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Abstract: Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. The
gemini nanoparticle formulation of polyphenolic curcumin significantly inhibits the viability of cancer
cells. However, the molecular mechanisms and pathways underlying its toxicity in colon cancer are
unclear. Here, we aimed to uncover the possible novel targets of gemini curcumin (Gemini-Cur) on
colorectal cancer and related cellular pathways. After confirming the cytotoxic effect of Gemini-Cur by
MTT and apoptotic assays, RNA sequencing was employed to identify differentially expressed genes
(DEGs) in HCT-116 cells. On a total of 3892 DEGs (padj < 0.01), 442 genes showed a log2 FC >|2|
(including 244 upregulated and 198 downregulated). Gene ontology (GO) enrichment analysis
was performed. Protein–protein interaction (PPI) and gene-pathway networks were constructed
by using STRING and Cytoscape. The pathway analysis showed that Gemini-Cur predominantly
modulates pathways related to the cell cycle. The gene network analysis revealed five central genes,
namely GADD45G, ATF3, BUB1B, CCNA2 and CDK1. Real-time PCR and Western blotting analysis
confirmed the significant modulation of these genes in Gemini-Cur-treated compared to non-treated
cells. In conclusion, RNA sequencing revealed novel potential targets of curcumin on cancer cells.
Further studies are required to elucidate the molecular mechanism of action of Gemini-Cur regarding
the modulation of the expression of hub genes.

Keywords: gemini curcumin; colorectal cancer; RNA sequencing; PPI network; differentially
expressed genes

1. Introduction

With over 1.8 million new cases and around 800,000 fatalities recorded in 2018, colorec-
tal cancer (CRC) is considered as one of the most common malignancies, worldwide [1,2].
In recent years, early age onset of CRC cases have increased dramatically [3]. Conventional
chemotherapy, radiotherapy and surgery provide effective local control of colon cancer.
However, serious side effects and resistance to therapies over time decrease the survival
rate of patients [4]. Despite recent dramatic advances in early diagnosis and treatment,
there still remains an unmet need to palliate CRC symptoms, develop novel therapeu-
tic strategies with lower side effects, and prolong the overall survival of the patients [5].
Numerous studies have shown that different cellular pathways including cell cycle, cell
proliferation, drug resistance, apoptosis and metastasis are modulated in CRC. Further-
more, recent findings show that metabolic pathways such as glycolysis can influence the
apoptotic potential of cancer therapeutics. Therefore, therapies targeting various targets in
cancer cells have recently raised more interest [6,7].

Herbal compounds and their derivatives have attracted huge attention and become a
prominent contribution in novel drug discovery programs by exhibiting their therapeutic
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effects through a multi-targeted approach, which is a characteristic that is highly desirable in
cancer malignancies [6]. Phytochemicals may illustrate their antitumor properties through
promoting apoptosis, suppressing the cell cycle, inhibiting angiogenesis and regulating
antioxidant activities. Moreover, numerous naturally bioactive compounds have been
shown to modulate immune checkpoints and affect the activities of immune cells including
T and B cells, Treg cells and NK cells [8]. More interestingly, these natural products have
gained competing interests due to the absence of toxicity and harmful side effects commonly
associated with current therapies [9].

Curcumin is a polyphenolic derivative of turmeric known to have dramatic anticancer
effects on cancer cells rather than normal ones. It has been demonstrated that curcumin
exerts its toxic effects through modulation of the function of multiple genes including
apoptotic, metastatic, cell proliferation and transcription factors [10]. Studies reported that
curcumin modulates cellular pathways involved in cancer pathogenesis including NF-kB,
MAPK, PTEN, P53 and wnt [11]. Despite these tempting advantages of curcumin, the poor
bioavailability limits its exploitation as a therapeutic compound [12]. Our team has recently
formulated and characterized a nano-based encapsulated curcumin, gemini curcumin
(Gemini-Cur), with significant anticancer effects on ovarian, gastric, breast and colorectal
cancer [13–16]. Briefly, gemini surfactant nanoparticles belong to a surfactant family with
two identical structures that are linked by a rigid or flexible spacer that could harbor and
deliver drugs and genes into the cells and tissues. Gemini curcumin nanoparticles are
spherical and well-dispersed vesicles that easily enter the cancer cells [15].

Exploration of the genes with abnormal expression during the treatment of colon
cancer with Gemini-Cur is essential to provide a deeper understanding of the mechanisms
involved. Because regulatory genes are affected by dietary compounds, the ability of
curcumin to modulate the transcriptome profile has attracted much attention [8,17]. Based
on our recent findings on the significant toxic properties of Gemini-Cur on cancer cells,
here, we employed RNA sequencing and bioinformatics analysis to identify the key genes
and related pathways modulated in colorectal HCT-116 cells treated with Gemini-Cur. The
data of the current study help us to determine top Differentially Expressed Genes (DEGs)
as possible cellular targets and figure out potential biological pathways in colon cancer that
are modulated by curcumin.

2. Materials and Methods
2.1. In Vitro Studies
2.1.1. Cell Culture and Reagents

The colorectal cancer HCT-116 cell line was purchased from the Iranian national cell
bank (Pasteur institute, Tehran, Iran). The cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10%
(v/v) fetal bovine serum and 1% (v/v) penicillin–streptomycin solution (both from GIBCO,
USA) at 37 ◦C in a humidified environment with 5% CO2. Curcumin (CAS Number 458-37-
7; Sigma-Aldrich, USA) and mPEG urethane gemini surfactant nanoparticles were a kind
gift from the Institute for Color Science and Technology, Tehran, Iran.

2.1.2. Synthesis of Gemini-Cur nanoparticles

Gemini-Cur nanoparticles were prepared by a nanoprecipitation method previously
reported by our lab [16]. Briefly, we added 6 mg of Cur and 100 mg of gemini surfactants
to 3 mL of methanol. Then, the solution was diluted twice in PBS under gently stirring
condition, and the methanol was evaporated by using a rotary evaporator. The remaining
solution was passed through a 0.22 µM syringe filter to remove possible contaminations
and stored at 4 ◦C until use.
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2.1.3. Gemini-Cur Treatments

We have previously reported the IC50 values for Gemini-Cur on HCT-116 cells. Fur-
thermore, we demonstrated that Gemini-Cur modulates the cell cycle and induces apoptosis
in HCT-116 cells compared to controls [14]. To further confirm cellular toxicity on the cells
treated with Gemini-Cur, we used ethidium bromide/acridine orange (EB/AO) staining.
Briefly, the cells were left untreated or treated with Gemini-Cur at an IC50 dose onto 6-well
plates. After 24, 48 and 72 h, the cells were detached by trypsin (0.25%; Sigma-Aldrich,
USA) and transferred to glass slides. Staining solution (1 µL) containing 100 µg/mL acri-
dine orange and 100 µg/mL ethidium bromide (Sigma-Aldrich, USA) was added to a
suspension of HCT-116 cells. The cells were visualized under fluorescence microscopy
(RX50, LABEX, England), and representative photographs were taken for further qualitative
analysis. Fluorouracil (5-FU) apoptotic images were also provided as positive control.

For RNA sequencing, the cells were seeded on 6-well plates for 24 h and subsequently
treated with Gemini-Cur. After 24 h, the cells were processed for RNA sequencing.

2.1.4. RNA Extraction and Preparation

According to the protocol of TRIzol reagent (Thermo Fisher Scientific, USA), total RNA
was extracted from treated and non-treated HCT-116 cells. A total of six samples including
three controls and three treated cells were incorporated in the study. After validating the
integrity and purity (NanoDropTM, ThermoFisher, USA), all RNAs were treated with
RNase-free DNase I to remove any DNA contamination. Then, RNAs were transferred to
GeneTegra-RNA tubes (GenTegra Co., Seoul, Korea), dried in a freezer dryer (Sartorius Co.,
Germany) and sent to Macrogen Co., for sequencing (Macrogen Co., Seoul, Korea).

2.1.5. Library Construction and RNA Sequencing

Approximately 1 µg of RNA from each sample was used to generate RNA-Seq cDNA
libraries for sequencing using the TruSeq RNA Sample Prep Kit v2 (Illumina, Inc., San Diego,
CA, USA). Sample preparation followed the manufacturer’s protocol with a workflow
that included isolation of polyadenylated RNA molecules using poly-T oligo-attached
magnetic beads, enzymatic RNA fragmentation, cDNA synthesis, ligation of bar-coded
adapters, and PCR amplification. Ambion External RNA Controls Consortium (ERCC)
RNA Spike-In Control Mix 1 (Life Technologies Corporation, Carlsbad, CA, USA) was
added to the samples. The amplified cDNA fragments were sequenced using a HiSeq
2000 sequencing system (Illumina, San Diego, CA, USA). Finally, sequencing data were
converted to raw data in FASTQ format utilizing illumina package bcl2fastq.

2.2. Bioinformatics Studies
2.2.1. Quality Assessment of RNA-seq Data, Mapping and Read Annotation

All processing and analysis on raw data were performed using Ubuntu 20.00 (64-bit)
and open-source software available through the R/Bioconductor. After check and quality
control of paired-end reads with the final version of MultiQC (https://github.com/ewels/
MultiQC, 25 January 2022) and Trimmomatic (http://www.usadellab.org/cms/?page=
trimmomatic, 25 January 2022), the remaining reads as clean reads were mapped to the
genome reference GRCh37 (hg19) using the star (https://github.com/alexdobin/STAR/
releases, 10 January 2022) package, and mapping efficiencies accounted for 98.50%. The
counting of transcripts was also performed with Htseq-count (https://htseq.readthedocs.
io/en/release_0.11.1/count.html, 10 January 2022).

2.2.2. Normalization of Read Counts, Differentially Expression Analysis (DEA) and
Network Construction

In order to normalize and perform differential expression analysis on counts, the
standard Bioconductor RNA-seq workflow (DESeq2) was used to detect differentially
expressed genes (DEGs). The distribution of expression values across all samples (normal
and treatment) before and after normalization was applied to ensure that expression values
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were similar across normalized counts. The PPI network was constructed using STRING
(p-value: 1.0 × 10−164), which resulted in 2736 interactions between 180 nodes based on a
confidence score of 0.007. In order to detect the key parameters, the interaction pairs of the
network obtained from STRING were visualized by Cytoscape (Version 3.6) with a cut-off
value for BC > 0 and K > 8. After analyzing PPI network modules with MCODE, generally,
10 modules obtained. Three significant modules were identified with an MCODE score ≥ 3
and nodes ≥ 3. In order to conduct a gene-pathway annotated network, 300 upregulated
(padj < 0.01, log2 FC > 2) and downregulated (padj < 0.01, log2 FC <−2) genes were mapped
to 117 KEGG pathways. Then, an annotated network was constructed for significant KEGG
pathways by using Cytoscape (Version 3.6). Gene ontology (GO) was conducted using
the enrichR/Bioconductor package to clarify which biological categories (CC, MF, BP) the
DEGs are enriched.

2.2.3. Functional Enrichment and Gene Ontology Analysis

Gene ontology (GO) was conducted using EnrichR web tool to clarify which GO term
and fanatical biology categories (CC: cellular component, MF: molecular function, BP:
biological process) the DEGs are enriched.

2.3. Exploration and Validation of CRC-Related Genes Based on Real-Time PCR and Western
Blotting

To further validation of the RNA sequencing data generated by the above-mentioned
parameters, the differential expression of top five genes including two upregulated (GADD45G
and ATF3) and three downregulated genes (BUB1B, CCNA2 and CDK1) were evaluated
on all treated and non-treated samples in both mRNA and protein levels. Total RNAs
were firstly converted to cDNA using an c (AddBio Co., Seoul, Korea). According to the
manufacturer’s instructions, quantitative PCR analysis was performed by employing Add
SYBER Master kit (AddBio Co., Seoul, Korea) on the CFX96 thermal cycler (Bio-Rad Co.,
Hercules, CA, USA). All the primers (Table 1) were designed by Gene Runner version
6 (http://generunner.net, 1 September 2020), and β-actin was used as internal control.
The quantification of expression levels was studied by the 2−∆∆Ct method. Furthermore,
melting curves were run to confirm the specificity and consistency of the products.

Table 1. Details of primers used in real-time PCR. F: forward; R: reverse.

Gene Sequence (5′→3′) PCR Product

CDK1 F: 5-AGCCGGGATCTACCATACC-3
R: 5-CATGGCTACCACTTGACCTG-3 126

CCNA2 F: 5-GGACAAAGCTGGCCTGAATC-3
R: 5-CTGTTGTGCATGCTGTGGTG-3 116

BUB1B F: 5-CAATTCCAAGCTCGAGTGTC-3
R: 5-GATGATTGGAGCTCTTGCTG-3 146

GADD45G F: 5-GTCAGCCAAAGTCTTGAACG-3
R: 5-GCACTATGTCGATGTCGTTC-3 145

ATF3 F: 5-CAGCACCTTGCCCCAAAATC -3
R: 5-TGGATGGCAAACCTCAGCTC-3 171

β-actin F: 5-CAGCACCTTGCCCCAAAATC -3
R: 5-TGGATGGCAAACCTCAGCTC-3 184

Total protein was extracted from all samples using 500 µL of lysis buffer (Tris-HCl pH 8,
0.08 g NaCl, 0.003 g EDTA, 0.025 g sodium deoxycholate, 0.01 g SDS, and 1% NP40 enriched
with an anti-protease cocktail). Thereafter, 10 µg of protein was electrophoresed using
10% SDS-PAGE at 120 V for 45 min and then transferred onto polyvinylidene difluoride
membranes at 120 V for 1.5 h. The membranes were incubated with appropriate primary
antibodies (all from Santa Cruz Biotechnology, Dallas, TX, USA) at 4 ◦C overnight. After

http://generunner.net


Molecules 2022, 27, 3470 5 of 14

three-time PBS wash, the membranes were incubated with appropriate HRP-conjugated
secondary antibodies (Cat no: sc-516102 and sc-2357; Santa Cruz Biotechnology, USA) for
1 h at room temperature. The immunoblots were detected on X-ray films using chemilu-
minescence ECL solution (Bio-Rad, Herecules, CA, USA). β-actin (Cat no: sc-47778; Santa
Cruz Biotechnology, Inc.) was considered as internal control for normalization.

3. Results
3.1. Suppressive Effect of Gemini-Cur on HCT-116 Cells

Based on our previous reports, gemini surfactant nanoparticles significantly increase
the cellular uptake of curcumin and suppress the proliferation of HCT-116 cells through the
induction of apoptosis. Accordingly, Gemini-Cur significantly increases the proportion of
SubG1 cells and induces apoptosis in HCT-116 cells compared to the non-treated group. Our
Hoechst staining also illustrated the morphological characteristics of membrane shrinkage
and nuclear fragmentation of HCT-116 cells. Here, we further confirm that Gemini-Cur
modulates the growth of HCT-116 cells compared to void curcumin with IC50 value of
51.50 for 24 h (Figure 1A). In accordance with our previous work, acridine orange/ethidium
bromide staining revealed that Gemini-Cur instigates apoptosis in colorectal HCT-116 cells.
As Figure 1B shows, there is no significant apoptosis in non-treated cells (control). In
contrast, the nucleus in dead cells reveals a condensed and granular forms with green–light
orange fluorescence.
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Figure 1. Gemini-Cur affects the proliferation of HCT-116 cells. (A): Gemini-Cur suppresses HCT-116
cells proliferation in a time- and dose-dependent manner. (B): Acridine orange/ethidium bromide
staining also illustrated cells with apoptotic characteristics including membrane shrinkage and
nuclear fragmentation in different incubation times (24, 48 and 72 h, Magnification ×400). Gemini:
gemini surfactant nanoparticles; Cur: curcumin; Gemini-Cur: gemini curcumin.
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3.2. Raw Data Statistics and Quality Assessment

Three replicates of treated samples and corresponding controls were subjected to RNA
sequencing. On average, more than 40 million reads per sample were recorded (Figure 2A).
The proportion of bases with high quality (Q30) was more than 90, indicating that the
quality of RNA sequencing was proper for further analysis. After quality control and the
removal of adaptors, more than 8 million reads were produced for each sample (Figure 2B).
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Figure 2. Distribution of gene counts. As shown in bar plot (A), more than 8 million reads are
produced for each sample. According to density plot, raw read Counts (log2 (counts + 1)) are not
non-normalized distributed (B). The density plot of normalized count (log2 (normalized counts)) per
sample is shown in plot (C). C1-3: controls; T1-3: Treated cells with Gemini-Cur.

3.3. Identification of Differentially Expressed Genes (DEGs)

In order to determine DEGs in treated samples versus controls, the standard Biocon-
ductor RNA-seq workflow (DESeq2) was employed. In total, 3892 DEGs (padj < 0.01)
including 244 upregulated (padj < 0.01, log2 FC > 2) and 198 downregulated (padj < 0.01,
log2 FC < −2) genes were obtained in this study (Supplementary Materials). As Figure 3A
shows, all genes were categorized in non-significant (dark gray) and significant (light blue)
DEGs as well as top down/upregulated genes (red). To further illustrate top-modulated
genes, a heatmap with a color range of blue (down) to red (up) was employed for non-
normalized (Figure 3B) and normalized genes (Figure 3C). The heatmap demonstrates the
differential expression of genes in Gemini-Cur-treated cells in comparison with non-treated
samples. Subsequently, a list of top ten up and downregulated DEGs (padj < 0.01) was
obtained with padj < 0.01, log2 FC > 2 and padj < 0.01, log2 FC < −2, respectively (Table 2).

3.4. Exploration of DEGs in Protein–Protein Interaction (PPI) Network and Subnetworks
(Modules)

To find out the potential interactions at the protein level, DEGs were mapped in STRING,
and the PPI network (Figure 4A) was constructed for top 300 DEGs (up/downregulated genes).
The significant pairs of the network (p-value: 1.0 × 10−164) in 2736 interactions between
180 nodes based on confidence score (0.007) were visualized by Cytoscape software and the
network analyzer plug-in with a cut-off value for BC > 0 and K > 8. After analyzing PPI
network, subnetworks (modules) with a MCODE plug-in of Cytoscape were extracted, and
generally, 10 modules obtained. Three significant modules were identified with MCODE
score≥ 3 and nodes≥ 3 (Figure 4B–D). CDK1, CCNA2, and BUB1B with the highest BC and
K in the PPI network and with the highest score in the MCODE plug-in were significantly
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identified in Module 1 (Figure 4D and Table 3). Accordingly, it is clearly obvious that three
of the DEGs (CDK1, CCNA2, and BUB1B) in the PPI network and module 1 are the genes
that interact the most with others in the PPI network.
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Table 2. The list of top 10 up/downregulated Differentially Expressed Genes (DEGs) based on RNA-
seq data analysis. The DEGs (padj < 0.01) between control and treatment groups are shown with top
10 upregulated genes (padj < 0.01, log2 FC > 2), and top 10 downregulated genes (padj < 0.01, log2
FC < −2). Padj: adjusted p value.

Gene
Symbol STATUS Base Mean log2 Fold

Change lfcSE Stat p Value padj

HMOX1 Up 14082.63 4.581563 0.393634 11.63913 2.61 × 10−31 9.29 × 10−27

DDIT3 Up 7029.257 4.083832 0.394679 10.34723 4.31 × 10−25 7.68 × 10−21

ATF3 Up 5160.583 2.807268 0.27917 10.05577 8.66 × 10−24 1.01 × 10−19

CHAC1 Up 2994.215 3.896157 0.400672 9.724061 2.38 × 10−22 2.12 × 10−18

HERPUD1 Up 12540.28 2.267609 0.254122 8.92332 4.53 × 10−19 3.23 × 10−19

SPX Up 260.3101 4.781735 0.578882 8.260295 1.45 × 10−16 8.64 × 10−13

DNAJB9 Up 2736.219 2.665123 0.342986 7.770348 7.83 × 10−15 3.99 × 10−11

OSGIN1 Up 13215.95 4.534403 0.586017 7.737659 1.01 × 10−14 4.51 × 10−11

LUCAT1 Up 608.1075 3.02517 0.396356 7.632456 2.30 × 10−14 9.13 × 10−11

CYP4F3 Up 547.2113 2.671816 0.369558 7.22977 4.84 × 10−13 1.57 × 10−09

TONSL Down 2059.716 −2.89597 0.395525 −7.32183 2.45 × 10−13 8.72 × 10−10

MCM4 Down 5519.294 −2.8152 0.421581 −6.67772 2.43 × 10−11 4.5 5× 10−08

AC112777.1 Down 221.6533 −3.06376 0.459517 −6.66735 2.60 × 10−11 4.64 × 10−08

FANCA Down 1932.18 −2.67477 0.406894 −6.57362 4.91 × 10−11 7.47 × 10−08

E2F2 Down 629.9052 −2.62378 0.402383 −6.52061 7.00 × 10−11 9.25 × 10−08

BLM Down 995.8815 −2.69881 0.413601 −6.52516 6.79 × 10−11 9.25 × 10−08

NCAPH Down 1459.514 −3.16292 0.490122 −6.45332 1.09 × 10−10 1.32 × 10−07

KIF18B Down 1583.582 −3.07757 0.477409 −6.44639 1.15 × 10−10 1.32 × 10−07

UHRF1 Down 2198.428 −2.78382 0.432416 −6.43782 1.21 × 10−10 1.32 × 10−07

CDCA3 Down 933.7762 −3.48616 0.542823 −6.42228 1.34 × 10−10 1.41 × 10−07



Molecules 2022, 27, 3470 8 of 14

Molecules 2022, 27, x FOR PEER REVIEW 9 of 16 
 

 

Gene Symbol 

Expression 

Based on RNA-

seq 

Degree (K) 
Betweenness 

(BC) 

Closeness Cen-

trality (CC) 
MCODE: Score No; Cluster 

CDK1 Down 106 0.94541487 0.885964912 34.77520814 1 

CCNA2 Down 96 0.299119893 0.789115646 34.77520814 1 

BUB1B Down 90 0.296979671 0.724550898 34.77520814 1 

GADD45G Up 5 0 0 5 5 

ATF3 Up 6 0 0.411764706 2.7 8 

 

Figure 4. Overview of PPI network and subnetworks (modules). The PPI network (A); the yellow 

colors represent key nodes (highest BC and K) in PPI networks. Generally, 10 modules were ob-

tained from the main network and module 1 (D), module 2 (B) and module 3 (C) are significant 

modules. Module 1 with the score of 47.057 and 54 nodes is the more significant module, covering 

three genes CDK1, CCNA2, and BUB1B with the highest BC and K in the PPI network and with the 

highest score in the MCODE plug-in. 

3.5. KEGG Pathway Analysis of DEGs 

For the characterization of DEGs, we performed pathway enrichment analysis in 

KEGG. In total, 300 upregulated (padj < 0.01, log2 FC > 2) and downregulated (padj < 0.01, 

log2 FC < −2) genes were mapped to 117 KEGG pathways. In order to identify which gene 

is associated with biological pathways, a gene-pathway annotated network was created 

using 300 DEGs (up/downregulated genes) alongside the most significant KEGG path-

ways using Cytoscape software. 

Generally, the gene-pathway annotated network showed that DEGs were signifi-

cantly enriched in the cell cycle, E2F-mediated regulation of DNA replication, G1/S-spe-

cific transcription, cell cycle checkpoints, G2/M checkpoints, FOXM1 transcription factor 

network, and G1 to S cell cycle control (Table 4). Surprisingly, a vital gene of our study, 

Figure 4. Overview of PPI network and subnetworks (modules). The PPI network (A); the yellow
colors represent key nodes (highest BC and K) in PPI networks. Generally, 10 modules were obtained
from the main network and module 1 (D), module 2 (B) and module 3 (C) are significant modules.
Module 1 with the score of 47.057 and 54 nodes is the more significant module, covering three genes
CDK1, CCNA2, and BUB1B with the highest BC and K in the PPI network and with the highest score
in the MCODE plug-in.

Table 3. The position of 5 CRC-related candidate genes in the PPI network and subnetworks (mod-
ules). As shown, CDK1, CCNA2 and BUB1B genes with the highest degree (K) and betweenness (BC)
are clustered in subnetwork 1, demonstrating their significant influence in the network. In contrast,
GADD45G and ATF3 genes are classified in clusters 5 and 8, perhaps indicating their independence
to the networks in CRC.

Gene
Symbol

Expression
Based on
RNA-seq

Degree
(K)

Betweenness
(BC)

Closeness
Centrality

(CC)

MCODE:
Score

No;
Cluster

CDK1 Down 106 0.94541487 0.885964912 34.77520814 1
CCNA2 Down 96 0.299119893 0.789115646 34.77520814 1
BUB1B Down 90 0.296979671 0.724550898 34.77520814 1

GADD45G Up 5 0 0 5 5
ATF3 Up 6 0 0.411764706 2.7 8
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3.5. KEGG Pathway Analysis of DEGs

For the characterization of DEGs, we performed pathway enrichment analysis in
KEGG. In total, 300 upregulated (padj < 0.01, log2 FC > 2) and downregulated (padj < 0.01,
log2 FC < −2) genes were mapped to 117 KEGG pathways. In order to identify which gene
is associated with biological pathways, a gene-pathway annotated network was created
using 300 DEGs (up/downregulated genes) alongside the most significant KEGG pathways
using Cytoscape software.

Generally, the gene-pathway annotated network showed that DEGs were significantly
enriched in the cell cycle, E2F-mediated regulation of DNA replication, G1/S-specific tran-
scription, cell cycle checkpoints, G2/M checkpoints, FOXM1 transcription factor network,
and G1 to S cell cycle control (Table 4). Surprisingly, a vital gene of our study, CDK1, was
significantly enriched in all significant pathways that may act as a bridge between both
the CRC-related genes (CCNA2, BUB1B, GADD45G and ATF3) and other gene-pathway
annotated network genes (Figure 5).
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Figure 5. Overview of the gene-pathway network (annotated network) created by cystoscope. The
blue nodes represent the CRC candidate genes connected with the pathways and other nodes in the
network. The orange nodes represent other pathways in connection with CRC genes. According to
this network, it can be demonstrated that CDK1 is involved in all significant first-level pathways;
it is associated with related genes in each of the pathways and with other most significant CRC-
related genes (CCNA2, BUB1B, GADD45G, ATF3). The dominant pathway is cell cycle with padj
1.82 × 10−34.
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Table 4. Status of CRC-related genes—CDK1, CCNA2, BUB1B, GADD45G, and ATF3—in gene-
pathway annotated networks. The table shows that CDK1 is prominently involved in different
pathways. The gene pathways are significantly enriched in cell cycle-related networks. Padj: adjusted
p-value.

Pathway Gene Symbol Padj

Cell cycle

TOP2A; ERCC6L; MCM7; PRIM1; HJURP;
BUB1B; MCM10; TTK; PKMYT1; TYMS;

AURKB; LMNB1; CCNB1; POLD1; E2F1; E2F2;
CLSPN; BUB1; CENPURRM2; GADD45B;
GADD45A; UBE2C; TUBB; PLK1; KIF23;

ZWINT; GADD45G; DHFR, CCNA2; POLA1;
CENPF; ESPL1; CENPI; POLE2; CDK1; MCM3;
MCM4; BIRC5; MCM5; KIF2C; KIF20A; MCM6;

SPC24; MCM2; SPC25; MAD2L1

1.82 × 10−34

E2F-mediated regulation of
DNA replication

DHFR; POLA1; CCNB1; RRM2; PRIM1; E2F1;
CDK1; TYMS 1.67 × 10−08

G1/S-specific transcription DHFR; POLA1; RRM2; CDK1; E2F1; TYMS 1.79 × 10−07

Cell cycle checkpoints
MCM7; UBE2C; BUB1B; MCM10; CCNB1;

CDK1; MCM3; MCM4; MCM5; CLSPN; MCM6;
MCM2; MAD2L1

2.84 × 10−09

G2/M checkpoints CCNB1; MCM7; CDK1; MCM3; MCM4;
MCM10; MCM5; CLSPN; MCM6; MCM2 2.89 × 10−10

FOXM1 transcription
factor network

CCNA2; CCNB1; CENPF; PLK1; CDK1; BIRC5;
FOXM1; AURKB; HSPA1B 4.54 × 10−09

G1 to S cell cycle control DHFR; POLA1; RRM2; CDK1; E2F1; TYMS 3.83 × 10−12

3.6. Functional Enrichment and Gene Ontology (GO) Analysis

To better understand the molecular role of selected genes involved in the suppressive
effect of Gemini-Cur on HCT-116 cells, DEGs were mapped in the GO database using an
online web tool (https://maayanlab.cloud/Enrichr, 25 January 2021), and a threshold of
Padj < 0.05 and gene counts > 5 was considered. Here, gene ontology was performed
for 198 downregulated and 244 upregulated genes separately, and the status of all five
selected genes in all three categories (BP; biological process, MF; molecular function, and
CC; cellular component) was assessed.

Interestingly, the GO results of the integrated group showed that upregulated ATF3 is
significantly enriched in BP category including response to endoplasmic reticulum stress,
regulation of transcription from RNA polymerase II promoter in response to stress, and MF
category with protein hetero-dimerization activity. In addition, GADD45G was enriched in
the regulation of p38MAPK cascade as well as control of the p38MAPK pathway, both in
BP process (Table 5). In contrast, downregulated genes (CCNA2, BUB1B, and CDK1) were
involved in almost all three categories and different cellular cascades.

In Vitro Validation Study by Real-Time PCR and Western Blotting

To further validation of the RNA sequencing data generated by the above-mentioned
parameters, the differential expression of top five genes including two upregulated (GADD45G
and ATF3) and three downregulated (BUB1B, CCNA2 and CDK1) were evaluated on
all treated and non-treated samples in mRNA and protein levels. As Figure 6A shows,
the expression of BUB1B, CCNA2 and CDK1 is significantly down-expressed in treated
cells. Accordingly, the data illustrated that ATF3 (p value < 0.05) and GADD45G are
upregulated in Gemini-Cur treated cells, although this was not significant for GADD45G.
These modulations were confirmed in protein level as shown in Figure 6B.

https://maayanlab.cloud/Enrichr
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Table 5. The top significantly gene ontology (GO) categories (BP: biological process; CC: cellular
component; MF; molecular function) based on upregulated genes with the threshold of |log fold
change (FC)| ≥ 2 and a Bonferroni p < 0.05. Padj: adjusted p value.

GO Term Source Padj Gene Symbol

microtubule cytoskeleton
organization involved in mitosis BP 3.94 × 10−23 ERCC6L; BUB1B; CDCA8; TTK; CENPA; TACC3; BIRC5;

CENM; KIF2C; SPC24; MAD2L1;

mitotic spindle organization BP 1.75 × 10−22 ERCC6L; BUB1B; CDCA8; TTK; CENPA; KIF2C; SPC24;
MAD2L1; SPC25

mitotic sister chromatid
segregation BP 1.37 × 10−21 SPAG5; CDCA5; P LK1; NCAPG2; CDCA8; NCAPG; PSRC1;

ESPL1; KIFC1; PRC1; CDK1; KIF2C

DNA metabolic process BP 8.96 × 10−20 TOP2A; BLM; FEN1; RNASEH2A; MCM7; UHRF1; HMGB2;
MCM10; TYMS; CDK1; MCM4; MCM5; MCM6; MCM2

positive regulation of cell cycle
process BP 9.66 × 10−10

UBE2C; TUBB; CCNF; PLK1; CDC7; CDC25C; PKMYT1;
FOXM1; AURKA; CCNA2; CCNB2; CCNB1; CDK1; E2F1;

TACC3; NEK2; CDKN3

spindle CC 2.01 × 10−18
SPAG5; CKAP2L; PLK1; BUB1B; CDC7; KIF23; TTK; KIF22;
SKA3; AURKB; AURKA; CDC20; CENPF; CDK1; TACC3;

BIRC5; KIF2C; KIF20A

nucleus CC 2.20 × 10−13

TOP2A; ARHGAP11A; FEN1; MCM7; DSCC1; CCNF;
NCAPG2; HMGB2; MCM10; CCNA2; ASPM; MCM5; KIF20A;
MCM6; PRR11; MCM2; BLM; RAD51; PRC1; UBE2T; CDK1;

TRIP13; MAD2L1

intracellular
non-membrane-bounded
organelle

CC 4.72 × 10−10

TOP2A; FEN1; MCM7; CDCA5; HJURP; HMGB2; BUB1B;
CDCA8; MCM10; TTK; MKI67; PKMYT1; AURKB; PLK1;

VRK1; KIF23; ESCO2; PIMREG; CIT; CENPF; PSRC1; PRC1;
UBE2T; KIF2C; KIF20A; TRIP13; SPC24; MCM2

cyclin-dependent protein kinase
holoenzyme complex CC 4.89 × 10−05 CCNA2; CCNB2; CCNB1; CCNF; CDK1

serine/threonine protein kinase
complex CC 1.32 × 10−04 CCNA2; CCNB2; CCNB1; CCNF; CDK1

histone kinase activity MF 7.17 × 10−04 CDK1; AURKB; AURKA
protein serine/threonine kinase
activity MF 0.001470884 PLK1; CDK1; PBK; NEK2; VRK1; CDC7; TTK; PASK;

PKMYT1; AURKB; CIT; AURKA

kinase binding MF 0.004957845 CAV1; PLK1; VRK1; CDC25C; FOXM1; AURKB; CIT;
AURKA; ARHGAP33; CCNA2

cyclin-dependent protein
serine/threonine kinase regulator
activity

MF 0.00820989 CCNA2; CCNB2; CCNB1; CCNF
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and treated cells.
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4. Discussion

Despite recent advances in early diagnosis and proper treatments, colorectal cancer
(CRC) is still considered as the third leading cause of cancer-related deaths worldwide [1,2].
Gemini-Cur is one of the latest nano-formulations of curcumin with a significant anticancer
effect that has recently been developed by our group [15]. We have already reported
that Gemini-Cur inhibits the proliferation of different cancer cells through the induction
of apoptosis [13–16]. Due to the limited information on the global effect of curcumin
on transcriptome profiling, we employed RNA sequencing to uncover the differentially
expressed genes and cellular pathways that are affected by Gemini-Cur in colorectal cancer
cells. Here, our data not only confirm the suppressive effect but also demonstrate that
numerous genes in different cellular pathways are modulated by Gemini-Cur in HCT-116
cells.

Along with all the steps of quality control and RNA-seq raw data normalization, the
DEA (Differentially Expressed Analysis) process introduced about 3892 genes as DEGs
(padj < 0.01) with 244 upregulated (padj < 0.01, log2 FC ≥ 2), and 198 downregulated genes
(padj < 0.01, log2 FC≤ −2). The PPI network was also created by Cytoscape to better figure
out the possible correlations between DEGs. Consequently, three of the top significant
downregulated genes including cyclin-dependent kinase 1 (CDK; padj = 1.08 × 10−06, log2
FC = −3.15), cyclin A2 (CCNA2; padj = 2.87 × 10−05, log2 FC = −3.056) and BUB1 mitotic
checkpoint serine/threonine kinase B (BUB1B; padj = 2.72 × 10−06, log2 FC = −2.99) as
well as two upregulated genes including growth arrest and DNA damage inducible gamma
(GADD45G; padj = 1.47 × 10−06, log2 FC = 4) and activating transcription factor 3 (ATF3;
padj = 1.03 × 10−19, log2 FC = 4) were selected from top ten DEG lists for further validation
of RNA sequencing results.

Numerous reports have shown that ATF3 and GADD45G play critical roles in cancer.
Inoue et al. illustrated that the ATF3 transcription factor inhibits the migration and invasion
of HCT-116 cells. ATF3 is also involved in the process of cellular stress response [18].
Here, RNA sequencing and experimental studies show that transcription factor ATF3 as
a key regulator of cellular stress response is upregulated in cancer cells after treatment
with Gemini-Cur. These findings demonstrate increasingly the potential of ATF3 as a
therapeutic candidate in colorectal cancer. In another work, Guo et al. demonstrated that
the overexpression of GADD45G acts as tumor suppressor in AML [19]. Although RNA
sequencing showed that GADD45G is upregulated in treated cells, this overexpression was
not detected in PCR and Western blotting. This contradictory finding may be due to the
presence of different RNA reads including RNAs from paralogous genes and pseudogenes.
However, PCR and Western blotting only detect main predominant variant of GADD45G.

Accordingly, CCNA2, BUB1B, and CDK1 genes have been downregulated in Gemini-
Cur treated cells versus the non-treated group. According to the gene-pathway annotated
network, it is revealed that CDK1 is involved in the cell cycle and associated with other
CRC-related genes (CCNA2, BUB1B, GADD45G, ATF3). CDK1 contributes to the cell
proliferation, apoptosis, and cell migration [20,21]. It was shown that the upregulation
of CDK1 leads to poor prognosis in patients with CRC [22]. Zhu et al. and Thoma
et al. indicated that the downregulation of CDK1 inhibited fluorouracil-resistant CRC cell
proliferation [23,24].

Regarding the BUB1B and CCNA2, both genes have been reported as upregulated
genes in CRC [25–27]. Gan et al. indicated that the CCNA2 knockdown could significantly
suppress CRC cell growth by impairing cell cycle progression and inducing cell apopto-
sis [20]. Ding et al. also reported that the upregulation of BUB1B, CDK1, and CCNA2 genes
contribute to the progression of tumor growth and metastasis of CRC [28]. These results
further validate our analysis methods and the accuracy of RNA sequencing for exploring
the novel top up/downregulated genes in different conditions.

The joint cooperation of GADD45G and CDK1 in the p53 activity regulation pathway
is another attractive result of this study. GADD45G plays a role in the activation of S and
G2/M checkpoints during p53-related DNA damage responses [29,30]. The modulatory



Molecules 2022, 27, 3470 13 of 14

effect of Gemini-Cur on these genes may highlight their collaborative role in cell stress
response.

5. Conclusions

Taken together, our data show that Gemini-Cur comprehensively modulates gene
expression in colorectal cancer HCT-116 cells. Gene ontology annotations related to DEGs
found here include DNA-dependent ATPase (MF) during metabolic processes (BP) in
nucleus (CC). Further analysis also demonstrated that Gemini-Cur dominantly affects cell
cycle-related pathways. These RNA sequencing data greatly expand our understanding of
the molecular and cellular targets of curcumin in cancer. We also reported novel potential
targets for curcumin as listed in the top ten DEGs. Further investigations on the top
up/downregulated genes especially in different cancer cell lines and non-cancerous controls
will facilitate the findings of curcumin targets in colon cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113470/s1, supplementary materials: Transcrip-
tome Profiling of HCT-116 Colorectal Cancer Cells with RNA Sequencing Reveals Novel Targets
for Polyphenol Nano Curcumin. The standard Bioconductor RNA-seq workflow (DESeq2), was
employed to detect differentially expressed genes (DEGs) in Gemini-Cur treated cell compared to
controls. Regarding the parameters p values and Log2 fold change, 3892 DEGs were selected as listed.
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