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Abstract
Objective. Particle therapy treatments are currently limited by uncertainties of the delivered dose.
Verification techniques like Prompt-Gamma-Timing-based Stopping Power Estimation
(PGT-SPE) may allow for reduction of safety margins in treatment planning. Approach. From
Prompt-Gamma-Timing measurements, we reconstruct the spatiotemporal distribution of prompt
gamma emissions, which is linked to the average motion of the primary particles. The stopping
power is determined by fitting a model of the average particle motion. Here, we compare a
previously published implementation of the particle motion model with an alternative formulation
and present two formulations to automatically select the hyperparameters of our procedure. The
performance was assessed using Monte-Carlo simulations of proton beams (60 MeV–219 MeV)
impinging on a homogeneous PMMA phantom.Main results. The range was successfully
determined within a standard deviation of 3mm for proton beam energies from 70 MeV to
219 MeV. Stopping power estimates showed errors below 5% for beam energies above 160MeV. At
lower energies, the estimation performance degraded to unsatisfactory levels due to the short range
of the protons. The new motion model improved the estimation performance by up to 5% for
beam energies from 100 MeV to 150 MeV with mean errors ranging from 6% to 18%. The
automated hyperparameter optimization matched the average error of previously reported manual
selections, while significantly reducing the outliers. Significance. The data-driven hyperparameter
optimization allowed for a reproducible and fast evaluation of our method. The updated motion
model and evaluation at new beam energies bring us closer to applying PGT-SPE in more complex
scenarios. Direct comparison of stopping power estimates between treatment planning and
measurements during irradiation would offer a more direct verification than other
secondary-particle-based techniques.

1. Introduction

Prompt Gamma Timing (PGT) is a promising concept that exploits the time of flight (TOF) of both the
primary protons and the resulting prompt gamma (PG) radiation to infer possible range deviations in
proton therapy. The TOF spectra hold indirect information about the spatial and temporal distribution of
PG emissions, which in turn are correlated with the motion and range of the primary particles. This

© 2024 The Author(s). Published on behalf of Institute of Physics and Engineering inMedicine by IOP Publishing Ltd

https://doi.org/10.1088/1361-6560/ad5d4b
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ad5d4b&domain=pdf&date_stamp=2024-7-15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2389-0371
https://orcid.org/0000-0001-8323-0132
https://orcid.org/0000-0002-8068-6967
https://orcid.org/0000-0002-8172-4283
https://orcid.org/0009-0007-3773-4699
https://orcid.org/0000-0002-2443-5178
https://orcid.org/0000-0002-2075-3232
https://orcid.org/0000-0001-6091-2130
https://orcid.org/0009-0000-9998-4094
https://orcid.org/0000-0001-7794-0170
https://orcid.org/0000-0003-3900-6680
https://orcid.org/0000-0001-5691-7756
mailto:friedemann.werner@uni-luebeck.de


Phys. Med. Biol. 69 (2024) 14NT02 J Werner et al

information can be used to ensure compliance of the delivered treatment with the treatment plan. Since the
introduction of PGT as a fast and cheap treatment monitoring concept a decade ago (Golnik et al 2014),
different detection and evaluation approaches have been proposed (Werner et al 2019, Jacquet et al 2021,
Schellhammer et al 2022).

We previously introduced Spatiotemporal Emission Reconstruction from Prompt Gamma Timing
(SER-PGT), a method for estimating the combined spatial and temporal distribution of the emitted PG
using PGT spectra from several detectors (Pennazio et al 2022), together with an optimization procedure to
solve the underlying inverse problem. In addition to providing an estimate of the beam range, we
hypothesize that the postprocessed spatiotemporal distribution allows the stopping power to be inferred
(Ferrero et al 2022b). In the latter publication we have shown, as a proof of principle, that this is possible by
fitting the Bortfeld motion model to the postprocessed spatiotemporal distribution.

Our long-term goal is to be able to provide estimates for quality assurance of other stopping power
calculations done for treatment planning (e.g. from x-ray Computed Tomography or proton Computed
Tomography). The PG radiation measurements would take place during the beam delivery, hence the
comparison of stopping power measurements allows direct verification of the tissue properties and anatomy
assumed in the treatment plan. To our knowledge, our approach, termed Prompt-Gamma-Timing-based
Stopping Power Estimation (PGT-SPE), is currently the only one available in literature aiming to directly
estimate the stopping power during the treatment. Nevertheless, our investigation is at an exploratory stage
and, as such, requires further improvements to overcome current limitations. So far, PGT-SPE has only been
demonstrated with Monte-Carlo simulations of homogeneous targets and a limited number of initial proton
beam energies (Ferrero et al 2022b). A preliminary investigation with a reduced set of PGT detectors was
published in Ferrero et al (2022a). This work aims to address some open challenges in PGT-SPE in
preparation to extend our investigations to inhomogeneous targets.

A bottleneck of our current implementation lies in the time-consuming and tedious configuration of the
analysis of the spatiotemporal distribution. For each beam energy, an appropriate number of iterations and a
threshold needs to be determined. Doing this manually is feasible for a few cases, but becomes cumbersome
for large evaluations, especially since the tuning needs to be repeated each time the beam parameters, target,
or estimation procedure change. To automate the tuning, we propose a data-driven optimization of the
algorithm’s hyperparameters. Using this automation, we were able to expand the number of evaluated beam
energies to 17 ranging from 63 MeV to 219 MeV, compared to six beam energies ranging from 110 MeV to
219 MeV in Ferrero et al (2022b). Another issue is how to handle the data from the spatiotemporal
distribution for model fitting. Here, we present an alternative implementation of the motion model to
address some limitations of the published version.

2. Material andmethods

In the following, the most significant parts of our methodology are summarized. A comprehensive
description of the reconstruction and post-processing algorithms can be found in Pennazio et al (2022). The
simulated setup and the procedure to estimate the stopping power are described in detail in Ferrero et al
(2022b).

2.1. Monte-Carlo simulation and reconstruction
The geometry and scintillator detectors were modelled using FLUKA (Ferrari et al 2005, Böhlen et al 2014).
A total of 110 monolithic cylindrical Cerium-doped Lanthanum bromide (LaBr3:Ce) crystals were placed in
the asymmetric pattern shown in figure 1, which is repeated five times along the y-axis. The event
post-processing accounted for a time and energy resolution of 250 ps FWHM and σE/E= 4%. The simulated
irradiation covered the energy range [63MeV,219MeV] in steps of about 10 MeV. For each beam energy, we
ran 50 realizations (107 protons per run). This study therefore significantly extends our previous work
towards lower energies, where the lower photon emission makes its reconstruction more challenging.

To reconstruct the spatiotemporal distribution from the PGT spectra, we apply the iterative algorithm
Maximum-Likelihood Expectation-Maximization (ML-EM) combined with a system response model
calculated through Monte-Carlo simulations. The SER-PGT output is a depth-time histogram (2D): The
intensity of a specific pixel corresponds to the estimated number of PG emitted during a certain time interval
around t from a certain spatial bin centered at depth z. A threshold T relative to the maximum of the
reconstructed distribution is applied. For each time interval, the center of gravity is calculated to get position
and time pairs [z, t]. SER-PGT could be expanded to include the transversal dimensions, but this would
increase the number of unknowns while the amount of available data would not change, thus compromising
the accuracy of the estimates. At the current stage of our research, the current approach, which restricts the
PG to the beam axis, is sufficient to extract the particle range and motion.
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Figure 1. Lateral view of the simulated setup: PMMA phantom (red), asymmetric detector pattern (green) and proton beams
emitted in the direction of the positive z-axis from position (z0,0,0) at time t0 with kinetic energy E0.

2.2. Stopping power estimation
We use an analytical approximation of the particle kinetic energy along its depth for homogeneous materials,
following Bortfeld (1997),

E(ẑ) =
p

√
R0 − ẑ

α
, (1)

where E is the particle energy at depth ẑ, and α and p are free parameters linked to the range R0 and the initial
energy E0 through R0 = αEp

0. The derivative of equation (1) corresponds to the stopping power. To reduce
the number of free parameters in the motion model, R0 is calculated beforehand as the z of the last [z, t] pair.

In Ferrero et al (2022b), we developed an analytical solution to equation (1) to obtain the motion as t(z).
Fitting this function to the [t,z] points extracted from the SER-PGT output yields the α and p to be inserted
in the derivative of equation (1) for the calculation of the stopping power. The function domain of t(z) is
inherently limited to [−∞,z0 +R0] with z0 the position at which the beam enters the material. During the
fitting process, positions beyond the range R0 = αEp

0 are likely to be evaluated. The return values chosen for
these cases can penalize or favor non-physical solutions of the fitting problem, and therefore produce
incorrect estimations of the stopping power.

Here, we achieve an unbounded and physically sensible function domain by solving the relativistic
motion equation to obtain z(t). This also allows us to account for the uncertainty along z, visible in figure 2
when fitting the model to the reconstructed emission distribution. Usually, the velocity is integrated over
time to calculate the position as a function of time. We assume the particles only travel along the beam axis,
simplifying the problem to integrating the speed. Unfortunately the speed v needs to be calculated based on
equation (1) which only yields the speed as a function of the depth. Therefore, z(t) would need to be known
to calculate v(t). Due to this contradiction we decided to use the numerical approximation

z(t) =

ˆ t

t0

v(t)dt+ z0 ≈∆t
J∑

j=1

v
(
z
(
tj−1

))
+(t− tJ)v(z(tJ))+ z0; v(z0) = v(E0) , (2)

with v the speed of the particle, uniquely defined either by its relativistic kinetic energy (v(E)), time (v(t)) or
position (v(z));∆t is the step size, with J=

⌊
t−t0
∆t

⌋
evenly-spaced samples between t0 and t. Once position

z(tj−1) is calculated, the speed v at that depth is known based on equation (1). The next position z(tj) is
approximated as z(tj) = z(tj−1)+∆t v(z(tj−1)), assuming a constant speed within the time interval [tj−1, tj).
This process is repeated until the time t is reached. The accuracy of this approximation is compared to the
analytical implementation of t(z) for 0 MeV–250 MeV proton beams in water (section 3.3). A time step of
∆t= 2.5ps was found to be a good compromise between execution speed and accuracy.

We will refer to the implementation of Ferrero et al (2022b) as the TimeFit procedure and the new
implementation using equation (2) as the PositionFit procedure.

2.3. Figures of merit
We have analyzed the results using three figures of merit (FoMs): the mean relative error (MRE) of the
stopping power profile, the error of the stopping power ratio (SPR),∆SPR, and the difference between true
and estimated range,∆R. The NIST PSTAR database (Berger et al 2005) was used to provide the reference
values. The range error∆R was calculated as in Ferrero et al (2022b). There we also introduced the MRE, but
here we modified the implementation to evaluate the stopping power profile up to max(RNIST,RE). This
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ensures equal penalization of overestimation and underestimation of the reconstructed range RE. The
stopping power ratio (SPR) error was calculated with respect to water at 100MeV as suggested in Peters et al
(2023). After calculating the FoMs for all realizations, we computed their mean, standard deviation, and
minimum and maximum value for each considered energy.

2.4. Automated hyperparameter optimization
The values in the post-processed 2D histogram depend on the number of ML-EM iterations, k, and the
threshold T. To determine the best suited values of k and T, we have studied different optimization criteria
based on the three FoMs. These hyperparameters are chosen independently for each primary beam energy,
since effects like differing number and distribution of emitted and detected particles affect the ML-EM
reconstruction features. In Ferrero et al (2022b), the hyperparameters were chosen manually. Here, we test
two approaches to automatically determine parameters that yield the best results across multiple datasets:
risk-sensitive and scenario-based optimization. Note that in our implementation the optimal values of the
hyperparameters can only be identified if the ground truth is available. In a real application, these parameters
should be pre-set based on calibration or simulation data.

In risk-sensitive optimization, the mean µFoM and standard deviation σFoM of a specific FoM over a set of
samples {∆n}n=1,...,N as a function of k and T is minimized:

(k̂, T̂)risk-sensitive = argmin
(k,T)

(|µFoM|+wσσFoM) , (3)

with risk-aversion parameter wσ ⩾ 0 ∈ R (Boyd and Vandenberghe 2004). We used wσ = 1.
The scenario-based approach minimizes the error in the worst-case scenario, i.e. the highest loss

encountered in all realizations (Campi and Garatti 2018). Since all FoMs represent errors and should
therefore be minimized, we arrive at

(k̂, T̂)scenario-based = argmin
(k,T)

max
{∆n}n=1,...,N

|FoM(∆n)| , (4)

i.e. minimizing the loss of the worst performance across all realizations.
We evaluated all combinations of 1–100 iterations and relative thresholds T ∈ [0,0.8] in steps of∆k= 1

and∆T= 0.025, respectively. Solving the problems given in equations (3) and (4) numerically boils down to
calculating the respective objective function for all 3300 parameter combinations.

3. Results

3.1. Reconstructed distributions across the therapeutical energy range
Figure 2 shows exemplary SER-PGT distributions of four selected energies. Such distributions are the basis
for estimating the particle range and average motion, and thereby the stopping power. For short ranges
(figures 2(a) and (b)), the reconstructed distributions are very small, so the average particle motion is not
clearly visible. For 160MeV the motion becomes recognizable, and for 219MeV the curvature of the
distribution clearly shows the slowing down of the particles towards the end of the particle range.

Figures 2(c) and (d) show signs of the Gibbs phenomenon, in particular at the entrance of the phantom
(high-intensity region at low t and z values). Such artifacts are known to affect ML-EM-based image
reconstruction when there is a close match between the calculated and true system response model (Tong
et al 2011). Our system response model for SER-PGT was calculated using Monte-Carlo simulations and uses
the same time and energy resolution as the PGT-data from our proton beam simulations. The reconstructed
distribution at 63MeV is almost completely contained in areas affected by the Gibbs artifacts.

3.2. Range estimation error
Figure 3 shows the average, maximum, and minimum range error, as well as the corresponding standard
deviations for all beam energies after optimization. Additionally, we calculated the range estimation error for
the manually selected hyperparameters from Ferrero et al (2022b) using all realizations. For all but the lowest
beam energy (63MeV) the mean range error lies within±2mm. The maximum absolute range error is
within±10mm for both optimization approaches. Also, the standard deviations consistently lie between
2 mm–3 mm for all energies except 63MeV. Both formulations show little to no energy-dependence for all
other energies and match the previously reported standard deviation of 3mm while reducing the maximum
observed deviation by up to 5mm.
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Figure 2. Exemplary reconstructed spatiotemporal emission distributions after 30 iterations and a threshold of 10% for selected
energies. Emission positions (ordinate) are given along the beam direction. The expected particle range is marked with a red
dashed line and the range of the abscissa is adapted to each case. Examples of the Gibbs phenomenon are encircled with black
lines. For visualization purposes only, the parameters were selected manually.

Figure 3. Error of the range estimate∆R using hyperparameters optimized with risk-sensitive (♦) and scenario-based
optimization (×), and manual selection from Ferrero et al (2022b) (•). Markers represent the mean, whiskers the standard
deviation, and the colored area the minimum and maximum of the range error. Lines between data points are for visualization
purposes only. The insert on the right shows errors on a larger scale.

3.3. New implementation of the motionmodel
Since both implementations of the motion model are based on equation (1), evaluating z(t(z)) should
recover the original z. Small deviations are to be expected from the discretization of the speed when
calculating z(t), as shown in figure 4. Figure 4(b) shows that when using 2.5 ps time steps, the deviation
between the analytical and numerical implementation does not exceed 0.1mm even for 250MeV in water.

3.4. Stopping power estimates
Figure 5 shows the FoMs related to the stopping power estimation. We also calculated the FoMs for the
manually selected hyperparameters from Ferrero et al (2022b) for the TimeFit procedure. Differences
between the two procedures for hyperparameter optimizations are marginal for 100MeV and above, in some
cases even returning the same hyperparameters. For lower energies, we observe errors of 30% and more. The
mean and standard deviation resulting from the automated optimization are similar to the results of the
manual selection, but the maximum errors of the automatic optimization are 5%–10% lower in almost all
cases.

5
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Figure 4. (a) Analytical and discretized speed profiles from equation (2) for 20MeV protons in water. (b) Maximum error when
inverting t(z) with the z(t) implementation for protons in water as a function of initial particle energy.

Figure 5.MRE and∆SPR of the Timefit (TF, top row) and PositionFit (PF, bottom row) procedures using hyperparameters
optimized for each FoM. The visualization of the errors follows the logic described in the caption of figure 3.

For beam energies larger than 100MeV, the SPR obtained through the two hyperparameter optimizations
and the two implementations of the motion model shows no significant differences. Above 160MeV, the
mean error of the SPR approaches 1% for all techniques, and the maximum deviation among all realizations
does not exceed 5%.

The MRE shows a similar dependency on the beam energy. For 160MeV and above, the TimeFit
procedure approaches a mean MRE of 6± 2% with maximum errors ranging from 10% to 20%. The
PositionFit procedure with the new motion model shows very stable performance from 160 MeV to
220 MeV, with a mean MRE of 5± 2% and maximum errors from 10% to 12%. For energies below 160MeV,
PositionFit outperforms TimeFit by a few percent, and both fail to give precise and accurate stopping power
estimates for beam energies below 100MeV. The execution of PositionFit was up to eight times slower than
the TimeFit, but its 8.3± 0.3ms per distribution is still quick enough to enable fast evaluation of the
acquired data.

4. Discussion

For all FoMs, the new automated hyperparameter optimization reduces the maximum errors compared to
our former manual selection, reported in Ferrero et al (2022b). In that work, only the mean of the MRE was
used for manual selection, while the∆SPR had not been introduced yet. Currently, the hyperparameters are
optimized for a specific case, e.g. a combination of the number of particles, initial particle energy as well as
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target composition and position. It remains to be studied how sensitive the estimation performance is to
differences between the scenarios considered during the evaluation procedure and the actual application.
This transfer is crucial since the clinical application requires the parameters to be fixed beforehand.
Nevertheless, automated parameter selection eliminates the need for manual intervention during the
evaluation stages. Within this study, the automation serves to understand the theoretical performance limit
of SER-PGT and the impact of changes to the estimation procedure. Thanks to this hyperparameter
optimization, we can evaluate future changes to the estimation procedures in a reproducible, objective and
time-efficient manner.

Earlier works have shown range estimates based on PGT measurements for few proton beam energies or
full treatment plans, reporting e.g. standard deviations of 2mm (Jacquet et al 2021) and 3mm–5mm
(Pennazio et al 2022, Ferrero et al 2022b) for 107 protons, and a RMSE of 4mm for 108 protons
(Schellhammer et al 2022). Here, we have systematically studied the beam-energy dependence of our range
estimates across the common therapeutic energy range. Safety margins applied in treatment planning usually
include a component proportional to the particle range (Paganetti 2012). Our results showing a range
estimate with (mostly) energy-independent precision and accuracy, as observed in figure 3, encourage
further verification in heterogeneous targets.

By introducing the relative error of the SPR, we can now compare our stopping power estimations
directly to modalities used in treatment planning. For beam energies above 160MeV, we observe estimation
errors close to the 1%–4% uncertainty of the NIST PSTAR stopping power reported by Berger et al (1993).
Within that energy range, the observed performance was independent of the applied optimization strategy.
While the risk-aware optimization allows a user-defined trade-off between accuracy and precision, the
scenario-based approach only depends on the number of datasets used.

Hyperparameter automation has allowed us to efficiently expand the number of evaluated kinetic
particle energies from 6 to 17, covering almost the full operational range for protons of 63 MeV–229 MeV at
the CNAO treatment center (Mirandola et al 2015). The results indicate limitations of our current
implementation for both range and stopping power estimation for beam energies below 70MeV and
120MeV, respectively. The poor performance at low beam energies was not solved by the new
implementation of the motion model. It did however stabilize the estimation accuracy and precision to
consistently satisfactory levels for beam energies from 150 MeV to 200 MeV, thereby expanding the energy
range to which PGT-SPE may be applied. The large errors for energies below 120MeV might be reduced by
considering the multiple beams with different energies passing through the same transversal spot
simultaneously.

The simulation has shown good agreement with experimental data in Ferrero et al (2023). The thin
silicon detectors tag single particles with a time resolution of 30 ps (Vignati et al 2023) and the PG-detectors
show a time resolution of 124 ps (Ferrero et al 2022a). Therefore, the resulting coincidence time resolution is
only slightly larger than the 106 ps applied in this work. Further limitations of the simulation are discussed in
Ferrero et al (2022b). The parameter optimization, incremental performance improvements, and extension
of the evaluated energies are important stepping stones towards demonstrating the technique with
heterogeneous phantoms.

5. Conclusion

Hyperparameters of PGT-SPE were optimized automatically, replacing the time-consuming and subjective
manual choice of hyperparameters used in Ferrero et al (2022b). The automation lead to a reduction of the
maximum observed errors. We also implemented an alternative stopping power estimation procedure based
on formulating the mean particle position as a function of time, reducing the estimation errors by a few
percent. For both implementations, the stopping power estimation for beam energies of 120MeV and below
remains unsatisfactory, with errors exceeding 12%. For 160MeV and above, the SPR estimation errors match
the accuracy of the reference stopping power of 1%–5%. Range estimation performance was largely
independent of the primary particle energy and showed a standard deviation of 3mm.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary
information files).
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