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Abstract
Palaeoproteomics is a rapidly evolving discipline, and practitioners are constantly developingnovel strategies for the analyses and interpretations of complex, degraded protein mixtures.The community has also established standards of good practice to interrogate our data. How-ever, there is a lack of a systematic exploration of how these affect the identification of peptides,post-translational modifications (PTMs), proteins and their significance (through the False Dis-covery Rate) and correctness. We systematically investigated the performance of a wide rangeof sequencing tools and search engines in a controlled system: the experimental degradation ofthe single purified bovine β-lactoglobulin (BLG), heated at 95°C and pH 7 for 0, 4 and 128 days.We target BLG since it is one of the most robust and ubiquitous proteins in the archaeologicalrecord. We tested different reference database choices, a targeted dairy protein one, and thewhole bovine proteome and the three digestion options (tryptic-, semi-tryptic- and non-specificsearches), in order to evaluate the effects of search space and the identification of peptides.We also explored alternative strategies, including open search that allows for the global identi-fication of PTMs based upon wide precursor mass tolerance and de novo sequencing to boostsequence coverage.We analysed the samples usingMascot, MaxQuant, Metamorpheus, pFind,Fragpipe and DeNovoGUI (pepNovo+, DirecTag, Novor), benchmarked these tools and discussthe optimal strategy for the characterisation of ancient proteins. We also studied physicochem-ical properties of the BLG that correlate with bias in the identification coverage.
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Introduction 

Proteomics software has been developed to identify and quantify proteins for different purposes 
and in various contexts, by processing and analysing mass spectrometry data (Aebersold & Mann, 
2003). Many of these tools have been developed to analyse proteins in complex mixtures and map 
for post-translational modifications (PTMs). Most studies involve querying the mass spectra 
against a database of possible proteins (database search, DBs). Others aim at reconstructing the 
peptide sequences de novo from the spectra, without using any external data (de novo sequencing, 
dnS). Increasingly these methods are being applied beyond ‘typical’ tissues for which these 
software are optimised. 

DBs approaches work effectively on modern tissues from well-studied organisms with complete 
sequence databases, typically matching up to 50% of MS/MS queries to peptides (peptide-
spectrum matches, PSMs) in a typical tandem mass spectrometry experiment (Cox & Mann, 2008). 
Larger studies looking at PRIDE (Perez-Riverol et al., 2021) and MassIVE databases have 
determined that around 75% of submitted spectra remain unidentified (Griss et al., 2016; 
Bittremieux et al., 2022). Metaproteomics studies attempt to map proteins derived from complex 
samples such as microbiomes, in which it may be difficult to identify all the targets present without 
a proteogenomics strategy. The same is true for highly variable sequences, such as those found 
in immunoglobulins or novel sequences as found in cancers (Alfaro et al., 2017). dnS tools like 
PEAKS (Zhang et al., 2012) were initially developed to characterise these sequences. In addition 
to novel proteins introduced from the microbial community, the application of proteomics to food 
and forensics is complicated by an increase in the number of PTMs due to both enzymatic and 
chemical modifications or introduced by bacterial effectors (Jin et al., 2023). 

Palaeoproteomics, the study of ancient proteins that are often fragmented and heavily modified, 
combines all of the above challenges. From studies of historical artworks to wider studies of 
material culture or skeletal remains in archaeology and palaeontology, chemical degradation adds 
further to the challenges of identification. In the field, most published ancient spectra remain 
unidentified. De novo sequencing has been decisive in studies looking at the phylogeny and 
evolutionary history of extinct organisms (Welker et al., 2015, 2019; Chen et al., 2019; Presslee et 
al., 2019; Cappellini et al., 2019). However, noise and missing ions might produce errors that can 
never be identified without matching to a database sequence. Muth and Renard (2018) evaluated 
the accuracy of different dnS software. They showed that only around 35% of the complete peptide 
sequences were correct on real HCD (higher-energy collisional dissociation) data and 85% on 
simulated data. On a different front, there are increasing efforts to minimise and identify modern 
protein contaminants in ancient samples. Deamidation rates have been proposed and applied to 
authenticate ancient proteins (Ramsøe et al., 2020, 2021). However, a clear correlation between 
deamidation rates and time is yet to be established (Schroeter & Cleland, 2016). A deeper 
understanding of deamidation and other degradation patterns is key for ancient protein 
authentication. 

At present, the field of palaeoproteomics has tended to use the same software tools as those 
originally designed for identification on targeted tissues. And due to the awareness of the specific 
challenges, the community sets and demands stringent approaches to interrogate the data (Hendy 
et al., 2018b, 2018c; Warinner et al., 2022). This includes the consideration of an increasingly wide 
array of post-translational modifications (PTMs), well-represented databases which encompass 
every potential constituent of samples, robust rules on the identification of peptides and proteins 
and statistically significant false discovery rates (FDRs) (Benjamini & Hochberg, 1995; Choi & 
Nesvizhskii, 2008; Käll et al., 2008). PSMs leading to extraordinary claims or novel peptides are 
manually checked, and at least 2 uniquely identified peptides are required to claim the presence 
of a specific protein. However, there is a lack of a systematic assessment of the effectiveness of 
these tools, approaches and standards in identifying ancient degraded proteins. The number of 
new strategies, software and packages being continuously developed to address problems with 
dnS and DBs already highlights issues with the different strategies. Because of all this, there is an 
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increasing demand for all raw data to be made public in proteomics repositories for reanalysis. 
Along with it, the use of free and open-source software, standards and formats facilitates 
reproducibility and the adoption of common practices. 

When using DBs software to analyse mass spectrometry data obtained from ancient protein 
samples, researchers often face decisions concerning parameter selection tailored to the specific 
sample types. These choices require balancing compromises and relying on a clear research 
question and hypothesis, and expert, multidisciplinary knowledge about the context of the samples. 
Broadly, one needs to consider the size of the search space, significance of results, computational 
resources and time. If the search space is too large, the memory usage and computation time 
increase and the significance of the identifications is compromised (Jeong et al., 2012; Noble, 
2015). On the other hand, if the search space is too small, there is the risk of missing proteins 
present in the samples. In de novo sequencing, the peptide sequence is derived directly from the 
spectra, and therefore, it frees researchers from these decisions and compromises. However, care 
must be taken with the accuracy of the sequences (Muth & Renard, 2018; Beslic et al., 2023), 
especially in phylogenetic and evolutionary studies dealing with novel peptides of extinct, 
unsequenced species. In both DBs and dnS, peptides of interest are usually validated using 
BLASTp or tBLASTn (Altschul et al., 1990) against a reference database. 

The search parameters that most impact the search space size and need more tuning are the 
type of enzymatic cleavage, the protein database, and the PTMs targeted. Evaluating the degree 
of sample degradation prompts the researcher to determine the suitable enzymatic cleavage 
method (specific, semi-specific or non-specific) and the post-translational modifications (PTMs) to 
be targeted during the search. The specific archaeological and palaeontological questions that the 
researcher is trying to answer, along with the type of sample, determine the scope of the database. 
The size of the search space in turn affects the significance of the results. To control for the 
significance of multiple PSMs, the false discovery proportion (FDP) of a search is estimated using 
a Target-Decoy Competition (TDC) (Moore et al., 2002; Elias & Gygi, 2007), from which a False 
Discovery Rate (FDR) is obtained. A decoy database is built by reversing the sequences in the 
target database and it competes together for PSMs. It therefore contains known incorrect 
sequences that share statistical properties with the target database like amino acid distribution or 
peptide length. In the end, it will result in known incorrect PSMs that would have otherwise been 
considered positive. This allows sorting PSMs by a matching score and setting filters so that an 
expected given fraction (the FDR) of PSMs are false (the decoy ones). Thus the FDR is just an 
expectation of the actual proportion of false discoveries (the FDP). In fact, several studies have 
pointed out the divergence between the FDP and FDR (He et al., 2015; Madej & Lam, 2023; Ebadi 
et al., 2023), and the “instability” of the TDC approach that can lead to an underestimation of the 
FDP in high-resolution mass spectrometry (Couté et al., 2020). Moreover, FDRs are challenging 
in the study of complex or uncharacterised proteomes, as “treating each search result equally is 
methodically incorrect when peptides and proteins are not equally likely to be measured by LC-
MS/MS and identified by search engines” (Wang et al., 2022). 

In this study, we wish to explore which solution is optimal for degraded proteins given these 
constraints. For this, we create a deliberately simple experimental dataset which focuses not on 
the diversity of a complex mixture, but on the changes caused by mild and extreme degradation. 
Our model is a suspension of a small and well-characterised protein, two isoforms of a 156 amino 
acid long lectin, bovine β-Lactoglobulin (BLG), heated at neutral pH conditions for 0, 4 and 128 
days, respectively. The three time points are designed to test the ability of these datasets to identify 
a mild (trypsin cleaved) and extreme example of protein degradation in which most surviving 
peptides are amenable to mass spectrometry and enzymatic digestion is not necessary. We 
explore a range of different software solutions and strategies to identify MS2 queries generated by 
this experiment and discuss the results in connection with the common practices and challenges 
in palaeoproteomics. 

We chose BLG, as it is one of the most commonly preserved and identified proteins in dental 
calculus and ceramics and thus has become the main protein used in archaeology to explore the 
spread of dairying in the past (Warinner et al., 2014; Hendy et al., 2018a, 2018b; Jeong et al., 
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2018; Charlton et al., 2019; Wilkin et al., 2020, 2021; Bleasdale et al., 2021; Tanasi et al., 2021). 
It is suggested that mineral surfaces play an important role in the survival of this protein (Fonseca 
et al., 2022), as it has been also found for other eggshell proteins (Demarchi et al., 2016). Evans 
et al. (2024) explored a range of protein properties that might enable their survival in fresh 
ingredients and in cooked foodcrusts before and after burial. We explored as well several physico-
chemical properties of the BLG: structural flexibility, solvent exposure, amyloidogenicity and 
isoelectric point; and linked them to the degradation, detection and identification of different regions 
of the BLG. 

Materials and Methods 

The target protein 

BLG was purchased from Sigma Aldrich® (CAS No.: 9045-23-2). It is a single purified protein 
with purity greater than 90% and traces of other bovine milk proteins. No further purification was 
undertaken. 

Experimental setup 

1.75 mg of BLG was dissolved in 7 mL of Molecular Grade Millipore water at pH ~7 (to a final 
concentration of 250 μg/mL) in borosilicate glass vials closed with screw caps with 
polytetrafluoroethylene (PTFE) lining on the inside. 

Samples and blanks were placed on a VWR® dry block heater with a heated lid maintained at 
a constant temperature of 95 ºC for 128 days. 200 μL was sampled from each glass vial at 
designated time lengths (0, 4 and 128 days) to 1 mL Eppendorf Safe-Lock® tubes. Samples were 
then subjected to vacuum centrifuge at 60 ºC to dry the thermal degradation products and were 
stored at -20 ºC. A USB data logger (ebro EBI 310-T1) connected to an external sensor was used 
for monitoring temperature throughout the experiment. A schematic representation of the 
experimental setup is shown in Figure 1a. 

 

Figure 1 - Schematic representation of the experimental setup (a) and the peptide 
identification strategies tested, including the different software, databases, and 
digestion (b). 

LC-MS/MS 

The peptides from the 0 and 4-day experiments were extracted following a previously published 
protocol (Cappellini et al., 2019) for degraded samples that consist of denaturation, reduction, 
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alkylation, enzyme digestion, and desalting as described below. Samples from each glass vial 
were resuspended to 300 μL solution consisting of 2 M guanidine hydrochloride (GuHCl, Thermo 
Fisher Scientific, Germany), 100 mMTris buffer (pH ~8), 20 mM 2-chloroacetamide (CAA) and 10 
mM Tris (2-carboxyethyl)phosphine (TCEP) in ultrapure water. 0.2 μg of mass-spectrometry grade 
rLysC (Promega) enzyme was added prior to incubation with shaking for 2 h at 37 ºC. Samples 
were subsequently diluted to 0.6 M GuHCl and 0.4 μg of mass-spectrometry grade trypsin was 
added and subjected to overnight incubation with shaking at 37 ºC. The peptides at 128 days were 
alkylated but not digested by trypsin. 

On the next day, samples were acidified using 10 % (v/v) trifluoroacetic acid (TFA) and purified 
using in-house prepared C18 solid-phase extraction stage tips (Rappsilber et al., 2007) by 
following a previously published protocol (Cappellini et al., 2019) described as follows. Stage-Tips 
were prepared in-house wherein two disks, pre-pierced with a 14 gauge blunt-end needle, were 
pushed out of an Empore C18 membrane (3M) into the end of each P200 micropipette tip. The 
stage tips were sequentially conditioned with 150 μL of methanol, 150 μL of 80% acetonitrile 
solution (containing 80% acetonitrile, 0.1% trifluoroacetic acid (TFA), and ultrapure molecular 
biology-grade H2O -v/v/v-), and 150 μL of 0.1% TFA in H2O (v/v). Acidified peptides were then 
loaded onto the stage tips and were immobilized on the C18 filter by centrifugation at 1300 ×g until 
all the solvent had passed through. The filter was washed with 150 μL of 0.1% TFA in H2O (v/v), 
was centrifuged at 1300 ×g until dry. Immobilized peptides within stage tips were eluted using 150 
μL of 50 % acetonitrile solution (consisting of 50 % acetonitrile, 0.1 % TFA, and ultrapure molecular 
grade water) and was stored at -20˚C. 20 to 25 μL of eluted samples were transferred to the MS 
analysis facility at the Novo Nordisk Foundation Center for Protein Research (CPR), University of 
Copenhagen. Samples were subjected to nanoflow liquid chromatography-tandem mass 
spectrometry (nano-LC MS/MS) using an in-house packed column on an EASY-nLC™ 1200 
system connected to an Orbitrap™ Exploris™ 480 (Thermo Fisher Scientific, Germany) mass 
spectrometer. A column temperature of 40 ºC was maintained with an integrated column oven. For 
each run, 3 uL of sample was separated using a linear gradient from 5% to 30% buffer B in 25 
minutes followed by a 2-minute step to 45% buffer B. Following the linear gradient, the column was 
washed by increasing the concentration of buffer B to 80% in 2 minutes, and remaining there for 2 
minutes. Finally, it was re-equilibrated back to 5% in 2 minutes and held for 2 minutes, resulting in 
a final acquisition time of 35 minutes. 

The Orbitrap™ Exploris™ 480 was operated in data-dependent acquisition (DDA) mode using 
a Top 10 method. The spray voltage was at 2 kV, the S-lens RF level was at 40%, and the ion 
transfer tube was kept at 275 °C. Full scan MS were acquired at a resolution of 120,000 in a mass 
range of 350-1400 with an Automatic Gain Control (AGC) target of 300 and a maximum ion 
injection time of 25 ms. Fragment MS/MS spectra were recorded using HCD with a maximum ion 
injection time set to 118 ms with an AGC target value of 200 at a resolution of 60,000 with a fixed 
first mass of 100 m/z. Normalised collision energy (NCE) was 30 %. The isolation window was set 
to 1.2 m/z, and the dynamic exclusion was 20 seconds. 

Search strategies 

Open and narrow database search software 
We chose various software based on different principles and algorithms (Table 1 and Figure 

1b). We chose a range of free, open-source or closed-source software, but included Mascot, which 
is licensed, since it is frequently used in palaeoproteomics. 

The LC-MS/MS files were run in Thermo .RAW file format on pFind3, Metamorpheus, 
MaxQuant and Fragpipe. For Mascot and DeNovoGUI the files were transformed to MGF (Mascot 
Generic Format) using msconvert (Chambers et al., 2012). 
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Table 1 - Software used for benchmarking, the type of search and the computing 
platform or system in which they were run. 

Software Type of search Platform Citation 

Fragpipe v19.1 with 
MSFragger v3.7 

DBs open University of Cambridge HPC1. 56 CPUs 
in Intel  Cascade Lake node and 3.5GB 
per CPU 

Kong et al., 2017; Chang et al., 
2020; da Veiga Leprevost et al., 
2020; Geiszler et al., 2021 DBs narrow 

Open-pFind 3 v3.2.0 DBs open MiniMax2. 24 AMD Ryzen Threadripper 
3960X CPUs and 64 GB RAM Chi et al., 2018 

Metamorpheus 
v0.0.320 DBs Multi-notch Mjolnir3. 20 CPUs in AMD EPYC 4773 

node and 20GB CPU Solntsev et al., 2018 

MaxQuant v2.1.0.0 DBs narrow 

MiniMax2. 24 AMD Ryzen Threadripper 
3960X CPUs and 64GB RAM. 

Tyanova et al., 2016 
University of Cambridge HPC1. 56 CPUs 
in Intel  Cascade Lake node and 3.5GB 
per CPU† 

Mascot v2.8.2 DBs narrow Mascot Server4 Perkins et al., 1999 

Novor v1.05.0573 dnS 
MiniMax2 with DeNovoGUI 
(Muth et al., 2014). 24 AMD Ryzen 
Threadripper 3960X CPUs and 64GB 
RAM 

Ma, 2015 

DirecTag v1.4.66 dnS hybrid Tabb et al., 2008 

PepNovo+ v3.1 dnS Frank & Pevzner, 2005; Frank, 
2009a; b 

1University of Cambridge High Performance Computing, Cambridge Service for Data-Driven 
Discovery (CSD3) https://www.hpc.cam.ac.uk/high-performance-computing. 2MiniMax 
Computer Asus TRX40 Stone Magma High Performance Workstation. 3Computing cluster at 
Globe Institute, University of Copenhagen https://mjolnir-ucph.readthedocs.io. 4Mascot 
Server https://www.matrixscience.com/server.html. †Only tryptic and semi-tryptic runs were 
run on the University of Cambridge HPC, for time comparison with Fragpipe on the same 
system. 

DBs software can be categorised based on the approach for the identification of PTMs and the 
precursor mass tolerance. In narrow-search, the targeted PTMs are defined a priori, and predicted 
peptide mass including PTMs must match the measured precursor mass with a narrow error. In 
contrast, open search allows wide precursor mass tolerances in order to identify peptides with 
unaccounted PTMs “on-the-fly”. Multi-notch sets a specific set of precursor mass shifts instead of 
a range. We note that most narrow-search software (e.g. Mascot, MaxQuant) can in theory also 
perform open search, by just establishing a large precursor mass tolerance. Unlike specifically 
authored tools (e.g. pFind, Fragpipe or Metamorpheus), such software lacks other key components 
for open search. In Fragpipe, MSFragger implements a localization-aware open search and the 
fragment index allows a fast search (Kong et al., 2017; Yu et al., 2020), while Crystal-C (Chang et 
al., 2020) discards artefacts, and PTMshepherd (Geiszler et al., 2021) helps summarising and 
analysing open search results. pFind is also optimised for fast searches and is also able to localise 
PTM mass shifts (Chi et al., 2018). Metamorpheus uses the G-PTM-D workflow, which runs a 
multi-notch search and an augmented narrow database search to speed up the process (Solntsev 
et al., 2018). We will refer to Metamorpheus as an open or multi-notch search software. 

Conversely, open search software also runs in narrow or closed search modes. Fragpipe was 
run both in narrow and open mode, referred to as narrow-Fragpipe and open-Fragpipe. For both 
the open and narrow searches PeptideProphet (Keller et al., 2002; da Veiga Leprevost et al., 2020) 
was run for the validation step. Percolator is not compatible with open search. pFind was only run 
in Open search mode, and it will be referred to as Open-pFind or pFind. 

Each software was run using 6 different combinations of parameters (Table 2) that broadly 
change the search space. This can be appreciated in the number of peptides to search in the 
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spectra that each one generates (Table 2). The selection of parameters is explained in the sections 
below. 

Table 2 - The combination of search parameters used in each of the database 
search software. The number of proteins, residues and peptides from each 
database and enzymatic cleavage combination is shown. The number of peptides 
is calculated allowing up to 2 missed cleavages and peptide length range of 7 to 
and 25. 

Run # Database Enzymatic cleavage # peptides 

1 
DB1: dairy database 
227 proteins and 62,185 residues 

Tryptic 9,302 

2 Semi-tryptic 102,127 

3 Non-specific 1,092,998 

4 
DB2: bovine proteome 
37,606 proteins and 22,906,446 residues 

Tryptic 3,640,393 

5 Semi-tryptic 38,385,707 

6 Non-specific 415,906,748 

 

Dairy database and bovine proteome 
Despite the fact that we know that the samples were almost purely composed of BLG and 

perhaps contaminants, we used two of the widely used database strategies, in order to provide 
robust and comparable statistics with other studies. Broadly, we define a wide database as one 
that covers a limited set of proteins from a wide range of species. Many studies use a wide, 
targeted database, for example (Cappellini et al., 2019; Evans et al., 2023) as they look for just 
specific proteins (dairy or enamel) from different species. On the opposite side, a deep database 
is one that represents the whole known proteome or proteomes from a specific species or taxa. 
These are used, for example, in medical studies that focus on a specific organism, like a human, 
mouse or zebrafish. But in the study of ancient proteins usually a wide and deep strategy is 
adopted. A taxonomically broader database is used to explore the wider metaproteome, or dietary 
proteins with the entire SwissProt and TrEMBL (c. 251 million protein entries) (Bairoch & Apweiler, 
2000) being the most typical target (Warinner et al., 2014; Wilkin et al., 2020, 2021; Bleasdale et 
al., 2021) although even larger ones are used (Jersie-Christensen et al., 2018). 

Here we tested the two opposite types of databases: a wide one from (Evans et al., 2023) that 
includes common and reviewed dairy proteins (DB1) and as a deep one, the Bovine proteome 
(DB2) (Table 2 and Figure 1b). Both include common contaminants usually reported in 
palaeoproteomics (Evans et al., 2023) and 4 different bovine BLG variants. DB1 comprises  227 
protein entries, while DB2 contains 37,606 proteins. All software were run with both databases, 
except for narrow-Fragpipe, which was run only on the DB1. 

Digestion: tryptic, semi-tryptic and non-specific 
Most proteomics protocols include a digestion step, usually with trypsin. However, in 

palaeoproteomics the most degraded samples require no digestion step, removing the challenge 
of untangling diagenesis from the proteolytic background (Demarchi et al., 2016). This is the case 
with the 128-day sample. To test the differences in performance between using a tryptic, semi-
tryptic and non-specific search we applied all three approaches on the three samples, each with 
an increasing degree of degradation (Table 2 and Figure 1). This is then reflected in the database 
search, which generates tryptic peptides (the two ends are tryptic, ie. result from a tryptic cleavage) 
out of the selected database to match the sample. However, in palaeoproteomics, samples are 
usually degraded, and hydrolysis generates a non-trivial amount of non-tryptic peptides. This 
means that the database search will also need to run on semi-tryptic mode, which generates 
peptides with just one tryptic end. The non-specific search produces all possible peptides within a 
certain length range. Semi-specific and especially non-specific searches increase the search 
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space dramatically and therefore the running time and memory requirements. If combined with a 
large database, it might not be feasible to run for some software and systems.  

Other parameters 
We set the rest of the parameters as default or to values commonly used in Palaeoproteomics, 

to emulate what a standard run would be in a real scenario. We include glutamine and asparagine 
deamidation, oxidation of methionine, and N-terminal acetylation as variable PTMs, and cysteine 
carbamidomethylation as fixed. Peptide length range is 7 to 25 amino acids and the peptide mass 
range is 500 to 5000 Da. We allow up to 2 missed cleavages and turn off the match between runs 
feature in the software that implements it, so they can be compared and to keep identifications 
independent between the 3 samples. Supplementary File S1 contains more detailed lists of 
parameters, compiled or adapted from the parameter files used in the set up of the searches. 

Collation of Database Search (DBs) results 

The different software reports results using different formats. These include pepXML, 
mzIdentML or a tab or comma-delimited table. We used Python 3.9 with lxml (v4.9.3), Pyteomics 
(v4.7.1) (Levitsky et al., 2019) and pandas (v2.2.1) packages to collate the results into a single 
PSM data frame. Each row is a single PSM from each sample and run. We processed all the 
results and extracted the following information from each PSM: Scan #, retention time, peptide 
sequence, protein accession, start and end position, whether it is a decoy match, calculated mass, 
delta mass, and q-value. q-value is the minimum FDR threshold at which the identification can be 
considered statistically significant. We calculated PSM-level q-values using Pyteomics q_value 
function. We only include the best PSM per scan. When a peptide is matched against BLG from 
different species, if the bovine BLG is one of them, the start and end positions of the peptide are 
reported with respect to that one. 

In instances where the same spectra is identified by different software and assigned to BLG, 
we calculated the Levenshtein distance between the two peptide identifications. This is the number 
of insertions, deletions and substitutions that transform one sequence into the other (Levenshtein, 
1965). We used the Python package Levenshtein (v0.25.1). 

After removing decoy matches and non BLG proteins from the PSM data frame, we pivoted it 
into a long format, taking each peptide’s amino acid position into a single row. For example, a PSM 
row with peptide sequence TPEVDDEALEK, which starts at position 141 in the protein, is turned 
into 11 rows, one per amino acid, and with positions 141, 142, 143, … and 152. When all PSMs 
are considered, this allows for calculating each position’s coverage along the protein sequence. 

In this and subsequent analysis, the BLG amino acid positions will be given with respect to the 
beginning of the immature sequence, ie. counting the signal peptide (as they are given also in 
figures 7, 8 and 9). We do this to explicitly acknowledge the existence of the signal peptide, which 
at the same time is not present in the mature molecule in milk whey, and therefore there should 
not be any peptide starting before position 17. Moreover, signal peptides are always included in 
the protein database sequences used in database search engines. 

De novo sequencing 

These methods use machine learning techniques and employ graphs as data structures and 
algorithms applied to them. We run Novor, DirecTag and PepNovo+ using DeNovoGui (Muth et 
al., 2014) interface (Table 1 and Figure 1b). Novor uses two decision trees trained from peptide 
spectral libraries for its scoring PSM function. DirecTag, follows a hybrid approach and uses a 
database to extend sequence tags derived from the spectra (Tabb et al., 2008; Zhang et al., 2012). 
PepNovo+ uses probabilistic network modelling and fragment ion intensity ranks prediction and 
scoring (Frank & Pevzner, 2005; Frank, 2009a; b) and is followed by a MS-BLAST (Shevchenko 
et al., 2001) query of the peptides against a database. We ran DeNovoGui with both sequence 
databases, DB1 and DB2, to understand how they can also affect these hybrid methods. pNovo+, 
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which is included in DeNovoGUI did not produce enough meaningful results and was discarded 
from further analysis. 

Mapping of de novo peptides 
We mapped the de novo peptides back to the bovine BLG protein sequence allowing 

mismatches, that in this case account for sequencing errors. Since leucine (L) and isoleucine (I), 
aspartic (D) and glutamic acid (E) and deamidated asparagine (N) and glutamine (Q) have the 
same mass respectively, we ‘blind’ all the sequences, so that mismatches between these pairs are 
not counted as errors. I and L are encoded as a B, D and N as a X and E and Q as Z. Having all 
sequences blinded, we first create a 3, 4 and 5-mer index from the bovine BLG variants (BLG k-
mer index). Then for each peptide, we generate a list of C and N-terminal 3, 4 and 5-mers and 
matched against the BLG k-mer index. These were used as seed matches that we extended by 
running a pairwise alignment using the Needleman-Wunsch (Needleman & Wunsch, 1970) 
algorithm implemented in pyseq-align (v1.0.2) package. When a peptide matches to k-mers from 
different positions, the alignment with the highest identity is kept. In case of a tie, we keep the one 
originating from a longer k-mer, giving preference to C-terminal k-mers. We allow gaps in the 
alignment, accounting for errors in the de novo sequencing in which an amino acid is skipped or 
extra ones are added, due to noise in the spectra or missing fragment ions. Finally, alignments 
with overall identity below 70% are discarded. Figure 2 shows a diagram of the procedure. Once 
the peptides are mapped we pivot the data into long format as before, so we can calculate the 
coverage and accuracy of each position along the BLG sequence. 

 

Figure 2 - Schematic of the procedure to map the de novo peptides to the bovine 
β-lactoglobulin sequence, while allowing sequencing errors. 1) de novo peptides 
and BLG are ‘blinded’. 2.1) C and N-terminal k-mers are extracted from the peptides. 
2.2) BLG index is generated, with k-mers as keys pointing at the positions in the 
protein. Positions are with respect to the immature BLG containing the signal 
peptide 3) In this example, the peptide TPZVAZABZK matches 2 different k-mers 
from the BLG k-mer index, which come from positions 65 and 147 of the BLG 
product sequence. 4), 5) This results in two possible alignments of the query peptide 
against BLG. 6) The alignment with the highest accuracy is kept and overall, only 
alignments with identity above 70% are considered. In case of ties, the alignment 
with the longest seed match and coming from a C-terminal k-mer would be kept. 
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Peptide physico-chemical properties 

We extracted or calculated several physico-chemical properties of the BLG: B-factors, relative 
solvent accessibility (RSA), amyloid propensity and isoelectric point. 

We extracted the B-factors from the crystallographic structure of the BLG from PDB accession 
7KOT. When determining the three-dimensional structure of a protein using X-ray crystallography, 
the B-factors are calculated from the attenuation of X-ray scattering due to thermal displacement 
of the atoms (Sun et al., 2019). B-factors have been extensively used to measure the flexibility of 
the backbone and side chains of proteins (Sun et al., 2019). The solvent accessible surface area 
(ASA), in Å2, was extracted from the 7KOT structure from PDB using DSSP (Kabsch & Sander, 
1983; Joosten et al., 2011). The RSA was calculated by dividing the ASA by the MaxASA obtained 
from (Tien et al., 2013). We calculated the isoelectric point of all identified peptides using the pI 
function in Pyteomics. For reference, we also calculated the isoelectric point along the BLG 
sequence using a sliding window of size 12. To estimate the probability of amyloid formation, we 
used 3 different software, APPNN (v1.0.0) (Família et al., 2015), AmyloGram (v1.2) (Burdukiewicz 
et al., 2017) and ANuPP (https://web.iitm.ac.in/bioinfo2/AnuPP, Prabakaran et al., 2021). 

Results and discussion 

The LC-MSMS produced a total of 8,731, 9,108, 10,141 MS2 spectra for the 0-, 4- and 128-
day, respectively. The increase in the total number of spectra is consistent with the higher non-
enzymatic hydrolysis expected in the more degraded samples, which would yield a wider variety 
of peptides. 

Is FDR enough? 

We calculated q-values for each PSMs in each database search software run and sample using 
pyteomics q_value function. Then we calculated the fraction of PSMs above a range of q-values 
from 1·10-5 to 5·10-2 and plotted the fraction of identified spectra (Figure 3). Supplementary Table 
S1 summarises the absolute number of PSMs for each run and software at FDR 0.01 and 0.05, 
which are highlighted as a blue dashed line in Figure 3, while Supplementary Figure S1 shows the 
same information only for FDR 0.01. We observe several trends: 

1) Looking at each software separately, the fraction of identifications above the same FDR 
threshold, first slightly increases in the 4-days sample but then decreases in the 128-days. 

2) Within the same software, on the 0 days sample, tryptic or semi-tryptic searches give the 
highest number of identifications, and only as degradation increases, in the 4 and 128 
days, semi-tryptic, and then non-specific searches identify more spectra. 

3) In each software and sample, the sets of parameters producing more identifications are 
always the ones using the smaller, dairy-specific DB1. 

4) At the least stringent FDR, 0.05, and in the best case, less than 60% of the spectra is 
identified for the 0- and 4-day samples. For the 128 days sample, this is reduced to less 
than 30%. 

The amount of identified PSMs at a given FDR are widely affected by the search space (Figure 
3), controlled by the choice of the database and enzymatic search. And in general, it is remarkable 
that for such a simple system explored in this study, vast amounts of spectra remain unidentified. 
This is more pronounced for the most degraded and therefore complex sample (Figure 3). 
MaxQuant and Mascot identify less than 20% of spectra for the 0 days and 10% for the 128 days. 
This is significantly lower than the other software, almost for any parameter set. This makes them 
particularly affected by the decrease in the amount of PSMs when using the larger database. 
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Figure 3 - Fraction of identified spectra for FDR thresholds from 0 to 0.05 (at 10-5 
step) for DBs software. The rows represent the increasing heating time (0, 4, 128 
days), with each software represented in a column: MaxQuant and Mascot are 
narrow search software, Metamorpheus multi-notch and Fragpipe and pFind open 
search. Dairy database searches (DB1) searches are represented in green, and 
bovine proteome searches (DB2) in magenta. The solid lines are for tryptic 
searches, dashed for semi-tryptic and dotted for non-specific. The blue dashed lines 
mark the 0.05 and 0.01 FDR thresholds that are usually applied. 

The main reason behind the reduction on the number of PSMs when we expand the search 
space is already known in proteomics and in statistics general: if by Increasing the search space, 
the proportion of peptides in the database that are not present in the samples also increases, there 
will be more chances of random and decoy matches with high scores (Jeong et al., 2012; Noble, 
2015). Therefore, to achieve the same desired FDR, the score threshold to accept positive 
matches becomes more stringent, rendering fewer accepted PSMs (Jeong et al., 2012; Noble, 
2015). This means that large databases containing a large number of proteins that are not present 
in the samples, like DB2, inadvertently boost the FDR and apparently reduce the number of 
identifications. Something similar applies to the use of non-specific searches for samples that are 
well-preserved and less degraded. This adds to the inherent divergence between FDR and FDP 
of the TDC (He et al., 2015; Couté et al., 2020; Madej & Lam, 2023; Ebadi et al., 2023). But the 
answer to this problem cannot just be to use small, targeted databases, even though it would 
reduce the computing time and resources and might produce more PSMs. We can speculate what 
would happen in the opposite scenario, using a very small database against a complex sample, 
for example dental calculus. To start, we might miss some of the contents of the sample. Another 
more inadvertent effect is that wrong, low-quality matches between a spectrum and a peptide might 
surface with a low enough FDR (since the search space is small). This is further pronounced if the 
correct peptide, which could have competed and achieved a better PSM, is absent in the database. 
This is why common contaminants are included in the searches, even though we are not interested 
in them. 

In general, we want the set of proteins and peptides that are in a sample and the set of what 
we are looking for (search space) to match as closely as possible (Jeong et al., 2012; Noble, 2015). 
While the content of a sample is not known a priori, it is clear in our simple system that using the 
whole bovine proteome to interrogate our data is utterly unnecessary and counter-productive. 
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Going into a more realistic scenario, with real archaeological samples, having a clear research 
question and hypotheses and a good understanding of the historical, archaeological, diagenetic 
and taphonomic context will always help to delineate the optimal database and parameters given 
the compromises exposed. Studies like those of Wilkin et al. (2020, 2021), Bleasdale et al. (2021), 
Hendy et al. (2018a, 2018b) are examples of different strategies and challenges regarding the 
complexity of samples and scope of the databases. They highlight the difficulty of building an 
unbiased and targeted database that encompasses all the contents of a sample. Targeted 
databases for different types of tissues like bone or enamel, microbiomes or other mixtures like 
foodcrusts need to be further developed. 

Finally, another mechanism that reduces the amount of PSMs is the exclusion of correct 
matches because of a poor separation of the score distributions between the target and decoy 
matches. The low amount of identifications at any FDR on MaxQuant and Mascot, and the dramatic 
change when switching from 0.01 to 0.05 on Fragpipe, Metamorpheus, and pFind to a lesser extent 
(Figure 3 and Supplementary Table S1), indicates this is likely happening here. The choice of a 
score metric for the PSMs is of great importance, because a good scoring function will be able to 
assign low scores to wrong matches, and vice versa. Therefore, wrong matches can be excluded 
without eliminating correct matches. Furthermore, a subsequent classifier can be trained to 
separate the score distributions of the target and decoy hits, integrating different metrics such as 
the primary search score, peptide length, misscleavages, or PTMs. The use of post-processing 
classifiers is advised to set up accordingly and is now routinely integrated in most software 
pipelines: Fragpipe uses PeptideProphet (Keller et al., 2002; da Veiga Leprevost et al., 2020) or 
Percolator (The et al., 2016) (not used in this study, as it is not compatible with open searches), 
pFind integrates a linear classifier (Chi et al., 2018). MaxQuant uses Posterior Error Probabilities 
(PEP) in a similar way (Tyanova et al., 2016) and Mascot also integrates Percolator in its pipeline. 

Open search vs Narrow search 

In the previous section, we commented on the implications of the database and enzyme 
digestion choices in the general TDC approach and FDR. However, the presence of a wide variety 
of PTMs in ancient, degraded proteins, offers further challenges to identification. 

The largest differences in the number of PSMs are between Narrow and Open search software 
(Figure 3 and Supplementary Figure S1 Table S). Open search furnishes more identifications in 
all 3 samples, provided that DB1 is used with the appropriate enzymatic digestion (or lack). 
MaxQuant, Mascot and Fragpipe-Narrow tend to have a similar number of PSMs across the 
samples and enzymatic cleavage and behave similarly in terms of which settings produce more 
PSMs for each sample. On the other hand, the open search software has more variability, 
especially open-Fragpipe (Figure 3, Supplementary Figure S1 and Supplementary Table S1). 

Open search is capable of identifying spectra from peptides bearing PTMs that are not 
accounted for and therefore remain unidentified (Chick et al., 2015). This is so because, in practice, 
the search space in this software is more unconstrained, while at the same time implementing 
algorithms that allow a fast search. FragPipe-open finds mass shifts not corresponding to the 
variable or fixed PTMs set, in 46.6%, 31.8% and 17% of the PSMs below FDR 0.05 for the 0, 4 
and 128 days, respectively. The decrease in the identification of PTMs with the more degraded 
samples might seem counterintuitive. Nonetheless, the backbone cleavage and accumulation of 
PTMs in the 128 days samples might be so extensive that the Open search cannot even identify 
those spectra, and only a smaller fraction of the modified peptides is identified. In addition to the 
problems with FDR already commented, Kong et al. (2017) reported inherent problems with the 
TDC approach when using narrow search and an increase in the statistical power of open 
searches. They also reported that 68% of spectra reassigned by open search MSFragger to a 
different peptide from narrow search, had greater support in the former. They suggest there are 
potential false positives in spectra matched to unmodified peptides. However, Freestone et al. 
(2024) explored the trade-offs and discrepancies between open and narrow searches and dispute 
these claims. They attribute this to the presence of chimeric peptides and flaws in FDR control in 
PeptideProphet and Percolator. They found that narrow searches can perform better at identifying 
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unmodified peptides. Fragpipe’s performance with respect to its narrow search counterpart is lower 
in non-specific search of the 128 days sample and non-specific and semi-tryptic for the 4-day 
sample. This, as well as Fragpipe’s more unstable performance, might be a consequence of the 
findings by Freestone et al. (2024). Like Fragpipe, pFind also includes a rescoring or reranking 
step, while Metamorpheus only relies on the primary search score to discriminate between true 
and false matches (Wenger & Coon, 2013). 

In order to highlight the differences between algorithms within Open search, we created UpSet 
diagrams in Figure 4A with the common spectra identified in the different open search software 
and enzyme cleavage runs and for each of the samples. For FragPipe and Metamorpheus, on the 
128-day sample, most spectra are identified only on the non-specific search, and the difference 
between the 3 types of digestion increases with sample degradation (Figure 4A).  

 

Figure 4 - UpSet plots by sample showing common identified PSMs across software 
and enzymatic cleavage. PSMs below FDR 0.05 are considered. A) UpSet plots for 
pFind (green), Metamorpheus (blue) and Fragpipe (pink) and tryptic (solid line), 
semi-tryptic (dashed) and non-specific (dotted) searches. B) MaxQuant and pFind 
UpSet plots. All cases are with the dairy database (DB1). The vertical bars indicate 
the sizes of each set and the percentages are with respect to the size of the union 
of all sets. The degree of agreement between the peptide sequences of each set is 
represented in red (average pairwise Levenshtein distance less or equal than 1) and 
green (average pairwise Levenshtein distance greater than 1). 

In contrast, in pFind most identified spectra are common in the 3 searches throughout the 3 
samples, although the totals decrease (Figure 4A). Moreover, most of the spectra identified by 
Metamorpheus and Fragpipe are also identified by pFind, while few spectra are exclusively 
identified by Fragpipe and/or Metamorpheus. Open-pFind takes a different approach than 
MSFragger or Metamorpheus; it finds k-mer tags in the spectra that are extended until there is a 
match to the peptide database, and given a mass shift (Chi et al., 2018). Open-pFind is capable of 
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finding non-tryptic peptides even in tryptic search in the 128-day sample (Figure 4A). The mass 
shift between the precursor ion and the peptide candidate is treated as a potential modification, 
and PTMs are proposed by testing all valid positions according to Unimod (Creasy & Cottrell, 
2004). 

In Figure 4B we compared pFind and MaxQuant using UpSet diagrams, again considering 
PSMs below 0.05 FDR. The sets of spectra identified by MaxQuant are always contained in the 
set identified by at least one pFind run. In the most extreme case, for the 128-day sample, only 
8% of the spectra are identified by the semi-tryptic or non-specific runs in MaxQuant, and not by 
the tryptic run on pFind (Figure 4B). 

Open-pFind, even in the tryptic search on the most degraded sample, “unlocks” a spectra space 
that the other software does not identify. And in general, the Open search software provides 
identifications for spectra for which narrow search does not. We found that those PSMs exclusively 
identified by pFind tend to have a slightly lower score than those also identified by MaxQuant 
(Wilcoxon rank-sum test p-value=0). But even though significant, the magnitude of the difference 
remains small and many pFind-exclusive PSMs score high (Figure 5). 

 

Figure 5 - Distribution of the pFind scores for PSMs below 0.05 FDR identified both 
by pFind and MaxQuant and only identified by pFind. 

For the cases, when they both provide a peptide identification for the same spectra, we 
explored to what extent the pFind and MaxQuant agree. Overall, the level of agreement decreases 
on the 128-day sample when running semi-tryptic or non-specific searches (Figure 6, left column 
bar plots). This is, with the more complex sample and unconstrained search space. We also 
compared the Andromeda and pFind scores for each PSM and the Levenshtein distances (the 
extent of disparity) between the identified sequences (Figure 6, right column scatter plots). There 
is an overall correlation between the scores, with those having the highest Levenshtein distances 
showing low degree of correlation, or scoring low in one or both software (Figure 6). However, 
disputed peptide sequences still overlap broadly with those where there is a consensus. 

Lastly, we compare the running times between pFind, FragPipe and MaxQuant. It has already 
been reported that the 2 open search software run much faster than other narrow search ones 
(Kong et al., 2017; Chi et al., 2018). Here, we also run a subset of the MaxQuant runs on the 
Cambridge HPC (Table 1) with the same amount of CPUs in order to compare with Fragpipe in 
the same system. MaxQuant and pFind were executed on the same system (Table 1). We found 
that pFind runs about 40 times faster than MaxQuant on MiniMax and FragPipe about 30 times on 
Cambridge HPC. 
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Figure 6 - Comparison of the identifications made by Fragpipe and MaxQuant using 
the dairy database and tryptic search (top panels, with a solid outline), semi-tryptic 
(middle, with dashed outline) and non-specific (bottom with dotted outline). When 
both software identify the same spectra, we calculate the distance between the 
peptide sequences, which is expected to be 0. Panels on the left are a histogram of 
the Levenshtein distances, split by sample (0, 4 and 128 days). The text is the 
percentage of common spectra for which both sequences are identical. Panels on 
the right are the scores given by the software to that same PSM. The color of each 
point is again the Levenshtein distance. 

The abundance and range of PTMs is likely to be limited in this study, given the low complexity 
of the sample. For example, there is no lactose that would generate lactosylations (Czerwenka et 
al., 2006; Bosman et al., 2021). However, on a real, complex, archaeological or palaeontological 
ancient sample, we can expect a plethora of post-translational modifications, from the ones 
occurring in vivo, to those induced by human activities, bacteria and time. A simple narrow search, 
as seen here and as frequently reported in the literature and by researchers, leaves massive, and 
potentially very informative, amounts of data unexplored. As we will comment in further detail, we 
recommend including open search software in the analysis workflow in Palaeoproteomics; at least 
for PTM discovery to augment narrow searches, similarly to what Metamorpheus G-PTM-D does 
(Solntsev et al., 2018). 

De novo sequencing coverage bias and accuracy 

We have seen that when we use external knowledge and data to search the spectra, we are 
always required to make choices that will affect the number, quality and significance of the 
identifications. Open search software can search for unspecified PTMs. But de novo sequencing 
(dnS) software can in theory reconstruct the peptide sequence just from the spectra without the 
use of an external database. However, sequencing errors might arise (Muth & Renard, 2018; Beslic 
et al., 2023), which, without external validating data, can have a high impact in the discovery of 
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potential novel peptides from extinct or unsequenced organisms and phylogenetic studies. In this 
section we look at the interplay between degradation, sequence coverage bias and accuracy of 
dnS. We also discuss how the choice of the database affects the accuracy of the results in this 
case, since DirecTag and PepNovo+ rely on it. 

Since we have a very simple system, with a single and known protein, it is easy to map the de 
novo sequenced peptides back to the BLG to obtain sequence coverage and also identify 
sequence errors. We follow the procedure explained in Mapping of de novo peptides and Figure 
2. Finally, peptides with less than 70% overall identity with the BLG sequence are discarded. We 
found that overall, alignments coming from C-terminal seed matches have a greater identity than 
those from N-terminal k-mers, when none of them are given priority (Figure S3). This is in line with 
previous studies reporting that long b-ions are unstable and therefore y-ions are preferentially 
generated in HCD (Shao et al., 2014; Medzihradszky & Chalkley, 2015). Therefore, HCD produces 
better ion fragment coverage on the C-terminal and in turn less sequencing errors. 

As with DBs, we studied the effect of the size of the sequence database for de novo methods 
that use it at any point of the pipeline, like DirecTag and PepNovo+. When the larger DB2 is used 
in DeNovoGUI, DirecTag and PepNovo+ attempt at covering larger parts of the BLG sequence, 
but at the cost of decreasing the overall accuracy of the peptides (Figure 7A, B, C and 
Supplementary Figure S2). In contrast, Novor achieves almost identical results (Figure 7A and 
Supplementary Figure S2). Within DeNovoGUI, DirecTag and PepNovo+ rely on an external 
database, either for a tagging hybrid method or for a subsequent MS-BLAST, respectively. We can 
draw a parallel observation as when the FDR is inadvertently boosted in DBs if the database 
contains many irrelevant sequences. In this case, incorrectly de novo sequenced peptides or tags 
are queried against a plethora of sequences from DB2, resulting in spurious matches that end up 
validating or wrongly extending them. Novor does not use a database at any point, but the overall 
amino acid accuracy is always lower (Figure 7A and Supplementary Figure S2). Beslic et al. (2023) 
also reported Novor performed worse than other dnS software in terms of  amino acid and peptide 
recall. 

To study sequence accuracy along the BLG we take every BLG-assigned sequenced peptide 
position and 1) count how many times it is observed and 2) identify if it is correct or not in order to 
calculate the accuracy at each position. Incorrect amino acids produce a negative count (Figure 7 
B, C). For Novor, inaccuracies accumulate with the more degraded samples (Figure 7A). In 
contrast, DirecTag and PepNovo+ decrease their coverage, but inaccuracies only occur when 
using the DB2. These inaccuracies are not spread evenly across the BLG, but are more 
pronounced in specific areas (Figure 7A, B, C). Moreover, regions presenting good coverage, 
between positions 80 and 90 or around 160, also present the highest number of wrong 
observations (Figure 7 C) 

In line with the database effect, DirecTag and PepNovo+ are more conservative and overall 
present less hits (150 for the best position), because sequencing errors are prevented and wrong 
peptides discarded upon matching against a database. Novor, in contrast, attempts at sequencing 
everything and has improved coverage but returns more erroneous peptides. 

De novo sequencing is a critical tool in palaeoproteomic studies looking at the phylogenetic 
relations of extinct animals (Welker et al., 2015, 2019; Chen et al., 2019; Presslee et al., 2019; 
Cappellini et al., 2019). Crucially, these studies use PEAKS, MaxQuant and BLAST, in sequential 
workflows tailored to the identification and validation of single amino acid polymorphisms and novel 
peptides. The combination of hybrid methods and dnS and DBs reflects the compromise between 
the discovery of novel sequences and the minimization of sequencing errors. As seen in Figure 7, 
sequencing errors can accumulate in highly degraded proteins and regions. Software that does 
not rely on any external database is more affected by this. At the same time, a database can be a 
curse, rather than a blessing, if it contains too many irrelevant sequences, like DB2. Therefore, 
these studies use databases restricted to a specific species, or type of protein like collagen or 
tissue, like bone or enamel proteomes. 
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Figure 7 - Positional sequence coverage and amino acid accuracy. Coverage is 
measured in the y-axes as the number of times an amino acid position is covered 
by an identified peptide, while accuracy is the proportion of those that are correctly 
identified. The BLG signal peptide is not shown, but positions are given counting it, 
and therefore start at 17, just to highlight that it would not be present in the mature 
BLG found in milk. Panel A) shows the amino acid accuracy for the 3 de novo tools 
using either the dairy database (DB1) or the bovine proteome (DB2). Panels B and 
C show the coverage for PepNovo+ using DB1 and DB2 databases. Values below 
0 correspond to mismatches between the peptide sequence and the actual BLG 
sequence. In panels A and B, the grey dotted lines mark the tryptic sites and the 
black lines are the disulfide bonds between Cysteines in positions 82 and 176, 122 
and 135 and the alternative 137. Amino acids are coloured by main properties: 
hydrophobic ones (A, L/I, M, V) are in teal green, with an olive shade for the aromatic 
ones (F, W; Y). Acidic amino acids (D and E) are in rose (or their amide group 
counterparts N and D, as they are not differentiated here), while basic ones are in 
dark blue (K and R) or purple (H). Other hydrophilic amino acids (S and T) are in 
cyan. Cysteines (C) are highlighted in yellow, glycine (G) in grey and proline (P) 
black. Colour scheme source: https://personal.sron.nl/~pault/ 
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Peptide chemical properties and coverage bias 

In the previous section, we reported a coverage bias for dnS, which also changes as 
degradation proceeds. Figure 8 shows the coverage for pFind tryptic search (A) and MaxQuant 
with tryptic (B) and semi-tryptic (C) search with the dairy specific DB1.  

 

Figure 8 - Sequence coverage for pFind tryptic search (A) and MaxQuant with 
tryptic and non-specific search (B and C). The BLG signal peptide is not shown, but 
positions are given counting it, and therefore start at 17, just to highlight that it would 
not be present in the mature BLG found in milk. PSMs below 0.05 FDR are included. 
Amino acids are coloured by main properties: in teal green hydrophobic ones (A, I, 
L, M, V), with an olive shade for the aromatic ones (F, W, Y). Acidic amino acids (D 
and E) are in rose, while basic ones are in dark blue (K and R) or purple (H). Other 
hydrophilic amino acids (N, Q, S and T) are in cyan. Cysteines (C) are highlighted 
in yellow, glycine (G) in grey and proline (P) black. Colour scheme source: 
https://personal.sron.nl/~pault/ 
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There are sections of the sequence and peptides with a much greater support than others, 
meaning they were identified in more different PSMs. In the 128-day sample, this coverage bias 
dramatically changes and some regions become “invisible”, while others increase their relative 
coverage. In line with the findings of previous sections, pFind tryptic search and MaxQuant non-
specific search coverage of the 128-day sample is similar (Figure 8A and C), while MaxQuant’s 
tryptic search fails to identify broad sections of the BLG (Figure 8B). We explored whether 
structural flexibility, relative solvent accessibility (RSA), amyloidogenicity and isoelectric point 
along BLG protein sequence and 3D structure correlate with these patterns. For this we extracted 
the B-factors and relative solvent accessibility from the 7KOT 3D structure from PDB. We 
estimated the amyloid formation propensity using different algorithms and predictors and 
calculated the isoelectric point (Figure 9). 

The region between positions 85 and 117 has the greatest coverage in the non-degraded (0 
days) and moderately degraded (4 days) samples. It coincides with a region with a high isoelectric 
point, several exposed tryptic sites and low probability of amyloid aggregate formation. However, 
after extensive degradation its coverage greatly decreases and some highly flexible sections (97 
to 117) are barely identified. In contrast, the relative coverage of the region between positions 53 
and 67 increases only after extensive degradation and using non-specific search. The only 2 tryptic 
sites here are relatively not as exposed and the isoelectric point is low. 

 

Figure 9 - Physico-chemical properties along the β-lactoglobulin. The top graph are 
the B-factors of all atoms except hydrogens. The carboxylic and alpha carbons and 
nitrogens from the amino group along the backbone are in blue, while other side 
chain atoms are in orange. The second graph shows the relative solvent 
accessibility of the BLG folded structure. The third panel is the positional amyloid 
formation propensity estimated by AnuPP (Prabakaran et al., 2021), ANNPP 
(Família et al., 2015) and AmyloGram (Burdukiewicz et al., 2017) software. The last 
graph is the isoelectric point. The tryptic sites (lysines and arginines) are marked as 
grey dashed horizontal lines.  
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The region between positions 105 and 140, features compact and rigid beta-sheets connected 
by flexible loops in the 3D structure, with high propensity of forming amyloid structures, it is 
negatively charged (low isoelectric point) and lacks tryptic sites (Figure 9). This region’s coverage 
is overall reduced from the 0- to 4-day samples and then is not observed in the 128-day sample. 

It is therefore a combination of processes and mechanisms that will determine whether a 
protein or peptide will be successfully extracted, detected in the mass spectrometer and identified 
(Evans et al., 2024). First there needs to be well exposed tryptic sites (if using trypsin and tryptic 
or semi-tryptic search), otherwise, those regions can only appear after denaturalisation and 
hydrolysis of the backbone (128-day sample) (Evans et al., 2024), and then only observed using 
semitryptic or non-specific search. However, peptides can start forming aggregates after they are 
enzymatically cleaved or hydrolysed (4 days), and highly flexible, polar and charged regions are 
also more vulnerable to being hydrolyzed by water (Fonseca et al., 2024). At the same time, other 
properties might protect peptides from hydrolysis and degradation. The peptide 
T141PEVDDEALEK151 is one of the most encountered BLG peptides in the literature (Wilkin et al., 
2020, 2021); (Bleasdale et al., 2021). It presents highly flexible and negatively charged side-chains 
(Figure 9). Here, in contrast, it is hardly identified after extensive degradation. This suggests that 
the real conditions in which the peptide is found, mainly the presence of a mineral surface, 
contributes to its preservation, as it has been suggested using molecular simulations (Hagiwara et 
al., 2009; Fonseca et al., 2022). The mineral surface and other characteristics of a real sample 
also determines the extent to which proteins are successfully extracted in the laboratory, which is 
not discussed here. 

The last main factor determining the detection of peptides is the ionisation efficiency by the 
electrospray. Peptides with high isoelectric point are already positively charged and therefore 
easier to be detected when running in the electrospray in positive ion mode. Negatively charged 
peptides, with low pI, will depend entirely on ionisation efficiencies at the electrospray (Liigand et 
al., 2017). 

Towards an integrated Paleoproteomics pipeline 

Results can vary greatly between MS/MS identification strategies, even for such a simple 
system as the one explored here. Moreover, there are challenges that each method cannot single-
handedly solve. To tackle this, we devise an standardised approach that combines the powers of 
the 3 methods discussed (de novo, open and narrow search), suited for the study of ancient 
proteins. This has already been done in other more informal and ad-hoc approaches that combine 
de novo sequencing and database search (Welker et al., 2015, 2019; Chen et al., 2019; Presslee 
et al., 2019; Cappellini et al., 2019). Meta-search engines like DeNovoGUI (Muth et al., 2014), 
SearchGUI (Barsnes & Vaudel, 2018) or platforms like PeptideShaker (Vaudel et al., 2015) focus 
on aggregating results from different software. This is important to catch disputed sequences or 
give more reliability to the consensus ones. 

The pipeline would integrate the sequence discovery of de novo sequencing with the PTM 
discovery of open search, and a process to narrow down sequence databases. These can be used 
to (1) refine a protein sequence database and (2) expand the PTMs to search at a final narrow 
search (Figure 10) that would be more reliable. At the end, peptide identifications by different 
software can be integrated to increase the confidence of the results. 

Moreover, we believe it is useful to study sequence coverage and positional information to 
identify commonly identified regions and inaccuracies. Finally, the identification of a wider array of 
PTMs can enrich the information that we can gather from ancient proteins in archaeological and 
palaeontological samples. 
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Figure 10 - Proposed pipeline for the analysis of ancient proteins. It starts with a de 
novo sequencing step that refines or produces a targeted database. This database 
is then used for an open search and the novel, abundant or relevant PTMs are 
extracted. The refined database and the PTMs are then fed into a closed or a multi-
notch database search. At the end the PSMs of the 3 software runs are combined, 
to check for consensus or disputed sequences, study position accuracy and 
coverage. This would increase the confidence of the results, while producing more 
PSMs than each of the steps alone, and identify PTMs reliably. 

Conclusion 

Palaeoproteomics is a maturing discipline that is developing new strategies to overcome its 
own challenges. Teams working on computational proteomics are constantly releasing new 
software and updates with new features. These implement a wide variety of underlying methods 
and algorithms that we broadly group in de novo sequencing or database search. 
Palaeoproteomics frequently borrows methodology and software from the broader field of 
proteomics. Yet there are unique challenges to applying these tools to palaeoproteomics, such as 
the difficulties associated with selecting a properly constrained database or accounting and 
identifying PTMs. It is therefore important to assess the pertinence and validity of the different 
strategies and parameters in the study of ancient proteins. Here we have done so by using a simple 
and progressively degraded protein model, β-lactoglobulin, heated at pH 7 for 0, 4 and 128 days. 

We highlight the importance of constraining the search space in DBs to improve the significance 
and reduce computing times. Setting the enzymatic digestion according to the level of degradation 
and using targeted databases are the most important factors. At the same time, Open search 
software can identify more peptides with PTMs that would have been otherwise unidentified. 
Moreover, the study of new PTMs, like glycations, can open the door to answering new questions 
in archaeology. De novo sequencing goes one step further in freeing researchers from database 
selection, which we have shown to hugely impact the results. However, the possibility of 
sequencing mistakes cannot be disregarded and in practice, external databases and 
complementary DBs are commonly used. Recently, new dnS programs like Casanovo (Yilmaz et 
al., 2022), InstaNovo (Eloff et al., 2023), or π-HelixNovo (Yang et al., 2023) are reporting promising 
performance. They use transformer neural network architecture, (as used in Large Language 
Models), which seem suited to protein sequences as they can be seen as another  language. A 
language that is revealed in spectral data, in which the presence or absence of peaks and their 
intensities are intercorrelated. 

As it has already been done in more informal and ad-hoc approaches, we propose a 
standardised approach that combines the powers of the different approaches discussed here. De 
novo sequencing software, especially those using transformers, and Open search can be used to 
discover novel sequences and PTMs and initially constrain the search space of possible protein 
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contents and modifications in a complex sample. Using this information, a final, constrained narrow 
database search with targeted database and PTMs would boost identifications confidently. 
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