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Neurocomputational models of cognition have framed aesthetic appreciation within the 
domain of knowl- edge acquisition and learning, suggesting that aesthetic appreciation might 
be considered as a hedonic feed- back on successful perceptual learning dynamics. Such 
hypothesis, however, has never been empirically demonstrated yet. In order to investigate the 
relationship between aesthetic appreciation and learning, we measured the EEG mismatch 
negativity (MMN) response to more or less appreciated musical intervals, which is considered 
as a reliable index of perceptual learning. To this end, we measured the MMN to fre- quency 
(Hz) standard and frequency deviant musical intervals (Experiment 1) while participants were 
asked to judge their beauty. For each single stimulus, we also computed an information-
theoretic index of percep- tual learning (Bayesian surprise). We found that more appreciated 
musical intervals were associated with a larger MMN responses, which, in turn, correlated 
with trial-by-trial fluctuations in Bayesian surprise (Experiment 1). Coherently with previous 
results, Bayesian surprise was also found to correlate with slower RTs in a detection task of 
the same stimuli, evidencing that motor behavior is inhibited in presence of sur- prising 
sensory states triggering perceptual learning (Experiment 2). Our results provide empirical 
evidence of the existence of a positive correlation between aesthetic appreciation and EEG 
indexes of perceptual learning. We argue that the sense of beauty might have evolved to 
signal the nervous system new sensory knowledge acquisition and motivate the individual to 
search for informationally profitable stimuli. 
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How can we learn from novel and unpredicted stimuli? Some authors suggested that 
intelligent systems (biological and artificial) must develop an intrinsic self-generated reward 
that motivates the search for learning progresses and information gains, even though this 
implies an initial exposure to sensory uncertainty induced by novel inputs (Friston et al., 2017; 
Kesner, 2014; Oudeyer et al., 2016; Schwartenbeck et al., 2019). In other words, intrinsic 
moti- vation toward learning is fundamental to tolerate mismatches between current and 
expected events, which are the driving force of memory updating (Agres et al., 2018; Krawczyk 
et al., 2017). 

  

Interestingly, aesthetic emotions have been proposed to serve a central role in motivating 
humans to learn from the environment (Sarasso, Neppi-Modona, et al., 2020; Schoeller & 
Perlovsky, 2016). Recent neuroscientific accounts of aesthetic experiences defined the 
perception of beauty as a hedonic feedback on success- ful perceptual learning (i.e., the 
update of predictive representa- tions of the sensory environment; Biederman & Vessel, 2006; 
Cupchik et al., 2009; Kubovy, 1999; Markovi'c, 2012; Van de Cruys & Wagemans, 2011). 
According to this hypothesis, the brain generates an intrinsic reward (Gottlieb et al., 2013) 
when sensory uncertainty reduces over time and new meaningful infor- mation is acquired 
(Chetverikov & Kristjánsson, 2016; Muth & Carbon, 2013; Van de Cruys & Wagemans, 2011). In 
other words, aesthetic pleasure might be considered as a particular kind of self- generated 
reward, which emerges when the nervous system senses a progress in learning statistic 
regularities from sensory inputs, and which is correlated with the magnitude of the update of 
mental representations (Sarasso, Neppi-Modona, et al., 2020; Schoeller & Perlovsky, 2016). 

However, this hypothesis, postulating a direct relation between perceptual learning dynamics 
and aesthetic emotions, still lacks solid empirical support and, to our knowledge, no 
physiological measures of perceptual learning has been directly related to sub- jective 
aesthetic appreciation. 

Converging evidence from electrophysiological studies suggests that EEG signals can 
effectively capture perceptual learning (Lieder et al., 2013; Ostwald et al., 2012; Stefanics et 
al., 2018). More specifically, the auditory mismatch negativity, or MMN (Näätänen et al., 2007; 
Sams et al., 1985), is typically considered a neurobiological marker of perceptual learning 
(Chang et al., 2014; Garrido et al., 2009; Perez et al., 2017; Winkler et al., 1999). The auditory 
MMN is elicited by the presentation of unpredicted sounds that deviate from a pattern 
established by the preceding inputs (i.e., standard-repeated tones). Therefore, the emergence 
of MMN responses requires the automatic learning of environmental sensory regularities 
(Garrido et al., 2016; Näätänen et al., 2007) and is considered to reflect the magnitude of the 
update of the brain representation of the environment induced by surprising sen- sory inputs 
(Auksztulewicz & Friston, 2015; Dittmann-Balcar et al., 1999; Ostwald et al., 2012). 
Accordingly, MMN responses correlate with trial-by-trial fluctuations in Bayesian surprise, a 



well-established marker of perceptual learning (Mousavi et al., 2020). Namely, Bayesian 
surprise captures the degree of predic- tive model updating induced by a new event (Baldi & 
Itti, 2010; Itti & Baldi, 2009), that is, how much we learn from a stimulus; it quantifies the 
effect that novel inputs have on representations as the divergence between the encoded prior 
(before stimulation) and posterior probability distribution (after stimulation) of the causes of 
sensory input (Baldi, 2002). The Bayesian surprise, therefore, can be regarded as an index 
describing the “enlightenment” sur- prise, occurring after the brain has “assimilated” the new 
input to update its model of the world (Faraji et al., 2018). 

Moreover, such an update of predictive representations has been related to a specific 
behavioral effect: surprising sensory states triggering perceptual learning have been 
associated to motor inhi- bition (Dutra et al., 2018; Ide et al., 2013). In other words, percep- 
tual surprise induces the activation of a frontal inhibitory network (Wessel & Aron, 2017; 
Wessel & Huber, 2019), reducing motor cortical excitability (Bestmann et al., 2008; Mars et 
al., 2008) and slowing down response times (RTs; Wessel & Huber, 2019). Such an adaptive 
process has been interpreted as a momentary “pause” state that allows the update of 
behavioral plans according to newly acquired information (Wessel & Aron, 2017). However, 
evidence directly supporting the presence of a correlation between RTs in a fast detection 
task and computational measures of surprise at the single trial level are still scarce 
(Bestmann et al., 2008; Mein- dertsma et al., 2018). 

In the present study, we aim at: (a) confirming the presence of a correlation between trial-by-
trial fluctuations in MMN responses 

  

and perceptual Bayesian surprise (Experiment 1); (b) testing the hypothesis of a direct link 
between learning progresses and aes- thetic appreciation by investigating the relation 
between aesthetic judgements (AJs) and Bayesian perceptual learning (Experiment 1); (c) 
exploring the trial wise relation between motor behavior, recorded through RTs, and Bayesian 
perceptual learning dynamics (Experiment 2). 

To this end, we exploited a classic roving task (Ostwald et al., 2012), employing more and less 
consonant musical intervals of varying frequency (Hz; intervals varied in both consonance 
level and tone frequency). Roving paradigms with frequency deviant 

\standard tones are typically used to study MMN responses and represent a validated 
methodology to investigate learning-related mechanisms (Näätänen et al., 2007; Sams et al., 
1985). Moreover, previous studies demonstrated that consonance level can effec- tively 
modulate subjective aesthetic appreciation of auditory stim- uli while maintaining their 
physical features comparable (Bowling et al., 2018; Cousineau et al., 2012; Sarasso, 
Ninghetto, et al., 2019; Sarasso et al., 2021). 

In both experiments, consonant fifths and dissonant tritones were presented (in separate 
sessions) with two different frequen- cies (Hz), according to a classic roving paradigm. Within 
the pro- tocol, the same stimulus (i.e., fifth or tritone intervals) is repeated several times 
before unpredictably switching to a different stimu- lus train. Whenever a stimulus was 
preceded by another with a dif- ferent pitch, the former was considered as Deviant (20%), 



whereas the remaining stimuli were considered as Standard trials (80%). To verify our 
hypotheses, we computed the Bayesian surprise associated to each single trial (see Method 
and online supplementary materials). We expect (a) to verify the presence of the previously 
described correlation between trial-by-trial fluctuation in MMN (Deviant–Standard) responses 
and perceptual Bayesian surprise, with larger MMN responses associated with greater 
Bayesian sur- prise (Experiment 1); moreover, we predict that (b) AJs result posi- tively related 
to Bayesian perceptual learning, with greater MMN responses (signaling an enhanced 
perceptual learning) for more appreciated intervals (Experiment 1). Finally, we expect to find a 
positive trial-by-trial correlation between the computed amount of Bayesian surprise and RTs, 
showing that Bayesian surprise concur- rently inhibits motor behavior (Experiment 2). 

 

Method 

 

Participants 

The same 26 right-handed healthy volunteers (females: 15; age: 25.1 61.9; education: 15.3 
62.1) participated in Experiment 1 and Experiment 2. All participants gave their written 
informed consent to participate in the study. The study conformed to the standards required 
by the Declaration of Helsinki and was approved by the local ethics committee (University of 
Turin). 

The original sample size (N = 18) was a priori determined so as to match the average number 
of participants involved in previous studies highlighting ERP modulations driven by aesthetic 
appreci- ation (Sarasso, Ninghetto, et al., 2019, N = 22; Sarasso, Ronga, et al., 2020, N = 13; 
average 17.5). Thirteen participants from this sample preferred perfect fifth intervals, the 
remaining five partici- pants preferred tritones (MMN results from the original sample  are 
reported in the online supplementary materials). To exclude possible confounds induced by 
the uneven distribution of preferen- ces (i.e., to avoid that results might be mainly driven by 
the group preferring perfect fifths), we administered Experiment 1 and 2 to eight additional 
subjects preferring tritone intervals as revealed by an online version of Aesthetic Judgment 
task described below (N = 86). Similarly to our original sample (where 5 out of 18 par- ticipants 
[28%] preferred tritones over fifths), 29.1% of online par- ticipants preferred tritone intervals. 
Subsequent analysis and results reported below refer to the final group of 26 participants. 

 

Stimuli and Apparatus 

Intervals were created with Csound (https://csound.com/). The software made it possible to 
select the frequency of the two notes composing the interval, which were played 
simultaneously for 50 ms via headphones. Loudness of sounds was set at a comfortable level 
(70 dB) and was kept equal across subjects and experiments. The two types of intervals (i.e., 
fifth intervals and tritones) were defined by the ratio between the frequency of the two 
composing notes. Consonance depends on this ratio: the smaller the integer numbers that 
define the ratio, the more consonant will be the inter- val (Fishman et al., 2001; Plomp & 



Levelt, 1965). Perfect fifth intervals (usually perceived as more consonant) have a ratio of 3:2, 
while tritones (frequently categorized as more dissonant) are defined by a ratio of 45:32. For 
each interval type (fifths or tri- tones), we employed two different pitches (i.e., high vs low). 
Low-pitch and high-pitch fifth intervals were composed of notes with a frequency of 150 and 
100 Hz and 600 and 400 Hz, respec- tively. Low-pitch and high-pitch tritone intervals were 
composed of notes with a frequency of 150 and 106 Hz and 600 and 426 Hz, respectively. 

During the experiments, participants sat at a table with eyes open, 53 cm (diagonal) computer 
screen. The screen center was aligned with the trunk midline. Participants’ arms were resting 
on the corresponding leg during the MMN roving paradigm (Experi- ment 1). During the 
Aesthetic Judgment task (Experiment 1) and the Detection task (Experiment 2) participants 
kept their right index on a keyboard placed on a desk in front of them, ready to respond. 

 

Experimental Procedures of Experiment 1 

MMN Roving Paradigm 

Participants performed four runs of a standard roving paradigm with trains of 1,152 stimuli per 
run, while we registered their EEG. In two runs we presented fifth (high-pitch and low-pitch) 
intervals only, while in the remaining two runs we presented only (high-pitch and low-pitch) 
tritones. The order of presentation of the four runs (total duration: approximately 80 minutes) 
was randomized across participants, so as to exclude any specific sequence effects on the 
results. In contrast to traditional oddball paradigms, where the repeated presentation of 
standard sounds is occasionally interrupted by the occurrence of physically different deviant 
sounds (Näätänen et al., 1978), in roving paradigms like this one, different stimuli (high-pitch 
and low-pitch intervals in our case) can represent both Deviant and Standard stimuli (Figure 1; 
Baldeweg et al., 2004; Ostwald et al., 2012; Rosch et al., 2019). 

  

In our case, high-pitch and low-pitch intervals were presented in consecutive trains of 
alternating pitch with a constant interstimulus interval of 1 s (in accordance with previous 
studies on Bayesian surprise employing similar intertrials; Ostwald et al., 2012). Any time a 
change in the stimulation stream occurs (i.e., the passage from a high-pitch to a low-pitch 
stimulus train or vice versa), the first stimulus of the new train constitutes a Deviant event, 
since it differs (by its pitch) from the preceding train of stimuli, which are therefore considered 
Standard (McCleery et al., 2019). Similarly, all the intervals following the Deviant event and 
belonging to the same pitch category are considered Standard. The length of the trains of 
high-pitch and low-pitch intervals was chosen according to a pseudorandom order, so that 
both the number of presentation and the average value of the Bayesian surprise associated to 
each stimulus were equal across interval type (i.e., fifths or tritones) and pitch type (i.e., high 
or low; see Figure 1). Moreover, the ratio between Standard (80%), and Deviant (20%) trials 
was kept equal across runs. Differently from traditional oddball paradigms, in rov- ing 
protocols, each stimulus has exactly the same probability to occur, thus allowing to dissect 
genuine effects of Bayesian percep- tual learning from rarity-driven modulations. 



During the experiment participants were comfortably seated, given an incidental reading task 
(distance from the monitor % 70 cm), and instructed to ignore the sounds. 

Aesthetic Judgment Task 

At the end of the experimental session, participants were asked to evaluate aesthetically the 
four intervals employed in Experiment 

1. High-pitch and low-pitch fifth and tritone intervals were pre- sented four times each, for a 
total of 16 AJs. Intervals were pre- sented in a random order after a variable intertrial interval, 
lasting from 6 to 8 s. Participants fixated a central white cross for the whole experiment. When 
they heard an interval, they were asked to wait (1 s) until the cross changed into a question 
mark and then respond. Participants evaluated the beauty of intervals using a Lik- ert scale 
ranging from 1 to 9 (where 1 corresponded to The most ugly sound I can imagine and 9 
corresponded to The most beauti- ful sound I can imagine; thus using the same scale 
employed in previous studies of our research group: Sarasso, Ninghetto, et al., 2019; Sarasso, 
Ronga, et al., 2020), by pressing the corresponding key on the keyboard. AJs were registered 
(E-Prime 2.0 software, Psychology Software Tools, Sharpsburg, PA). 

 

Experimental Procedures of Experiment 2 (Detection Task) 

On a different day, the same 26 participants performed a detec- tion task where they had to 
respond as fast as possible by pressing the spacebar when they heard an interval (in 
Experiment 2 the same intervals of Experiment 1 were employed). 

Within the experiment, trains of high-pitch and low-pitch inter- vals were intermixed according 
to the same pseudorandom order employed in Experiment 1 (i.e., we ensured that both the 
number of presentation and the average value of the Bayesian surprise associated to each 
stimulus were equal across interval type and pitch type; see Experimental Procedures of 
Experiment 1 above). Participants underwent four different runs (total duration of the 
experiment: approximately 10 minutes), each composed of 72  stimuli, with a variable 
interstimulus interval ranging from 1 to 2 s. As in Experiment 1, fifth intervals were presented 
in two runs only, while tritones were employed in the remaining two runs. Run order were 
counterbalanced across subjects. 

RTs in response to each interval were registered (E-Prime 2.0 software, Psychology Software 
Tools, Sharpsburg, PA). 

 

Data Analyses of Experiment 1 (Roving Paradigm and Aesthetic Judgment Task) 

Electrophysiological Recordings and EEG Preprocessing 

EEG was collected during the four runs of the MMN roving par- adigm with 32 Ag-AgCl 
electrodes placed on the scalp according to the extended International 10–20 system and 
referenced to the nose. Electrode impedances were kept below 5 kX. The electro- oculogram 
(EOG) was recorded from two surface electrodes placed over the right lower eyelid and lateral 



to the outer canthus of the right eye. EEG activity was recorded with a HandyEGG (Micromed, 
Treviso, Italy) amplifier and continuously digitized by at a sampling rate of 1,024 Hz. 

Off-line EEG preprocessing and analyses were conducted with Letswave6 toolbox (Nocions, 
Louvain, Belgium) for Matlab (Mathworks, Natick, MA). Data were segmented into epochs of 1 
s, including 200 ms prestimulus and 800 ms poststimulus intervals. Epochs were band-pass 
filtered (.5–40 Hz) using a fast Fourier transform filter (in accordance with previous literature 
exploring MMN effects and Bayesian surprise; Ostwald et al., 2012). 

  

Filtered epoched data were baseline corrected using the interval from -.2 to 0 s as reference. 
Ocular artefacts were eliminated using Independent Component Analysis (ICA; Jung et al., 
2000). 

ERPs belonging to the same interval type (i.e., fifth or tritone) and to the same condition (i.e., 
standard vs. deviant) were then aver- aged, to obtain four average waveforms (i.e., Fifth 
Standard, Fifth Deviant, Tritone Standard, Tritone Deviant) for each subject. 

Bayesian Perceptual Surprise Computation 

For a detailed description of the mathematical computations please refer to the online 
supplementary materials. Similarly to previous stud- ies (Baldi & Itti, 2010; Itti & Baldi, 2009; 
Ostwald et al., 2012), to relate single-trial EEG signals and detection RTs to Bayesian percep- 
tual learning we computed Bayesian surprise for each single trial using a sequential Bayesian 
learning algorithm of stimulus probabilities. The model assumes that the brain implements a 
trial-by-trial Bayesian pa- rameter learning scheme starting from an uninformative prior and 
computes Bayesian surprise as the divergence between the parameter prior and posterior 
probability density functions at the single-trial level. Following Ostwald et al. (2012), we use a 
variant of this model that assumes an exponential forgetting of stimuli that are observed in the 
distant past (we set the forgetting parameter to s = 4, which was shown to best describe 
neural activity; Ostwald et al., 2012). The degree of perceptual learning at the nth trial is then 
defined as Bayesian surprise, that is, the Kullback–Leibler divergence between the prior and 
poste- rior distribution over the probability of observing a high-pitch interval on the nth trial 
(Kullback, 1959; Cover & Thomas, 1991). 

 

Aesthetic Judgment Task 

AJs from the AJ task were averaged across interval types to obtain two average values per 
participant, one for perfect fifth intervals and one for tritones. Accordingly, in subsequent 
analyses EEG signals from the MMN roving paradigm corresponding to the presentation of 
tritones and fifth intervals were either assigned to the Preferred group or to the Nonpreferred 
group according to sin- gle participants’ subjective preferences. For example, EEG signals 
corresponding to perfect fifth intervals from Subject 1 were assigned to the Preferred group, 
since Subject 1 rated perfect fifth intervals as more beautiful than tritones on average. On the 
con- trary, Subject 4 preferred tritones over perfect fifth intervals. Accordingly, EEG results 



corresponding to tritones were assigned to the Preferred group, while those corresponding to 
fifth intervals were assigned to the Nonpreferred group. 

Statistical Analyses 

For each participant and for the two interval types separately, MMN responses were obtained 
by subtracting the ERP elicited by standard intervals from that elicited by the deviant intervals 
(Näätänen et al., 2007). Importantly, in this analysis we included only the last standard trial 
for each stimulus train occurring before deviant trials (N = 208 per run; Ostwald et al., 2012). 
In this way, in the MMN analysis, the number of standard and deviant trials was matched. Sin- 
gle participants’ MMN registered on single channels were entered in subsequent group-level 
analyses. We were interested in testing for possible differences in MMN responses 
corresponding to more and less appreciated interval types. Therefore, we performed a point-
by- point t test (Novembre et al., 2018), with clustersize-based permuta- tion correction for 
multiple comparisons based on temporal consecu- tivity and spatial adjacency (1,000 
permutations; alpha level = .05; percentile of mean cluster sum = 95; minimum number of 
adjacent channels = 3) on differential MMN (Deviant–Standard). The test compared single 
subjects’ MMN amplitudes for Preferred and Non- preferred intervals at each time point, for 
each channel separately. This allowed us to identify time clusters containing mismatch detec- 
tion responses (Deviant–Standard) that significantly differed between Preferred and 
Nonpreferred intervals. Moreover, as a control analysis, the same point-by-point t test was 
performed on single subjects’ (N = 26) MMN corresponding to tritone and perfect fifth 
intervals inde- pendently from subjective preferences. 

Preprocessed epochs and Bayesian surprise values corresponding to single trials constituted 
the input of a point-by-point trial-by-trial correlation analysis (Novembre et al., 2018; Sarasso, 
Ninghetto, et al., 2019; Sarasso, Ronga, et al., 2020). For each participant and for Pre- ferred 
and Nonpreferred intervals separately, the analysis computed the correlation between 
Bayesian surprise and trial-by-trial (N = 2,304) fluctuations of the EEG signal registered at 
single channels. The outcome of the correlation analysis was two 1 s-long (from .2 s preonset 
to .8 s postonset) time series of r-values for each channel for each subject. This constituted 
the input for the subsequent group-level two-tailed point-by-point t test with permutation-
based correction for multiple comparisons (1,000 permutations; alpha level = .05; percen- tile 
of mean cluster sum = 95; minimum number of adjacent chan- nels = 3). The test compared 
single subjects’ (N = 26) correlation coefficients (Preferred vs. Nonpreferred) at each time 
point. This allowed us to identify time clusters containing r values that signifi- cantly differed 
between Preferred and Non-Preferred intervals. 

  

Single subjects’ EEG preprocessed data are available at Mendeley. This study was not 
preregistered. 

 

Data Analysis of Experiment 2 (Detection Task) 

To investigate the presence of a positive correlation between RTs and Bayesian surprise on a 
trial-by-trial level, RTs from sin- gle trials were entered as a dependent variable in a linear 



mixed- model with subjects’ ID as a random-effect factor and Bayesian surprise as a covariate 
(fixed-effect factor). This analysis was based on 5,184 observations (288 per each of the 26 
participants). Overall, 95 trials (.022%) were considered as outliers (i.e., RTs exceeded 2 
standard deviations from the single subject’s mean) and were excluded from subsequent 
analyses (Ronga et al., 2018; Sarasso, Ronga, et al., 2019). Outliers were equally distributed 
across interval types and participants. 

 

Results 

 

Experiment 1 (Roving Paradigm and Aesthetic Judgment Task) 

Aesthetic Judgements (AJs) 

AJs from the original smaller sample (N = 18) replicated previ- ous findings (Bowling et al., 
2018): more consonant intervals were on average more appreciated (fifths = 4.056 61.091) 
than more dis- sonant intervals (tritones = 3.827 6 .987). Thirteen participants rated fifth 
intervals as more beautiful than tritones, while the 

remaining five preferred tritones over fifths. Importantly, at a group level (N = 18), AJs for the 
two interval types were not significantly 

different (t = 1.395; p = .181; 95% CI [-.117, .575]), thus indicat- ing that participants were 
genuinely expressing a subjective aes- 

thetic preference, rather than merely judging the stimuli according to a more general, 
objective feature, such as consonance. 

AJs from the final group of 26 subjects (see Participants) with matched preferences (50% 
preferred fifth intervals, 50% preferred tritones) were similar for tritone (3.6 61.157) and fifth 
intervals (3.61 61.221) with no significant difference between the two. 

ERP Results 

ERP elicited by Preferred and Nonpreferred intervals (Method) registered from Fz are reported 
in Figure 2. Grand-average (N = 26) waveforms were comparable with previous studies on 
auditory frequency processing (Sams et al., 1985). For both Preferred and Nonpreferred 
intervals, MMN (Deviant minus Standard difference waveforms) showed a negative peak at 
approximately 225 ms postonset, coherently with previous findings (Sams et al., 1985). The 
point-by-point t test performed on mismatch detection responses registered on Fz (Preferred 
vs. Nonpreferred) revealed two significant time clusters: the first one centered on the average 
MMN waveform negative peak (215–260 ms; Figure 2); the sec- ond one occurring later at 
680–716 ms postonset. As expected, MMN waveforms were significantly larger for more 
appreciated intervals. Results were comparable among fronto-central electro- des (the 
significant cluster corresponding to the MMN extended over Fpz, Fp1, Fp2, Fz, F4, FC2, FCz). 
We therefore show only results from the t test performed on Fz where differences in the 
mismatch detection performances are more pronounced. 



 

Crucially, the result on MMN was independent from the more and less consonant interval type 
(fifth vs. tritone). Indeed, the point-by-point t test comparing MMN waveforms corresponding 
to the two different interval types showed no significant difference (Figure 3; see also the 
online supplementary materials). As shown in Figure 3, overall the amplitude of MMN negative 
peaks was always larger for the preferred interval. 

Trial-by-Trial Correlation With Bayesian Surprise 

The correlation analysis between single trial amplitudes and Bayesian Surprise indicated that 
r values peaked at 225 ms (cor- responding to the MMN peak latency; Figure 4) for both Pre- 
ferred and Nonpreferred intervals. Subsequent fluctuations in r values peaked at 300 ms and 
450 ms postonset corresponding to the P3 and the N400 components (see Figure 4). These 
results confirmed our prediction, indicating that MMN best indexes Bayesian perceptual 
learning in our study. Furthermore, and in accordance with data from the literature, we also 
found a corre- lation between model updating following surprising stimuli and the P3 and 
N400 components (Bennett et al., 2015; Kolossa et al., 2015). Earlier MMN waveforms and 
later P3 and N400 com- ponents might be related to different levels of belief updates. More 
specifically, earlier MMN responses have been reported to better reflect the violation of 
phonetic and acoustic features (such as those occurring in our study; Friston et al., 2021). For 
this reason, MMN amplitude was considered the best candidate to reveal a significant 
difference between Preferred and Nonpre- ferred intervals. 

More crucially, At Fz, results from the trial-by-trial correlation analysis performed on EEG 
responses following the presentation of Preferred and Nonpreferred intervals evidenced one 
signifi- cant cluster (i.e., r values significantly differed across Preferred and Nonpreferred 
intervals) corresponding to the latency of MMN (226–262 ms). The correlation between MMN 
amplitudes and Bayesian surprise was stronger for Preferred intervals. This result is crucial, 
since it shows that subjective preferences are linked to a more effective neural encoding of 
sensory surprise as indexed by MMN amplitudes, further confirming that the percep- tual 
learning of sensory regularities is enhanced for more appre- ciated intervals. 

 

 

 

Experiment 2 (Detection Task) 

As showed by the linear mixed-model analysis, RTs were found to be significantly correlated 
with trial-by-trial fluctuations in Bayesian surprise (p , .001; F = 47.096), indicating that 
Bayesian surprise can predict RTs from the Detection task. The positive estimate of the effect 
(estimate of the effect = 49.145; 95% CI [35.107, 63.183]; p , 

.001; t = 6.863) indicates that, as we predicted and coherently with previous studies, 
participants were slower to respond to more surpris- ing stimuli. The link between surprising 
sensory states as measured by Bayesian surprise and motor inhibition, which might subserve 
the update of behavioral plans according to newly acquired information (Wessel & Aron, 



2017), further supports the idea that Bayesian sur- prise and MMN truly index perceptual 
learning in our study. 

  

Discussion 

In this study we showed that Bayesian surprise, an information- theoretic measure of 
perceptual learning, predicts trial-by-trial fluc- tuations of MMN (Experiment 1) and RTs 
(Experiment 2). Our results, thereby, demonstrated that perceptual learning induced by 
surprising sensory states is accompanied by specific electrophysio- logical and behavioral 
correlates, namely a fronto-central negativity corresponding to the MMN peak and motor 
inhibition. 

Coherently with previous studies (Garrido et al., 2009; Näätänen et al., 2007), MMN 
differential waves peaked around 200 ms from stimulus onset and their (negative) amplitudes 
were maximal over frontal electrodes. Crucially, correlation coefficients between Bayesian 
Surprise and MMN amplitudes were larger for subjec- tively Preferred versus Nonpreferred 
intervals (i.e., subjects who preferred fifth intervals showed larger MMN and r values for fifth 
intervals and vice-versa). To the best of our knowledge, this is the first empirical evidence 
directly linking subjective aesthetic appreci- ation with perceptual learning, defined as the 
successful update of the brain representation of the sensory environment (Sarasso, Neppi-
Modona, et al., 2020; Schoeller & Perlovsky, 2016; Van de Cruys & Wagemans, 2011). This 
result is independent from conso- nance level since the difference between MMN responses 
elicited by fifth vs tritones intervals per SE is not significant (see Figure 3). In the following 
paragraphs we provide a tentative interpretation of the present electrophysiological and 
behavioral results. 

MMN Modulations Reflect Precision-Weighting of More and Less Preferred Sounds 

Predictive coding theory (Friston & Kiebel, 2009; Friston, 2010) models perception as the 
process of computing hierarchical predic- tions of the sensory environment. Perceptual 
learning may be consid- ered as the implicit Bayes-optimal updating of the brain’s (predictive) 
representation to account for novel sensory stimuli (Fris- ton, 2003). According to predictive 
coding, prediction errors are pre- cision-weighted, in the sense that they are properly 
“weighted” by the system according to an estimate of their precision (Brown & Fris- ton, 
2012), a complex measure of their reliability, varying as a func- tion of different context and 
stimuli-dependent parameters, such as signal-to-noise ratio. More precise prediction errors 
will induce larger updates of predictive models driving learning (den Ouden et al., 2012; Greve 
et al., 2017; Moran et al., 2013). 

MMN is considered to reflect the violation of existing predic- tions on incoming sensory 
inputs, in case of unexpected events and to index the magnitude of the update of sensory 
predictions following precision-weighted stimulation (Auksztulewicz & Fris- ton, 2015; Garrido 
et al., 2016; Heilbron & Chait, 2018; Quiroga- Martinez et al., 2019; Stefanics et al., 2018). This 
hypothesis is supported by our findings showing that MMN indexed trial-by- trial fluctuations 
in Bayesian surprise, a measure of the update of predictions underlying Bayesian perceptual 
learning (Baldi & Itti, 2010; Itti & Baldi, 2009; Ostwald et al., 2012). Furthermore, hav- ing this 



in mind, differences in MMN across preferred and nonpre- ferred sounds suggest that 
precision weighting of prediction errors might be related to aesthetic preferences. Our results 
seem to indi- cate that MMN responses are enhanced for deviant preferred sounds, when 
compared to deviant less preferred ones, possibly  because, in our study, the system marks as 
“more beautiful” the input subjectively weighted as more “precise.” 

As it has previously suggested (for a detailed discussion see Sar- asso et al., 2021) contextual 
and cultural factors, as well as subjective experience (e.g., musical expertise) might modulate 
the estimated precision of consonant and dissonant sounds. It might be that differ- ent 
participants interpreted different sounds (fifths vs. tritones) as more and less precise. This 
precision-(up)weighting of incoming sen- sory inputs, electrophysiologically marked by larger 
MMNs (Lieder et al., 2013; Stefanics et al., 2018), induces greater updates of sensory 
predictive models, which in turn as predicted by our driving hypothe- sis, triggers aesthetic 
appreciation. As a supporting evidence for our interpretation, informational theoretic 
quantities of shifts in beliefs such as Bayesian surprise (a.k.a. informational value) were found 
to both attract attention (Baldi & Itti, 2010; Itti & Baldi, 2009) and to trigger activations of 
midbrain reward-related areas (Schwartenbeck et al., 2016), which are generally found to 
subtend aesthetic pleasure (Blood & Zatorre, 2001; Kawabata & Zeki, 2004). 

 

Motor Inhibition as an Index of Surprising Sensory States 

Previous studies suggest that the update of predictive representa- tions indexed by MMN 
responses co-occurs with a specific behavioral effect, that is, motor inhibition (Dutra et al., 
2018; Ide et al., 2013; Wessel & Aron, 2017), related to the activation of a frontal network, 
directly inhibiting the excitability of the motor cortex (Bestmann et al., 2008; Mars et al., 2008; 
Dutra et al., 2018; Wessel & Huber, 2019). In Experiment 2, we tested the presence of such 
behavioral effect, by measuring the trial-by-trial correlation between RTs and Bayesian 
perceptual learning dynamics. In accordance with our pre- dictions and coherently with 
previous studies (Bestmann et al., 2008; Meindertsma et al., 2018), participants were slower 
to respond to more surprising stimuli. Motor inhibition in response to surprising sensory 
states has been proposed to serve as a functional “pause” state, crucial to reprogram 
behavior in accordance with the updated sensory representations (Wessel & Aron, 2017). Our 
findings confirm this hypothesis, evidencing the ability of RTs to effectively predict the amount 
of surprise conveyed by an incoming sensory input, on a trial- by-trial base. Parallelly, this 
evidence further testifies that Bayesian surprise actually measures perceptual learning in our 
study. 

 

Aesthetic Appreciation as a Feedback of Perceptual Learning 

We propose that aesthetic appreciation might be considered as a feedback signal facilitating 
the discrimination of informationally profitable stimuli (inducing larger prediction updates) 
from “unlearnable” noisy signals (Sarasso, Neppi-Modona, et al., 2020; Sarasso et al., 2021). 
According to this interpretation, aesthetic pleasure might motivate us to select and engage in 



“information- ally profitable” perceptual activities, independently from material or social 
reward (Chatterjee & Vartanian, 2016; Pearce et al., 2016). 

Importantly, we are not arguing here that the entire range of human aesthetic experiences, as 
well as the pleasure we derive from the contemplation of art, can be merely explained by the 
dis- crimination of informationally-profitable low-level perceptual fea- tures (e.g., precision). 
Although this might be true in the case of 

  

our study involving basic auditory stimulation, the “precision” of sensory inputs is only one of 
the aspects that might trigger the complex dynamics characterizing the perception of beauty. 
How- ever, it is interesting to note that often artists seem to implicitly exploit the aesthetic 
pleasure arising from the reduction of sensory uncertainty in their compositions. Musicians, 
for example, contin- uously and deliberately violate our predictions during the evolu- tion of a 
musical piece, thus letting us experience aesthetic pleasure whenever we are able to 
insightfully restore predictability and solve sensory uncertainty by updating our predictions 
(Huron, 2006; Kraehenbuehl & Meyer, 1957; Sarasso, Neppi-Modona, et al., 2020). Visual 
artists also create subtle violations of our expect- ations in the style and content of their 
pieces, possibly as a means to elicit the transition from prediction violations to reinstated pre- 
dictability (Kesner, 2014; Van de Cruys & Wagemans, 2011). 

 

Conclusion 

Our results, providing empirical evidence of a link between aes- thetic appreciation and 
implicit learning, seem to indicate that sometimes nice really comes with easy, as indicated 
by enhanced perceptual learning dynamics in correspondence to the emergence of hedonic 
aesthetic feedback. 

The present findings might support the development of a theo- retical framework for the 
emerging study of the beneficial effects on learning and memory of aesthetic emotions, such 
as, for exam- ple, those induced by musicality (Lehmann & Seufert, 2018). On the other hand, 
aesthetic emotions have been already considered as a relevant factor in determining 
students’ engagement in learning activities (Parrish, 2009; Uhrmacher, 2009). Finally, 
computa- tional models of emotions subtending learning in humans could be tested in 
automatic machine learning research (Moerland et al., 2018), which aims at developing 
artificial intelligences that are intrinsically motivated to engage in efficient learning activities 
(Kaplan & Oudeyer, 2004). 
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Figure 1 

The Figure Represents Standard and Deviant Intervals and the Timelines of the Two Tasks 

Composing Experiment 1 (Left–MMN Roving Paradigm) and Experiment 2 (Right–the Detection 

Task) 

Note. In the mismatch negativity (MMN) roving paradigm participants passively listened to a 
train of 1,152 inter- 

vals per run. The pie chart represents the percentages of Standard and Deviant fifth and 
tritone intervals employed in the two experiments. In both The MMN roving paradigm and the 
Detection task, participants performed a total of four runs. We presented fifth and tritone 
intervals separately, that is, two runs were composed of trains of high- 



pitch and low-pitch fifth intervals, whereas tritone intervals were employed in the remaining 
two runs. The graph 

in the bottom right of the panel represents an example of a train of Standard and Deviant 
intervals. The frequency 

(Hz) of the first note composing the interval (see Method) is represented on the y axis. 
Intervals which differed from the preceding one were considered as deviant. See the online 
article for the color version of this figure. 

 

 

 



 

Figure 2 

Preferred Versus Nonpreferred EEG Results 

 

Note. The top panel shows the grand-average (N = 26) ERP registered from Fz for Preferred and 
Nonpreferred intervals (Method). Violet (dark 

gray) and green (black) lines represent the average response to Deviant and Standard trials, 
respectively. Solid and dashed lines represent responses to 

preferred and nonpreferred intervals. Scalpmaps depict amplitudes at 225 ms.The bottom 
panel depicts average MMN waveforms for Preferred and 

Nonpreferred intervals (ERP difference between deviant and standard intervals registered on 
Fz). Shaded areas represent significant time-clusters high- 

lighted by the point-by-by point t test comparing MMN waveforms (Preferred vs. 
Nonpreferred). The scalpmaps shows MMN amplitudes and t-values 

across channels at 225 ms postonset; S = stimulus onset. See the online article for the color 
version of this figure. 

 

 

 

 



 

Figure 2. Note. The top panel shows the grand-average (N = 26) ERP registered from Fz for 
Preferred and Nonpreferred intervals (Method). Violet (dark gray) and green (black) lines 
represent the average response to Deviant and Standard trials, respectively. Solid and dashed 
lines represent responses to preferred and nonpreferred intervals. Scalpmaps depict 
amplitudes at 225 ms.The bottom panel depicts average MMN waveforms for Preferred and 
Nonpreferred intervals (ERP difference between deviant and standard intervals registered on 
Fz). Shaded areas represent significant time-clusters highlighted by the point-by-by point t 



test comparing MMN waveforms (Preferred vs. Nonpreferred). The scalpmaps shows MMN 
amplitudes and t-values across channels at 225 ms postonset; S = stimulus onset. See the 
online article for the color version of this figure. 

 

Crucially, the result on MMN was independent from the more and less consonant interval type 
(fifth vs. tritone). Indeed, the point-by-point t test comparing MMN waveforms corresponding 
to the two different interval types showed no significant difference (Figure 3; see also the 
online supplementary materials). As shown in Figure 3, overall the amplitude of MMN negative 
peaks was always larger for the preferred interval. 

 



 

 

Figure 3. Note. The top panel shows all participants’ average mismatch negativity (MMN) 
waveforms (N = 26) for tritone and fifth intervals at channel Fz. The gray solid lines at the 



bottom of the first panel represent t-value computed by the point-by-point t-test comparing 
waveforms from fifth and tritone intervals (p values are reported in the online supplementary 
materials). In the middle panel, we included only results from the participants who preferred 
fifth intervals over tritone intervals. The light blue (light gray) and the dark blue (dark gray) solid 
lines represent average MMN waveforms (N = 13) for tritone and fifth respectively. The bottom 
panel shows results from the 13 participants who preferred tritone intervals over fifth 
intervals; S = stimulus onset. See the online article for the color version of this figure. 

 

 



 



Figure 4. Note. Waveforms represent average (N = 26) r values between trial-wise amplitude 
fluctuations registered at Fz and Bayesian Surprise. The top panel refers to subjectively 
preferred vs. Nonpreferred intervals, while the bottom panel shows the result from the same 
analysis comparing fifth and tritone intervals irrespectively of subjective preferences. Shaded 
areas represent significant clusters indicating significant differences between waveforms. 
Scalpmaps represent average r values and t values from the group level t-test (Trial-by-trial 
correlation with Bayesian surprise) at the correlation peak latency. S = stimulus onset. See the 
online article for the color version of this figure. 

 

 


