.2.
To verify how many of these methods are declared as virtual, we firstly test
them in Android emulator in version 4.2. We use Java reflection to call these
methods at runtime. The result of our experiment shows that a remarkable
number of virtual-methods could be used to threaten user privacy. The following
list describes our experiment results:

– 65.1% of these methods are declared as virtual

– 6.6% are non-virtual

– 28.3% methods not found

Unfortunately, the only methods list available from SuSi is from Android version
4.2. To overcome this limitation, we analyze the sensitive methods list offered

52 ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime

by PScout[36]. The methods of PScout are available from version 2.2 to version
5.1.1. Our another test is on Android 5.1.1 codebase and it is carried on a Nexus
6 running Android 5.1.1. After analyzing them, we know that only 1.0% of
methods are non-virtual.

– 59.2% of these methods are declared as virtual

– 1.0% are non-virtual

– 39.8% methods not found

However, some methods cannot be found via Java reflection because corresponding
classes or methods are not visible to normal apps. They belong to the Android
system apps.

So, we can conclude that most of sensitive methods are virtual from our test
results. ARTDroid can cover all sensitive methods except 1.0% methods on
Android 5.1.1.

The overhead introduced by ARTDroid depends much on the behavior of the
patch code.

To measure the overhead, we developed a test app, which repeatedly calls sensitive
methods or APIs. In particular, this application attempts to perform the following
operations by calling Android APIs (both via Java reflection and JNI) : initiate
several network connections, access sensitive files on the SD card (such as the
user’s photos), send text message to premium numbers, access the user’s contact
list and retrive the device’s IMEI.

We used the profiling facilities offered by Android calling the android.os.Debug’s
startMethodTracing/stopMethodTracing. Then, the produced traces can be ana-
lyzed using either traceview or dmtracedump. To measure the effective overhead
due to ARTDroid, we call the methods using both Java reflection and JNI in
addition to the normal invocation. We ran the test 10,000 times for each method,
once with ARTdroid disabled and then with ARTDroid enabled mode. The
average running time for each call to an hooked method is showed in the following
Table 3.1.

The most of overhead in ARTDroid is caused by the JNI call, which is internally
used to invoke the original method implementation. We registered a worst case
overhead of 25% for each hooked method. Therefore, the total overhead of a call
to an hooked method is around 0.25 seconds. This overhead could be decreased by

3.5 Evaluation 53

adding an internal cache to store methods’ reference called by ARTDroid, instead
of using JNI function FindMethodID at each call. We leave these improvements
as future work.

Table 3.1 Performances

ARTDroid Invoke type

enabled? Normal Reflection JNI

Yes 1.12 s 1.39 s 1.19 s
No 0.88 s 1.14 s 0.94 s

overhead 0.24 s 0.25 s 0.25 s

3.5.2 Case Study

Now, we show a case study by hooking TelephonyManager ’s getDeviceId in
ARTDroid.

1 {" config ": {
2 " debug ": 1,
3 "dex": [{"path": "/data/ local /tmp/dex/ target .dex"}]
4 " hooks ": [
5 {
6 "class -name": " android / telephony / TelephonyManager ",
7 "method -name": " getDeviceId ",
8 "method -sig": "() Ljava /lang/ String ;",
9 "hook -cls -name": "org/sid/ example / HookCls "

10 }]
11 }}

Fig. 3.6 ARTDroid configuration file

Figure 3.6 shows the configuration file which contains the definition of methods to
hook. This file is used to define the information requested by ARTDroid, which
are: method’s name and signature and the class’ name where the patch code
is defined in. The patch code called instead of method getDeviceId is showed
inFigure 3.7.

To restore the original call-flow, ARTDroid exposes to Java patch-code the native
function callOriginalMethod. This function receivers as first argument the

54 ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime

1 public String getDeviceId () {
2 String key = " android / telephony / TelephonyManagergetDeviceId () Ljava /lang/ String ;";
3 Object [] args = {};
4 return (String) callOriginalMethod (key , this , args) + " IMPS2016 !!";
5 }

Fig. 3.7 Patch code for method getDeviceId

string key to identify the target method in the dictionary of hooked methods,
internally managed by ARTDroid. Second argument represents the this object
and the last argument is the array of method’s arguments. All future calls to
method getDeviceId will be redirected to the patch code, independently if these
calls are made using Java reflection mechanisms or JNI.

3.6 Discussion

We note that the main goal of our work is to propose a novel technique to
hook Java virtual-methods, our approach can be used to enforce fine-grained
user-defined security policies either on real-world devices or emulators as well.
Previous research has shown that even benign apps often contain vulnerable
components that expose the users to a variety of threaths: common examples are
component hijacking vulnerabilities[92], permission leaking [69],[78] and remote
code execution vulnerabilities[113].

Suppose the target app is implementing the following features:

1. dynamic code loading

2. code obfuscation (Java reflection, code encryption, etc. . .)

3. integrity checks (i.e, due to copyright issue)

4. invoke of security-sensitive Java methods via JNI

5. detection/evasion of emulated environments (i.e, due to copyright issue)

An approach based only on static analysis cannot properly extract security relevant
information due to the use of 1, 2 and 4. Moreover, all existing approaches based
on bytecode rewriting techniques cannot analyze that app mainly for the use of
integrity checks. Note that since the use of 5, in contrast to ARTDroid, all the
existing approaches based on emulated environments can not properly analyze

3.6 Discussion 55

the behavior of that app. Instead, ARTDroid is still able to analyze that app.
Obviously, ARTDroid has its limitations and corner cases. The main limitations
is due to the running of the hooking library inside the same process space of the
target app. In a scenario where an attacker want to bypass our approach, it can
directly invoke a syscall through inline assembly code to gets sensitive results
bypassing ARTDroid. We note that the direct system call is not a common
technique used by current daily Android malware. Nevertheless, we envise that
ARTDroid can be used in conjunction with existing works like [128],[149], [140]
to provide an additional layer of analysis.

Even though Java direct methods are almost not used for both malicious and
security-sensitive behaviors, our future work will support both interface-methods
and direct-methods hooking. A possible solution is that we can statically in-
strument the dex2oat and replace the system original one once we get root
privilege. The instrumented dex2oat can intercept all interface-methods and
direct-methods.

Since ARTDroid hooking library can be injected directly either in Zygote or
when the target app is going to be spaw.

Even if the app under testing can tamper with the vtable_ , it can not get
the original method’s address. In fact, after ARTDroid is enabled, the original
method is no more pointed by both the vtable_ and virtual_methods_ arrays.

In section 3.5, we have presented an evaluation about the effectiveness of virtual-
methods hooking in the Android system by analyzing results obtained from both
SuSi[SuS] and PScout[36] projects. Research results indicate that there is a
considerable percentage of sensitive methods which are virtual. Since, ARTDroid
can hook virtual-methods and tamper with their arguments, it could be used
to define security policies to verifiy apps’ behaviors at runtime. For instance,
ARTDroid can be used to automatically identify apps which are sending SMS to
premium numbers.

Since the main downside of dynamic analysis techniques is the code-coverage
issue, we envise that ARTDroid can be integrated with automatic exploration
system like Smartdroid[150], proposed by Cong et al.

In the following, we show some applications of ARTDroid:

– Collect apps behavior at runtime. Analysis of Android API function calls
permits the extraction of information about the behavior of apps.

56 ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime

– Verify security policies at runtime. When users install an app, they can
enforce some policies in ARTDroid, so that the new app’s sensitive behaviors,
such as sending SMS, can be restricted by ARTDroid.

– Android malware analysis. Some trick malware use a lot of dynamic analysis
evading techniques. But in ARTDroid enforced sandbox, our hooking
technique cannot be bypassed by current evading techniques. Also, we can
easily build our ARTDroid sandbox either on Android emulator or on real
devices.

3.7 Related Work

Several approaches have been proposed to provide methods hooking on Android.
A family of approaches is based on bytecode rewriting technique. The app
can be instrumented offline by modifying the app bytecode. AppGuard[40]
proposed by Baches et ak, uses this approach to automatically repackage target
apps to attach user-level sandboxing and policy enforcement code. Zhou et
al. proposed AppCage[155], a system to confine the runtime behavior of the
thid-party Android apps. Davis et al. proposed Retroskeleton[52], an Android
app rewriting framework for customizing apps, which is based on their previous
work, I-ARM-Droid[53].

While these approaches are valuable and each of them has its own advantages as
well as disadvantages, they have different significant down sides. This approach
is not feasible against apps that verify their integrity at runtime. This kind
of defense (anti-tampering) is also used in benign apps as well. To be able to
replace API-level calls with a secure wrapper, bytecode rewriters need to identify
desidered API call-site within the target app. As mentioned in [71],[149], apps
that use either Java reflection or dynamically code loading can bypass the app
rewriting technique. Moreover, apps which are using JNI to call Java methods
can bypass this techniques as well.

A different approach to implement methods tracing can be achieved by using a
custom Android system or by using an emulated environment (e.g., a modified
QEMU emulator). Enck et al. proposed TaintDroid[59], an Android modified
system to detect privacy leak. StayDynA[149] a system for analyzing security
of dynamic code loading in Android, uses a custom system image which can
be used only on Nexus like devices. Tam et al. presented CopperDroid[128], a

3.7 Related Work 57

framework built on top of QEMU to automatically perform dynamic analysis of
Android malware. These families of approaches, which are based on emulators,
can be bypassed by emulation detection techniques [112] [132]. A comparison on
Android sanbox has been published by Neuren et al. in [105].

Mulliner et al. proposed PatchDroid[100], a system to distribute and apply third-
party securities patches for Android. This system uses the DDI[DDI] framework.
DDI allows to replace arbitrary methods in Dalvik code with native function
call using JNI. In [101], Mulliner et. al. shown an automated attack against
in-app billing using the DDI capabilities to control the in-app billing purchase
flow. Note that the methods used to achieve in-app billing are defined as virtual.

Frida[Fri], a dynamic code instrumentation toolkit, Xposed framework [Xpo] and
Cydia substrate for Android [Cyd] share similarity with the DDI intrumentation
approach. These projects were created for device modding and, in contrast with
DDI, require replacing of system components suck as zygote. Currently, Xposed
compatibility with ART runtime is actually in beta stage7 and the framework
installation condition is to flash the device by a custom recovery image. While
these approaches are very suitable under the Dalvik VM, they are totally limited
for using under the ART runtime. In fact, both DDI, Frida and Cydia substrate
are not able to work under the ART runtime.

Aurasium [140] builds a reference monitor into application binaries. The Dalvik
code is not patched, but new classes and native code are added to ensure that
the instrumentation code is run first. Clearly, such approaches are not effective
if the code is obfuscated and protected against static analysis and disassembly.
Also note that the package signature of the instrumented applications are broken
when they are patched statically. In comparison, our approach does not need to
repack the app, our modifications are in-memory only and thus we do not break
code signing.

Recent works proposed novel approaches that aim to sandbox unmodified apps
in non-rooted devices running stock Android. Boxify[38] presented an approach
that aims to sandbox apps by means of syscall interposition (using the ptrace
mechanism) and it works by loading and executing the code of the original app
within the context of another, monitoring, app. A similar work, [42] uses the
same approach to sandbox arbitrary Android apps. The approach presented in

7http://forum.xda-developers.com/showthread.php?t=3034811

http://forum.xda-developers.com/showthread.php?t=3034811

58 ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime

both of these recent works, represent one of the most promising and interesing
future work direction.

3.8 Chapter Summary

In this chapter, we presented ARTDroid, a framework for hooking virtual-methods
under ART runtime. ARTDroid supports the virtual-method hooking without
any modifications to both Android system and app’s code. ARTDroid allows to
analyze apps even if they employ anti-tampering techniques or they use either
Java reflection or JNI to invoke virtual-methods. Moreover, ARTDroid can be
used on any real devices with ART runtime once getting the root privilege. The
applications of ARTDroid include dynamic analysis of Android malware on real
devices or security policies enforcement.

Chapter 4

TeICC: Targeted Execution of
Inter-Component
Communications in Android

Effective analysis of applications is essential to understanding their behavior.
Two analysis approaches, i.e., static and dynamic, are widely used; although,
both have well known limitations. Static analysis suffers from obfuscation and
dynamic code updates. Whereas, it is extremely hard for dynamic analysis to
guarantee the execution of all the code paths in an app and thereby, suffers from
the code coverage problem. However, from a security point of view, executing
all paths in an app might be less interesting than executing certain potentially
malicious paths in the app. In this chapter, we present a hybrid approach
that combines static and dynamic analysis in an iterative manner to cover their
shortcomings. We use targeted execution of interesting code paths to solve the
issues of obfuscation and dynamic code updates. Our targeted execution leverages
a slicing-based analysis for the generation of data-dependent slices for arbitrary
methods of interest (MOI) and on execution of the extracted slices for capturing
their dynamic behavior. Motivated by the fact that malicious apps use Inter
Component Communications (ICC) to exchange data , our main contribution is
the automatic targeted triggering of MOI that use ICC for passing data between
components. We implement a proof of concept, TeICC, and report the results of
our evaluation.

60 TeICC: Targeted Execution of Inter-Component Communications in Android

4.1 Introduction

Execution of certain code paths in mobile apps depends upon a combination of
various user/system events. Generally, it is hard to predict inputs which can
stimulate the required behavior in these apps. This feature of mobile apps is
widely used by malware developers to conceal malicious functionality. For the
purpose of security analysis rather than testing, it is required to stimulate/reach
only specific points of interest (POI) in the code rather than stimulating all
the code paths in an app. In literature, researchers have focused mainly on
providing inputs to make an app follow a specific path. Providing the exact
inputs and environment becomes very hard as different apps may require different
execution environments. Moreover, not all inputs can be predicted statically,
because of obfuscation or other hiding techniques. In this chapter, we propose a
fully automated hybrid system which uses a slicing based approach for target
triggering of a given MOI. It performs static data-flow analysis [33, 62] based
on program slicing technique [138] to extract target slices which hold data-
dependency with the parameters used by the given MOI. Moreover, our slicing
approach permits slice extraction following the ICC flow across different app
components. Importance of ICC in malware for sharing sensitive data is shown
by Bodden et al. in [84]. However, to the best of our knowledge, none of the
existing approaches [116, 37] for targeted triggering support the extraction of
interesting paths across different Android components.

In our proof of concept, TeICC, we leverage an enhanced version of SAAF to
achieve program slicing [74]. We modified SAAF adding more sensitivity and
support for ICC using a System Dependency Graph (SDG) (cfr. §4.3). Besides
that, TeICC, employs a modified version of Stadyna [149] which integrates
ARTDroid [50] to support dynamic execution of the extracted slices to resolve
obfuscation and dynamic code updates. It runs on a real device/emulator with
no modification to the Android framework.

TeICC operates in an iterative manner where a SDG helps extraction of slices
across multiple components for targeted execution and targeted execution over-
comes the limitations of static analysis by resolving obfuscation and dynamic
code updates. It results in construction of an improved SDG and extraction of
extended slices for better analysis of apps.

Contributions:

4.1 Introduction 61

– We extend the backward slicing mechanism to support ICC, i.e., extract
slices across multiple components. Moreover, we enhance SAAF to perform
data flow analysis with context-, path- and object-sensitivity.

– Targeted execution of the extracted inter-component slices without modifi-
cation to the Android framework.

– We design and implement a hybrid analysis system based on static data-flow
analysis and dynamic execution on real-world device for improved analysis
of obfuscated apps.

62 TeICC: Targeted Execution of Inter-Component Communications in Android

4.2 Motivating example

The rising use of techniques such as obfuscation and ICC for information leakage
by newly found malware motivates this work. Existing analysis approaches
generally do not support information-flow analysis across multiple app components
in obfuscated apps. As a result, malware use these features for evading these
analysis tools. As reported by different antivirus companies [ace, 21, 1, vbm, rum],
obfuscated malware has started to show up more frequently. This trend poses
a strong challenge for the current static analysis tools, which are unable to
automatically analyze apps in the presence of obfuscation or dynamic code
loading. Furthermore, as demonstrated in [84], the ICC mechanism offered by
Android is used by both normal and malicious apps for passing data between
different Android components.

Listing 4.1 MessageReceiver
1 public class MessageReceiver extends BroadcastReceiver {
2 public void onReceive (Context context , Intent intent) {
3 SharedPreferences v3 = ...
4 Map v0 = this. retrieveMessages (intent);
5 Iterator v6 = v0. keySet (). iterator ();
6 while (v6. hasNext ()) {
7 Object v2 = v6.next ();
8 Object v5 = v0.get(v2);
9 Intent v4 = new Intent (context , SendService . class);

10 v4. putExtra (" number ", ((String)v2));
11 v4. putExtra ("text", ((String)v5));
12 context . startService (v4);
13 [...]
14 }
15 } }

Listing 4.2 SendService
1 public class SendService extends IntentService {
2 protected void onHandleIntent (Intent intent) {
3 if(v1. equals (" REPORT_INCOMING_MESSAGE ")) {
4 Sender . request (this. httpClient , "http ://37.1.204.175/? action = command

", RequestFactory
5 . makeIncomingMessage (v2 , intent . getStringExtra (" number "),

intent . getStringExtra (
6 "text")). toString ());
7 return ;
8 }
9 }}

10 public class Sender {
11 public static JSONObject request (DefaultHttpClient hc , String serverURL ,

String data) throws Exception {
12 HttpPost v1 = new HttpPost (serverURL);

4.2 Motivating example 63

13 StringEntity v3 = new StringEntity (data , "UTF -8");
14 HttpResponse v2 = hc. execute (((HttpUriRequest)v1));
15 }
16 }

To ease the understanding of our contributions, we are going to introduce a
code snippet of a real-malware sample reported by FireEye in [fir]. Listing 4.1
shows the de-obfuscated version of the code used to intercept and then report the
incoming SMS. The forwarding process is defined in a service component. The
MessageReceiver (line 2) is called for each incoming SMS and then an Android
service is started by an Intent (line 12). The number and text data are stored
within the Intent (lines 10, 11). Note that the original obfuscated malware uses
string encryption on the constant string along with Java reflection for calling
ICC methods. Then the started service, shown in Listing 4.2, gets data from
the incoming Intent (lines 5, 6) and leaks (line 14) SMS number and text via a
remote server connection (the server IP address string was obfuscated as well).

To the best of our understanding, static analyzers [108, 107, 84, 67], are not
successful in analyzing such cases because of both encryption and reflection
techniques used by this malware sample. Moreover, also hybrid approaches
proposed in [116] and [37] cannot properly analyze the sample because they lack
support for ICC.

64 TeICC: Targeted Execution of Inter-Component Communications in Android

4.3 Our approach

(a) SDG - First Iteration (b) SDG - Second Iteration

Fig. 4.1 SDG during the first and second iteration. Comp: Component

During a normal execution of an Android app, the control transfers between
various components based on certain user or system events. In order to trigger
a specific piece of code inside an app, it is important to provide the exact
user/system events in a specific order to make it follow the target path. We take
a slightly different approach based on isolating target execution paths from within
the app and executing them; thereby avoiding to rely on user/system events.
Target execution paths are isolated by means of a slice extraction mechanism
that leverages backward program slicing across various components of the app.

4.3.1 Slice Extraction

Backward code slicing is a static analysis technique that identifies the data flow
to a certain variable v at point p in the program while tracking the code in
backward direction. In the process it identifies all the code instructions I which
directly or indirectly affect the value of v at point p. This set of instructions I is
called a backward slice. An important property of a backward slice is that it can
execute independently of the rest of the program.

We leverage this property of the backward slice in our approach. Our backward
slicing mechanism starts from a target point and traverses the code in backward
direction until it reaches an entry point in the app. Instructions corresponding
to each target point are marked accordingly and extracted from the program
to be refined and executed separately. In simple apps, a backward slice may
belong to a single app component. However, the complexity of apps these days
demands for more inter component communication. Therefore, approaches based

4.3 Our approach 65

on extracting slices from only a single component might miss critical information
passed through ICC.

4.3.2 Inter-Component Communication

Our approach extends backward slicing across multiple app components. We
build a System Dependency Graph (SDG) before starting slice extraction. A SDG
is a representation of the program highlighting the inter-connectivity and program
flow among various components. Figure 4.1 provides a simplified representation
of a SDG. The nodes in the SDG represent components which are connected to
each other with directed edges where the direction shows the flow of execution
from one component to the other. A SDG also provides information about the
nature of the components, i.e., activity, service, broadcast receiver, etc. This
information is not shown in the figure where we simply refer to them as CompX.
The backward slicing assisted by the SDG then extracts slices which may contain
instructions from multiple components.

Listing 4.3 Extracted and Refined Slice
1 public class MessageReceiver_fake extends BroadcastReceiver {
2 public void onReceive (Context context , Intent intent) {
3 Map v0 = MessageReceiver_fake . retrieveMessages (intent);
4 Iterator v6 = v0. keySet (). iterator ();
5 while (v6. hasNext ()) {
6 Object v2 = v6.next ();
7 Object v5 = v0.get(v2);
8 Intent v4 = new Intent (context , SendService_fake . class);
9 v4. setAction (" REPORT_INCOMING_MESSAGE ");

10 v4. putExtra (" number ", ((String)v2));
11 v4. putExtra ("text", ((String)v5));
12 context . startService (v4);
13 }
14 }
15 }
16 public class SendService_fake extends IntentService {
17 public void onCreate () {
18 [...]
19 this. httpClient = new DefaultHttpClient ();
20 }
21 protected void onHandleIntent (Intent intent) {
22 String v2 = SendService . settings . getString (" APP_ID ", " -1");
23 Sender . request (this. httpClient , "http ://37.1.204.175/? action = command ",

RequestFactory
24 . makeIncomingMessage (v2 , intent . getStringExtra (" number "), intent

. getStringExtra (
25 "text")). toString ());
26 }}

66 TeICC: Targeted Execution of Inter-Component Communications in Android

Our approach uses an iterative mechanism which works in a CreateSDG-ExtractSlice-
Execute cycle. Each phase in this cycle provides input for the next phase. SDGs
help in extracting slices across multiple components and extracted slices simplify
execution of target points in the app. Similarly, the execution phase helps in
resolving obfuscation and dynamic code updates which leads to improved creation
of the SDG in the next iteration. Figure 4.1(a) and 4.1(b) show a SDG in two
iterations. In the first iteration, TeICC finds the obvious non-obfuscated ICC
links only. Therefore, the SDG contains Comp4 and Comp5 which are isolated
components. The second iteration reveals that the app has obfuscated ICC links
from Comp2 to Comp5 and from Comp3 to Comp4 as shown in Figure 4.1(b).
This process carries on until the SDG reaches a stable point. At this stage, all
the obfuscated links are resolved and the slices are ready for the final execution
to capture and analyze suspicious behavior.

Most of the state-of-the-art analysis tools would fail to extract the complete slice
in the case of the sample described in §4.2. However, TeICC allows the extraction
of such data-dependent slices because it can follow the ICC flow across multiple
components. Listing 4.3 shows the resulting slice extracted and refined by TeICC;
it shows the corresponding aggregated Java code to ease the understanding.

4.3.3 Slice Execution

The extracted slices are put together in one or more resultant components where
the irrelevant instructions are removed as shown in Listing 4.3. Similarly, the
AndroidManifest.xml file is also modified to include entries for these resultant
components and remove irrelevant ones. The enriched app is then assembled and
signed. The flow of the app is hijacked using a stub code so that it executes the
resultant component after it is launched. The app is then installed and run on a
real device or emulator. The target slice is executed once the resultant component
is started. Similarly for each extracted slice, a resultant component is added to
the app. The app is observed during execution of the resultant components to
capture the target behavior of the app.

4.4 Design and Implementation 67

4.4 Design and Implementation

TeICC is a hybrid system composed of various static and dynamic analysis
modules. Here we describe the design, implementation and work-flow of TeICC.

4.4.1 Overview

Fig. 4.2 TeICC Design

Figure 7.1 illustrates a high level design of TeICC. TeICC consists of a Static
Analyzer, a Slice Analyzer and an App Executor module. The Static Analyzer
further relies on a disassembler to convert an app’s compiled Dalvik bytecode to
Smali code [70]. The Smali files are then taken as input by the SDG Generator
to create the first iteration of a SDG. The Slice Extractor assisted by the SDG
performs backward program slicing on the Smali files to extract target slices,
for the list of MOIs provided as an XML file, across multiple components. The
Slice Analyzer module refines the slices by removing irrelevant instructions and
merging them in the resultant components as shown in Listing 4.3. The Slice
Assembler part of this module assembles the modified app Smali files and signs
the APK file.

The App Executor module takes the app under analysis as input and installs it on
a device for dynamic execution of the target slices. The purpose of the execution

68 TeICC: Targeted Execution of Inter-Component Communications in Android

of target slices is two-fold. One for de-obfuscation and resolving the targets of
dynamic code updates, such as reflection and dynamic class loading. The other
purpose is to capture any sensitive/malicious behavior. For handling dynamic
code updates, we utilize a modified version of Stadyna [149] that can resolve the
targets of reflection and handle the code loaded dynamically. In order to capture
sensitive behavior of app, we leverage an API hooking tool, ARTDroid[50], to
hook sensitive APIs such as the sendTextMessage() API.

4.4.2 Enhancement to Backward Slicer

Our backward slicing mechanism is based on an enhanced version of SAAF which
performs static analysis of Android apps on Smali code [74]. We added certain
features to it to overcome some of its limitations.

We extended SAAF to perform backward slicing across multiple components.
This extended backward slicing is guided by a SDG when the start of a component
is encountered. The backward slicing process continues until it reaches an entry
point of the app according to the SDG. The entry point is a node in the SDG
which has no predecessor. Moreover, we added a slice extraction feature to SAAF,
i.e., to mark all the instructions in the backward slice and write them to another
file for further analysis.

Apart from extending backward slicing to cover ICC, we added other features
which are important for the soundness of static analysis. The most important
features we added are path-, context- and object-sensitivity [87]. Context- and
object-sensitivity is essential to extracting slices across multiple components. We
also utilize path-sensitivity where the conditions leading to different paths are
resolvable. In cases where these conditions are not resolvable, we use an approach
similar to the one used in [116].

4.4.3 Capturing Dynamic Behavior

The idea behind a multiphase iterative model is to overcome the shortcomings of
both static and dynamic analysis. TeICC relies on a modified version of Stadyna
to handle reflection and dynamic code loading[149]. Originally, Stadyna is based
on modifications to Android framework (Android 4.2) to resolve the targets of
reflection and integrate the code loaded dynamically to the original code base

4.4 Design and Implementation 69

for further static analysis. We re-implemented Stadyna removing the need of
Android framework modification by using ARTDroid.

We used ARTDroid to hook framework APIs used for dynamic code updates
as well as those responsible for sensitive behavior. By intercepting calls to the
dynamic code APIs, App Executor provides a feedback to the Static Analyzer for
improved creation of SDGs and extended backward slices. In addition, sniffing
on sensitive API calls enables TeICC to put a check on suspicious app behavior.

70 TeICC: Targeted Execution of Inter-Component Communications in Android

4.5 Evaluation and Discussion

This section presents experimental results that characterize the effectiveness of
TeICC to analyze apps that conceal sensitive information flow using obfuscated
ICC. We evaluate TeICC on two benchmark test suites, DroidBench [dro] and
ICC-Bench [136], specifically crafted for testing tools to detect information flow
concealed using ICC. ICC-Bench includes 9 test case apps and DroidBench
contains 23 apps included in the InterComponentCommunication test case. The
goal of evaluation of TeICC is to test its capability to extract slices across multiple
components in obfuscated apps and execute them. Therefore, we obfuscated
these ICC-based test suites using DexGuard[dex] to evaluate TeICC.

Table 4.1 shows evaluation results for both DroidBench and ICC-Bench test
suites. For brevity we group the apps in categories. The second column contains
the number of ICC links found by TeICC while the third and fourth column show
if the apps have been correctly analyzed by IccTA[84] and TeICC, respectively.
The symbol ✘ means that the tool has failed to analyze the app and the symbol
✔ means that the app has been properly analyzed. Not surprisingly, TeICC
outperforms IccTA on both tests since IccTA cannot detect ICC methods called
by Java reflection and encrypted strings used in intents. As shown in Table 4.1,
TeICC can automatically extract-then-execute 100% of ICC flows in all apps;
except for those which perform ICC involving a Content Provider because
currently TeICC does not provide support for Content Providers. Unfortunately,
we cannot evaluate Harvester[116] because it is not open source. However, we
understand that it will not be successful as well because it does not support
slicing across different Android components.

Our results indicate that TeICC permits to effectively extract-then-execute the
target slices obtained from the program slicing analysis. If, for instance, the target
app contains checks which could prevent the dynamic analysis (i.e., emulation
detection, integrity checks, etc.), they are not extracted in the slicing step
(unless they hold a data dependence with the MOI). In contrast to Harvester
[116], TeICC supports the ICC mechanism which enables it to automatically
extract-and-execute target slices that belong to different Android components.
Similarly, R-Droid [37] lacks support for both ICC and Java reflection mechanisms.
Compared to IccTa[84], TeICC, based on a hybrid approach, permits to enrich
the original app after its targeted execution to resolve obfuscated parts of the app.
Over different executions it permits to extract runtime values from reflection

4.5 Evaluation and Discussion 71

Apps ICC IccTa TeICC

DroidBench

startActivity[1-7] 2/9 ✘ ✔

startActivityForResult[1-4] 0/8 ✘ ✔

sendBroadCast1 0/1 ✘ ✔

sendStickyBroadCast1 0/1 ✘ ✔

startService[1-2] 0/2 ✘ ✔

bindService[1-4] 0/4 ✘ ✔

ContentProvider[1-4] 4/0 ✘ ✘

ICC-Bench

Explicit1 0/1 ✘ ✔

Implicit[1-6] 7/0 ✘ ✔

DynRegister[1-2] 2/0 ✘ ✔

Table 4.1 DroidBench/ICC-Bench apps. ICC: # of implicit/explicit transitions between
components.

72 TeICC: Targeted Execution of Inter-Component Communications in Android

calls or dynamically loaded code and integrate them in the analysis for the next
iteration.

At the moment TeICC does not support the Content Provider component; we
leave it as future work. Moreover, it does not analyze native code. For instance,
if an SMS message is sent from native code, TeICC cannot use this hidden call
to sentTextMessage() as MOI. However, just like TeICC, both [116] and [37] also
do not support native code analysis.

4.6 Chapter Summary 73

4.6 Chapter Summary

In this chapter, we presented a targeted triggering approach, TeICC, to stimulate
ICC in Android apps. TeICC is based on backward program slicing which in
turn relies on a SDG. The SDG based backward slice extraction technique used
by TeICC enables it to extract-then-execute target slices across multiple app
components. Moreover, the iterative hybrid approach allows TeICC to extract
runtime values (i.e., reflection values, decrypted strings, etc.) to enrich the
original app. These runtime values help in performing improved static analysis
of obfuscated apps in the next iteration.

As a future work, we would like to provide support for content providers. Moreover,
we focus on different approaches to overcome current limitations. For example,
to address the extraction of slices involving native calls, we are analyzing a novel
approach using the ARTDroid [50] framework to intercept sensitive Java methods
called by native code.

Chapter 5

StaDART: Addressing the
Problem of Dynamic Code
Updates in the Security Analysis
of Android Applications

Static analysis of Android applications is inherently susceptible to be evaded by
applications using dynamic code update techniques, i.e., dynamic class loading
and reflection. These techniques, now heavily used in modern real-world malware,
thwart even the latest of static analysis tools. We demonstrated this fact in
section 2.3 by testing some of the state-of-the-art static analysis tools with
Reflection-Bench and using InboxArchiver to evade online analysis systems. In
this chapter, we present StaDART, an extented version of Stadyna[149], which
combines static and dynamic analysis of Android applications to reveal the
concealed behavior of malware. Unlike Stadyna, StaDART utilizes ARTDroid
[50] to avoid modifications to the Android framework. Furthermore, we integrate
it with a triggering solution, DroidBot, to make it more scalable and evaluate
it with more Android applications. We present our evaluation results with a
dataset of 2,000 real world applications; containing 1,000 legitimate applications
and 1,000 malware samples

76
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

5.1 Introduction

Ensuring smartphone users’ privacy and security is a major concern and requires
adequate measures from app developers, framework providers, and app stores, etc.
Google’s open source operating system, Android, being the most popular platform
for mobile devices, uses Google Bouncer as an app vetting process at its official
Google Play store. Vetting processes generally use some form of static/dynamic
analysis to scrutinize apps for malicious content and Google Bouncer is no
different. In addition, starting from Android 7.0, Android introduced Verify
Apps, a new security feature to analyze apps downloaded from sources other
than the Google Play store.

However, a growing number of malware samples found in the Android ecosystem
reveals that malware developers bypass such vetting processes using various
evasion techniques. Previous research shows that the use of dynamic code
update techniques along with various forms of obfuscation makes it extremely
hard for the state-of-the-art analysis tools to understand the behavior of an
app[113, 32]. Thus, the use of these evasion techniques in newly found malware
is not surprising [Polkovnichenko and Boxiner]. This work provides an empirical
demonstration of the lack of effectiveness of the state-of-the-art tools when
it comes to analysing apps that hide suspicious behavior using reflection and
dynamic code loading. We develop a set of benchmark apps that use reflection
in different ways to conceal information leakage. Our analysis of reflection-bench
using some of the state-of-the-art static analysis tools shows their ineffectiveness
to handle apps that use reflection. Furthermore, we develop InboxArchiver, a
seemingly benign app that uses dynamic code loading to hide its suspicious
functionality, and use it to test some of the most well known online analysis
services. The analysis show that InboxArchiver easily bypasses these security
analysis services.

Static analysis relies on the availability of all the information at analysis time,
hence, it suffers from dynamic features and unavailability of information that are
known only at execution time, e.g., the parameters used in the dynamic code
update APIs. Therefore, reflection that is a programming technique widely used
by mobile app developers can be only partially investigated by current static
analysis tools. As a result, reflection is usually used by malware developers to
hide malicious code. The inherent limitation of all static analyzers (e.g., [35, 74])
is the operational assumption that the code base does not change dynamically

5.1 Introduction 77

and the targets of reflection calls can be discovered in advance. This is a clear
simplification of what happens in the real world, where many apps rely on code
base updates instantiated only at runtime.

There exist approaches that enhanced static analyzers of Java code to deal with
the presence of dynamic code update techniques (e.g., [45]). However, they
cannot be applied directly to Android due to the differences in the Java and
Android platforms. The alternative of instrumenting the app offline has the major
drawback of breaking the app signature, that some apps check at runtime. As
the app starts, it checks the integrity of the signature against a value hardcoded
in the app and terminates if the check fails. In case of malicious apps this check
may be used to conceal illicit behavior.

In this chapter, we present StaDART, a mobile app security analysis tool that
combines static and dynamic analysis to address the presence of dynamic code
updates. Instead of relying on modifications to the Android framework, StaDART
utilizes a vtable tampering technique for API hooking to perform dynamic
instrumentation [50]. Furthermore, we integrate StaDART with DroidBot, a
triggering tool for Android apps, to make the analysis fully automated. StaDART
is evaluated using a dataset of 2,000 real world apps (both malicious and benign)
and the results of our evaluation reveal that it is more common in malicious
apps to use dynamic code updates to conceal malicious behavior which is only
exhibited once the app is installed on a real device. Moreover, 33% of malware
samples that use DCL introduce APIs guarded with new (not used in the initial
code base) dangerous permissions in the newly loaded code, whereas the analysed
benign apps do not exhibit such behavior.

Contributions:

– We present the design and implementation of StaDART, a system that
interleaves static and dynamic analysis in order to reveal the hidden/updated
behavior of Android apps. By utilizing vtable tampering for API hooking, we
avoid modifications to the Android framework and make it largely framework
independent. StaDART analyzes the code loaded dynamically, and is able
to resolve the targets of reflective calls complementing app’s method call
graph with the obtained information. Therefore, StaDART can be used in
conjunction with other static analyzers to make their analysis more accurate.

– We integrate StaDART with DroidBot to make it fully automated and to
ease the evaluation. Moreover, we analyze a dataset of 2,000 real world

78
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

apps (1,000 benign and 1,000 malicious). Our analysis results show the
effectiveness of StaDART in revealing behavior which is otherwise hidden
to static analysis tools.

– We release our tool as open-source to drive the research on app analysis in
the presence of dynamic code updates.

– We design and develop reflection-bench, a set of benchmark apps that use
reflection to conceal information leakage, and use it to test some of the
state-of-the-art static analysis tools. We publish reflection-bench so that
researchers can test the effectiveness of their analysis tools in the presence
of dynamic features (i.e., reflection).

Chapter Organization:

§2.3.1 discusses the design and implementation details of reflection-bench and
InboxArchiver. It also provides the analysis results highlighting the shortcomings
of state-of-the-art Android app analysis tools. §5.2 gives a high-level description
of StaDART, while §5.4 covers the implementation details. §5.3 presents our
approach to build method call graphs and visualise them. §5.5 reports the
evaluation results of StaDART on real world apps. §5.6 discusses the limitations
of the current implementation, and envisages the future work. §5.7 overviews the
related work, and §5.8 concludes the chapter.

5.2 An Overview of StaDART 79

Fig. 5.1 System Overview

5.2 An Overview of StaDART

The architecture of StaDART presented in Figure 5.1 comprises two logical
components: a server and a client.

The static analysis of an app is performed on the server. StaDART allows an
analyst to easily plug in and use any static analyzer in its architecture. The
static analyzer on the server builds the initial method call graph (MCG) of the
app, integrates the results of the dynamic analysis coming from the client, and
stores the results of that analysis. The client part of StaDART is based on an
API hooking technique that intercepts calls to dynamic code update APIs and
captures the dynamic behavior. The client part can be hosted either on a real
device or an emulator. The client runs the app whenever dynamic analysis is
required. StaDART interleaves the execution of the static and dynamic analysis
phases and an app can have several of these phases. However, for simplicity of
the presentation without loss of generality, we describe them sequentially.

Preliminary analysis The server statically analyzes an app package and
builds a MCG of the application (see Step a in Figure 5.1; solid arcs denote edges
resolved statically). Dynamically loaded code cannot be analyzed during this
phase and, thus, the corresponding nodes and edges are not present in the MCG.
Further, the names of methods called through reflection may also not be inferred if
they are represented as encrypted strings or generated dynamically. Still, a static
analyzer can effectively detect the points in the MCG where the functionality of
an app may be extended at runtime. Indeed, the usage of reflection and DCL
requires to use specific API calls provided by the Android platform. The server
detects these calls during the static analysis phase by searching for methods where

80
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

DCL and reflection API calls are performed. We call these methods methods of
interest (MOI).

Dynamic execution If any MOI is detected in the app, StaDART installs the
app on the client (Step 2) and launches the dynamic analysis. The dynamic
phase is exercised to complement the MCG of the app and to access the code
loaded at run time. In our implementation the dynamic analysis is performed
on a device which uses a vtable tampering technique for API call interception
and adding StaDART client side functionality. The added functionality logs all
events when the app executes a call using reflection, or when additional code
is loaded dynamically. Along with these events, the client also supplies some
additional information, e.g., in case of a reflection call, the information about the
called function, its parameters and the stack trace (that contains the ordered list
of method calls, starting from the most recent ones) is added. In case of a DCL
call, the path to the code file and the stack trace are supplied. The information
collected by the client is passed back to the server side (Step 3).

Analysis consolidation The server performs an analysis of the obtained
information. In case of a reflection call, the server complements the MCG of the
app with a new edge (in Figure 5.1, it is represented by a dashed arc). This edge
connects the node of the method that initiated the call through reflection (the
node at the beginning) with the one corresponding to the called function (the
node at the end). When DCL is triggered, the client captures the location of the
code file. Using this evidence, the server downloads the file (Step 4) containing
the code, and analyze it statically. The MCG of the app is then updated with
the obtained information (see part of the MCG in dashed oval in Figure 5.1).
Additionally, for each downloaded file the server analyzes whether it contains
other MOIs. If it does, the list of the MOIs for the app is updated. This allows
StaDART to unroll nested MOIs. The stack trace data for both the reflection
and DCL cases is used to detect which MOI initiated the call.

Marking suspicious behavior In Android, some API calls are guarded by
permissions. Since APIs protected by permissions could potentially harm the
system or compromise a user’s data, the permissions must be requested in the
AndroidManifest.xml file. However, there is no actual check on the permissions
required to execute the written code and sometimes developers request more

5.2 An Overview of StaDART 81

permissions than they actually use. In this case, those apps are called overprivi-
leged. Many researchers, e.g., Bartel et al. [41], identified that malware, adware
and spyware exploit additional permissions to get access to security sensitive
resources at runtime.

Based on these considerations, we classify the following app behavior patterns as
suspicious:

– An app dynamically loads code that contains API functions protected with
permissions. Indeed, malware may use this approach to evade detection by
static analyzers, as the security-sensitive code is loaded dynamically.

– An app uses reflection APIs to call an API method protected with a dan-
gerous permission. This functionality can be used, for instance, to send
malicious SMS, which cannot be detected by static analysis tools because
the name of the SMS sending function is encrypted and decrypted only at
runtime.

StaDART automatically detects such suspicious patterns and raises a warning if
such patterns occur during the analysis. Section 5.5 shows that indeed malware
samples do expose such suspicious patterns.

In addition, we further analyze the parameters passed to methods called using re-
flection APIs. Indeed, a suspicious pattern, i.e., a reflective call to an API guarded
with dangerous permission, in conjunction with suspicious parameters, e.g., a
premium number in case of the sendTextMessage() API, helps in identifying
malicious behavior concealed using reflection.

82
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

5.3 Method Call Graph

Method call graphs (or function call graphs) identify the caller-callee relationships
for program methods. These structural representations of programs are widely
used for different purposes. In the scope of Android, method call graphs are used
to detect malware, identify potential privacy leaks in apps, find vulnerabilities
and execution paths for automatic testing, etc. StaDART extends the initial
MCG generated with a traditional static analyzer with the information detected
at runtime. Thus, if an app exposes dynamic behavior, all mentioned approaches
can benefit from the expanded MCG obtained with StaDART.

Example To visualize the capabilities of StaDART and the process of method
call graph expansion, we show the evolution using an example of a demo_app.
Figure 5.2(a) shows the MCG of the app obtained with the AndroGuard static
analyzer [54]. Figure 5.2(b) shows the one gained with StaDART before dynamic
execution phase, and Figure 5.2(c) presents it with dynamic execution phase. The
demo_app dynamically loads some code from an external .jar file at runtime
and calls the loaded methods through reflection.

Figure 5.2(a) illustrates that AndroGuard identifies only the presence of ordinary
methods and DCL calls (Ellipse 1) but no further analysis is done about those.
Yet, Figure 5.2(b) shows that after preliminary analysis StaDART selects 3
paths, which are surrounded by dashed ellipses. Ellipse 1 shows that a MOI (the
dark grey node) invokes a constructor (the dark green node) through reflection.
Similarly, Ellipse 2 displays a method invocation through reflection. Ellipse 3
depicts that a DCL call (the red node) is performed in a MOI (the dark grey
node).

During the dynamic analysis, StaDART adds the edges that are outlined by
Ellipses 4-7 (see Figure 5.2(c)). These ellipses show the cases when the MOIs are
resolved and corresponding nodes and edges are added to the MCG. Ellipse 4
shows that as a result of a DCL call (the red node) a new code file has been
loaded (the pink node). Ellipse 7 shows that a class constructor (the grey node)
is called through reflection. Ellipse 5 shows a method invoked through reflection.
This method contains an API call protected by the Android permission indicated
by the blue node in Ellipse 6. There are also nodes and edges that appear as a
result of the analysis of the code file (the pink node) loaded dynamically. These

5.3 Method Call Graph 83

(a) b (b) b

(c) b

Fig. 5.2 MCG of demo_app Obtained with a) AndroGuard b) StaDART after Prelimi-
nary Analysis c) StaDART after Dynamic Analysis Phase

nodes and edges are connected with the rest of the graph through the reflection
new instance call (see Ellipse 7).

Ellipses 2, 3, 8, 9 show other types of connections possible among nodes in a
MCG obtained with our tool. Ellipse 2 shows the connection between the class
and its constructor, Ellipse 3 shows an ordinary relation between two methods,
Ellipse 9 connects the static initialization block and the class, and Ellipse 8 shows
that the method is called from the static initialization block.

Each node type is assigned with a set of attributes, not shown in the figures.
The analysis of values of these attributes can facilitate dissection of Android

84
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

apps accompanied by the expanded MCG. For instance, each method node is
assigned with attributes, which correspond to a class name, a method name and
a signature of this method. A permission node is assigned with a permission
level along with the information about the API call that it protects.

5.4 Implementation 85

USER CLIENT

APK Get Code

Analyze code

Build MCG

Analyze

DCL Event

Stop

Analysis?

App

Testing

DCL

triggered

Reflection

triggered

Analyze

Reflection

Event

MCG

STAT

FILES

noyes

1

2

3

4 5

6

a

bc

e

fg

SERVER

Uncovered MOI

MCG

Analyze call

Add edge

d

Triggering

Solution

Fig. 5.3 StaDART Workflow

5.4 Implementation

This section provides the implementation details of some key aspects of StaDART.
The workflow of StaDART’s operation is shown in Figure 5.3. App analysis starts
at the server side. All occurrences of reflection and DCL methods are identified
in the code of the application under analysis. In case neither of them is found,
StaDART builds a MCG of the app and exits. Otherwise, the app is analyzed
using StaDART client on a device.

5.4.1 The server

The server side of StaDART is a Python program that interacts with a static
analysis tool. Currently, StaDART uses AndroGuard [3] as a static analyzer.
AndroGuard represents compiled Android code as a set of Python objects that
can be manipulated and analyzed. However, StaDART can work with any static
analysis tool that is able to analyze apk and dex files. To improve suspicious
behavior detection we substituted the permission map embedded in AndroGuard
(built for Android 2.2 in [61]) with the one generated by PScout [36] for Android

86
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

5.1.1, which is the latest API-permission mapping available in the research
community.

Algorithm 1 App Analysis Main Function Algorithm
1: function perform_analysis(inputApkP ath, resultsDirP ath)
2: makeAnalysis(inputApkP ath)
3: // Check if there are MOI
4: if !containsMethodsT oAnalyze() then
5: performInfoSave(resultsDirP ath)
6: return
7: end if
8: dev ← getDeviceF orAnalysis()
9: package_name← get_package_name(inputApkP ath)
10: dev.install_package(inputApkP ath)
11: uid← dev.get_package_uid(package_name)
12: messages← dev.getLogcatMessages(uid)
13: loop
14: msg ← dequeue(messages)
15: // analyzeStadartMsg contains a switch statement
16: // that selects a corresponding processing routine
17: // shown in Algorithms 2 and 3 based on the msg type
18: analyzeStadartMsg(msg)
19:
20: // Quit if a user finishes analysis
21: if finishAnalysis then
22: performInfoSave(resultsDirP ath)
23: return
24: end if
25: end loop
26: end function

The pseudo-code of the main server function is presented in Algorithm 1. The
server starts the analysis of the provided app by extracting the classes.dex file
(see Step 1, 2 and 3 in Figure 5.3; Line 2 in Algorithm 1), and then dissects the
extracted code. During this step StaDART searches for all the occurrences of
reflection and DCL calls in the code. The list of searched patterns for these API
calls is presented in Table 5.1.

If MOIs are found, StaDART selects a device (a real phone or an emulator) to
perform the dynamic analysis on (Line 8) and installs the app under analysis
(Line 10) onto the client (Step 5 in Fig. 5.3). After that the server obtains
the UID of the installed package (Line 11) and starts a loop (Lines 13-25) that
analyzes, one by one, the messages (Line 12) obtained using the logcat utility
from the main log file of the Android system. Basically, each obtained message
is represented in the JSON format and contains values for the following fields:
UID (required), operation (required), stack (required), class (optional), method
(optional), proto (optional), source (optional), output (optional). The value of
the UID field is used to select the messages produced by the analyzed app. If the
user stops the analysis, StaDART saves the results and finishes its execution.

5.4 Implementation 87

Table 5.1 The List of Searched Patterns

Class Method Prot.

Dynamic class loading

Ldalvik/system/P athClassLoader; < init > .

Ldalvik/system/DexClassLoader; < init > .

Ldalvik/system/DexF ile; < init > .

Ldalvik/system/DexF ile; loadDex .

Class instance creation through reflection

Ljava/lang/Class; newInstance .

Ljava/lang/reflect/Constructor; newInstance .

Method invocation through reflection

Ljava/lang/reflect/Method; invoke .

The function analyzeStadartMsg (Line 18) analyzes the selected StaDART
messages obtained from the client. It extracts the value of the operation field
and based on this value selects the appropriate routine to analyze the message.

The routines for reflection messages analysis are similar, so we consider them on
the example when operation corresponds to reflection invoke. The algorithm for
analysis of the reflection invoke messages is shown in Algorithm 2 (algorithm
for analysis of reflection newInstance messages is very similar so we do not show
it). Lines 2 - 4 extracts the method name along with its class name and the
prototype, which has been called through reflection. Line 5 gets the stack from
the message. Line 7 searches for the first reflection invoke occurrence in the
stack. The next stack entry corresponds to the method that has performed the
reflection call invSrcFrStack (Line 9). Then in the loop StaDART compares
this method with the list of MOIs extracted from the app executable (Lines 10 -
20). If the method is found StaDART complements the MCG with the obtained
information (Line 15), and deletes it from the list of uncovered invoke MOIs
(Line 17). Otherwise, it adds this method to the list of vague methods (Line 21).
This information is later analyzed to see why the method calling reflection was
not found in the app executable during the static analysis phase.

The processing function for the DCL messages is slightly different (see Algo-
rithm 3). From the message received from the client the server extracts the
source path of the file containing the code loaded dynamically (Line 2). Using
this information, StaDART downloads the file locally (Line 4), and processes
it (Line 5). This process includes computation of the file hash and copying the

88
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

Algorithm 2 Analysis of the Reflection Invoke Message
1: function processReflInvokeMsg(message)
2: cls← message.get(JSON_CLASS)
3: method← message.get(JSON_MET HOD)
4: prototype← message.get(JSON_P ROT O)
5: stack ← message.get(JSON_ST ACK)
6: invDstF rCl← (class, method, prototype)
7: invP osInStack ← findF irstInvokeP os(stack)
8: thrMtd← stack[invP osInStack]
9: invSrcF rStack ← stack[invP osInStack + 1]
10: for all invP athF rSrcs ∈ sources_invoke do
11: invSrcF rSrcs← invP athF rSrcs[0]
12: if invSrcF rSrcs ̸= invSrcF rStack then
13: continue
14: end if
15: addInvP athT oMCG(invSrcF rSrcs, thrMtd, invDstF rCl)
16: if invP athF rSrcs ∈ uncovered_invoke then
17: uncovered_invoke.remove(invP athF rSrcs)
18: end if
19: return
20: end for
21: addV agueInvoke(thrMtd, invDstF rCl, stack)
22: end function

Algorithm 3 Analysis of the DCL Message
1: function processDexLoadMsg(message)
2: source← message.get(JSON_DEX_SOURCE)
3: stack ← message.get(JSON_ST ACK)
4: newF ile← dev.get_file(source)
5: newF ileP ath← processNewF ile(newF ile)
6: dlP athF rStack = getDLP athF rStack(stack)
7: if dlP athF rStack then
8: srcF rStack ← dlP athF rStack[0]
9: thrMtd← dlP athF rStack[1]
10: if dlP athF rStack ∈ uncovered_dexload then
11: uncovered_dexload.remove(dlP athF rStack)
12: end if
13: addDLP athT oMCG(srcF rStack, thrMtd, newF ileP ath)
14: if !fileAnalyzed(newF ileP ath) then
15: makeAnalysis(newF ileP ath)
16: end if
17: return
18: end if
19: addV agueDL(newF ileP ath, stack)
20: end function

file into the results folder with a new filename, which includes the computed
hash. The file hash allows us to check whether the file has been already loaded
and avoid analysis of already checked code. Otherwise, the code analysis for
MOIs is performed for the loaded code (Line 15). Function getDLPathFrStack
(Line 6) searches for a pair of a DCL call and a MOI in the stack corresponding
to the one extracted from the app executable. If this pair is found, then it is
removed from the list of uncovered DCL calls (Line 11). Otherwise, StaDART
adds the information about the dynamic class loading call into the list of vague
calls (Line 19).

5.4 Implementation 89

Notice that the presented algorithms are simplified versions of the ones actually
implemented in the server part. For instance, in a real app it is possible that the
same MOI acts like a proxy used to call different targets (e.g., the same method
could be used to load different code files). The real algorithms implemented in
StaDART are able to process these cases.

5.4.2 The client

The client side can run either on a real device or on an emulator. Using the
emulator is more convenient because one can run the client and server on the
same machine. The main drawback is that currently the Android emulator is
quite slow. Moreover, mobile apps may suppress some functionality if they detect
they are running in an emulated environment. With these limitations in mind,
we implemented and tested our client on a real device. However, the code is
device-independent and easily portable to any other device/emulator.

To capture the dynamic behavior offered by reflection and DCL, we intercept a
number of Android API methods that provide an interface to DCL and reflection
capabilities. A brief overview of these APIs is provided earlier in §5.4. Some
of them have been modified across different Android versions moving their
implementation to the native side (e.g., java.lang.Class.newInstance has only
a native implementation in Android 6). To achieve dynamic instrumentation of
Java-level APIs we used the approach proposed in ArtDroid [50] to intercept Java
virtual methods. It intercepts all calls to monitored Java virtual methods including
calls via Java reflection, native code or dynamically loaded code without any
modification to both Android OS and the target app. In addition, we integrated
native function hooking capabilities in StaDART by means of inline hooking
technique. The client side employed by StaDART is completely Android version-
agnostic and it is able to interpose custom code on both Java methods and native
functions. Therefore, it can be used to analyze Android apps on any Android
version intercepting DCL and reflection calls irrespective of the actual code
representation (i.e., Java or native). To support all available Android versions,
we included in StaDART the capability of intercepting DCL and reflections calls
according to the running Android version. In the following we describe methods
intercepted by StaDART on both Dalvik and ART runtime. The code added
by StaDART to perform requested analysis is not influenced by the underlying
Android version.

90
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

To obtain the information related to DCL we added a hook to the method
openDexFile of the DexFile class. This method is called when a new file with
the code is opened. It gets three parameters as an input, where sourceName is of
our interest. Moreover, we added a hook to the constructor of DexClassLoader
class that is used to create a class loader that loads classes from JAR and DEX files.
It gets four parameters as an input, where dexPath and optimizedDirectory
are of our interest. The former specifies the complete path of the DEX file that
is being loaded while the latter is the directory where the optimized version
will be written to as a result of the compilation step. The added code forms a
JSON message that contains the path to the file, from which the code is loaded
(sourceName). Along with this information, the stack trace data and the UID
of the process are also added into the message, which is then printed out to the
main log file of Android.

To get the information about method invocation through reflection, a hook was
placed into the invoke method of the Method class. As of the release of Android
version 6, this method is defined as public native, thus the client will hook the
appropriate function by means of the proper hooking engine, according to the
running Android version. Each Method object has declaringClass, name and
parameterTypes member fields, which represent class name, method name and
prototype of the invoked method, respectively. Moreover, invoke gets an array
of Object type as input which represents the arguments intended for the target
method. This information along with the stack trace is put into the StaDART
message. Similarly, to log the information about new class creation through
reflection, we put our hooks into the newInstance method of the Class and
Constructor classes. As for the invoke, different hooks were added targeting
newInstace code representation for both DVM and ART runtime.

Each StaDART message contains the stack trace information. Stack trace is a
sequence of method calls performed in the current thread starting from the most
recent ones. The information from a stack trace is usually used to find the origin
of an exception in a program. In our case, the stack trace information is used
to detect the MOI, which calls the reflection or DCL methods. In essence, a
stack trace is an array of stack trace elements. Each stack trace element contains
information about the class name, the method name and eventually the line
number of the method call in the source code. Unfortunately, using only this
information it is not possible to uniquely identify the MOI, because we do not
have access to the source code of the app. Moreover, due to function overloading it

5.4 Implementation 91

is possible to have several methods in a class with the same name. In the previous
version of StaDART (i.e., StaDyna), we had modified the StackTraceElement
class so that it can store the information about the method prototype, but
this approach is not feasible when it comes to dynamic instrumentation. To
overcome this limitation and detect MOIs from stack trace data even when they
appear multiple times with same name but different prototype, we employed
a hybrid approach. First, we statically detect potentially ambiguous methods
(i.e., methods in a class with the same name) declared in the target app and for
each method found we store its prototype information. Then, we dynamically
instrument the app to insert a shadow method that is basically an empty wrapper
in order to distinguish calls to the wrapped ambiguous method. The dynamically
added wrapper is named as the concatenation of ambiguous method’s name
and its prototype that has been stored in the previous step. As result of an
intercepted call, the wrapper makes a direct call to the wrapped method. In this
way, we are able to distinguish target MOIs by looking for them into the stack
trace data as it is normally returned by the Android OS. In fact, method name
and its prototype allow us to uniquely identify a method in a class.

A StaDART message has a header and a body. To distinguish StaDART messages
from other log messages we add a special marker to the header. The second part
of the message header is the part number. Currently, there is a limit on the length
of the Android log entries specified by the constant LOGGER_ENTRY_MAX_PAYLOAD.
To overcome this problem, we added the functionality to the client that allows
it to split a message into several parts. The server takes care of assembling the
original message.

92
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

5.5 Evaluation

Experiment Setup and Test Suite: This section describes our app test suite
and reports on the results of our experiments. We evaluated StaDART with a
dataset of real world benign and malicious apps. The server runs on a machine
with 3.2 GHz Intel Core i7 processor and 8 GB DDR3 memory. The client is a
Google Nexus 6 smartphone running stock Android OS version 7.1.1 connected
to the server using a standard USB cable. The evaluation test suite consists of
a set of 1,000 benign and 1,000 malicious apps. The benign apps were selected
based on their popularity. The malware samples were selected from Drebin[34]
dataset populated by 5,560 apps from 179 different malware families.

Evaluation Goal: Inline with the aim of StaDART, i.e., uncovering dynamic
behavior, we set certain research questions that this evaluation should answer as
our evaluation goal.

– RQ1: How widespread is the use of these dynamic code update features in
the analyzed dataset and does StaDART reveal dynamic behavior in each
of the analyzed app?

– RQ2: How effective is StaDART in expanding the MCGs? How expansion of
MCGs due to dynamic behavior differ in the malicious and benign dataset?

– RQ3: Does StaDART reveal potentially dangerous behavior, i.e., reveal
nodes guarded with permissions? How do they differ in benign and malicious
apps?

– RQ4: Is there a correlation between the captured dynamic behavior and
the APIs used for dynamic code updates, e.g., DCL or reflection?

– RQ5: Do the analyzed apps show suspicious behavior, i.e., use additional
new permissions which are not used in the initial MCG? How does this
behavior differ in malicious and benign apps?

Analysis Results: Figure 5.4 illustrates the prevalence of dynamic code update
APIs in the analyzed dataset and the effectiveness of StaDART in expanding
the MCGs. It shows the percentage of apps with invoke, newInstance and DCL
among both benign and malicious app dataset. The right most bar represents
the percentage of apps where StaDART expanded the MCG. In the dataset,
close to 90% of the apps use invoke and/or newInstance APIs. Similarly, 48%
of the apps use DCL feature which is considerably higher to previous analysis

5.5 Evaluation 93

Benign and Malware
0

20
40
60
80

100

%
of

A
pp

s

Invoke NewInstance DCL NewNodes

Fig. 5.4 Prevalence of Reflection/DCL and StaDART effectiveness in expanding MCG

results [149] (first part of RQ1). Increase in the number of apps using DCL could
largely be related to the increasing complexity of the Android apps. StaDART
was able to expand the MCG by at least one node in 80% of the analyzed apps
(second part of RQ1).

Figure 5.5 shows MCG expansion using StaDART for the apps in the analyzed
dataset using reflection only, both benign and malicious. It shows the average
percentage increase in the number of nodes, edges, nodes with normal permission
and nodes with dangerous permissions. Clearly, the lower percentage increase is
attributed to apps that use only reflection as dynamic code update feature. The
MCG expansion in these apps, which do not use DCL, is minimal and more or
less similar in benign and malicious apps (RQ2).

Benign Malware
0
1
2
3
4

%
ag

e
in

cr
ea

se

Nodes Edges Normal Dangerous

Fig. 5.5 MCG Expansion

To clarify the role of DCL in MCG expansion and dynamic behavior, we extracted
the results from apps that use DCL. Figure 5.6 shows the effectiveness of StaDART
when the apps use DCL. It shows the average percentage increase in the number
of nodes, edges, nodes with normal permissions and nodes with dangerous
permissions. It clearly shows a considerably higher increase in the number of
nodes, edges and nodes guarded with permissions (both normal and dangerous).
In addition, it can be seen that the malicious apps hugely increase their code

94
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

base when they use DCL (RQ4). Similarly, the number of nodes guarded with
permissions for malicious apps doubled or in some cases quadrupled (RQ3).
This clearly indicate that malicious apps make use of sensitive APIs in the
loaded code. We also check the added nodes for Signature level permission and
SignatureOrSystem level permission. However, we did not observe a noticeable
increase in the number of nodes guarded with these permissions.

Benign Malware
0

20

40

60

80

100

%
ag

e
in

cr
ea

se

Nodes Edges Normal Dangerous

Fig. 5.6 MCG Expansion when apps use DCL

Although, the high increase in the number of nodes guarded with dangerous
permissions is indeed suspicious, we investigate the analysis results further for a
more suspicious malware behavior. In practice, malicious payloads are packaged
inside legitimate apps and their manifest files are modified to cover for the extra
permissions needed by the payload. In this scenario, the final MCG of the app
contains nodes guarded with new permissions, i.e., those not found in the initial
MCG. Figure 5.7 shows the distribution of apps based on increase in the number
of nodes guarded with permissions in the form of pie-charts, in benign apps
and malware. Here we discuss only those apps which use DCL. The white part
shows the percentage of apps with no increase in the number of nodes guarded
with permissions, whereas the grey part represents the percentage of apps with
increase in the number of nodes guarded with permissions. The darker grey part
shows the percentage of apps where new permissions are used in the dynamically
added part using StaDART.

The pie-chart for the benign apps shows that a very small fraction of the apps
observe an increase in the number of nodes guarded with dangerous permissions.
In contrast, a considerably higher number of malicious apps reveal such behavior.
Also, in none of the benign apps in the dataset, the loaded coded contained
nodes guarded with new dangerous permission. However, all the malicious apps

5.5 Evaluation 95

98%

2%

No Increase

Increase

New Perms
67%

33%

Fig. 5.7 Increase in permission nodes. (L) Benign (R) Malicious apps

in the dataset that loaded code dynamically contained nodes guarded with at
least one new dangerous permission (RQ5). Moreover, a further analysis of
the loaded code in malicious apps reveals a pattern of dangerous permissions,
e.g., READ_PHONE_STATE and INTERNET, that could be associated with malicious
functionality, such as privacy leakage, etc.

Also, noteworthy here is the fact that the revealed behavior is only due to
triggering of a small fraction of the total MOIs. Albeit the most advance
automated triggering tool in the research community, DroidBot does not serve
well for app exploration from a security point of view. Taking into account the
low exploration that DroidBot achieved in most of the apps and the suspicious
results that we observed, the actual hidden suspicious/malicious behavior could
be alarming.

Our results show evidence that malware samples are more overprivileged (they
contain more permission types required for the code loaded dynamically), so it is
valid to identify the apps as suspicious if they are overprivileged. Yet, as benign
apps can be overprivileged too, more research is required to understand if an
application is benign or malicious, and StaDART can be handy in exploration of
this topic.

96
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

5.6 Discussion

For any dynamic (or hybrid for that matter too) analysis tool, coverage is the main
limiting factor and StaDART is no different in that regard. For StaDART the
coverage of MOIs (the ratio between the number of executed MOIs at least once
and total number of discovered MOIs) is especially important. In order to achive
higher MOI coverage, we explored if the tools like monkey can be handy. However,
in our experiments we found out that pseudo-random events generated by the
tool do not produce tolerable coverage values for MOIs. Therefore, we opted for
a more advance automated triggering tool, DroidBot, to trigger MOIs. However,
as discussed in the previous section, even DroidBot did not achieve reasonable
coverage of MOIs. Possible enhancement can be achieved using techniques such
as the one used in SmartDroid [150]. SmartDroid allows an expert to specify
sensitive API methods required to be triggered. In case of StaDART the sensitive
API methods correspond to reflection and DCL calls.

Another possible direction to reduce the dependence on the triggering tool is to
resolve as many targets of reflection calls as possible statically, at least those
which are represented by constant strings [74]. The analysis performed in [61]
has shown that it was possible to resolve automatically the targets of reflection
calls in 59% of applications that used reflection. At the same time, the analysis
was performed for the “closed world” scenario, which is not realistic, given that
dynamic class loading is a popular technique for modern apps. Consequently, we
can minimize the more expensive dynamic part of the analysis.

Usually, dynamic analysis allows an expert to explore only one execution path
at a time. However, dynamic traces may differ depending on the context of
the execution, e.g., some methods may contain calls invoked with parameters
affecting the reflection call target. Therefore, another direction for improving
StaDART is to incorporate information obtained during different runs of analysis.

StaDART has also other limitations. Its analysis is based on the UID of an
application. However, it is possible in Android that several apps have the same
UID. In this case, StaDART will also collect the information produced by other
apps with the same UID. At the same time, this information will not be used to
complement MCG, but will be added to the category of vague calls that need to
be manually analyzed later.

5.7 Related Work 97

5.7 Related Work

Apps are analyzed for malicious contents before being published to the app
markets. Many static and dynamic analysis techniques have been proposed for
Android. The ded system re-targets Dalvik bytecode into Java class files that can
be analyzed by the variety of tools developed for Java. DroidAlarm [153] performs
static detection of privilege-escalation vulnerabilities in apps by constructing
paths in inter-procedural call graphs from a sensitive permission to a public
interface accessible to other apps. Gascon et al. employ comparison of functional
call graphs (FCG) mined using AndroGuard to detect malicious Android apps [64].
StaDART can complement these techniques by providing more precise graphs
required for analysis.

TaintDroid was among the first dynamic analysis tools for Android apps [59]; it
tracks propagation of information via the TaintDroid infrastructure-equipped
smartphone software stack. It detects leakage of user private information to
network interfaces. This approach is followed by DroidScope [144]. DroidScope
allows to emulate app execution and trace the context at different levels of the
Android software stack: at the native code level, at the Dalvik bytecode level, at
the system API level, and at the combination of both native and Dalvik levels.
While executing an app in DroidScope a security analyst can track events at
different levels and instrument parameters of invoked methods to discover a
malicious activity.

Dynamic analysis techniques are especially difficult to automate due to the need
of emulating a comprehensive interactions of apps with the system and a user
(UI interactions). Several approaches are proposed to automate the triggering
of UI events, from random event generation [75] to more advanced approaches
like AppsPlayground [117] and SmartDroid [150]. However, all of them still have
many limitations on the type of events they can handle and the coverage.

Poeplau et al. [113] selected possible vulnerable patterns of dynamic code loading
and built a tool that can analyze Android apps for the found patterns. More-
over, they propose to use whitelists to prevent dynamic code loading that can
potentially expose dangerous behavior. Whitelisting prevents unauthorized code
from running. To get authorization the code must either be signed and its
signature has to be included into a special list distributed by trusted authorities.
However, as mentioned in the article [113], extraction of the dangerous behavior
is a difficult problem by itself, especially when the protected API is called through

98
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

reflection. In contrast, StaDART aims not at preventing this loading (because a
lot of legitimate apps use it and extra complications will not be welcomed by the
developers) but at its analysis.

Comparing to Stadyna [149], StaDART differs in various aspects. The client side
of StaDART is based on API hooking using a vTable tampering technique used
in ArtDroid, rather than modification to the Android framework, and therefore,
can be easily ported to different versions of Android. Also, StaDART analyzes
the arguments passed to the APIs/methods called using reflection API invoke.
On the client side, unlike Stadyna which requires a human user to interact with
the app during analysis, StaDART relies on a triggering tool, DroidBot, to make
the analysis fully automated. StaDART is evaluated on a much larger set of
applications, 2,000 apps (1,000 benign and 1,000 malicious) in comparison to
Stadyna’s 10 apps (5 benign and 5 malicious).

Gaps in the static analysis techniques in the presence of dynamic class loading,
reflection and native code were previously studied for Java. For example, simi-
larly to our approach, in [73] a pointer analysis (based on program call graphs)
technique for the full Java language is extended by addressing dynamic class
loading and reflection via an “online” analysis, when a call graph is built dynam-
ically based on the program execution, and dynamic class loading, reflection and
native code are treated in real time by modifying the pointer analysis constraints
accordingly.

A run-time shape analysis for Java is investigated in [46]. Traditionally a shape
analysis operates on the call graph of a program and determines how heap
objects are linked to each other (e.g., if a variable can be accessed from several
threads). AS call graph produced from java program can be incomplete, [46]
suggests how to execute an incremental shape analysis when the call graph evolves
dynamically. Our proposal does not involve a shape analysis, yet the ideas behind
our proposal and [46] are similar. Livshits et. al. [90] proposed a refinement of
the static algorithms to infer more precise information on approximate targets of
reflective calls, as well as to discover program points where user needs to provide
a specification in order to resolve reflective targets.

Relevant to StaDART is TamiFlex [45] that complements static analysis of Java
programs in the presence of reflection and custom class loaders. Using the
load-time Java instrumentation API, TamiFlex modifies the original program
to perform logging of class loading and reflection call events. This information

5.7 Related Work 99

is used to seed a tool that performs static analysis of the program having the
information obtained during the dynamic analysis phase. This work differs from
StaDART in several aspects. First, TamiFlex uses a special Java API that is not
available in Android. Second, although in Android it is possible to instrument
an app before loading it on a device (offline instrumentation), some Android
apps check the app signature in its code that is changed during the patching.
Thus, for these apps the TamiFlex approach will not work in Android. Third,
TamiFlex requires some debug information (the line number of the function call)
to be present. In Android during the obfuscation phase this kind of information
may be deleted from the final package. Therefore, the TamiFlex approach will
not work, while StaDART is able to process correctly this case due to dynamic
API hooking.

More recently, reflection aware analysis of Android apps has been the focus
of some research publications. For example, DroidRA uses string inference
analysis to resolve reflective calls and replaces them with regular Java calls by
instrumenting apps for further analysis [85]. However, DroidRA cannot resolve
the targets of reflection when the arguments to reflection APIs are not readily
availabe in the app. StaDART’s dynamic element could prove fruitful in this
regard. Ripple uses a combination of formal analysis and pointer analysis to
ensure reflection aware static analysis in incomplete information environment
(IIE) [148]. Although Ripple resolves most targets of reflection, various cases of
IEE lead to high false positives. In fact, Ripple in conjunction with StaDART
could prove beneficial for both where Ripple reducing the dynamic analysis part
of StaDART and StaDART reducing the falst positive rate of Ripple.

100
StaDART: Addressing the Problem of Dynamic Code Updates in the Security

Analysis of Android Applications

5.8 Chapter Summary

Today mobile apps make an extensive use of dynamic capabilities, namely re-
flection and dynamic class loading, available in the Android OS. Being adopted
from Java, these techniques in Android incur an additional threat because the
loaded code receives the same privileges as the loading one. Malicious apps can
leverage these facilities to conceal their malicious behavior from analyzers.

In this chapter we presented StaDART, a technique that interleaves static and
dynamic analysis in order to scrutinize Android apps in the presence of reflection
and dynamic class loading. Our approach makes it possible to expand the MCG
of an app by capturing additional modules loaded at runtime and additional paths
of execution concealed by reflection calls. In order to produce the expanded call
graph, StaDART relies on code interposition based on a dynamic API hooking
technique. It does not require any modification to the Android framework or
the app itself. As observed from the evaluation results malware apps were more
inclined to exhibit a suspicious increase in dangerous permissions after dynamic
loading of new code, proving that StaDART is an effective hybrid approach able
to detect and capture apps’ dynamic capabilities used at runtime.

The results produced by StaDART can then be fed to the state-of-the-art analyzers
in order to improve their precision (for instance, a reachability analysis will be
more precise over the expanded MCG than over the original one). Thus, StaDART
may help malware analysts by increasing their ability to detect suspicious samples.

Chapter 6

AppBox: Black-Box Mobile App
Management Solution For Stock
Android

A fast growing number of organizations allow their employees to use smartphones
to do business computing. In this scenario, it is important for the IT security
department of the enterprise to be able to configure fine-grained security policies
for the employees’ devices. To address this increasing demand of easy and secure
management, several Mobile Device Management (MDM) and Mobile Application
Management (MAM) services have been launched on the market. However, these
services impose critical limitations by the lack of fine-grained capabilities of these
services and by the customisation required to the applications to be included
in the list of supported apps. In this chapter, we present AppBox , a novel
black-box app-sandboxing solution for app customisation for stock Android
devices. AppBox enables enterprises to select any app, even highly-obfuscated
ones, from any market and perform a set of target customisations by means
of fine-grained security-and-privacy policies. We have implemented and tested
AppBox on various smartphones and Android versions, including Oreo. The
evaluation shows that AppBox can effectively enforce fine-grained policies on a
wide set of existing apps, with an acceptable overhead.

102 AppBox: Black-Box Mobile App Management Solution For Stock Android

6.1 Introduction

In the past decade, mobile computing has gone from a niche market of gadget-
driven consumers to the fastest growing, and often most popular, way for em-
ployees of organisations of all sizes to do business computing.

In many cases, expensive company-owned laptops have been replaced by cheaper
phones and tablets often even owned by the employees (so called Bring Your
Own Device). Business applications are quickly being rewritten to leverage the
power and the ubiquitous nature of mobile devices. Mobile computing is no
longer just another way to access the corporate network: it is quickly becoming
the dominant computing platform for many enterprises.

In this scenario, it is important for the IT security department of the enterprise
to be able to configure secure policies for its employees’ devices. Mobile Device
Management (MDM) and Mobile App Management (MAM) services are the de

facto solutions for IT security administrators to enforce such enterprise policies
on mobile devices.

MDMs enforce policies at the device level and do not cater for specific services
and apps that an enterprise might want to protect. MDMs enforcement is limited
by the APIs provided by the OSes. MAM solutions provide policies that are
app-specific and often require the enterprise to acquire new apps. To be managed
by an MAM, the code of an app needs to be customised using specific software
development kits (SDKs) provided by MAM vendors.

An enterprise investing in a MAM solution has to consider not only the type
of security policies that it is able to enforce but also the portfolio of apps that
are already supported. To this end, MAMs provide Software Development Kits
(SDKs) that enable an app developer to customise her app so that it can be
managed by a specific MAM solution.

Usually, MAM providers expand their offering of supported apps over time.
However, the pace at which MAMs expand the list of supported apps might not
match the timing needs of an enterprise.

Alternatively, an enterprise might approach the developer of an app to ask for
costly customisations to fulfill its security needs. In general, app customisations
are not affordable due to the cost associated with maintenance and support.
Due to the fast pace at which the app markets evolve, developers might not be
too keen in engaging in such relationships. On the other hand of the spectrum,

6.1 Introduction 103

large enterprises might have the resources to implement their own customisations.
However, in this case the developer should disclose to the enterprise the source
code of the app.

In this work, we propose an app-level MAM solution that would enable an enter-
prise to select any app from the market and to be able to perform customisation
with minimum collaboration from the app developer. Particularly, the devel-
oper will not have to disclose the app source code to the enterprise nor should
she be involved with code customisations for satisfying the enterprise security
requirements.

We achieve this goal by introducing AppBox, a novel MAM app-level customi-
sation solution for stock Android devices. Using AppBox , an enterprise can
customise any existing app, even highly-obfuscated ones, without using any
SDK or modifications to the app bytecode. AppBox allows an enterprise to
define and enforce app-specific security policies to meet its business-specific needs.
More importantly, AppBox works on any Android version without requiring root
privileges to control the app behaviour.

AppBox requires the developer to just modify two attributes in the manifest file of
her app: the android:process and android:sharedUserId. AppBox provides
tools for the developer to perform with minimal effort these changes in a fully
automated manner.

As for any other MAM solution, the basic assumption in AppBox is that the
enterprise trusts the developer to deliver a benign app and uses AppBox for
customisation purposes. It is up to the enterprise to collaborate with reputable
developers to deliver apps that will not include malicious logic.

To summarise, our contributions can be listed as follows:

1. We propose AppBox as an MAM solution that enables an enterprise to
customise any Android app without modifying the app code. Unlike tradi-
tional enterprise mobility management solutions, AppBox is able to enforce
dynamic policies without requiring integration with SDKs or other bytecode
modifications. Thus, it can work also on heavily obfuscated apps.

2. By using dynamic memory instrumentation, AppBox monitors and enforces
fine-grained security policies at both Java and native levels.

104 AppBox: Black-Box Mobile App Management Solution For Stock Android

3. AppBox works on stock Android devices and does not require root privileges.
This is ideal especially for enterprises that support Bring Your Own Device
(BYOD) policies.

4. We have implemented AppBox and performed several tests to evaluate its
performance and robustness on 1000 of the most popular real-world apps
using different Android versions, including Android Oreo 8.0.

5. We released AppBox as an open source project available at the following
URL1.

1 https://vaioco.github.io/projects/

https://vaioco.github.io/projects/

6.2 Application Scenario 105

6.2 Application Scenario

In this section, we provide a motivating example to highlight the advantages of
our approach. The example refers to the enterprise domain where services like
MAMs and MDMs are usually deployed to manage devices and apps used by
employees.

Here we stress that AppBox is not a mobile malware detector neither a security
sandbox for suspicious applications. Anti-malware solutions are complementary
to AppBox .

AppBox is a MAM solution for enterprises willing to customise the security policy
of the mobile applications employees run. Such customisations are required
because the enterprise may need to monitor and possibly restrict the benign app
behaviour or the use of some features of the app, due to local legislation (e.g.,
privacy-related regulations) and/or enterprise security policies (e.g., banning the
use of WiFi in particular contexts).

As we discuss in details in Section 7.6, most of the proposed MAM solutions for
enterprise achieve those customisations via either altering the app’s bytecode
or requiring modifications to Android core components (i.e., Linux Kernel, An-
droid framework). Unfortunately, both these two approaches have shown their
limitations, especially bytecode rewriting which requires strong modifications
to the app’s bytecode that are difficult to maintain other than restricting its
applicability to very specific scenarios (i.e., the rewritten application can not
be delivered via Google Play market). On the other hand, traditional MAM
solutions (see Section 7.6) requires a strong collaboration with the developer.
In fact, developers employ specific API offered by the MAM. To this end, we
propose a novel approach that leverages on two main features offered by the
Android system. Thanks to AppBox , developers can provide different customised
versions of the same application without any modification to the app’s bytecode
itself. In Section ?? we have introduced the main distinction between the app’s
bytecode and the app’s manifest, which is essential to understand our approach.

The scenario involves the following parties: (i) a developer Dev and (ii) an
enterprise Ent. Let us assume that Dev has created an app A that Ent wants
to use. To wrap an app with a traditional MAM service, one has to have access
to the source code of the app or the developer needs to apply the sandbox while

106 AppBox: Black-Box Mobile App Management Solution For Stock Android

developing her own app. Unfortunately, Ent does not have the source code of
A, that could be heavily obfuscated, and Dev does not want to release the source
due to IPR reasons. Dev is also not interested in customising A using a wrapper
sandbox because of the extra resources needed for managing the customised
version of A and the cost of supporting further updates.

AppBox . In such a scenario, our approach can be useful. We envision the
developer’s cooperation (i.e., under appropriate monetary compensation) to offer
a AppBox compatible version of A. However, Dev does not need to branch any
new version of A or to include third-party library/code within the app. The
only action needed is to run A through our StubFactory (more details will be
provided in Section 6.4.1). This component takes A as input and returns two
apps: the StubApp A′stub and A′. The A′stub will generate the sandbox where A′

will be executed (details will be discussed in Section 6.4.3). Here we stress that
A′ is an exact copy of A except for a slightly different manifest file automatically
modified by the StubFactory component. Moreover, it is important to note that
StubFactory neither modifies A’s bytecode nor inserts any additional code in the
app. The StubFactory can take as input also the obfuscated version of A.

At this stage, Dev has to sign A′stub and A′ by a fresh generated self-signed
certificate K. Since both the app A′ and the stub A′stub are now signed with the
same K the Android manifest attribute android::sharedUserId allows to execute
both apps under the same UID. Finally, the signed new apps can be distributed
so that Ent, which owns the right for the certificate K, is able to retrieve it.

When Dev releases a new version of A, the only step required is to create a new
version of A′. This process is fully automated by means of StubFactory which
produces the new version of A′. Each time Dev releases a new app’s update she
goes through this automated procedure in order to create the AppBox compatible
app, but differently from the first release there is no need to update and distribute
A′stub again, because the stub code does not change upon to app’s update. Finally,
Dev signs the new version of A′ with the digital certificate that has been used to
sign the previous version of the app.

AppBox allows Ent to monitor and possibly restrict the behaviour of A′. The
specification of what to monitor, how and what to enforce can be done by Ent

by writing behavioral policies for AppBox . Fine grained policy capability offered
by AppBox become even more relevant in scenarios such those depicted by the
recently introduced European regulation, the General Data Protection Regulation

6.2 Application Scenario 107

(GDPR) [gdp]. In the following, we provide two examples of such policies (policy
can be written and extended at will):

– Default enterprise security and privacy policies. This set of policies must be
enforced on any app the employee installs on her phone. These policies en-
force corporate-related data (i.e., contacts, calendar), copy/paste protection,
corporate authentication, app-level VPN, data wipe and run-time integrity
check, no HTTP connections.

– Access restrictions to selected system resources. In some locations or in
some circumstances (e.g., meeting) apps may be prevented access to some
system features of the phone (e.g.„ alarm, wifi connectivity, camera, mic,
etc.)

We will show later in the chapter how, in detail, AppBox expresses and implements
such policies.

108 AppBox: Black-Box Mobile App Management Solution For Stock Android

6.3 Requirements

In this section, we present the set of requirements that have driven the design of
AppBox .

Our aim is to provide a black-box app-level mobile app management solution
for stock Android that does not require modifications of the apps’ bytecode and
developers are in charge of the small effort as possible (none SDKs integration
nor app’s modifications). The following requirements are needed and are met by
AppBox :

– R1: Universal: The mechanism can be applied to monitor and enforce policy
on any app running on current and/or any previous version of Android,
without requiring neither modifications/extensions to the Android OS nor
the root privileges. The mechanism allows developers to provide customised
app versions without suppling any intellectual property (i.e., app’s source
code) to any third-party entities. In addition, developers are not required
neither to insert any supplementary code within the application nor provide
any integration with SDKs. Finally, it can operate without requiring any
app’s bytecode modification.

– R2: Permissions: The mechanism should not require more privileges and
permissions than those originally requested by the app that will be sand-
boxed.

– R3: Java and native: The mechanism must support the monitoring and
enforcement of policies, covering the app behaviour that can be captured at
both Java and at native level.

The first requirement, R1, is the crucial one in order to provide a practical and
portable app-level MAM solution. It states that the solution must be universal
in the sense that it can operate without any modification to both Android OS
components (i.e., Linux Kernel, Android framework, etc.) as well as lacking the
root privileges. This allows to achieve a portable solution that is able to operate
on any Android running devices, despite it can ben rooted or not, and is totally
suitable for BYOD environments where OS level modifications do not apply. In
addition, the solution must be able to operate without integration with any SDKs
or special shared library as well as without rewriting the app’s bytecode. Rewriting
app’s bytecode has shown its strong limitations: in primis it does not operate
well under heavily obfuscated applications (note that obfuscation is a crucial

6.3 Requirements 109

barrier against attacks to PI) or those implementing anti-tampering mechanism,
repacking an application (then breaking its signature) and distributing may be
against the copyright, also and more important the developer is in charge to
insert and maintains new code according to the MAM APIs in place (which
basically requires developers to branch their app for each enterprise asking for
customisations). We designed this requirement in order to define properties that
must apply to offer a practical and agnostic MAM app-level solution.

Requirement R2, specifies that our solution does not alter the permissions set of
the original app. This is important to avoid users rejecting existing applications
on the basis of additional permissions they don’t agree to grant. Furthermore,
the least-privilege paradigm has a key role in Android, in fact it is a fundamental
access control mechanism that the Android OS relies upon.

Furthermore, the managed app’s updates can be distributed by the developer
to the enterprise via the usual flow, through the market used for the initial
distribution (e.g., Google Play, Android for Work, Amazon market). From the
user’s point of view, the managed app’s updates look exactly as usual app updates.
In fact, no additional user interaction is requested in order to complete an app’s
update. Finally, the managed app can be an app developed for any version of
Android, thus fully supporting backward compatibility.

In order to achieve fine-grained app-level security policies (R3), AppBox is able
to monitor and act on the behavior of the managed app at both Java and native
layers. By monitoring both levels of interaction, AppBox is able to manipulate
high-level interactions made through the Android middleware (e.g., modifying
the running app’s context, steering android callbacks to user-defined code) as
well as low-level behavior (e.g., create a socket).

110 AppBox: Black-Box Mobile App Management Solution For Stock Android

6.4 AppBox Architecture

In this section, we provide an overview of AppBox architecture, and elaborate in
more details on particular design decisions and challenges faced in its implemen-
tation. For the sake of clarity, in the rest of this discussion we will refer to the
app that is being sandboxed by AppBox as the managed app.
AppBox creates and runs the managed app within a dedicated container that
enforces enterprise policies at runtime. AppBox wraps each managed app in a
sandbox that injects control hooks to intercept the app interaction with the exter-
nal world. AppBox offers two levels of interception both at Java and native code
representations. Being able to intercept Java methods allows AppBox to monitor
and regulate all apps interactions via the Android API. However, apps might
include C/C++ libraries (i.e., to boost performance). To monitor and possibly
restrict the behaviour of these libraries, AppBox also offers native code hooks.
Our approach requires the installation of a single StubApp for each managed
app. The StubApp is an app automatically generated by the app developer using
the information contained in the manifest of the managed app. The StubApp
requests the same permissions as the managed app. The StubApp contains
only the shim code responsible for loading the managed apps at runtime and for
dynamically retrieving enterprise-defined security policies. The StubApp neither
contains app code nor resources. For this reason, differently from repackaged
apps, it can be submitted to the Google Play Store and installed on the devices
as a regular app. Generating a StubApp is done using the StubFactory provided
by our framework and described in Section 6.4.1. However, it is important to
understand that to generate a correct StubApp , the manifest of the managed
app has to be modified to set the values for the android:sharedUserId and
android:process attributes. Finally, the developer has to sign both the StubApp
and the managed app with the same certificate. The use of the android:process
and android:sharedUserId attributes enables the creation of our sandbox. By
using these two attributes, we are able to load the code of any app in the process
space of the StubApp . This approach has three main advantages: (i) App-
Box does not require to change any part of the bytecode in the managed app
and is able to work on stock Android without the need for root privileges and
modifications to the Android OS; (ii) Our solution does not rely on the emulation
of Android core services which could be cumbersome in terms of deployment
and updating when a new version of Android is released; (iii) AppBox does not

6.4 AppBox Architecture 111

need to re-implement several critical security checks normally performed by the
Android system services which reduces the impact on performance.

AppBox workflow consist of three main phases shown in Figure 6.1: preparation,
distribution and execution. During the preparation, the app developer creates the
managed app (App′) and the StubApp (step 1). Then, the developer distributes
the managed app via any supported android market (step 2). During the
distribution phase of the managed app the requested operations are exactly those
which are actually followed by developers seeking to distribute their applications,
no particular additional steps are required. Finally, the user installs both apps
(App′ and the StubApp) on the target device. During the execution phase,
the StubApp creates a sandbox to execute the managed app. The sandbox is
responsible for monitoring the managed app’s behaviour and enforce the policies
(step 3), specified by the enterprise, offered via AppBox Policy Manager instance
(step 4).

Fig. 6.1 AppBox design phases: Preparation , Distribution and Execution.

In the following, we provide a description of the components involved in each
phase.

112 AppBox: Black-Box Mobile App Management Solution For Stock Android

6.4.1 Preparation phase

To be able to manage an app with AppBox , the developer has to create the
StubApp and a managed app, as shown in Figure 6.1. This step is performed
by the developer using the StubFactory, a set of python scripts along with a
small DEX file containing the actual stub code. Another interesting aspect is
that because the StubFactory only operates at the level of the manifest file,
the managed app and StubApp can be created even if the original app code
is obfuscated. It is worth noting that none of the existing approaches for
app behaviour customisation on stock Android devices, are able to deal with
obfuscated apps.

In the following, we assume that App is an app behaviour that an enterprise wants
to customise using AppBox . Using the StubFactory, the developer generates
the managed app, indicated as App′, and the stub app, indicated as StubApp.
Finally, both the StubApp and the managed app App′ must be digitally signed
by the developer.

Fig. 6.2 StubFactory and its components

As shown in Figure 6.2, the StubFactory first extracts and decodes the Android
manifest from App (obtained as APK file) using the Manifest Reader. This
component parses the input app’s manifest collecting information such as package
name, main activity as well as requested permissions. Furthermore, it checks
if the manifest contains components of App defined to run across multiple pro-
cesses. If this is the case, then the names of these components are added to the
manifest of the StubApp such that any additional process created by the app
will be monitored by a dedicated sandbox instance. It is worth noting that the
Android manifest is always in cleartext even in the case of heavily obfuscated apps.

Next, the Manifest Maker creates a new manifest for App′ to include both
the attributes android:sharedUserId and android:process. If App’s manifest
contains the broadcast receiver for the boot completed intent, then this will be
removed from the App′’s manifest. This is to prevent the situation in which App′

might be launched before StubApp .

6.4 AppBox Architecture 113

The last step is to create StubApp through the Stub Creator. This last compo-
nent first creates the manifest for the StubApp with info previously collected by
the Manifest Reader. The StubApp’s manifest will have the same permissions as
App. By default, StubApp’s manifest will have the broadcast receiver component
for the BOOT_COMPLETED system message. In this way, all the StubApp
installed in a device will start as soon as the booting phase is completed. If the
App’s manifest also contained this broadcast receiver, then the StubApp will act
as a proxy and forward the boot completed intent to App′.

It is worth noting that App and App′ have exactly the same bytecode. In fact,
the StubFactory only operates on the App’s manifest to output StubApp and
App′. The developer is able to create as many StubApp as she may need to
satisfy customers’ requests. In fact, to iterate the preparation steps the developer
is asked to create a new certificate, which will identify each customer.

Application updates are distributed via the application market as an usual APK
file, the developer needs to sign them by the same certificated used at the first
place. From the developer point of view, it looks exactly the same when it comes
to publish managed app updates. In fact, there is no need to manually propagate
those updates to each managed app code. The only step asked to the developer is
to create a new managed app by means of StubFactory components, as discussed
before, thus updating an application is trivial as creating a managed one derived
from the original application. In most cases there is no need to create a StubApp
again, this operation is requested only if the app’s manifest file has been modified
by that update.

In the following, we discuss the details of the distribution phase.

6.4.2 Distribution phase

Once a developer has built an application she is interested in distributing its
product to seeking consumers. In this phase the developer distributes applications
as usual via any supported market.

There is no specific limit on apps distribution imposed by AppBox , in any case
who owns the StubApp is able to control the associated managed app (App′).

AppBox does not require any additional user interaction to complete an ap-
plication update via the employed market and the developer does not need to

114 AppBox: Black-Box Mobile App Management Solution For Stock Android

accomplish any particular operation in order to distributed updates of managed
apps. Whenever a new update is developed, in order to distribute it the devel-
oper uses the StubFactory to automatically produce an updated managed app
version (same operations done by preparation phase). Thanks to our approach
the developer does not need to redistribute the StubApp component.

6.4.3 Execution phase

After the preparation step, both StubApp and App′ are deployed on a device
running stock Android OS. It is worth mentioning that the StubApp is designed
to provide a user-friendly mechanism, neither additional icons shown nor man-
agement cost in charge of the end user.

The execution of the managed app is done by the AppBox Service. The App-
Box Service is a process created by the StubApp that loads and executes the code
of the managed app App′. Because the StubApp and the AppBox Service share
the same process space, it is possible to inject hooks at runtime into managed
app’s virtual memory (which runs inside the AppBox Service). These are the
hooks that enforce the desired policy. By sharing the same UID through the use
of the android:sharedUserId attribute, the AppBox Service is able to access
all the private files of the managed app. In AppBox , the managed app is
dynamically instrumented by means of functions interposition on both Java and
native levels, this enables the enforcement of security policies related to Java
APIs and native code. The AppBox Service modifies the memory of the managed
app to inject hooks capable of intercepting calls to Java methods and to syscalls.
The mechanism is transparent to the managed app and new versions of the target
app can be easily managed without the need to change either the StubApp or
the AppBox Service.

The biggest technical challenge at this point is to guarantee that the managed
app execution will be entirely confined within our sandbox. Android offers
a considerable number of features for apps to communicate with each other
and share functionality. These features are accessed through callbacks such as
broadcast messages, intents, and IPC. Care must be taken to avoid that these
mechanisms can be exploited to let the managed app to execute outside its
sandbox.

6.4 AppBox Architecture 115

In particular, the exported components of an app, include the main activity that
is always exported by default, can receive explicit intents sent by any app. When
this happens, usually Android starts the exported component into a new process.
If not handled properly, this could be an issue because effectively could result
in a managed app starting in a process outside its sandbox. However, before
starting a new process, Android searches if there is already a process where (1)
the process name matches the requested component’s name; (2) the process UID
is the same as the one assigned to the app in which the target component has been
defined. Thanks to the combination of both attributes android:sharedUserId
and android:process the AppBox Service is sharing the same process name
and UID, hence any intents sent to any exported component of a managed app
will be captured and executed within the AppBox Service.

AppBox Policy Manager

AppBox Policy Manager is console application deployed on the enterprise infras-
tructure intended to be used by IT administrators. Through the AppBox Policy
Manager an administration can define new policies and deploy them on the
enrolled devices. Once the managed application has been started, the AppBox in-
stance manages the authentication process with the Policy Manager.

It is worth noting that new policies can be dynamically distributed as soon as
the enterprise IT department loads them into the policy repository. Furthermore,
AppBox supports logging and auditing features that can be configured for each
managed app, in order to monitor the status of the app while running.

StubApp and AppBox Service

The StubApp is the key component for the realization of the AppBox Service.
The StubApp is responsible for creating the sandbox process where the managed
app will be executed as shown in Figure 6.3. When a managed app is launched,
first the StubApp creates the AppBox Service in a separate process (step 1)
and invoke the prepare method via the Binder to set up the interceptors (step
2). Then, the StubApp retrieves the set of policies and the hooking library
(step 3) specific to the managed app from the AppBox Policy Manager. The
AppBox Service loads the hooking library to instrument its virtual memory. Once
the instrumentation is completed, managed app’s code will be loaded by directly
invoking the bindApplication method exposed by the ApplicationThread class.

116 AppBox: Black-Box Mobile App Management Solution For Stock Android

Fig. 6.3 AppBox enforcing managed apps

As a result, managed app is loaded and its main activity is executed within the
AppBox Service (step 4).

As soon as the library is loaded, its virtual memory is altered to achieve functions
interposition by means of different techniques, as detailed in Section 6.4.3.

Before the managed app can be executed, the StubApp has to create the right An-
droid context for that app. This operation is performed by calling the Android API
method createPackageContext2 specifying the CONTEXT_INCLUDE_CODE
flag. As an entrypoint, the StubApp declares in its manifest an Application3

class, that is the first app component loaded by Android before any other app
code. If the managed app has components that need to be executed in different
processes then the StubApp will start several AppBox Services, one for each
component of the app.

Java and Native Interceptors

The Java interceptors in AppBox are an extended versions of the ArtDroid hooking
framework [50]. However, compared to ArtDroid, AppBox Java interceptors are
able to hook static Java methods by implementing the approach proposed in [?].
The Java interceptors can operate at the level of Java methods defined within

2https://developer.android.com/reference/android/content/Context.html#
createPackageContext(java.lang.String,int)

3https://developer.android.com/reference/android/app/Application.html

https://developer.android.com/reference/android/content/Context.html#createPackageContext(java.lang.String, int)
https://developer.android.com/reference/android/content/Context.html#createPackageContext(java.lang.String, int)
https://developer.android.com/reference/android/app/Application.html

6.4 AppBox Architecture 117

the managed app. We are able to intercept all calls to monitored Java methods
including either calls via Java reflection, native code or dynamically loaded code.
The intercepted calls are redirected to the specific Policy Enforcement Point
(PEP) where the actual user-defined policy is enforced. Java interceptors achieve
transparent hooking by means of memory instrumentation. It fully supports
both the DVM and ART Android runtime. The interposition offered by the Java
interceptors permits to monitor the access an app performs to Android APIs to
interact with system services (i.e., LocationManager, TelephonyManager) and
the Android environment (i.e., Context, SharedPreferences). In Android, apps
can also invoke these APIs from native code via the JNI interface. In addition,
in Android native code is allowed to perform direct Binder transactions without
invoking any Android Java method. To address this, AppBox relies on the Native
interceptor to intercept these calls that could bypass the policies defined at the
Java level.

AppBox offers also native functions interposition by means of inline hooking, a
well-known technique [inl] that basically permits to redirect a function call to
another function under the control of a monitor process. In contrast with the
GOT patching techniques, AppBox can intercept calls to any native function
not only the ones to global symbols (i.e., calls to functions defined in the same
module will not generate entries in GOT). AppBox allows to intercept calls to
functions like open, connect, read, access to the Binder via the ioctl, etc. In this
way we can monitor if the managed app tries to access system services directly
via native call to the ioctl function. Enabling native interceptors is optional. For
instance, if an app does not use its own native libraries then native interceptors
can be disabled. However, if the managed app dynamically loads a native library
then AppBox can automatically enable the native interceptors layer.

118 AppBox: Black-Box Mobile App Management Solution For Stock Android

6.5 AppBox Policy

In this section, we first present the AppBox policy language for controlling app’s
behavior during its execution. Afterwards, we will present how to define in
AppBox policies discussed in our application scenario (see Section 6.2). Finally,
we provide some details on how policies can be automatically generated.

6.5.1 Policy Language

Figure 6.4 shows the the syntax of AppBox policy. Policies are identified by a
name and they define what operation a Requester application can execute on
a Resource. In our prototype we defined two sets of operations: the first set
contains getter methods that return data from the Resource to the Requester; the
second set contains setter methods where data is being passed by the Requester
to the Resource. Moreover, AppBox offers the possibility to define policies on
events (i.e. boot completed, app installed, app running, etc. . .). The operations
defined in the policies are then mapped to Java methods or native functions that
AppBox will interpose at runtime to enforce the policies.

1 PolicyName : Requester can do <operation > on <Resource >
2 have to perform <action >
3 [if <condition >]

Fig. 6.4 AppBox Policy Language

In AppBox , a Resource identifies any sensitive data which could be retrieved via
either Android middleware API (i.e., location, contact, camera) or native code
(i.e., sensors, socket, microphone).

The have to perform clause specifies which actions have to be performed if this
policy is enforced. These actions are mappped to a set of functions to control the
app’s behavior (i.e., filtering, anonymisation, etc.) and to change the values of
the parameters of the operation being executed. An action is a callback that is
registered by AppBox to dynamically forward the execution to the corresponed
function and can operate on both input parameters and returned values.

A policy can have an optional clause if that defines a condition that must be
verified before the specified action is performed. Otherwise, if the condition is
not true, the action specified in the policy is not executed.

6.5 AppBox Policy 119

6.5.2 Fine-Grained Access Control Policies

We begin with some examples of policies for fine-grained control over apps ac-
cessing user data or using network access. Any access to a protected resource
is intercepted by the hooking mechanism and diverted through a custom user-
defined control code.
As discussed in Section 6.2, the enterprise Ent wants to enforce fine-grained
app-level policies. In this scenario, Ent wants to protect business data (i.e.,
contact and calendar) against unauthorized operations according to custom
corporate-level policies and protect the managed app enforcing integrity checks at
runtime. Moreover, Ent wants that any connection made by a specific set of apps
makes use of a secure channel (i.e., TLS) thus reporting any connection which
makes use of insecure transport system like HTTP. The enterprise’s requirements
can be expressed by policies shown in Figure 6.5.

1 MicPolicy : AppX can do getMicrophone on Microphone
2 have to perform checkLocation ();
3 if isWorkHours () == True
4
5 LocPolicy : AppX can do getLocation on Location
6 have to perform checkLocation ();
7 if isWorkHours () == True
8
9 ContPolicy : AppY can do getContacts on Contacts

10 have to perform filterOut ();
11 if isWorkHours () == True and isLocation () == True
12
13 HTTPPolicy : AppZ can do createConnection on Internet
14 have to perform forceHTTPS ()
15 if isWorkHours () == True
16
17 CopPolicy : AppX can do runApp on Boot
18 have to perform checkApp ();

Fig. 6.5 AppBox Policies

MicPolicy in Figure 6.5, is quite straightforward: any request for accessing to
microphone capabilities made by managed apps is restricted by the policy such
that AppBox intercepts the request and checks for the specified condition (if
clause) , if it is validated then the access is denied. Another similar policy is
LocPolicy. Such policy permits to avoid location information leak potentially
made via apps during working hours. The artificial value returned by AppBox is
totally controllable by the user, by default AppBox returns an existing location
chosen at random among a user predefined set of positions.

120 AppBox: Black-Box Mobile App Management Solution For Stock Android

The policy ContPolicy, line 9, permits to achieve a content provider isolation for
an AppBox managed app. In this specific case, Ent wants to isolate corporate
business contacts sharing them only across authorized apps that have been register
throught the AppBox Enteprise Policy Manager (see Section 6.4.3). Moreover,
the Ent wants to specify particular criteria that must be respected to allow to
the managed app to access business contacts data. In particular, the policy
ContPolicy operates as following. The requested operation getContact indicates
that any kind of attempt to retrieve the user contacts list must be intercepted
and monitored by AppBox . Then, for each intercepted operation the specified
conditions must be verified. The user-defined isWorkHours() function returns
True whether the actual time is within the current working time, False otherwise.
If isWorkHours() returns True then the specified action is executed. Otherwise,
the execution flow will continue as if AppBox was not in place. Thanks to
this policy, Ent is allowed to specify a customizable fine-grained access policy
enforcing access to the isolated corporate contact provider exclusively to apps
managed via AppBox .

The policy HTTPPolicy (line 13), permits to filter out any connection that is
being made via HTTP protocol. Connections instantiate by the managed app
can be intercepted and monitored by either hooking the appropriate Java level
APIs or intercepting native layer functions if needed. The policy specifies that
any operation recognized as an attempt to create a connection has to be inter-
cepted and monitored by AppBox . The condition verifies whether the request is
made during the working time. In this specific case, Ent wants to deny insecure
connections made via HTTP protocol.

As an example of a policy defining an artifact Resource, CopPolicy is presented.
It enables the enterprise to specify a custom integrity check to be enforced before
the managed app start its execution. Given a specific app, the enterprise wants
to verify that its bytecode has not been tampered with. Here we stress that
AppBox does not require to modify the app’s bytecode, thus its checksum value
does not change. Thanks to this policy, before each execution of the managed
app AppBox computes the app’s bytecode checksum value to guarantee that it
has not been tampered with.
In the following we present and discuss how AppBox policies can be automatically
generated by the enterprise.

6.5 AppBox Policy 121

6.5.3 Policy Generation

In this section we present how AppBox policies can be automatically generated by
extracting information from the policy specification file. The overall procedure of
policy creation is presented by Figure 6.6. The policy generator takes as input the
policies specification, the sets of Resource that Ent wants to protect (Res.) and
the information about what operation is offered by what Resource (Op.). In our
current prototype, we selected sensitive resources (i.e., contacts, location, internet
access) and we grouped them by the relative requested permissions. Then we
used the information offered by PSCout[36] to aggregate Android APIs in terms
of which permissions are needed by them. At this point, in our prototype we
manually selected which API methods belong to a Getter or Setter operation.
By doing this we created a mapping between Resource, Operation and the API
methods which are offering capabilities to execute that specified Operation on
that specified Resource. It is worth noting that Ent can simply extend those sets
including any resource that wants to enforce, as presented for CopPolicy. In Table
6.1 we reported the mapping was used for the policy HTTPPolicy. For the sake
of understanding we included only the Android APIs offering HTTP capabilities
as they are suggested by the official Android developer guide4. The policy
expressed by the specification shown in Figure 6.5 line 13, produces according to
the requested operation on the specified Resource the interposition of the API
methods listed in the third column of Table 6.1.
Finally, the policy generator produces as output the executable file encoding the
corporate app-level policies that will be loaded by AppBox to enforce at runtime
the policies taken as input by the generator.

Table 6.1 HTTP-Policy Generation - Intercepted APIs

Operation API to hook (clsname, mname)

createConnection (HttpURLConnection , < init >)
(URL , < init >)

(URL , openConnection)

4https://developer.android.com/training/basics/network-ops/index.htm

https://developer.android.com/training/basics/network-ops/index.htm

122 AppBox: Black-Box Mobile App Management Solution For Stock Android

Fig. 6.6 Policy generation mechanism. Res.: sets of Resource, Op: sets of operation

6.6 Evaluation 123

6.6 Evaluation

In this section, we discuss the evaluation we carried on to test performance
overhead, robustness, applicability and effectiveness of AppBox . For our tests,
we used a Nexus 5x (64bit) device running stock Android Oreo version 8.0.0.

6.6.1 Performance Overhead

To evaluate AppBox performance penalty on managed apps, we used benchmark
apps and our custom micro-benchmarks. As benchmark apps, we used Quad-
rant and Vellamo5: the former was selected because it has been used in other
related works [123, 38, 42] so it will make easier to compare the performance
of AppBox with similar approaches; the latter is a highly accurate benchmark
developed by Qualcomm and contains a benchmark specifically intended for
stressing the Binder communication channel. Given that the Binder is the most
common means of communication for Android apps, it is important to measure
the overhead AppBox introduces. Moreover, we executed the webview package
of Vellamo that contains various benchmarks for Android’s Webview API. We
included this test in our experiments because a huge number of apps are either
entirely developed within a Webview or specifically use its features.

As shown in Table 6.2, the impact of AppBox on the total score produced by the
benchmarks is low. The test marked as total reports the cumulative score that the
Quadrant benchmarking app produced when executed, while the I/O test were
oriented to stress operations of reading/writing from/to disk. The worst score, of
about 15% is low when compared to similar works, and can be attributed to the
I/O test. It is worth to note that in both scores, AppBox overhead is much lower
than the one introduced by solutions like Boxify and NJAS in equivalent tests. In
fact employing a light-weight in-memory hooking mechanism, instead of ptrace,
and avoiding critical services emulation via Broker component, AppBox reduces
remarkably the performance costs requested for monitoring the target app.

As for the performance penalty introduced in the Binder communication (indi-
cated as multi-core in Table 6.2), the score indicated by the Vellamo benchmark
is really low (up to 1%) due to the fact that AppBox does not need to perform
extra marshalling operations. It would have been interesting to report the same

5https://play.google.com/store/apps/details?id=com.quicinc.vellamo

https://play.google.com/store/apps/details?id=com.quicinc.vellamo

124 AppBox: Black-Box Mobile App Management Solution For Stock Android

tests for NJAS and Boxify6 but both systems were not available to us at the time
of writing.

To understand the performance implication of AppBox on method invocations
and function calls, we developed a synthetic app in order to perform a micro-
benchmark testing performance penalties when executing Java and native method
calls. The micro-benchmark tests the most significant native functions by means
of AppBox native interceptors. In Table 6.3, we report the overhead introduced
by AppBox when hooking functions in libc (shown in the first column). In the
same table, we also compare our overhead with Boxify performance overheads
as reported in [38]. As the results show, AppBox ’s performance overhead is
significantly less than Boxify’s, mainly because of the extra rounds trip needed
by Boxify to forward to the the Broker component each intercepted calls which
costs in average ≈ 100 µs of delay for each call.

Table 6.5 reports the results for the overhead introduced by AppBox when
interposing Java Android APIs, Table 6.4 presents hooks that were in place
during our experiments. Results shows that the performance penalty introduced
by AppBox ’s API Hooking, while not being ideal, is acceptable. It is worth noting
that micro-benchmarks test listed in Table 6.5 in some cases (i.e., openFileOutput
and Create File) are responsible for triggering multiple hooks. A very fast
operation such creating a new File object has a performance degradation which
cost in average 10 µs of delay. The AppBox Java interceptor’s performances
not being ideal compared to the native interceptor’s, this is an expected result
because of the API hooking mechanism employed by AppBox , that relies on
Java reflection for invoking the original method reference.

Table 6.2 BenchMark Apps Results For Nexus 5x (64 bit)

App Test AppBox Native Loss

Quadrant Total 17736 17449 1.6%
I/O 9820 8277 15.7 %

Vellamo multi-core 1948 1930 0.9 %
webview 2803 2688 4.1 %

6At the time of writing this paper, a version of Boxify was released but it’s not based on the
isolated process mechanism as described in [38]

6.6 Evaluation 125

6.6.2 Effectiveness

During this evaluation our goal was twofold: (i) to demonstrate that AppBox is
easy-to-deploy and fully capable to wrap real-world apps and (ii) to assess
AppBox robustness. To this end, we executed 1000 free apps from the Google
Play Store (retrieved in November 2016). As reported in Table 6.6, the average
size of those apps is around 20 MB and 66 of them (6.6%) were recognized as
obfuscated. To recognize obfuscation, we employed APKiD7 that leverages on
different heuristic in order to statically detect presence of packers, protectors
and obfuscators. Being able to properly handle obfuscated apps demonstrate the
code-agnostic property that AppBox has in contrast with some similar works.

Table 6.6 Percentage of Obfuscated Apps

analyzed apps perc. obfuscated average size

1000 6.6% 20 MB

To execute our tests, we had to modify the manifest of the collected apps adding
the attributes requested by AppBox . This was required only for testing purposes.
We stress that this step is not required in the operational scenario where the
developer will be responsible for performing this task. We evaluated the runtime
robustness of AppBox running the collected apps on a Nexus 5x with stock
Android 8.0. We employed the DroidBot[?] tool to exercise the managed app’s
functionality. Droidbot first statically analyses the target app then it allows
to dynamically injects event to stimulate the app under analysis. We ran each

7https://github.com/rednaga/APKiD

Table 6.3 Native Micro-Benchmarks AppBox Performance, Compared against Boxify.

AppBox: Nexus 5x (250k runs) Boxify: Nexus 5 (15k runs)

Libc. Func. Native on AppBox Overhead Native on Boxify Overhead

open 6.49 µs 6.7 µs 3.2% 9.5 µs 122.7 µs 1191%

mkdir 92.7 µs 95.2 µs 2.7% 88.4 µs 199.4 µs 125%

rmdir 80.7 µs 85.3 µs 5.7% 71.2 µs 180.7 µs 153%

126 AppBox: Black-Box Mobile App Management Solution For Stock Android

managed apps for 5 minutes similar to the Google Play Bouncer [106] while we
were collecting log information seeking for app crashes. From the 1000 apps,
only 56 (5.6%) apps reported a crash during testing. Manual investigation of
the dysfunctional apps reveled that most errors were caused by bugs in those
apps that were triggered during Droidbot dynamic stimulation. In particular,
we noticed that most of the crashes were caused because Droidbot denied the
runtime request for a permission causing the apps to crash. From this test, we
can conclude that AppBox did not cause any app to crash and none of the apps
were negatively affected by being executed under AppBox sandbox.

6.6.3 Applicability and Effectiveness

To further stress our system to evaluate its applicability and effectiveness, we
manually executed 5 of the most popular free apps from the top categories
concerning business functionality. Our goal in this experiment is threefold:

– to test the applicability of AppBox on several Android versions, we run this
experiment on several versions ranging from IceCreamSandwich (ICS) to
Oreo;

– to verify the correct interaction of the managed app with the Android OS, we
completed the authentication process, if present, testing for correct delivery
of system events (i.e., incoming SMS) and the interaction with Google apps
such as Google Play Service;

– finally to stress the AppBox SandboxService we manually switched it from
enabled to disable to detect possible issues when the managed app is executed
outside AppBox .

Table 6.7 shows the list of apps we selected. For each app we enabled, in spirit
of the scenario envisioned in Section 6.2, the following policies. First, to monitor
network-related functionalities we interposed various functions to enforce policy
such as deny connections to known addresses of advertisement servers taken
from a public list[21] as well as monitoring of network connections that do not
make use of the secure layer offered by TLS. Second, we enable file system
monitoring policies to detect file operations on the SD-card. Lastly, a fake
Location Provider was in place to make AppBox returning mock data to the
managed app. We manually stimulated those apps for 8 minutes, performing
various operations for testing functionality such as visiting web pages, acquire

6.6 Evaluation 127

and share location data via GPS mechanism and user authentication through
Google Play Services. It is worth of note that such authentication mechanism
requires a direct communication between the apps and the Google Play Service
which is a Google proprietary app, hence that communication could not be
instantiate via an emulated component (i.e., the Broker like in Boxify). During
such test, two experiments were performed addressing two different execution
mode, AppBox with policies enabled and without them. Basically, in the latter
experiment AppBox is in place but none policy is enforced, we enabled just logging
operations to be reported in order to detect eventually byzantine behavior.
Our tests showed AppBox effectiveness because in both experiments none of
the tested apps crashed and we were able to notice the enforced behavior when
policies were enabled. In fact, AppBox effectively blocked any connection to the
blacklisted addresses resulting in the absence of the advertisements that instead
would have been regularly showed without the enforcement of the policy by
AppBox , furthermore connections made without support of TLS were denied and
reported correctly as well. In particular, when location policy enforcement was
in place we noticed that the actual location shared via tested apps was referring
to our fixed value (i.e. the North Pole) previously set via AppBox .

It would have been interesting to test the update process of an app under AppBox .
Unfortunately, since we did not have an independent developer’s cooperation
during our evaluation, we were unable to properly test this aspect.

Table 6.7 Popular Apps We Used for Testing AppBox Applicability and Effectiveness

App Name Version Category

Skype for business 6.13.06 Business

Slack 2.30.0 Business

Dropbox 38.2.4 Productivity

Intesa San Paolo Mobile Banking 2.1.0 Finance

Chrome 56.0.2924.87 Communication

128 AppBox: Black-Box Mobile App Management Solution For Stock Android

Table 6.4 Android API - Micro-Benchmark Results

Nexus 5x (15k runs)

Android API Native on AppBox Overhead

Read Contact 6.55 ms 9.93 ms 3.38ms (51.6%)

Socket 23.23 ms 26.33 ms 3.1ms (13.3%)

openFileInput 0.19 ms 0.22 ms 0.03ms (15,7%)

openFileOutput 0.24 ms 0.28 ms 0.04ms (16.6%)

Create File 0.02 ms 0.03 ms 0.01ms (50%)

Open Camera 227.09 ms 237.02 ms 9,93 ms (4.4%)
Table 6.5 Android APIs Monitored During Java Micro-Benchmarks

Alias Class package Method name

Read Contact android.content.ContentResolver query
Networking java.net.Socket <init>

File
android.app.ContextImpl openFileInput

android.app.ContextImpl openFileOutput

java.io.File <init>

Camera android.hardware.camera2.CameraManager openCamera

6.7 Chapter Summary 129

6.7 Chapter Summary

In this chapter we have presented AppBox , a novel app-level mobile app man-
agement (MAM) solution for stock Android particularly designed for enterprise
domains, where apps running on employees’ smartphones are often managed by
specialised services such as MAMs and MDMs. AppBox allows to monitor and if
needed, also to enforce fine-grained security policies regulating the behaviour of a
mobile app covering both Java components and native libraries, including those
belonging to third parties. AppBox relies on its ability of running the managed
app confined within an instrumented process space, while avoiding any modifi-
cations to its bytecode. This instrumentation is achieved by runtime memory
modifications. The instrumentation allows full monitoring of Android Java APIs
as well as native functions. AppBox reduces quite a lot the maintaining costs in
comparison with those requested by customizable approaches. In such cases, the
developer is asked to port app updates across all the managed apps, requiring
time and financial efforts. Furthermore, a preliminary evaluation showed that
AppBox produces a limited performance overhead. Further tests have shown that
the mechanism is quite robust and of general applicability to real apps and not
only to toy examples. To allow other researchers to use and work with AppBox ,
we have made available its implementation.

Chapter 7

Identifying and Evading Android
Sandbox Through Usage-Profile
Based Fingerprints

Android sandbox is built either on the Android emulator or the real device with
a hooking framework, thus fingerprints of the Android sandbox could be used
to evade the dynamic detection. In this chapter we present our investigation to
address the question of which artifacts and how they are actually implemented
by online analysis services. We first conduct a measurement on eight Android
sandboxes and find that their customized usage profile (e.g., contact, SMS) can
be fingerprinted by attackers for evading the sandbox. From our measurement
results, most Android sandboxes have empty usage profile fingerprints, or fixed
fingerprints, or random artifact fingerprints. So, without protections on such
user profiles, Android malware can identify these fingerprints that associate
with different sandboxes and hide its malicious behaviors. At last, we propose
several mitigation solutions trivial to implement, including generating and feeding
random real usage profiles to the malware sample every time, as well as a hybrid
approach, which combines both random and fixed usage profiles.

7.1 Introduction

Among the massive volume of Android apps used by Android users, there exists a
lot of Android malware, which become the main threat for Android users currently.
To mitigate the threat of the Android malware, static and dynamic analysis
techniques are the main solutions to detect Android malware. Static analysis

132Identifying and Evading Android Sandbox Through Usage-Profile Based Fingerprints

has the limitation on detecting the malware when using the code obfuscation,
native code, Java reflection and packer. But, dynamic analysis can help detect
such Android malware more precisely in its dynamic sandboxes. The traditional
dynamic analysis sandbox is built either on the Android emulator or the real
device to enable fast and effective malware detection.

To evade dynamic analysis, some anti-emulator techniques [112, 133, 80] were
proposed, and they are commonly used by Android malware. In general, these
techniques were designed to obtain fingerprints of the runtime environment of the
Android emulator. Recently, BareDroid [103] was proposed to use real devices
to build the Android sandbox. This method can mitigate the anti-emulator
techniques , but we believe the arms race between dynamic analysis techniques
and evasion techniques is endless. No matter whether the Android sandbox is
built on the Android emulator or the real device, the Android malware can still
evade the detection of the sandbox through identifying the difference between
the emulated phone and the real user phone.

In this chapter, we conduct a measurement on collecting fingerprints from public
Android sandboxes, including AV sandboxes, online detection sandboxes and
even sandboxes used by app markets. Through analyzing collected fingerprints,
we propose an evading technique based on a new type of fingerprints of Android
sandboxes: usage-profile based fingerprints (e.g., the contact list information,
SMS, and installed apps). The measurement result shows that these Android
sandboxes have no usage-profile based fingerprints, or only have a fixed usage-
profile based fingerprint, or have a random artifact fingerprint. So, most current
Android sandboxes have not protected their usage-profile fingerprints, and are
potentially bypassed by malware samples.

Therefore, by analyzing the usage-profile based fingerprints of the Android sand-
boxes and real Android user’s device, the Android malware can still potentially
evade the dynamic sandbox because of two reasons: 1) extracting some finger-
prints, such as installed apps, are not very sensitive towards the verdict making
of dynamic analysis, since those behaviors are commonly existed in benign apps.
For example, Android Ads SDK extracts the installed app list for accurately
distributing ads; 2) even though extracting some fingerprints (e.g. the contact
list and SMS) may be regarded by dynamic analysis as malicious, the Android
malware can still evade the detection by mimicking or repackaging [146] as a
contact app or SMS app. So, the advanced Android malware could firstly inspect
these fingerprints and then launch other more powerful behaviors (e.g., rooting

7.1 Introduction 133

and sending SMS) if it does not identify the current environment as a sandbox
environment.

To summarize, this work makes the following contributions:

– 1) New problem. We propose a new Android sandbox fingerprinting
technique, which is based on the careless design of usage-profiles in most
current sandboxes. We observe that malware developers can collect usage-
profile based fingerprints from many Android sandboxes and then leverage
these fingerprints to build a generic sandbox fingerprinting scheme for the
sandbox analysis evasion.

– 2) Implementation. We conduct a measurement on collecting usage-profile
based fingerprints on popular Android sandboxes. The results show that
most Android sandboxes designers have not protected these fingerprints
by generating the random fingerprints every time for running a different
sample. Only few sandboxes generate the random fingerprints, but these
random fingerprints are different from fingerprints in user’s real phones.

– 3) Mitigations. We propose mitigations to further guide a proper design
of these sandboxes against this hazard.

The remainder of the chapter is structured as follows: in Section 7.2 we introduce
background and motivations underlying our research, then in Section 7.3 we
discuss our system design and in Section 7.4 we present collected results which
effectively shows the effectiveness of our techniques. Proposed mitigations and
related work are discussed in Section 7.5 and Section 7.6 respectively. Finally,
Section 7.7 concludes.

134Identifying and Evading Android Sandbox Through Usage-Profile Based Fingerprints

7.2 Background and Motivation

In this section, we first describe the current status of the Android sandbox for
detecting Android malware, and then present the existing evading techniques
commonly used in Android malware. In this paper, we explore a new direction:
distinguish the environment where the malware is running and focus on bypassing
the sandbox though a new type of fingerprint: the usage-profile based fingerprint
which basically exploits the content generated by real users. Though the mea-
surement in section 7.4, we show that most sandboxes can be bypassed by using
this kind of fingerprint.

7.2.1 Android sandbox

The Android sandbox is a running environment with a hooking framework, either
on the real device or on the emulator. With the hooking framework, the Android
sandbox can check the suspicious API calls or system calls, which are used to
make a verdict for the app. Many hooking frameworks and approaches have
been proposed in past years, including the static instrumentation, [Xpo, ADB?].
Different hooking frameworks can hook different levels of behaviors. Xposed can
only hook the Dalvik instruction call by replacing the Zygote process. Adbi can
hook system calls by the inline hooking. ArtDroid permits to intercept calls to
Java virtual-methods. These hooking frameworks can also be implemented in
the real device for detecting malware, even if malware applies the anti-emulator
technique.

The automated UI interaction is the most important technique used in the
Android sandbox to improve its coverage. One approach commonly used in most
Android sandboxes is using the MonkeyRunner tool to generate random user
interactions and system events to the sandbox. But, the random events are very
limited on triggering all malicious behaviors of apps. To address this problem,
SmartDroid [?], AppsPlayground [?], CuriousDroid [109] propose different
approaches to improve the automatic capability of UI interaction.

7.2 Background and Motivation 135

7.2.2 Evading technique

To evade the dynamic analysis in the Android sandbox, Android malware adopt
many evading techniques, which can be categorized as two aspects: 1) anti-
emulator. 2) anti-interaction.

Anti-emulator techniques [? 112] are used widely in most Android malware
samples. The anti-emulator technique comes from identifying the difference of
system and device information between the emulator and the real device. As
the emulator is a default customized Android system, some system information
is assigned with default values, e.g. the IMEI in the emulator is a string of
zeros by default. The device information includes the information of sensors
and sim card. Because of emulating these device information, attackers can
find the difference from the emulated data. For anti-anti-emulator, the Android
sandbox can send some artifacts to malware. However, there is an arm race when
building the Android sandbox on the emulator, namely, the anti-emulator and
anti-anti-emulator arm race. A countermeasure for anti-emulator techniques is
building the Android sandbox on real devices.

Anti-interaction [57] technique in essence, tries to tell the identity of the current
app controller (human user or automated exploration tool), by finding intrinsic
differences between human user and machine tester in interaction patterns.For
efficiency, exploration tool injects simulated user events and avoids accessing
the underlying devices. Such simulated events and hardware generated ones are
inconsistent in most cases. Also, to achieve high coverage of execution paths,
exploration tool tends to trigger all valid controls, among which some are not
supposed to be triggered by human.

7.2.3 Motivation

Even though the Android sandbox can be built on the real device, the Android
malware can still evade its dynamic analysis through identifying the usage-profile
based fingerprint, which reflects the real user information or the fake information,
such as the contact list, SMS and the installed app list. Such usage-profile based
fingerprints could be potentially leveraged to evade the Android sandbox by
attackers. If the fingerprint contains fixed deterministic data or is empty or
an artifact data which is not obviously created by users (e.g., "abcdefg" for the
name in the contact list), Android malware can directly identify the sandbox

136Identifying and Evading Android Sandbox Through Usage-Profile Based Fingerprints

environment and hide its following malicious behaviors. Even if all fingerprints
look exact the same as for the fingerprints in a user’s real device, there still be
a way to identify the Android sandbox if the fingerprint is fixed or not random
enough in every running time. The attackers can send a lot of probing apps to
the sandbox of AVs, extract all pesudo-random fingerprints and build a general
pattern for this sandbox. Later, other malware can use this pattern to evade the
Android sandbox.

Therefore, in Section 7.4 we first conduct a measurement on fingerprints of some
popular sandboxes, and then we conduct a study on whether these sandboxes
protect their fingerprints for preventing themselves from evading.

7.3 System Implementation 137

7.3 System Implementation

Fig. 7.1 The design of fingerprint collector

Fig. 7.2 Scouting apps generator

In this section, we present the design of the fingerprint collector. As depicted in
Figure 7.1, it consists of two components: (I) scouting-app and (II) fingerprint
extractor. The scouting-app is used to collect usage-profile fingerprints. It uses
only public Android APIs to get information about the execution environment.
The app does not use native code, neither Java reflection nor code obfuscation
techniques to hide its sensitive behaviors. The reason is that the prior static
analysis in most analyzers would highly regard the scouting app as a benign
app and filter it out if none suspicious evidence is found. To this end, and to
make the fingerprint process even more stealthy as well we implemented several
scouting-app each testing for a subset of usage-profile we were interested in. By
following this approach we avoid to create a single application that requires a lot
of sensitive privileges which could be marked as suspicious and then manually
analyzed later on, instead we use several scouting-app such that none of those
would require a suspicious combination of sensitive privileges.

138Identifying and Evading Android Sandbox Through Usage-Profile Based Fingerprints

Table 7.1 usage-profile Data

Type Data
Contact Name, numbers, email
Location GPS, network, latitude, longitude

SMS inbox, send, draft
WiFi SSID, signal-strength
App package-name, version, hash

Battery battery-level, stat, chargePlug
Call recent calls

The scouting app uses different threads to execute the scouting logic. Each
analysis sends its results back to the remote server in the JSON format. All
types of collected fingerprints are shown in Table 7.1.

To track which sandbox analyzes the scouting app, we need to build a scouting
app generator. In the scouting app generator, we use a testing app as the base
app to generate different apps for each target sandbox. Each generated app is
signed by a different certificate. We also make the signature of each app different
to avoid the trivial caching mechanism used by the sandbox. Moreover, since
we need to classify the results coming back from the testing app, we repackaged
the testing app for inserting a target token. Then, at run-time the app sends
back that token within its fingerprint data. Besides that, the app also sends back
its certificate signature, so that we can check if the app has been repackaged by
the sandbox for using the static instrumentation hooking framework. Advanced
sandbox might employ mechanisms in order to fool the certificate signature
check, to countermeasure those we included Java code which is responsible for
calculating the DEX file hash value at runtime. With these checks in place,
we can detect sandbox which eventually have modified the application being
analyzed in order to disable signature checks.

Figure 7.2 shows the generator design: the system receives the testing app (A)
and a list of target tokens (B) as inputs. Then, for each target token the generator
performs repackaging of the testing app by inserting the target token (1) in app’s
assets directory. Then, a new digital certificate is created and the repackaged

7.3 System Implementation 139

app is signed with. This procedure repeats for each target token. Finally, the
output is a set of apps which contain a token for each different target sandboxes.

The fingerprint extractor component first does normalization on the results
collected by our scouting applications. It then stores the unique data in a
database and uses the token mechanism to create the mapping between the
scouting app and the target sandbox. Finally, the collected data is analyzed to
determine whether the produced data from the sandbox is dynamically generated
or not.

140Identifying and Evading Android Sandbox Through Usage-Profile Based Fingerprints

7.4 Results

In this section, we describe the fingerprints collected by the scouting app. Because
of the difference in the Android app distribution channel, we choose different
types of mobile sandboxes accordingly as the target of this work, which are
shown in the Table 7.2. In fact, it is composed by both official and third-party
stores, i.e. Google Play, aptoide, F-Droid, etc. . . and also by stock applications
installed on real-world devices. First column in Table 7.2 shows the type of
sandbox being analyzed, second and third columns represent sandbox’s name and
its availability at the time of writing respectively. We choose to target mobile
anti-virus vendors because they use either their own customized sandboxes or
an online sandbox service to dynamically analyze collected samples. Moreover,
we collect the environment-related data from third-party stores, because it is
one of the most popular malware spreading channel. Considering that online
malware analysis services are used by both mobile anti-virus and third-party
stores, we also collect environment-related data from available online sandboxes.
Unfortunately, compared to other previous works [132, 112, 105, 125], we find
that just few of these online services are available at the time of writing, as
evicted by third column of Table 7.2.

We use the system described in Section 7.3 to generate 10 applications for each
target sandbox. Then, depending of the target type, we manually upload each
generated app by using the web interface provided by the online sandbox service,
or install on a real device or send it to the third-party store. In the latter case,
we immediately remove the app as soon as the scouting app has been analyzed
to make sure nobody has ever downloaded it. Moreover, we do not disclose
the mapping between the sandbox name and its representing label to allow to
sandbox maintainers to fix this problem.

We receive the environment-related data from 80% of available sandbox in
the Table 7.2. Table 7.3 and Table 7.4 show a summary of the most relevant
environment-related data collected by our testing app. The former contains
results of Contact data while the latter contains results of SMS data. Both Tables
have the last two columns in common which report whether the specific sandbox
does dynamically generates the environment-related data (Random data column)
and count the number of collected results (num. of results column) respectively.
As for Table 7.3 we reported name, number and email were collected by the
analysis, instead in Table 7.4 we included sending number and body if any. We

7.4 Results 141

Table 7.2 Mobile Sandboxes employed for evaluation. (✗ means not available at the
time of writing)

Type Sandbox Available

Online

Andrubis [137] ✗

SandDroid [129] ✓

TraceDroid[131] ✗

CopperDroid[128] ✗

HackApp [app] ✗

NVISO ApkScan [nvi] ✓

Koodous [koo] ✓

VirusTotal [130] ✓

Joe Sandbox mobile [30] ✓

ForeSafe ✗

Antivirus Bit Defender ✓

360 mobile ✓

TrendMicro ✓

Kaspersky ✓

Tencent mobile ✓

App store Amazon [ama] ✓

142Identifying and Evading Android Sandbox Through Usage-Profile Based Fingerprints

have not included the phone call data since all sandboxes return the empty result.
Thus, the phone call data could be one of the best user-profile fingerprints.

As describe in Section 7.3, our system allows us to detect if a target sandbox
returns a fixed data for a specific environment artifact. Unfortunately, as shown
by "Random Data" column in Table 7.3 and 7.4, the results indicate that most
Android sandboxes do not use dynamically generated environment data.

One interesting finding is that two mobile anti-virus sandboxes ran the application
on a real-world device. In fact, they returned concrete
WiFi artifact data (i.e. ”wifiscan” : ”DIRECTCnFireTV _8048”,
”wifiscan” : ”AppStore”, ”wifiscan” : ”AV control”).
Moreover, the data collected from the battery artifact, presented in Table 7.5 is
exactly the same for all the sandbox, except for the data returned by these two
anti-virus sandboxes. In fact, an unmodified Android emulator returns a fixed
battery stats, which consists of the following string:
”chargeP lug” : ”1”, ”batteryStat” : ”2”, ”batteryLevel” : ”50.0”.
Instead, results collected from a real-world device look like different:
”chargeP lug” : ”2”, ”batteryStat” : ”3”, ”batteryLevel” : ”100.0”.
Regarding application artifact data, we found that about 77% of targets the
sandboxes contain the identical set of applications found on stock Android em-
ulator. As Tables 7.6 shown, some anti-virus and all online sandboxes present
only the default installed app list from the Android emulator, and they never
return random data for the installed app list.

In the following list, we include some interesting apps’ package name:

– com.amazon.geo.contextcards

– com.amazon.rialto.cordova.webapp.
webapp50f95ccb054443059066310aefdf969b

– IAPV2AndroidSampleAPK

– com.amazon.otaverifier

– com.tencent.token

7.4 Results 143

Table 7.3 Contacts usage-profile Results

Sandbox Name Phone Email Random data num. of results

store_1 Mary Edwards 867-5309 ✗
✗ 2

Harry Grace 867-5319 ✗

online_x ✗ ✗ ✗ ✗ 1

online_y
Firstname1 1 301-234-5678 ✗

✗ 3Firstname2 1 381-234-5678 ✗

Firstname3 1 381-234-5678 ✗

av_1
Ion 074-354-3219 ✗

✗
Gheo 072-345-6789 ✗ 4

Txet4321 074-212-3456 ✗

av_2

Cynthia ✗ ✗

✗ 2Alexander ✗ ✗

Alexandra ✗ ✗

Dolores ✗ ✗

av_3 MARS 1 566-666-6666 chengkai_tao@****.com.cn ✗ 10

av_4
Boulder Hypnotherapy Ctr (303) 776 8100 z**y@gmail.com

✓ 36St. John Ambulance 061 412480 l**k@stjohn.ie
Maidstone Golf Centre 01622 863163 nick@totalgolfcoaching.co.uk

av_5
Jian Li 1 3743888229 lijxev@admin.cn

✓ 20Jian Li 13606500401 b0***54@admin.cn
Xuri Jin 13250324837 55**43@yuepao.cn

144Identifying and Evading Android Sandbox Through Usage-Profile Based Fingerprints

Table 7.4 SMS usage-profile Results

Sandbox Num Body Random data num. of results

store_1
2020845845 Hey

✗ 3+18454119384 Who
5618675309 Important

online ✗ ✗ ✗ 1

av_1 12345 smsmomealain
✗ 2

1234 smsmomealain

av_2 1354-587-2365 Mum
✗ 2

1857-667-8565 Jefferson

av_3
1301-234-5678 Ggggggggg

✗ 121301-234-5678 Testzzzzzz
1381-234-5678 123456789
1581-234-5678 Fffffffffmmmmmm

av_4

10668820 guchulaichonghuafei

✓ 1510086 nihao,laikaitong4g-songliuliango
13770837893 nihao,nishi4staryonghu,keyihuantingji

av_5
13540877911 u0oydyemvub4lu86kfcbwad46pvhmh6o

✓ 2215874984303 2fqjfkr629blowmxso4jh6dzqtk3f4j2
18660928896 lhb0j8hxi48wdjiua1q0qvsleeffgt6g

Table 7.5 Battery usage-profile Results

Sandbox Battery stats Random data
av_1 batteryStat’=’3, ’chargePlug’=’2’, batteryLevel = ’100’ ✓

av_2 batteryStat’=’2, ’chargePlug’=’1’, batteryLevel = ’98’ ✓

online, store batteryStat’=’2’,’chargePlug’=’1’,’batteryLevel’= ’50.0’ ✗

Table 7.6 Installed Apps usage-profile Results

Sandbox Emulator apps uncommon apps Random data
av_x ✓ ✓ ✗

av_y ✓ ✗ ✗

store ✓ ✓ ✗

online ✓ ✗ ✗

7.5 Defense 145

7.5 Defense

As we discussed in previous sections, the environment-related data represents an
interesting source of information, which could be exploited to identify the mobile
sandbox. Building a database of fingerprints from all sandboxes, an attacker
could take the advantage to easily detect an existing mobile sandbox by checking
the presence of matching data in the running environment.

To avoid this trivial detection mechanism, it is important to generate environment-
related data dynamically, so each application under analysis would see a different
environment.

Note that the presence of each previous discussed environment artifact is also an
important indicator of the goodness of the running environment. As discussed
in Section 7.4, sandboxes have not included the Call artifact. Even though
such type of environment data i.e. WiFi data, could not be generated, one can
artificially inject it by using hooking frameworks introduced in previous works
[50, Xpo, Cyd, 5].

In addition to set up the sandbox environment as close as a real user phone,
the sandbox developer could take a hybrid approach to detect such fingerprint
collection behavior. For example, some sandboxes are equipped with the same set
of environmental data, and other sandboxes are equipped with complete different
data. When performing the dynamic analysis, each suspicious sample should be
run in these two different sandboxes with similar triggering events. If two types
of sandboxes yield different malicious behaviors, it indicates that the malware
performs the evasion attack by checking the usage-profile based fingerprints.

146Identifying and Evading Android Sandbox Through Usage-Profile Based Fingerprints

7.6 Related Works

A couple of previous research works focus on evading the Android sandbox or
Android anti-virus scanners. Huang, et al. [76] discovered two generic evasions
that can completely evade the signature based on-device Android AV scanners,
while we are focusing on the Android sandboxes used offline. Sand-Finger [96]
collects fingerprints from 10 Android sandboxes and AV scanners to bypass current
AV engines and all of fingerprints used by Sand-Finger are hardware-related
or system-related, which are different from our user profile based fingerprints.
Timothy [133] presented several sandbox evasions by analyzing the differences
in behavior, performance, hardware and software components. He also revealed
that dynamic analysis platforms for malware that purely rely on emulation or
virtualization face fundamental limitations that may make evasion possible. The
above approaches are mainly related to detect the Android emulator environment.
Wenrui, et al. [57] proposed to evade the Android runtime analysis through by
identifying automated UI explorations. Similarly, our work is to distinguish the
difference between the sandbox environment and the real user device environment
through usage-profile based fingerprints.

In [43] Blacktorne et al. proposed AVLeak a blackbox technique to extract
emulator fingerprints. Although it address the similar problem about how to
efficiently extract emulator fingerprints the implemented methodology is not
suitable on Android. Moreover AVLeak was not focused on usage-profile based
fingerprints which are quite relevant ones for the mobile ecosystem.

7.7 Chapter Summary 147

7.7 Chapter Summary

In this chapter, we presented a novel mobile sandbox fingerprinting for the
sandbox evasion by checking the usage profiles. As demonstrated by the evidence
of collected results, usage profiles data could be used by a malware to fingerprint
current sandboxes. We demonstrate that most of our analyzed sandboxes are
built with fixed usage profiles and they completely overlook this potential hazard.
Mitigations are provided by us to prevent such evasion hazards, e.g., different
app runtime should present dynamically generated usage profiles, or hybrid usage
profiles. Our research raises the alert for the usage-profile based fingerprinting
hazard when developing mobile sandboxes and sheds lights on how to mitigate
similar hazards.

Chapter 8

OctoDroid: Discovering
Vulnerabilities in Android
System Services via Code
Property Graphs

The Android Framework is a fundamental component of the Android system. The
entire Android OS could not operate without it. The Framework is responsible for
critical system services (i.e., ActivityManager, Wifi Service, etc.) and it manages
app’s components (i.e., ContentProvider). Any installed app can communicate
with the system services either via Java middleware or directly via Binder IPC.
The implementation of the Android Framework is cross-layers, it resides both
at Java and native level (mainly C++ code). This characteristic makes the
framework a potential exploitable channels for application to reach the inner
parts of the system, this a natural target for memory corruption vulnerabilities.
Moreover, system services run in privileged process which may lead to a privilege
escalation attack.

This chapter presents OctoDroid, a plugin for code analysis that combines the
benefits from the powerful Clang’s C++ AST parser with the Octopus analysis
platform powered by Code Property Graph (CPG) representation. Analyzing
object-oriented programming language, such as C++, presents complex challenges
due to the features such as polymorphism and inheritance. To allow efficient
exploitation of the CPG employed by Octopus, we designed and implemented a
simple yet effective analysis algorithm that leverages on class hierarchy analysis
(CHA). The augmented code produced by OctoDroid allows Octopus to perform

150
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

precise analysis of C++ Android system services codebase. We prototyped
OctoDroid using the Clang LibTooling library and integrated it in Octopus as
plugin. We evaluated OctoDroid on latest Android available at the time of
writing1. Using our approach we have uncovered three previously unknown
bugs, one of them a memory corruption reported and patched by the Android
security team. Furthermore, we evaluated our approach on previously known
vulnerabilities. Our work demonstrates that exploiting the Clang AST C++
parser we improved the Octopus analysis of C++ code enabling it to discover
previously missed bugs.

8.1 Introduction

The Android OS has been dominating the mobile market since a few years, as of
2016 there were more than 1.4 billion active Android devices and over 65 billion
Android apps installed so far. Android applications make use of the Android
API offered by Android Application Framework in order to properly operate
and consume services as offered by the Android system. The role of system
services is quite crucial in terms of app’s functionality, in fact those services offer
fundamental capabilities such the WifiManagerService (in charge of managing
Wifi operations), LocationManagerService (managing GPS communication).
Nevertheless, all the user interface of Android apps (i.e., Activity) is controlled
via the ActivityManagerService (AMS) which operates as a system service. Thus,
the Android Framework represents a fundamental component participating in
operative functionalities offered by the OS. On the other hand, it represents an
interesting attack surface in order to conduct a privilege escalation attack over
running system services. In this work we focus especially on native code (mainly
C++) implementation of those services in order to spot buggy code, eventually.

System services employ as communication mechanism the Binder IPC, which
in turn add an opaque layer when it comes to discovering vulnerability. In fact,
the Binder IPC mechanism permits to invoke remote procedure as they were
local, basically it is a client/server communication via Binder messages, so called
Parcel. Serialized objects and methods are specified using Android Interface
Definition Language (AIDL). To locate a particular service an Android app
queries the servicemanager for the handle which is responsible to maintain the

1Android Oreo 8.1.0

8.1 Introduction 151

service directory and to map an interface name to a Binder handle. Most of
the Android system services just run as a thread hosted by the system_server
process which executes with system privilege. Any Parcel being sent via Binder
has been serialized by the Proxy (on the client side) and would be deserialized
by the Stub (on the server side), this operations requires that both sides agree
on the semantic of the object which is being serialized/deserialized, hence the
adoption of the AIDL.

Several vulnerabilities affecting Android system services have been reported by
Android security bulletins2 over the past years proving that finding and mitigating
vulnerabilities is a crucial task that requires continuous incremental analysis over
the time (i.e., new code and features might introduce new bugs).

Yamaguchi et. al. proposed in [141] an innovative approach for modeling and
discovering vulnerabilities employing Code Property Graphs (CPGs), the imple-
mentation named Octopus for C/C++ languages has also been released. Octopus
aids the analyst discovering vulnerability by query traversal on the CPG stored in
a graph database. The difficulty of parsing C++ is well-studied [? ?]. Octopus
employs a fuzzy parser based on island grammars [98] which performs analy-
sis on selected portion of the code rather than performing a detailed analysis
of a complete source code. The fuzzy parser allows to continue the analysis
even in case of parsing issues or in case of missing code portions. As natural
consequence we noticed that Octopus presents very low detection rate when it
comes to analyzing C++ code base, mainly as consequence of its parser’s design
which scarifies level of details in favor of tolerance. This has been shown to be a
totally reasonable compromise. Although, our goal is to employ Octopus and its
CPG based analysis for discovering vulnerabilities within Android system service
codebase which consist of mostly C++ code.

In this work we propose OctoDroid , a practical analysis tool combining the precise
parsing offered by Clang along with the graph-based analysis of Octopus platform.
OctoDroid compensates the Octopus’ fuzzy parser inherent incompleteness in
analyzing C++ code. OctoDroid allows to automatic modeling and discovering
vulnerability in Android system services codebase. Differently from existing
approaches based on fuzzing, we focus on static exploration via CPGs which
allows to traverse the produced graphs in order to query for specific pattern that

2https://source.android.com/security/bulletin/

https://source.android.com/security/bulletin/

152
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

may lead to vulnerabilities. We propose an uncouple design which builds the
full inheritance graph analyzing the codebase via Clang, then exploit collected
information to enhance the static analysis employed by Octopus platform analysis.

We concretely show how OctoDroid can easily detect various already known secu-
rity bugs in Android system services and we demonstrate how OctoDroid minimize
the manual effort requested . We further show OctoDroid effectiveness by con-
sidering recent uncovered vulnerabilities in native code which lead to memory
corruption in system services process.

This work makes the following contributions:

– To our knowledge, OctoDroid is the first CPG-based tool that aims to
enhance Octopus analysis capabilities specifically for automatic modeling
and discovering of vulnerability in C++ code, in particular we targeted the
Android system services codebase.

– Unlike previous existing works, OctoDroid provides effective and practical
analysis of Android system services codebase by means of Code Property
Graph representation. OctoDroid takes the advantage of Clang’s full parsing
approach to enhance the CPG by class hierarchy information.

– We have implemented and evaluated OctoDroid on the latest Android Orio
codebase available at the time of writing. Our results show its effectiveness
in discovering new vulnerabilities.

– We release OctoDroid as opensource to

.

The remainder of this chapter is organized as follows: Section 8.2 briefly introduces
the background of our approach. Next, we presents a motivating example
highlighting the problems we want to address and the current limitation of
Octopus’ analysis platform when it comes to C++ language in Section 8.3. We
proceed describing OctoDroid methodology and design in Section 8.4 and Section
8.5 respectively. We show and discuss evaluation results in Section 8.6 and
compare related works in Section 8.7. Finally, we conclude our work in Section
8.8.

8.2 Background 153

8.2 Background

In this section we introduce few basic concepts that help to understand our
scenario and contributions. First, we introduce the Clang parsing library we have
used to extract the AST. Second we give a brief introduction on object-oriented
languages, C++ in particular, and why they are challenging to parse by the
Octopus fuzzy parser. Then, we provide few fundamental concepts about Binder
and its cross-layers (Java and native) functionality. Finally, we introduce the
CPG based analysis approach as presented by Yamaguchi et. al. in [141].

8.2.1 Clang and LibTooling

To build a precise AST we exploit Clang, an open source compiler front-end for
the C,C++,Objective-C and Objective-C++ programming languages []. Clang
uses LLVM as backend. In particular, we employed LibTooling, a Clang C++
library which allows to construct tools that leverage on the Clang parsing front-
end. Libtooling is able to extract both syntactic and semantic information about
a program by accessing to the Clang abstract syntax tree (AST). Several papers
have been published showing the benefits of Clang AST in parsing C++ code [].

8.2.2 Object-oriented language

As most of the Android system services codebase is written in C++, we give a
brief description of those challenges faced by Octopus fuzzy parser when it comes
to object oriented languages as C++. A major advantage of object-oriented
languages is abstraction. One of the most important feature is that it allows
dynamic dispatching of methods based on the runtime type of an object. In C++
language programmers must explicitly request dynamic dispatching by declaring
a method to be virtual. The difficulty of parsing C++ code is well-studied[? ?
], a comprehensive description of those is beyond the scope of this work. What
is more important for the research presented in this work is that for a program
without virtual function calls (or function pointer) a complete graph can be
produced, instead when virtual functions are in place, each virtual call site has
multiple potential targets.

Android system services implementation consist of several classes which extend
and provide different capabilities, resulting in a massive usage of virtual function

154
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

calls. This represents the main limitation of Octopus’s fuzzy parser when analyz-
ing a C++ codebase.

8.2.3 Android System Services

Android framework plays a key role in Android OS, it provides a collection
of system services which provide crucial features that are accessed by the app
developers via Java-layer middleware. The transport for service (and all inter-app)
communications in Android is the Binder mechanism, accessed via /dev/binder,
which is in charge with not only dispatching messages, but also with passing
around descriptors, objects, and more, as well as providing reliability and security.
Objects passed thought Binder are actually handles to the remote object, hence
they can not be just recorded as raw data because they become meaningless once
out of the transaction context. All framework services are invoked following the
same invocation pattern and the Android Interface Description Language (AIDL)
is employed to provide the interface exported by those services.

The Binder high-level Java implementation resides in Android.os.Binder3 which
represent the base class for a remotable object and implements the IBinder4 inter-
face. Most developers will not implement this class directly, instead using the aidl
tool to describe the desired interface, having it generate the appropriate Binder
subclass. The key IBinder API is transact() matched by Binder.onTransact().
These methods allow to send a call to an IBinder object and receive a call coming
in to a Binder object, respectively. The data sent through transact() is a Parcel,
a generic buffer of data that also maintains some meta-data about its contents.
The meta data is used to manage IBinder object references in the buffer, so that
those references can be maintained as the buffer moves across processes.

The Binder native implementation offers several interfaces and classes: IBinder,
BpBinder, BBinder, IInterface, BpInterface and BnInterface. Respectively,
IBinder5 defines common interfaces that will be shared among all subclasses,

3http://androidxref.com/8.0.0_r4/xref/frameworks/base/core/java/android/os/
Binder.java

4http://androidxref.com/8.0.0_r4/xref/frameworks/base/core/java/android/os/
IBinder.java

5http://androidxref.com/8.0.0_r4/xref/frameworks/native/libs/binder/include/
binder/IBinder.h

http://androidxref.com/8.0.0_r4/xref/frameworks/base/core/java/android/os/Binder.java
http://androidxref.com/8.0.0_r4/xref/frameworks/base/core/java/android/os/Binder.java
http://androidxref.com/8.0.0_r4/xref/frameworks/base/core/java/android/os/IBinder.java
http://androidxref.com/8.0.0_r4/xref/frameworks/base/core/java/android/os/IBinder.java
http://androidxref.com/8.0.0_r4/xref/frameworks/native/libs/binder/include/binder/IBinder.h
http://androidxref.com/8.0.0_r4/xref/frameworks/native/libs/binder/include/binder/IBinder.h

8.2 Background 155

Fig. 8.1 Android Binder & System Services

BBinder6 is the base class for all server implementation, normally on the server
side it implements the onTransact() function in BnInterface subclasses, BpBinder7

holds the remote server handle at client side, it is the base class for all client
implementations. The latter interfaces (IInterface, BpInterface, BnInterface)
contain code to establish communication between IBinder and business class
implementation code, acting as some sort of language glue. The coding pattern
followed by those interface result in using Bp prefix for client side proxy classes
and Bn for those implementing server proxy object class. This pattern is quite
common but not mandatory, in fact there are services’ class which does not
follow this pattern (i.e., WifiService). Despite the reasonable intuition that
interesting vulnerabilities may reside only in the server side, it really depends by
in which process the client side implementation is running. In fact, in services
like mediaserver it is quite common that the client implementation resides in
privileged process.

The high-level interaction between system services and user apps is pictured in
Figure 8.1 whereas the green and the red dashed boxes represents respectively
the user app process and the WifiService process space. The user app invokes the
Android framework API in order to consume Wi-Fi functionalities via WifiMan-
ager. The WifiManager holds the handle for the Binder interface IWifiManager,
controlling and quering Wi-Fi connectivity operations are forwarded via IWifi-
Manager.Stub.Proxy (Stub and Proxy classes are usually generated via aidl tool).
Finally, data serialization occurs in libbinder which is also in charge to instantiate
the Binder communication. The Binder component extracts information attached

6http://androidxref.com/8.0.0_r4/xref/frameworks/native/libs/binder/include/
binder/Binder.h#27

7http://androidxref.com/8.0.0_r4/xref/frameworks/native/include/binder/
BpBinder.h#27

http://androidxref.com/8.0.0_r4/xref/frameworks/native/libs/binder/include/binder/Binder.h##27
http://androidxref.com/8.0.0_r4/xref/frameworks/native/libs/binder/include/binder/Binder.h##27
http://androidxref.com/8.0.0_r4/xref/frameworks/native/include/binder/BpBinder.h##27
http://androidxref.com/8.0.0_r4/xref/frameworks/native/include/binder/BpBinder.h##27

156
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

in the transaction sent by the client in order to identify the requested service.
The WifiService which is responsible to handle control and query operations
made by the clients would reverse the serialization and pass the data to the
WifiService implementation via the IWifiManager.Stub. The WifiService is the
component which implements the actual business logic.

8.2.4 Code Property Graphs

In what follows we briefly review some basic concepts related to CPG based
approach. Octopus employs a fuzzy parser to analyze the source code and build
the Code Property Graphs (CPG) which is then stored by a graph database.
The CPG contains different code representations, the abstract syntax tree (AST),
the control flow (CFG) and program dependence graph (PDG) of source code.
All those representation (AST, CFG and PDG) compose a CPG which formally
is an edge-labeled, attributed multigraph [?]. Octopus employs a fuzzy parser
based on island grammars [98] which performs analysis on selected portion of
the code rather than performing a detailed analysis of a complete source code.
The Octopus’s parser goal is to parse as much as code as possible with graceful
fails whenever a portion is missing but without stopping the process before
complete the parsing on all the input code. To leverage this representation,
Octopus expresses search pattern as graph traversals by means of the Gremlin
[120] programming language.

The CPG provides a inter-procedural code property graph, as detailed in [143]
tuned to be processed using graph database queries and augmented with syntax
and dominance information.

The CPG along with the Gremlin language for graph database provides an
efficient solution to model taint style vulnerability as graph query as the one
shown in Figure 8.2. Gremlin allows to achieve a very powerful query mechanism
by means of what is called traversal, basically it allows to define how to navigate
within the graph according to specific properties. Figure 8.2 illustrates three
different traversals which are employed to model a typical taint-style vulnerability
where the traversal getCallsTo discovers all call-site of sink, then analyse each sink
call site separately using the traversals taintedArgs and unchecked respectively.
All definitions that match the descriptions are passed to the traversal unchecked
which is in charge for analysis of security checks along the way to the sink. As

8.2 Background 157

Fig. 8.2 Template for taint-style vulnerability as a graph traversal in the query language
Gremlin

discussed in [143], this approach permits to define graph traversal that can be
reused on different codebase in order to mine code for bugs.

158
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

8.3 Motivating Example

In this section we present a motivating example to describe the overall problem in
analyzing C++ by the Octopus analysis platform. In particular, by this example
we want to describe the overall Octopus fuzzy parser limitation especially when
virtual function calls are in place (polymorphic call site).

Figure 8.3 shows a trivial program which helps in illustrating the object-oriented
features such dynamic-binding. This motivating example aims to show Octopus
difficulty in detecting the inter-procedure data flow from the source function to
the sink function. In particular, both the functions source and sink are present
in both classes A and B as well as the function parser. Note that only the sink
implementation offered by B is vulnerable. As for classic taint style vulnerabilities,
the source produces an attacker controllable value that is then consumed by the
sink, in our example we simulated a memory corruption vulnerability (line 28) in
the B::sink function.

Octopus’s fuzzy parse tokenizes code in 8.3 for building the AST, as well as
the other representations, without collecting type-wise information, in fact its
main goal is parsing without failing. When performing a query via the Octopus’s
analysis platform, the analyst must specify both the interesting source and sink
functions. As disadvantage of the imprecise parsing performed by Octopus, the
data flow analysis is missing the type information. Thus, will return any call-site
containing the string sink as the correct one for the function B::sink. This is
obvious an outcome that does not provide any useful information to the analyst.

In what follows, we provide an example where the analysist provides the proper
name of the desired sink function (B::sink in our example) but the Octopus
analysis platform is not able to detect the proper data flow going from the source
to the sink in Figure 8.3 (line 37 to line 33). Hovewer, for this trivial example the
analyst may provide sink as sink function’s name but in this case the analysis
would retrieve as sink function any function name containing the string sink

and as its call-site any one matching the same string, regardless the type of the
object involved in the call site. This obvious does not scale for real-world C++
codebase, in fact it increases the false positive rate significantly as well as causing
performance degradation if the selected function’s name is a common one within
the whole codebase. (i.e., copy).

8.3 Motivating Example 159

1 c l a s s A {
2 p u b l i c :
3 v i r t u a l i n t source () ;
4 v i r t u a l void s ink (i n t x) ;
5 v i r t u a l void pa r s e r (i n t k) ;
6 } ;
7 c l a s s B : p u b l i c A {
8 p u b l i c :
9 v i r t u a l i n t source () o v e r r i d e ;

10 v i r t u a l void s ink (i n t x) o v e r r i d e ;
11 v i r t u a l void p ar s e r (i n t k) o v e r r i d e ;
12 } ;
13 i n t A : : source () {
14 re turn 0 xdeadbeef ;
15 }
16 void A : : s ink (i n t x) {
17 // NOT VULNERABLE
18 p r i n t f (" s ink A %d\n" , x) ;
19 }
20 void A : : p a r s e r (i n t k) {
21 s ink (k) ;
22 }
23 i n t B : : source () {
24 re turn 0 xdeadbeef ;
25 }
26 void B : : s ink (i n t x) {
27 // VULNERABLE
28 char buf [1 0] ;
29 p r i n t f (" s ink B %d\n " , buf [x]) ;
30 }
31 void B : : pa r s e r (i n t k) {
32 i n t x = k + 1 ;
33 s ink (x) ;
34 }
35 i n t main (i n t argc , char ∗∗ argv) {
36 B∗ p = new B;
37 i n t r e s = p−>source () ;
38 p−>p ar se r (r e s) ;
39 re turn 0 ;
40 }

Fig. 8.3 Trivial code illustrating object-oriented features

Figure 8.4 presents an Octopus query for an inter-procedure traversal which
performs backward analysis starting from the sink to the source. Unfortunately,
even if the query is modeling the exact vulnerability presented in Figure 8.3 it
does not return any data-flow. The getCallsTo function (line 2) is in charge to
traverse the graph looking for any call-site matching the regular expression string,
B :: sink.∗ provided as argument. Unfortunately, there is none explicit call
matching that pattern, then the analysis is stopped at this stage because for the
given sink none call-site was found. If the analyst specify as sink function name
the string sink.∗, then the Octopus platform returns very imprecise results. In
fact, any call-site containing the string sink would match for both the functions
named A::sink as well as B::sink.Moreover, the string sink.∗ would match also

160
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

the call-site at line 21 producing a false positive because that function is never
called in our example. We observed that this outcome is not suitable for huge
codebase, as Android AOSP, especially when polymorphic call sites are in place.

1as ink=" . ∗B : : s ink . ∗ "
2
3getCal l sTo (as ink)
4. ta intedArgs ([sourceMatches ("B : : source . ∗ ")])
5. unchecked ([ANY_OR_NONE])

Fig. 8.4 Octpus query for 8.3

8.4 Methodology 161

8.4 Methodology

OctoDroid aims to discover vulnerabilities in Android system services by means
of CPG analysis employed via Octopus analysis platform. In this work we will
focus on a specific kind of vulnerability so called taint style. In the class of
taint-style vulnerabilities, attacker-controlled data is passed un-sanitized from
an input source to a sensitive sink. Hence, this procedure requires to accurately
identify the callee and its call-site, in order to propagate the data flow to the
correct destination. As taint-style vulnerability class fits many common security
defects well, including buffer overflow and other memory corruption flaws. In this
work we will focus on undercovering vulnerabilities which belong to this class.
For more details about how Octopus deals with this class of vulnerability refer
to [141, 143, 111].

Our analysis is composed by two stages. First, we build the Class Hierarchy
graph [?] by means of Clang’s LibTooling library [?]. Then, we use LibTooling
again to enhance the code with the information collected in the previous stage.
As result, the augmented code would contain virtual function calls replaced with
their corrispective explicit form(s), whenever it is possible. The augmented code
can now be processed by the Octopus’s fuzzy parser and then analyzed leveraging
on the type information which has been written esplicitely in the augmented
code. It is worth noting that OctoDroid on one hand benefits from the clang’s
Libtooling capabilities and on the other hand exploits the Octopus’s fuzzy parser
and analysis platform to perform query on the augmented code. The augmented
code might be not compilable anymore, as we will explain in the following, but
the Octopus’ fuzzy parser will be still able to complete its parsing processing the
code enhanced with type information.

OctoDroid ’s methodology enables to identify links among business code im-
plementation (Bn) and its counterpart in the client side (Bp), those calls most
of the times appear as virtual function call. OctoDroid builds a dependency
and inheritance graphs according to the information extracted via Clang. We
begin describing how we leverage on the Clang’s LibTooling library. Then we
continue introducing the challenges we needed to overcome in order to enhance
the analysis carried out via Octopus platform.

Clang’s LibTooling C++ library provides access to the AST representation and
supports the construction of tools that leverage the Clang parsing front-end.
The Class Hierarchy Analysis (CHA) [?] allows to use the combination of the

162
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

statically declared type of an object with the class hierarchy of the program in
order to determine the set of possible targets of a virtual function call. In Figure
8.3, p is a pointer whose static type is B *, which basically means that p can
point to objects whose type is B or any of B’s derived classes. Analyzing the
Class Hierarchy graph and combining its information we can infer that there are
no derived classes of B so that the only possible target of the first call (line 37)
is int B::source(), for the call at line 38 we can infer the only target is B::sink as
well. In order to conduct a proper CHA the complete program source code must
be available, any missing piece of code could produce imprecise results.

Figure 8.5 shows the augmented code obtained by OctoDroid , due to space issue
only the relevant code modifications were reported. Performing the analysis via
Clang OctoDroid collected the type information used for transforming the virtual
calls into an explicit form. It is worth noting that we do not aim to optimize the
source code or any similar tasks in charge of a compiler. In fact our goal is to
make the Octopus data-flow analysis able to recognize those flows involving a
virtual function call which OctoDroid has now turned into direct calls.

First we describe how OctoDroid improves the Octopus analysis capability as for
the motivating example shown in Section 8.3. Second, we continue providing a
more complex example where the object dynamic type cannot be resolve statically
and we show how OctoDroid performs its analysis in those cases.

As shown by Figure 8.5, the virtual function calls at lines 37 and 38 Figure 8.3
has been transformed into an explicit call to B::source and B::parse, respectively.
Also the virtual function call at line 21 Figure 8.3 was turned into the direct
form A::sink. The Octopus platform provided with this augmented code version
is then able to detect the correct data-flow as requested by the analyst, from
the source function named B::source to the sink B::sink. In fact, executing the
the query in Figure 8.4 the precise result provided by platform contains only the
correct vulnerable flow, none false positive result is returned.

Challenges. As shown by Figure 8.6 we modified the previous example employed
in Section such to reflects a real-world scenario where code complexity is much
more than that shown in the previous trivial code from Figure 8.3. We added the
function named bridge that performs dynamic-binding calling a virtual function
defined by the object received as argument. This new example in Figure 8.6
will drive the following discussion about the challenges when the static type is a
superclass of the dynamic type observed at runtime.

8.4 Methodology 163

1void A : : pa r s e r (i n t k) {
2A : : s ink (k) ;
3}
4i n t B : : source () {
5re turn 0 xdeadbeef ;
6}
7void B : : s ink (i n t x) {
8// VULNERABLE
9char buf [1 0] ;
10p r i n t f (" s ink B %d\n " , buf [x]) ;
11}
12void B : : p a r s e r (i n t k) {
13i n t x = k + 1 ;
14B : : s ink (x) ;
15}
16i n t main (i n t argc , char ∗∗ argv) {
17B∗ p = new B;
18i n t r e s = B : : source () ;
19B : : p a r s e r (r e s) ;
20re turn 0 ;
21}

Fig. 8.5 Trivial code in 8.3 transformed by OctoDroid

1s t a t i c void br idge (A∗ p) {
2i n t r e s = p−>source () ;
3p−>p ar se r (r e s) ;
4}

Fig. 8.6 strong dynamic dispatching

The dynamic type information for the object received as argument by the function
bridge could be either A or any classes which is extending it. We can not infer
its type statically, then in this case we can provide a superset of its possible
targets. According to the class hierarchy graph we can derive those classes
that extend from A, any of those is a candidate target. We further analyze all
found classes inspecting whether they define a virtual method named as the
target one, this simple but practical heuristic allows to reduce the number of
candidates without loosing any precision. The set of candidates collected by
OctoDroid may include object types which would not be observed at runtime,
this is a natural disadvantage of our static analysis approach. Although, on the
other hand it provides Octopus the ability to perform a query traversal on C++
code as precisely as the analyst required for. In the following we details the
augmented code for 8.3. The augmented code produced by OctoDroid is shown
by Figure 8.7. The virtual function calls in function bridge have been replaced
with all the good candidates found by OctoDroid , as we mentioned before this
is a super set of the possible targets. Being a super set does not impact on the

164
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

overall analysis platform system, when the analyst executes the query in 8.4 she
will get the intended flow from B::source to B::sink regardless that the function
bridge contains call sites that might not appear at runtime (lines 2 and 3 Figure
8.7).

1 s t a t i c void br idge (A∗ p) {
2 i n t r e s = A : : source () ;
3 A : : p a r s e r (r e s) ;
4 i n t r e s = B : : source () ;
5 B : : p a r s e r (r e s) ;
6 }

Fig. 8.7 Trivial code in 8.6 transformed by OctoDroid

Once we have explained how we combine clang powerful parsing capabilities along
with graph-based Octopus analysis platform, we proceed detailing the mechanics
of OctoDroid .

8.5 OctoDroid 165

Fig. 8.8 Octodroid design

8.5 OctoDroid

In this section we describe how we designed OctoDroid and integrated it in
couple with Octopus analysis platform. Figure 8.8 depicts the two Clang modules
and how they participate in producing the augmented code. The first module
named joern-virtual-helper is implemented as clang-tidy module [] it is in charge
of building the class hierarchy graph. It requires the compilation database
and the source code as inputs. The former is a json file containing all the
files processed by the clang compiler, to create this file we compiled Android
AOSP proving the appropriate flags for creating the clang compilation database.
This file is requested to successfully complete the Libtooling AST parsing, any
include or definition must be resolved. In fact, because of the clang’s full parsing
approach, the analyzed codebase must be compilable, in contrast with Octopus
fuzzy parser that is able to parse even not compilable ones. However, this is
a requirement satisfied by Android AOSP. The second module in Figure 8.8,
joern-code-refactoring takes the output of the first module and the source code
again, producing as output the augmented version. Finally, the augmented code
is provided to the Octopus analysis platform.

166
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

8.6 Evaluation

We proceed to evaluate OctoDroid by means of two concrete vulnerabilities
reported to Android security team and discovered by member of KeenTeam by
Tencent. The first one, CVE-2015-66128 is a heap overflow found in ICrypto
system service implementation. The second one has been found by OctoDroid

powered analysis, CVE-2017-0712 and is a stack overflow in startScan function
exposed by the WiFiManager system service. These vulnerabilities highlights
the importance of properly identify the callee function as well as some difficulties
involved.

The Figures 8.9, 8.10 and 8.11 show the taint-style vulnerability, the data flow
starts in BnCrypto::OnTransact, goes to Crypto::decrypt and finally reaches the
vulnerable function CryptoPlugin::decrypt. The BnCrypto::OnTransact function
shown by Figure 8.9 is defined in ICrypto.cpp and it is in charge to process an
incoming Binder transaction. This function can be called by any user apps by
means of the Binder mechanism, as we discussed in Section ??. If the being
processed transaction type is DECRYPT, the attacker controllable data is read by
data.read at line 13 into a heap allocated object of type CryptoPlugin::SubSample.
Then, at line 18 the decrypt function is called. This is a virtual function call, any
class that extends the BnCrypto and implements the virtual decrypt function is
a candidate target. The vulnerable flow continues to Crypto::decrypt function
(Crypto extends BnCrypto), Figure 8.10, at line 10 a virtual function call to
mPlugin->decrypt invoke the final vulnerable CryptoPlugin::decrypt function. The
CryptoPlugin function contains a for loop over the subSamples array and within
the loop it calls the memcpy function, line 8. The attacker controllable value
subSample.mNumsBytesOfClearData is passed as length argument to memcpy,
which leads to heap memory corruption.

To discover this vulnerability which is a taint-style one, Octopus lacks the
information needed to follow the data-flow across the different virtual function
call sites, as we detailed in Section 8.3. OctoDroid exploits the class hierarchy
graph to produce the augmented code shown in Figures 8.12 and 8.13. The class
hierarchy graph enables to extract all those classes extending BnCrypto and
for those matching the target virtual method, decrypt, OctoDroid rewrites the
virtual call into a direct call as shown in Figure 8.12 line 8. Then OctoDroid

exploits type-based reference analysis to retrieve the type information for the
8

8.6 Evaluation 167

1 status_t BnCrypto : : onTransact (
2 uint32_t code , const Parce l &data , Parce l ∗ rep ly , uint32_t f l a g s) {
3 switch (code) {
4 [. . .]
5 case DECRYPT:
6 {
7 CryptoPlugin : : SubSample ∗ subSamples =
8 new CryptoPlugin : : SubSample [numSubSamples] ;
9 data . read (

10 subSamples ,
11 s i z e o f (CryptoPlugin : : SubSample) ∗ numSubSamples) ;
12 [. . .]
13 AString errorDeta i lMsg ;
14 s s i z e _ t r e s u l t = decrypt (
15 secure ,
16 key ,
17 iv ,
18 mode ,
19 srcData ,
20 subSamples , numSubSamples ,
21 s e c u re ? s e c u r e B u f f e r I d : dstPtr ,
22 &errorDeta i lMsg) ;

Fig. 8.9 ICrypto.cpp. Binder related BnCrypto::decrypt

1 s s i z e _ t Crypto : : decrypt (
2 bool secure ,
3 const uint8_t key [1 6] ,
4 const uint8_t iv [1 6] ,
5 CryptoPlugin : : Mode mode ,
6 const void ∗ srcPtr ,
7 const CryptoPlugin : : SubSample ∗ subSamples , s i z e_t numSubSamples ,
8 void ∗ dstPtr ,
9 AString ∗ errorDeta i lMsg) {

10 re turn mPlugin−>decrypt (
11 secure , key , iv , mode , srcPtr , subSamples , numSubSamples , dstPtr ,
12 er rorDeta i lMsg) ;
13 }

Fig. 8.10 Crypto.cpp. Crypto implementation of the decrypt virtual function

virtual function call at line 10 Figure 8.10 and transforms it into the corrispective
direct call to CryptoPlugin::decrypt, as shown by Figure 8.13.

To discover this taint-style vulnerability via a query traversal we specify as
sink the third argument to ?? and as source the first parameter of data.read.
The analysis begins at the sink and the producer of the tainted variable is
retrieved , repeating the process until either the function entrypoint or the target
source is reached. In 8.11 the analysis continues up to the function entrypoint,
because subSamples is an argument, then the analysis continues in function’s
callees. The callee is retrieved by looking for any call site statement matching
the target function name, which is CryptoPlugin::decrypt. The augmented code
provided by OctoDroid allows Octopus analysis platform to identify the proper

168
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

1 s s i z e _ t CryptoPlugin : : decrypt (bool secure , const KeyId keyId , const Iv iv , Mode mode ,
const void ∗ srcPtr , const SubSample∗ subSamples , s i z e_t numSubSamples , void ∗ dstPtr
, AString ∗ errorDeta i lMsg) {

2 i f (mode == kMode_Unencrypted) {
3 s i z e_t o f f s e t = 0 ;
4 f o r (s i z e_t i = 0 ; i < numSubSamples ; ++i) {
5 const SubSample& subSample = subSamples [i] ;
6 [. . .]
7 i f (subSample . mNumBytesOfClearData != 0) {
8 memcpy
9 (r e i n t e r p r e t _ c a s t <uint8_t∗>(dstPtr) + o f f s e t ,

10 r e i n t e r p r e t _ c a s t <const uint8_t∗>(s rcPt r) + o f f s e t ,
11 subSample . mNumBytesOfClearData) ;
12 o f f s e t += subSample . mNumBytesOfClearData ;
13 }
14 }
15 re turn s t a t i c _ c a s t <ss i ze_t >(o f f s e t) ;
16 [. . .]

Fig. 8.11 CryptoPlugin.cpp. CryptoPlugin implementation of the decrypt virtual
function

data-flow involving the two functions in Figure 8.12 and 8.13. The call site for
CryptoPlugin::decrypt is found at line 9 Figure 8.10, then the respective callee
of Crypto::decrypt function is identified at line 8 Figure 8.12, reaching then the
selected source. The traversal query that allows to discover the vulnerability is
presented in Figure 8.14, without the augmented code provided by OctoDroid this
query would return and empty set of findings.

1status_t BnCrypto : : onTransact (
2uint32_t code , const Parce l &data , Parce l ∗ reply , uint32_t f l a g s) {
3switch (code) {
4[. . .]
5case DECRYPT:
6{
7[. . .]
8s s i z e _ t r e s u l t = Crypto : : decrypt (
9secure ,
10key ,
11iv ,
12mode ,
13srcData ,
14subSamples , numSubSamples ,
15s ec u r e ? s e c u r e B u f f e r I d : dstPtr ,
16&errorDeta i lMsg) ;

Fig. 8.12 BnCrypto::onTransact transformed by OctoDroid

8.6 Evaluation 169

1s s i z e _ t Crypto : : decrypt (
2bool secure ,
3const uint8_t key [1 6] ,
4const uint8_t iv [1 6] ,
5CryptoPlugin : : Mode mode ,
6const void ∗ srcPtr ,
7const CryptoPlugin : : SubSample ∗ subSamples , s i z e_t numSubSamples ,
8void ∗ dstPtr ,
9AString ∗ errorDeta i lMsg) {
10re turn CryptoPlugin : : decrypt (
11secure , key , iv , mode , srcPtr , subSamples , numSubSamples , dstPtr ,
12errorDeta i lMsg) ;
13}

Fig. 8.13 Crypto::decrypt trasformed by OctoDroid

1 a r g 3 S a n i t i z e r = { i t , symbol −>
2 condit ionMatches (" .∗% s (<|<=) . ∗ " , symbol)
3 }
4
5 getCal l sTo ("memcpy")
6 . ta intedArgs ([ANY, ANY, sourceMatches (" data . read . ∗ ")])
7 . unchecked ([ANY_OR_NONE,ANY_OR_NONE, a r g 3 S a n i t i z e r])

Fig. 8.14 Traversal query to discover the taint-style vulnerability in 8.13

170
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

8.7 Related Work

Android is an opensource project (AOSP)9, consequently has received a significant
attention from the security research community. In the past few years several
works have been proposed to address privacy-related issue due to information
leakage[59], various approaches were presented addressing the privilege escalation
attack[? ?], offering security oriented sandbox for Android apps[38, 42, 40],
other were proposed to enhance security in enterprise scenarios[123, 72]. A part
of those approaches were employing static instrumentation as well as other were
employing dynamic instrumentation techniques [50].

Discovering vulnerabilities is a typical computer security topic, consequently
several works have been published over the past few years. A significant fraction
of them were focused on discovering vulnerabilities in the application level,
especially Java level code[92? ?]. Existing works addressing Android codebase
(AOSP) employ a fuzzing strategic for discovering new vulnerabilities[? ?]. Feng
et. al. presented in [?] BindCracker, an automating testing framework which
supports parameter-aware fuzzing in order to assess Android system services
robustness. As Binder transactions can transfer primitive type but also serialized
objects, it is essential to achieve semantic comprehension on the data being
sent via Binder. Without semantic comprehension, the fuzzing engine would
not be able to properly apply mutations on the serialized objects were included
in the transaction. To this end, BinderCracker first needs to record as many
different valid Binder transactions as possible, then it applies mutation guided by
dependency graph built by the recording transactions step. In [?] Guang Gong,
security researcher from security firm Qihoo 369, presented a fuzzing system
services strategy similar to BindCracker but without leveraging on previously
recorded Binder transactions. A different approach is presented by Luo et al. in
[?], which enables symbolic execution on Android Framework. Despite those
approaches are quite valuable, they do no employ static code analysis as offered
by CPGs representation.

The efficient of static analysis in assisting discovering vulnerabilities has been
discussed in several previous works and has also shown its capabilities in aiding
the fuzzing strategy in exploring deeper the code paths. In [?] Shastry. et
al. proposed a staged approached,for discovering vulnerability by means of
enhanced analysis via LLVM framework capabilities, but unfortunately they did

9https://source.android.com/

https://source.android.com/

8.7 Related Work 171

not published the code. Aiding fuzzing analysis via static code exploration has
been proposed by Shastry et al. in [?]. It allows for managing, conducting,
and assessing dictionary-based fuzzing testing and it supports Clang/LLVM
instrumentation and the AFL ecosystem.

172
OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property

Graphs

8.8 Chapter Summary

In this chapter we have presented OctoDroid to combine the benefits of Clang
precise parsing with the Octopus graph-based analysis platform. OctoDroid allows
to enhance the Octopus platform capability of analyzing C++ codebase, especially
when virtual function calls are in place. By leveraging on class hierarchy analysis
(CHA) offered by Clang’s LibTooling library and its code refactoring features,
OctoDroid provides a practical plugin for Octopus platform able to produce an
augmented code that achieves a more precise analysis by the Octopus platform.

We have show that OctoDroid provides a relevant performance improvement
for the detection rate in comparison with the one offered by Octopus during an
execution without our plugin in place. We have performed a real-world evaluation
by means of concrete known vulnerabilities reported by the Android bulletin as
well as some unknown vulnerabilities we have found.

Chapter 9

Conclusions and Outlook

This dissertation has presented our research on countering privacy and security
threats on the Android platform. We first investigated on improvements for
dynamic instrumentation on the latest Android runtime to provide a user-space
approach for tampering with applications at runtime without requiring any
modifications to both the Android platform and the application’s bytecode. To
analyze Android application practically and effectively, only the combination of
static and dynamic analysis allows to overcome the number of challenges that the
Android system design presents to the analyst. As one of the peculiar challenge
for dynamic analysis, the code coverage. Indeed, exploring all the code paths
dynamically is quite impractical but not always the main goal. In fact, from the
security prospective it is relevant to cover all the critical paths that lead to a
security violation, eventually. To this end, static analysis helps in identifying
those Point Of Interest (POI) then dynamic instrumentation completes the task
by triggering and monitoring previously identified POI. In particular, we have
shown as program slicing helps for extracting interesting code slices and collect
runtime values by dynamic execution of those. Further, we addressed the growing
enterprise demands for fine-grained security and privacy policies that allow to
control and monitor employees’ devices. To this end, we proposed a novel approach
that fits enterprise needs of fine-grained capabilities and enables developers to
accomplish to this demands by simply modifying a single line in app’s manifest
file, without any other modifications to app’s bytecode. We have shown how our
approach is able to practically enforce fine-grained enterprise-level policies at
runtime maintaining a negligible overhead. Embracing a comprehensive analysis
of both Java and native layers, our approach offers runtime instrumentation
capabilities for interposing custom code to automatically enforce policies at any

174 Conclusions and Outlook

layers, still remaining completely transparent to the application being monitored.
To further investigate how malware analysis online services perform the dynamic
analysis of suspicious apps, we proposed a novel approach and developed a tool
for assessing the stealth capability of those sandboxing online service. Here, the
term stealth means how the sandbox is able to hide its presence to the malware
being analyzed. Android sandbox is built either on the Android emulator or
the real device with a hooking framework, thus fingerprints of the Android
sandbox could be used to evade the dynamic detection. In this chapter we
present our investigation to address the question of which artifacts and how
they are actually implemented by online analysis services. We first conduct a
measurement on eight Android sandboxes and find that their customized usage
profile (e.g., contact, SMS) can be fingerprinted by attackers for evading the
sandbox. From our measurement results, most Android sandboxes have empty
usage profile fingerprints, or fixed fingerprints, or random artifact fingerprints.
So, without protections on such user profiles, Android malware can identify
these fingerprints that associate with different sandboxes and hide its malicious
behaviors. Even though detecting malicious apps before they reach the public
markets is a great barrier against malware proliferation, another important
barrier is to detect and fix security vulnerability afflicting a codebase, eventually.
To this end, we proposed OctoDroid , a plugin for the Octopus code analysis
platform that combines the benefits from the powerful Clang’s C++ AST parser
with the Octopus analysis platform powered by Code Property Graph (CPG)
representation. We designed and implemented a simple yet effective analysis
algorithm that exploit the Class Hierarchy Analysis (CHA) offered via Clang’s
LibTooling library. The augmented code produced by OctoDroid allows Octopus
to perform precise analysis of C++ Android system services codebase.

Most of the work discussed in this dissertation has already been published (or
accepted) in international conferences or in submission to international journals.
A list of the publications is provided in Appendix A. The work presented in
Chapter 3 and 4 is published in [50] and [31]. Similarly, most of the work
presented in Chapter 7 is published in [51]. Moreover, the work discussed in 5 is
in submission to an international journal and going to be published in December
this year. Also, the work presented in the Chapter 6 is under submission to
an international journal. Moreover, out latest work presented in 8 is under
submission to an international workshop.

175

9.0.1 Future Directions

There are few ideas that are not mature enough hence have not been developed
yet, even though they were planned to be included in this dissertation.

Regarding app-level Mobile Application Management solutions, we are designing
an app-level firewall-like system implemented as policy module for AppBox . It
would be able to monitor and report suspicious usage of app’s endpoints (i.e.,
Content Provider, Broadcast Receiver, etc.) back to the IT monitoring console
where they can be collected and further analyzed. This app-level detection
mechanism in couple with AppBox allows to enforce the runtime protection of
enterprise apps being able to detect known attacks and assist the analysis of
suspicious collected anomalies.

Regarding the static code analysis of C++ codebase, we are currently investigating
the possibility of extending OctoDroid with the ability to identify a wrong C++
code patch given the CPG representation of the vulnerable code and the patch
itself. If such approach is viable, we can couple this ability with a continuous
system for patch monitoring that, in couple with a symbolic engine, allows to
observe patch code and detect potentially mistakes as soon as they are published.

References

[1] 13 more pieces of adware slip into the Google Play store. https://blog.lookout.
com/blog/2015/03/18/adware-google-play/.

[ama] Amazon application store. https://www.amazon.com/mobile-apps/b?ie=
UTF8&node=2350149011. Accessed: 2016-02-27.

[3] AndroGuard. https://code.google.com/p/androguard/.

[ADB] Android dynamic binary instrumentation. https://github.com/Samsung/
ADBI. Accessed: 2016-02-27.

[5] Android hooker. https://github.com/AndroidHooker/hooker. Accessed: 2016-
02-27.

[man] Android manifest file. https://developer.android.com/guide/topics/
manifest/manifest-intro.

[and] Andrototal - free service to scan suspicious apks against multiple mobile
antivirus. http://andrototal.org/. Accessed: 2016-02-27.

[Api] Apimonitor sandbox. https://code.google.com/p/droidbox/wiki/
APIMonitor. Accessed: 2016-02-27.

[app] Apphack mobile scanner. https://apphack.com. Accessed: 2016-02-27.

[und] Avc undroid. http://undroid.av-comparatives.info/. Accessed: 2016-02-27.

[dcl] Custom class loading in dalvik. http://android-developers.blogspot.it/2011/
07/custom-class-loading-in-dalvik.html. Accessed: 2017-01-30.

[Cyd] Cydia substrate for android. http://www.cydiasubstrate.com. Accessed:
2016-02-27.

[DDI] Dalvik dynamic instrumentation framework. https://github.com/
crmulliner/ddi. Accessed: 2016-02-27.

[dex] Dexguard - security software for Android apps. https://www.guardsquare.
com/dexguard.

[dro] Droidbench suite. https://blogs.uni-paderborn.de/sse/tools/droidbench/.

https://blog.lookout.com/blog/2015/03/18/adware-google-play/
https://blog.lookout.com/blog/2015/03/18/adware-google-play/
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://code.google.com/p/androguard/
https://github.com/Samsung/ADBI
https://github.com/Samsung/ADBI
https://github.com/AndroidHooker/hooker
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
http://andrototal.org/
https://code.google.com/p/droidbox/wiki/APIMonitor
https://code.google.com/p/droidbox/wiki/APIMonitor
https://apphack.com
http://undroid.av-comparatives.info/
http://android-developers.blogspot.it/2011/07/ custom-class-loading-in-dalvik.html
http://android-developers.blogspot.it/2011/07/ custom-class-loading-in-dalvik.html
http://www.cydiasubstrate.com
https://github.com/crmulliner/ddi
https://github.com/crmulliner/ddi
https://www.guardsquare.com/dexguard
https://www.guardsquare.com/dexguard
https://blogs.uni-paderborn.de/sse/tools/droidbench/

178 References

[fir] FireEye Malware spreading in Europe. https:
//www.fireeye.com/blog/threat-research/2016/06/
latest-android-overlay-malware-spreading-in-europe.html.

[Fri] Frida.re. https://frida.re. Accessed: 2016-02-27.

[gdp] General data protection regulation. https://www.eugdpr.org/. Accessed:
2017-01-30.

[inl] J.breamer: inline hooking demystified. http://jbremer.org/
x86-api-hooking-demystified/. Accessed: 2017-01-30.

[koo] Koodus collaborative platform. https://koodous.com. Accessed: 2016-02-
27.

[21] Lookout discovers new trojanized adware; 20K popular apps caught in the
crossfire. https://blog.lookout.com/blog/2015/11/04/trojanized-adware/.

[mob] Mobisec lab. http://www.mobiseclab.org/. Accessed: 2016-02-27.

[nvi] Nviso apk-scan. https://apkscan.nviso.be/. Accessed: 2016-02-27.

[vbm] Obfuscation in Android malware, and how to fight
back. https://www.virusbulletin.com/virusbulletin/2014/07/
obfuscation-android-malware-and-how-fight-back.

[ds-] Previously ds-andrototal - now droydseuss. http://droydseuss.necst.it/.
Accessed: 2016-02-27.

[rum] RUMMS: The last family of Android malware attacking users in Russia
via SMS phishing. https://www.fireeye.com/blog/threat-research/2016/04/
rumms-android-malware.html.

[SuS] Susi. https://github.com/secure-software-engineering/SuSi. Accessed:
2016-02-27.

[ace] The house always wins: Takedown of a banking trojan in Google Play.
https://blog.lookout.com/blog/2016/05/16/acecard-banking-trojan/.

[Xpo] Xposed framework. https://repo.xposed.info. Accessed: 2016-02-27.

[30] (2016). Joe mobile sandbox. http://www.joesecurity.org/
joe-sandbox-mobile.

[31] Ahmad, M., Costamagna, V., Crispo, B., and Bergadano, F. (2017). Te-
icc: targeted execution of inter-component communications in android. In
Proceedings of the Symposium on Applied Computing, pages 1747–1752. ACM.

[32] Ahmad, M., Crispo, B., and Gebremichael, T. (2016). Empirical analysis on
the use of dynamic code updates in android and its security implications. In
Nordic Conference on Secure IT Systems, pages 119–134. Springer.

https://www.fireeye.com/blog/threat-research/2016/06/latest-android-overlay-malware-spreading-in-europe.html
https://www.fireeye.com/blog/threat-research/2016/06/latest-android-overlay-malware-spreading-in-europe.html
https://www.fireeye.com/blog/threat-research/2016/06/latest-android-overlay-malware-spreading-in-europe.html
https://frida.re
https://www.eugdpr.org/
http://jbremer.org/x86-api-hooking-demystified/
http://jbremer.org/x86-api-hooking-demystified/
https://koodous.com
https://blog.lookout.com/blog/2015/11/04/trojanized-adware/
http://www.mobiseclab.org/.
https://apkscan.nviso.be/
https://www.virusbulletin.com/virusbulletin/2014/07/obfuscation-android-malware-and-how-fight-back
https://www.virusbulletin.com/virusbulletin/2014/07/obfuscation-android-malware-and-how-fight-back
 http://droydseuss.necst.it/.
https://www.fireeye.com/blog/threat-research/2016/04/rumms-android-malware.html
https://www.fireeye.com/blog/threat-research/2016/04/rumms-android-malware.html
https://github.com/secure-software-engineering/SuSi
https://blog.lookout.com/blog/2016/05/16/acecard-banking-trojan/
https://repo.xposed.info
http://www.joesecurity.org/joe-sandbox-mobile
http://www.joesecurity.org/joe-sandbox-mobile

References 179

[33] Allen, F. E. and Cocke, J. (1976). A program data flow analysis procedure.
Communications of the ACM, 19(3):137.

[34] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., and Rieck, K. (2014).
Drebin: Effective and explainable detection of android malware in your pocket.
In NDSS.

[35] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon,
Y., Octeau, D., and McDaniel, P. (2014). Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android apps. ACM
SIGPLAN Notices, 49(6):259–269.

[36] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. (2012). Pscout: analyzing
the android permission specification. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages 217–228. ACM.

[37] Backes, M., Bugiel, S., Derr, E., Gerling, S., and Hammer, C. (2016). R-
Droid: Leveraging Android App Analysis with Static Slice Optimization. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communi-
cations Security, pages 129–140. ACM.

[38] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and von Styp-Rekowsky,
P. (2015). Boxify: Full-fledged app sandboxing for stock android. In 24th
USENIX Security Symposium (USENIX Security 15), pages 691–706.

[39] Backes, M., Bugiel, S., Schranz, O., von Styp-Rekowsky, P., and Weisgerber,
S. (2017). Artist: The android runtime instrumentation and security toolkit.
In Security and Privacy (EuroS&P), 2017 IEEE European Symposium on,
pages 481–495. IEEE.

[40] Backes, M., Gerling, S., Hammer, C., Maffei, M., and von Styp-Rekowsky,
P. (2013). Appguard–enforcing user requirements on android apps. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 543–548.
Springer.

[41] Bartel, A., Klein, J., Le Traon, Y., and Monperrus, M. (2012). Automati-
cally securing permission-based software by reducing the attack surface: An
application to android. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 274–277. ACM.

[42] Bianchi, A., Fratantonio, Y., Kruegel, C., and Vigna, G. (2015). Njas: Sand-
boxing unmodified applications in non-rooted devices running stock android.
In Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy
in Smartphones and Mobile Devices, pages 27–38. ACM.

[43] Blackthorne, J., Bulazel, A., Fasano, A., Biernat, P., and Yener, B. (2016).
Avleak: Fingerprinting antivirus emulators through black-box testing. In
Proceedings of the 10th USENIX Conference on Offensive Technologies, pages
91–105. USENIX Association.

180 References

[44] Bobrow, D. G., Gabriel, R. P., and White, J. L. (1993). Clos in context:
the shape of the design space. Object Oriented Programming: The CLOS
Perspective, pages 29–61.

[45] Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., and Mezini, M. (2011).
Taming reflection: Aiding static analysis in the presence of reflection and
custom class loaders. In Proceedings of the 33rd International Conference on
Software Engineering, pages 241–250. ACM.

[46] Bogda, J. and Singh, A. (2001). Can a shape analysis work at run-time? In
Proceedings of the 2001 Symposium on Java TM Virtual Machine Research
and Technology Symposium-Volume 1, pages 2–2. USENIX Association.

[47] Bruening, D. and Amarasinghe, S. (2004). Efficient, transparent, and
comprehensive runtime code manipulation. PhD thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering and Computer Science.

[48] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., and Sadeghi, A.-R. (2011).
Xmandroid: A new android evolution to mitigate privilege escalation attacks.
Technische Universität Darmstadt, Technical Report TR-2011-04.

[49] Conti, M., Nguyen, V. T. N., and Crispo, B. (2010). Crepe: Context-related
policy enforcement for android. In International Conference on Information
Security, pages 331–345. Springer.

[50] Costamagna, V. and Zheng, C. (2016). Artdroid: A virtual-method hooking
framework on android art runtime. Proceedings of the 2016 Innovations in
Mobile Privacy and Security (IMPS), pages 24–32.

[51] Costamagna, V., Zheng, C., and Huang, H. (2018). Identifying and evading
android sandbox through usage-profile based fingerprints. In Proceedings of
the First Workshop on Radical and Experiential Security, pages 17–23. ACM.

[52] Davis, B. and Chen, H. (2013). Retroskeleton: retrofitting android apps.
In Proceeding of the 11th annual international conference on Mobile systems,
applications, and services, pages 181–192. ACM.

[53] Davis, B., Sanders, B., Khodaverdian, A., and Chen, H. (2012). I-arm-droid:
A rewriting framework for in-app reference monitors for android applications.
Mobile Security Technologies, 2012(2):17.

[54] Desnos, A. et al. (2011). Androguard. URL: https://github. com/andro-
guard/androguard.

[55] Desnos, A. and Gueguen, G. (2011). Android: From reversing to decompila-
tion. Proc. of Black Hat Abu Dhabi, pages 77–101.

[56] Desnos, A. and Lantz, P. (2011). Droidbox: An android application sandbox
for dynamic analysis.

References 181

[57] Diao, W., Liu, X., Li, Z., and Zhang, K. (2016). Evading android runtime
analysis through detecting programmed interactions. In Proceedings of the 9th
ACM Conference on Security & Privacy in Wireless and Mobile Networks,
WiSec ’16, pages 159–164, New York, NY, USA. ACM.

[58] Enck, W. (2011). Defending users against smartphone apps: Techniques
and future directions. In International Conference on Information Systems
Security, pages 49–70. Springer.

[59] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P.,
Jung, J., McDaniel, P., and Sheth, A. N. (2014). Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones. ACM
Transactions on Computer Systems (TOCS), 32(2):5.

[60] Ernst, M. D., Just, R., Millstein, S., Dietl, W., Pernsteiner, S., Roesner, F.,
Koscher, K., Barros, P. B., Bhoraskar, R., Han, S., et al. (2014). Collaborative
verification of information flow for a high-assurance app store. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 1092–1104. ACM.

[61] Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D. (2011). An-
droid permissions demystified. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 627–638. ACM.

[62] Fosdick, L. D. and Osterweil, L. J. (1976). Data flow analysis in software
reliability. ACM Computing Surveys (CSUR), 8(3):305–330.

[63] Fuchs, A. P., Chaudhuri, A., and Foster, J. S. (2009). Scandroid: Automated
security certification of android applications. Manuscript, Univ. of Maryland,
http://www. cs. umd. edu/˜ avik/projects/scandroidascaa.

[64] Gascon, H., Yamaguchi, F., Arp, D., and Rieck, K. (2013). Structural
detection of android malware using embedded call graphs. In Proceedings of
the 2013 ACM workshop on Artificial intelligence and security, pages 45–54.
ACM.

[65] Gibler, C., Crussell, J., Erickson, J., and Chen, H. (2012). AndroidLeaks:
Automatically detecting potential privacy leaks in Android applications on a
large scale. In International Conference on Trust and Trustworthy Computing,
pages 291–307. Springer.

[66] Gomez, L., Neamtiu, I., Azim, T., and Millstein, T. (2013). Reran: Timing-
and touch-sensitive record and replay for android. In Software Engineering
(ICSE), 2013 35th International Conference on, pages 72–81. IEEE.

[67] Gordon, M. I., Kim, D., Perkins, J. H., Gilham, L., Nguyen, N., and Rinard,
M. C. (2015). Information Flow Analysis of Android Applications in DroidSafe.
In NDSS. Citeseer.

182 References

[68] Grace, M., Zhou, Y., Zhang, Q., Zou, S., and Jiang, X. (2012a). Riskranker:
scalable and accurate zero-day android malware detection. In Proceedings of
the 10th international conference on Mobile systems, applications, and services,
pages 281–294. ACM.

[69] Grace, M. C., Zhou, Y., Wang, Z., and Jiang, X. (2012b). Systematic
detection of capability leaks in stock android smartphones. In NDSS.

[70] Gruver, B. (2015). Smali/Baksmali Tool.
https://github.com/JesusFreke/smali/wiki.

[71] Hao, H., Singh, V., and Du, W. (2013). On the effectiveness of api-level
access control using bytecode rewriting in android. In Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications
security, pages 25–36. ACM.

[72] Heuser, S., Nadkarni, A., Enck, W., and Sadeghi, A.-R. (2014). Asm: A
programmable interface for extending android security. In USENIX Security
Symposium, pages 1005–1019.

[73] Hirzel, M., Dincklage, D. V., Diwan, A., and Hind, M. (2007). Fast online
pointer analysis. ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(2):11.

[74] Hoffmann, J., Ussath, M., Holz, T., and Spreitzenbarth, M. (2013). Slicing
droids: Program slicing for Smali code. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing, pages 1844–1851. ACM.

[75] Hu, C. and Neamtiu, I. (2011). Automating gui testing for android appli-
cations. In Proceedings of the 6th International Workshop on Automation of
Software Test, pages 77–83. ACM.

[76] Huang, H., Chen, K., Ren, C., Liu, P., Zhu, S., and Wu, D. (2015). Towards
discovering and understanding unexpected hazards in tailoring antivirus soft-
ware for android. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security.

[77] Huang, J., Zhang, X., Tan, L., Wang, P., and Liang, B. (2014). Asdroid:
Detecting stealthy behaviors in android applications by user interface and
program behavior contradiction. In Proceedings of the 36th International
Conference on Software Engineering, pages 1036–1046. ACM.

[78] Jiang, Y. Z. X. (2013). Detecting passive content leaks and pollution in
android applications. In Proceedings of the 20th Network and Distributed
System Security Symposium (NDSS).

[79] Jing, Y., Zhao, Z., Ahn, G.-J., and Hu, H. (2014a). Morpheus: automatically
generating heuristics to detect android emulators. In Proceedings of the 30th
Annual Computer Security Applications Conference, pages 216–225. ACM.

References 183

[80] Jing, Y., Zhao, Z., Ahn, G.-J., and Hu, H. (2014b). Morpheus: Automatically
generating heuristics to detect android emulators. In Proceedings of the 30th
Annual Computer Security Applications Conference, ACSAC ’14, pages 216–225,
New York, NY, USA. ACM.

[81] Jung, J.-H., Kim, J. Y., Lee, H.-C., and Yi, J. H. (2013). Repackaging
attack on android banking applications and its countermeasures. Wireless
Personal Communications, 73(4):1421–1437.

[82] Kim, J., Yoon, Y., Yi, K., Shin, J., and Center, S. (2012). Scandal: Static
analyzer for detecting privacy leaks in android applications. MoST, 12.

[83] Lee, B., Lu, L., Wang, T., Kim, T., and Lee, W. (2014). From zygote to
morula: Fortifying weakened aslr on android. In Security and Privacy (SP),
2014 IEEE Symposium on, pages 424–439. IEEE.

[84] Li, L., Bartel, A., Bissyandé, T. F., Klein, J., Le Traon, Y., Arzt, S.,
Rasthofer, S., Bodden, E., Octeau, D., and McDaniel, P. (2015). Iccta:
Detecting inter-component privacy leaks in Android apps. In Proceedings of
the 37th International Conference on Software Engineering-Volume 1, pages
280–291. IEEE Press.

[85] Li, L., Bissyandé, T. F., Octeau, D., and Klein, J. (2016a). Droidra: Taming
reflection to support whole-program analysis of android apps. In Proceedings
of the 25th International Symposium on Software Testing and Analysis, pages
318–329. ACM.

[86] Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D.,
Klein, J., and Traon, L. (2017a). Static analysis of android apps: A systematic
literature review. Information and Software Technology, 88:67–95.

[87] Li, L., Bissyande, T. F. D. A., Papadakis, M., Rasthofer, S., Bartel, A.,
Octeau, D., Klein, J., and Le Traon, Y. (2016b). Static Analysis of Android
Apps: A Systematic Literature Review. Technical report, SnT.

[88] Li, Y., Yang, Z., Guo, Y., and Chen, X. (2017b). Droidbot: a lightweight
ui-guided test input generator for android. In Software Engineering Companion
(ICSE-C), 2017 IEEE/ACM 39th International Conference on, pages 23–26.
IEEE.

[89] Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y.,
Van Der Veen, V., and Platzer, C. (2014). Andrubis–1,000,000 apps later: A
view on current android malware behaviors. In Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS), 2014 Third
International Workshop on, pages 3–17. IEEE.

[90] Livshits, B., Whaley, J., and Lam, M. S. (2005). Reflection analysis for java.
In Asian Symposium on Programming Languages and Systems, pages 139–160.
Springer.

184 References

[91] Lortz, S., Mantel, H., Starostin, A., Bähr, T., Schneider, D., and Weber, A.
(2014). Cassandra: Towards a certifying app store for android. In Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile
Devices, pages 93–104. ACM.

[92] Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. (2012). Chex: Statically
vetting Android apps for component hijacking vulnerabilities. In Proceedings
of the 2012 ACM conference on Computer and communications security, pages
229–240. ACM.

[93] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace,
S., Reddi, V. J., and Hazelwood, K. (2005). Pin: building customized program
analysis tools with dynamic instrumentation. In Acm sigplan notices, volume 40,
pages 190–200. ACM.

[94] MacHiry, A., Tahiliani, R., and Naik, M. (2013). Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pages 224–234. ACM.

[95] Mahmood, R., Mirzaei, N., and Malek, S. (2014). Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pages
599–609. ACM.

[96] Maier, D., Müller, T., and Protsenko, M. (2014). Divide-and-conquer: Why
android malware cannot be stopped. In Availability, Reliability and Security
(ARES), 2014 Ninth International Conference on, pages 30–39. IEEE.

[97] Mirzaei, N., Malek, S., Păsăreanu, C. S., Esfahani, N., and Mahmood, R.
(2012). Testing android apps through symbolic execution. ACM SIGSOFT
Software Engineering Notes, 37(6):1–5.

[98] Moonen, L. (2001). Generating robust parsers using island grammars. In
Reverse Engineering, 2001. Proceedings. Eighth Working Conference on, pages
13–22. IEEE.

[99] Moser, A., Kruegel, C., and Kirda, E. (2007). Limits of static analysis
for malware detection. In Computer security applications conference, 2007.
ACSAC 2007. Twenty-third annual, pages 421–430. IEEE.

[100] Mulliner, C., Oberheide, J., Robertson, W., and Kirda, E. (2013). Patch-
droid: scalable third-party security patches for android devices. In Proceedings
of the 29th Annual Computer Security Applications Conference, pages 259–268.
ACM.

[101] Mulliner, C., Robertson, W., and Kirda, E. (2014). Virtualswindle: An
automated attack against in-app billing on android. In Proceedings of the
9th ACM symposium on Information, computer and communications security,
pages 459–470. ACM.

References 185

[102] Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Corbetta, J., Kirat,
D., Kruegel, C., and Vigna, G. (2015a). Baredroid: Large-scale analysis of
android apps on real devices. In Proceedings of the 31st Annual Computer
Security Applications Conference, pages 71–80. ACM.

[103] Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Corbetta, J., Kirat,
D., Kruegel, C., and Vigna, G. (2015b). Baredroid: Large-scale analysis of
android apps on real devices. In Proceedings of the 31st Annual Computer
Security Applications Conference, ACSAC 2015, pages 71–80, New York, NY,
USA. ACM.

[104] Nethercote, N. and Seward, J. (2007). Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan notices, volume 42,
pages 89–100. ACM.

[105] Neuner, S., Van der Veen, V., Lindorfer, M., Huber, M., Merzdovnik, G.,
Mulazzani, M., and Weippl, E. (2014). Enter sandbox: Android sandbox
comparison. arXiv preprint arXiv:1410.7749.

[106] Oberheide, J. and Miller, C. (2012). Dissecting the android bouncer.
SummerCon2012, New York.

[107] Octeau, D., Luchaup, D., Dering, M., Jha, S., and McDaniel, P. (2015).
Composite constant propagation: Application to Android inter-component
communication analysis. In Proceedings of the 37th International Conference
on Software Engineering-Volume 1, pages 77–88. IEEE Press.

[108] Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., and
Le Traon, Y. (2013). Effective inter-component communication mapping in
Android: An essential step towards holistic security analysis. In Presented as
part of the 22nd USENIX Security Symposium (USENIX Security 13), pages
543–558.

[109] P. Carter, C. Mulliner, M. L. W. R. and Kirda, E. (2016). Curiousdroid:
Automated user interface interaction for android application analysis sandboxes.
In In Financial Cryptography and Data Security - 20th Internationa Conference
(FC).

[110] Payet, É. and Spoto, F. (2012). Static analysis of android programs.
Information and Software Technology, 54(11):1192–1201.

[111] Perl, H., Dechand, S., Smith, M., Arp, D., Yamaguchi, F., Rieck, K., Fahl,
S., and Acar, Y. (2015). Vccfinder: Finding potential vulnerabilities in open-
source projects to assist code audits. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 426–437. ACM.

[112] Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., and
Ioannidis, S. (2014). Rage against the virtual machine: hindering dynamic
analysis of android malware. In Proceedings of the Seventh European Workshop
on System Security, page 5. ACM.

186 References

[113] Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., and Vigna, G. (2014).
Execute this! analyzing unsafe and malicious dynamic code loading in android
applications. In NDSS, volume 14, pages 23–26.

[Polkovnichenko and Boxiner] Polkovnichenko, A. and Boxiner, A. Braintest - a
new level of sophistication in mobile malware. Technical report, Check Point
Technologies Ltd. Accessed: 2017-01-30.

[115] Rasthofer, S., Arzt, S., and Bodden, E. (2014). A machine-learning approach
for classifying and categorizing android sources and sinks. In NDSS.

[116] Rasthofer, S., Arzt, S., Miltenberger, M., and Bodden, E. (2016). Harvesting
runtime values in android applications that feature anti-analysis techniques.
In NDSS.

[117] Rastogi, V., Chen, Y., and Enck, W. (2013a). Appsplayground: automatic
security analysis of smartphone applications. In Proceedings of the third ACM
conference on Data and application security and privacy, pages 209–220. ACM.

[118] Rastogi, V., Chen, Y., and Jiang, X. (2013b). Droidchameleon: evaluating
android anti-malware against transformation attacks. In Proceedings of the
8th ACM SIGSAC symposium on Information, computer and communications
security, pages 329–334. ACM.

[119] Ren, C., Chen, K., and Liu, P. (2014). Droidmarking: resilient software wa-
termarking for impeding android application repackaging. In Proceedings of the
29th ACM/IEEE international conference on Automated software engineering,
pages 635–646. ACM.

[120] Rodriguez, M. A. (2015). The gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages, pages 1–10. ACM.

[121] Russello, G., Conti, M., Crispo, B., and Fernandes, E. (2012). Moses:
supporting operation modes on smartphones. In Proceedings of the 17th ACM
symposium on Access Control Models and Technologies, pages 3–12. ACM.

[122] Russello, G., Crispo, B., Fernandes, E., and Zhauniarovich, Y. (2011).
Yaase: Yet another android security extension. In Privacy, Security, Risk
and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social
Computing (SocialCom), 2011 IEEE Third International Conference on, pages
1033–1040. IEEE.

[123] Russello, G., Jimenez, A. B., Naderi, H., and van der Mark, W. (1023).
Firedroid: Hardening security in almost-stock android. In Proceedings of the
29th Annual Computer Security Applications Conference. ACM.

[124] Schulz, P. (2012). Code protection in android. Insititute of Computer
Science, Rheinische Friedrich-Wilhelms-Universitgt Bonn, Germany, 110.

References 187

[125] Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., and Hoffmann, J.
(2013). Mobile-sandbox: having a deeper look into android applications. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages
1808–1815. ACM.

[126] Sun, M., Wei, T., and Lui, J. (2016). Taintart: A practical multi-level
information-flow tracking system for android runtime. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 331–342. ACM.

[127] Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., and Cavallaro, L. (2017).
The evolution of android malware and android analysis techniques. ACM
Computing Surveys (CSUR), 49(4):76.

[128] Tam, K., Khan, S. J., Fattori, A., and Cavallaro, L. (2015). Copperdroid:
Automatic reconstruction of android malware behaviors. In NDSS.

[129] Team, B. R. et al. (2014). Sanddroid: An apk analysis sandbox. xi’an
jiaotong university.

[130] Total, V. (2012). Virustotal-free online virus, malware and url scanner.

[131] Van Der Veen, V., Bos, H., and Rossow, C. (2013). Dynamic analysis of
android malware. Internet & Web Technology Master thesis, VU University
Amsterdam.

[132] Vidas, T. and Christin, N. (2014a). Evading android runtime analysis via
sandbox detection. In Proceedings of the 9th ACM symposium on Information,
computer and communications security, pages 447–458. ACM.

[133] Vidas, T. and Christin, N. (2014b). Evading android runtime analysis via
sandbox detection. In Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’14, pages 447–458, New
York, NY, USA. ACM.

[134] Wala, T. (2014). Watson libraries for analysis.

[135] Wang, X., Sun, K., Wang, Y., and Jing, J. (2015). Deepdroid: Dynamically
enforcing enterprise policy on android devices. In NDSS.

[136] Wei, F., Roy, S., Ou, X., et al. (2014). Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of Android
apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1329–1341. ACM.

[137] Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y.,
van der Veen, V., and Platzer, C. (2014). Andrubis: Android malware under the
magnifying glass. Vienna University of Technology, Tech. Rep. TRISECLAB-
0414, 1:5.

[138] Weiser, M. (1981). Program slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449. IEEE Press.

188 References

[139] Wognsen, E. R., Karlsen, H. S., Olesen, M. C., and Hansen, R. R. (2014).
Formalisation and analysis of dalvik bytecode. Science of Computer Program-
ming, 92:25–55.

[140] Xu, R., Saïdi, H., and Anderson, R. (2012). Aurasium: Practical policy
enforcement for android applications. In Presented as part of the 21st USENIX
Security Symposium (USENIX Security 12), pages 539–552.

[141] Yamaguchi, F., Golde, N., Arp, D., and Rieck, K. (2014). Modeling and
discovering vulnerabilities with code property graphs. In Security and Privacy
(SP), 2014 IEEE Symposium on, pages 590–604. IEEE.

[142] Yamaguchi, F., Lindner, F., and Rieck, K. (2011). Vulnerability extrapola-
tion: assisted discovery of vulnerabilities using machine learning. In Proceedings
of the 5th USENIX conference on Offensive technologies, pages 13–13. USENIX
Association.

[143] Yamaguchi, F., Maier, A., Gascon, H., and Rieck, K. (2015). Automatic
inference of search patterns for taint-style vulnerabilities. In Security and
Privacy (SP), 2015 IEEE Symposium on, pages 797–812. IEEE.

[144] Yan, L.-K. and Yin, H. (2012). Droidscope: Seamlessly reconstructing
the os and dalvik semantic views for dynamic android malware analysis. In
USENIX security symposium, pages 569–584.

[145] Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., and Wang, X. S. (2013).
Appintent: Analyzing sensitive data transmission in android for privacy leakage
detection. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 1043–1054. ACM.

[146] Zhang, F., Huang, H., Zhu, S., Wu, D., and Liu, P. (2014). Viewdroid:
Towards obfuscation-resilient mobile application repackaging detection. In
Proceedings of the 2014 ACM conference on Security and privacy in wireless &
mobile networks.

[147] Zhang, M. and Yin, H. (2014). Appsealer: Automatic generation of
vulnerability-specific patches for preventing component hijacking attacks in
android applications. In NDSS.

[148] Zhang, Y., Tan, T., Li, Y., and Xue, J. (2017). Ripple: Reflection analysis
for android apps in incomplete information environments. In Proceedings of the
Seventh ACM on Conference on Data and Application Security and Privacy,
pages 281–288. ACM.

[149] Zhauniarovich, Y., Ahmad, M., Gadyatskaya, O., Crispo, B., and Massacci,
F. (2015). Stadyna: Addressing the problem of dynamic code updates in
the security analysis of android applications. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, pages 37–48. ACM.

References 189

[150] Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., and Zou, W. (2012a).
Smartdroid: an automatic system for revealing ui-based trigger conditions in
android applications. In Proceedings of the second ACM workshop on Security
and privacy in smartphones and mobile devices, pages 93–104. ACM.

[151] Zheng, M., Lee, P. P., and Lui, J. C. (2012b). Adam: an automatic and
extensible platform to stress test android anti-virus systems. In International
conference on detection of intrusions and malware, and vulnerability assessment,
pages 82–101. Springer.

[152] Zheng, M., Sun, M., and Lui, J. C. (2014). Droidtrace: A ptrace based
android dynamic analysis system with forward execution capability. In Wireless
Communications and Mobile Computing Conference (IWCMC), 2014 Interna-
tional, pages 128–133. IEEE.

[153] Zhongyang, Y., Xin, Z., Mao, B., and Xie, L. (2013). Droidalarm: an
all-sided static analysis tool for android privilege-escalation malware. In
Proceedings of the 8th ACM SIGSAC symposium on Information, computer
and communications security, pages 353–358. ACM.

[154] Zhou, W., Zhang, X., and Jiang, X. (2013). Appink: watermarking android
apps for repackaging deterrence. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security, pages
1–12. ACM.

[155] Zhou, Y., Patel, K., Wu, L., Wang, Z., and Jiang, X. (2015). Hybrid
user-level sandboxing of third-party android apps. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security,
pages 19–30. ACM.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Research Contributions
	1.2.1 Virtual-Method Hooking Framework on Android ART Runtime
	1.2.2 Ensuring Execution of Targeted Code Paths during Dynamic Analysis
	1.2.3 Handling Dynamic Code Updates Using a Combination of Static and Dynamic Analysis
	1.2.4 Black-Box Mobile App Management Solution (MAM) For Stock Android
	1.2.5 Evaluation of Practical Evasion of Dynamic Analysis Systems
	1.2.6 Discovering Vulnerabilities in Android C++ code via Code Property Graph Analysis

	2 Background
	2.1 Android
	2.1.1 Framework
	2.1.2 Binder
	2.1.3 Application
	2.1.4 Security Model
	2.1.5 Overview of Dynamic Code Update

	2.2 Static Analysis
	2.3 Bypassing Static Analysis via Dynamic Code Update
	2.3.1 Reflection-Bench
	2.3.2 InboxArchiver: Test Malware using DCL

	2.4 Dynamic analysis

	3 ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime
	3.1 Introduction
	3.2 Background
	3.2.1 ART Runtime
	3.2.2 Virtual-methods Invocation in ART

	3.3 Framework Design
	3.4 Implementation
	3.5 Evaluation
	3.5.1 Performance Test
	3.5.2 Case Study

	3.6 Discussion
	3.7 Related Work
	3.8 Chapter Summary

	4 TeICC: Targeted Execution of Inter-Component Communications in Android
	4.1 Introduction
	4.2 Motivating example
	4.3 Our approach
	4.3.1 Slice Extraction
	4.3.2 Inter-Component Communication
	4.3.3 Slice Execution

	4.4 Design and Implementation
	4.4.1 Overview
	4.4.2 Enhancement to Backward Slicer
	4.4.3 Capturing Dynamic Behavior

	4.5 Evaluation and Discussion
	4.6 Chapter Summary

	5 StaDART: Addressing the Problem of Dynamic Code Updates in the Security Analysis of Android Applications
	5.1 Introduction
	5.2 An Overview of StaDART
	5.3 Method Call Graph
	5.4 Implementation
	5.4.1 The server
	5.4.2 The client

	5.5 Evaluation
	5.6 Discussion
	5.7 Related Work
	5.8 Chapter Summary

	6 AppBox: Black-Box Mobile App Management Solution For Stock Android
	6.1 Introduction
	6.2 Application Scenario
	6.3 Requirements
	6.4 AppBox Architecture
	6.4.1 Preparation phase
	6.4.2 Distribution phase
	6.4.3 Execution phase

	6.5 AppBox Policy
	6.5.1 Policy Language
	6.5.2 Fine-Grained Access Control Policies
	6.5.3 Policy Generation

	6.6 Evaluation
	6.6.1 Performance Overhead
	6.6.2 Effectiveness
	6.6.3 Applicability and Effectiveness

	6.7 Chapter Summary

	7 Identifying and Evading Android Sandbox Through Usage-Profile Based Fingerprints
	7.1 Introduction
	7.2 Background and Motivation
	7.2.1 Android sandbox
	7.2.2 Evading technique
	7.2.3 Motivation

	7.3 System Implementation
	7.4 Results
	7.5 Defense
	7.6 Related Works
	7.7 Chapter Summary

	8 OctoDroid: Discovering Vulnerabilities in Android System Services via Code Property Graphs
	8.1 Introduction
	8.2 Background
	8.2.1 Clang and LibTooling
	8.2.2 Object-oriented language
	8.2.3 Android System Services
	8.2.4 Code Property Graphs

	8.3 Motivating Example
	8.4 Methodology
	8.5 OctoDroid
	8.6 Evaluation
	8.7 Related Work
	8.8 Chapter Summary

	9 Conclusions and Outlook
	9.0.1 Future Directions

	References

