
Real-Time Guarantees for SLCS Monitors in XC

Giorgio Audrito
Dipartimento di Informatica,

Università degli Studi di Torino
Turin, Italy

giorgio.audrito@unito.it

Ferruccio Damiani
Dipartimento di Informatica,

Università degli Studi di Torino
Turin, Italy

ferruccio.damiani@unito.it

Gianluca Torta
Dipartimento di Informatica,

Università degli Studi di Torino
Turin, Italy

gianluca.torta@unito.it

Abstract

The behavior of distributed systems situated in space can be re-

quired to satisfy spatial properties, in addition to the more widely

known temporal properties. In particular, it has been previously

shown that fully distributed monitors in eXchange Calculus (XC)

can be automatically derived for verifying properties of situated

systems expressed in the Spatial Logic of Closure Spaces (SLCS).

While it has been proven that such monitors eventually compute

the truth value of the desired properties, the actual time required

for such computations has been thus far disregarded. In the present

paper, we �ll this gap by investigating the real-time guarantees that

can be given in terms of upper bounds on the time taken by the XC

monitors to compute the truth of SLCS properties after stabilisation

of inputs.

CCS Concepts

• Computing methodologies → Distributed programming

languages; • Theory of computation → Modal and temporal

logics.

Keywords

runtime veri�cation, aggregate computing, spatial logic, real-time

ACM Reference Format:

Giorgio Audrito, Ferruccio Damiani, and Gianluca Torta. 2024. Real-Time

Guarantees for SLCS Monitors in XC. In Proceedings of the 7th ACM In-

ternational Workshop on Veri�cation and Monitoring at Runtime Execution

(VORTEX ’24), September 19, 2024, Vienna, Austria. ACM, New York, NY,

USA, 6 pages. https://doi.org/10.1145/3679008.3685545

1 Introduction

Runtime monitoring is a lightweight veri�cation technique deal-

ing with the observation of a system execution with respect to a

speci�cation [22]. Speci�cations are usually trace- or stream-based,

with events mapped to atomic propositions in the underlying logic

of the speci�cation language, e.g., Linear Time Logic (LTL) [20, 23],

or LTL on �nite traces (LTLf) [25].

In this paper we consider distributed runtime monitoring, for

monitoring distributed (situated) systems using distributed mon-

itors. Distribution is particularly challenging for veri�cation pur-

poses, as it requires to deal with issues such as synchronisation,

VORTEX ’24, September 19, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1119-0/24/09
https://doi.org/10.1145/3679008.3685545

communication faults, lack of global time, and so on. Following

Francalanza et al’s terminology [19], we assume that the nodes of

the distributed system are (mutually) remote processes that can

dynamically appear and disappear, each one producing a local trace

of events, i.e., a sequence of sets of observable values derived from

the node’s sensors or behaviour. Monitors check properties of the

system by analysing their traces. We consider an online evalua-

tion strategy, where the monitors are executed together with the

processes themselves, being hosted at the same locations and com-

municating with neighbour monitors.

In particular, we focus on fully distributed and decentralised

runtime monitors [19] expressed in the eXchange Calculus (XC)

[4, 5], which have been shown to be automatically derivable from

formulas expressed in the Past Computation Tree Logic (Past-CTL)

and the Spatial Logic of Closure Spaces (SLCS) [6, 8]. Such monitors

are able to deal with all the assumptions mentioned above (full

decentralization, dynamic network, situated nodes), and eventually

compute the truth value of the desired properties. However, up to

now the actual time required for computing such truth values, and

to update them when they change, has been disregarded.

To �ll this gap, in this paper we investigate the real-time guaran-

tees that can be given in terms of upper bounds on the time taken

by the XC monitors to compute the truth of SLCS properties after

stabilisation of the monitored system inputs (i.e., once the value

of the sensors on each device and the communication topology

of the network stop changing). This is particularly important for

SLCS, since the truth of its formulas on a given node can depend

on the (local estimate) of the current status of remote nodes, and

we would like such estimate to be as up-to-date as possible (see

Section 3). Interestingly, we will be able to show that the correct

truth value of SLCS properties can be evaluated by XC monitors

with a delay which linearly depends on the syntactic complexity of

the monitored property, the maximum hop distance among system

nodes, and the inverse of the monitoring frequency.

2 eXchange Calculus

Aggregate Computing [14] has emerged as a generalization of var-

ious previous approaches to programming ensembles of devices

[13, 26], applicable to distributed applications deployed in far edge,

fog or cloud environments [9], and general multi-agent systems [7].

A central feature of this programming model is its ability to express

complex distributed processes through function composition, with

operational semantics essentially reduced to asynchronously ex-

changing values with neighbours. Drawing inspiration from “�elds”

in physics, this is accomplished through the concept of a computa-

tional �eld, which is de�ned as a global data structure that maps

devices in the distributed system to computational values. These

�elds can be computed from a set of input �elds (such as those from

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

32

https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-2319-0375
https://orcid.org/0000-0001-8109-1706
https://orcid.org/0000-0002-4276-7213
https://doi.org/10.1145/3679008.3685545
https://doi.org/10.1145/3679008.3685545
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3679008.3685545&domain=pdf&date_stamp=2024-09-13

VORTEX ’24, September 19, 2024, Vienna, Austria Giorgio Audrito, Ferruccio Damiani, and Gianluca Torta

1

2

3

4

5

d
e
v
ic
e

time

ǫ

Figure 1: A sample event structure, split in events n′ in the

causal past of n (n′ < n, in red), events in the causal future

(n < n′, in green) and concurrent (non-ordered, in black).

sensors) either at a low level using simple programming language

constructs or at a high level by composing general-purpose building

blocks of reusable behavior. Ultimately, output �elds can be utilized

by actuators.

The reference programming models for aggregate computing, i.e.

the Field Calculus (FC) [14, 26] and its recently proposed extension

the eXchange Calculus (XC) [4, 5], are both implemented by the

Field Calculus++ (FCPP) C++ library [2, 11, 12] and the Scala Fields

(ScaFi) [15–17] Scala library. They are core universal [3] languages

for aggregate computations over distributed networks of (possibly)

mobile devices, each capable of asynchronously performing simple

local computations, and of interacting with a neighbourhood by

local exchanges of messages. XC provides mechanisms to express

and compose such distributed computations, on a level of abstrac-

tion that avoids the explicit management of message exchanges,

device position and quantity, and so on. In this context, a single pro-

gram is periodically and asynchronously executed on every device,

according to a cyclic schedule of rounds. In each round, the device

gathers sensors’ inputs and recently collected messages; evaluates

the program; and broadcasts the result to neighbours and (possibly)

actuators. Through the repeated execution of rounds across space

(where devices are located) and time (when devices initiate a new

cycle), a global behavior emerges. This behavior can be understood

as occurring on the overall network of interconnected devices, mod-

eled as a single aggregate machine with a neighboring relation. A

formal semantics is provided to XC programs through the classical

notion of event structure [21], which is also used to interpret tem-

poral logic formulas. An event structure is a �nite set of events �

along with an acyclic neighbouring relation⇝⊆ � × � modelling

message passing. A sequence of neighbour events n1 ⇝ . . .⇝ n=
is referred to as a message path.

Event neighboring induces causality relation <⊆ � × �, de�ned

as the transitive closure of⇝ and modeling causal dependence.

An example structure is illustrated in Figure 1. In practice, event

structures arise from device neighborhood graphs changing over

time. For instance, in Figure 1, device 3 appears at a certain point

in time with devices 4 and 1 as neighbors, but after a few steps, its

neighbors become devices 2 and 4.

Figure 2 illustrates the syntax of the XC language. It is a core

functional language where expression e can be either: a variable

x; a (possibly recursive) function fun x(x), which may have free

variables; a function call e0 (e); a let-like expression val x = e1; e2;

Syntax:

e ::= x
�

� fun x(x) {e0}
�

� e0 (e)
�

� val x = e1; e2
�

� ℓ
�

� w expression

w ::= ℓ [X ↦→ ℓ] nvalue

ℓ ::= b
�

� fun x(x) {e0}
�

� c(ℓ) local literal

b ::= s
�

� exchange
�

� nfold
�

� mux
�

� . . . built-in function

Syntactic sugar:

(x)=>e ::= fun y(x) {e} where y is a fresh variable

def x(x) {e} ::= val x = fun x(x) {e};

if(e) {e⊤} else {e⊥} ::= mux(e, ()=>e⊤, ()=>e⊥) ()

Figure 2: Syntax of the eXchange Calculus (XC) language.

a local literal ℓ , that is either a built-in function b, a de�ned func-

tion fun x(x){e0} without free variables, or a data constructor c
applied to local literals (possibly none); a neighbouring value w,

which represents a (set of) local literals either received from or

sent to neighbouring devices. These values are de�ned as maps

w = ℓ [X1 ↦→ ℓ1, . . . , X= ↦→ ℓ=], mapping device identi�ers X8 to their

respective local literals ℓ8 . Additionally, there is a local literal ℓ that

serves as a default. The language models local values ℓ (those not

dependent on neighbours) as a special case of neighbouring values

ℓ [], containing only the default local literal. Thus, in XC each value

can be considered as a neighbouring value. Standard built-in opera-

tions (such as sum and product) operate on neighbouring values in

a point-wise manner (device by device). Neighbouring values can

be aggregated into a single local value through a functional-style

fold operation nfold(f, w, ℓ), of type1 ∀T . ((T , T) → T , T , T) → T ,

which applies a speci�ed binary operation f (of type (T , T) → T)

repeatedly to the local values that form w (of type T), except for the

current device X , whose value is taken from the third argument.

In XC, evaluation is performed within a context that includes

all messages received from neighboring devices. A process known

as alignment ensures that for each sub-expression, the context is

limited to values corresponding to the same sub-expression on

neighboring devices. These context values are primarily utilized by

a built-in function called exchange, which models communication

and whose semantics is described below. The expression:

exchange(e0, (x) => return eA send eB)

where return eA send eB is syntactic sugar for pair construction

(eA , eB), is evaluated according to the following steps;

• First, gather a neighbouring value = (of a type T) that maps each

neighbor X ′ to the last value shared by X ′ for this exchange

expression.

• If it is the �rst execution of exchange on the current device X ,

the value of e0 (also of type T) is used as the value for X in =.

Otherwise, the value shared by X itself in its previous round is

used instead.

• Next, evaluate eA by substituting = for x, resulting in a value

vA (of a possibly di�erent type R). Do the same for eB obtaining

value vB (which is also of type T).

• Finally, return vA as the value of the exchange expression in the

program, and broadcast vB to neighbors, who will use it in their

subsequent rounds to produce their neighboring value =.

1Since in XC every value is treated as a neighbouring value, the type system does not
distinguish between local and neighbouring values as well, assigning to both the same
types T – see [5] for details.

33

Real-Time Guarantees for SLCS Monitors in XC VORTEX ’24, September 19, 2024, Vienna, Austria

q,k ::=⊥
�

�⊤
�

�@
�

� (¬q)
�

� (q∧k)
�

� (q∨k)
�

� (q⇒k)
�

� (q⇔k) prop.
�

� (□q)
�

� (^ q)
�

� (m q)
�

� (m- q)
�

� (m+ q) spatial
�

� (q Rk)
�

� (q T k)
�

� (q Uk)
�

� (G q)
�

� (F q)

Figure 2: Syntax of SLCS (as in [6, 18]).2

Thus, overall the exchange function has type ∀T .∀R. (T , (T) →
(R, T)) → R. Consider, as an example, the following function dec-

laration:

def dist(source) { // of type (bool) -> num

exchange(

infinity,

(d) => retsend mux(source, 0, nfold(min, d, infinity)+1)

)

}

In the function declaration above, we use retsend e as syntactic

sugar for return e send e. Function mux(b,x,y) is the multi-

plexer function returning either x or y depending on whether b is

true or false, respectively. The dist function calculates hop-count

distances from the nearest device where source is true, using a

single exchange construct. This construct collects distance esti-

mates from neighboring devices into a neighboring value = (which

maps neighbor devices to their distance estimates, defaulting to∞
when no information is available), and assigns it to the variable

d. The inner anonymous function body returns zero for source

devices. For other devices, as in the traditional Bellman-Ford algo-

rithm, it returns the minimum value from the neighbors’ estimates

nfold(min, d, infinity) (thus excluding the current device,

for which infinity is used) increased by one.

In the next section, wewill also use function nbr for convenience,

that can be de�ned through exchange as follows:

def nbr(e0, e) { exchange(e0, (n) => return n send e) }

The nbr function returns the neighbouring value =, while it sends

the value of expression e to all the neighbours (including the current

device), and has type ∀T . (T , T) → T .

3 Spatial Logic of Closure Spaces

Figure 2 presents the syntax of the Spatial Logic of Closure Spaces

(SLCS) [6, 18]. It is based on atomic propositions @ representing

observables, that can be combined with usual propositional logic

operators, and further enriched with spatial modalities, that can be

divided into local and global. The local modalities are:

• □q (where □ is the interior operator): true at points where all

neighbours satisfy q (intuitively, the area in which q is true

reduced on its border);

• ^ q (where ^ is the closure operator): true at points where a

neighbour satis�es q (intuitively, the area in which q is true

enlarged on its border);

• m q (where m is the boundary operator): true at points where ^ q

holds and □q does not hold (intuitively, points that sit at the

border of the area in which q is true);

2Note that the syntax of SLCS is heavily inspired by temporal logics such as LTL, but
it associates di�erent meaning to identically written modalities, as it is a spatial rather
than temporal logic. The syntax we use for SLCS is the standard one in literature [6, 18]
and its informal meaning is detailed in Section 3.

• m- q (where m- is the interior boundary operator): true at points

where formula q holds and formula □q does not hold (intuitively,

the part of the border that is also in the area);

• m+ q (where m+ is the closure boundary operator): true at points

where formula ^ q holds and formula q does not hold) (intu-

itively, the part of the border that is not in the area).

We choose ^ as primitive, expressing the others through the equiv-

alences3 □q ≜ ¬^ ¬q , m q ≜ (^ q) ∧ ¬(□q), m- q ≜ q ∧ ¬(□q),
m+ q ≜ (^ q) ∧ ¬q . The global modalities are:

• q Rk (where R is the reaches operator): true at the ending points

of paths in the graph whose starting point satis�esk , and where

q holds on each point on the path (intuitively, points that are

able to reach the area wherek is true while staying in the area

where q is true);

• q T k (where T is the touches operator): true at the end of paths

whose start satis�esk and where q holds in the rest of the path

(so q may not hold at the start of the path);

• q Uk (whereU is the surrounded by operator): true at points in

an area satisfying q , whose closure boundary satis�esk ;

• G q (where G is the everywhere operator): true where q holds in

every point of every incoming path;

• F q (where F is the somewhere operator): true where q holds in

some point of some incoming path.

We choose R as primitive, expressing the others through q T k ≜

q R ^k , q Uk ≜ q ∧□¬(¬k R ¬q), F q ≜ ⊤R q , G q ≜ ¬F ¬q .

Example 3.1. As an example, consider the statement “dangerous

(d) areas are surrounded by devices who can reach safely a base (b)” :

q B d ⇒ (dU(¬dR b))

Analysing the formula bottom-up, in sub-formula q1 ≔ (¬dR b)
we use modality R to select devices that can reach a base b without

crossing dangerous places d. Then, in sub-formula q2 = (dU q1),
we use modality U to select devices belonging to areas where

d holds, while the devices in their closure boundaries satisfy q1.

Finally, in the complete formula q B d ⇒ q2, we use the ⇒
operator to express the fact that q2 must hold wherever there is

danger d.

As a second example, consider the statement “while staying next

to secure (s) points, it is possible to approach an unsecured area sur-

rounded by danger (d)” :

q B ^ sT (¬sU d)

Again, moving bottom-up, in sub-formula q1 ≔ ^ s we select

devices next to a secure point (where s holds). In sub-formula q2 ≔

(¬sU d) we use modalityU to select devices belonging to insecure

areas surrounded by dangerous points (where d holds). Finally, in

the complete formula q B q1 T q2 we use modality T to select

devices that can reach a place where q2 holds through a path where

q1 holds everywhere (except possibly in the target place).

The translation of SLCS formulas into XC introduced in [6] is

shown in Figure 3, by recursion on sub-formulas. We translate

the truth value ⊤ into the XC literal true, atomic propositions

@ into built-in function calls q() getting their value from some

external environment, and propositional logic operators into their

3The symbol ≜ means “de�ned as”.

34

VORTEX ’24, September 19, 2024, Vienna, Austria Giorgio Audrito, Ferruccio Damiani, and Gianluca Torta

⟦⊤⟧ = true ⟦@⟧ = q()

⟦¬q⟧ = !⟦q⟧ ⟦q ∨k⟧ = ⟦q⟧ || ⟦k⟧

⟦^ q⟧ = nfold(||, nbr(false, ⟦q⟧))

⟦q Rk⟧ = if (⟦q⟧) {dist(⟦k⟧)<D} else {false}

Figure 3: Translation of a primitive set of SLCS operators

into XC [6]. The translation of a formula q is denoted by ⟦q⟧.

XC representation. In the translation of the local modality ^ and

global modality R we assume that:

• nbr and dist are as in Section 2. We consider an overload of

nfold without the third argument, hence using the second argu-

ment also for the current device;

• D is an integer number providing an upper bound to the network

hop-count diameter (either �xed at design time or estimated

through an XC expression).

In particular, the translation of ^ q �rst requires to receive the

value of (the XC translation of) q from the neighbours, using the

nbr function de�ned above. Note that the current device is initial-

ized as false. Applying nfold(||, _) to = gives true i� the value

of q is true in at least one of the neighbours (or in the device itself),

which is the de�nition of the closure modality ^.

Considering the translation of q Rk notice �rst that, as function

dist is computed within a branch, it only receives messages from

neighbours which selected the same branch, i.e., for which q is true.

The sources for the computation of dist are all the devices where

k is true, thus dist will eventually compute the distance from the

closest device wherek holds. If the value returned by dist is larger

than the network diameter D, it means that it is either a transient

incorrect value, or that it is impossible to reach a device wherek

holds. In either case, the whole formula q Rk is considered false.

Otherwise, it is a plausible hop-count distance from the current

device to a device wherek holds, considering only devices where

q holds. Therefore q Rk is considered true.

Example 3.2. Let us consider the �rst formula in Example 3.1.

Sub-formula q1 ≔ (¬dR b) is translated to:

if (!d) {dist(b) < D} else {false}

Sub-formula q2 = (dU q1) can be rewritten as:

(d ∧ □¬(¬q1 R ¬d)) = (d ∧ ¬^(¬q1 R ¬d))

using the de�nition of U in terms of primitive modalities. This

translates to:

d && !nfold(||, nbr(false,

if (!q1) {dist(!d) < D} else {false}))

4 Real-Time Analysis

Given that the SLCS logic is evaluated on static graphs, an SLCS

monitor cannot precisely determine the value of its formula in

real-time, if the underlying graph can change over time. However,

the XC translation has been proven to be self-stabilizing to the de-

sired monitor output. This means it will eventually converge to the

correct output, assuming that the network graph and atomic propo-

sitions remain unchanged for a su�ciently long period. In order to

properly characterize the performance of the XC translation, it is

thus crucial to bound this period after which the monitor output

coincides with the translated formula.

We follow the approach delineated in [10] to characterise real-

time behaviour of distributed programs, and speci�cally XC pro-

grams. In particular, a distributed program can be abstracted to a

mathematical function:

5 : ⟦)8⟧ST ↦→ ⟦)>⟧ST

where ST denotes the fact that the types of the inputs/outputs of 5

contain values depending on space and time. Details on the math-

ematical de�nition of this notation can be found in [26, Sec. 3.3],

which provides a denotational semantics for aggregate computing

based on event structures. Each monitor derived from an SLCS for-

mula is a function f in the SD-TI class, meaning that it is discretely

dependent on space (D), and independent (TI) of time (in the sense

that it is self-stabilizing as discussed above). According to [10], then,

the input and output types ⟦)8⟧ST and ⟦)>⟧ST of the abstraction 5

are graphs with values associated to each node, i.e., G → ⟦)⟧. The
graphs G correspond to the topology of the network, i.e., they are

directed graphs ⟨{Xi},↣⟩ on the set of network devices {Xi} (note
the di�erence w.r.t. to the graph of an Event Structure such as the

one in Figure 1). We aim to �nd a real-time constraint speci�cation

in the following Minimal form:

Specification 1 (Minimal). (adapted from [10]) Assume that

after a certain time C0, inputs and topology of a distributed monitor

of SLCS formula q are �xed. Then, after time C0 + Δ(q) for a given
Δ(q), the truth value computed by the monitor corresponds exactly

to that of q .

In the following sections we’ll derive a function Δmapping SLCS

formulas q to a real value Δ(q) that satis�es the speci�cation above,
given the following additional assumptions:

• Every connected subset of the network always has a diameter

(in hops) lower than a given parameter � ;

• Every device performs a round of computation at least every g

seconds.

Note that the granularity of time considered in our analysis is

thus the maximum round period g .

4.1 The Reachability Operator

First, let us analyse the behaviour of the main SLCS operator, that

is, the reachability operator q1 R q2. Assume that after time C0, the

truth values of q1 and q2 computed by the distributed monitor have

stabilised in each device X . Consider separately the following three

kinds of regions of the network graph ⟨{Xi},↣⟩, also depicted in

Figure 4 for a sample scenario.

(1) Devices for whichq1 is false: they correctly compute the value

false from C0 on, without further delay.

(2) Devices for which q1 is true, but no path consisting of devices

for which q1 is true and starting in a device for which q2
is true exists: in this case, the value of q1 R q2 should be

false. However, at time C0, the values of dist(q2) computed

by the various devices could be any non-negative integer.

Consider a (weakly) connected region of such devices, and

notice that each of them has neighbours that are either in

the same region, or such that q1 is false. Between time C0 and

C0 + g , every device in the region updates its monitor at least

once, and since none of them is a source, it will compute a

distance ≥ 1. Between time C0 + g and C0 + 2g , every device

35

Real-Time Guarantees for SLCS Monitors in XC VORTEX ’24, September 19, 2024, Vienna, Austria

1

2

2

3

3

Figure 4: Representation of the truth value of q1 R q2 in a

sample network. Nodes for which q1 holds are full circles,

nodes for which it does not are hollow. Nodes for which q2
holds are blue, nodes for which it does not are black. The

areas labelled as 1, 2 and 3 correspond to the three kinds of

regions identi�ed in Section 4.1.

in the area will update again its monitor, and it will notice

that each neighbour has a distance ≥ 1, concluding that

its distance must be ≥ 2. Similarly, by induction, after time

C0+=g every device in the area will have computed a distance

≥ =. In particular, after time C0 + �g every device will have

computed a distance ≥ � , hence correctly concluding that

q1 R q2 is false.

(3) Devices for which q1 is true, and a path consisting of devices

for which q1 is true and starting in a device X for which q2 is

true exists: in this case, dist(q2) is zero in X from time C0.

Then, after time C0 + g , each device at 1 hop from X correctly

computes its distance equal to 1. Similarly, by induction, after

time C0 +=g each device within = hops computes its distance

correctly equal to=. Since the network diameter of a region is

by assumption lower than � , after time C0 +�g every device

in the region will have computed a distance lower than � ,

hence correctly concluding that q1 R q2 is true.

Thus, in each of those cases, the monitor converges to the correct

result within �g seconds after the convergence of the sub-formulas:

Δ(q1 R q2) = max(Δ(q1),Δ(q2)) + �g

Note that we take the max (instead of the sum) of Δ(q1),Δ(q2),
because each sub-formula can converge to its �nal value simulta-

neously, without q2 needing to wait for the stabilisation of q1.

4.2 Compositional Extension to SLCS

We are now able to de�ne Δ(q) for each SLCS formula, by induc-

tion on the formula structure. The correctness of the following

discussion can be seen informally, by referring to the translation of

SLCS formulas described in Section 3 above.

As the base induction case, q could be an atomic proposition or

constant ⊤/⊥. In all those cases, the monitor stabilises immediately

after C0, and thus Δ(q) = 0.

If q = ¬q ′, the monitor stabilises immediately once q ′ sta-

bilises, thus Δ(q) = Δ(q ′). If q = q1 ∨ q2, the monitor also sta-

bilises immediately once both sub-formulas stabilise, thus Δ(q) =
max(Δ(q1),Δ(q2)).

Consider now that q = ^ q ′. Between C0+Δ(q
′) and C0+Δ(q

′) +
g , every device updates its value, computing whether any of its

neighbours evaluated q ′ to true. Since after C0 + Δ(q ′) the values

of q ′ are correct in each device, it follows that after C0 + Δ(q ′) + g
the values of q are correct, thus:

Δ(q) = Δ(q ′) + g

The same reasoning and result applies to every other local modality

(□, m, m+, m-).

Recall that if q = q R q ′, by the reasoning in the previous sub-

section, Δ(q) = max(Δ(q1),Δ(q2)) + �g . Consider now that q =

F q ′ (resp. G q ′). By the equivalences in Section 3, q = ⊤R q ′

(resp. ¬(⊤R ¬q ′)). By applying the results obtained so far:

Δ(q) = max(Δ(⊤),Δ(q ′)) + �g = Δ(q ′) + �g

(and the same holds for G, since ¬ does not increase the value of

Δ).

Finally, consider now that q = q1 T q2 or, resp., q1U q2. By

the equivalences provided in Section 3, q = q1 R ^ q2 or, resp.,

q1 ∧ □¬(¬q2 R ¬q1). In the former case:

Δ(q) = max(Δ(q1),Δ(q2) + g) + �g

because an extra round is needed for the truth of ^ q2. In the latter

case:

Δ(q) = max(Δ(q1),Δ(q2)) + (� + 1)g

because an extra �nal round is needed for the truth of □¬(. . .).
By combining all these relations together, we can derive Δ(q) for

each SLCS formula q . Note that Δ(q) grows at most by (� + 1)g for
each level of complexity or depth4 of q . Since useful formulas typi-

cally have small depths, they can be evaluated e�ciently provided

the network diameter is not too large and/or the device rounds are

scheduled at a su�ciently high frequency.

Example 4.1. Considering the �rst formula in Example 3.1, we

notice that Δ(¬dR b) = max(Δ(¬d),Δ(b))+�g = max(0, 0)+�g =

�g . Since “⇒” is a logical operator, it does not increase the value

of Δ, and thus Δ(q) is:

max(Δ(d),Δ(dU(¬dR b))) = max(0,max(0, �g) + �g) = 2�g

Let us now consider the second formula in Example 3.1. First,

Δ(¬sU d) = max(0, 0) + (� + 1)g = (� + 1)g . Then:

Δ(q) = max(g, (� + 1)g + g) + �g = 2(� + 1)g

5 Conclusions

In this paper, we explored the real-time guarantees achievable

for XC monitors of SLCS spatial properties, by establishing up-

per bounds on the time required for output stabilisation after the

stabilization of system inputs. This aspect is crucial for SLCS be-

cause the truth value of its formulas at a particular node may rely

on the (local estimate of the) current status of remote nodes, neces-

sitating the most up-to-date estimates. Notably, we demonstrated

that XC monitors can evaluate the correct truth value of SLCS prop-

erties with a delay that scales linearly with the syntactic complexity

of the monitored property, the maximum hop distance between

system nodes, and the reciprocal of the monitoring frequency.

The current result is only a starting point for the real-time man-

agement of aggregate spatial monitors. In particular, the guarantee

4The depth of a formula is the longest chain of nested modalities that it contains. For
instance, both formulas in Example 3.1 have a depth of 2.

36

VORTEX ’24, September 19, 2024, Vienna, Austria Giorgio Audrito, Ferruccio Damiani, and Gianluca Torta

provided only considers the convergence time after input stabilisa-

tion, hence it does not apply to scenarios where the input network

never stabilises, and instead slowly changes over time. Future work

may address this by considering stronger properties, characterising

the output error given bounds on the speed at which the input con-

tinuously changes. Furthermore, in this paper we only considered

the SLCS translation provided in literature [6]. Other translations

of the R operator may be possible and preferable depending on the

scenario (as per the preliminary investigation in [1]), and real-time

guarantees could be provided for those alternative translations. Fi-

nally, extension of the SLCS logic have been proposed so far, such

as the Signal Spatio-Temporal Logic (SSTL) [24], which enrich the

modalities (for example) with metric bounds. Translations into XC

with corresponding real-time guarantees could be investigated for

such extended logics in future work.

Acknowledgments

This study has been supported by the Italian PRIN project “Com-

monWears” (2020HCWWLP). It is part of the project NODES, which

has received funding from the MUR – M4C2 1.5 of PNRR funded

by the European Union - NextGenerationEU (Grant agreement

no. ECS00000036), and it was carried out within the Agritech Na-

tional Research Center and received funding from the European

Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E

RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTI-

MENTO 1.4 – D.D. 1032 17/06/2022, CN00000022). This manuscript

re�ects only the authors’ views and opinions, neither the European

Union nor the European Commission can be considered responsible

for them.

References
[1] Gianluca Aguzzi, Giorgio Audrito, and Mirko Viroli. 2024. Optimising Aggregate

Monitors for Spatial Logic of Closure Spaces Properties. In VORTEX 2024: Pro-
ceedings of the 5th ACM International Workshop on Veri�cation and mOnitoring at
Runtime EXecution. ACM. https://doi.org/10.1145/3679008.3685544

[2] Giorgio Audrito. 2020. FCPP: an e�cient and extensible Field Calculus framework.
In International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS). IEEE, 153–159. https://doi.org/10.1109/ACSOS49614.2020.00037

[3] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. 2018. Space-
Time Universality of Field Calculus. In Coordination Models and Languages (CO-
ORDINATION) (Lecture Notes in Computer Science, Vol. 10852). Springer, 1–20.
https://doi.org/10.1007/978-3-319-92408-3_1

[4] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvaneschi, and
Mirko Viroli. 2022. Functional Programming for Distributed Systems with XC. In
36th European Conference on Object-Oriented Programming, ECOOP 2022, June 6-
10, 2022, Berlin, Germany (LIPIcs, Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:28. https://doi.org/10.4230/
LIPICS.ECOOP.2022.20

[5] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvaneschi, and
Mirko Viroli. 2024. The eXchange Calculus (XC): A functional programming
language design for distributed collective systems. J. Syst. Softw. 210 (2024),
111976. https://doi.org/10.1016/J.JSS.2024.111976

[6] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Volker Stolz, and Mirko
Viroli. 2021. Adaptive distributedmonitors of spatial properties for cyber-physical
systems. J. Syst. Softw. 175 (2021). https://doi.org/10.1016/j.jss.2021.110908

[7] Giorgio Audrito, Roberto Casadei, and Gianluca Torta. 2021. Towards Integration
of Multi-Agent Planning with Self-Organising Collective Processes. In IEEE
International Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2021, Companion Volume, Washington, DC, USA, September 27 - Oct. 1, 2021,
Esam El-Araby, Vana Kalogeraki, Danilo Pianini, Frédéric Lassabe, Barry Porter,
Sona Ghahremani, Ingrid Nunes, Mohamed Bakhouya, and Sven Tomforde (Eds.).
IEEE, 297–298. https://doi.org/10.1109/ACSOS-C52956.2021.00042

[8] Giorgio Audrito, Ferruccio Damiani, Volker Stolz, Gianluca Torta, and Mirko
Viroli. 2022. Distributed runtime veri�cation by past-CTL and the �eld calculus.

J. Syst. Softw. 187 (2022). https://doi.org/10.1016/j.jss.2022.111251
[9] Giorgio Audrito, Ferruccio Damiani, and Gianluca Torta. 2022. Bringing Ag-

gregate Programming Towards the Cloud. In Leveraging Applications of Formal
Methods, Veri�cation and Validation. Adaptation and Learning - 11th International
Symposium, ISoLA 2022, Rhodes, Greece, October 22-30, 2022, Proceedings, Part III
(Lecture Notes in Computer Science, Vol. 13703), Tiziana Margaria and Bernhard
Ste�en (Eds.). Springer, 301–317. https://doi.org/10.1007/978-3-031-19759-8_19

[10] Giorgio Audrito, Ferruccio Damiani, andGianluca Torta. 2024. Towards Real-Time
Aggregate Computing. (2024). 12th International Symposium On Leveraging
Applications of Formal Methods, Veri�cation and Validation (ISoLA 2024). To
appear.

[11] Giorgio Audrito, Luigi Rapetta, and Gianluca Torta. 2022. Extensible 3D Simula-
tion of Aggregated Systems with FCPP. In Coordination Models and Languages -
24th IFIP WG 6.1 International Conference, COORDINATION 2022, Held as Part of
the 17th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2022, Lucca, Italy, June 13-17, 2022, Proceedings (Lecture Notes in Com-
puter Science, Vol. 13271), Maurice H. ter Beek and Marjan Sirjani (Eds.). Springer,
55–71. https://doi.org/10.1007/978-3-031-08143-9_4

[12] Giorgio Audrito and Gianluca Torta. 2024. FCPP to aggregate them all. Sci.
Comput. Program. 231 (2024), 103026. https://doi.org/10.1016/J.SCICO.2023.
103026

[13] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. 2013.
Organizing the Aggregate: Languages for Spatial Computing. In Formal and
Practical Aspects of Domain-Speci�c Languages: Recent Developments. IGI Global,
Chapter 16, 436–501. https://doi.org/10.4018/978-1-4666-2092-6.ch016

[14] Jacob Beal, Danilo Pianini, and Mirko Viroli. 2015. Aggregate Programming for
the Internet of Things. IEEE Computer 48, 9 (2015), 22–30. https://doi.org/10.
1109/MC.2015.261

[15] Roberto Casadei, Gianluca Aguzzi, Danilo Pianini, and Mirko Viroli. 2023. Pro-
gramming (and Learning) Self-Adaptive & Self-Organising Behaviour with ScaFi:
for Swarms, Edge-Cloud Ecosystems, and More. In IEEE International Con-
ference on Autonomic Computing and Self-Organizing Systems, ACSOS 2023 -
Companion, Toronto, ON, Canada, September 25-29, 2023. IEEE, 33–34. https:
//doi.org/10.1109/ACSOS-C58168.2023.00032

[16] Roberto Casadei and Mirko Viroli. 2016. Towards Aggregate Programming in
Scala. In First Workshop on Programming Models and Languages for Distributed
Computing (Rome, Italy) (PMLDC ’16). ACM, Article 5, 5:1–5:7 pages. https:
//doi.org/10.1145/2957319.2957372

[17] Roberto Casadei, Mirko Viroli, Gianluca Aguzzi, and Danilo Pianini. 2022. ScaFi:
A Scala DSL and Toolkit for Aggregate Programming. SoftwareX 20 (2022), 101248.
https://doi.org/10.1016/J.SOFTX.2022.101248

[18] Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke Massink. 2014. Spec-
ifying and Verifying Properties of Space. In 8th IFIP International Conference in
Theoretical Computer Science (TCS) (Lecture Notes in Computer Science, Vol. 8705).
Springer, 222–235. https://doi.org/10.1007/978-3-662-44602-7_18

[19] Adrian Francalanza, Jorge A. Pérez, and César Sánchez. 2018. Runtime Veri�cation
for Decentralised and Distributed Systems. In Lectures on Runtime Veri�cation -
Introductory and Advanced Topics (Lecture Notes in Computer Science, Vol. 10457).
Springer, 176–210. https://doi.org/10.1007/978-3-319-75632-5_6

[20] Yogi Joshi, Guy Martin Tchamgoue, and Sebastian Fischmeister. 2017. Runtime
veri�cation of LTL on lossy traces. In Proceedings of the Symposium on Applied
Computing (Marrakech, Morocco) (SAC ’17). Association for Computing Machin-
ery, New York, NY, USA, 1379–1386. https://doi.org/10.1145/3019612.3019827

[21] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (1978), 558–565.

[22] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime
veri�cation. J. Log. Algebr. Program. 78, 5 (2009), 293–303. https://doi.org/10.
1016/j.jlap.2008.08.004

[23] Menna Mostafa and Borzoo Bonakdarpour. 2015. Decentralized Runtime Veri�-
cation of LTL Speci�cations in Distributed Systems. In 2015 IEEE International
Parallel and Distributed Processing Symposium. 494–503. https://doi.org/10.1109/
IPDPS.2015.95

[24] Laura Nenzi, Luca Bortolussi, Vincenzo Ciancia, Michele Loreti, and Mieke
Massink. 2018. Qualitative and Quantitative Monitoring of Spatio-Temporal
Properties with SSTL. Log. Methods Comput. Sci. 14, 4 (2018). https://doi.org/10.
23638/LMCS-14(4:2)2018

[25] Tommy Tracy, Lucas M. Tabajara, Moshe Vardi, and Kevin Skadron. 2020. Run-
time Veri�cation on FPGAs with LTLf Speci�cations. In 2020 Formal Methods in
Computer Aided Design (FMCAD). 36–46. https://doi.org/10.34727/2020/isbn.978-
3-85448-042-6_10

[26] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei,
and Danilo Pianini. 2019. From distributed coordination to �eld calculus and
aggregate computing. J. Log. Algebraic Methods Program. 109 (2019). https:
//doi.org/10.1016/j.jlamp.2019.100486

Received 2024-06-24; accepted 2024-07-24

37

https://doi.org/10.1145/3679008.3685544
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.4230/LIPICS.ECOOP.2022.20
https://doi.org/10.4230/LIPICS.ECOOP.2022.20
https://doi.org/10.1016/J.JSS.2024.111976
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1109/ACSOS-C52956.2021.00042
https://doi.org/10.1016/j.jss.2022.111251
https://doi.org/10.1007/978-3-031-19759-8_19
https://doi.org/10.1007/978-3-031-08143-9_4
https://doi.org/10.1016/J.SCICO.2023.103026
https://doi.org/10.1016/J.SCICO.2023.103026
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/ACSOS-C58168.2023.00032
https://doi.org/10.1109/ACSOS-C58168.2023.00032
https://doi.org/10.1145/2957319.2957372
https://doi.org/10.1145/2957319.2957372
https://doi.org/10.1016/J.SOFTX.2022.101248
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1145/3019612.3019827
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.23638/LMCS-14(4:2)2018
https://doi.org/10.23638/LMCS-14(4:2)2018
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_10
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_10
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486

	Abstract
	1 Introduction
	2 eXchange Calculus
	3 Spatial Logic of Closure Spaces
	4 Real-Time Analysis
	4.1 The Reachability Operator
	4.2 Compositional Extension to SLCS

	5 Conclusions
	Acknowledgments
	References

