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Abstract: In open-field agricultural environments, the inherent unpredictable situations pose signifi-
cant challenges for effective human–robot interaction. This study aims to enhance natural communi-
cation between humans and robots in such challenging conditions by converting the detection of a
range of dynamic human movements into specific robot actions. Various machine learning models
were evaluated to classify these movements, with Long Short-Term Memory (LSTM) demonstrating
the highest performance. Furthermore, the Robot Operating System (ROS) software (Melodic Version)
capabilities were employed to interpret the movements into certain actions to be performed by
the unmanned ground vehicle (UGV). The novel interaction framework exploiting vision-based
human activity recognition was successfully tested through three scenarios taking place in an orchard,
including (a) a UGV following the authorized participant; (b) GPS-based navigation to a specified
site of the orchard; and (c) a combined harvesting scenario with the UGV following participants
and aid by transporting crates from the harvest site to designated sites. The main challenge was the
precise detection of the dynamic hand gesture “come” alongside navigating through intricate envi-
ronments with complexities in background surroundings and obstacle avoidance. Overall, this study
lays a foundation for future advancements in human–robot collaboration in agriculture, offering
insights into how integrating dynamic human movements can enhance natural communication, trust,
and safety.

Keywords: human–robot collaboration; natural communication framework; vision-based human
activity recognition; situation awareness

1. Introduction

Robots are a key component of Agriculture 4.0, where advanced technologies are
revolutionizing traditional farming practices. Robotic systems can significantly improve
agricultural productivity by enhancing the efficiency of several operations, allowing farm-
ers to make more informed decisions and implement targeted interventions [1,2]. In
addition, agri-robots offer solutions to labor shortages for seasonal work and can perform
tasks in hazardous environments, reducing human risk [3,4]. Typically, robots perform
programmed actions based on limited and task-specific instructions. However, unlike the
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controlled environments of industrial settings with well-defined objects, open-field agri-
culture involves unpredictable and diverse conditions [5,6]. As a consequence, agri-robots
must navigate complex environments with varying physical conditions as well as handle
live crops delicately and accurately. Factors such as lighting, terrain, and atmospheric
conditions are inconsistent, while there is a substantial variability in crop characteristics
like shape, color, and position, which are not easily predetermined. These complexities
make the substitution of human labor with autonomous robots in agriculture a consider-
able challenge.

To address the challenges presented by complex agricultural environments, human–
robot collaboration has been proposed to achieve shared goals through information ex-
change and optimal task coordination. This multidisciplinary research field, usually called
human–robot interaction (HRI), is continuously evolving because of the rise of informa-
tion and communications technologies (ICTs), including artificial intelligence (AI) and
computer vision to improve robot perception, decision making, and adaptability [7–11].
HRI merges also elements of ergonomics [12] as well as social [13] and skill development
sciences [14] to ensure that human–robot collaboration is not only efficient but also safe
and socially acceptable. HRI leverages human cognitive skills, such as judgment, dexterity
and decision making, alongside the robots’ strengths in repeatable accuracy and physical
power. These semi-autonomous systems have shown superior performance compared
to fully autonomous robots. In short, human–robot synergy offers numerous benefits,
including increased productivity, flexibility in system reconfiguration, reduced workspace
requirements, rapid capital depreciation, and the creation of medium-skilled jobs [15,16].

Recent review studies on HRI in agriculture, such as [15,17–20], highlight that efficient
human–robot collaboration necessitates the creation of natural communication frameworks
to facilitate knowledge sharing between humans and robots. This involves exploring com-
munication methods that mirror those used in everyday life, aiming for a more intuitive
interaction between humans and robots. An ideal approach would be vocal communication
in terms of short commands or dialogues [21]. Nevertheless, this approach is constrained
by the ambient noise levels prevalent in agricultural environments and variations in pro-
nunciation among individuals [22,23]. Typing commands would also be precise enough,
but impractical in dynamic agricultural settings, where rapid and fluid HRI is needed.
Users generally prefer more natural forms of communication over typing commands [24].
On the other hand, leveraging image-based recognition for interpreting human movements
provides a seamless and adaptable means of interaction that can enhance the efficiency and
effectiveness of human–robot collaboration in agriculture. However, challenges still remain
concerning mainly varying environmental conditions and potential visual obstructions,
which can complicate the effectiveness of visual recognition [25].

Body language, such as body postures and hand gestures, seems to be a promising
alternative solution. Despite limited research, promising results have been accomplished in
spite of challenges such as constraints on human movements, the production of extensive
and noisy sensor datasets, and obstacles encountered by vision sensors in constantly
changing agricultural environments and fluctuating lighting conditions. Indicatively,
wearable sensors have been employed in [26] for predicting predefined human activities
for an HRI scenario involving two different unmanned ground vehicles (UGVs) aiding
workers during harvesting tasks. Remarkably, UGVs have demonstrated their suitability
as co-workers for agricultural applications by meeting essential criteria, such as compact
size, low weight, advanced intelligence, and autonomous capabilities [27–29].

Hand gesture recognition, facilitated either by sensors embedded within gloves [30]
or vision sensors [25], has also attracted attention in agriculture. In the former study [30],
gestures using a hand glove were utilized to control wirelessly (via Bluetooth) a robotic
arm for performing weeding operations. In [25], coordination between a UGV and workers
was accomplished, as the UGV followed the workers during harvesting and facilitated
crate transportation from the harvesting site to a designated location. This involved the
development of a hand gesture recognition framework by integrating depth videos and
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skeleton-based recognition. Specifically, Moysiadis et al. [25] investigated converting
five usual static hand gestures into corresponding explicit UGV actions. However, static
gestures may not capture the full range of human movement and intention, limiting their
versatility in dynamic situations and leading to potential misinterpretation or ambiguity
in communication. In contrast, dynamic movements have the potential to offer greater
flexibility and richer contextual information by incorporating a broader range of body
movements and variations, enabling more nuanced and natural interactions between
humans and robots [31].

As a means of enhancing natural communication during HRI, the present AI-assisted
framework incorporated vision-based dynamic human movement recognition. Further-
more, safety measures were taken into account to ensure that HRI does not compromise
the well-being of humans involved in the interaction. Combinations of the developed
capabilities of the proposed HRI system were field tested in three experimental scenarios
to assure its adaptability to relevant situations taking place in open-field agricultural set-
tings. The main challenges encountered during these tests were thoroughly identified and
analyzed, providing valuable insights for future improvements in the system’s design and
functionality. To the authors’ knowledge, this is the first verification of such an interactive
system in a real orchard environment.

The remainder of the present paper is structured as follows: Section 2 presents the
materials and methods, providing information about the overall system architecture, vision-
based dynamic movement recognition framework (data acquisition and processing, tested
machine learning (ML) algorithms, allocation of human movements to corresponding UGV
actions), UGV autonomous navigation as well as the examined field scenarios including the
utilized hardware and software. Section 3 delves into the results regarding the performance
of the examined ML algorithms and the implementation of the developed AI-assisted
HRI framework in an orchard environment. Section 4 provides concluding remarks, ac-
companied by a discussion within a broader context, along with suggestions for future
research directions.

2. Materials and Methods
2.1. Overall System Architecture

In Figure 1, a schematic of the data flow for the proposed framework is presented.
In summary:

• The system exploits video frames as data input captured by a depth camera mounted
on a UGV. These frames are transferred via a Robot Operating System (ROS) topic to
an ROS node responsible for extracting the red–green–blue (RGB) and depth values
from each frame. This separation of color information from depth facilitates analysis
and preparation for the pose detection algorithm.

• As a next step, the OpenPose algorithm node is used, which takes both the RGB and
depth channels as inputs in order to extract essential body joints from the video frames.

• The extracted body joints from the OpenPose algorithm are then fed into the ML
algorithm for movement detection after passing the required data preprocessing phase.

• To communicate with the rest of the system, various ROS nodes were developed
requiring the output of the ML algorithm.

• The ROS nodes are classified into two interconnected categories related to decision
and action:

(1) The first category is responsible for the decision-making process based on the
output of the ML algorithm. These nodes interpret the movement recognition
results and make decisions depending on the scenario. These decisions could
involve controlling the robot or triggering specific actions based on the recog-
nized movements. Throughout the entire data flow, communication between
different nodes occurs through ROS topics and services. In general, ROS topics
facilitate the exchange in data between nodes, while ROS services enable the
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request–response patterns, allowing nodes to request specific information or
actions from other nodes [25].

(2) The second category of nodes addresses UGV actions. These nodes are triggered
by the decision-making nodes and integrate data from the Navigation Stack [32],
sensor values, and key performance indicators (KPIs) related to the progress of
each operation. Furthermore, the second category of nodes provides feedback
to the decision-making nodes, ensuring that the UGV’s actions are continuously
monitored and adjusted based on the feedback.
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Figure 1. Data flow diagram of the proposed framework.

2.2. Movement Recognition
2.2.1. Data Input

The data acquisition process was performed by a depth camera mounted on an agricul-
tural robot capable of autonomous operation. Ten participants with varying anthropometric
characteristics participated in the experimental sessions. To further increase variability,
the distance between the camera and each participant was intentionally varied, while the
participants performed multiple iterations and variations of each movement. All camera
shots were captured on both sunny and cloudy days at different locations within an or-
chard situated in the Thessaly region of central Greece, enriching the dataset’s diversity.
The camera was set to record at 60 frames per second, as in [25], assuring a high level of
precision in capturing the movements of both hands and the participants’ body posture.

The examined dynamic hand gestures, which are depicted in Figure 2a–g, are com-
monly classified into the following categories:

• “Left hand waving”: a repetitive leftward and rightward motion of the left hand;
• “Right hand waving”: a repetitive leftward and rightward motion of the right hand;
• “Both hands waving”: a repetitive leftward and rightward motion of both hands

simultaneously;
• “Left hand come”: a beckoning motion with the left hand, moving toward the body;
• “Left hand fist”: the motion of clenching the left hand into a fist;
• “Right hand fist”: the motion of clenching the right hand into a fist;
• “Left hand raise”: an upward motion of the left hand, lifting it above shoulder level.
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Figure 2. Depiction of the examined dynamic hand gestures: (a) “left hand waving”, (b) “right hand
waving”, (c) “both hands waving”, (d) “left hand come”, (e) “left hand fist” (f) “right hand fist”, and
(g) “left hand raise”.

In addition to the above hand movements, two predefined human activities were
added in the training procedure for enhancing situation awareness:

• “Standing”: the participant remains stationary in an upright position;
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• “Walking”: the dynamic activity of the participant moving randomly in a walking motion.

2.2.2. Prediction of Body Joint Positions

As a next step, the OpenPose algorithm was implemented, which is an ML-based ap-
proach for estimating human poses by accurately predicting the positions of body joints [33].
In particular, OpenPose belong to Convolutional Neural Networks (CNNs), which is a
form of deep learning model noted for its ability to extract meaningful characteristics from
images. Multiple layers, including convolutional, pooling and fully connected layers, are
used to train the model toward learning hierarchical representations of the input images.
A vast collection of labeled human pose instances is fed into the network throughout
the training process. The network is trained to optimize its parameters by reducing the
discrepancy between anticipated and true joint locations. OpenPose refines initial estimates
of joint positions using a cascaded technique. The network’s first stage produces a rough
estimation of the joint positions. This estimation is then refined in stages with each stage
focusing on improving the accuracy of the prior estimation. This cascaded architecture
enables the network to refine the pose estimation and collect finer features over time.

An algorithm was developed using Python and the ROS framework that implements
OpenPose for movement recognition. In Figure 3, a graph is shown illustrating the data flow
from the RGB-D image captured by the depth camera to the dedicated node responsible
for consolidating training and testing datasets. In short, the algorithm used an ROS node
(OpenPose node) to subscribe to the image topic (cloud registered) in order to retrieve the
point cloud frame. After the frame was received, the OpenPose algorithm was applied.
The produced results were published via an ROS topic (detected people landmarks) using
a custom ROS message. Another ROS node (train registered) was developed to aggregate
the above-mentioned results in order to create the train–testing datasets.
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which is responsible for aggregating the training/testing data.

Next, for the purpose of aggregating the training and testing data, a dedicated ROS
node was created. This node subscribes to the generated results topic. There are two main
constants that have to be predefined. The first constant is related to the data acquisition
time (tdata acquisition) and was set equal to 120 sec so as to ensure class balance. Hence, all the
movements should be executed using the same time duration. The second constant, namely
movement time duration (tmovement) was set equal to 1 s and is related to the time that a
person should continuously perform each movement so as to properly be distinguished
from random movement.

When the callback function is activated, the developed algorithm using specific body
reference landmarks computes the relative angles of both hands in relation to the torso
(the axial part of the human body) (ξ̂le f t torso and ôright torso), the shoulders (κ̂le f t shoulder and
λ̂right shoulder), the elbows (θ̂le f t elbow and φ̂right elbow), and the chest (µ̂le f t chest and ν̂right chest).
The aforementioned anthropometric parameters are presented in Figure 4.
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φ̂right elbow), the chest (µ̂le f t chest and ν̂right chest) and (b) the torso (ξ̂le f t torso and ôright torso).

2.2.3. Class Balance

The present dataset used for the training process contains approximate 9000 itera-
tions per class. The dataset’s rows correspond to the number of frames within tmovement,
whereas the columns represent the values of anthropometric angles of the frame presented
in Figure 4. During the training of an ML algorithm, it is critical to use a dataset with nearly
equal numbers of samples for each class, since class imbalance may lead to misleading
performance metrics and other problems. In the current experimental sessions, the partici-
pants intentionally carried out the prescribed movements within the same time window
(tdata acquisition = 120 s). Consequently, as shown in Figure 5, the classes are well balanced.
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specific dynamic hand gesture.

2.2.4. Tested Machine Learning Algorithms

ML classifiers use input training data to predict the likelihood that data will fall into one
of these classifications. Numerous ML algorithms are well reported in the literature [34–37].
The following algorithms were tested in this analysis, which are usually used in such kinds
of problems:
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• Logistic Regression (LR): This method estimates discrete values by analyzing inde-
pendent variables, allowing the prediction of event likelihood by fitting data to a
logit function.

• Linear Discriminant Analysis (LDA): LDA projects features from a higher-dimensional
space to a lower-dimensional one, reducing dimensions without losing vital information.

• K-Nearest Neighbor (KNN): KNN is a pattern recognition algorithm that identifies the
closest neighbors for future samples based on training datasets, making predictions
according to similar instance characteristics.

• Classification and Regression Trees (CART): This tree-based model operates on “if–
else” conditions, where decisions are made based on input feature values.

• Naive Bayes: Naive Bayes is a probabilistic classifier that assumes feature indepen-
dence within a class, treating them as unrelated when making predictions.

• Support Vector Machine (SVM): SVM maps raw data points onto an n-dimensional
space, facilitating effective data classification based on their spatial distribution in the
transformed space.

• LSTM (Long Short-Term Memory): LSTM is a neural network architecture designed
for processing sequential input. It addresses typical recurrent neural network (RNN)
limitations by incorporating memory cells with input, forget, and output gates to
selectively store, forget, and reveal information. This enables LSTM networks to
capture long-term dependencies and retain contextual information across extended
sequences. LSTM optimizes memory cells and gate settings through training via
backpropagation through time (BPTT), making it highly effective for tasks requiring
knowledge of sequential patterns and relationships.

2.2.5. Optimizing LSTM-Based Neural Network Model for Multiclass Classification:
Architecture, Training, and Performance Enhancement

The model fine tuning in the training phase of the network involves several steps to
maximize its performance. In particular, the architecture of the model has three LSTM
layers that are composed of 64, 128, and 64 units, respectively, each with the hyperbolic
tangent (tanh) activation function. The tanh activation function was initially selected
over the Rectified Linear Unit (ReLU) function, because it more effectively addresses the
vanishing gradient problem [38]. By using dropout layers of 0.2 after the first two LSTM
layers, the overfitting issue was solved as the input units were set equal to zero with a
given fraction during the training. Then, the final dense layers were added, including 64
and 32 units, with the ReLU along with the softmax activation function to the output layer
being used for multiclass classification. To compile the model, the Adam optimizer was
chosen due to its adaptive learning rate characteristics, while the learning rate was set equal
to 0.001. The loss function for this was “categorical crossentropy”, while the performance
metric was “categorical accuracy”, which calculates how many samples in the set are cor-
rectly classified. The training was assisted by two callbacks, namely “EarlyStopping” and
“ReduceLROnPlateau”. The former is used to observe the validation loss and terminates
the training process if 20 consecutive epochs elapse with no improvement. It also returns
the prevailing weights to prevent overfitting. The “ReduceLROnPlateau” decreases the
learning rate by a factor of 0.5 if there are 10 epochs without improvement in validation
loss. The model was trained for a maximum of 500 epochs with a cross-validation split of
25%, enabling the model to generalize on unknown data.

2.3. Allocation of Human Movement Detection

In this subsection, the allocation of specific human movements to corresponding actions
of the UGV, to facilitate robust HRI in various scenarios, is presented. In brief, a UGV can
identify a participant requiring assistance and lock onto them using the “left hand waving”
gesture. Once locked, this person becomes the sole authorized individual to interact with the
UGV using particular commands, minimizing potential safety concerns [12,39].
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The locked participant can make use of six more commands that are associated with
distinct hand gestures and the corresponding UGV’s actions. Specifically, the “right hand
waving” gesture instructs the UGV to autonomously navigate to a predefined location,
while the “left hand come” gesture indicates the UGV to follow the participant. The
HRI system also includes gestures for pausing specific operations. The “left hand fist”
gesture temporarily stops the UGV from following the participant, whereas the “right hand
fist” gesture commands the UGV to return to the site where autonomous navigation was
initially activated. At any time, the participant can be unlocked by using the “left hand
raise” gesture, allowing another individual to take control if necessary. Finally, the “both
hands waving” movement serves as an emergency stop signal, prompting the UGV to halt
all actions and distance itself from nearby humans and static obstacles to ensure safety.

Furthermore, the UGV can detect the participant’s body posture, distinguishing be-
tween an upright stance (“standing”) and walking activity (“walking”). This capability
enhances situational awareness, allowing the UGV to adapt to dynamic changes in the
environment. In turn, when humans recognize the robot’s environmental awareness, they
can build trust and confidently delegate tasks that the robot can effectively complete [40].
Table 1 provides a summary of all the examined gestures, each associated with a specific
class (used for ML classifiers) and their corresponding UGV actions.

Table 1. Summary of the examined hand and body movements along with the corresponding classes
and actions to be executed by the UGV.

Recognized Human
Movement Corresponding Class UGV Action

“Right hand waving” 0 Initiate autonomous navigation to a
predefined location

“Left hand waving” 1 Lock identified person
“Both hand waving” 2 Stop all active scenarios

“Left hand come” 3 Follow the participant
“Left hand fist” 4 Pause following mode

“Right hand fist” 5
Return to the location that the

autonomous navigation
was initiated

“Left hand raise” 6 Unlock identified participant
“Standing” 7 Detect upright posture
“Walking” 8 Detect walking activity

The dynamic hand gestures examined in this study were used for enabling versatile
and responsive interaction between participants and UGVs in an orchard setting. These
gestures were designed to offer users a range of options without causing confusion, as not
all gestures are intended for simultaneous use. This communication framework addresses
a variety of operational scenarios, allowing the UGV to effectively manage tasks like au-
tonomous navigation, halting actions, following participants, and handling emergency
situations. Hence, the UGV can adapt to the diverse needs of the orchard environment, en-
hancing operational efficiency and worker safety through precise and intuitive interaction.

2.4. Autonomous Navigation

The implemented UGV (Thorvald, SAGA Robotics SA, Oslo, Norway), besides being
equipped with the RGB-D camera (Stereolabs Inc., San Francisco, CA, USA) for human
movement recognition, featured several sensors to support the agricultural application.
Specifically, a laser scanner (Velodyne Lidar Inc., San Jose, CA, USA) was utilized to
scan the environment and create a two-dimensional map. An RTK GPS (S850 GNSS
Receiver, Stonex Inc., Concord, NH, USA) and inertial measurement units (RSX-UM7
IMU, RedShift Labs, Studfield, VIC, Australia) provided velocity, positioning (latitude and
longitude coordinates), and time information to enhance robot localization, navigation, and
obstacle avoidance. To meet the computational demands, all vision-related operations were
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managed by a Jetson TX2 Module with CUDA support. Figure 6 shows the UGV platform
used in this study, which was equipped with the essential sensors.
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The commands related to the UGV’s navigation were executed via a modified version
of the ROS Navigation Stack [41–43]. As a global planner, the modified version of the
NavFn [44] was implemented to enable global localization and GPS-based navigation.
Furthermore, the following local planners for obstacle avoidance were tested in the field
under similar environmental conditions [45,46]:

• Trajectory Rollout Planner (TRP): Ideal for outdoor settings, the TRP utilizes kinematic
constraints to provide smooth trajectories. This planner effectively manages uneven
terrain and various obstacles by evaluating different paths and selecting the one that
avoids obstacles while maintaining smooth motion.

• TEB Planner: An extension of the EBand method, the TEB Planner considers a short
distance ahead of the global plan and generates a local plan comprising a series of inter-
mediate UGV positions. It is designed to work with dynamic obstacles and kinematic
limitations common in outdoor environments. By optimizing both local and global
paths, it balances obstacle avoidance with goal achievement. This planner’s ability to
handle dynamic obstacles is particularly useful in outdoor settings where objects such
as workers, livestock, animals, and agricultural equipment can move unpredictably.

• DWA Planner: While the DWA Planner is effective for dynamic obstacle avoidance,
it may not handle complex outdoor terrains as efficiently as the TRP or TEB Planner.
It focuses primarily on avoiding moving obstacles and might not perform as well in
intricate outdoor scenarios.

After extensive testing of the above planners in field conditions, it was determined
that the TEB Planner was the most suitable for the present HRI system. Remarkably,
the efficiency of planners such as the TRP and DWA is influenced by factors like sensor
capabilities, map quality, and unpredictable environmental conditions. Considering these
factors, the TEB Planner was chosen for its superior performance in handling dynamic
obstacles and kinematic constraints common in dynamic agricultural environments. The
TEB Planner was fine tuned with numerous parameters, including adjustments to the local
cost map based on the physical limitations of the employed UGV, to facilitate optimal
autonomous navigation.
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2.5. Brief Description of the Implemented Scenarios

In this section, three distinct scenarios are shortly described, which were designed to
test and validate the effectiveness of the present HRI framework. An attempt was made to
emulate various real-world outdoor agricultural tasks and conditions, providing useful
insights into the system’s capabilities and limitations. Each scenario focuses on different
aspects of the UGV’s functionality. By implementing these diverse scenarios, we aim to
demonstrate the robustness and versatility of the developed HRI system in enhancing
agricultural productivity, flexibility and safety. Toward that direction, a thorough step-by-
step approach was adopted to rigorously test the capabilities of the developed system.

2.5.1. UGV Following Participant at a Safe Distance and Speed

Field tests were conducted involving either one or two individuals interacting with
the UGV as a means of demonstrating the capability of the UGV to distinguish between
the two participants and identify which person required assistance and respond accord-
ingly. Actions included also following the person who signaled for assistance, halting its
movement, returning to a predetermined location, and unlocking the participant.

2.5.2. GPS-Based UGV Navigation to a Predefined Site

In this scenario, the UGV autonomously navigated to a designated location. Utilizing
GPS coordinates, the UGV calculated the optimal route and traversed outdoor terrain,
adjusting its path as needed to avoid obstacles. Upon reaching the location, it slowly
approached the predefined site, showcasing its ability to navigate effectively in real-world
agricultural environments.

2.5.3. Integrated Harvesting Scenario Demonstrating All the Developed HRI Capabilities

In this scenario, the UGV was programmed to follow participants at a safe distance and
speed during harvesting activities. Moreover, it was tasked with approaching authorized
persons to assist in the transportation of crates from the harvesting site to a designated
location. The UGV’s functionality also included the ability to detect and respond to
emergency situations. For instance, it could promptly respond to commands issued by
participants for immediate halting all its operation. This all-inclusive scenario allowed for
the evaluation of various aspects of the UGV performance, including navigation, obstacle
avoidance, interaction with human workers, and emergency response capabilities.

3. Results
3.1. Machine Learning Algorithms Performance Comparison for Classification of
Human Movements

As analyzed in Section 2.2.4, seven ML algorithms, namely LR, LDA, KNN, CART,
NB, SVM, and LSTM, were examined to ascertain their ability to predict the dynamic hand
and body movements listed in Table 1. Each algorithm underwent rigorous testing to
evaluate its effectiveness in classifying these movements into the corresponding classes.
For this purpose, the classification report depicted in Table 2 is used to provide insights
into the precision, recall, and F1-score for each class, offering valuable information into
each ML models’ strengths and weaknesses. As stressed in the methodology section, the
investigated nine classes were deliberately balanced during preprocessing.

In summary, NB and CART showed the lower precision, recall and F1-score values,
suggesting challenges in accurately classifying the examined movements with these al-
gorithms. In contrast, LR, LDA, KNN, SVM, and LSTM exhibited relatively high scores,
indicating robust performance in correctly identifying movements and minimizing false
positives and negatives. Among the latter group of ML algorithms, LSTM emerged as the
best classifier, demonstrating the highest overall average score. Hence, LSTM was selected
to be the ML classifier of the proposed HRI framework with technical information relating
to architecture, training, and performance enhancement provided in Section 2.2.5. Inter-
estingly, our analysis revealed that the “left hand come” dynamic hand gesture presents



AgriEngineering 2024, 6 2505

the utmost challenges for accurate detection. In fact, the “come” gesture involves the
hand positioned in front of the human body, making it difficult to find specific reference
landmarks for recognition. The dynamic nature of this hand movement, coupled with
variations in arm positions and anthropometric features, adds complexity to the recognition
process. These challenges demonstrated the need for robust ML algorithms and sensor
capabilities to ensure accurate recognition and timely response [47].

Table 2. Classification report for the performance of the seven investigated machine learning algorithms.

Algorithm Precision Recall F1-Score

LR 0.866 0.863 0.862
LDA 0.9135 0.883 0.879
KNN 0.871 0.842 0.838
CART 0.765 0.698 0.686

NB 0.108 0.328 0.162
SVM 0.871 0.842 0.838

LSTM 0.912 0.95 0.90

3.2. System Prototype Demonstration in Different Field Scenarios

In Section 2.5, we briefly described the methodology for testing the developed HRI
framework through three carefully designed scenarios. The results of these field tests are
presented in this section. Each scenario was tailored to assess the specific functionalities of
the UGV, including navigation, obstacle avoidance, human movement recognition, situation
awareness, and emergency response capabilities. Through rigorous testing and analysis,
valuable understandings were gained into the system’s performance and its potential for
building trust, thus ensuring reliable and efficient task delegation.

It should be stressed that the robotic vehicle moved autonomously in the field, by
always maintaining a predefined safe distance from individuals. This distance was set to
be at least 0.5 m, with a maximum limit of 15 m (due to sensor restrictions), to ensure social
navigation. Unlike purely autonomous navigation, social navigation inspires a sense of
safety in workers, enhancing their comfort and confidence in the robotic system [12]. To
guarantee that the above limits were maintained, both a minimum distance and a maximum
speed of 0.2 m/s from identified individuals and potential obstacles were programmed,
constituting necessary prerequisites. Similarly to [25], the open-source package “ROS
Navigation Stack” was utilized. In all scenarios, the UGV could detect the “standing” and
“walking” activity, allowing, as mentioned above, the robotic system to adjust to evolving
conditions in the environment.

Subsequently, indicative images taken during the experimental sessions are provided
for each scenario, while more images depicting also the examined dynamic human move-
ments are presented in the final integrated harvesting scenario.

3.2.1. UGV Following Participant at a Safe Distance and Speed

A methodical approach was adopted, starting with the evaluation of the proposed
framework in a scenario involving a single individual working alongside the UGV. As
the next step, also a second person was added in the same working area with the UGV
simulating practical scenarios encountered in agricultural operations. In the two-person
pilot setup, the UGV successfully showcased its ability to distinguish between the two
participants and determine which one needed assistance by detecting the corresponding
movement assigned to locking. Depending on the specific human movement detected,
the UGV executed the corresponding actions, including following the person signaling for
assistance, pausing the following mode for a while, stopping all UGV active operations,
returning to a predefined area, or unlocking the participant.

The human movements designated for this scenario included the subsequent human
movements: (a) “left hand waving” to lock the person performing the specific dynamic
gesture; (b) “left hand come” to initiate the following mode; (c) “left hand fist” to pause the
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following mode; (d) “left hand raise” for the locked individual to request to be unlocked by
the UGV; (e) “both hand waving” to stop all active operations of the UGV; and (f) “right
hand fist” to return to a predefined site located within the orchard.

In summary, the implementation of this field scenario proved to be successful. By
accurately recognizing and responding to all the above dynamic gestures, the UGV kept
also the aforementioned prerequisites regarding the safe limits of speed and distance.
Additionally, the UGV immediately stopped once the corresponding hand gesture was
detected. Figure 7a depicts the UGV following the participant, while Figure 7b illustrates
the participant requesting the UGV to pause the following mode by showing his left fist.
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Figure 7. Images from the experimental demonstration of the “following” scenario in an orchard
showing (a) the UGV following the locked participant while maintaining a safe speed and distance
and (b) the participant asking the UGV to pause the following mode.

A notable challenge emerged during the testing phase, necessitating further refinement
of the algorithm. This challenge concerned ensuring reliable gesture recognition across
different environmental conditions, such as varying lighting and background complexity.
Therefore, we purposely conduct this scenario on several sites of the orchard during
both sunny and cloudy days. In this way, this challenge was overcome resulting in the
successful execution of this field scenario, demonstrating the potential of the developed
HRI framework to support the “following” mode in open-field agricultural settings.

3.2.2. GPS-Based UGV Navigation to a Predefined Site

In this scenario, the UGV autonomously navigated to a designated location. Leverag-
ing GPS coordinates, the UGV computed the most efficient route and traversed outdoor
terrain, making necessary adjustments to avoid obstacles along the way. Upon reaching the
location, the UGV safely approached the predefined site, demonstrating its capability to
navigate effectively in real-world agricultural environments. It should be mentioned that if
the target is determined to be unreachable due to obstacles or excessive distance, the UGV
halts its operation and waits for further instructions from the designated participant. This
protocol ensures that the UGV maintains safe and reliable operation in all scenarios.

A methodical approach was undertaken again, beginning with the evaluation of the
proposed framework in a setting involving only the UGV. Subsequently, one and two
participants were gradually added in the same region with the UGV to simulate practical
scenarios. In the two-person setup, the UGV successfully exhibited, again, its ability to
distinguish between the two participants and determine which one required assistance
by detecting the corresponding movement assigned to locking. The human movements
designated for this scenario included (a) “left hand waving” for locking the authorized
person; (b) “left hand raise” for unlocking; (c) “right hand waving” for initiating the mode
of autonomous navigation to the predefined location; and (d) “both hand waving” for
stopping all UGV operations.
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The implementation of this scenario was successful, demonstrating the UGV’s ability
to navigate to the predefined site autonomously, as can be seen in Figure 8. A noteworthy
challenge that emerged during testing related to ensuring who would be the authorized
person was again overcome, while all obstacles were identified by the UGV enabling
smooth navigation within the orchard.
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3.2.3. Integrated Harvesting Scenario Demonstrating All the Developed HRI Capabilities

This scenario was the most challenging one, as it was designed to combine all the
capabilities of the developed HRI framework in an open-field agricultural environment.
One of the primary challenges encountered was the integration of multiple tasks, includ-
ing autonomous navigation, distance maintenance from participants, obstacle avoidance,
discerning which participant should be locked by the UGV, and emergency response, into
a cohesive and fluid workflow. In spite of these challenges, the system demonstrated
remarkable adaptability and responsiveness. Its success was also assured by the step-by-
step methodological approach, where combinations of HRI capabilities had already been
assessed in different situation-specific scenarios.

Figure 9 depicts some images taken during the experimental demonstration of the
predesigned harvesting scenario, illustrating how the UGV smoothly transitioned between
different modes of operation. Specifically, in Figure 9a, the locked participant asks the UGV
to immediately stop all active scenarios via the “both hand waving” movement, while in
Figure 9b, he requests to be unlocked through the “left hand raise” gesture. In Figure 9c,
the second participant requests to be locked via the “left hand waving” gesture. Then,
the locked participant requests the UGV to follow him via the “left hand come” dynamic
gesture (Figure 9d), while Figure 9e shows the UGV following this participant. Figure 9f
depicts the participant, by raising his fist (“left hand fist”), ordering the UGV to pause the
following mode. Figure 9g displays the participant loading a specially designed trolley
with crates, as in this scenario, the UGV carries the crates from a random site of the orchard
to a specific site. To that end, the movement of “right hand waving” (Figure 9h) is used
for the UGV to start its autonomous navigation to the predefined location, as shown in
Figure 8.
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Figure 9. Images from the experimental demonstration of the integrated harvesting scenario in
an orchard. In (a) the participant, who is currently locked, requests the UGV to stop all ongoing
activities promptly; (b) the participant requests to be unlocked; (c) the second participant requests to
be locked; (d) the participant signals the UGV to follow him; (e) the UGV follows the participant;
(f) the participant signals the UGV to stop following him; (g) a participant fills a custom-built trolley
with crates; (h) the participant indicates to the UGV to initiate its autonomous navigation to the
preset destination.

4. Discussion and Conclusions

In this study, we focused on enhancing natural communication through a novel vision-
based HRI by detecting and classifying a range of human movements. Various ML models
were evaluated to determine their effectiveness in classifying these predefined human
movements with LSTM demonstrating the highest overall performance. As a result, LSTM
was chosen as the ML classifier for the proposed HRI framework.

Subsequently, the developed framework was rigorously tested through three carefully
designed scenarios: (a) UGV following a participant; (b) GPS-based UGV navigation to
a specific site of the orchard; and (c) an integrated harvesting scenario demonstrating all
the developed HRI capabilities. In each scenario, safe limits for both the UGV’s maximum
speed and its minimum distance from participants and potential obstacles were thoroughly
programmed and maintained.

In summary, all the designed scenarios were successfully tested, demonstrating the
robustness and versatility of the developed HRI system in open-field agricultural settings.
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The main challenges encountered and overcome during the implementation included
the following:

• Human movement detection: In particular, the “left hand come” gesture was proved to
be the most demanding, as the hand’s position in front of the body presents challenges
in identifying specific reference landmarks accurately. However, the integration of
whole-body detection in conjunction with the LSTM classifier significantly enhanced
the system’s ability to interpret and respond to these dynamic movements effectively.

• Environmental conditions and background complexity: Ensuring reliable human
movement recognition across different environmental conditions, such as varying
lighting and background complexity, posed a major challenge. Toward ensuring
adaptability, the system was successfully tested in multiple environments, including
different sites of the orchard during both sunny and cloudy days.

• Navigation and obstacle avoidance: The UGV’s ability to navigate autonomously to
predetermined locations required precise programing to avoid obstacles and always
keep a safe speed and distance. For this purpose, the right selection of needed sensors
in combination with the exploitation of the capabilities of ROS Navigation Stack
enabled global localization and safe GPS-based navigation.

A notable distinction between the present study and the previous similar study [25]
lies in the method of participant identification. While the previous study primarily relied
on static gestures for detection, the present study introduced an innovative approach
by utilizing dynamic human movements to trigger specific UGV actions. Incorporating
dynamic gestures, this analysis demonstrated improved accuracy and responsiveness in
interpreting human actions, enhancing the overall performance of the HRI framework.
Indicatively, the best ML classifier in [25] was KNN with 0.839, 0.821, and 0.83 overall
precision, recall and F1-score, respectively, while in this study, the corresponding values,
provided by LSTM, were 0.912, 0.95, and 0.9, respectively. Thus, in contrast with the
static hand gesture detection in [25], detecting reference landmarks from the whole body
provided more accurate results under the same environmental conditions, which was
mainly due to the larger body parts that should be identified. This shift from static to
dynamic gestures represents also a significant advancement in enhancing the naturalness
of human–robot communication.

Employing more natural ways of communication instills confidence, predictability and
familiarity in the user, fostering “perceived safety” [39,48]. This sense of safety facilitates
seamless collaboration between humans and robots, resulting in enhanced efficiency in
agricultural operations [12]. To that end, innovative methods enabling real-time optimal
control using output feedback [49] could improve the UGV’s ability to adapt to varying
agricultural environments and tasks, making HRI more responsive to the immediate needs
of human operators and environmental conditions.

Taking into account the recent progress in human activity recognition (HAR) through
surface electromyography (sEMG) [50,51], this method could also be applied in agricul-
ture, however, by carefully addressing their inherent drawbacks. The main limitations
of pure sEMG-based HAR are its sensitivity to electrode positioning, various types of
noise, challenges in interpreting deep learning models, and the requirement for extensive
labeled datasets. Ovur et al. [52] overcame these challenges by developing an autonomous
learning framework that combines depth vision and electromyography to automatically
classify EMG data, derived by a Myo armband device, based on depth information. Given
also the ever-increasing use of smartphones in agriculture [53], the use of these devices
could be considered for HAR. Indicatively, facing similar sEMG drawbacks, Qi et al. [54]
addressed them by developing a skeleton-based framework utilizing IMU signals from a
smartphone, a camera and depth sensors (Microsoft Kinect V2). Although different hand
gestures were investigated in the aforementioned studies, the consistently high and stable
performance observed suggests that these methods could be tested as an alternative to our
purely vision-based framework in future investigations. However, any such evaluation
must take into account the specific challenges posed by open-field environments.
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In future research, further exploration could also focus on evaluating the system’s
performance in more complex and unpredictable environments with more people in the
same area with the UGV. Interestingly, incorporating feedback from workers regarding
their experiences and opinions of interacting with the UGV could provide valuable insights
for refining the system and ensuring its practical usability. In addition, investigating the
feasibility of allowing workers to operate at their own pace in real-world conditions could
enhance the system’s adaptability, trust and acceptance among users. In a nutshell, by
considering both the efficiency, flexibility and safety of the system in tandem with the
workers’ perspectives, future research should endeavor to develop more socially accepted
solutions for human–robot synergy in agricultural settings.
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