
 

 
 

                                                                   

  

 
DIPARTIMENTO DI SCIENZE DELLA TERRA 

Universita` degli Studi di Torino 

 

DOCTORAL SCHOOL OF SCIENCE AND INNOVATIVE TECHNOLOGIES 

PhD PROGRAM IN EARTH SCIENCES 

 

 

 

CURRENT AND FUTURE GLOBAL DEBRIS FLOW SUSCEPTIBILITY, 

HUMAN VULNERABILITY, AND THE IMPACT OF SPATIAL DATA 

UNCERTAINTY ON SUSCEPTIBILITY MODELING 

 

 

 

PhD CANDIDATE:      Laurie Jayne Kurilla 

 

 

TUTOR:       Prof. Giandomenico Fubelli 

CO-TUTOR:       Prof.ssa  Anna Maria Ferrero 

 

EXTERNAL EXAMINER    Prof. Gaetano Robustelli 

       Universita` della Calabria 

       Department of Earth Sciences 

        

EXTERNAL EXAMINER    Prof. Luigi Lombardo 

       University of Twente 

Department of Appled Earth Sciences 

        

 

 

PhD CYCLE:   XXXIV 

PhD COORDINATOR:  Prof.ssa Anna Maria Ferrero 

ACADEMIC YEARS:  2018/2019, 2019/2020, 2020/2021 

SCIENTIFIC DISCIPLINARY SECTOR: GEO/04  Physical geography and geomorphology 

 

 

 



 

 

 

 

 

 

 

 

 

Dedication 

 

My family made my dual-continent life easier through their love, acceptance, and support of my life’s 

mission, while enduring many inconveniences with my absence, and not increasing my guilt for pursuing 

this selfish passion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Acknowledgements 

 

Throughout the research and writing of this dissertation I have received valuable direct and indirect support 

and assistance. 

I am grateful to the University of Torino Department of Earth Sciences for accepting me into their program 

and giving me the opportunity to pursue my purpose in life; for the valuable guidance, assistance, and 

acceptance I received from professors, staff, and PhD students. Grazie mille to my advisors (co-tutors) Prof. 

Giandomenico Fubelli and Prof. Anna Maria Ferrero. Prof. Fubelli’s expertise and guidance were 

invaluable in supporting my research and methodology questions, and my co-tutor Prof. Ferrero, was 

always available to respond to my questions and included me in opportune meetings and field excursions. 

I would also like to thank Prof. Giuseppe Mandrone (University of Torino/Polytechnical University of 

Torino) for inviting my participation in professional introductions, and field trips, and for providing a 

feeling of inclusivity in the Department and Italy.  

I wish to thank Dr. Pierluigi Pieruccini (University of Torino) and Dr. Leonardo Disperati (University of 

Siena) for their availability and guidance for my questions on soils. 

 

I am grateful to my dissertation committee (Prof. Luigi Lombardo, University of Twente, and Prof. 

Gaetano Robustelli, Universita’ della Calabria) for their time and expertise in reviewing and evaluating 

my dissertation.   

 

In memory of Dr. Joan Petersilia (Stanford University):   her excitement, deep understanding, and support 

for this pursuit of my destiny, was ever present. I think of her every time I use my timesaving, self-

organizing bibliography software which she introduced to me as I began this journey. My dear friend 

inspired me as a human-being and as a professional, and I miss her deeply. 

 

 

 

 

 



 

i 
 

 

 

 

Table of Contents 

List of Tables ................................................................................................................................................ vi 

List of Figures ............................................................................................................................................. viii 

Abstract ......................................................................................................................................................... 1 

1 Introduction .......................................................................................................................................... 4 

1.1 Global versus Continental Modeling ............................................................................................. 6 

1.2 Data and Model Uncertainties ...................................................................................................... 7 

1.3 The Impact of Climate Change on Future Debris Flow Susceptibility ........................................... 8 

1.4 Human and Economic Impact ....................................................................................................... 9 

1.5 Antecedent Wildfire Probability as a Potential Susceptibility Contributor ................................ 10 

1.6 Glacier and Permafrost Melting as a Potential Contributor ....................................................... 10 

1.7 Approach ..................................................................................................................................... 11 

2 State of the Art .................................................................................................................................... 12 

3 Research Objectives ............................................................................................................................ 15 

4 Characterizations, Assumptions, Illuminations ................................................................................... 17 

4.1 Debris Flows ................................................................................................................................ 17 

4.2 Susceptibility ............................................................................................................................... 17 

4.3 Assumptions and Illuminations ................................................................................................... 18 

5 Data ..................................................................................................................................................... 20 

5.1 Historical Debris Flow Event Data ............................................................................................... 20 

5.2 Predisposing Environmental Data ............................................................................................... 23 

5.2.1 Climate, Aridity, and Precipitation ...................................................................................... 24 

5.2.2 Depth to Bedrock ................................................................................................................ 28 

5.2.3 Hydrology ............................................................................................................................ 29 

5.2.4 Lithology .............................................................................................................................. 29 

5.2.5 Landcover ............................................................................................................................ 30 

5.2.6 Soil ....................................................................................................................................... 31 

5.2.7 Tectonics ............................................................................................................................. 31 



 

ii 
 

5.2.8 Topography ......................................................................................................................... 31 

5.3 Augmenting Environmental Influences....................................................................................... 32 

5.3.1 Wildfire Probability ............................................................................................................. 32 

5.3.2 Glaciers ................................................................................................................................ 32 

5.4 Data Associated with Societal Impact Analyses .......................................................................... 33 

5.4.1 Population ........................................................................................................................... 33 

5.4.2 Roads ................................................................................................................................... 33 

6 Study Area ........................................................................................................................................... 34 

7 Global versus Continental Approach to Susceptibility Analysis .......................................................... 36 

7.1 Data and Methodology ............................................................................................................... 36 

7.1.1 Overview ............................................................................................................................. 36 

7.1.2 Statistical Analyses:  Probability Density, Conditional Probability, Certainty Factor, 

Frequency Ratio .................................................................................................................................. 39 

7.1.3 Statistical Analyses:   Maximum Entropy ............................................................................ 42 

7.1.4 Classification and Verification ............................................................................................. 44 

7.2 Results ......................................................................................................................................... 45 

7.2.1 Global Results ...................................................................................................................... 45 

7.2.2 Continental Results ............................................................................................................. 47 

7.3 Discussion .................................................................................................................................... 58 

7.4 Conclusions ................................................................................................................................. 61 

8 Impact of Spatial Data Uncertainty on Debris Flow Susceptibility Analyses ...................................... 63 

8.1 Methodology ............................................................................................................................... 64 

8.2 Results ......................................................................................................................................... 67 

8.2.1 Impact of locational uncertainty on precipitation as a predisposing factor - Europe ........ 69 

8.2.2 Impact of locational uncertainty on fault density as a predisposing factor – Europe ......... 71 

8.2.3 Impact of locational uncertainty on soil as a predisposing factor - Europe ....................... 72 

8.2.4 Impact of factor uncertainties on susceptibility results - Europe ....................................... 73 

8.2.5 Global Susceptibility Model Comparisons .......................................................................... 80 

8.3 Discussion .................................................................................................................................... 84 

8.4 Conclusions ................................................................................................................................. 93 

9 Future Debris Flow Susceptibility ....................................................................................................... 97 

9.1 Introduction ................................................................................................................................ 97 

9.2 Model Constraints ....................................................................................................................... 98 



 

iii 
 

9.3 Methodology ............................................................................................................................. 100 

9.4 Results ....................................................................................................................................... 101 

9.5 Discussion .................................................................................................................................. 109 

9.6 Conclusions ............................................................................................................................... 113 

10 Human Vulnerability and Debris Flow Susceptibility .................................................................... 115 

10.1 Introduction .............................................................................................................................. 115 

10.2 Results and Discussion .............................................................................................................. 117 

10.3 Conclusions ............................................................................................................................... 122 

11 Ancillary Factor and Trigger Considerations ................................................................................. 123 

11.1 Legacy Factor ............................................................................................................................ 123 

11.2 Fire Probability as an Amplifier to Debris Flow Predisposing Factors ...................................... 125 

11.3 Future Glacial Melting as a Potential Amplifier to Debris Flow Triggers .................................. 131 

12 Conclusion ..................................................................................................................................... 136 

12.1 Summary ................................................................................................................................... 136 

12.2 Key Models ................................................................................................................................ 140 

12.3 Key Findings .............................................................................................................................. 144 

13 References .................................................................................................................................... 147 

APPENDIX A TRAIN and TEST1 Environmental Conditions ....................................................................... 157 

A.1 TRAIN and TEST1 Comparisons - Overview .................................................................................... 157 

A.1.1 TRAIN and TEST1 Tectonic Comparisons ................................................................................. 157 

A.1.2 TRAIN and TEST1 Landcover/Land Use Comparisons .............................................................. 159 

A.1.3 TRAIN and TEST1 Soil Type Comparisons ................................................................................ 160 

A.1.4 TRAIN and TEST1 Soil Thickness Comparisons......................................................................... 161 

A.1.5 TRAIN and TEST1 Slope Comparisons ...................................................................................... 162 

A.1.6 TRAIN and TEST1 Landform Comparisons ............................................................................... 163 

A.1.7 TRAIN and TEST1 Lithology Comparisons ................................................................................ 164 

A.1.8 TRAIN and TEST1 Köppen-Geiger (KG) Climate Classification Comparison ............................. 165 

A.1.9 TRAIN and TEST1 Average Monthly Precipitation Comparison ............................................... 166 

A.1.10 TRAIN and TEST1 Distribution by Country Comparison......................................................... 167 

A.2 TEST1 Environmental Conditions .................................................................................................... 168 

A.2.1 TEST1 Distance to Faults .............................................................................................................. 168 

A.3.2 TEST1 Distance to Water Bodies.................................................................................................. 170 

A.3.3 TEST1 Global Fault Density ...................................................................................................... 172 



 

iv 
 

A.3.4  TEST1 Fault Density by Continent ........................................................................................... 173 

Appendix B. Data Sources ......................................................................................................................... 176 

B.1 Landslide Inventories ...................................................................................................................... 176 

B.2 Lithology.......................................................................................................................................... 176 

B.3 Topography ..................................................................................................................................... 176 

B.4 Climate classification ...................................................................................................................... 176 

B.5  Precipitation ................................................................................................................................... 177 

B.6  Aridity ............................................................................................................................................. 177 

B.7  Soils ................................................................................................................................................ 177 

B.8  Land use/Land cover ...................................................................................................................... 177 

B.9  Landforms ...................................................................................................................................... 178 

Appendix C –Global and Continental Environmental Data Coverages ..................................................... 179 

C.1 Climate Classification Current/Future Global Coverage ................................................................. 179 

C.2 Landcover Global Coverage ............................................................................................................ 180 

C.3 Aridity Global and Continental Coverage ....................................................................................... 180 

C.4 Landform Global Coverage ............................................................................................................. 181 

C.5 Elevation Global and Continental Coverage ................................................................................... 183 

C.6 Fault Density Global and Continental Coverage ............................................................................. 183 

C.7 Tectonics Global and Continental Coverage ................................................................................... 184 

C.7.1 Tectonics Global Coverage ....................................................................................................... 184 

C.7.2 Tectonics Africa Coverage ........................................................................................................ 185 

C.7.3 Tectonics Asia Coverage .......................................................................................................... 186 

C.7.4 Tectonics Australia Coverage ................................................................................................... 187 

C.7.5 Tectonics Europe Coverage...................................................................................................... 188 

C.7.6 Tectonics North America Coverage ......................................................................................... 189 

C.7.7 Tectonics Oceania Coverage .................................................................................................... 190 

C.7.8 Tectonics South America Coverage ......................................................................................... 191 

C.8 Precipitation .................................................................................................................................... 192 

C.9 Elevation ......................................................................................................................................... 194 

C.10 Lithology ........................................................................................................................................ 195 

C.11 Soils ............................................................................................................................................... 196 

C.11.1 Soil Type ................................................................................................................................. 196 

C.11.2 Soil Thickness ......................................................................................................................... 197 



 

v 
 

C.11.3 Soil Drainage .......................................................................................................................... 198 

Appendix D  Probability Density, Frequency Ratio, Conditional Probability, and Certainty Factor 

Statistical Model Calculations ................................................................................................................... 199 

D.1  Precipitation, Aridity, Closest Water Body, Distance to Water Bodies ......................................... 199 

D.2 Elevation, Slope, Landcover/Land Use, Soil Thickness, Soil Type ................................................... 200 

D.3 Landform ........................................................................................................................................ 201 

D.4 Closest “Active Faults” Type, Closest Plate Boundary Type, Fault Density .................................... 202 

Appendix E Maximum Entropy Results ..................................................................................................... 203 

E.1 Global .............................................................................................................................................. 203 

E.2  Africa .............................................................................................................................................. 212 

E.3  Asia ................................................................................................................................................. 224 

E.4 Australia .......................................................................................................................................... 235 

E.5 Europe ............................................................................................................................................. 248 

E.6 North America ................................................................................................................................. 259 

E.7 Oceania ........................................................................................................................................... 270 

E.8 South America ................................................................................................................................. 280 

APPENDIX F Susceptibility Analyses .......................................................................................................... 292 

F.1 Comparison of global susceptibility models with verification data (TEST1) ................................... 292 

F.2 MaxEnt global vs continental susceptibility results with Equal Interval Classification ................... 293 

F.3 MaxEnt global vs continental susceptibility results with Jenks Natural Breaks Classification. 

Detailed and summarized ..................................................................................................................... 294 

Appendix G Global MaxEnt Susceptibility Model Backward Analyses ..................................................... 296 

  



 

vi 
 

List of Tables 
Table 5.1 TRAIN distribution by country ..................................................................................................... 21 

Table 5.2 Continental distribution of TRAIN and TEST1 debris flow events. .............................................. 22 

Table 5.3  Locational uncertainty associated with 99 Europe and 2294 global debris flows ..................... 22 

Table 5.4  Köppen-Geiger classification ...................................................................................................... 26 

Table 5.5  Source data Aridity Index value, classification, and projected derived values .......................... 28 

Table 5.6  GLCNMO landcover classification from Kobayashi et al  (Kobayashi et al., 2017) ..................... 30 

Table 6.1  Continental geomorphic characteristics  (Bridges, 2012) ......................................................... 34 

Table 6.2  Continental land use/landcover characteristics. ........................................................................ 34 

Table 6.3  Continental lithology characteristics. ......................................................................................... 34 

Table 7.1  Sample probability density, frequency ratio, conditional probability, and certainty factor 

statistical results for lithology and Köppen-Geiger climate predisposing environment factors ................ 41 

Table 7.2  Summary of contributions to the FR and CF statistical models ................................................. 42 

Table 7.3  Environmental variables (factors) employed in each statistical model ..................................... 44 

Table 7.4  Susceptibility model results verified with TEST1 events. ........................................................... 45 

Table 7.5 Percent of verification events (TEST1) and MAXENT classification, by continent. ..................... 47 

Table 7.6  Continental cut from  global model  minus continental model, susceptibility differences by 

area (pixel count). ....................................................................................................................................... 49 

Table 7.7  Number of susceptibility classification differences between the global model and mosaic of all 

continental models ..................................................................................................................................... 49 

                  Table 7.8  Global Africa “cut” susceptibility model minus continental Africa model, by percent 

area coverage. ............................................................................................................................................. 50 

Table 7.9  Global Asia  “cut” susceptibility model minus continental Asia model, by percent area 

coverage. ..................................................................................................................................................... 51 

Table 7.10  Global Australia  “cut” susceptibility model minus continental Australia model, by percent 

area coverage. ............................................................................................................................................. 52 

Table 7.11  Global Europe  “cut” susceptibility model minus continental Europe model, by percent area 

coverage. ..................................................................................................................................................... 54 

Table 7.12  Global North America  “cut” susceptibility model minus continental North America model, by 

percent area coverage. ............................................................................................................................... 55 

Table 7.13  Global Oceania  “cut” susceptibility model minus continental Oceania model, by percent area 

coverage. ..................................................................................................................................................... 56 

Table 7.14  Global South America  “cut” susceptibility model minus continental South America model, by 

percent area coverage. ............................................................................................................................... 57 

Table 7.15  Predominant factor class values associated with the debris flow events (TEST1). Bold italic 

emphasis indicates those factors which are comparable among the majority of continents. ................... 60 

Table 8.1  AUC and factor percent contribution for Europe "Original" MAXENT susceptibility model. .... 68 

Table 8.2  Range and number of varying precipitation values associated with all 93 debris flow event 

buffered areas. ............................................................................................................................................ 70 

Table 8.3  Example impact of uncertain location:  buffered area values vs point value on associated  

precipitation factor class determination, for two sample events. ............................................................. 70 



 

vii 
 

Table 8.4  Example impact of uncertain location buffered area vs point values of fault density, for sample 

events 560 and 6381. .................................................................................................................................. 72 

Table 8.5  Uncertain location buffered area vs point values of associated soil factor class, for sample 

events. ......................................................................................................................................................... 73 

Table 8.6  AUC and factor contributions for each of the six Europe MaxEnt models. ............................... 75 

Table 8.7  Comparison of factor classes with highest significance to susceptibility in four models. ......... 77 

Table 8.8   “Original” model susceptibility values for Events 560 and 6381 within 50 km, 10 km, and 5 km 

buffers. ........................................................................................................................................................ 79 

Table 8.9  Percent area coverage of susceptibility (based on pixel count) per susceptibility classification 

for each of five    Europe MaxEnt models. .................................................................................................. 80 

Table 8.10  Breakdown of global debris flows and associated  locational uncertainty .............................. 80 

Table 8.11  AUC and Area coverage (pixel count) percentage of debris flow susceptibility by model. ..... 82 

Table 8.12  Count of global debris flow events with an “exact” known location. ...................................... 87 

Table 8.13  Number and percentage of total points by model. .................................................................. 87 

Table 8.14  AUC by model. .......................................................................................................................... 88 

Table 8.15  Locational uncertainty frequency distribution of Europe debris flow inventory (left), world 

debris flow inventory (center), and world inventory of all landslide types (right). .................................... 94 

Table 9.1  Predisposing environmental factors, factor classes, and assigned weights for future 

susceptibility model. ................................................................................................................................. 101 

Table 9.2  Percent area of debris flow susceptibility classification by model. ......................................... 104 

Table 9.3  Comparison of geographic extent of ‘increased’ versus “decreased” debris flow susceptibility

 .................................................................................................................................................................. 109 

Table 10.1  World/continental population in 2015 and projections by geographic distribution (Cherlet et 

al., 2018) and by geomorphic environment (IPCC, 2019b) ....................................................................... 116 

Table 10.2  Future urban population within RCP 2.6 and 8.5 debris flow susceptibility classifications. .. 118 

Table 11.1  Percent change in land associated with each susceptibility classification, after adding wildfire 

probability, for the current, RCP 2.6, and RCP 8.5 debris flow susceptibility models. ............................. 131 

Table 11.2  126,372 glaciers with slope 20-35 degrees, by continent ...................................................... 132 

Table 11.3  Percent of glaciers within debris susceptibility classification, by current and future models, 

with and without wildfire probability ....................................................................................................... 135 

 

 

 

 

 



 

viii 
 

List of Figures 
Figure 5.1  Global distribution of validation (TRAIN) in red and verification (TEST1) debris flow events in 

green ........................................................................................................................................................... 23 

Figure 5.2  (a) Present day (1980-2016) Köppen-Geiger map and (b) future (2071-2100) from Beck et al 

(Beck et al., 2018) ....................................................................................................................................... 25 

Figure 5.3  Global Aridity Index (1970-2000).  Higher values represent more humid conditions, with low 

(brown/yellow)    representing higher aridity ............................................................................................. 27 

Figure 5.4  Global absolute depth to bedrock (cm) from Shangguan et al (Shangguan et al., 2017) ......... 28 

Figure 5.5  Representation of global lithology and basic lithological classes from Hartmann et al (J. 

Hartmann & Nils Moosdorf, 2012).............................................................................................................. 29 

Figure 7.1  Summary overview of the continental versus global modeling process. ................................. 39 

Figure 7.2 Global Frequency Ratio susceptibility model ............................................................................. 46 

Figure 7.3  Global Probability Density susceptibility model ....................................................................... 46 

Figure 7.4  Global Maximum Entropy susceptibility model ........................................................................ 46 

Figure 7.5  Global MaxEnt debris flow susceptibility minus composite (mosaic) of individual continental 

MaxEnt susceptibility models ..................................................................................................................... 48 

Figure 7.6  Global “cut” Africa susceptibility model minus Continental Africa .......................................... 50 

Figure 7.7  Global “cut” Asia susceptibility model minus Continental Asia model ..................................... 51 

Figure 7.8  Global “cut” Australia susceptibility model minus continental Australia ................................. 52 

Figure 7.9  Europe global cut MAXENT susceptibility ................................................................................. 53 

Figure 7.10  Continental MAXENT susceptibility ........................................................................................ 53 

Figure 7.11  Europe debris flow susceptibility difference map. Global cut model minus continental model

 .................................................................................................................................................................... 53 

Figure 7.12  North America debris flow susceptibility difference map. Global cut model minus 

continental model. ...................................................................................................................................... 55 

Figure 7.13  Western (left) and eastern hemisphere (right) Oceania debris flow susceptibility difference 

map. Global cut model minus continental model ...................................................................................... 56 

Figure 7.14  South America debris flow susceptibility difference map. Global cut model minus 

continental model ....................................................................................................................................... 57 

Figure 8.1   Distribution of  Europe TRAIN (validation), black dots, and TEST1 (verification) samples, green 

dots. ............................................................................................................................................................ 65 

Figure 8.2  93 (of 99) European debris flow events with a buffered “known” locational uncertainty. Some 

larger buffers overlap and occlude nearby smaller buffers. Base map is from ArcGIS®, the intellectual 

property of Esri, used herein under license. ............................................................................................... 66 

Figure 8.3  Figure 8.3  “Original” MaxEnt jackknife results.  “maxent_euro_fltdensity” = the fault density 

layer, “maxent_euro_precip” = precipitation layer, “maxent_euro_soil” = soil type layer. ...................... 69 

Figure 8.4  Map overlay of monthly average precipitation (mm) raster and debris flow event locational 

uncertainty buffers, highlighting event 560 and 6381, both with 50 km locational uncertainty. .............. 71 

Figure 8.5  5  Fault density (km/sq km) and debris flow event locational uncertainty buffers .................. 72 

file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557682
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557683
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557684
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557685
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557686
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557686
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557687
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557688
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557689
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557690
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557691
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557692
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557692
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557693
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557693
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557694
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557694
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557695
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557695


 

ix 
 

Figure 8.6  Events 560 and 6381 buffered by location uncertainty, with soil classification within each 

buffer. Base map is from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright 

© Esri. ......................................................................................................................................................... 73 

Figure 8.7  MaxEnt debris flow susceptibility maps of Europe.  (a) “Original” (b) “93 Random” (c) “5 km” 

(d) “LTE 5 km”         (e) “LTE 1 km”.  Warmer colors represent higher susceptibilities............................... 74 

Figure 8.8  Distribution of the five European debris flow events with a location accuracy of “exact”. ..... 76 

Figure 8.9  Model susceptibility value pixel differences. ............................................................................ 78 

Figure 8.10   “Original” model susceptibility highlighting Events 560 and 6381 with buffers representing 

their 50 km location uncertainty attribute and at 5 and 10 km. ................................................................ 79 

Figure 8.11  Global MaxEnt susceptibility models.  (a) “Original”,  (b) “5 km, (c) “LTE 5 km”, (d) “LTE 1 

km”, and  (e) “Exact”. .................................................................................................................................. 81 

Figure 8.12  Distribution and location uncertainty of 2294 global debris flow events (model training 

data). ........................................................................................................................................................... 83 

Figure 8.13  Susceptibility difference between “Original” and “LTE 5 km” models. .................................. 84 

Figure 8.14  Geographic distribution of Europe events with <= 5 km location uncertainty. ...................... 88 

Figure 8.15  Geographic distribution of global events with <= 5 km location uncertainty. ....................... 89 

Figure 8.16  Overlay of susceptibility standard deviation and mean for two combined models (“Original” 

and “LTE 5km”). .......................................................................................................................................... 90 

Figure 8.17  Overlay of global susceptibility standard deviation and mean for two combined models 

(“Original” and “LTE 5 km”). ....................................................................................................................... 91 

Figure 8.18  Overlay of global susceptibility standard deviation and mean for two combined models 

(“Original” and “LTE 1 km”). ....................................................................................................................... 92 

Figure 8.19  Overlay of global susceptibility standard deviation and mean for two combined models 

(“Original” and “Exact”). ............................................................................................................................. 93 

Figure 9.1  ArcGIS version of current debris flow susceptibility based on summed, weighted MaxEnt 

factors. ...................................................................................................................................................... 102 

Figure 9.2  Future (RCP 2.6 scenario) debris flow susceptibility based on summed, weighted MaxEnt 

factors. ...................................................................................................................................................... 103 

Figure 9.3  Future (RCP 8.5 scenario) debris flow susceptibility based on summed, weighted MaxEnt 

factors. ...................................................................................................................................................... 103 

Figure 9.4  Moderate, high, and very high debris flow susceptibility zones (light blue highlights) in 

current, RCP 2.6, and RCP 8.5 future scenario models. ............................................................................ 104 

Figure 9.5  Global mountain distribution  in 4 classes (high, scattered high, low, scattered low) from 

Sayre et al. ................................................................................................................................................. 105 

Figure 9.6  Susceptibility zoning classification changes between Current and Future RCP 2.6 models. .. 106 

Figure 9.7  Susceptibility zoning classification changes between Current and Future RCP 8.5 models. .. 107 

Figure 9.8  Susceptibility zoning classification changes between Future RCP 8.5 and RCP 2.6 models. .. 108 

Figure 9.9  Köppen-Geiger climate classification (Csa, Csb, Dfa) and precipitation (100-200 mm) factor 

class geographic extents in present-day (current) modeling. .................................................................. 111 

Figure 9.10  Köppen-Geiger climate classification (Csa, Csb, Dfa) and precipitation (100-200 mm) factor 

class geographic extents in future RCP 2.6 scenario modeling. ............................................................... 112 

file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557701
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557701
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557701
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557703
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557715
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557715
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557716
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557716
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557719
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557719
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557721
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557722
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557723
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557723
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557724
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557724


 

x 
 

Figure 9.11  Köppen-Geiger climate classification (Csa, Csb, Dfa) and precipitation (100-200 mm) factor 

class geographic extents in future RCP 8.5 scenario modeling. ............................................................... 112 

Figure 10.1  Spatial association of centers with >= 74,000 population  vis-à-vis future debris flow 

susceptibility scenario RCP 2.6.................................................................................................................. 117 

Figure 10.2  Figure 10.2  Spatial association of centers with >= 74,000 population  vis-à-vis future debris 

flow susceptibility scenario 8.5 ................................................................................................................. 118 

Figure 10.3 Africa  SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility for (a) RCP 

2.6 and (b) RCP 8.5 .................................................................................................................................... 119 

Figure 10.4  Asia SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility for (a) RCP 

2.6 and (b) RCP 8.5 .................................................................................................................................... 119 

Figure 10.5  Europe SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility for (a) 

RCP 2.6 and (b) RCP 8.5............................................................................................................................. 120 

Figure 10.6  North America SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility 

for (a) RCP 2.6 and (b) RCP 8.5 .................................................................................................................. 120 

Figure 10.7  South America SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility 

for (a) RCP 2.6 and (b) RCP 8.5 .................................................................................................................. 120 

Figure 10.8  Australia, Oceania SSP5 2100 Population >= 74,000 with Moderate to Very High 

susceptibility for (a) RCP 2.6 and (b)  RCP 8.5 ........................................................................................... 121 

Figure 10.9  Moderate to Very High susceptibility with (a) current and SSP5 2100 population, current 

urbanization and (b) ) current and SSP5 2100 population, current and SSP5 2100 urbanization ............ 121 

Figure 11.1  Global MaxEnt Debris flow  susceptibility with legacy factor. .............................................. 124 

Figure 11.2  Current global debris flow susceptibility using “LTE 5 km” model, with overlay of debris flow 

density ....................................................................................................................................................... 124 

Figure 11.3  Change in current wildfire probabilities and future (2070-2099) projected. ....................... 126 

Figure 11.4  (a) Current debris flow susceptibility, (b) current wildfire probability, (c) resulting debris 

susceptibility when wildfire probability is factored. ................................................................................. 127 

Figure 11.5  Distribution of TRAIN debris flow events and associated wildfire probability. .................... 128 

Figure 11.6  (a) Future (2100, RCP 2.6) debris flow susceptibility, (b) future (2070-2099) wildfire 

probability, (c) resulting debris susceptibility when wildfire probability is factored. .............................. 129 

Figure 11.7  (a) Future (2100, RCP 8.5) debris flow susceptibility, (b) future (2070-2099) wildfire 

probability, (c) resulting debris susceptibility when wildfire probability is factored. .............................. 130 

Figure 11.8  Current (“LTE 5km”) debris flow susceptibility and buffered glaciers (with 20-35 degree 

slope) ......................................................................................................................................................... 133 

Figure 11.9  Future (RCP2.6 2100) debris flow susceptibility and buffered glaciers (with 20-35 degree 

slope) ......................................................................................................................................................... 134 

Figure 11.10  Future (RCP28.5 2100) debris flow susceptibility and buffered glaciers (with 20-35 degree 

slope). ........................................................................................................................................................ 134 

 

  

file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557725
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557725
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557727
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557727
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557728
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557728
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557729
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557729
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557730
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557730
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557731
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557731
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557732
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557732
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557733
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557733
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557734
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557734
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557735
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557736
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557736
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557737
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557738
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557738
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557739
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557740
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557740
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557741
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557741
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557744
file:///C:/_PhD/_DISSERTATION_FILES/_DISSERTATION/_PhD_Dissertation_NewOrganization.docx%23_Toc97557744


 

1 
 

Abstract 
 

Debris flows, and landslides in general, are worldwide catastrophic phenomena.  Due to 

limitations in funds, time, and data, landslide research is often focused on risk analyses, hazard 

assessment, and mitigation at a local or basin level. 

 

Debris flows are local phenomena, occurring worldwide, yet less than 1% of the world has been 

studied for debris flow susceptibility.  Debris flow causative and trigger factors are well known 

and appear to be relatively consistent across a variety of geographies, enhancing the ability to 

apply past information along with new data sets and processes to the possibility of future events. 

Sound generalizations about their behavior and predisposing and triggering factors exist at local, 

basin, and regional levels, and can be upscaled to continental and global scales for global 

modeling. 

 

Due to forecasted climate changes, debris flow frequency, intensity, and distribution may 

increase, and rates of return may decrease in the next thirty to fifty years. This eventuality 

coincides with projections on increased populations and urbanization, leading to the prospect of 

increased human and economic impact by debris flows. These realizations drive the necessity of 

global debris flow susceptibility models for today and projected into the future. 

 

This project develops GIS-based “presence only” models utilizing historic debris flow events, 

and remotely sensed data to model the global distribution of potential debris flow susceptible 

areas in present day, and the year/decade 2100.  

 

A phased approach, with multiple stages of modeling, was required to reach the ultimate 

objectives of this research and to address four critical questions:  1) can a single global model 

adequately represent all continents, 2) what impact does the uncertainty associated with debris 

flow event locations have on a resulting susceptibility modeling and how to address the issue, 3) 

how will debris flow susceptibility differ in the future as a result of potential climatic changes, 
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and 4) looking beyond the traditional debris flow predisposing factors, how do global wildfire 

probability, and glacier response to climatic changes, amplify future debris flow susceptibility 

and subsequent impact on humans and economies?  These topics are fundamental and necessary 

to adequately address global debris flow susceptibility, current and future.   

 

The first stage was to determine the efficacy of a single global model, versus individual 

continental models, in determining global debris flow susceptibility.  Global models were 

developed utilizing five statistical methods (certainty factor, probability density, conditional 

probability, frequency ratio, and maximum entropy).  The best performing global statistical 

method was used to develop individual continental models.  The resulting global and continental 

models were compared based on model performance testing.  The single global model developed 

with the maximum entropy algorithm was the best performing methodology and was utilized in 

the subsequent stages of modeling. 

 

The second overarching concern is the impact of data uncertainty.   In landside susceptibility 

modeling, determining those factors and factor classes (environmental variables) with the most 

impact or significance to slope instability is paramount.  The effect of event location uncertainty, 

on factor and factor class determinations, was analyzed.  A model utilizing a subset of the data 

with the least location uncertainty (<= 5 km) demonstrated the best model performance when 

verified against test data and model AUCs.   A novel scheme was developed to graphically 

represent the resulting uncertainty to model users and decision-makers, providing them with an 

ability to choose areas for further study based on either a conservative or  more expansive 

interest. 

 

Based on predicted climate change scenarios (RCP 2.6 and RCP 8.5), the third study develops 

future debris flow susceptibility models.  Utilizing predicted population and urbanization trends 

by the year 2100, human vulnerability is modeled through the intersect of debris flow 

susceptibility and population and urbanization.  

 



 

3 
 

The fourth and fifth studies employ current and future wildfire probability as a potential 

augmentation of the debris flow predisposing factors, demonstrating the increased hazard 

potential; and glacier melting as a potential amplifier to debris flow precipitation triggers. 

 

Global susceptibility models resulting from this research can facilitate the international 

community in assessing risk, hazard mitigation, and planning by focusing on regions at higher 

risk.  The conservative approach, methodologies and models developed in this research, are a 

valuable framework for developing an ensemble of global landslide susceptibilities for other 

landslide types or hazards,  and a foundation for further important refinements such as spatial-

temporal relationships between susceptibility and seasonal and anomalous precipitation; and 

more detailed analyses on the impact of debris flows on people and economics, as population, 

urbanization, and climate warming expand. 
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1 Introduction 
 

Debris flows, and landslides in general, are worldwide catastrophic phenomena (Brabb, Colgan, 

& Best, 1999; Brighenti, Segalini, & Ferrero, 2013; Campbell, 1974; Dowling & Santi, 2013; 

Froude & Petley, 2018), present on all continents (Dilley, 2005; Gariano & Guzzetti, 2016; 

Guzzetti et al., 2012; Stanley & Kirschbaum, 2017), however, some continents are 

underrepresented with regard to focused studies (Broeckx, Vanmaercke, Duchateau, & Poesen, 

2018; Gariano & Guzzetti, 2016).  Due to limitations in funds, time, data, as well as focused 

interest in specific locales, landslide research is often necessarily directed at risk analyses, hazard 

assessments, and mitigation efforts associated with known landslide sites at a local level 

(Reichenbach, Rossi, Malamud, Mihir, & Guzzetti, 2018).  

Debris flows are rapid (often exceeding 10 m/s), gravity-induced mass wasting flows consisting 

of viscous sediment, water, and air, with bulk densities comparable to those of rock avalanches 

(~2,000 kg/m3), which may travel distances of tens of kilometers.  Sediment sizes may range 

from poorly sorted clay to boulders and the flows may entrench and transport vegetation along 

the way and may reach volumes of 100,000 m3.  They are typically triggered by high intensity 

rainfall, and often follow preexisting drainage channels and gullies.   (Costa, 1984; Hungr, 

Evans, Bovis, & Hutchinson, 2001; Hungr, Leroueil, & Picarelli, 2013; Iverson, 1997; Varnes, 

1978; Varnes & IAEG Commission on Landslides, 1984).   

The total land area subject to landslides (of all types) is about 3.7 million square kilometers with 

an affected population of nearly 300 million (Dilley, 2005) yet, according to Reichenbach et al 

(Reichenbach et al., 2018) there is “a clear geographical bias in susceptibility study locations 

with many studies in China, India, Italy, and Turkey, and only a few in Africa, South America, 

and Oceania”.   Of 565 projects from 1983 to 2016 reviewed, Reichenbach et al (Reichenbach et 

al., 2018) found that only 0.03% of the Earth’s land area was investigated.  “It is estimated that 

economic loss due to landslides may reach between 1-2% of the gross national product in many 

developing countries. Evaluating and mitigating the landslide hazard and risk is a major 

challenge for planners and decision makers in the developing world, as 80% of the reported 
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fatalities due to landslide is within the developing countries.” (Geological Survey of India, 

2021). There are many areas on Earth highly susceptible to debris flows which can impact lives 

and economies, but where it is difficult or impossible to study in the field either due to the 

dangers of the topographies or the local political climate.  Due to worldwide expanding 

population and urbanization trends, the human and economic impact due to debris flow hazards 

necessitates broader geographic research. There is a necessity to view debris flow hazard as a 

global and international problem, and to identify those areas globally which may be highly 

susceptible. 

Much research on debris flows has been conducted at the local level based on direct field 

surveys, and diverse statistical methodologies, and has resulted in  considerable information 

about predisposing factors, triggers, and return rates associated with debris flows worldwide 

(Dou et al., 2015; Leoni et al., 2009; L. Lombardo, Fubelli, Amato, & Bonasera, 2016; Park, 

2014; Rossi, Guzzetti, Reichenbach, Mondini, & Peruccacci, 2010; Soma, 2018; Van Westen, 

2016; Wilford, Sakals, Innes, Sidle, & Bergerud, 2004; Zezere, Pereira, Melo, Oliveira, & 

Garcia, 2017). Although debris flow behavior and parameters are local phenomena, sound 

generalizations can be applied to debris flow susceptibility analyses at larger geographic extents 

based on these criteria (Jacobs et al., 2020; Kirschbaum, Stanley, & Yatheendradas, 2015).  

As world population and urbanization grow in number and geographic coverage (Ritchie & 

Roser, 2018), the need exists to extend focus, research, and modeling to a continental and global 

scale currently and projected into the future.  Localized field surveys to collect event inventories 

are not a practicable approach in continental and global hazard susceptibility modeling. Thus, 

debris flow susceptibility analyses at these scales require data-driven, systematic, statistical 

methodologies which include continental and global coverages of environmental predisposing 

factors which may influence susceptibility. Susceptibility, in this context, is a qualitative 

assessment of potential areas of instability with respect to debris flows.  

Corominas et al (Corominas et al., 2013) suggest that “a landslide susceptibility map subdivides 

the terrain into zones with differing likelihoods that landslides of a certain type may occur”.  A 

key point is the recognition that likelihoods and susceptibility are associated with a landslide 

type. Different landslide types will have differing environmental factors, triggers, and different 
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spatial probabilities  (van Westen, van Asch, & Soeters, 2005). van Westen et al (van Westen et 

al., 2005) consider susceptibilities to be relative indications of spatial probabilities. 

Global susceptibility and non-susceptibility models have been developed by other researchers 

(Farahmand & AghaKouchak, 2013; Froude & Petley, 2018; Hong, Adler, & Huffman, 2007; Jia 

et al., 2021; Lin, Lin, & Wang, 2017; Nadim, Kjekstad, Peduzzi, Herold, & Jaedicke, 2006; 

Stanley & Kirschbaum, 2017) with substantial differences in the approaches, and environmental 

factors from the models developed herein.  “Very few studies develop separate statistical models 

for different landslide types and most merge all active landslides together in one group which is 

used to generate statistical relations” (van Westen et al., 2005).  

Regardless of methodology and environmental factors employed, all of the global landslide maps 

result in a similarity of results with landslide susceptibility in the same generalized areas across 

the world and on every continent. 

While a landslide-type blind susceptibility model is valuable in identifying hazardous areas in 

general, landslide-type specific susceptibility models provide insight for specific actionable 

responses for planning, preventative, and mitigation efforts. An overlay of multiple and distinct 

landslide-type models will provide a more comprehensive, hazard-specific, and actionable view 

of global landslide hazards. 

1.1 Global versus Continental Modeling 

How far-reaching can a susceptibility analysis extend? Can the world be analyzed or modeled as 

one body for purposes of landslide susceptibility or is this an oversimplification not accounting 

for the geologic, geomorphic, and tectonic histories and dissimilarities of the continents, and 

disregard for the latitudinal influences of climatic conditions? This study illuminates the results 

obtained when performing a ‘single’ global debris flow susceptibility analysis versus analyses 

performed on a continent-by-continent basis to determine whether a single global model can 

adequately represent the continents. The objective of this research is to determine areas of debris 

flow susceptibility, globally. One can then “drill down” into such areas, regionally and locally, to 

examine in more detail and determine the potential hazard and risk. Subsequent “drill downs” are 

beyond the scope of this project.  
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In this study, susceptibility models were developed for the world, and for each of seven 

continents (Africa, Asia, Australia, Europe, North America, Oceania, and South America). An 

analysis was not performed for Antarctica as there are no Antarctic debris flows in the 

inventories employed. 

1.2 Data and Model Uncertainties 

 

Extensive landslide research and modeling has been conducted by the scientific community, with 

a goal toward assessing hazards and risks, influencing zoning policy, and developing mitigation 

and response plans. Mapping landslide susceptibility has been more limited, due to a lack of 

comprehensive historical data which is used in developing heuristic and statistical models (L. 

Chen et al., 2016; Van Den Eeckhaut & Hervás, 2012).  

 

In a landslide susceptibility analysis, landslide event location accuracy is paramount yet often 

inaccurately known unless a direct field survey is conducted. Landslide inventories are often 

constructed based on mapping from aerial imagery, media reports, local governmental agencies, 

witness accounts, and field work by third party sources (Froude & Petley, 2018; D. Kirschbaum, 

T. Stanley, & Y. P. Zhou, 2015; Malamud, Turcotte, Guzzetti, & Reichenbach, 2004).   

Uncertainties are inherent in all spatial data and at all scales (Chrisman, 1989), however when 

working at continental and global scales, and in the absence of direct field surveys, the 

uncertainties are inherently greater (Maffini, Arno, & Bitterlich, 1989; Openshaw, 1989). 

“Uncertainty exists widely in the natural world, and certainty is conditional and relative” (Shi, 

2010).  When utilizing methods which overlay and correlate multiple datasets, each with their 

own uncertainty, their derivative products, such as susceptibility maps, are prone to error 

propagation of an unknown magnitude (Shi, 2010).    It is not a matter of adding more or better 

data, but rather a “sobering reminder that uncertainty is an irreducible part of sufficiently 

complex knowledge” (Couclelis, 2003), and thus should be thought of as a natural component of, 

and addressed in, every project. The presence of data uncertainty does not preclude the use of the 

data, but rather necessitates a methodology for qualitatively or quantitively characterizing and 

conveying the level of uncertainty and modeling the associated uncertainty for the benefit of the 

end-users of the hazard model.   “Unlike industrial and other products of material processes, 
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knowledge products do not carry with them the evidence of their own inadequacy… and the 

most critical aspects of the quality of its products are often only testable through their indirect 

and sometimes remote consequences” (Couclelis, 2003).  “Uncertainty is an attribute of 

information and therefore does not mean lack of knowledge” (Bloschl & Montanari, 2009). The 

aim in hazard modeling is to minimize the societal ‘testing’ of an inadequately understood 

susceptibility model.  

 

1.3 The Impact of Climate Change on Future Debris Flow Susceptibility 

 

It is widely accepted that climate changes will affect slope stability and the presence and  

prevalence of landslides are expected to be exacerbated (Alvioli et al., 2018; Broeckx et al., 

2018; S. H. Cannon & DeGraff, 2009; Gariano & Guzzetti, 2016; Geertsema & Clague, 2011; 

Harrison et al., 2019; C. Huggel, Khabarov, Korup, & Obersteiner, 2012; C. Huggel et al., 2010; 

IPCC, 2019; D. K. C. Jones, 1993; Keiler, Knight, & Harrison, 2010; Knight & Harrison, 2012; 

Hanoch Lavee, Imeson, & Sarah, 1998; Li et al., 2018; Moreiras et al., 2021; J. D. Phillips, 2010; 

Stoffel, Mendlik, Schneuwly-Bollschweiler, & Gobiet, 2013).   Many areas of the world are 

experiencing increases in minimum, mean, and maximum temperatures and more frequent heavy 

precipitation (Christian Huggel, Clague, & Korup, 2012).  Slope instabilities may increase due to 

increases in temperatures and precipitation over short-term periods, and due to conductive heat 

transport to the subsurface causing debuttressing effects, with long-term lag-time effects 

(Christian Huggel et al., 2012). Furthermore, due to both climate change and population and 

urban growth, it is reasonable to assume the impact of these natural hazards will increase 

(Alexander, 2004 as cited in (Holec, Bednarik, Liscak, Zilka, & Vitovic, 2018).    

 

In this project, future climate impact on debris flow susceptibility is modeled using the best-case 

scenario (RCP 2.6) and worst-case scenario (RCP 8.5) ends of the future warming scenario 

spectrum. 
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1.4 Human and Economic Impact 

 

At least 14% of total casualties from natural hazards are due to slope failures, and ~49% of 

natural hazards are landslides (Froude & Petley, 2018).  Between 1988-2017 it is estimated that 

there were more than 56,000 deaths worldwide due to landslides, more than 4.8 million people 

affected injuriously and/or economically, and about 6 billion euro/year for damages in 

industrialized countries (Costa, 1984; Froude & Petley, 2018, 2019; Highland & Bobrowsky, 

2008; ISPRA, 2020).  In Europe, and likely the world, the number of landslides and their societal 

and economic impact are grossly underestimated (Gunther, Reichenbach, Guzzetti, & Richter, 

2007). It is plausible that these numbers have increased considerably due to increasing climate 

and anthropogenic changes. Yet landslides may be the one natural hazard which is most 

controllable with respect to human and economic impacts through susceptibility determinations 

coupled with urban planning policies.  “The identification and map portrayal of areas highly 

susceptible to damaging landslides are the first necessary steps toward loss-reduction” (Zeizel, 

1988).   

In addition to the expected increases in the geographic extent of debris flow susceptible areas, 

population and urbanization are also expected to increase in magnitude and geographic extent, 

leading to an increased likelihood of intersection of debris flow susceptibility and humans.  A 

debris flow susceptibility model, by itself, has marginal value.  It is the use of the model that 

determines its utility and significance.    The ultimate use of any hazard susceptibility model is in 

determining the potential impact on humans and/or economies.  When combined with economic, 

population, and transportation data, a global debris flow susceptibility map provides an 

international perspective on prioritizing further regional or local investigation and mitigation 

strategies vis-à-vis those areas with a higher potential risk to humans and economies.  To that 

end, population density is juxtaposed with debris flow susceptibility classifications, resulting in 

“areas of interest” for human vulnerability. 
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1.5  Antecedent Wildfire Probability as a Potential Susceptibility Contributor 

 

Frequently debris flows are generated immediately post-fire from runoff-dominated progressive 

bulking of storm runoff with sediment eroded from hillslopes and channels, and to a lesser extent 

by infiltration-triggered failure and mobilization.  In such areas, slope failures are in response to 

prolonged periods of rainfall, or prolonged rain fall in combination with rapid snowmelt (S. H. 

Cannon et al., 2009; Parise & Cannon, 2011). With climate change and increasing temperatures, 

the likelihood of increased forest fires leads to an increased likelihood in post-fire debris flow 

frequency, in those burn areas where other debris flow predisposing factors exist (S. H. Cannon 

& DeGraff, 2009; S. H. Cannon et al., 2009); and rainfall amounts required to induce debris 

flows decrease (Moody, Shakesby, Robichaud, Cannon, & Martin, 2013; Parise & Cannon, 

2011).   Given that debris flows may occur during the first rainy season post-fire, one to two 

years post-fire, and even up to 10 to 30 years (Parise & Cannon, 2011), burned watersheds pose a 

significant potential threat to humans living in close proximity (De Graff, 2018).  Thus, present-

day and future wildfire probability models from Moritz et al. (Moritz et al., 2012) are coupled 

with the debris flow susceptibility models of this project,  as a potential debris flow susceptibility 

amplification.   

1.6  Glacier and Permafrost Melting as a Potential Contributor 

 

While there are numerous factors which contribute to landscape instability and landslide 

susceptibility, such as precipitation, snow melt, temperature, seismic and volcanic activity, and 

anthropogenic changes to landscape (Gariano & Guzzetti, 2016), precipitation and snow melt are 

the most significant triggers for debris flows.  In mountainous regions, which are most 

susceptible to slope instabilities, increased temperatures can result in thawing of permafrost and 

interstitial ice in rock mass cracks, reducing the shear strength, and increasing the frequency and 

magnitude of rock falls and debris flows (C. Huggel et al., 2010).  Glacier-related debris flows 

may occur during glacier retreat due to the availability and exposure of large quantities of 

unconsolidated sediments, which are mobilized with warming trends, increased precipitation, 

snowmelt, and glacial lake outbursts as triggering mechanisms (Marta Chiarle, Iannotti, Mortara, 

& Deline, 2007).  The proximity of glaciers to populations within debris flow susceptible areas is 

modeled as an additional proxy to population vulnerability. 
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1.7 Approach 

 

To pursue the above objectives, it is first necessary to discern the variations from continent to 

continent, to understand the impact of data uncertainty,  and to utilize this information to seek the 

impact on humans. Thus, this research is composed of five studies; a phased approach, where 

each study builds upon the previous: 

Study 1:  A single global susceptibility model versus a continental approach to global analysis  

Study 2:  Impact of spatial data uncertainty in debris flow susceptibility analysis 

Study 3:  Future debris flow susceptibility and human vulnerability 

Study 4:  Fire probability as an augmentation to debris flow predisposing factors 

Study 5:  Future glacial melting as a potential amplifier to debris flow precipitation triggers  

A global susceptibility model is not a final result but rather a depiction of areas of interest for 

further, more detailed investigation.  It offers an international focus for understanding the impact 

on future urbanization and migration trends with the potential to divert such growth into areas 

less susceptible to such debilitating natural hazards. Landslide susceptibility maps have intrinsic 

value as a natural hazard risk management tool, and may be meaningful for other applications 

(Broeckx et al., 2018).  The methodologies employed in this project can be appropriately applied 

to other types of mass wasting.  
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2 State of the Art 
 

Several researchers have approached the landslide susceptibility problem from a global 

perspective.  There are significant differences between their works and the work performed 

herein, differences in modeling techniques, predisposing environmental factors considered, with 

the largest departure in the landslide types being modeled.  My work is focused exclusively on 

debris flows while other researchers use inventories inclusive of all landslide types, or filters on 

the triggering mechanism, such as rainfall, which in many inventories will include landslide 

types other than debris flow.  Most researchers focus on a smaller select set of environmental 

factors such as topographic index, precipitation, and soil moisture.  A few include ground peak 

acceleration (GPA) as a proxy for lithologic/slope stability.  Many statistical approaches are 

used.  Three of the five research efforts described below use logistic regression.   All of these 

works, regardless of modeling technique, include contrived landslide absence data.   

Felsberg et al (Felsberg, Poesen, Bechtold, Vanmaercke, & De Lannoy, 2021) model landslide 

susceptibility at a coarse spatial resolution of 36 km using predominately satellite soil moisture 

observations correlated with hydrologically triggered landslide data from the NASA Global 

Landslide Catalog, the same inventory used herein.  Using a hydrologic trigger attribute, as the 

event filter, will result in the inclusion of a number of different landslide types such as 

“complex”, “creep”, “debris flow”, “earth flow”, “landslide”, “lahar”, “mudslide”, “riverbank 

collapse”, “rock fall”, “snow avalanche”,  “translational slide”, and “topple”.  Felsberg et al use 

logistic regression which requires presence-absence data; thus, they contrive absences by 

developing buffered distances around each of the known historical landslide events and define 

them as “absence” cells.   

Similar to Felsberg et al, Kirschbaum and Stanley (Kirschbaum & Stanley, 2018) modeled global 

susceptibility for landslides based on an attribute of  “precipitation-triggered” .  In a review of 

the source database, their 4930 modeled landslide events (which include only those events with a 

known location accuracy of 10 km or better) could include many landslide types as described 

above.   Five environmental factors (slope, geology, road network, fault zones, and forest loss) 

are used in concert with satellite-based precipitation estimates to predict potential landslides and 

generate near real-time hazard warnings.    
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Lin et al (Lin et al., 2017)  use logistic regression with topography (relative relief), extreme 

precipitation, and lithology environmental predisposing factors, with two landslide “triggers”, 

ground motion, and soil moisture.  Their study excludes Greenland and Antarctica.  Similar to 

Felsberg et al (Felsberg et al., 2021) they randomly generate landslide absence cells beyond a 

buffer zone for each known landslide event.  Their presence events include debris slides, 

rotational slides, slumps, and debris flows.   

Using Support Vector Machines (SVM) machine learning, Farahmand et al (Farahmand & 

AghaKouchak, 2013) develop a “quasi-global” model covering 60o S to 60o N latitude.  Using 

only satellite precipitation data, landuse/landcover, and topographic index with an early version 

of the NASA GLC inventory for presence data, along with contrived absence cells.  They filter 

the inventory to exclude landslides with slopes and topography index near zero (below 10%), but 

do not filter on landslide types.   Their resulting model provides a landslide event prediction 

rather than landslide susceptibility and is geared toward landslide monitoring and potential 

warning systems. 

Hong et al (Hong et al., 2007) use a qualitative and subjective approach in employing six 

environmental factors (slope, soil type, soil texture, elevation, landcover, and drainage density). 

Based on results found in literature review, they assign factor weights (from zero to one) 

accordingly.  These weights were then summed over each pixel, with higher sums equating to 

higher susceptibility.  Their model was not trained nor validated against historical or current 

event data.  

 Nadim et al (Nadim et al., 2006) developed a global susceptibility model for “slides with rapid 

mass movement like rock-slides, debris flows, snow avalanches, and rainfall and earthquake 

induced slides”.   Their model was based on slope, lithology, soil moisture, precipitation, and 

seismic conditions   Similar to the study herein, they used evapotranspiration data (defined by the 

aridity factor in my study) as a proxy for antecedent soil moisture.  The validation of their global 

map was limited based on their access to historical event data,  and validation was performed 

only for  six countries (Norway, Armenia, Georgia, Nepal, Sri Lanka, and Jamaica).  Similar to 

Hong et al, their determinations of factor influence on susceptibility were subjective, assigning a 

priori weighted values from “very low” to “very high” to each factor class. 
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The principal differences in the works described above, and my own, lies in three major 

categories:  1) their use of ‘contrived’ absence cells and presence-absence statistical models, 2) 

the use of a minimal set of environmental factors, and 3) inclusions of landslide types other than 

debris flow.  The research performed herein is decidedly a “presence-only” methodology as 

discussed in Chapter 7, exclusively for debris flows, using the fourteen environmental 

predisposing factors most commonly associated with debris flow analyses (Chapter 7).  
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3 Research Objectives 
 

The overall intent of this project is to develop objective models and processes which can 

establish debris flow susceptibility at continental and global scales.    The outcome of this 

research are models identifying those areas across the world which have various levels of 

susceptibility to debris flows based on the empirical factors associated with ~8,000 debris flow 

events; and then projecting into the future (next 30-50 years) where these susceptible areas may 

occur, based on climate change and other factors.  In this context, susceptibility does not 

represent any degree of probability, that is, the likelihood or chance of a debris flow occurring, 

but rather that conditions exist which have been empirically and statistically associated with 

previous debris flows.  Many researchers associate landslide susceptibility with landslide 

predictability (Guzzetti, Reichenbach, Ardizzone, Cardinali, & Galli, 2006). The use of the term 

susceptibility in this study, does not imply “predictability”.   According to the Merriam-Webster 

Dictionary (Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-

webster.com/dictionary/predict. Accessed 21 Apr. 2020.), predictable is “to be able to be 

known, seen, or declared in advance”, that is, to say that an event or action will happen in 

the future.   Whereas, susceptible is “to be capable of submitting to an action, process, or 

operation”.  The objective is to identify the conditions and processes that promote landscape 

instability, as it relates to the potential subsequent occurrence of a debris flow and map those 

locations today and into the future.  A priori debris flow events are utilized to train the model by 

defining “known” susceptibility areas. The model then applied to the entire Earth can identify 

areas that show “potential”. This project is soundly based on the classic premise posited by 

James Hutton, that the past and present are keys to the future. 

 

Many susceptibility studies have been performed generally at a regional or localized scale.  

Many studies have been performed on the susceptibility of “landslides” in general. Because 

conditioning factors differ for the various landslide typologies, this study is specific to debris 

flows and the conditioning and trigger factors associated with them. The methodologies and 

processes described herein can be repeated for other landslide types using those conditioning 

factors specific to those landslide types, resulting in susceptibility maps for those particular 

landslide typologies.  “Following the Uniformitarianism principle, the past and the present are 

https://www.merriam-webster.com/dictionary/predict.%20Accessed%2021%20Apr.%202020
https://www.merriam-webster.com/dictionary/predict.%20Accessed%2021%20Apr.%202020
https://dictionary.cambridge.org/dictionary/english/event
https://dictionary.cambridge.org/dictionary/english/action
https://dictionary.cambridge.org/dictionary/english/happen
https://dictionary.cambridge.org/dictionary/english/future
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considered keys to the future, hence it is assumed that future landslides are more likely to occur 

under the same geologic and geomorphologic conditions that led to past slope instability 

(Guzzetti et al., 2005; Varnes,1984).”  
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4 Characterizations, Assumptions, Illuminations 

4.1 Debris Flows   

 

According to Iverson (Iverson, 1997) there are several questions in debris flow assessments:  (1) 

where, and (2) when will the debris flow occur, (3) how large will it be, (4) how fast will it 

travel, and (5) what areas will be impacted downstream.  This study attempts to address the 

question of “where” and “what”.  

Debris flows are poorly sorted viscous, water-saturated masses with greater than 50% volume of 

sediment, clasts, and debris. Water content is typically 10-20% by weight. They exhibit high 

pore pressure and behave as non-newtonian fluids, with both solid and fluid forces at play. 

Debris flows are characterized by fast, typically unpredicted movements which can exceed       

10 m/s with volumes ranging from 103m3 to greater than 109m3 (Iverson, 1997; Schippa, 2018; 

Takahashi, 2014; Varnes, 1978; Varnes & IAEG Commission on Landslides, 1984; Whipple & 

Dunne, 1992).     

A clear distinction is not always made by researchers, and those reporting on debris flows, in 

identifying a debris flow versus an earth-flow, mudflow, mudslide, or lahar (Iverson, 1997) 

hence landslide inventories typically under-report debris flows, as such. 

“It is well known that debris flows are triggered by high-intensity rainstorms, but their spatial 

distribution is not random. Lithology, altitude, aspect, plant cover, and land use play important 

roles” (Adrián Lorente, García-Ruiz, Beguería, & Arnáez, 2002), and citations within. Debris 

flows are best explained by slope inclination class, altitude, soil class, distance to drainage 

network and surface geology (Grozavu, Pleşcan, Patriche, Mărgărint, & Roşca, 2013). They may 

occur as hillslope or channelized forms or a combination, dependent on the topography and 

geology of the area (Nettleton, Martin, Hencher, & Moore, 2005).   

4.2 Susceptibility 

 

Susceptibility, as used in the context of this research, represents potentiality. Potential as defined 

in the Oxford Dictionary “having or showing the capacity to become or develop into something 

in the future”. It does not represent the “likelihood” or “probability”.   
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There are several factors associated with the susceptibility of one site over another for the 

predisposition of debris flows.  Slopes, availability of mobilizable materials, permeability and 

density of soils, recent denudation, anthropogenic (farming, roads, excavation, mining, etc.), 

precipitation, and location of tectonics (A. Lorente, Garcia-Ruiz, Beguería, & Arnaez, 2002; 

Lupiano, Rago, Terranova, & Iovine, 2019; Yang, Han, & Li, 2017).   Several of these factors 

are directly related to climate.  Elevation can be a factor but not in all situations when additional 

factors such as anthropogenic and tectonic factors are prevalent (Cheng, Wang, Zhao, & Zhao, 

2016; Lonigro, Gentile, & Polemio, 2015; Skilodimou, Bathrellos, Koskeridou, Soukis, & 

Rozos, 2018).   Presence or absence of former landslides is one of the most important indicators 

of susceptibility - today (Varnes & IAEG Commission on Landslides, 1984).  However due to 

changing, expanding, climate zones conducive to debris flows, there will most certainly be debris 

flows in areas that heretofore have not exhibited them. 

There is a complex undefined interplay in the predisposing conditions.  No single factor can 

definitively determine the initiation or location of any/all debris flows.  Slope angle alone, for 

example, will not determine a locations susceptibility to debris flows.  However, in combination 

with other predisposing factors such as precipitation, soil, lithology, elevation, landform, a 

stronger correlation may be made.  In addition to current conditions, antecedent conditions and 

events are important contributory criteria (Crozier, Glade, & Preston, 2013) however due to the 

temporality of antecedent conditions and the geographic scope of this project, they are not 

considered.  

The spatial unit for debris flow susceptibility utilized throughout this project is the grid cell.  

4.3 Assumptions and Illuminations 

 

As is true in any research, there are fundamental assumptions underlying every part of this 

research and methodology. The following assumptions are the most important with respect to 

this study. 

1. A continental and global model is a generalized model. 

2. Models of the real world are necessarily fuzzy. 
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3. The relationship between debris flows and environmental conditional factors is not 

necessarily linear. 

4. No one debris flow environmental factor is independent of any other environmental 

factor. 

5. Statistical models are “best guesses”, “likelihoods”, “probabilities” based on the limited 

and fuzzy information available.   They are not proof. 
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5 Data 

5.1 Historical Debris Flow Event Data  

Two datasets are used for validation and verification throughout this project. A landside 

inventory was sourced from NASA (D. Kirschbaum, T. Stanley, & Y. Zhou, 2015) for validation 

data, herein referred to as TRAIN. This inventory contains 11,033 landslides of various types 

and locational uncertainties. 194 events are classified as debris flow and 2100 as mudslide, 

herein collectively referred to as “debris flow”. “Mudslide” type was included in this study as it 

is a common misnomer for debris flow.  It is noteworthy that landslide classification, itself, may 

be a source of data uncertainty. 

The verification dataset (TEST1) was curated from many agencies across the world, resulting in 

5695 debris flow events. The geographic distribution of these events is not as well distributed 

across the world as would be desired, due to either an inability to locate data sources or inability 

to obtain inventories from the sources identified. The numeric breakdown of debris flow events 

by country and continent are presented in Tables 5.1 and 5.2, respectively. The  global 

distribution of TRAIN and TEST1 events are shown in Fig 5.1. 

The TRAIN dataset includes a “location accuracy” attribute for each event, which is used in  

subsequent analyses of the effect of locational uncertainty on debris flow susceptibility. The 

locational accuracy (or uncertainty) of the global inventory ranges from “exact” to 250 

kilometers.  The locational accuracies associated with the ninety-nine debris flows in Europe 

range from an “exact” known location to 50 kilometers (Table 5.3), plus six events which were 

identified with a location accuracy of “unknown”.  
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          Table 5.1 TRAIN distribution by country 

Country Count % Total Country Count % Total

Afghanistan 3 0.1% Kyrgyzstan 32 1.4%

Argentina 6 0.3% Lebanon 1 0.0%

Australia 16 0.7% Macedonia 2 0.1%

Austria 3 0.1% Madagascar 2 0.1%

Azerbaijan 1 0.0% Malaysia 22 1.0%

Bangladesh 9 0.4% Mexico 38 1.7%

Barbados 1 0.0% Mongolia 1 0.0%

Belize
1 0.0%

Myanmar 

[Burma]
4 0.2%

Bhutan 2 0.1% Namibia 2 0.1%

Bolivia 4 0.2% Nepal 23 1.0%

Bosnia and 

Herzegovina
1 0.0%

New 

Zealand
13 0.6%

Brazil 56 2.4% Nicaragua 3 0.1%

Bulgaria 1 0.0% Nigeria 9 0.4%

Burkina Faso 1 0.0% Norway 8 0.3%

Canada 102 4.4% Pakistan 8 0.3%

Chile 5 0.2% Panama 6 0.3%

China 86 3.7%
Papua New 

Guinea
6 0.3%

Colombia 25 1.1% Peru 35 1.5%

Costa Rica 8 0.3% Philippines 32 1.4%

Democratic Republic 

of the Congo
2 0.1% Portugal 2 0.1%

Dominica 3 0.1% Russia 7 0.3%

Dominican Republic 4 0.2% Rwanda 1 0.0%

Ecuador 9 0.4% Saudi Arabia 1 0.0%

El Salvador 5 0.2% Sierra Leone 4 0.2%

Fiji 6 0.3% Singapore 1 0.0%

France 6 0.3% Slovenia 1 0.0%

Germany 1 0.0% South Africa 13 0.6%

Georgia 5 0.2% South Korea 4 0.2%

Guatemala 18 0.8% Spain 5 0.2%

Haiti 8 0.3% Sri Lanka 6 0.3%

Honduras 4 0.2% Switzerland 11 0.5%

Iceland 1 0.0% Taiwan 19 0.8%

India 97 4.2% Tajikistan 17 0.7%

Indonesia 17 0.7% Thailand 25 1.1%

Iran 1 0.0%
Trinidad and 

Tobago
14 0.6%

Ireland 7 0.3% Turkey 3 0.1%

Israel 1 0.0%
U.S. Virgin 

Islands
1 0.0%

Italy 19 0.8% Uganda 5 0.2%

Ivory Coast 1 0.0% Ukraine 3 0.1%

Jamaica 5 0.2%
United 

Kingdom
23 1.0%

Japan 33 1.4%
United 

States
1270 55.4%

Kazakhstan 2 0.1% Venezuela 6 0.3%

Kenya 12 0.5% Vietnam 7 0.3%
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Continent Approx. Land 

Area (sq km) 
#TRAIN 
events 

Continental 
TRAIN events 
as % of Total 

Events 

#TEST1 
events 

Continental 
TEST1 events 
as % of Total 

Events 

TRAIN 
density 

(#events/sq 
km) 

TEST1 
density 

(#events/sq 
km) 

Africa 30,001,151 54 2.4 16 0.28 0.0000018 0.0000005 

Asia 44,851,729 469 20.4 554 9.7 0.0000105 0.0000124 

Australia  7,701,651 16 0.69 1 0.018 0.0000021 0.0000001 

Europe 9,898,597 99 4.3 2743 48.1 0.0000100 0.0002771 

North America 24,189,365 1473 64.2 2370 41.6 0.0000609 0.0000980 

Oceania 429,108 19 0.83 5 0.088 0.0000443 0.0000117 

South America 17,757,691 164 7.1 6 0.11 0.0000092 0.0000003 

TOTAL 147,144,240 2294  5695  0.0000156 0.0000387 
   Table 5.2 Continental distribution of TRAIN and TEST1 debris flow events. 

 

  Table 5.3  Locational uncertainty associated with 99 Europe and 2294 global debris flows 

 

There may be sampling bias in this inventory, due to landslide data being commonly collected 

where the data are easier to gather near cities/towns/villages, where there is known potential 

danger to facilities and/or people, and at areas more easily accessible for observation or field 

survey. This bias, if it does exist, may be common among most, if not all, landslide inventories 

(Reichenbach et al., 2018).  An additional component to the sampling bias is a result of the 

unequal availability of data from every country. A more equitable (representational) geographic 

distribution of data acquisition across the world would result in more finely tuned continental 

and global models.  

Europe Global

Uncertainty Frequency % Uncertainty Frequency %

Exact 5 5.1% Exact 174 7.6%

1km 19 19.2% 1km 620 27.0%

5km 31 31.3% 5km 763 33.3%

10km 20 20.2% 10km 277 12.1%

25km 12 12.1% 25km 240 10.5%

50km 6 6.1% 50km 125 5.4%

100km 0 0.0% 100km 9 0.4%

250km 0 0.0% 250km 4 0.2%

unknown 6 6.1% unknown 82 3.6%

TOTAL 99 TOTAL 2294
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A comprehensive understanding and characterization of the debris flow environments in both 

TRAIN and TEST1, individually and with respect to one another, was sought. Therefore prior to 

modeling, numerous evaluations were performed with respect to the frequency of events 

associated with each predisposing environmental factor, both globally and per continent. These 

underlying characteristics can be found in Appendix A. 

                    

              Figure 5.1  Global distribution of validation (TRAIN) in red and verification (TEST1) debris flow events in green 

 

 

5.2 Predisposing Environmental Data  

 

Environmental variables commonly identified as debris flow predisposing factors across the 

world (Capitani, Ribolini, & Bini, 2013; N. S. Chen et al., 2010; Corominas et al., 2013; 

D'Amato Avanzi, Giannecchini, & Puccinelli, 2004; Devkota et al., 2012; Diop, 2012; Dou et al., 
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2015; Ferentinou & Chalkias, 2011; Ghosh, Carranza, van Westen, Jetten, & Bhattacharya, 2011; 

Grozavu & Patriche, 2013; Kirschbaum & Stanley, 2018; Kornejady, Ownegh, & Bahremand, 

2017; Adrián Lorente et al., 2002; Meten, PrakashBhandary, & Yatabe, 2015; Nsengiyumva, 

Luo, Nahayo, Huang, & Cai, 2018) are used in various aspects of the global and continental 

debris flow susceptibility analyses.  They include aridity, climate classification, depth to 

bedrock, distance to faults, distance to rivers, distance to sea,  elevation, fault density, landcover, 

landform, lithology, precipitation (average monthly), slope, soil drainage, soil thickness, soil 

type, topsoil clay %, closest water body type, closest active fault type, and closest tectonic 

boundary type.  Factor data information is additionally listed in Appendix B.  

While additional factors are relevant, such as slope aspect, and distance to intermittent and 

perennial rivers, they were difficult to process and summarize at a global level and are therefore 

not included.  

5.2.1 Climate, Aridity, and Precipitation 

 

Climate variables are critical attributes with respect to both predisposing and triggering factors 

associated with debris flows (C. Huggel et al., 2010; Lonigro et al., 2015; Moreiras et al., 2021; 

Oakley, 2018; Oakley & Ralph, 2018; Paranunzio et al., 2018).  Köppen-Geiger climate 

classification (Kottek, Grieser, Rudolf, & Rubel, 2006), aridity, and average monthly mean 

precipitation are used to provide a representation of temperature and precipitation environmental 

conditions.  Antecedent precipitation may also act as a proxy for soil moisture conditions prior to 

slope destabilization (Nadim et al., 2006).  The data are acquired for present day (1980-2016) 

and future (2071-2100) projection scenarios Representative Concentration Pathway (RCP) 2.6 

and RCP 8.5. 

5.2.1.1 Climate Classification 

 

Köppen-Geiger (KG) classification was originally developed for biome distributions.  Today it is 

one of the most widely used classification schemes for many different types of studies concerned 

with climate change impact analyses (Beck et al., 2018).  The present day and RCP 8.5  KG data 

were acquired from Beck et al (Beck et al., 2018) in 1-km raster format.  The KG RCP 2.6 1-km 

data were acquired from Cui, et al (Cui, Liang, Wang, & Liu, 2021). 
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     Figure 5.2  (a) Present day (1980-2016) Köppen-Geiger map and (b) future (2071-2100) from Beck et al (Beck et al., 2018) 
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The scheme uses a three-letter designation, dividing climates into five main climate groups and 

thirty sub-types. The main climate group is represented by the first letter:  A (tropical), B (dry), 

C (temperate), D (continental), and E (polar). The second letter indicates the seasonal 

precipitation type, and the third letter indicates the qualitative level of temperature, Table 5.4.  

Summer is defined as the warmest six-month period (April to September or October to March) 

and winter is the six-month coolest period.  

1st Letter 
Main climate group 

2nd Letter 
Seasonal precipitation 

3rd Letter 
Qualitative temperature 

A - Tropical f – rainforest 
m – monsoon 
w – Savanna, dry winter 
s – Savanna, dry summer 

 

B - Arid W – Desert 
S - Steppe 

 

h – hot 
k – cold 

C - Temperate w – Dry winter 
f – No dry season 
s – Dry summer 

 

 

a – Hot summer 
b – Warm summer 
c – Cold summer 

D – Continental w – Dry winter 
f – No dry season 
s – Dry summer 

 

 
a (Hot summer) 
b (Warm summer) 
c (Cold summer) 
d (Very cold winter) 

E – Polar T – Tundra 
F – Eternal frost (ice cap) 

 

                           Table 5.4  Köppen-Geiger classification 

 

5.2.1.2 Precipitation 

 

Both current (1980-2017)  and RCP 2.6 and RCP 8.5 future (2081-2100) total monthly 

precipitation values (mm), averaged over twenty years,  were obtained from Worldclim.org (Fick 

& Hijmans, 2017).  Data were subsequently summed over the twelve months and divided by 12 

to obtain a monthly average of current and future precipitation values. Data are in Geotiff format, 

with resolution approximately 2 arcminutes ( ~ 4.5 km at the equator).   
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5.2.1.3 Aridity 

 

Global aridity index data (Trabucco & Zomer, 2018) for the period 1970-2000 are used as an 

additional proxy for climate as a debris flow conditioning factor (Fig. 5.3).  Aridity is an 

augmentation to precipitation and climate classification as it is related to the amount of 

precipitation available after evapo-transpiration.   Many debris flow researchers have determined 

that low intensity, high frequency precipitation over a period of time may be more closely 

associated with debris flow susceptibility than a single high intensity precipitation event. An 

aridity index can be used to quantify precipitation availability.   

 

 

Figure 5.3  Global Aridity Index (1970-2000).  Higher values represent more humid conditions, with low 
(brown/yellow)    representing higher aridity 

For subsequent analytical processing purposes, this raster dataset with floating point values, was 

converted to integer format.  The INT function of ArcGIS truncates floating point values, 

therefore a multiplication by 10,000 was performed on each pixel value prior to integer 

conversion.  Table 5.5 presents the original Aridity Index (AI) values, the generalized climate 

classification scheme, and the calculated values utilized in this project. 
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Aridity Index Value Climate Class Project Derived AI Value 

< .03 Hyper Arid < 300 

0.03 – 0.2 Arid 300 - 2000 

0.2 – 0.5 Semi-Arid 2000 – 5000 

0.5 – 0.65 Dry sub-humid 5000 - 6500 

>0.65 Humid > 6500 
   Table 5.5  Source data Aridity Index value, classification, and projected derived values 

 

The data have a 30 arcsecond resolution (1 kilometer at the equator, 700 meters at 45N\45S 

degrees latitude, and 500 meters at 60N\60S degrees latitude), raster format.  

5.2.2 Depth to Bedrock 

 

Depth to bedrock provides a view on the amount (depth) of soil column or regolith at the surface 

as well as a potential indication of ground water and bedrock boundaries (Shangguan, Hengl, 

Mendes de Jesus, Yuan, & Dai, 2017), all of which may play a role in landscape instability and 

debris flow susceptibility.  Global depth to bedrock data (Pelletier et al., 2016; Shangguan et al., 

2017) (Fig. 5.4) was obtained at 30 arcsecond (~1km at the equator) resolution. 

 

 

                     Figure 5.4  Global absolute depth to bedrock (cm) from Shangguan et al (Shangguan et al., 2017) 
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5.2.3 Hydrology     

 

The World Water Bodies polygon dataset of open water rivers, lakes, seas, and oceans of the 

world, developed by Esri, Inc. (Esri, 2015) was obtained from the University of California Los 

Angeles (UCLA) for Digital Research and Education (IDRE) geoportal 

(https://apps.gis.ucla.edu/geodata/dataset/world_water_bodies).  The data are provided at 30 

arcsecond (about 1km at the equator) resolution.  ArcGIS tools  “Near”, and “Buffer” were used 

to further process these data to calculate distance to water bodies, and closest water body type for 

each debris flow event. 

5.2.4 Lithology 

 

Lithology plays a key role in landscape instability and debris flow susceptibility.  A global 

lithology raster data set (GLiM) (Fig. 5.5) representing fifteen high level classifications of rock 

type at the Earth’s surface was acquired from Hartmann et al (J. Hartmann & Nils Moosdorf, 

2012) at resolution of .5 degrees (about 50 km at the equator). 

 

Figure 5.5  Representation of global lithology and basic lithological classes from Hartmann et al (J. Hartmann & Nils 
Moosdorf, 2012) 

https://apps.gis.ucla.edu/geodata/dataset/world_water_bodies
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5.2.5 Landcover 

 

Landcover is the observed  (bio)physical cover of the Earth’s surface (Jansen & Gregorio, 2000). 

Global landcover data (GLCNMO) (Kobayashi et al., 2017) at a resolution of 15 arcseconds 

(approximately 500 m at the equator) has twenty land cover classes (Table 5.6).  For purposes of 

this study, grouping of certain classifications improves the spatial analysis at a global level, 

minimizing a “loss of information” when too many classifications occur at too small a scale.  

 

 

Landcover 
Code 

Grouping Used in 
this Project 

GLCNMO Landcover 
Class 

Label 

1 Forest and Woodland Broadleaf Evergreen 
Forest 

Broadleaved Evergreen Closed to Open (100-
40%) Trees 

2 Forest and Woodland Broadleaf Deciduous 
Forest 

Broadleaved Deciduous Closed to Open (100-
40%) Trees 

3 Forest and Woodland Needleleaf Evergreen 
Forest 

Needleleaved Evergreen Closed to Open (100-
40%) Trees 

4 Forest and Woodland Needleleaf Deciduous 
Forest 

Needleleaved Deciduous Closed to Open (100-
40%) Trees 

5 Forest and Woodland Mixed Forest Broadleaved Closed to Open Trees and 
Needleleaved Closed to Open (100-40%) 
Trees 

6 Forest and Woodland Tree Open Open (40-(20-10)%) Trees (Woodland) 

7 Grassland/Shrubland Shrub Closed to Open Shrubland (Thicket) 

8 Grassland/Shrubland Herbaceous Closed to Open Herbaceous Vegetation, Single 
Layer 

9 Grassland/Shrubland Herbaceous with Sparse 
Tree / Shrub 

Closed to Open Herbaceous Vegetation with 
Trees and Shrubs 

10 Grassland/Shrubland Sparse Vegetation Sparse Herbaceous Vegetation // Sparse Woody 
Vegetation 

11 Cropland Cropland Herbaceous Crop(s) 

12 Grassland/Shrubland Paddy field Graminoid Crops 

13 Cropland Cropland / Other 
Vegetation Mosaic 

Cultivated and Managed Terrestrial Area(s), and 
Natural and Semi-Natural Primarily 
Terrestrial Vegetation //Cult ivated Aquatic or 
Regularly Flooded Area(s), and 
Natural and Semi-Natural Primarily Terrestrial 
Vegetation 

14 Wetlands/Waterbodies Mangrove Closed to Open Woody Vegetation with Water 
Quality: Saline Water 

15 Wetlands/Waterbodies Wetland Closed to Open Woody Vegetation with Water 
Quality: Fresh Water //Closed to 
Open Woody Vegetation with Water Quality: 
Brackish Water // Closed to Open 
Herbaceous Vegetation with Water 

16 Bare Ground Bare area, consolidated 
(gravel, rock) 

Consolidated Material(s) 

17 Bare Ground Bare area, unconsolidated 
(sand) 

Unconsolidated Material(s) 

18  Urban Artificial Surfaces and Associated Area(s) 

19  Snow / Ice Perennial Snow // Perennial Ice 

20 Wetlands/Waterbodies Water bodies Artificial Waterbodies // Natural Waterbodies 

Table 5.6  GLCNMO landcover classification from Kobayashi et al  (Kobayashi et al., 2017) 
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5.2.6 Soil 

 

The Digital Soil Map of the World (DSMW) at a scale of 1:5,000,000 was acquired from the 

Food and Agriculture Organization of the United Nations (FAO) (FAO, 2003).  The dataset 

contains numerous soil characteristics.  The characteristics utilized are soil type (dominant soil 

classification), % clay, and soil drainage.   

5.2.7 Tectonics 

 

The GEM Global Active Faults Database (GAF-DB) (Styron & Pagani, 2020) is a database of 

global active faults containing approximately 13,500 faults, each with associated attributes for 

geometry, kinematics, and other characteristics.  ArcGIS tools “Line Density”, “Kernel Density”, 

“Near”, and “Buffer” were used to further process these data to calculate fault density, distance 

to faults, closest active fault type, and closest tectonic boundary type for each debris flow event. 

5.2.8 Topography 

5.2.8.1 Elevation 

 

Elevation source data is the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) 

(Danielson, 2011) obtained from the United States Geological Survey (USGS).  Three product 

suites (and resolutions) are offered. The chosen dataset is the “breakline emphasis” which is 

useful for hydrologic derivatives and modeling over large areas and has a resolution of  7.5 

arcseconds (about 250 m at the equator).  Topographic breaklines are ridges and streams. The 

“breakline emphasis” data “maintains the critical topographic features within a landscape by 

maintaining any minimum or maximum elevation value on a breakline that passes within the data 

preparation processing window” (Danielson, 2011).  Greenland is not covered at this resolution. 

The Earth is covered by fifty-nine Geotiff files  which were mosaicked in ArcGIS to provide a 

seamless coverage for this project.   

5.2.8.2 Landform 

 

The World Named Landforms  dataset obtained from ArcGIS Online (Charles Frye, Sayre, & 

Soller, 2017) is used in this research because of the robust information provided with their 
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ecophysical regions.  According to Frye et al (Charlie Frye, Sayre, Soller, & Karagulle, 2018) 

this dataset is based on the work of Richard E. Murphy and E.M. Bridges, where Murphy 

identified landforms according to erosional and depositional processes, and Bridges used a 

geomorphological approach.  As a result, the ecophysical regions provide a combination of 

bioclimatic, elevation (qualitative), lithologic, and landform information in the landform 

descriptions (Sayre, Dangermond, Frye, & Vaughan, 2014).  The dataset is a feature layer 

(polygon) at 250 m resolution. 

5.2.8.3 Slope 

 

World Slope GMTED data obtained from ArcGIS Online (World Slope GMTED, 2020) is a 

global raster dataset of slopes calculated from the 7.5 arcsecond (250 m) resolution 

GMTED2010 elevation data.  

5.3 Augmenting Environmental Influences 

5.3.1 Wildfire Probability  

 

Current (1971-2000) and future (2070-2099) global wildfire probability data (Moritz et al., 2012) 

at 0.5 degrees resolution (about 55 km at the equator) were acquired from MoritzFireLab.org.  

Data available include fire probabilities based on climate with and without vegetation variables.  

The fire probabilities based on climate-only variables were used in this project as Moritz et al. 

(Moritz et al., 2012) report that the resulting probabilities were broadly similar between the two 

datasets. 

 

5.3.2 Glaciers 

 

Glacier outlines, as they were near the beginning of the 21st century, were obtained from the 

Randolph Glacier Inventory (RGI Consortium, 2017) a “globally complete inventory of glacier 

outlines”.  The dataset is provided as a polygon shapefile, at .5 degrees resolution (~ 55 km at the 

equator).  Data attributes of interest include location, area, and slope.  ArcGIS tools “Buffer” and 

“Near” were used to further process these data and associate with debris flow events, areas of 

susceptibility, and populations. 
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5.4 Data Associated with Societal Impact Analyses 

5.4.1 Population 

 

Current (2020) and future (2100) global population raster data (GAO, 2019; B. Jones & O’Neill, 

2016) at 1km resolution, were acquired from CIESIN (Gridded Population of the World, Version 

3 (GPWv3):  Population Count Grid). 

5.4.2 Roads  

 

Highway and Primary roads were extracted  from the Global Roads Open Access Data Set 

((CIESIN), 2013) and further processed using ArcGIS “Line Density” tool.  Other (smaller) road 

classifications were not utilized due to the very high density of such roads and therefore, 

difficulty in producing meaningful distinctions and associations of roads, road densities, and 

debris flow susceptibilities.  Smaller road classifications are meaningful for more localized 

impact analyses. 
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6 Study Area 
 

Debris flow susceptibility analyses are performed for the entire world and for each continent.   

Although all continents have extensive mountain ranges, vast plains and plateaus, and complex 

river systems, each continent is unique in the geomorphic expression of these features, their 

climate, soil, and vegetation (Bridges, 2012), as depicted in Tables 6.1, 6.2, and 6.3.   

 

Continent 

Approx. Land 

Area (sq km) 

Mean 

Elevation 

(m a.s.l.) 

Mountain 

Belts (% of 

continent) 

Crystalline 

Shield (% of 

continent) 

Volcanic Plateaus 

and Plains (% of 

continent) 

Erosional 

Plains (% of 

continent) 

Depositional 

Plains (% of 

continent) 

Africa 30,001,151 580 3 37 4 30 26 

Asia 44,851,729 915 52 10 4 12 22 

Australia* 8,130,79 305 16 31 1 24 28 

Europe 9,898,597 300 25 13 1 30 31 

N. America 24,189,365 610 35 25 4 18 18 

S. America 17,757,691 550 22 30 2 25 21 
Table 6.1  Continental geomorphic characteristics  (Bridges, 2012) .      

*Australia incudes Oceania in this dataset. Bold red emphasis indicates major characteristic for that continent 

 

Continent Forest & 

Woodland 

Grassland & 

Shrubland 

Cropland Wetlands & 

Waterbodies 

Bare Ground Urban Snow & Ice 

Africa 33.4 31.1 9.1 1.3 25 0.1 0 

Asia 34.6 27.4 18.3 2.5 16.4 0.4 0.4 

Australia 17.9 72.2 8.3 1.5 0 0.1 0 

Oceania 66.7 19.9 7.3 5.4 0.3 0.3 0.1 

Europe 43.8 11.3 39.4 3.4 .012 1 1 

N. America 37.8 30.0 14.5 6.2 0.3 0.6 10.6 

S. America 52.1 26.6 15.4 3.7 1.8 0.3 0.2 
Table 6.2  Continental land use/landcover characteristics. 

Calculated from global GLCNMO dataset (Kobayashi et al., 2017).  Bold red emphasis indicates major characteristic for that 

continent 

 

Continent Evaporites  

(% of 

continent) 

Ice and Glaciers  

(% of continent) 

Metamorphic 

(% of 

continent) 

Plutonic (% of 

continent) 

Pyroclastic (% 

of continent) 

Sedimentary (% 

of continent) 

Volcanic (% 

of continent) 

Water Bodies 

(% of 

continent) 

Africa 0.60 0 27.60 1.40 .0002 65.50 4.00 0.90 

Asia 0.28 .08 6.84 8.95 0.60 72.90 8.90 1.26 

Australia 0.72 0 2.18 4.56 0.03 88.79 3.60 0.11 

Europe 0 0.25 9.80 7.80                              .05 77.32 2.80 2.00 

N. America 0.06 7.55 13.19 10.15 1.60 58.81 7.28 1.35 

Oceania 0 0 10.90 3.90  3.70 61.10 19.30 1.10 

S. America 0.30 0.10 12.60 10.60         1.40 65.80 8.40 0.80 
Table 6.3  Continental lithology characteristics. 

Calculated in ArcGIS using GLiM (Jens Hartmann & Nils Moosdorf, 2012)data.  Bold red emphasis indicates major characteristic 

for that continent 
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Global and continental characterization, geographic extent (sq km), and percent coverage was 

developed for each factor (tectonic type, fault density, soil type, soil thickness, soil drainage, 

precipitation, aridity, climate classification, elevation, landcover/landuse, and landform), and 

factor class using, ArcGIS and Excel. These detailed tables and graphs can be found in Appendix 

C.   

For the study on Impact of Spatial Data Uncertainty, Chapter 8, the initial focus is on the 

continent of Europe to illuminate the resulting discrepancies in predisposing factor classes. 
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7 Global versus Continental Approach to Susceptibility Analysis 

7.1 Data and Methodology 

7.1.1 Overview 

 

Debris flow susceptibility models were developed for the world, and for each of seven continents 

(Africa, Asia, Australia, Europe, North America, Oceania, and South America). An analysis was 

not performed for Antarctica as there are no Antarctic debris flows in the inventories used.  

Probability density (PD), conditional probability(CP), certainty factor (CF), frequency ratio (FR), 

and maximum entropy (MaxEnt) statistical models were developed and evaluated for best model 

performance using fourteen environmental factors generally accepted as the most appropriate 

debris flow predisposing factors (Capitani et al., 2013; N. S. Chen et al., 2010; Corominas et al., 

2013; D'Amato Avanzi et al., 2004; Devkota et al., 2012; Diop, 2012; Dou et al., 2015; 

Ferentinou & Chalkias, 2011; Ghosh et al., 2011; Grozavu et al., 2013).  They include aridity, 

elevation, climate, land use/landcover, landform, fault density, lithology, precipitation (average 

monthly), soil drainage, soil thickness, soil type, and topsoil % clay.  While additional factors are 

relevant, such as slope aspect, they are difficult to process and summarize at a global level.  

Climate, average monthly precipitation, and aridity all provide a view on the antecedent weather 

and precipitation conditions associated with debris flows, as well as areas with potential 

triggering factors.  Aridity (humidity) may act as a proxy for antecedent soil moisture prior to 

slope destabilization (Nadim et al., 2006).  Global models and models for each continent were 

developed and evaluated against verification data, and results compared.    

The first objective was to choose the best statistical approach at a global level.  That approach 

was then used to model each of the seven continents and compare the results with the global 

model.   
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The major steps (Fig. 7.1) followed for the whole Earth, and each continent were:   

1. Determine best statistical approach at the global level: 

a. All environmental factor layers are overlain in ArcGIS Pro with the historical 

debris flow event layer (TRAIN). 

b. Debris flow event frequency is determined for each factor and factor class. 

c. Results are input to FR, CF, PD, CP calculations defined in Excel (spreadsheets 

can be found in Appendix C). 

d. The environmental factors and TRAIN event layers were also input to MaxEnt 

software.  

e. The “most significant” factor class (individual factor value) is determined, based 

on the maximum values within each statistical model. The MaxEnt software 

determines the factor significance values during the susceptibility processing.  

“Most significant” refers to the factor class with the largest contribution to the 

statistical model.   

f. A susceptibility map for each statistical model is created in ArcGIS Pro using 

each factor filtered by its most significant class, for each statistical algorithm, e.g., 

siliciclastic (ss) is the most significant lithology factor class for the PD algorithm, 

whereas intermediate plutonic (pi) is the most significant factor class for FR, CP, 

and CF, Table 7.1.  For the MAXENT model, the raster susceptibility map 

derived by MaxEnt is input to ArcGIS. 

g. For FR, CP, CF, and PD global susceptibility maps, the susceptibility value at 

each pixel is computed as a sum of the number of factor classes present and then 

classified into five equal intervals of Very Low, Low, Medium, High, and Very 

High.   For the MAXENT model, susceptibility values at each pixel were 

computed by the MaxEnt software with susceptibility values ranging from 0 to 1 

and classified into the five equal intervals. 

h. TEST1 (verification data) frequencies are computed within each susceptibility 

classification for each model ( FR, CF, PD, CP, and MAXENT). The results are 

compared across models to determine the best global modeling statistical 

algorithm. 
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2. Use the best statistical algorithm to develop continental models 

a. Continental modeling followed the same processes, utilizing environmental factor 

and debris flow data that fall within each continent’s boundaries. These are called 

“continental models”. 

b. A global version of each continent was created by “cutting” the individual 

continents from the final global susceptibility model. These are called “global 

continental cut” models. 

3. Global versus continental model comparisons were performed in two ways for each 

continent: 

a. A difference between each of the  “global continental cut” models and 

corresponding “continental” models 

b. A difference between the global model and a mosaic of all continental models 

4. All continental susceptibility maps were further processed, classified, and results verified 

using the same processes as described for global modeling in Step 1.   

5. Differencing between the continental and global continental “cut” models was performed 

on a pixel basis using ArcGIS Pro Cell Statistics tools. 

6. Area coverage is then calculated for areas where susceptibility classification in the global 

model is >, =, and < the continental models. 
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7.1.2 Statistical Analyses:  Probability Density, Conditional Probability, Certainty Factor, Frequency 

Ratio 

 

Determination of the most relevant debris flow environmental factors, and factor classes 

associated with an historical event inventory, is essential to developing susceptibility models 

(Devkota et al., 2012).  Five statistical models were developed to determine the most significant 

factors and factor classes which would then become input to susceptibility models.    Probability 

Density (PD), Frequency Ratio (FR), Conditional Probability (CP), and Certainty Factor (CF) 

algorithms were developed in Microsoft Excel (Excel) and a Maximum Entropy model 

(MAXENT) was developed with MaxEnt software v. 3.4.4 (S. Phillips, Dudik, & Schapire, 

2021).   

PD, CP, CF, and FR functions were developed for the TRAIN data and environmental 

predisposing factors using Microsoft Excel (Excel) to determine the most significant factor and 

DTRAIN historical 

debris flow events 

14 environmental 

factors 

Evaluate each continental model 

and its global cut against TEST1  

Develop global statistical models (PD, FR, CP, CF, MAXENT)  

Global PD 

Global FR 

Global CP 

Global CF 

Global MAXENT 

Develop continental models 

utilizing best statistical model 

Create continental cuts from 

the global model   

Continental vs Global model 

Figure 7.1  Summary overview of the continental versus global modeling process. 
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factor classes according to each algorithm, and to determine the best performing algorithm. The 

maximum entropy and conditional maximum entropy algorithms were also developed in Excel 

but were ultimately not used in favor of the MaxEnt software. Equations 7.1, 7.2, 7.3, and 7.4 

represent the calculations for PD, CP, CF, and FR, respectively. The “most significant” factors 

and factor classes are those with the largest statistical value as determined by the model 

algorithm and represents the most significant contribution to the model outcome.  

Equation Statistic  

DF frequency in factor class/Total # DF Probability Density (PD) Eq 7.1 

DF frequency in factor class/Factor Class 

area 

Conditional Probability (CP) Eq 7.2 

if PPa >= PPs    PPa - PPs/PPa (1-PPs)       

if PPa < PPs      PPa - PPs/PPs (1-PPa)                                              

Certainty Factor (CF)  
(where PPa = Conditional Probability,  
PPs = Prior Probability) 

Eq 7.3 

PD/PI Frequency Ratio  
(where PI = Predictor Importance = Factor 
Class Area/Total study area) 

Eq 7.4 

      
                                                                                    

The spreadsheet calculations and results for lithology and Köppen-Geiger climate environmental 

predisposing factors (circled in red) and factor classes are shown in Table 7.1. Spreadsheets for 

the remaining environmental predisposing factors and factor classes can be found in Appendix 

D.  Table 7.2 is the resulting summary of factor contributions per statistical model.  
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Table 7.1  Sample probability density, frequency ratio, conditional probability, and certainty factor statistical results for 
lithology and Köppen-Geiger climate predisposing environment factors 

Orange highlights indicate the factor class with highest significance (calculated value) for each statistical model. 
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FACTOR PD CP CF FR MAXENT 

Lithology .65 .0000165 .0695 1.07 .001 

KG - Climate .033 .0000397 .027 2.55 .200 

Landform .028 .0000351 -.153 2.27 .138 

Elevation .05 .0000137 -.175 .84 .009 

Slope .017 .0000035 -.777 11.86 .212 

Land Cover .12 .0001631 .030 10.54 .033 

Soil Thickness .14 .0000377 .320 2.34 .022 

Soil Type .17 .0000312 .331 3.42 .059 

Soil Drainage     .087 

Mean Monthly Precipitation .07 .0284062 .988 9.18 .140 

Aridity Index .17 .0000125 -.093 .81 .002 

Depth to Bedrock     .010 

Topsoil Clay %     0 

Closest H2O .33 0.00005 .027 8.48  

Dist2Ocean .20 .00000035 -.980 .21  

Dist2<>Ocean .17 .0005964 .967 4.63  

Fault Density .20 .00490 .833 34.04 .088 

Closest "Active Fault"  .04 .0013407 .815 .57  

Close Plate Boundary  .14 .0102014 .994 1.16  
Table 7.2  Summary of factor contributions to the Probability Density (PD), Conditional Probability (CP), Certainty Factor (CF), 
Frequency Ratio (FR) and Maximum Entropy (MAXENT) statistical model results. 

Most significant factor per statistical method designated with bold italics 

 

7.1.3 Statistical Analyses:   Maximum Entropy 

 

Environmental factor layers and debris flow event validation (TRAIN) and verification (TEST1) 

data were input to MaxEnt v3.4.4 software v. 3.4.4 (S. Phillips & Dudik, 2008; S. Phillips et al., 

2021) choosing five replications, logistic output, and jackknife variable importance 

determinations. The five replications represent five different samplings of the input event data.  

In all MaxEnt models the mean of the five replications was used as the susceptibility results.  For 

the global analysis, full global extents were input. For continental models, the data were clipped 

by each continent’s boundaries. Full MaxEnt global and continental results are available in 

Appendix E.  

Maximum Entropy, a “presence-only” machine learning algorithm was included in these 

susceptibility analyses due to the ambiguity of “absence” in this context; and the dependence on 
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landslide inventories that were not collected through manual field surveys and thus without 

verified locations.  Absence does not necessarily mean that there are or were no debris flows in 

an area. It means it is not known and/or there are no substantiating data sources, or ability to 

conduct field surveys, particularly at a continental or global scale. The MaxEnt software 

evaluates potential distribution from presence-only data by fitting the probability distribution of 

maximum entropy to the information provided at each observation.   MaxEnt is a widely used 

technique in biological species distribution modeling with recent and growing interest in its use 

for landslide susceptibility modeling due to its predictive success compared with other 

methodologies in “presence” only scenarios (Convertino, Troccoli, & Catani, 2013; GÁL, 

Poszet, & Kerekes, 2018; Kornejady et al., 2017; L. Lombardo et al., 2016; Park, 2014; Yuan et 

al., 2017) not requiring definitive information as to where events do not occur.  The MaxEnt 

software also determines the relative importance (significance) of each predisposing factor to the 

susceptibility results. 

MaxEnt results include Area Under the Curve (AUC); minimum, maximum, and median 

“susceptibility”; response curves which show how each environmental factor affects the MaxEnt 

prediction; analysis of environmental factor contributions (“significance value”); and results of a 

jackknife test showing environmental variable importance when included, and not included. The 

resulting data used in this project include the factor significance values  and the mean probability 

output. The MaxEnt susceptibility maps were input to ArcGIS Pro where additional analyses 

were performed.  

The same environmental variables (factors) were used for PD, FR, CP, and CF.  A few of these 

variables were not employed in the MAXENT model and a few of the variables used in the 

MAXENT model were not utilized in the PD, FR, CP, and CF models. Table 7.3 lists the 

environmental factors employed in each model. Environmental factors not utilized in PD, FR, 

CP, and CF is due to the requirement for an area  coverage calculation of the underlying factor 

classes, which is not practicable for such factors (e.g., slope) at continental and global scales, but 

which is not a MaxEnt software requirement. Variables not employed in the MAXENT model is 

due to the difficulty of employing distance-based factors (e.g., distance to faults) as “categorical” 

or “continuous” spatial representations, as required by the MaxEnt software. It is believed that 

the slight difference in factors is not an impact on the resulting model comparisons and choice, 
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as the majority of the factors employed in all models are those which are in common use for 

debris flow susceptibility analyses, as cited earlier. Using only the common subset of factors, in 

all models, was not chosen as it is believed each model will perform better with the maximum 

relevant factors employed, while maintaining a parsimonious approach. 

 

Environmental Variable (Factor) Employed in 
PD, FR, CP, CF 

models 

Employed in MaxEnt 
model 

Aridity Index Yes Yes 

Köppen-Geiger Climate Classification Yes Yes 

Depth to Bedrock Yes Yes 

Elevation Yes Yes 

Fault Density No Yes 

Landform Yes Yes 

Landuse/Landcover Yes Yes 

Lithology Yes Yes 

Precipitation (monthly average mm) Yes Yes 

Slope (degrees) No Yes 

Soil Drainage No Yes 

Soil Thickness Yes Yes 

Soil Type Yes Yes 

Topsoil Clay % No Yes 

Closest Water Body Type Yes No 

Closest Active Fault Type Yes No 

Closest Tectonic Boundary Type Yes No 

Distance to Sea Yes No 

Distance to Water Body <> Sea Yes No 

Distance to Faults Yes No 
Table 7.3  Environmental variables (factors) employed in each statistical model 

Environmental variables  not used in all statistical models are highlighted in grey cells. 

 

7.1.4 Classification and Verification  

 

The PD, FR, CP, and CF susceptibility models were developed in ArcGIS Pro 2.7 (Esri, 2020) 

utilizing the factor classes with the highest rankings within each statistical model, as determined 

in the Excel calculations.  The MaxEnt raster susceptibility map, with values from 0 to 1 at each 

pixel was input directly into ArcGIS.  All susceptibility maps were classified into five equal 

intervals as Very Low, Low, Medium, High, and Very High. 
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All susceptibility maps (continental and global) were verified against TEST1 events by 

determining the number of events within each susceptibility classification, along with the 

number of pixels (proxy for area) for each classification rank.  All details can be found in 

Appendix E. 

7.2 Results 

7.2.1 Global Results 

 

Frequency ratio, conditional probability, and certainty factor methods yielded the same results 

for all factors.  Therefore, subsequent discussions will refer to “FR_CP_CF” and represent all 

three models.   Probability Density will be referred to as “PD”. “MAXENT” represents the 

Maximum Entropy model.  

The FR_CP_CF and PD global models yielded the poorest test results with 23.3% and 19.7%, 

respectively, of verification events occurring in the Medium to Very High susceptibility classes. 

MAXENT was the best performing model with 82.9% of the verification events occurring in the 

Medium to Very High susceptibility classes (Table 7.4). Model AUC cannot be calculated for the 

FR_CP_CF and PD models with presence-only data, however the AUC for the global MAXENT 

model is 0.920.  The global susceptibility maps for FR_CP_CF, PD, and MAXENT are shown in 

Figures 7.2, 7.3, and 7.4, respectively.   

Based on these results, the global MAXENT model is the best performing statistical model and is 

used for subsequent comparative analyses with MAXENT continental models to determine the 

best approach to “global” modeling. 

   

Susceptibility 
Classification 

FR_CP_CF Ratio  
 % TEST1 events 

Probability Density 
% TEST1 events 

Maximum Entropy 
% TEST1 events 

Low 76.7% 71.7% 17.1% 

Medium 23.3% 7.3% 32.3% 

High – Very High 0 12.4% 50.6% 
                 Table 7.4  Susceptibility model results verified with TEST1 events. 
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Warmer colors represent higher susceptibility. 

Figure 7.2 Global Frequency Ratio susceptibility model Figure 7.3  Global Probability Density susceptibility model 

Figure 7.4  Global Maximum Entropy susceptibility model 
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7.2.2 Continental Results 

 

Each MAXENT continental model was compared with the global MAXENT model utilizing the 

verification data (TEST1) data.  A count was calculated for the Very High susceptibility class 

and a cumulative count for the Medium, High, and Very High classes for the global and 

continental models (Table 7.5).  Fig. 7.5 is a global susceptibility difference map demonstrating 

areas where the global susceptibility classification is higher, lower, or equal to a mosaic of the 

continental models.  

 

 

 

  

 

 

 
 

Continent 

# Test1 
Debris 
Flow 

Events 
per 

continent 

# Test1 Debris 
Flows in Very High 

Susceptibility 
Class/Medium to 

Very High 
Cumulative (Global 

Analysis) 

% Events in Very High 
Susceptibility/Medium 

to Very High 
Cumulative  

(Global Analysis) 

# Test1 Debris Flows in 
Very High 

Susceptibility 
Class/Medium to Very 

High Cumulative 
(Continental Analysis) 

% Events in Very High 
Susceptibility/Medium to 

Very High Cumulative  
(Continental Analysis) 

Africa 16 5/14 31.3/87.5 7/12 43.8/75.0 

Asia 554 2/478 0.36/86.3 4/142 0.7/25.6 

Australia 1 0/1 0.0/100.0 1/1 100.0/100.0 

Europe 2743 221/2275 8.1/82.9 214/1322 7.8/48.2 

N. America 2370 797/2350 33.6/99.2 566/2338 23.8/98.6 

Oceania 5 1/1 20.0/20.0 0/3 0/60.0 

S. America 6 1/4 16.7/66.7 0/2 0/33.3 

Table 7.5 Percent of verification events (TEST1) and MAXENT classification, by continent. 

Bold red emphasis indicates model with highest value for each continent. 
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Figure 7.5  Global MaxEnt debris flow susceptibility minus composite (mosaic) of individual continental MaxEnt susceptibility models 
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Table 7.6 presents  a summary of the differences in susceptibility classification between the 

continental and global models for each continent, by percent area. A difference in susceptibility 

can be by one or more susceptibility classes.  There is significant concurrence (greater than 70% 

by area) between the susceptibility classifications in the continental and global models for six of 

the seven continents (Africa, Asia, Australia, Europe, North America, South America).  Greater 

than 95% of the global model is within   ± one susceptibility classification of the continental 

models, and less than 10% of the global model exhibits a greater susceptibility than the 

continental models (Table 7.7).   

 

Continental Global "Cut" minus 
Continental Susceptibility 

Africa Asia Australia Europe No America Oceania So America 

% Contl Susc > Global 1.5% 3.4% 1.3% 6.1% 2.2% 14.0% 0.2% 

% Contl Susc = Global 88.8% 86.0% 89.8% 76.7% 73.3% 12.5% 71.7% 

% Global Susc > Contl 9.7% 10.6% 8.9% 17.2% 24.5% 73.5% 28.1% 
Table 7.6  Continental cut from  global model  minus continental model, susceptibility differences by area (pixel count). 

 

    

 

 

 

 

 

 

Result for the global model minus individual continental model are presented in the following 

sections for each continent. 

 

Global Minus 
Mosaic of All 
Continentals 

Difference in # of 
Susceptibility 

Classes 

% 
Area 

Contl  > Glob -4 0.02% 

Contl  > Glob -3 0.06% 

Contl  > Glob -2 0.23% 

Contl  > Glob -1 1.21% 

Contl = Glob 0 88.78% 

Glob > Contl 1 7.77% 

Glob > Contl 2 1.68% 

Glob > Contl 3 0.25% 

Glob > Contl 4 0.01% 

Table 7.7  Number of susceptibility classification differences between the global model and mosaic of all continental models 
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7.2.2.1 Africa  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Africa 

Comparison # Classes Difference % Area Cum % 

Contl > Global -4 0.02% 
 

Contl > Global -3 0.06% 
 

Contl > Global -2 0.23% 
 

Contl > Global -1 1.21% 1.52% 

Contl = Global 0 88.78%   

Global > Contl 1 7.77% 
 

Global > Contl 2 1.68% 
 

Global > Contl 3 0.25% 
 

Global > Contl 4 0.01% 9.70% 

                  Table 7.8  Global Africa “cut” susceptibility model minus continental Africa model, by percent area coverage. 

Positive numbers represent areas where the global model susceptibility is higher than the continental model by 1,2, 3, or 4 

susceptibility class levels, negative numbers represent areas where the continental susceptibility is higher.  “0” represents 

areas where the global and continental model susceptibility classification is equal. 

Figure 7.6  Global “cut” Africa susceptibility model minus Continental Africa 

Positive numbers represent areas where the global model susceptibility is higher than the continental model, negative 
numbers represent areas where the continental susceptibility is higher. 
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  Asia                            

Asia 

Comparison # Classes Difference % Area Cum % 

Contl > Global -4 0.00% 
 

Contl > Global -3 0.04% 
 

Contl > Global -2 0.26% 
 

Contl > Global -1 3.11% 3.42% 

Contl = Global 0 85.96%   

Global > Contl 1 9.24% 
 

Global > Contl 2 1.27% 
 

Global > Contl 3 0.11% 
 

Global > Contl 4 0.00% 10.63% 

               Table 7.9  Global Asia  “cut” susceptibility model minus continental Asia model, by percent area coverage. 

Positive numbers represent areas where the global model susceptibility is higher than the continental model, 
negative numbers represent areas where the continental susceptibility is higher. 

 

Positive numbers represent areas where the global model susceptibility is higher than the continental model by 1,2, 3, or 4 

susceptibility class levels, negative numbers represent areas where the continental susceptibility is higher.  “0” represents 

areas where the global and continental model susceptibility classification is equal. 

Figure 7.7  Global “cut” Asia susceptibility model minus Continental Asia model 
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7.2.2.2 Australia  

                  

 

 

 

 

 

                        

 

                       

 

 

 

 

Australia 

Comparison # Classes Difference % Area Cum % 

Contl > Global -4 0.00%  
Contl > Global -3 0.04%  
Contl > Global -2 0.25%  
Contl > Global -1 0.99% 1.29% 

Contl = Global 0 89.80%   

Global > Contl 1 7.06%  
Global > Contl 2 1.56%  
Global > Contl 3 0.27%  
Global > Contl 4 0.03% 8.91% 

Table 7.10  Global Australia  “cut” susceptibility model minus continental Australia model, by percent area coverage. 

Positive numbers represent areas where the global model susceptibility is higher than the continental model by 1,2, 3, or 4 
susceptibility class levels, negative numbers represent areas where the continental susceptibility is higher.  “0” represents areas 
where the global and continental model susceptibility classification is equal. 

Positive numbers represent areas where the global model susceptibility is higher than the continental model, 
negative numbers represent areas where the continental susceptibility is higher. 

Figure 7.8  Global “cut” Australia susceptibility model minus continental Australia 
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7.2.2.3 Europe  

 

 As an expanded comparative analysis example of the process applied to all continents, Figs. 7.9, 

7.10, and 7.11 are the MAXENT global, continental, and difference models for Europe, 

respectively.  

 

 

 

 

 

 

 

 

 

                              

 

 

Positive numbers represent areas where the global model susceptibility is higher than the continental model, negative numbers 
represent areas where the continental susceptibility is higher. 

Figure 7.9  Europe global cut MAXENT susceptibility Figure 7.10  Continental MAXENT susceptibility 

Figure 7.11  Europe debris flow susceptibility difference map. Global cut model minus continental model 
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Europe 

Comparison # Classes Difference % Area Cum % 

Contl > Global -4 0.01%  
Contl > Global -3 0.21%  
Contl > Global -2 1.45%  
Contl > Global -1 4.43% 6.11% 

Contl = Global 0 76.71%   
Global > Contl 1 14.04%  
Global > Contl 2 2.83%  
Global > Contl 3 0.30%  
Global > Contl 4 0.01% 17.18% 

Table 7.11  Global Europe  “cut” susceptibility model minus continental Europe model, by percent area coverage. 

Positive numbers represent areas where the global model susceptibility is higher than the continental model by 1,2, 3, or 4 
susceptibility class levels, negative numbers represent areas where the continental susceptibility is higher.  “0” represents areas 
where the global and continental model susceptibility classification is equal. 

  



 

55 
 

7.2.2.4 North America 
 

 

 

 

 

 

 

 

 

             

 

 

 

                                                                                                                                             

North America 

Comparison # Classes Difference % Area Cum % 

Contl > Global -4 0.00%  
Contl > Global -3 0.01%  
Contl > Global -2 0.18%  
Contl > Global -1 2.03% 2.23% 

Contl = Global 0 73.28%   

Global > Contl 1 20.08%  
Global > Contl 2 3.93%  
Global > Contl 3 0.46%  
Global > Contl 4 0.03% 24.49% 

Table 7.12  Global North America  “cut” susceptibility model minus continental North America model, by percent area 
coverage. 

Positive numbers represent areas where the global model susceptibility is higher than the continental model by 1,2, 3, or 4 
susceptibility class levels, negative numbers represent areas where the continental susceptibility is higher.  “0” represents areas 
where the global and continental model susceptibility classification is equal. 

Positive numbers represent areas where the global model susceptibility is higher than the continental model, 
negative numbers represent areas where the continental susceptibility is higher.       

Figure 7.12  North America debris flow susceptibility difference map. Global cut model minus continental 
model. 
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7.2.2.5 Oceania  

               

Positive numbers represent areas where the global model susceptibility is higher than the continental model, negative numbers 
represent areas where the continental susceptibility is higher.  

 

Oceania 

Comparison # Classes Difference % Area Cum % 

Contl > Global -4 0.4%  
Contl > Global -3 1.4%  
Contl > Global -2 4.5%  
Contl > Global -1 7.5% 13.9% 

Contl = Global 0 12.5%   
Global > Contl 1 25.3%  
Global > Contl 2 28.1%  
Global > Contl 3 18.4%  
Global > Contl 4 1.6% 73.5% 

Table 7.13  Global Oceania  “cut” susceptibility model minus continental Oceania model, by percent area coverage. 

Positive numbers represent areas where the global model susceptibility is higher than the continental model by 1,2, 3, or 4 
susceptibility class levels, negative numbers represent areas where the continental susceptibility is higher.  “0” represents areas 
where the global and continental model susceptibility classification is equal. 

 

 

 

 

 

Figure 7.13  Western (left) and eastern hemisphere (right) Oceania debris flow susceptibility difference map. 
Global cut model minus continental model 
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7.2.2.6 South America 

 
         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Positive numbers represent areas where the global model susceptibility is higher than the continental model, 
negative numbers represent areas where the continental susceptibility is higher 

 

South America 

Comparison # Classes Difference % Area Cum % 

Contl > Global -4 0.006%  
Contl > Global -3 0.03%  
Contl > Global -2 0.06%  
Contl > Global -1 0.12% 0.22% 

Contl = Global 0 71.7%   

Global > Contl 1 15.4%  
Global > Contl 2 7.5%  
Global > Contl 3 4.6%  
Global > Contl 4 0.6% 28.13% 

Table 7.14  Global South America  “cut” susceptibility model minus continental South America model, by percent area 
coverage. 

Positive numbers represent areas where the global model susceptibility is higher than the continental model by 1,2, 3, or 4 susceptibility class 
levels, negative numbers represent areas where the continental susceptibility is higher.  “0” represents areas where the global and continental 
model susceptibility classification is equal. 

Figure 7.14  South America debris flow susceptibility difference map. Global cut model minus 
continental model 
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7.3 Discussion 

 

Several methods were employed to develop a global debris flow susceptibility map.  The world 

was modeled at a single global scale and on a continent-by-continent basis.  The results were 

tested and compared to determine which is the best approach to a debris flow susceptibility map 

of the world.  Of the FR, CP, CF, PD, and MAXENT statistical methods employed, the 

MAXENT model outperformed PD and  FR_CP_CF by 4 and 3.5 times, respectively, as proven 

with TEST1 verification data.  MAXENT was therefore used for subsequent analyses in 

determining whether a global or continental model provides the better fit. 

Evaluating only the Very High susceptibility class, four of the seven continents (Europe, North 

America, Oceania, South America) demonstrated better performance (greater verified 

susceptibility results) in the global model than in the individual continental models (Table 7.5).  

Africa, Asia, and Australia demonstrated better results in the continental model for Very High 

Susceptibility.   However, when evaluating the cumulative results, which may be a better (more 

generalized) measure, using the Medium (average susceptibility = .45), High (average 

susceptibility = .64) , and Very High (average susceptibility = .83)  susceptibility classes, all 

continents except Oceania and Australia demonstrated better results in the global model.  Greater 

than 85% of the TEST1 data were correctly classified in Medium to Very High susceptible areas 

for the six continents (Africa, Asia, Australia, Europe, North America, South America).  An 

average of 54.3% of the TEST1 events were classified in the High and Very High susceptibility 

classification for all seven continents.  Australia exhibited comparable results in both the global 

and continental models and Oceania exhibited superior results in the continental model for the 

Medium to Very High cumulative classes. There is only one TEST1 event in Australia (16 

TRAIN events) which calls into question results for Australia.  The unequal geographic 

distribution of both TRAIN and TEST1 events have possible implications on this modeling. 

As is true in all modeling, subjectivity and biases may be introduced in multiple ways, which 

may then influence the results.  It is acknowledged in this study that there may be a geographic 

bias in the TRAIN and TEST1 global event inventories based on data collection methodologies 

and data availability.  In comparing two continents (North America and Asia) in the northern 
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hemisphere with similar overall compositions of climate, and other predisposing factors, the ratio 

of North America land area to Asia is 0.54, while the TRAIN and TEST1 event density ratios are 

5.8 and 7.9, respectively.  It is unknown from this research how this may affect the results 

presented but is an important topic for further study. 

Potential explanations for the better or comparable performance of a global model over 

individual continental models are: 

1. Appropriateness of predisposing factors to represent all debris flows regardless of 

geography:  The environmental factors used in this study are those which are generally 

accepted as the major predisposing factors regardless of region or continent, as cited 

earlier. Table 7.15 presents the similarity of factor class values associated with the 

majority of debris flow events for most continents; for example, in eight of the eleven 

factors:  precipitation, aridity, climate, fault density, landcover, landform, lithology, and 

soil depth. 

2. With insufficient geographic distribution and number of debris flow events on each 

continent, a global statistical model may provide a smoothing effect across all continents, 

thereby compensating for a statistically smaller number of model training events  (Africa, 

Australia, Oceania), and/or a low density of training events (Africa, Australia, South 

America), and for what could be an unintended bias in the geographic distribution of the 

event inventory. A small frequency or density of model training events at the continental 

level could lead to flawed susceptibility results.   

3. These may be valid conclusions only if we can say that debris flow predisposing factors 

and factor classes are, within reason, universal, at continental and global scales.   A 

follow-up study based on comparisons of accurately defined and assigned debris flow 

factors and factor classes determined at local and regional scales, based on field surveys 

or highly accurate remote sensing analyses, can prove beneficial in understanding and 

improving continental and global modeling.   

4. As evidenced in Chapter6  (Tables 6.1, 6.2, and 6.3), there is a stronger similarity than 

dissimilarity in the geomorphic, land use/landcover, and lithologies (respectively) in the 

continents. 
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 AFRICA ASIA AUSTRALIA EUROPE 

NORTH 

AMERICA OCEANIA 

SOUTH 

AMERICA 

Precipitation 

Avg monthly 

(mm) 100-200 70-80 60-70 100-200 100-200 100-200 100-200 

Aridity Humid Humid 

Dry sub-

humid Humid Humid Humid Humid 

Climate (KG) 

Tropical 

megathermal 

(Aws) 

Temporal 

mesothermal 

(Cwa) 

Temporal 

mesothermal 

(Cfb) 

Temporal 

mesotherma

l (Csa) 

Temporal 

mesothermal 

(Csb) 

Temporal 

mesothermal 

(Cfb) 

Tropical 

megathermal      

(Am) 

Distance to 

Faults (km) < 200 15-25 15-20 25-50 1-25 15-20 < 15 

Fault Density 

(km/sq km) .01-.02 .02-.03 .02-.03 .02-.03 .02-.03 .01-.02 .03-.04 

Landcover 

Forest & 

Woodland 

Forest & 

Woodland Urban 

Forest & 

Woodland 

Forest & 

Woodland 

Forest & 

Woodland Cropland 

Landform 

Widely 

spaced 

mountains in 

alpine system 

Mountains in 

alpine system 

Plains in 

alpine system 

Mountains 

in alpine 

system 

Humid 

mountains in 

alpine system 

Humid 

mountains in 

alpine system 

Humid mountains 

in alpine system 

Lithology 

metamorphic 

(mt) 

sedimentary 

mixed (sm) 

sedimentary 

siliciclastic 

(ss) 

sedimentary 

carbonate 

(sc) 

sedimentary 

siliciclastic 

(ss) 

volcanic basic 

(vb) metamorphic (mt) 

Soil Type Nitosol (Nh) Acrisol (Ao) Planosol (Ws) 

Cambisol 

(Bd/Be) Acrisol (Ah) Acrisol (Ag) Lithosol (I) 

Soil Depth 

(m) 1 1 1 1 1 1 1 

Slope (deg) <=20 <=30 <=10 <=30 <=20 <=20 <=10 
Table 7.15  Predominant factor class values associated with the debris flow events (TEST1). Bold italic emphasis indicates those factors which are comparable among the 
majority of continents. 
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7.4 Conclusions 

 

Global landslide analyses are possible and meaningful. Conventional wisdom might lead one to 

believe that a single debris flow susceptibility model for the entire planet may not accurately 

represent the susceptibility of the individual continents, just as a single model representing 

susceptibility of any/all landslide types does not accurately represent the susceptibility of 

individual and distinct landslide types. Thus, a single global debris flow susceptibility model for 

Earth was developed and compared against debris flow models developed for each continent. 

The predominant lithology type (sedimentary) and landuse cover (forest and woodland) is 

common among all continents, and differences exist from continent to continent with regard to 

other environmental factors which are known to be associated with debris flows.  Mean elevation 

varies from Asia at 915 m a.s.l. to Europe with 300 m a.s.l.  The dominant landcover varies from 

forest and woodland in Africa, Asia, Oceania, Europe, North and South America to grassland 

and shrubland in Australia.  Mountain belts dominate the geomorphic structures of Asia and 

North America, crystalline shields dominate Africa, Australia, and South America.  Erosional 

plains dominate Europe.  There is sufficient variation to suggest that a single global model may 

not adequately represent the debris flow susceptibility on all continents.  Yet, this research 

demonstrates that a single global model performs exceptionally well  in comparison with 

individual continental models, as evidenced by six of the seven continents when evaluating on 

the cumulative results of the Medium, High, and Very High susceptibility classes. This may be 

due to the fact that debris flow environmental predisposing factors are similar and well-defined 

in many different types of regions across the world, and although there are dissimilarities in 

geologic, geomorphologic, hydrologic, tectonic, land use/land cover, climate, and other factors 

among the continents, there are pockets or regions within each continent with the environmental 

factors conducive to debris flows.  For example, 70% of Australia is composed of arid or semi-

arid land, yet the eastern seaboard exhibits High and Very High debris flow susceptibility, and is 

associated with historic debris flow events. 
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It is believed that with a larger debris flow event inventory, and an unbiased geographic 

distribution, these global and individual continental susceptibility models can be further 

improved. 

With respect to the use of the global model versus individual continental models, intended use of 

debris flow susceptibility maps will dictate whether the error of commission, as is evidenced by 

the global model, or omission (as seen in the continental models) is better tolerated. 
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8 Impact of Spatial Data Uncertainty on Debris Flow Susceptibility Analyses 
 

Uncertainties are inherent in all spatial data and at all scales (Chrisman, 1989), however when 

working at continental and global scales, and in the absence of direct field surveys, the 

uncertainties are inherently greater (Maffini et al., 1989; Openshaw, 1989). “Uncertainty exists 

widely in the natural world, and certainty is conditional and relative” (Shi, 2010).  When 

utilizing methods which overlay and correlate multiple datasets, each with their own uncertainty, 

their derivative products, such as susceptibility maps, are prone to error propagation of an 

unknown magnitude (Shi, 2010).    It is not a matter of adding more or better data, but rather a 

“sobering reminder that uncertainty is an irreducible part of sufficiently complex knowledge” 

(Couclelis, 2003), and thus should be thought of as a natural component of, and addressed in, 

every project. The presence of data uncertainty does not preclude the use of the data, but rather 

necessitates a methodology for qualitatively or quantitively characterizing and conveying the 

level of uncertainty and modeling the associated uncertainty for the benefit of the end-users of 

the hazard model.   “Unlike industrial and other products of material processes, knowledge 

products do not carry with them the evidence of their own inadequacy… and the most critical 

aspects of the quality of its products are often only testable through their indirect and sometimes 

remote consequences.” (Couclelis, 2003). The aim, herein, is to minimize the societal ‘testing’ of 

an inadequately understood debris flow susceptibility model through the awareness of the 

uncertainty, the potential impact, and introduction of methodologies to develop susceptibility 

results which include some measure of the awareness. 

Although there are many factors and attributes associated with debris flow analyses which are 

prone to uncertainty, such as debris flow location, type, volume/size, setting, predisposing 

factors, triggers, etc. (Ardizzone, Cardinali, Carrara, Guzzetti, & Reichenbach, 2002; Carrara, 

Cardinali, & Guzzetti, 1992; Malamud et al., 2004), for simplicity, and demonstration purposes, 

in this study, only the uncertainty associated with debris flow event location is investigated.   

In a landslide susceptibility analysis, landslide event location accuracy is paramount yet often 

inaccurately known unless a direct field survey is conducted.  Landslide inventories are often 

constructed based on mapping from aerial imagery, media reports, local governmental agencies, 
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witness accounts, and field work by third party sources (Froude & Petley, 2018; D. Kirschbaum 

et al., 2015; Malamud et al., 2004).    

In a study of debris flow susceptibility on the European continent, an analysis of the impact 

between known location and a location accuracy offset for ninety-nine debris flows, 

demonstrates the impact of uncertainty in appropriately defining predisposing factors associated 

with debris flows, and consequent analysis for areas of susceptibility. 

 

8.1 Methodology 

 

The impact of event location uncertainty on determination of debris flow predisposing factors 

and factor classes is investigated for the continent of Europe. The purpose is to investigate and 

understand the impact and determine susceptibility methodologies to minimize the impact and 

apply them to the global debris flow susceptibility modeling.   The dominant predisposing 

environmental factors, as determined through Maximum Entropy modeling of Europe, are 

analyzed with respect to the values found at debris flow event points versus a buffered distance 

of locational uncertainty around each point.  This objective is to illuminate potential 

discrepancies of predisposing factors associated with debris flow events based on their given 

point location versus predisposing factors associated with a buffered distance around that point.  

Distribution of the model validation and verification data for Europe and the 93 debris flow 

events with known location uncertainty buffers are presented in Figs. 8.1 and 8.2, respectively. 
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Figure 8.1   Distribution of  Europe TRAIN (validation), black dots, and TEST1 (verification) samples, green dots. 
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Figure 8.2  93 (of 99) European debris flow events with a buffered “known” locational uncertainty. Some larger buffers 
overlap and occlude nearby smaller buffers. Base map is from ArcGIS®, the intellectual property of Esri, used herein under 
license. 

 

Maximum Entropy is used for this uncertainty study based on the modeling performance results 

in the global versus continental susceptibility analyses documented in Chapter 7.  

Six Europe models were developed with MaxEnt software. Each model is analyzed with respect 

to the AUC, highest contributing predisposing factors, optimal factor classes, susceptibility 

impact, and comparisons of the susceptibility distributions and susceptibility value differences. 

The first model was developed using the original inventory of 99 Europe debris flow events with 

varying locational uncertainties, as the model training data. This model is subsequently referred 

to as “Original”. The second model utilizes a training dataset created from 93 randomly 

generated points, one within each of the original 93 locational uncertainty buffers (six of the 99 
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had an “unknown” uncertainty). This model is referred to as “93 Random”. The third model 

utilizes only those original inventory event points with known locational uncertainties of 5 km 

(31 events). This is the “5 km” model. The fourth model, “LTE 5 km” utilizes only those original 

inventory event points with known locational uncertainties  <= 5 km (55 events), including 

“exact” points, as the training data.  The fifth model, “LTE 1 km” utilizes only those original 

inventory event points with known locational uncertainties  <= 1 km (24 events), including 

“exact” points. The sixth model, “Exact”, utilizes only those points identified as having an 

“exact” known location (five events). All MaxEnt model runs include a test dataset (TEST1) 

composed of 2743 debris flow events in Europe, with no location accuracy attribute, collected 

from numerous sources.  

The “Original” model is the model against which all other models are compared, with the 

purpose of understanding the suitability of such an inventory of events with a broad spectrum of 

locational uncertainties, and the option for choosing an alternative set of events for the best 

susceptibility representation.   

8.2 Results 

 

AUCs for the “Original”, “93 Random”, “5 km”, “LTE 5 km”, “LTE 1 km”, and “Exact” 

MaxEnt models are 0.891, 0.857, 0.893, 0.896, 0.921, and 0.93, respectively for the continent of 

Europe. The “Exact” model, with the highest AUC, is ignored in the subsequent analyses due to 

the small number of points (four in the United Kingdom and one in Ukraine), and low density 

(5.05 x 10-7 events per sq km); and hence susceptibility results likely non-representational of the 

continent.   

The  “Original” MaxEnt model resulted in precipitation, fault density, and soil type having the 

highest relative contributions (“gain”) at 42%, 27.6%, and 8.6%, respectively.   The gain for all 

factors included in the model, sum to 100%.   Table 8.1 shows the AUC and the factor percent 

contribution (gain) for the “Original” MaxEnt model, and all factors input to the model.  

MaxEnt “gain” addresses the question as to which environmental variables are the most 

significant to the debris flow events being modeled.  The jackknife results, for each variable, 

were also found to support these three variables as the most significant (Fig. 8.3). 
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Thus, for purposes of this uncertainty study, the location uncertainty impact is analyzed and 

demonstrated for only these three factors.  

 

          

 
Variable/Model 

"Original"  
(99 points) 

Percent contribution (gain) 

AUC 0.891 

precipitation 42.0 

fault density 27.6 

soil type 8.6 

landform 4.9 

landcover 4.7 

climate 4.5 

soil thickness 2.4 

drainage 2.3 

lithology 2.1 

aridity 0.5 

elevation 0.2 

topsoil % clay 0.1 

depth to bedrock 0.1 
                             Table 8.1  AUC and factor percent contribution for Europe "Original" MAXENT susceptibility model. 
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Figure 8.3  Figure 8.3  “Original” MaxEnt jackknife results.  “maxent_euro_fltdensity” = the fault density layer, 
“maxent_euro_precip” = precipitation layer, “maxent_euro_soil” = soil type layer. 

 

8.2.1 Impact of locational uncertainty on precipitation as a predisposing factor - Europe  

 

According to the “Original” MaxEnt model, the monthly average precipitation predisposing 

factor provided the highest percent contribution (gain) and was the most significant factor in the 

jackknife test both in most significance as the only variable, and most significant negative impact 

when removed from the model. In a worldwide study of non-seismic landslide occurrences, 

Froude and Petley  (Froude & Petley, 2018)  found a strong correlation between the mean 

monthly precipitation and landslide events in four of five global regions studied.   

Table 8.2 describes the precipitation value range found by an overlay of the 93 “known” 

locational uncertainty buffered areas and the precipitation factor layer. Two points, events 560 

and 6381, each with a 50 km location uncertainty, are selected to view the data and impact at a 

larger scale. Table 8.3 and Fig. 8.4 depict precipitation values and range of values found within 

their buffered areas. 
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Maximum number of different precipitation values within all 
buffered events 

46 

Maximum value spread in all buffered events 92 mm 

Average number of different precipitation values associated with all 
buffered events 

5.8 

Average value spread in all buffered events 13.6 mm 
 

 
         Table 8.2  Range and number of varying precipitation values associated with all 93 debris flow event buffered areas. 

 

 

 

 

 

 

Table 8.3  Example impact of uncertain location:  buffered area values vs point value on associated  precipitation factor 
class determination, for two sample events. 

 

 

 

 

Event ID 560 6381 

Precipitation point value 92 mm 73 mm 

Locational uncertainty buffer Size 50 km 50 km 

Number of different precipitation values within 
buffered area 

32 31 

Range of  precipitation values within buffered area 58-141 mm 49-94 mm 
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Figure 8.4  Map overlay of monthly average precipitation (mm) raster and debris flow event locational uncertainty buffers, 
highlighting event 560 and 6381, both with 50 km locational uncertainty. 

Each color cell represents an associated precipitation (mm) at that cell. Base map is from ArcGIS®, the intellectual property of Esri, used herein 

under license. Copyright © Esri. 

 

 

8.2.2 Impact of locational uncertainty on fault density as a predisposing factor – Europe 

 

According to the “Original” MaxEnt model, the fault density environmental layer provided the 

second highest percent contribution (gain), at 27.6%, and was the second most significant factor 

in the jackknife test with most significance as the only variable. .  Fig. 8.5(a) depicts the fault 

density in western Europe with debris flow locational uncertainty buffers.  Table 8.4 and Fig. 

8.5(b) depict the point fault density value versus the range of values within sample events 560 

and 6381. 
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Figure 8.5  5  Fault density (km/sq km) and debris flow event locational uncertainty buffers 

 

Event ID 560 6381 

Fault density value at point (km/sq km) .0065 - .0084 .000001 -. 05 

Locational uncertainty buffer 50 km 50 km 

Number of different Natural Breaks (Jenks) categories within buffer 7 6 

Fault density range of values within buffer .0050 - .0840 0 - .059 
Table 8.4  Example impact of uncertain location buffered area vs point values of fault density, for sample events 560 and 
6381. 

 

8.2.3 Impact of locational uncertainty on soil as a predisposing factor - Europe 

 

The environmental layer with the third highest percent contribution in the “Original” MaxEnt 

model is soil type with a gain of 8.6% and tied with fault density as the second most significant 

factor in the jackknife test with most significance as the only variable. 35% of the 93 buffered 

events had from two to seven different soil classification types. Fig. 8.6 depicts the soil 

classifications within each event buffer in a partial view of western Europe, highlighting sample 

events 560 and 6381. Table 8.5 presents their point value soil classifications  versus the range of 

classification values within their buffered locations.  

 (a) Fault densities in western Europe. (b) Fault density (Natural Break (Jenks) classification – 10 breaks) and debris flow event locational uncertainty 

buffers, highlighting events 560 and 6381, both with 50 km location uncertainties. Base maps and imagery are from ArcGIS®, the intellectual 

property of Esri, used herein under license. Copyright © Esri. 

(a) (b) 
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Event ID 560 6381 

Soil classification point value  Podzol Cambisol 

Locational uncertainty buffer size 50 km 50 km 

Number of different soil classes 
within buffer  

5 7 

Soil classes within buffer Cambisol, Gleysol, 
Lithosol, Podzol, Rendzina 

Cambisol, Gleysol, Lithosol, Luvisol, 
Planosol, Podzol, Rendzina 

Table 8.5  Uncertain location buffered area vs point values of associated soil factor class, for sample events. 

The bolded soil class in the list of “Soil classes within buffer” represent the soil class associated with the point location. 

 

8.2.4  Impact of factor uncertainties on susceptibility results - Europe 

 

Susceptibility maps were generated by MaxEnt for the models, “Original”, “93 Random”,  

“5 km”, “LTE 5 km”, and “LTE 1 km” (Fig. 8.7(a),(b),(c),(d), and (e), respectively).  The grid 

cell resolution of the Europe susceptibility maps is 3.36 km.  The area coverage for each 

susceptibility classification for each model is shown in Table 8.6. 

 

 

Figure 8.6  Events 560 and 6381 buffered by location uncertainty, with soil classification within each buffer. Base map is 
from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright © Esri. 
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Figure 8.7  MaxEnt debris flow susceptibility maps of Europe.  (a) “Original” (b) “93 Random” (c) “5 km” (d) “LTE 5 km”         
(e) “LTE 1 km”.  Warmer colors represent higher susceptibilities. 

 

 

a b 

c d 

e 



 

75 
 

There is close agreement in the AUC and the most significant factor contributions (precipitation, 

fault density, soil type) in the “Original” and “93 Random” models, and little to no agreement in 

the remaining models (Table 8.6).  Although the “Exact” model has verified locations and the 

highest AUC, results cannot be used to represent the European continent due to the statistically 

small number of such events (five) and their localized distribution (four in the United Kingdom 

and one in Ukraine) (Fig. 8.8), hence the “Exact” model is not further considered. 

 

 
Variable/Model 

"Original" 
Percent 

contribution 
(99 events) 

"93 
Random" 
Percent 

contribution 
(93 events) 

"5 km" 
Percent 

contribution 
(31 events) 

"LTE 5 km" 
Percent 

contribution 
(55 events) 

"LTE 1 km" 
Percent 

contribution 
(24 events) 

"Exact" Percent 
contribution 
 (5 events) 

AUC 0.891 0.893 0.857 0.896 0.921 0.930 

precipitation 42 37.4 1.4 30.2 11.9 3 

fault density 27.6 29.7 0.5 24.8 10.3 0.1 

soil type 8.6 10.5 18.6 13.6 25.8 75.3 

landcover 4.7 7.9 17 8.9 18.8 2.3 

climate 4.5 2.8 1.5 8.1 11.1 1.4 

lithology 2.1 1.6 11.5 4.1 3.1 0.5 

soil thickness 2.4 1.8 21 3.3 4 13.3 

landform 4.9 3.2 21.6 3.1 10.4 2.2 

elevation 0.2 1.6 0 2.1 1.1 1.5 

drainage 2.3 2.9 0.2 1.6 1.5 0.2 

topsoil % clay 0.1 0.2 1.5 0.1 1.5 0.2 

depth to bedrock 0 0.1 5.0 0.1 0.4 0 

aridity 0.5 0.3 0 0.1 0.1 0 
Table 8.6  AUC and factor contributions for each of the six Europe MaxEnt models. 
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There is little similarity in the predisposing factor classes, identified by the remaining five 

models, as being associated with debris flow susceptibility , Table 8.7. 

 

 

 

 

 

 

 

 

 

Figure 8.8  Distribution of the five European debris flow events with a location accuracy of “exact”. 
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Factor /Model "Original" "93 Random" "5 km" “LTE 5 km" “LTE 1 km" 
precipitation (monthly 
average mm 1970-
2000) 

275-300 300-325 260-300 260-280 275-300 

fault density (km/sq 
km) 

0.02-0.14 0.01-0.02 0 - 0.132 0.13-0.14 0.01-0.14 

soil type Gleysol Fluvisol, Gleysol Ferralsol Fluvisol, 
Gleysol 

Gleysol 

landcover urban urban Grass/shrubland urban sparse 
vegetation 

climate (Köppen-
Geiger) 

Dfa - hot summer 
humid continental 
climate 

BSk - semi arid 
steppe 

Csa - 
Mediterranean hot 
summer climate 
and Cfc - subpolar 
oceanic climate 

Csa - 
Mediterranea
n hot summer 
climate and 
Cfc - subpolar 
oceanic 
climate 

Csa - 
Mediterranea
n hot summer 
climate 

lithology unconsolidated 
sedimentary (su) 
and plutonic basic 
(pb) 

intermediate 
volcanic (vi) 

Sedimentary mixed 
(sm) 

(su) and (vi) basic plutonic 
(pb) 

soil thickness (m) 0-2.5 0-1 0-1 0-2 0-2.5 

landform Plains on 
sedimentary 
lithology 

Humid plains on 
sedimentary 
lithology 

Plains in alpine 
system 

Plains on 
sedimentary 
lithology 

Plains in alpine 
system 

elevation (m) 3250-3500 0- 3500 0- 3500 0-500 3250-5000 

drainage "Very poor" "Imperfectly" From "Imperfectly" 
to “Well” 

"Imperfectly" "Moderately 
well" 

topsoil %clay 5-18 20 55-60 20 0-22 

depth to bedrock (cm) 0 114 0 0 0-2000 

aridity (dimensionless) ~1300 (Arid) ~1300 (Arid) >= 15000 (Humid) >= 60000 
(Humid) 

~15000 
(Humid) 

Table 8.7  Comparison of factor classes with highest significance to susceptibility in four models. 

 

The susceptibility differences of each of the five models are highlighted  through pixel difference 

maps showing the difference between the susceptibility classification and locations of the 

“Original” model minus “93 Random, “5 km”, “LTE 5 km” and “LTE 1 km” models, Fig. 8.9 

(a), (b), (c), and (d), respectively.  Fig. 8.9 (e) provides a detailed perspective of the large range 

of susceptibility value differences associated with Events 560 and 6381.  Even within a 10 km or 

5 km buffer around the points there is significant variability in the susceptibility values. Figure 

8.10 and Table 8.8 present the large variance in susceptibility values for Events 560 and 6381 in 

the “Original” model as viewed within the 50 km location uncertainty buffer, and a glimpse at 

the significant variance within 10 km and 5 km of their documented event locations.  A 

comparison of the susceptibility classification area coverage for all five Europe models is 
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presented in Table 8.9.  The susceptibility results (0 to 1) are classified using  five equal-interval 

breaks, and classified as Very Low, Low, Moderate, High, and Very High.   

                         

 

 

Figure 8.9  Model susceptibility value pixel differences. 

(a) “Original” minus “93 Random”, (b) “Original” minus “5 km”,   (c) “Original” minus “LTE 5 km”, (d “Original” minus “LTE 1 km”, (e)  Map 
8.9(c) zoomed into area around the Italian Alps for visual enhancement of susceptibility disparities. Warmer colors represent areas of higher 
susceptibility values in “Original” model. Base maps are from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright © 
Esri. 

a b 

c d 
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Figure 8.10   “Original” model susceptibility highlighting Events 560 and 6381 with buffers representing their 50 km location 
uncertainty attribute and at 5 and 10 km. 

 

“Original” Inventory Model Susceptibility Values Event 560 Event 6381 

At Event Point .62 .35 

Lowest Value in 50 km Buffer .07 .06 

Highest Value in 50 km Buffer .89 .79 

Lowest Value in a 10 km Area .32 .26 

Highest Value in a 10 km Buffer .64 .68 

Lowest Value in a 5 km Buffer .24 .28 

Highest Value in a 5 km Buffer .89 .52 
Table 8.8   “Original” model susceptibility values for Events 560 and 6381 within 50 km, 10 km, and 5 km buffers. 
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Europe MaxEnt Models "Original" "5 km"  "LTE 5 km"  "LTE 1 km"  "Exact" 

AUC 0.891 0.857 0.896 0.921 0.93 

Susceptibility Value and % Area 
    

  

Very Low 84.66% 89.08% 91.29% 96.36% 99.44% 

Low 8.54% 8.04% 5.78% 2.63% 0.41% 

Medium 4.31% 2.18% 1.99% 0.69% 0.02% 

High 1.98% 0.61% 0.74% 0.21% 0.01% 

Very High 0.50% 0.10% 0.21% 0.11% 0.12% 

Medium to Very High 6.80% 2.89% 2.93% 1.01% 0.15% 
Table 8.9  Percent area coverage of susceptibility (based on pixel count) per susceptibility classification for each of five    
Europe MaxEnt models. 

 

8.2.5 Global Susceptibility Model Comparisons  

 

The global inventory has a location uncertainty from 1 km to 250 km, with the largest percentage 

(33.3%)  having an uncertainty of 5 km (Table 8.10) and only 7.6% with an exact known 

location.    

                               

                     Table 8.10  Breakdown of global debris flows and associated  locational uncertainty 

 

Global MaxEnt susceptibility models for “Original”,  “5 km”, “LTE 5 km”, “LTE 1 km”, and 

“Exact” are presented in Figs. 8.11 (a), (b), (c), (d), and (e), respectively.  The grid cell 

resolution of the susceptibility maps is 8.3 km. Table 8.11 is a breakdown of the area coverage 

by susceptibility classification for each model.   

Global debris flow locational uncertainty

Uncertainty Frequency %

exact 174 7.6%

1 km 620 27.0%

5km 763 33.3%

10km 277 12.1%

25km 240 10.5%

50km 125 5.4%

100km 9 0.4%

250km 4 0.2%

unknown 82 3.6%

Total 2294
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Figure 8.11  Global MaxEnt susceptibility models.  (a) “Original”,  (b) “5 km, (c) “LTE 5 km”, (d) “LTE 1 km”, and  (e) “Exact”. 

a b 

c d 
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Global Models "Original" "5 km" "LTE 5 km" "LTE 1 km" "Exact"  

Number of Events 2294 763 1557 794 174 

% Total 100.0% 33.3% 67.9% 34.6% 7.6% 

AUC 0.886 0.932 0.92 0.947 0.904 

Very Low 79.00% 96.41% 95.83% 98.34% 99.19% 

Low 12.47% 2.57% 2.71% 1.03% 0.47% 

Moderate   5.88% 0.75% 0.93% 0.34% 0.19% 

High 2.29% 0.23% 0.38% 0.18% 0.09% 

Very High 0.36% 0.04% 0.15% 0.10% 0.05% 

Moderate to Very High 8.53% 1.01% 1.46% 0.62% 0.34% 
Table 8.11  AUC and Area coverage (pixel count) percentage of debris flow susceptibility by model. 

                        

As was true with modeling Europe, the “LTE 5 km” global model is the best susceptibility model 

based on comparisons of AUC, and number and distribution of the model events.   “Exact” and 

“Original” models were discarded based on the small number of “Exact” events and their 

distribution, and the lack of location fidelity in the “Original” events.   “93 Random” is discarded 

as it was merely a model of fabricated events for demonstration purposes.  Figure 8.12 presents 

the distribution of the 2294 global debris flow events and their location uncertainty values. A 

difference map of  the “Original” global MaxEnt model minus the global “LTE 5 km” model is 

presented in Fig. 8.13.   
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    Figure 8.12  Distribution and location uncertainty of 2294 global debris flow events (model training data). 
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Figure 8.13  Susceptibility difference between “Original” and “LTE 5 km” models. 

Warmer colors represent areas where the “Original” model susceptibility classification is greater than the “LTE 5 km” model.  Each color is the 

number of  classifications by which the two models differ. 

 

8.3 Discussion 

 

Three general problems are associated with spatial data uncertainty, the first is determining what 

uncertainties exist, the second is accounting for those uncertainties, and the third is how to 

represent those uncertainties in our models and/or reasonably adjust the representation of 

susceptibility results, to account for them.  

Identifying specific factor classes (e.g., Cambisol soil class) which have a dominant association 

with past debris flow events are essential in preparing debris flow susceptibility maps across an 

area of study (Meten et al., 2015).  The impact of locational uncertainty in accurately selecting 

those predisposing factor classes, which have the most impact on debris flow susceptibility, 
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varies depending on the scale at which one is performing the analysis, the resolution of the factor 

itself, the extent of location uncertainty of the debris flow events being used to train a 

susceptibility model, and the risk associated with an incorrect model (Ardizzone et al., 2002; 

Carrara et al., 1992).  The best models will result from a large number of accurately located and 

well-distributed debris flow events.  However, due to event location uncertainties associated with 

the landslide inventory, noteworthy differences arose in factor and factor class significance for 

the environmental layers studied. 

The unsuitability of the original debris flow inventory is demonstrated through an inspection of 

two events each with a 50-km location uncertainty, and the variances in the most significant 

predisposing factor classes (precipitation, fault density, soil types), as determined through 

MaxEnt modeling of the Europe continent. The associated precipitation values range from 58 to 

141 mm for event #560 and from 49 to 94 mm for event #6381, where the point values were 92 

mm and 73 mm, respectively.  The fault densities ranged from .0050 to .0840 km/sq km for 

buffered event #560 and from 0 to .059 km/sq km for event #6381.  The point values were .0065 

to .0085 and .000001 to .05 km/sq km, respectively.  Four soil types (Cambisol, Gleysol, 

Lithosol, Rendzina) are found within the buffered location of event #560 in addition to Podzol 

which is identified at the event point location.  Six soil types (Gleysol, Lithosol, Luvisol, 

Planosol, Podzol, Rendzina) are found within the buffered location of event #6381, in addition to 

Cambisol at the point location.  The precipitation point values are almost the mean of the range 

of values found within the buffered zones for both points; the fault density for event #560 is off 

by a factor of ten on the high end but the point value for event #6381 is comparable to its 

buffered range; for both points there is a large discrepancy of soil types between the point and 

buffered values.  Although the impact of location uncertainty (at least at the 50 km buffered 

examples) on precipitation factor classes is negligible, the impact on soil class is significant. Of 

the soil classes found in the 50-km buffer there are significant differences which would lead to 

differing considerations about soils associated with debris flows. For example, Cambisols 

typically are medium- to fine-grained alluvial, colluvial, aeolian deposits; Lithosols consist of 

partially weathered rock fragments, usually on steep slopes; Planosols develop on smooth flat 

uplands with strongly leached upper layers over compacted clay or silt; Podzols are typical of 

coniferous or boreal forests; Gleysols are wetland soils; Luvisols are characterized by a higher 

clay content.  Each of these soil types tell a different story about debris flow susceptibility. 
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With substantial factor class variances demonstrated within the event buffers, the resulting 

susceptibility map  is also questionable. The resulting susceptibility map, based on the “Original” 

inventory of events, exhibits substantial variances.   The  susceptibility at event #560 is .62 with 

a range from .07 to .89 within the 50 km buffer.  Event #6381 has a point susceptibility of .35 

and a range from .06 to .79 within the 50 km buffer.   

In general, it is therefore expected that the larger the locational uncertainty, and the finer the 

granularity of lateral geographic change of the predisposing factors, the larger the uncertainty of 

the susceptibility results. 

Demonstrating the variable and adverse impact of event locational uncertainty on the factor 

classes, an appropriate approach to susceptibility modeling to accommodate or minimize the 

impact was pursued.   Random points were generated within each of the buffered locations 

associated with the 93 events having a location uncertainty other than “exact” or “unknown”, and 

a susceptibility model (“93 Random”) developed from these points.  This model was developed 

as an additional exercise to evaluate the validity or randomness of a data inventory with events 

having from zero to 50 km of location uncertainty, and 6% of events with an unknown 

uncertainty.  The AUC values and factor significance values of the “Original” and “93 Random” 

models are comparable (Table 8.6) and although there is little similarity in the factor class 

values, this is further evidence that the “Original” inventory of data may not result in a good 

representative model of debris flow susceptibility and was not further considered in the analysis.  

It is also likely that the original inventory of global debris flow events may not be suitable for 

modeling any continent or for a global debris flow susceptibility model.   

Thus, four additional MaxEnt debris flow susceptibility models were developed both for Europe 

and the world, each based on the level of uncertainty of the events.  Models with a location 

uncertainty of 5 km (“5 km”), less than or equal to 5 km (“LTE 5 km”), less than or equal to 1 

km (“LTE 1 km”), and a model utilizing only those events with an exact known location 

(“Exact”) were evaluated.   

In addition to a concern for the impact on susceptibility modeling by spatial location uncertainty, 

one must also be concerned with event distribution, and number of events employed.  The 

“exact” Europe and global models were excluded  due to the extremely small number of events 
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and small percentage of the totals (5% and 7.6%, respectively ) and their localized distribution.  

Four of Europe “exact” events are in the United Kingdom and one in Ukraine.   The largest 

percentage of global events with an “exact” known location are within North America (155 

events which are 10.5% of the North American events) and no “exact” events are located in 

Australia.  Table 8.12 presents the “exact” known location global events by continent.  A small 

sample size in a large (continental or global) study area may not cover the variability of the 

environmental factors (Heckmann, Gegg, Gegg, & Becht, 2014).  A larger sample size may 

include more environmental information about the study area, but conversely an overly large 

sample size may result in overfitting of the model.  Based on the number of events (99 for 

Europe and 2294 for global) it is not believed that these are overly large sample sizes).   An exact 

number of events deemed as appropriate for the best model is not determined herein, rather a 

reasonableness factor is employed. 

CONTINENT # "Exact" events # Total Events % Total 

Africa 2 54 3.70% 

Asia 7 468 1.50% 

Australia 0 16 0.00% 

Europe 5 100 5.00% 

North America 155 1473 10.52% 

Oceania 2 19 10.53% 

South America 3 164 1.83% 

  174 2294 7.59% 
Table 8.12  Count of global debris flow events with an “exact” known location. 

 

Of the remaining three Europe and global models, “LTE 1 km” has the highest AUC and 

smallest number of events.  The “LTE 5 km” models have the largest percentage of the total 

inventories (Table 8.13), and either the second or third highest AUC (Table 8.14). 

Model “5 km” “LTE 5 km” “LTE 1 km” 

Europe # Events (% Total Events) 31 (31%) 55 (55%) 24 (24%) 

Global # Events (% Total Events) 763 (33%) 1557 (68%) 794 (35%) 

Table 8.13  Number and percentage of total points by model. 
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Model “5 km” “LTE 5 km” “LTE 1 km” 

Europe AUC .857 .896 .921 

Global AUC .932 .920 .947 

Table 8.14  AUC by model. 

 

The “LTE 5 km” model is chosen as the best model for further continental and global analyses 

herein, due to the larger number, and percentage of total, of well-distributed events (Fig. 8.14 

and Fig. 8.15) and a reasonably high AUC.  

                                

                                       Figure 8.14  Geographic distribution of Europe events with <= 5 km location uncertainty. 
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                                Figure 8.15  Geographic distribution of global events with <= 5 km location uncertainty. 

 

As a further view on susceptibility model choices, and with an attempt to better convey 

‘uncertainties’ to model users, a novel presentation method is developed.  Mean and standard 

deviation maps are developed based on a combination of “Original” and “LTE 5 km” 

susceptibility maps as input for Europe (Fig. 8.16) and the world (Fig. 8.17). These 

representations provide the end user with a novel representation of uncertainty associated with 

the original inventory and the ability to select areas for further detailed study based on areas with 

a high mean and low standard deviation, from the original, complete set of data (“Original”) and 

the model chosen as a more truthful representation (“LTE 5 km”).  An ArcGIS Equal Interval 

classification scheme was used for susceptibility classification and representation for all models.  

This scheme divides the low to high values into five equal bins, which are then labeled as “Very 

Low”, “Low”, “Medium”, “High”, and “Very High”.  Similarly standard deviation and mean 

maps for the “Original” with the “LTE 1 km” and “Exact” global models are provided in Figures 

8.18 and 8.19, respectively. 
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   Figure 8.16  Overlay of susceptibility standard deviation and mean for two combined models (“Original” and “LTE 5km”). 

Standard deviation is represented by a scalar (black arrows), smaller arrows = lower values.   Warmers background colors   
represent higher mean susceptibility.    

 

 



 

91 
 

 

Figure 8.17  Overlay of global susceptibility standard deviation and mean for two combined models (“Original” and “LTE 5 
km”). 

Standard deviation is represented by a scalar (color coded arrows), smaller arrows = lower values.  Warmer map colors 
represent higher mean susceptibility. 
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Figure 8.18  Overlay of global susceptibility standard deviation and mean for two combined models (“Original” and “LTE 1 
km”). 

Standard deviation is represented by a scalar (colored arrows), smaller arrows = lower values, etc.  Warmer map colors 
represent higher mean susceptibility 
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Figure 8.19  Overlay of global susceptibility standard deviation and mean for two combined models (“Original” and “Exact”). 

Standard deviation is represented by a scalar (colored arrows), smaller arrows = lower values, etc. Warmer map colors 
represent higher mean susceptibility 

 

8.4 Conclusions 

 

The continent of Europe was used as a case study to understand and highlight the impact of  

debris flow event location uncertainty with regard to predisposing factors and factor classes 

and resulting susceptibility zoning.   88.8% of the Europe and global debris flow inventories 

have a locational uncertainty from 1 to 50 km and 1 to 250 km, respectively, with 6%  and 

3.6% defined as “unknown”, respectively.  82.5% of all global landslide types, in this 

inventory, have a locational uncertainty from 1 to 250 km, with 4.9% unknown (Table 8.15).   

It is believed these types of locational uncertainties may be representational of any landslide 
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inventory whose data is gathered by means other than direct field survey or detailed remote 

sensing identification tools with a known level of accuracy, and ground control. 

 

Locational 

Uncertainty 

Radius (km) 

Frequency 

Distribution 

(Europe 

Debris 

Flows) 

% of Total 

Debris 

Flow 

Events 

Cum 

% 

 Frequency 
Distribution 

(World 
Debris 
Flows)  

% of 
Total 

Debris 
Flow 

Events 

Cum %  Frequency 
Distribution 
(World All 
Landslide 

Types) 

% of 
Total 

Landslide 
Events  

Cum % 

exact 5 5.1 5.1  174 7.6 7.6  1386 12.6 12.6 
1 19 19.2 24.3  620 27.0 34.6  2185 19.8 32.4 
5 31 31.3 55.6  763 33.3 67.9  3178 28.8 61.2 

10 20 20.2 75.8  277 12.1 79.9  1435 13.0 74.2 
25 12 12.1 87.9  240 10.5 90.4  1470 13.3 87.5 
50 6 6.1 93.9  125 5.4 95.9  794 7.2 94.7 

100 0    9 0.4 96.3  25 0.2 94.9 
250 0    4 0.2 96.4  16 0.1 95.1 

“unknown” 6 6.1 99.9  82 3.6 100.0  544 4.9 100.0 
  <null>         2   
Total 99    2294    11033   

Table 8.15  Locational uncertainty frequency distribution of Europe debris flow inventory (left), world debris flow inventory 
(center), and world inventory of all landslide types (right). 

 

For the Europe continent, five models and three predisposing factors (precipitation, fault 

density, soil class) were investigated to identify and demonstrate the scope and impact of 

uncertainty in determining those factor classes most relevant to debris flow susceptibility. 

First the variances in factor classes within an event’s locational uncertainty buffer were 

compared to the values associated with the event point location to expose the problem.  Then 

models were developed based on event location uncertainties and evaluated on AUC.  The 

standard deviation and mean  of the models based on the  original set of events and the model 

defined on events with less than or equal to a five-kilometer location uncertainty was 

developed to provide end users with a view of the susceptibility differences, which can 

facilitate choosing areas of further interest.  Using this composite and choosing susceptibility 

areas with a small standard deviation and high mean, may provide insight to areas which 

have a higher confidence level.  

Utilizing the MaxEnt statistical results of AUC, a model was chosen which would best meet 

the context, scope, and objectives of this European continent debris flow susceptibility study, 
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which is to find a set of events and a methodology that can provide the most “truthful” 

susceptibility results. The “LTE 5 km” model provides a good intermediate result, utilizing 

fifty-five points, about half of the original data, fairly well distributed across the study area, 

includes data with a relatively small geographic locational uncertainty from 1 to 5 km, and 

includes the “exact” known points. This model is an intermediate compromise favoring a 

slight error of commission over error of omission. Furthermore, by developing susceptibility 

maps of the mean and standard deviation derived from the “Original” and the “LTE 5 km” 

models, provides additional tools identifying sites (areas of high susceptibility mean and low 

standard deviation) for further investigation.   Based on the results and conclusions drawn 

from the Europe models, similar methodologies were applied to the global inventory of 

debris flow events of varying location uncertainty. The AUC, and number and distribution of 

events, resulted in the “LTE 5 km” being chosen as the preferred global model.   

The cause, nature, and handling of mapping errors (uncertainties) has been the subject of 

extensive research (Ardizzone et al., 2002; Hunter, 1999; Hunter & Goodchild, 1996; Maffini 

et al., 1989; Openshaw, 1989; Shi, 2010; Wechsler, 1999; Zufle et al., 2017).  Uncertainty 

and uncertainty handling is context dependent.  The combination of uncertainties in data, 

analytical methods, and the overlay processes, may be additive, multiplicative, and non-

linear (Veregin, 1989).  If a susceptibility map, at any scale, is to be used to direct further 

research or mitigation efforts, a confidence level associated with the results is desirable 

(Soma, 2018).  This confidence will be dependent upon many facets of the model, one of 

which is the reliability of the location of the events used to train the model.  

Increasingly, dataset producers are including accuracy (uncertainty) attributions, such as the 

‘location accuracy’ attribute in the NASA landslide inventory (D. Kirschbaum et al., 2015), 

and the ‘epistemic quality’ and ‘activity confidence’ attributes of the GEM Active Faults data 

(Styron & Pagani, 2020).  Utilizing these attributes, when available, provides the researcher 

insight as to how or if to utilize the uncertainty, based on the context of their project.  

Although this project is singularly focused on the impact of landslide inventory locational 

uncertainty, additional sources of data uncertainty may be inherent in other attributes of the 

inventory, as well as uncertainties associated both with the spatial assignment and attributes 

of the environmental factors.  The impact of the locational uncertainty will vary according to 
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the scale of the study area and to the size of the locational uncertainty buffer vis-à-vis the 

scale of lateral geographic change for a factor class.   It would be ideal to create susceptibility 

maps with an attribute and graphical representation of certainty, but not practicable due to the 

array, complexity, and relationship of all uncertainties, without modeling across all these 

variables.  According to Goodchild et al 1993 as cited in (Hunter, Goodchild, & Robey, 

1994) there are three options for handling uncertainty: (1) omit all reference to it; (2) attach a 

descriptor to the output; and (3) show samples from the range of possible maps.  The latter 

approach is chosen in this study, that is, to present different models of the susceptibility and 

allow the user to choose that which is most reasonable for the project at-hand.  

In summary, there are several caveats to be noted when working at a continental or global 

scale.  In general, there is no single superior model.  The best model is that which best fits the 

research objective and the error tolerance.  While debris flow predisposing factors can be 

upscaled and generalized for the continental and global scale, the reverse is not valid.  The 

most significant predisposing factors identified at a continental or global scale, through any 

modeling technique, is a generalized perspective.  The  predisposing factors identified as 

most significant are common to debris flows over an extensive geographic scale. 

The result of this research demonstrates that there is not a single definitive solution to the 

uncertainty problem. Including all environmental factors and other data uncertainties (in 

addition to locational) may help refine the results but is a much more comprehensive and 

complex model.   This research reveals the critical importance of working with data 

accurately located and applies to landslide analyses of any type.  If the location of modeled 

events is uncertain then any results from such a model will also be uncertain. 
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9 Future Debris Flow Susceptibility  

9.1 Introduction 

 

Climate conditions (precipitation, temperature, aridity) may experience major changes in 

magnitude and geographic extent in the future.  “The frequency and intensity of some extreme 

weather and climate events have increased as a consequence of global warming and will continue 

to increase under medium and high emission scenarios (high confidence)” (IPCC, 2019).  

Climatic variability will be manifested as significantly enhanced rainfall in some areas and 

marked desertification and enhanced wind erosion in others, operating at scales of tens to 

hundreds of years  (Cherlet et al., 2018; Middleton & Thomas, 1997).  The frequency and 

intensity of droughts are projected to increase in southern Africa, and the Mediterranean region, 

while frequency and intensity of extreme rainfall events are projected to increase in many other 

regions across the world.   

Both changes in temperature and precipitation affect slope stability and potential debris flow 

susceptibility (C. Huggel et al., 2012) by increasing sediment availability and triggers resulting 

from intense and/or prolonged rainfall, rainfall totals, antecedent rainfall, and rain on snowmelt 

(IPCC, 2019).  

Changes in precipitation and temperature levels and patterns are the primary climate changes 

with a direct impact on soil (types, thickness, composition), geomorphology (slope, hydrography, 

landform), land use/landcover, and other environmental factors which influence the potential for 

debris flows.  “Magnitude of debris flows could become larger due to larger amounts of sediment 

delivered to the channels and as a result of the predicted increase in heavy precipitation events.” 

(Stoffel, Tiranti, & Huggel, 2014).  These factors can subsequently lead to debris flows in areas 

of frequent or intense rainfall (Li et al., 2018) (C. Huggel et al., 2012) (Stoffel et al., 2013) 

(Alvioli et al., 2018) (Gariano & Guzzetti, 2016). 

In addition to projecting the future extents of current climates known to be associated with debris 

flow susceptibility, a more difficult consideration is the potential changes to geomorphologic 

environmental predisposing factors (Alvioli et al., 2018; Harrison et al., 2019)  and therefore 

geomorphic systems, in the future.  Despite the great importance of these climate-induced 
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geomorphologic changes, they are not considered in this study, thus predisposing factor layers 

other than climate classification and precipitation, are based on current data.   

Researchers have demonstrated the recent impacts of climate change on increased debris flow 

magnitude and frequency, and change in seasonality in North and South America, Europe, New 

Zealand, and Asia (Christian Huggel et al., 2012; C. Huggel et al., 2012; C. Huggel et al., 2010; 

Keiler et al., 2010; Legg, Meigs, Grant, & Kennard, 2014; Moreiras et al., 2021; Stoffel et al., 

2014).  

Projected climate change impacts on debris flow susceptibility conducted in Asia and Europe 

indicate that  susceptible areas may not increase dramatically, but debris flows may occur more 

frequently and with a higher magnitude  (Alvioli et al., 2018; C. Huggel et al., 2010; Li et al., 

2018).  This may be due to the projection that annual precipitation may decrease, while the 

number of heavy rainfall events increase (Donat, Lowry, Alexander, O’Gorman, & Maher, 

2016).   

The future debris flow susceptibility and vulnerability (Chapter 10) models, developed herein, 

are based on projected climate and urbanization trends worldwide for the decade 2100.  The 

objective is to identify areas globally with the highest potential for debris flows and future 

societal vulnerability as indicated by the intersections of high debris flow susceptibility and 

urbanization.  The purpose is not to predict, or provide early warning systems, but rather as a 

high-level preliminary view of the potential impact to society that can be used to drill-down for 

more regional and localized research, and planning.   

9.2 Model Constraints 

 

There are caveats in future susceptibility modeling.  There is not a strict and direct relationship  

between the climate zones currently associated with debris flow susceptibility, and projected 

susceptibility based on projected locations of these climate zones.  Additional critical factors 

include changes in precipitation intensity, and seasonality. It is not only the amount of 

precipitation an area receives, but how anomalous this precipitation is to the region.  In general, 

anomalous variation of rainfall is a key driver of climate change impacts  (C. Huggel et al., 

2012).   
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The interactive impacts of various environmental factors on one another, commencing with 

climate change, are not yet studied, and may have a significant impact on defining future areas of 

debris flow susceptibility.  For example, increased precipitation may affect soil types and 

thickness, rate of lithologic erosion, slope, geomorphology, etc.  Changes in slope may change 

potential gullying and erosion, landform, etc.    

A temporal component is missing from this study, by design.  A temporal analysis warrants a 

separate study due to the complexity of modeling as well as the uncertainty in the source data 

and the time-periods used in normalizing the data, regression to those time periods when 

calculating future projections, and uncertainty in the rates of change and overall effect in the 

longer term projections (Donat et al., 2016). 

This study is focused on the future debris flow susceptibility guided exclusively by future 

precipitation and geographic shifting of associated climate zones; it is an imperfect analysis in 

the sense that climate classification and precipitation are not the only significant environmental 

factors which govern debris flow susceptibility.  Landuse/land cover can change substantially in 

the next 50-90 years, due to both climatic and anthropogenic drivers, soils and soil erosion, river 

incision, and geomorphologic changes due to climate change (Harrison et al., 2019) all of which 

have an impact on debris flow susceptibility.  It is conceivable that the relationship among 

environmental factors and triggers that are associated with debris flow susceptibility, as known 

today, could be different in the future considering the possibility of significantly different 

environmental conditions.  In other words, system processes, themselves, may change concurrent 

with, or as a result of, sustained climate change.  Consideration of future changes in other 

relevant environmental factors is beyond the scope of this project.   

Although the models developed herein are relatively simplified vis-à-vis the factors, it is 

nevertheless a relevant foundational starting point.  The impact of the areas defined as potentially 

susceptible to debris flows may be minimized by reducing the anthropogenic contribution, the 

only factor over which we have control. 
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9.3 Methodology 

 

The factors and factor classes employed in the future modeling is derived from the MaxEnt 

“LTE 5 km” global debris flow susceptibility model which was determined to be the best global 

model (Chapter 8).  

The future models are developed in ArcGIS Pro rather than MaxEnt, as MaxEnt models require 

historic data as input for modeling.  Therefore, for a more equitable comparative analyses 

between current and future, the “present-day” model is rebuilt in ArcGIS Pro using the same 

methodology as that employed for the future models. 

The present-day “LTE 5 km” Maximum Entropy global debris flow susceptibility model is used 

to extract those factors with significance values  > 1% and their factor classes which exhibit 

>=90% predicted probability, as suitable debris flow environments. The factors and factor 

classes, other than climate and precipitation, are used as input to the future models. 

Representative Concentration Pathways (RCP) 2.6 and 8.5 projected precipitation (Fick & 

Hijmans, 2017) and Köppen-Geiger climate (Beck et al., 2018) data are used for the future debris 

flow susceptibility models, extracting a subset based on the climate and precipitation factor 

classes which exhibited  >=90% predicted probability in the “present-day” Maximum Entropy 

model. Table 9.1 lists the factors and factors classes which met these criteria.   Each of the factor 

layers are weighted based on their “present-day” model Maximum Entropy significance value 

and summed over each pixel.  Each pixel of the resultant susceptibility map is equal to the sum 

of the weights of all environmental factors present at that pixel, therefore ranging from 0 (no 

factors present) to 99 (all factors present).  Pixels with  higher weighted sums represent higher 

susceptibility. The maps are classified using five equal intervals and qualitative labels of “Very 

Low”, “Low”, “Moderate”, “High”, and “Very High” susceptibility. 
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Environmental Factor 

 

Factor 

Weight 

 

Factor Classes Used in Future Model 

Slope (deg) 27 10-35 

Köppen-Geiger Climate Class 20 Csa, Csb, Dfa 

Landform 18 Dry widely spaced mtns in alpine system; dry high tablelands in 

alpine system 

Soil Drainage 9 moderately well 

Soil Type 9 Cambisol, Gleysol  

Fault Density 6 .02 - 0.14 

Land cover 4 Urban, Snow/ice, Needleleaf deciduous,  

Cropland, Sparse vegetation 

Precipitation (Avg mo mm) 2 100-200 

Soil Thickness (m) 2 1-3 

Lithology 2 pa (acidic intrusive) pb (basic intrusive), pi (intermediate intrusive) 

Table 9.1  Predisposing environmental factors, factor classes, and assigned weights for future susceptibility model. 

 

Comparisons are made between future (RCP 2.6 and RCP 8.5) and current models and between 

the RCP 8.5 and RCP 2.6 future models.  The comparisons are developed by subtracting 

susceptibility values on a pixel-level between two models using ArcGIS Pro “cell statistics” tool. 

 

9.4 Results  

 

The ArcGIS version of current debris flow susceptibility, based on the summed, weighted factor 

classes from the  “LTE 5 km” model, is presented in Fig. 9.1.  Figs. 9.2 and 9.3 are the RCP 2.6 

and RCP 8.5 future models, respectively.   
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Figure 9.1  ArcGIS version of present day debris flow susceptibility based on summed, weighted MaxEnt factors. 
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             Figure 9.3  Future (RCP 8.5 scenario) debris flow susceptibility based on summed, weighted MaxEnt factors. 

        

 

 

Figure 9.2  Future (RCP 2.6 scenario) debris flow susceptibility based on summed, weighted MaxEnt factors. 
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The total area of Moderate, High, and Very High debris flow susceptibility zones decreases in 

both future scenarios as compared to the current model, with slightly more area in the RCP 8.5 

than RCP 2.6 model (Table 9.2). 

Susceptibility Classification/Model Current RCP 2.6 RCP 8.5 

Very Low 91.63% 92.47% 90.95% 

Low 5.21% 5.24% 6.74% 

Moderate 2.54% 1.85% 1.89% 

High 0.57% 0.41% 0.38% 

Very High 0.05% 0.03% 0.04% 

High and Very High 0.62% 0.44% 0.42% 

Moderate, High, Very High 3.16% 2.29% 2.31% 
Table 9.2  Percent area of debris flow susceptibility classification by model. 

 

There are geographic trends in susceptibility in all models in the Moderate, High, and Very High 

classifications, but with varying extents (Fig. 9.4).  The Moderate to Very High susceptibilities 

commonly coincide with mountain ranges on all continents, primarily high mountains and 

scattered mountains as classified by Sayre et al (Sayre et al., 2018) in Fig. 9.5.   

   
   

Current model RCP 2.6 future scenario RCP 8.5 future scenario 

Figure 9.4  Moderate, high, and very high debris flow susceptibility zones (light blue highlights) in current, RCP 2.6, and RCP 
8.5 future scenario models. 

 

Mountain environments are vulnerable to mass movements as they provide several of the 

predisposing environments as well as triggering parameters commonly associated with debris 

flow susceptibility (Nakileza & Nedala, 2020).  They are sources of available sediment, receptors 

and concentrators  of precipitation, and they are composed of slopes of varying degrees, 

commonly attributed to debris flow susceptibility.  
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To discern the geographic shifts/changes in susceptibility, Figs. 9.6, 9.7, and 9.8 model the 

susceptibility classification differences between RCP 2.6 and present-day; RCP 8.5 and present-

day; and RCP 8.5 and RCP 2.6, respectively. Each pixel is evaluated as to whether it increased or 

decreased in susceptibility classification and by how many classifications. 

 

 

  

Figure 9.5  Global mountain distribution  in 4 classes (high, scattered high, low, scattered low) from Sayre et al. 
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Figure 9.6  Susceptibility zoning classification changes between Current and Future RCP 2.6 models. 

 

 

 

 

 

 

 

 

Classification mapping is 1 = Very Low, 2 = Low, 3 = Moderate, 4 = High, 5 = Very High. 
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Classification mapping is 1 = Very Low, 2 = Low, 3 = Moderate, 4 = High, 5 = Very High. 

Figure 9.7  Susceptibility zoning classification changes between Current and Future RCP 8.5 models. 
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Table 9.3 presents the changes (increase and decrease) in susceptibility classification in a 

pairwise comparison between the present-day model and RCP 2.6; present-day model and RCP 

8.5; and between RCP 2.6 and RCP 8.5 models, as percent of total land area and percent of 

changed land area. 1.49% of the total land area (34.17% of total changed land area) exhibit an 

increase of debris flow susceptibility classification under the future RCP 2.6 scenario, and 3.14% 

of total land area (51.47% of total changed land area) under RCP 8.5.  Conversely, 2.87% of total 

land area (65.83% of total changed area) exhibits a decrease in  susceptibility classification under 

RCP 2.6 and 2.96% of total land area (48.53% of total changed area) under RCP 8.5. 

 

 

Classification mapping is 1 = Very Low, 2 = Low, 3 = Moderate, 4 = High, 5 = Very High. 

Figure 9.8  Susceptibility zoning classification changes between Future RCP 8.5 and RCP 2.6 models. 
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9.5 Discussion 

Although the percent of total land area with an increase in debris flow susceptibility 

classification under RCP 2.6 and RCP 8.5 scenarios is small (1.49% and 3.14%, respectively), it 

represents a significant coverage, with 2.2 million km2 (about the size of Saudi Arabia) under 

RCP 2.6, and 4.7 million km2 (about the size of the European Union) under RCP 8.5. However, 

the global area increase to Moderate, High, Very High debris flow susceptibility under RCP 2.6 

and RCP 8.5 scenarios is even smaller with 0.47% (705,000 sq km) and 0.63% (945,000 sq km), 

respectively.  These small projected susceptibility increases belie the potential for more frequent 

and larger magnitude debris flows  (Alvioli et al., 2018; C. Huggel et al., 2010; Li et al., 2018) 

due to the potential for more numerous heavy rainfall events, in spite of  annual precipitation 

decreases (Donat et al., 2016).   

In both future scenarios, the areas of increased susceptibility in the northern hemisphere are 

coincident with an increase in area extent of Köppen-Geiger (Beck et al., 2018) climate 

classification Dfa and its projected northward shift in North America and Eurasia. Dfa was found 

to be one of three most significant climate classifications associated with global debris flow 

susceptibility in the present-day modeling (Chapter 7).  Dfa is a humid continental climate, found 

between latitudes 30o N and 60o N, characterized by hot summers and cold to severely cold 

winters.  Annual precipitation ranges from 50 to 125 cm, in the form of thunderstorms in summer 

Susceptibility Change From Current 
to RCP 2.6 

From Current 
to RCP 8.5 

From RCP 2.6 
to RCP 8.5 

INCREASE 

  % of Total Area  1.49% 3.14% 2.35% 

  % of Changed Area  34.17% 51.47% 74.47% 

DECREASE 

  % of Total Area  2.87% 2.96% 0.80% 

  % of Changed Area  65.83% 48.53% 25.53% 

INCREASE TO MODERATE, HIGH, VERY HIGH CLASSIFICATION 

  % of Total Area .47% .63% 0.29% 

  % of Changed Area 10.79% 10.29% 9.09% 
Table 9.3  Comparison of geographic extent of ‘increased’ versus “decreased” debris flow susceptibility 

Percentage area of any debris flow susceptibility classification to moderate, high, or very  high debris flow 
classification from any other classification. 



 

110 
 

and snow in the winter months, higher amounts in the uplands, and no dry season, i.e. 

precipitation is distributed throughout the year (Beck et al., 2018).   

Under RCP 8.5 there is a correlation between areas of increased susceptibility and increased 

precipitation, that is, where present-day average monthly precipitation is under 100 mm and RCP 

8.5 values are projected at 100-200 mm.  Significantly impacted areas under both future 

scenarios, those with Moderate, High, or Very High susceptibility in future models, include the 

west coasts of North and South America (eastern Cascade Range, Northern Rocky Mountains, 

and Sierra Nevada of North America, eastern portions of the Andes Mountains in South 

America); southern Europe/land bounding northern Mediterranean Sea, coastal Turkey, along the 

Zagros Mountains from Turkey to Iran, southeastern coast of Madagascar; eastern Asia 

(Himalayan belt, China, Japan, eastern coast of Russia, and mountain ranges of the eastern 

interior of Asia); and Oceania (New Zealand, and southeastern coast of Australia). 

Changes in the geographic extents, of the most significant climate and precipitation factor classes 

(as determined in the “present-day” model) under  RCP 2.6 and RCP 8.5 scenarios, are the main 

drivers for the geographic changes and level of debris flow susceptibility.  Figs. 9.9, 9.10, and 

9.11 present the geographic extents of the climate classifications Csa, Csb, Dfa (the three most 

significant climate factor classes associated with the present-day global debris flow susceptibility 

model), and average precipitation values of 100 to 200 mm/month for the present-day model, 

RCP 2.6, and RCP 8.5 models, respectively.   
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Figure 9.9  Köppen-Geiger climate classification (Csa, Csb, Dfa) and precipitation (100-200 mm) factor class geographic extents in 
present-day (current) modeling. 
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Figure 9.10  Köppen-Geiger climate classification (Csa, Csb, Dfa) and precipitation (100-200 mm) factor class geographic 
extents in future RCP 2.6 scenario modeling. 

Figure 9.11  Köppen-Geiger climate classification (Csa, Csb, Dfa) and precipitation (100-200 mm) factor class 
geographic extents in future RCP 8.5 scenario modeling. 
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While there are numerous areas across the Earth exhibiting a decrease in debris flow 

susceptibility under scenarios RCP 2.6 and RCP 8.5, a few sizeable areas appear east of the 

Rocky Mountains to the eastern seaboard of the United States, approximately along 40o N 

latitude, as well as in eastern Ukraine, western Russia, southern Romania, and northern Bulgaria.  

The decreased susceptibility in these areas appears to be primarily due to decreasing 

precipitation in both future scenarios. 

9.6 Conclusions 

 

It is acknowledged that there is not a clear, well-defined, linear relationship between climate and 

debris flows (Froude & Petley, 2018), yet substantial research indicates a causal relationship 

between climate change and debris flows (Gariano & Guzzetti, 2016), slope evolution and 

instability directly or indirectly (Borgatti & Soldati, 2010). 

Temperature and precipitation climate changes may affect the debris flow seasonality, frequency, 

magnitude, and locations of susceptibility and may do so over  short time periods.  Additionally, 

climate changes will affect other debris flow predisposing factors such as topography or 

landforms, soil type and thickness, lithology, fracture density, etc. over a longer time span.  This 

unknown interactive impact is a critical component of a more accurate understanding of how and 

where debris flow susceptibility will change in the future.   

Based on climate and precipitation forecasts for RCP 2.6 (best case) and RCP 8.5 (worst case) 

scenarios, there may be both increases and decreases in debris flow susceptibility in various 

regions under both scenarios, with an overall 1.49% and 3.14% increase (of total land area) 

under RCP 2.6 and RCP 8.5, respectively; and a 2.87% and 2.96% decrease in RCP 2.6 and RCP 

8.5 scenarios, respectively.  Perhaps more importantly is the  .47% and .63%  change from a 

lower susceptibility to Moderate, High, or Very High under scenarios RCP 2.6 and RCP 8.5, 

respectively, as compared to the present-day model.  For those areas which increase to the Very 

High susceptibility class there is an increase of .01% (15,000 km2) and .02% (30,000 km2) of 

total land for RCP 2.6 and RCP 8.5, respectively.   

These models were developed with a conservative approach by minimizing the factor classes 

utilized to those with the highest probability (> 90%) of association, which results in fewer factor 
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classes (particularly fewer climate and precipitation classes), which may therefore result in 

smaller areas of Moderate to Very High susceptibility, but which may result in a higher 

confidence of the results.   
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10 Human Vulnerability and Debris Flow Susceptibility 
 

10.1 Introduction 

 

There are two ways to view future debris flow susceptibility impacts on humans, one is by 

looking at future areas of population (population per square kilometer) and the second is to look 

at projected areas of urbanization (population shift from rural to urban).  The latter may be 

considered a proxy for impact on both humans and economies.  Both views are considered in this 

study.  The impact of landslides, be it economic or loss of life, is not uniformly experienced 

across the world.  Proximity of landslides to cities occurs most frequently in countries with lower 

gross national income, where urbanization frequently extends over unstable slopes and ancient 

landslides (Cavallo & Noy, 2010; Froude & Petley, 2018; United Nations Office of Disaster Risk 

Reduction, 2019).  The median number of fatalities per event may be as much as  400% greater 

in developing countries than in advanced countries  Dowling and Santi refer to debris flows as a 

“disaster of social vulnerability” (Dowling & Santi, 2013).  Debris flow events are expected to 

increase in frequency and/or intensity in association with climate change, and human 

vulnerability will also increase due to increases in population and urbanization, deforestation, 

and increasing mountain settlements (Froude & Petley, 2018; Haque et al., 2019; United Nations 

Office of Disaster Risk Reduction, 2019).  Although debris flows cannot be prevented their 

impact may be mitigated through an awareness of the intersection between susceptibility and 

populations, worldwide, with a recognition of those areas where human loss could be higher.  

The objective of this work is not to define a quantitative vulnerability index as was done by 

Papathoma-Kohle et al (Papathoma-Kohle, Schlogl, & Fuchs, 2019), but rather to represent the 

potential vulnerabilities spatially. 

By 2100, a decrease in population in Europe is expected, with increases in the remainder of the 

world (Table 10.1).  Particularly noteworthy is the population of sub-Saharan Africa which is 

likely to increase by 400%, with West Asia and North Africa doubling (Cherlet et al., 2018).   
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 Actual (billions) Projections (billions) 

By Geography 2015 % of Total 2030 2050 2100 

World 7.349  8.501 9.725 11.213 

Africa 1.186 16% 1.679 2.478 4.387 

Asia 4.393 60% 4.923 5.267 4.889 

   China 1.400 19%    

    India 1.300 18%    

Europe 0.738 10% 0.734 0.707 0.646 

Latin America 0.634 9% 0.721 0.784 0.721 

North America 0.358 5% 0.396 0.433 0.500 

Oceania 0.039 1% 0.047 0.057 0.071 

By Geomorphology      

High Mountain Regions 0.670 10%  .840  

Low-lying coastal 0.680 10%  1.0  
Table 10.1  World/continental population in 2015 and projections by geographic distribution (Cherlet et al., 2018) and by 
geomorphic environment (IPCC, 2019b) 

 

Future urbanization projections, used herein, are based on SSP5 (Share Socioeconomic Pathway 

5) data at 1-km resolution, developed by Chen et al (G. Chen et al., 2020).  SSPs describe 

alternative trends based on varying criteria.  The SSPs consist of five different qualitative 

narratives describing broad patterns of possible future development at the global level.  SSP5 is 

characterized by fast urbanization and increased migration to cities.   The scenario assumes 

urbanization will reach 92% (of the population) by the end of the 21st century.  Jiang et al  (Jiang 

& O’Neill, 2017) predict that the world will continue to urbanize by the end of century under 

each of the five SSPs with differing outcomes (60%, 79%, and 92%, in SSP3, SSP2, and 

SSP1/SSP4/SSP5, respectively).  It is important to note that Chen et al observe urban land 

demand decreases in all scenario projections due to post-2030 declining populations, for example 

in China and Europe.  However, they find that urban population declines do not necessarily lead 

to massive land conversions back to non-urban, but rather abandonment of already built-up 

areas.   

Current and projected population and urbanization data are developed and combined with current 

(“LTE 5 km”) and future debris flow susceptibility models described in Sections 7 and 9, 

respectively.   
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10.2 Results and Discussion 

 

Figures 10.1 and 10.2 present the spatial association of  areas with >= 74,000 population  vis-à-

vis future debris flow susceptibility scenarios RCP 2.6 and 8.5, respectively. 

Figure 10.1  Spatial association of centers with >= 74,000 population  vis-à-vis future debris flow susceptibility  
scenario RCP 2.6 
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Under scenario RCP 2.6, 12.8% of the 2100 SSP5 “urban” population will reside in areas classified as 

Moderate, High, or Very High debris flow susceptibility. Surprisingly, this number decreases to 11.7% 

under scenario RCP 8.5 (Table 10.2).   

                     

  

 

 

 

                                

 

Figures 10.3 (a) and (b), 10.4 (a) and (b), 10.5 (a) and (b), 10.6 (a) and (b), 10.7 (a) and (b), and 

10.8 (a) and (b) present a continent-by-continent view of the coincidence of areas with a 

population greater than or equal to 74,000 and Moderate, High, and Very High debris flow 

Susceptibility Class % Population 
RCP 2.6 

% Population 
RCP 8.5 

Very Low 61.7% 63.1% 

Low 25.5% 25.2% 

Moderate 9.3% 8.5% 

High 3.2% 2.9% 

Very High 0.3% 0.3% 

Total  Moderate, High, Very High 12.8% 11.7% 
Table 10.2  Future urban population within RCP 2.6 and 8.5 debris flow susceptibility classifications. 

Figure 10.2  Figure 10.2  Spatial association of centers with >= 74,000 population  vis-à-vis future debris flow 
susceptibility scenario 8.5 
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susceptibility for Africa, Asia, Europe, North America, South America, and Australia/Oceania, 

respectively. 

 

   

 

    

(a) (b) 

(a) (b) 

       Figure 10.3 Africa  SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility for (a) RCP 2.6 and (b) RCP 8.5 

Figure 10.4  Asia SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility for (a) RCP 2.6 and (b) RCP 8.5 
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(a) (b) 

(b) (a) 

(b) (a) 

Figure 10.5  Europe SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility for (a) RCP 2.6 and (b) RCP 8.5 

Figure 10.6  North America SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility for (a) RCP 2.6 and 
(b) RCP 8.5 

Figure 10.7  South America SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility for (a) RCP 2.6 
and (b) RCP 8.5 
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 Increased population by year 2100 and proximity to debris flow susceptibility may not be the 

most significant problem for human vulnerability, as evidenced in Figures 10.9 (a) and (b). 

These maps for a portion of central Europe show a far greater overlap of debris flow 

susceptibility with urbanization.  Jiang et al (Jiang & O’Neill, 2017) project SSP5 to result in the 

greatest urbanization rate (92%).  And although Chen et al (G. Chen et al., 2020) note that urban 

land demand decreases in all scenario projections due to post-2030 declining populations, they 

find that urban population declines do not necessarily lead to massive land conversions back to 

non-urban, but rather abandonment of already developed lands.  Such land changes may continue 

to contribute to slope instabilities. 

 

 
 

(b) (a) 

(b) (a) 

Figure 10.8  Australia, Oceania SSP5 2100 Population >= 74,000 with Moderate to Very High susceptibility for (a) RCP 2.6 
and (b)  RCP 8.5 

Figure 10.9  Moderate to Very High susceptibility with (a) current and SSP5 2100 population, current urbanization and 
(b) ) current and SSP5 2100 population, current and SSP5 2100 urbanization 
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10.3 Conclusions 

 

The most notable result of this study, is that population proximity to debris flow susceptibility, 

alone, may not be the most significant factor in understanding human vulnerability, but rather the 

proximity of urbanization, where there is a far greater overlap with debris flow susceptibility. 

No one SSP is more likely than another to come to fruition, only time will tell based on current 

and continued practices, changes, and mitigation efforts.  However, it is notable that the 

urbanization rate projected for SSP5 (92%) is the same for three of the five SSPs.  The 

methodologies employed herein are easily modified by replacing SSP5 with any other scenario.  

  



 

123 
 

11 Ancillary Factor and Trigger Considerations 

11.1 Legacy Factor 

 

Landslide susceptibility is not time-independent (Luigi Lombardo & Tanyas, 2021; Samia et al., 

2016), and the past is key to the future (Uniformitarian Principle), therefore  “legacy” is 

introduced as an additional factor to the debris flow susceptibility  models.  Although there will 

certainly be increases and decreases in susceptibility and debris flow densities over time as a 

result of climate change and anthropogenic disturbances, it is nonetheless a useful  consideration, 

particularly in analyses over shorter elapsed time periods, dependent on the location and 

environmental factors  (Samia et al., 2016).  While Samia et al use legacy information “without 

attention for the role of intrinsic attributes (e.g., slope and geology)” in susceptibility analyses, 

herein legacy data is used to support the role of the intrinsic attributes.   

A debris flow density layer, based on the TRAIN global debris flow inventory, was developed as 

an overlay (Fig 11.1) to the present-day debris flow susceptibility map.  The five-classification 

debris flow density layer  is re-classified to integer values for each break with new values from 

one to five, using ArcGIS Pro.  Similarly, the five-classification global susceptibility map is also 

reclassified to integer values (one to five). The integer values in both layers are multiplied  on a 

pixel-by-pixel basis  creating and representing a susceptibility layer augmented by the legacy 

factor with newly defined susceptibility values from one through twenty-five (Fig. 11.2).  

Locally, the true value of a legacy factor  may be diminished over time due to the fact that terrain 

conditions (slope angle, landuse) may change after the occurrence of a landslide (van Westen et 

al., 2005). 
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Classification rescaled values (one through five)  multiplied by debris flow density layer rescaled pixel values (one 
through five), resulting in pixel values one through twenty-five.   

Figure 11.1  Global MaxEnt Debris flow  susceptibility with legacy factor. 

Figure 11.2  Current global debris flow susceptibility using “LTE 5 km” model, with overlay of debris flow density 
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11.2 Fire Probability as an Amplifier to Debris Flow Predisposing Factors  

 

Climate and climate change affect the seasonality, return-rate, volume, and location of large, 

intense wildfires, which subsequently affect the susceptibility of an area to debris flows (S. H. 

Cannon & DeGraff, 2009).     

Wildfires contribute to debris flow susceptibility in numerous ways.  During and post-wildfire, 

stream channels can fill by gravity-driven transport of unconsolidated sediments, post-fire 

overland flow may increase due to decreased soil infiltration from the formation of a  post-

wildfire hydrophobic layer (Gabet & Bookter, 2008), removal of vegetation canopy which allows 

more precipitation to reach the surface , and destruction of root strength, which would otherwise 

bind the soil (S. Cannon & Reneau, 2000; Neary, Klopatek, DeBano, & Ffolliott, 1999).  

Vegetative ash can become a significant portion of the fine sediment eroded from hillslopes and 

contributing to debris flows (S. H. Cannon, Bigio, & Mine, 2001), and decreased roughness of 

the soil surface (H. Lavee, Kutiel, Segev, & Benyamini, 1995).  Such mechanisms may increase 

susceptibility as well as provide materials and environments for bulked debris flows (Meyer & 

Wells).   

Cannon et al (S. H. Cannon & DeGraff, 2009) found a strong relationship between climatic 

changes and wildfire frequencies and volume, and post-wildfire debris flow potential in the 

western United States, with many other parts of the world subject to a similar combination of 

hazards.   They point out the need to identify areas susceptible to post-wildfire debris flows, with 

potential for triggering rainfall, in order to minimize human risks.  Increases in wildfire 

occurrence are likely attributable to both climate change and urbanization.  This highlights the 

importance of determining the intersection of post-wildfire augmented debris flow susceptibility 

vis-à-vis population and urbanization. 

It is expected that climate change will result in increased desertification in some areas, and 

increased vegetation, due to increased precipitation, resulting in more burnable materials in other 

areas.  Both are projected to lead to increased risk and severity of wildfires, along with extended 

fire seasons (IPCC, 2019; Moritz et al., 2012). 
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Building on the global debris flow susceptibility models (Chapters 7, 8, 9) demonstrating the 

future geographic extent and impact on growing populations, this study adds wildfire probability 

as an augmentation.  Current and future projected wildfire probability data  (Moritz et al., 2012) 

are used in conjunction with both current and future debris flow susceptibility models to identify 

areas where wildfire probability may increase, decrease, or have no impact on debris flow 

susceptibility. Figure 11.3 provides a view of areas which may exhibit wildfire probability 

changes by differencing the future projected and current wildfire probabilities.  The difference 

model shows a 16.6% increase in wildfire probability, 49%  decrease, and 34% of the Earth 

exhibits no change.  Increases are predominantly in mid- to high latitudes of the northern 

hemisphere, and along the Andes Mountains, southwestern Africa, and central Australia, in the 

southern hemisphere.    

 

 

 

 

 

 

 

 

 

Figure 11.3  Change in current wildfire probabilities and future (2070-2099) projected. 
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The current (“LTE 5 km” model) debris flow susceptibility (Fig. 11.4 (a)) was summed with 

current wildfire probability (Fig. 11.4 (b)) on a pixel basis to provide an enhanced debris flow 

susceptibility (Fig. 11.4 (c)).  The IPCC  (IPCC, 2019) projected North America, South America, 

Mediterranean, southern Africa and central Asia as areas that will be increasingly affected by 

wildfire.  These areas exhibit increased debris flow susceptibility when augment with wildfire 

probability. 

 

 

 

+ 

(a) (b) 

(c) 

Figure 11.4  (a) Current debris flow susceptibility, (b) current wildfire probability, (c) resulting debris susceptibility when 
wildfire probability is factored. 
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Thirty seven percent of the 2294 historical debris flow events (TRAIN) are located in areas with  > 47% 

wildfire probability (Figure 11.5) 

                                       

 

 

 

 

 

 

The future debris flow models (RCP 2.6 and RCP 8.5) were also summed with future (2070-2099) wildfire 

probability, creating wildfire-augmented future debris susceptibility models (Figures 11.6 and 11.7, 

respectively).   

 

 

 

 

 

 

 

 

 

 

  

Figure 11.5  Distribution of TRAIN debris flow events and associated wildfire probability. 
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+ 

(a) (b) 

(c) 

Figure 11.6  (a) Future (2100, RCP 2.6) debris flow susceptibility, (b) future (2070-2099) wildfire probability, (c) resulting 
debris susceptibility when wildfire probability is factored. 
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Table 11.1 is a summation of the debris flow susceptibility change after adding wildfire probability. 

There is a significant increase in areas classified as Moderate to Very High in all models. 

+ 

(a) (b) 

(c) 

Figure 11.7  (a) Future (2100, RCP 8.5) debris flow susceptibility, (b) future (2070-2099) wildfire probability, (c) resulting 
debris susceptibility when wildfire probability is factored. 
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11.3 Future Glacial Melting as a Potential Amplifier to Debris Flow Triggers 

 

It is believed that climate change has driven the increase in large slope failures in the European 

Alps and other high mountainous regions such as Alaska, and New Zealand,  in the past three or 

four decades, and therefore may pose a significant increase in these hazards in the future in areas 

with predisposing factors and future warming trends (C. Huggel et al., 2010).  

“Debris-flow volumes in high-mountain areas will depend chiefly on the stability and/or 

movement rates of permafrost bodies, and destabilized rock glaciers could lead to debris flows 

without historic precedents in the future” (Stoffel et al., 2014).  Glacier retreats leading to 

debuttressing of hillslopes, increased amounts of unconsolidated, unvegetated, erodible, 

mobilizable material, and glacial lakes with unstable water reservoirs in high mountain areas 

have been demonstrated in North America and Europe and increasing frequency of debris flows 

at the margins of glaciers during twentieth century glacier retreat. (M. Chiarle, Geertsema, 

Mortara, & Clague, 2011; Marta Chiarle et al., 2007; Christian Huggel et al., 2012; Moreiras et 

al., 2021). 

Glacier contribution to precipitation in triggering a debris flow may be associated with the 

presence of buried glacier ice in the debris, infiltrated water which induces high water pressures 

linking water pockets in the glaciers, and a sudden emptying of ice-marginal lakes, the latter 

which may occur in the absence of precipitation, all of which may also occur with high air 

temperatures, contributing to melting of the glaciers (Marta Chiarle et al., 2007).  Glacier-related 

  % Change Due to Fire 

Susceptibility Class Current RCP 2.6 RCP 8.5 

Very Low -62.1% -75.8% -74.2% 

Low 27.0% 33.3% 30.5% 

Moderate 23.6% 26.9% 25.5% 

High 10.3% 10.8% 17.3% 

Very High 1.2% 4.8% 0.9% 

Sum Moderate to Very High 35.1% 42.5% 43.8% 

Table 11.1  Percent change in land associated with each susceptibility classification, after adding wildfire probability, for the 
current, RCP 2.6, and RCP 8.5 debris flow susceptibility models. 
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debris flows occur in high elevation mountainous regions which may intersect with villages 

and/or recreational areas (e.g., skiing, camping, hiking). 

Because glacial melt, as well as precipitation, can act as a trigger to debris flows, glaciers in 

slopes of 20 to 35 degrees were factored in as a potential modifier to future debris flows.  

Distances were calculated from these glaciers, in high debris flow susceptibility environments, to 

future urban and population centers.   

Although glaciers at any degree of slope may provide increased meltwaters to surrounding areas 

as a result of global warming, a conservative approach is followed by including only those 

glaciers on slopes which were found to be most commonly associated with debris flows.  Of the 

latest version (RGI6.0) of the Randolph Glacier Inventory (RGI Consortium, 2017)  with 

214,429 glaciers worldwide, a subset of glaciers with slope >=20 and <=35 degrees was created 

with a 5 km buffer.   Temporal coverage of the inventory is 2000 to 2010, horizontal resolution is 

approximately 15-30 m.  The continental distribution of the subset with 126,372 glaciers is 

shown in Table 11.2.   

The use of these data does not imply future glacier melt, only that should melt occur in these 

areas they may result in or contribute to debris flows.   

The majority of the glacier subset are in Asia (51.3%) and North America (32.9%).  Thirteen of 

the North American glaciers are within 10 km of population centers, and none are within 5 km. 

 

 

 

 

 

 

 

CONTINENT # Glaciers % Events Glacial Area 

Total (sq km) 

% Area 

Africa 19 0.02% 3 0.003% 

Antarctica 535 0.4% 804 0.8% 

Asia 64,861 51.3% 52,339 53.1% 

Europe 4,676 3.7% 2,424 2.5% 

North America 41,588 32.9% 32,492 33.0% 

Oceania 2,291 1.8% 709 0.7% 

South America 12,402 9.8% 9,768 9.9% 

TOTAL 126,372 
 

98,538 
 

Table 11.2  126,372 glaciers with slope 20-35 degrees, by continent 
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The juxtaposition of glaciers with current, future RCP 2.6 and RCP 8.5 are shown in Figs. 11.8, 

11.9, and 11.10, respectively. 

 

                 Figure 11.8  Current (“LTE 5km”) debris flow susceptibility and buffered glaciers (with 20-35 degree slope) 
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      Figure 11.10  Future (RCP2.6 2100) debris flow susceptibility and buffered glaciers (with 20-35 degree slope) 

 

Figure 11.9  Future (RCP28.5 2100) debris flow susceptibility and buffered glaciers (with 20-35 degree slope). 
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The subset of glaciers was buffered by 5 km, as a representative boundary of potential influence 

to surrounding areas.  This is a subjective choice, based loosely and anecdotally on findings in 

literature, since there are no existing studies (to my knowledge) with regard to the potential 

distance which a melting or retreating glacier may impact.  The model is easily adjusted to use 

larger buffers.  

The percent of glaciers within a Moderate, High, or Very High debris flow susceptibility area 

increases substantially from the current model to the RCP 2.6 and RCP 8.5 models, without 

wildfire probability (Table 11.3), however, the reverse is true when wildfire probability is 

included in the susceptibility models.  As was found in Chapter 11.2, when debris flow 

susceptibility was augmented with wildfire probability, only the current debris flow model 

showed a substantial increase in area (68.2%) covered by the Moderate to Very High 

susceptibility classifications, whereas the RCP 2.6 and RCP 8.5 models saw a significant 

decrease in areal coverage (19.3% and 22.1%, respectively).   These results are due to the 

decrease in wildfire global area coverage by 49% in the Moritz et al (Krawchuk, Moritz, 

Parisien, Van Dorn, & Hayhoe, 2009) 1971-2000 to the projected 2070-2099 models. 

In both RCP 2.6 and RCP 8.5 scenarios, debris flow susceptibility with and without wildfire 

probability, the number of glaciers coincident with Moderate to Very High susceptibility areas, is 

significant. 

Areas most at risk are the northwestern coasts of North America and Norway, western coast of 

South America, European Alps, and the Himalayan belt, under all modeled scenarios. 

 

 
Without Fire Probability With Fire Probability 

Susc Class/Model Current RCP 2.6 RCP 8.5 Current  RCP 2.6 RCP 8.5 

Very Low 85.4% 15.8% 9.1% 30.8% 16.8% 16.5% 

Low 10.7% 63.6% 55.4% 29.5% 54.4% 57.3% 

Moderate 3.4% 20.3% 33.3% 22.7% 27.6% 25.0% 

High 0.5% 0.3% 2.3% 12.6% 1.2% 1.2% 

Very High 0.01% 0 0 4.40% 0 0 

Sum Moderate, 
High, Very High 

3.9% 20.6% 35.5% 39.6% 28.8% 26.2% 

Table 11.3  Percent of glaciers within debris susceptibility classification, by current and future models, with and without 
wildfire probability 



 

136 
 

12 Conclusion   
 

12.1 Summary 

 

A conservative approach was taken in all aspects of this research and with an attempt to reduce 

subjectivity.  The ultimate objective was to develop current and future global debris flow 

susceptibility models and identify associated human vulnerability.  There are several 

considerations which must be addressed prior to the final objectives.   

The first question was “can the world be analyzed or modeled as one body for purposes of debris 

flow susceptibility or is this an oversimplification not accounting for the geologic, geomorphic, 

and tectonic histories and dissimilarities of the continents, and disregard for the latitudinal 

influences of climatic conditions?”  This research demonstrates (Chapter 7)  that a single global 

model performs exceptionally well  in comparison with individual continental models, as 

evidenced by six of the seven continents when evaluating against a verification dataset and their 

presence in the Medium, High, and Very High susceptibility classes.   There is significant 

concurrence (greater than 70% by area) between the susceptibility classifications in the 

continental and global models for Africa, Asia, Australia, Europe, North America, and South 

America.  Greater than 95% of the single global model is within   ± one susceptibility 

classification difference of the continental models, and less than 10% of the global model 

exhibits a greater susceptibility than the continental models.  

Upon determining that a single global model, developed with Maximum Entropy, was the 

optimal approach, it was then necessary to look more deeply at the contributions to the model to 

further improve and refine the inputs and the resulting presentation.  

When working at any scale, particularly global, it is often required to work with historical event 

inventories, rather than perform direct detailed field surveys of events.  Due to the nature of the 

data collection methodologies and sources, historical inventories are prone to inaccuracies, 

uncertainties, imprecisions of various types and associated with various attributes of the 

inventory.  Location is a critical attribute, and uncertainties associated with location will affect 

the determination of the most important environmental predisposing factors and factor classes 
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and therefore the susceptibility results.  The global debris flow inventory used in this research 

has location uncertainties ranging from 1 km to 250 km.  A number of methods were used to 

study the impact of these locational deviations and it was determined that a susceptibility model 

developed with a subset of the inventory (events with a location accuracy of <= 5 km) provides 

more accurate results, and certainly a more conservative representation.  It is this model which is 

promoted as the present-day global debris flow susceptibility model. 

With projected climate changes, and the known changes to debris flow susceptibility due to 

climate changes, over the past several decades, future global debris flow susceptibility was 

modeled based on climate and precipitation forecasts using a best-case scenario (RCP 2.6) and a 

worst-case scenario (RCP 8.5) for the decade 2100.  Future models were analyzed with respect to 

one another and the present-day  (“LTE 5 km”) model.  Results show that under both future 

scenarios there will be an increase in land susceptible to debris flows, and areas which will see 

an increase in susceptibility classification (i.e., from a lower susceptibility to Moderate, High, or 

Very High), and the locations of various susceptibilities may change. For those areas which 

increase to the Very High susceptibility class there is an increase of .01% (51,000 km2) and .02% 

(102,000 km2) of total land for RCP 2.6 and RCP 8.5, about the size of Costa Rica, and Iceland, 

respectively.   

The potential human vulnerability to current and future debris flow susceptibility was studied 

using both population and urbanization data.  The most notable result when studying the 

vulnerability, is that proximity to debris flow susceptibility by population data alone, may not be 

the most significant factor in understanding human vulnerability but rather urbanization, where 

there is a far greater overlap with debris flow susceptibility. 

This research goes beyond the commonly employed landslide susceptibility modeling methods 

and inputs.  The present-day and future susceptibility models developed herein were further 

studied and augmented with debris flow legacy, wildfire probability, and glacier melting/retreat 

data to determine whether and where there is an amplification, lessening, or no impact to 

susceptibility.  As may be expected, all three were found to be critical indicators and factors 

associated with debris flow susceptibility which should continue to be considered in all 

susceptibility modeling efforts.  



 

138 
 

While local and regional hazard studies will always be essential, we must reframe our thinking 

and research to include studies at much broader scales.  All hazard problems are global 

problems.  We cannot nibble away at global problems, but rather must understand where 

problems exist, what problem areas may begin to coalesce, and where and when these problems 

may begin to encroach on human populations or vice versa.  The more we know about our 

problems at the global scale the more information we will have to better understand and address 

them locally and regionally, as well.   

Continental and global debris flow susceptibility analyses are an important foundation and first 

cut for an international perspective on the impact of debris flows on people and economies, as 

population, urbanization, and climate warming expand. With a much larger debris flow event 

inventory, and an unbiased geographic distribution, results can be further improved and refined 

in global and individual continental susceptibility models.  

The present-day and future global debris flow models can be improved as more predisposing 

factors become available at global scales and higher resolution. The methods and outcomes of 

this work are an important foundation and framework for more in-depth studies with regard to 

vulnerability and hazard, as well as being used for other landslide typologies, and other types of 

hazards.   

Future refinements to the models developed herein, and important follow-on research of interest 

to this author, include spatial-temporal modeling by evaluating the seasonal periodicity of high 

monthly mean precipitation values compared with the dates of the historical events, and debris 

flows identified as triggered by anomalous precipitation, evaluated with recorded anomalous 

high-intensity precipitation data.  With relevant changes, the methodology followed herein will 

be applied to other landslide types such as co-seismic and rock avalanches, resulting in a suite of 

global models specific to each landslide type. 
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A summary of the graphics and tables for key models and findings resulting from this research 

are: 

1. Present-day debris flow susceptibility model based on the events with <= 5 km location 

uncertainty (Fig. 12.1),  

2. Present-day model augmented with wildfire probability (Fig. 12.2),  

3. Present-day model overlay with glaciers (Fig. 12.3), 

4. RCP 2.6 debris flow susceptibility model (Fig. 12.4),  

5. RCP 2.6 model augmented with future wildfire probability (Fig. 12.5),  

6. RCP 2.6 model overlay with glaciers (Fig. 12.6),  

7. RCP 8.5 debris flow susceptibility model (Fig. 12.7),  

8. RCP 8.5 model augment with future wildfire probability (Fig. 12.8), 

9. RCP 8.5 model overlay with glaciers (Fig. 12.9) 

Summary of key findings: 

1.  Percent of land by current, RCP 2.6, and RCP 8.5 models, by susceptibility classification 

(Table 12.1) 

2. Susceptibility changes from current to future models (Table 12.2) 

3. Susceptibility changes due to wildfire probability, by model Table 12.3) 

4. Future populations within susceptibility classifications, by future models (Table 12.4) 

5.  Glacier distributions vis-à-vis susceptibility classifications current and future, with and 

without fire probability (Table 12.5) 
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12.2 Key Models 

  

Figure 12.1  1. Present-day debris flow susceptibility model based on the events with <= 5 km location uncertainty 

 

 

 

 

 

 

  

  

  

  

            

Figure 12.2  2. Present-day model augmented with wildfire probability 
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Figure 12.3  Present-day model overlay with glaciers 

Figure 12.4    RCP 2.6 debris flow susceptibility model 
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Figure 12.6  RCP 2.6 model augmented with future wildfire probability 

Figure 12.5     RCP 2.6 model overlay with glaciers 
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Figure 12.7  RCP 8.5 debris flow susceptibility model 

Figure 12.8     RCP 8.5 model augment with future wildfire probability 
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12.3 Key Findings 

 

Susceptibility Classification/Model Current RCP 2.6 RCP 8.5 

Very Low 91.63% 92.47% 90.95% 

Low 5.21% 5.24% 6.74% 

Moderate 2.54% 1.85% 1.89% 

High 0.57% 0.41% 0.38% 

Very High 0.05% 0.03% 0.04% 

High and Very High 0.62% 0.44% 0.42% 

Moderate, High, Very High 3.16% 2.29% 2.31% 
                         Table 12.1  Percent of land by current, RCP 2.6, and RCP 8.5 models, by susceptibility classification 

 

Figure 12.9  RCP 8.5 model overlay with glaciers 
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Susceptibility Change From Current 
to RCP 2.6 

From Current 
to RCP 8.5 

From RCP 2.6 
to RCP 8.5 

INCREASE 

  % of Total Area  1.49% 3.14% 2.35% 

  % of Changed Area  34.17% 51.47% 74.47% 

DECREASE 

  % of Total Area  2.87% 2.96% 0.80% 

  % of Changed Area  65.83% 48.53% 25.53% 

INCREASE TO MODERATE, HIGH, VERY HIGH CLASSIFICATION 

  % of Total Area .47% .63% 0.29% 

  % of Changed Area 10.79% 10.29% 9.09% 
Table 12.2  2. Susceptibility changes from current to future models 

  % Change Due to Fire 

Susceptibility Class Current RCP 2.6 RCP 8.5 

Very Low -82.6% -19.3% -22.1% 

Low 14.5% 12.9% 15.8% 

Moderate 56.0% 5.0% 4.9% 

High 10.1% 1.3% 1.2% 

Very High 2.1% 0.1% 0.1% 

Sum Moderate to Very High 68.2% 6.4% 6.2% 

Table 12.3  3. Susceptibility changes due to wildfire probability, by model 

Susceptibility Class % Population 
RCP 2.6 

% Population 
RCP 8.5 

Very Low 61.7% 63.1% 

Low 25.5% 25.2% 

Moderate 9.3% 8.5% 

High 3.2% 2.9% 

Very High 0.3% 0.3% 

Total  Moderate, High, Very High 12.8% 11.7% 

Table 12.4  4. Future populations within susceptibility classifications, by future models 
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% glaciers within Without Fire Probability With Fire Probability 

Susc Class/Model Current RCP 2.6 RCP 8.5 Current  RCP 2.6 RCP 8.5 

Very Low 85.4% 15.8% 9.1% 30.8% 16.8% 16.5% 

Low 10.7% 63.6% 55.4% 29.5% 54.4% 57.3% 

Moderate 3.4% 20.3% 33.3% 22.7% 27.6% 25.0% 

High 0.5% 0.3% 2.3% 12.6% 1.2% 1.2% 

Very High 0.01% 0 0 4.40% 0 0 

Sum Moderate, 
High, Very High 

3.9% 20.6% 35.5% 39.6% 28.8% 26.2% 

       Table 12.5  Glacier distributions vis-à-vis susceptibility classifications current and future, with and without fire probability 
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APPENDIX A TRAIN and TEST1 Environmental Conditions  

A.1 TRAIN and TEST1 Comparisons - Overview 
 

 

 

A.1.1 TRAIN and TEST1 Tectonic Comparisons  

 

Probability density associated with both global TRAIN and TEST1 data and 

Density Faults <= 0.010 
> 0.010 and <= 
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> 0.020 and <= 0.030 > 0.030 and <= 0.040 

> 0.040 and <= 

0.050 

> 0.050 and <= 

0.060 

> 0.060 and <= 

0.070 

> 0.070 and <= 

0.080 

> 0.080 and <= 

0.090 

> 0.09 and 

<= 0.10 

> 0.10 and 

<= 0.20 
50% 60% 75% 90%

TRAIN 2,294 894 402 267 229 146 98 40 29 23 35 131

    % 39.0% 17.5% 11.6% 10.0% 6.4% 4.3% 1.7% 1.3% 1.0% 1.5% 5.7% 56.5% 68.1%

TEST1 5,695 735 1,044 1,845 449 446 246 291 96 4 2 537

   % 12.9% 18.3% 32.4% 7.9% 7.8% 4.3% 5.1% 1.7% 0.1% 0.0% 9.4% 31.2% 63.6%

Distance to 

Faults
<= 1 km

> 1 km and 

<=5 km

> 5 km and <=10 

km
> 10 km and <=15 km

> 15 km and 

<=20 km

> 20 km and 

<=25 km

> 25 km and 

<=50 km

> 50 km and 

<=100 km

> 100 km and 

<=200 km
>200 50% 60% 75% 90%

TRAIN 2,294 232 448 323 213 153 124 299 252 184 66

    % 10.1% 19.5% 14.1% 9.3% 6.7% 5.4% 13.0% 11.0% 8.0% 2.9% 53.0% 59.7% 78.1% 89.1%

TEST1 5,695 418 1,462 963 987 827 453 541 28 8 8

   % 7.3% 25.7% 16.9% 17.3% 14.5% 8.0% 9.5% 0.5% 0.1% 0.1% 67.252% 81.773% 99.227% 99.719%

Distance to 

Perennial Inland 

Water Body

<=1 km
>1 and          <=5 

km
>5 and   <=10 km >10 and       <=20 km > 20 km <= 10 km > 10 km

50.0% 60% 75% 90%

TRAIN 2,294 256 534 533 534 437 1323 971

    % 11.2% 23.3% 23.2% 23.3% 19.0% 57.7% 42.3% 57.7% 57.7% 81.0% 100.0%

Exact Loc 174 26 56 47 33 12

    % 14.9% 32.2% 27.0% 19.0% 6.9%

TEST1 5,695 75 729 1029 1670 2192 1833 3862

    % 1.3% 12.8% 18.1% 29.3% 38.5% 32.2% 67.8% 32.2% 32.2% 62% 100.0%

Distance to Any 

Water
<=1 km

>1 and          <=5 

km
>5 and   <=10 km >10 and       <=20 km > 20 km <= 10 km > 10 km

50.0% 60% 75% 90%

TRAIN 2,294 499 574 434 437 350 1507 787

    % 21.8% 25.0% 18.9% 19.0% 15.3% 65.7% 34.3% 46.8% 65.7% 84.7% 100.0%

Exact Loc 174 56 56 33 20 9

    % 32.2% 32.2% 19.0% 11.5% 5.2%

TEST1 5,695 152 1096 1380 1581 1486 2628 3067

    % 2.7% 19.2% 24.2% 27.8% 26.1% 46.1% 53.9% 21.9% 46.1% 73.9% 100.0%

Elevation 

(meters)
<null>

<= 100 m > 100 and <= 200 m > 200 and <= 300 m

> 300 and <= 

400 m

> 400 and <= 

500 m

>500 and <= 

600 m

>600 and <= 

700 m

>700 and <= 

800 m

>800 and 

<= 900 m

>900 and 

<= 1000 

m

> 1000 and 

<= 1500 m

> 1500 

and <= 

2000 m

> 2000 

and <= 

2500 m

> 2500 

and <= 

3000 m

> 3000 and 

<= 3500 m

> 3500 

and <= 

4000 m

> 4000 

and <= 

4500 m

> 4500 

and <= 

5000 m

> 5000 m

50.0% 60% 75% 90%

TRAIN 2,294 55 511 240 252 166 111 85 78 71 57 66 208 173 122 49 26 19 3 1 1

    % 2.4% 22.3% 10.5% 11.0% 7.2% 4.8% 3.7% 3.4% 3.1% 2.5% 2.9% 9.1% 7.5% 5.3% 2.1% 1.1% 0.8% 0.1% 0.0% 0.0% 51.0% 59.5%

Exact Loc 174 60 28 24 15 10 6 6 3 4 5 4 8 1

    % 34.5% 16.1% 13.8% 8.6% 5.7% 3.4% 3.4% 1.7% 2.3% 2.9% 2.3% 4.6% 0.6% The "exact locations" were posted to show the similarity in relative % for all TRAIN DF & MS

TEST1 5,695 0 165 551 898 832 691 569 401 360 356 281 513 64 11 2 1 0 0 0 0

    % 2.9% 9.7% 15.8% 14.6% 12.1% 10.0% 7.0% 6.3% 6.3% 4.9% 9.0% 1.1% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 42.9% 65.1%

KG Climate Csb Cfa Dfb Dfa Csa BSk Cfb Cwa Am Af Aw Dsb Cwb Dwc Cfc BWh BWk Dsa Csc Dsb Dsc Dfc ET null 50% 60% 75% 90%

TRAIN 2294 395 225 198 190 183 161 123 115 112 104 104 94 82 18 13 0 32 4 0 0 0 0 0 141

     % 17.2% 9.8% 8.6% 8.3% 8.0% 7.0% 5.4% 5.0% 4.9% 4.5% 4.5% 4.1% 3.6% 0.8% 0.6% 0.0% 1.4% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 6.1% 51.9% 58.9% 78.7% 90.9%

TEST1 5695 2473 259 170 15 1687 21 464 462 13 5 8 7 64 0 0 1 1 1 6 1 11 20 3 3

    % 43.4% 4.5% 3.0% 0.3% 29.6% 0.4% 8.1% 8.1% 0.2% 0.1% 0.1% 0.1% 1.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.2% 0.4% 0.1% 0.1% 80.8% 81.2% 97.8% 99.2%

Avg Monthly Precipitation (1970-2000)<= 100 cm >100 and <= 200 cm> 200 and <= 1000 cm

TRAIN 2294 1038 786 470

     % 45.2% 34.3% 20.5%

TEST1 5,695 3810 1800 85

    % 66.9% 31.6% 1.5%   

Avg Annual Aridity (1970-2000)
<null> Hyper-Arid:  <= 300 Arid:   >300 and <= 2000 

Semi-Arid:  >2000 and <=5000 

Dry sub-Humid:  5000 

and <=6500 

Humid:  >6500 and <= 

7500

Humid:  >7500 and <= 

8500

Humid:  >8500 and 

<= 9500

Humid:  >9500 and 

<= 10000

Humid:  

>10000 and 

<= 15000

Humid:  

>15000 and 

<= 20000

Humid:  >20000 

and <= 25000

Humid:  

>25000 and 

<= 30000

Humid:  

>30000 and 

<= 35000

Humid:  

>35000 
50% 60% 75% 90%

TRAIN 2294 52 6 158 490 138 141 155 224 131 468 213 69 27 9 13

     % 2,242 minus nulls 2.3% 0.3% 7.0% 21.9% 6.2% 6.3% 6.9% 10.0% 5.8% 20.9% 9.5% 3.1% 1.2% 0.4% 0.6% 50.8%

TEST1 5,695 568 0 7 779 1005 524 348 570 285 950 424 127 73 34 1 3336

    % 5,127 minus nulls 10.0% 0.0% 0.1% 15.2% 19.6% 10.2% 6.8% 11.1% 5.6% 18.5% 8.3% 2.5% 1.4% 0.7% 0.0% 61.9%

LANDCOVER 18 3 6 2 1 13 11 5 7 8 20 9 4 10 12 15 16 19 14 17

Urban
Needleleaf 

Evergreen Forest
Tree Open Broadleaf Deciduous Forest

Broadleaf 

Evergreen Forest

Cropland / Other 

Vegetation Mosaic
Cropland Mixed Forest Shrub Herbaceous

Water 

bodies**

Herbaceous 

with Sparse 

Tree/Shrub

Needleleaf 

Deciduous 

Forest

Sparse 

vegetation

Sparse 

vegetation
Wetland

Bare 

area,consoli

dated(grave

Snow / Ice Mangrove

Bare 

area,uncons

olidated 

50% 60% 75% 90%

TRAIN 2,294 363 329 312 235 203 162 121 120 113 93 78 26 43 34 43 5 8 3 2 1

    % 15.8% 14.3% 13.6% 10.2% 8.8% 7.1% 5.3% 5.2% 4.9% 4.1% 3.4% 1.1% 1.9% 1.5% 1.9% 0.2% 0.3% 0.1% 0.1% 0.0% 54.0% 62.9% 75.2% 89.4%

TEST1 5,695 129 1,539 586 1,035 442 620 441 460 129 121 9 29 102 11 40 1 1

    % 2.3% 27.0% 10.3% 18.2% 7.8% 10.9% 7.7% 8.1% 2.3% 2.1% 0.2% 0.5% 1.8% 0.2% 0.7% 0.02% 0.02% 57.8% 65.5% 84.1% 96.6%

LANDFORMS
Humid 

Mountains in 

Alpine System

Mountains in 

Alpine System

Dry Mountains in 

Alpine System

Dry Widely Space 

Mountains in Alpine 

System

Hills or Tablelands 

in Alpine Systems

Humid Hills or 

Tablelands on 

Sedimentary 

Lithology

Humid Hills or 

Tablelands in 

Alpine Systems

Humid 

Mountains on 

Sedimentary 

Lithology

Humid Plains on 

Sedimentary 

Lithology

null/unassig

ned

Remaining 

10%

50.0% 60% 75% 90%

TRAIN 2,294 914 401 222 62 119 135 60 82 70 229

    % 39.8% 17.5% 9.7% 2.7% 5.2% 5.9% 2.6% 3.6% 3.1% 10.0% 57.3% 67.0% 74.9% 90.0%

TEST1 5,395 1772 3024 512 16 18 5 0 12 6 30

    % 32.8% 56.1% 9.5% 0.3% 0.3% 0.1% 0.0% 0.2% 0.1% 0.6% 88.9% 98.4% 99.0% 99.4%

LITHOLOGY ss su mt sm pa sc vb 50.0% 60% 75% 90%

TRAIN 2,294 653 421 259 234 216 158 119 234

28.5% 18.4% 11.3% 10.2% 9.4% 6.9% 5.2% 10.2% 58.1% 68.3% 77.7% 89.8%

TEST1 5,695 2172 233 504 274 70 1957 131 354

    % 38.1% 4.1% 8.8% 4.8% 1.2% 34.4% 2.3% 6.2% 51.1% 55.9% 57.1% 93.8%

Slope (deg) <= 10 > 10 and <= 20 > 20 and <= 30 > 30 and <= 40 > 40 and <= 50 > 50 and <= 60 unassigned 50.0% 60% 75% 90%

TRAIN 2,294 1478 523 199 71 14 1 8

    % 64.4% 22.8% 8.7% 3.1% 0.6% 0.0% 0.3% 64.4% 87.2% 95.9%

Exact Loc 174 128 37 5 3 0 0 1

% 73.6% 21.3% 2.9% 1.7% 0.0% The "exact locations" were posted to show the similarity in relative % for all TRAIN DF & MS

TEST1 5,695 2283 2386 862 149 15

    % 40.1% 41.9% 15.1% 2.6% 0.3% 40.1% 82.0% 97.1%

SOILS Ao Bd I Bh Lc La Hh Tv Lo WR Rc Ah Be Hl Kh Po Je Nd Ge Yl Fo Kl Re Af Ne Bc Gh <10% remaining

TRAIN 2,294 279 210 201 137 129 109 100 90 89 89 67 51 51 49 44 41 36 34 33 32 29 25 20 19 19 16 15 237

   % 12.2% 9.2% 8.8% 6.0% 5.6% 4.8% 4.4% 3.9% 3.9% 3.9% 2.9% 2.2% 2.2% 2.1% 1.9% 1.8% 1.6% 1.5% 1.4% 1.4% 1.3% 1.1% 0.9% 0.8% 0.8% 0.7% 0.7% 10.3%

TEST1 5,781 267 1389 166 201 275 7 259 3 41 81 212 1251 1039 1 6 71 5 7 2 1 4 118 0 2 0 2 371

    % 4.6% 24.0% 2.9% 3.5% 4.8% 0.1% 4.5% 0.1% 0.7% 1.4% 3.7% 21.6% 18.0% 0.0% 0.1% 1.2% 0.0% 0.1% 0.1% 0.0% 0.0% 0.1% 2.0% 0.0% 0.0% 0.0% 0.0% 6.4%

SOIL THICKNESS 

(meters)
<1

1 2 3 4 5 6-49 50 50.0% 60% 75% 90%

TRAIN 2,294 121 1222 222 199 111 60 310 49 58.5%

   % 5.3% 53.3% 9.7% 8.7% 4.8% 2.6% 13.5% 2.1%

TEST1 5,695 698 3475 701 482 135 96 105 3

    % 12.3% 61.0% 12.3% 8.5% 2.4% 1.7% 1.8% 0.1% 73.3%

TRAIN vs TEST results are graphed and stored in each of the Factor tabs

Mutual (Train AND Test1) Major Factors Major Factors Differ Train Test

Distance to Faults 1-5 km Distance to Sea <=1 Km 5-10 Km

Elevation <= 500m Landform

Humid Mountains in 

Alpine System Mountains in Alpine System

Climate Csb LandCover Urban NeedleLeaf Evergreen Forest

Lithology Sedimentary siliciclastic (ss)

Slope <= 10 deg minor difference in major% Slope <=10 deg 10-20 deg

Soil Thickness 1 meter

SUMMARY Although there may be % differences between TEST1 (validation) data and TRAIN (calibration) data

   the validation data (>= 50%) clearly support the model results which is:

Climate 

KG Climate Class= Csb (9), Csa (8)

Precipitation > 100 cm and <= 200 cm/year

Distance to faults Within 15 km 

Distance to Sea Within 10 km

Elevation <= 500 m

Landcover = urban (18), needleleaf evergreen forest (3),  broadleaf deciduous forest (2), Tree Open (6)

Landform = Humid mountains in Alpine System, Mountains in Alpine System

Lithology = ss, sc (sedimentary siliciclastic, )

Slope <= 20 degrees (but split between <=10 deg and >10 and <= 20)

Soil

3 soils characterize 63% of the validation event; (Bd, Ah, Be each @ ~ 20%) + Ao for calibration data

Soil thickness <=1 meter
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Slip Type
"TRAIN" 

FREQUENCY

"TRAIN" 

Probability 

Density

"TEST1" 

FREQUENCY

"TEST1" 

Probability 

Density

STEPCLASS

<null> 25 1.1% 2 0.0% CCB

Anticline 36 1.6% 5 0.1% CRB

Dextral 280 12.2% 1295 22.7% CTF

Dextral-Normal 9 0.4% 405 7.1% OCB

Dextral-Reverse 13 0.6% 428 7.5% OSR

Dextral_Transform 10 0.4% 1 0.0% OTF

Normal 579 25.2% 990 17.4% SUB

Normal-Dextral 3 0.1% 0 0.0% TOTAL

Normal-Sinistral 1 0.0% 0 0.0%

Reverse 1035 45.1% 1700 29.9% STEPCLASS

Reverse-Dextral 13 0.6% 646 11.3% CCB

Reverse-Sinistral 3 0.1% 0 0.0% CRB

Reverse-Strike-Slip 17 0.7% 1 0.0% CTF

Sinistral 140 6.1% 132 2.3% OCB

Sinistral-Normal 7 0.3% 3 0.1% OSR

Sinistral-Reverse 41 1.8% 80 1.4% OTF

Sinistral_Transform 26 1.1% 0 0.0% SUB

Spreading_Ridge 14 0.6% 4 0.1% TOTAL

Strike-Slip 10 0.4% 0 0.0%

Subduction_Thrust 32 1.4% 3 0.1%

TOTAL 2294 100.0% 5695 100.0%

NEAREST… "TRAIN" Data "TRAIN" "TEST1" Data "TEST1"

PLATE BOUNDARY (STEP) TYPE FREQUENCY Prob Density FREQUENCY Prob Density

CCB 521 22.7% 243 4.3% Continental Convergent Boundary

CRB 160 7.0% 544 9.6% Continental Rift Boundary

CTF 569 24.8% 1715 30.1% Continental Transform Fault

OCB 17 0.7% 1 0.0% Oceanic Convergent Boundary

OSR 58 2.5% 10 0.2% Oceanic Spreading Ridge

OTF 369 16.1% 33 0.6% Oceanic Transform Fault

SUB 600 26.2% 3149 55.3% Subduction (see comment)

TOTAL 2294 100.0% 5695 100.0%
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A.1.2 TRAIN and TEST1 Landcover/Land Use Comparisons  

TRAIN DATA                TEST1 DATA

Landcover 

Code
LANDCOVER Points

            DF & MS Debris Flow Count

GLCNMO LandCover CodeLandCover Description Freq TRAIN Count TEST1 Count Frequency

18 Urban 15.8% 363 129 2.3% 129

3 Needleleaf Evergreen Forest 14.3% 329 1539 27.0% 2168

6 Tree Open 13.6% 312 586 10.3% 1242

2 Broadleaf Deciduous Forest 10.2% 235 53.9% 1035 18.2% 57.8% 1937

1 Broadleaf Evergreen Forest 8.8% 203 442 7.8% 645

13 Cropland / Other Vegetation Mosaic 7.1% 162 620 10.9% 791

11 Cropland 5.3% 121 441 7.7% 253

5 Mixed Forest 5.2% 120 460 8.1% 1251

7 Shrub 4.9% 113 129 2.3% 123

8 Herbaceous 4.1% 93 89.3% 121 2.1% 96.7% 1991

9 Herbaceous with Sparse Tree/Shrub 1.1% 26 29 0.5%

4 Needleleaf Deciduous Forest 1.9% 43 102 1.8%

10 Sparse vegetation 1.5% 34 11 0.2%

12 Sparse vegetation 1.9% 43 40 0.7%

15 Wetland 0.2% 5 1 0.0%

16 Bare area,consolidated(gravel,rock) 0.3% 8 1 0.0%

19 Snow / Ice 0.1% 3 0 0.0%

14 Mangrove 0.1% 2 0 0.0%

17 Bare area,unconsolidated (sand) 0.0% 1 0 0.0%

20 Water bodies** 3.4% 78 9 0.2% 27

90% Totals 100.0% 2294 5695 100% 10,557

Number of Training Data Events 2294

Number of TEST1 Data Events 5695

Total # Events by Data Type 5695 11,830

TEST DATA w/LANDCOVER Top 50 &  90% Train Model Classes 

and Count of Test Data Contained Within
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A.1.3 TRAIN and TEST1 Soil Type Comparisons  

 

 

TRAIN DATA            TEST1

Soil Code SOILS Train Test1 Points

Freq Count Count

Ao & Ah Acrisols 14.4% 330 26.7% 1518 1517

Bd & Bh & BeCambisols 17.3% 398 46.2% 2629 2738

I Lithosol 8.8% 201 2.9% 166 2135

Lc & La Luvisol 10.4% 238 5.0% 282 282

Hh Phaeozem 4.4% 100 4.5% 259 62

Tv 3.9% 90 0.1% 3 3

Lo 3.9% 89 0.7% 41 120

WR 3.9% 89 1.4% 81 33

Rc & Re Regosols 3.8% 87 5.8% 330 213

Hl 2.1% 49 0.0% 1 1

Kh 1.9% 44 0.1% 6 6

<null) 1.9% 43 0.1% 4

Po 703 1.8% 41 1.2% 71 2815

Je 1.6% 36 0.0% 0

Nd 1.5% 34 0.1% 5 5

Ge 1.4% 33 0.1% 7 2

Yl 1.4% 32 0.0% 2 2

Fo 1.3% 29 0.0% 1 1

Kl 1.1% 25 0.1% 4 4

Af 0.8% 19 0.0% 0

Ne 0.8% 19 0.0% 2 2

Bc 0.7% 16 0.0% 0

Gh 0.7% 15 0.0% 2 2

 90% TOTALS 89.7% 2,057 95% 5,414 9,943

TEST DATA w/SOILS Top 50 &  90% Train Model Classes and 

Count of Test Data Contained Within
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A.1.4 TRAIN and TEST1 Soil Thickness Comparisons  

 

  

  

 

 

Thickness (m)
TEST1 

Frequency

TEST1  

Count

TRAIN 

Frequency

TRAIN 

Count

0 12.3% 698 5.3% 121

1 61.0% 3475 53.3% 1222

2 12.3% 701 9.7% 222

3 8.5% 482 8.7% 199

4 2.4% 135 4.8% 111

5 1.7% 96 2.6% 60

6-49 1.8% 105 13.5% 310

50 0.05% 3 2.1% 49

0
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A.1.5 TRAIN and TEST1 Slope Comparisons  

 

 

 

 

 

 

 

 

 

 

 

 

 

   TRAIN DATA TRAIN DATA      TEST1 DATA

'EXACT' LOC 

KNOWN

Slope Freq Count
Count Freq

Freq Count Elevation

<= 10 deg 64.4% 1478 128 73.6% 40.1% 2283 <null>

> 10 and <= 20 deg 22.8% 523 37 21.3% 41.9% 2386 <= 100 m

> 20 and <= 30 deg 8.7% 199 5 2.9% 15.1% 862 > 100 and <= 200 m

> 30 and <= 40 deg 3.1% 71 3 1.7% 2.6% 149 > 200 and <= 300 m

> 40 and <= 50 deg 0.6% 14 0 0.0% 0.3% 15 > 300 and <= 400 m

> 50 and <= 60 deg 0.0% 1 0 0.0% > 400 and <= 500 m

unassigned 0.3% 8 1 0.6% >500 and <= 600 m

TOTALS 100.0% 2294 174 100% 100.0% 5695 >600 and <= 700 m

>700 and <= 800 m
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A.1.6 TRAIN and TEST1 Landform Comparisons  

 

 

 

Frequency Analysis TEST vs TRAIN  - LANDFORM FACTOR
Sq km earth: 510,100,000

Sq km land: 148,000,000 TRAIN DATA              TEST1              TEST1

LANDFORM (Ecophysical Region - Murphy) Area Sq km % Land Freq
TRAIN 

Count

Prob. 

Density 

(En*Dn)

Freq
TEST1 

Count

Prob. 

Density 

(Hn*Dn)

Freq

Humid Mountains in Alpine System 11,592,742 7.8% 39.8% 914 3.1% 32.7% 1772 2.6% #REF!

Mountains in Alpine System 20,598,908 13.9% 17.5% 401 2.4% 55.7% 3024 4.4% #REF!

Dry Mountains in Alpine System 2,030,136 1.4% 9.7% 222 0.1% 9.4% 512 0.7% #REF!

Dry Widely Space Mountains in Alpine System 2,006,612 1.4% 2.7% 62 0.0% 0.3% 16 0.0% #REF!

Hills or Tablelands in Alpine Systems 15,173,714 10.3% 5.2% 119 0.5% 0.3% 18 0.0% #REF!

Humid Hills or Tablelands on Sedimentary Lithology 3,499,916 2.4% 5.9% 135 0.1% 0.1% 5 0.0% #REF!

Humid Hills or Tablelands in Alpine Systems 10,420,469 7.0% 2.6% 60 0.2% 0.0% 0 0.0% #REF!

Humid Mountains on Sedimentary Lithology 205,585 0.1% 3.6% 82 0.0% 0.2% 12 0.0% #REF!

Humid Plains on Sedimentary Lithology 15,280,805 10.3% 3.1% 70 0.3% 0.1% 6 0.0% #REF!

 90% TOTALS #REF! #REF! #REF! #REF! #REF!

0
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2000
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3500

0
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400
500
600
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800
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1000

TEST1 vs TRAIN Landforms 

TRAIN Count TEST1 Count
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A.1.7 TRAIN and TEST1 Lithology Comparisons  

 

 

 

 

 

 

 

 

            TRAIN DATA              TEST1 DATA

Points

LITHOLOGY Area Sq Km % Earth Land Freq TRAIN Count
Prob Density 

(En*Dn)
Freq TEST1 Count

Prob Density 

(Hn*Dn)
Count

ss 24,507,815 16.6% 28.5% 653 4.7% 38.1% 2172 6.3% 2344

su 36,866,217 24.9% 18.4% 421 4.6% 4.1% 233 1.0% 1096

mt 19,570,508 13.2% 11.3% 259 1.5% 8.8% 504 1.2% 3265

sm 22,026,381 14.9% 10.2% 234 1.5% 4.8% 274 0.7% 271

pa 8,575,653 5.8% 9.4% 216 0.5% 1.2% 70 0.1% 265

sc 11,765,424 7.9% 6.9% 158 0.5% 34.4% 1957 2.7% 3893

vb 5,244,151 3.5% 5.2% 119 0.2% 2.3% 131 0.1% 131

90% TOTALS 128,556,149 86.9% 89.8% 2,060 13.6% 94% 5,341 31.5% 11,265

TEST DATA w/LITHOLOGY Top 50 &  90% Train Model Classes and Count of Test 

Data Contained Within
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A.1.8 TRAIN and TEST1 Köppen-Geiger (KG) Climate Classification Comparison  

 

 

 

 

Sq Km

% 

World 

Land

TRAIN DATA
Prob. 

Density 

(En*Fn)

        TEST1 DATA

Prob. 

Density 

(Jn*En)

Points

KG Code KG CLASS Freq Count FrequencyCount Count

9 Csb  854,370 0.6% 17.2% 395 0.1% 43.4% 2473 0.3% 2009

14 Cfa  5,490,516 3.7% 9.8% 225 0.1% 4.5% 259 0.2% 637

26 Dfb  7,406,505 5.0% 8.6% 198 0.0% 3.0% 170 0.1% 2464

25 Dfa  2,011,149 1.4% 8.3% 190 0.0% 0.3% 15 0.0% 15

8 Csa  1,422,928 1.0% 8.0% 183 0.0% 29.6% 1687 0.3% 102517,185,468 11.6% 51.9% 1191 0.3% 80.8% 4604 9.4%

7 BSk  7.0% 161 0.04% 0.4% 21 21

15 Cfb 5.4% 123 0.03% 8.1% 464 872

11 Cwa  5.0% 115 0.03% 8.1% 462 462

2 Am    4.9% 112 0.03% 0.2% 13 13

1 Af   4.5% 104 0.03% 0.1% 5 5

3 Aw   4.5% 104 0.03% 0.1% 8 8

18 Dsb  4.1% 94 0.02% 0.1% 7 13

12 Cwb  3.6% 82 0.02% 1.1% 64 64

0.37 2,086 99.2% 5,648 7,608

To
p

 9
0

%

TEST DATA w/KG Top 50 &  90% Train Model Classes and 

Count of Test Data Contained Within

To
p

 5
0

%
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A.1.9 TRAIN and TEST1 Average Monthly Precipitation Comparison 

 

Avg Monthly Precip 
(mm) TRAIN TEST1 

<= 10  45 0 

> 10 and <=20  54 1 

> 20 and <=30  103 11 

> 30 and <=40  90 234 

> 40 and <=50  109 517 

> 50 and <=60  114 458 

> 60 and <=70  118 845 

> 70 and <=80  105 1020 

> 80 and <=90  134 154 

> 90 and <=100  166 551 

> 100 and <=200  786 1810 

> 200 and <=300  251 94 

> 300 and <=400  129 0 

> 400 and <=500  47 0 

> 500 and <=600  21 0 

> 600 and <=700  9 0 

> 700 and <=800  5 0 

> 800 and <=900  4 0 

> 1000  4 0 

  2294 5695 
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A.1.10 TRAIN and TEST1 Distribution by Country Comparison 
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A.2 TEST1 Environmental Conditions  

A.2.1 TEST1 Distance to Faults 

            

TEST1 Distance to Fault Count Frequency

< 1 km 418 7.3%

> 10 km and <=15 km 987 17.3%

>1 km and <= 5 km 1462 25.7%

>100 km and <=200 km 8 0.1%

>15 km and <=20 km 827 14.5%

>20 km and <=25 km 453 8.0%

>200 km 8 0.1%

>25 km and <=50 km 541 9.5%

>5 km and <=10 km 963 16.9%

>50 km and <=100 km 28 0.5%

TOTAL 5695
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TEST1 Distance to Fault
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A.3.2 TEST1 Distance to Water Bodies 

                

                

All Water Bodies Water <> SEA (WATERFID <> 89111384)

D2H20Bin Frequency % Cum% D2H20Bin

<= 1 km 132 2.3% 2.3% <= 1 km

>1 and <= 5 km 820 14.4% 16.7% >1 and <= 5 km

>5 and <= 10 km 1015 17.8% 34.5% >5 and <= 10 km

>10 and <= 20 km 1479 26.0% 60.5% >10 and <= 20 km

>20 and <= 30 km 1333 23.4% 83.9% >20 and <= 30 km

>30 and <= 40 km 499 8.8% 92.7% >30 and <= 40 km

>40 and <= 50 km 235 4.1% 96.8% >40 and <= 50 km

>50 and <= 60 km 162 2.8% 99.6% >50 and <= 60 km

>60 and <= 70 km 14 0.2% 99.9% >60 and <= 70 km

>70 and <= 80 km 4 0.1% 100.0% >70 and <= 80 km

>100 km 2 0.0% 100.0% >100 km

TOTAL 5695

132

820
1015

1479
1333

499

235 162
14 4 2

TEST1 events,  distance to ALL 
water bodies

Water <> SEA (WATERFID <> 89111384) Water = SEA (WATERFID = 89111384)

D2H20Bin Frequency % Cum % D2H20Bin

<= 1 km 46 1.6% 1.6% <= 1 km

>1 and <= 5 km 303 10.9% 12.5% >1 and <= 5 km

>5 and <= 10 km 207 7.4% 19.9% >5 and <= 10 km

>10 and <= 20 km 686 24.6% 44.5% >10 and <= 20 km

>20 and <= 30 km 850 30.5% 75.0% >20 and <= 30 km

>30 and <= 40 km 347 12.4% 87.4% >30 and <= 40 km

>40 and <= 50 km 172 6.2% 93.6% >40 and <= 50 km

>50 and <= 60 km 160 5.7% 99.3% >50 and <= 60 km

>60 and <= 70 km 14 0.5% 99.8% >60 and <= 70 km

>70 and <= 80 km 4 0.1% 99.9% >70 and <= 80 km

>100 km 2 0.1% 100.0% >100 km

2791

49.0%

46

303
207

686

850

347

172 160

14 4 2

TEST1 events, distance to Water <> 
Sea
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Water = SEA (WATERFID = 89111384)

D2H20Bin Frequency % Cum %

<= 1 km 86 3.0% 3.0%

>1 and <= 5 km 517 17.8% 20.8%

>5 and <= 10 km 808 27.8% 48.6%

>10 and <= 20 km 793 27.3% 75.9%

>20 and <= 30 km 483 16.6% 92.5%

>30 and <= 40 km 152 5.2% 97.8%

>40 and <= 50 km 63 2.2% 99.9%

>50 and <= 60 km 2 0.1% 100.0%

>60 and <= 70 km 0 0.0% 100.0%

>70 and <= 80 km 0 0.0% 100.0%

>100 km 0 0.0% 100.0%

2904

51.0%

86

517

808 793

483

152
63

2 0 0 0

TEST1 events, distance to Sea
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A.3.3 TEST1 Global Fault Density 

 

 

 

0

500

1000

1500

2000

2500

1146

2423

729

485
331

42 3

311

8
217

TEST1 Global Fault DensityFreqency Distribution



 

173 
 

A.3.4  TEST1 Fault Density by Continent 
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CONTINENT Qualitative Density Frequency
% of Continent 

TEST1 Events

Total # 

Continental 

Events

Africa Very Low 10 62.5%

Africa Low 6 37.5% 16

Asia Very Low 446 80.5%

Asia Low 104 18.8%

Asia Moderate 4 0.7% 554

Australia Very Low 1 100.0% 1

Europe Very Low 1957 71.3%

Europe Low 662 24.1%

Europe Moderate 124 4.5% 2743

North America Very Low 1386 58.5%

North America Low 327 13.8%

North America Moderate 126 5.3%

North America High 527 22.2%

North America Very High 4 0.2% 2370

Oceania Very Low 2 40.0%

Oceania Low 2 40.0%

Oceania High 1 20.0% 5

South America Very Low 2 33.3%

South America Low 1 16.7%

South America High 3 50.0% 6

5695
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Appendix B. Data Sources 

B.1 Landslide Inventories 

 

Source  (D. Kirschbaum et al., 2015) 

Description Database of 11,033 landslides, various landslide types, subset used for 
“TRAIN” 

Resolution not applicable 

Coverage global 

Format Point .shp file and database 

 

B.2 Lithology  

 

Source (Jörg Hartmann & Nils Moosdorf, 2012) 

Description Representation of rock properties at the Earth surface 

Resolution 0.5o 

Coverage global 

Format Raster grid 

 

B.3 Topography 

 

Source (Danielson, 2011)  U.S.G.S. 

Description Elevation model 

Resolution 7.5 arcseconds (~250 meters) 

Coverage global 

Format Raster grid 

 

B.4 Climate classification 

 

Source (Beck et al., 2018) 

Description Köppen-Geiger  

Resolution 0.0083° resolution (approximately 1 km at the equator), 

Coverage global 

Format Raster grid 
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B.5  Precipitation 

Source (Fick & Hijmans, 2017) 

Description Monthly precipitation, temperature, (and more) aggregated across a 
temporal range of 1970 – 2000; also for 2081-2100 

Resolution 1 km 

Coverage global 

Format Raster grid 

 

B.6  Aridity 

Source (Trabucco & Zomer, 2018) 

Description Aridity and evapo-transpiration data for 1970-2000 

Resolution 30 arcseconds 

Coverage global 

Format Raster grid 

 

B.7  Soils  

Source (FAO, 2003)    
https://www.fao.org/land-water/land/land-governance/land-
resources-planning-toolbox/category/details/en/c/1026564/ 

Description Digitized version of the FAO-UNESCO Soil Map of the 

World produced in paper version at scale 1:5 million. 4931 mapping 

units consisting of soil associations, which are mixtures of different 

soil types, classified according to the FAO-UNESCO Legend 

Resolution 1:5 000 000 

Coverage global 

Format polygon .shp file 

 

B.8  Land use/Land cover 

Source (Kobayashi et al., 2017) 

Description Global Land Cover by National Mapping Organizations (GLCNMO). 
Version 3 (gm_lc_v3_2_2 ) 

Resolution 500 m, 15’ 

Coverage global 

Format Raster grid 

 

 

 

 

https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/docrep/019/as360e/as360e.pdf
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B.9  Landforms 

 

 

Source (Sayre et al., 2014), (Charlie Frye et al., 2018) 

Description Landforms characterized with the climate regime, landform, geology, 
and land cover  

Resolution 250 m 

Coverage global 

Format polygon .shp file 
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Appendix C –Global and Continental Environmental Data Coverages 

C.1 Climate Classification Current/Future Global Coverage 

 

 

SORTED  descending order on absolute value

2071-2100 Future Scenario RCP 8.5 1988-2016 Observed        Change in Sq Km   Abs(Change in Sq Km)

KG Class Classification Sq Km % Total Classification Sq Km % Total        Future - Current        Future - Current Future Current % Change Abs % Change

NonLand 362,751,940.43 71.12% 362,751,785.41 71.12% 155.02 155.02 Dfc  9,076,202.22 4.43% 10.59% -6.16% 6.16% Cold, no dry season, cold summer

Af   6,361,672.68 4.32% 7,051,752.77 4.79% -690,080.08 690,080.08 Dfa  5,984,792.43 5.43% 1.37% 4.06% 4.06% Cold, no dry season, hot summer

Am    5,552,329.63 3.77% 5,085,705.19 3.45% 466,624.44 466,624.44 ET   4,871,063.98 2.09% 5.40% -3.31% 3.31% Polar, tundra

Aw   20,216,665.35 13.72% 16,747,774.70 11.37% 3,468,890.65 3,468,890.65 BWh  3,603,680.75 17.25% 14.80% 2.45% 2.45% Arid, desert, hot 

BWh  25,407,651.81 17.25% 21,803,971.06 14.80% 3,603,680.75 3,603,680.75 Aw   3,468,890.65 13.72% 11.37% 2.35% 2.35% Tropical, savannah 

BWk  6,020,748.59 4.09% 7,653,999.43 5.20% -1,633,250.84 1,633,250.84 BSh  2,839,928.64 7.27% 5.34% 1.93% 1.93% Arid, steppe, hot 

BSh  10,706,198.45 7.27% 7,866,269.80 5.34% 2,839,928.64 2,839,928.64 Cfa  1,867,704.85 4.99% 3.73% 1.27% 1.27% Temperate, no dry season, hot summer 

BSk  9,289,476.52 6.31% 8,956,705.06 6.08% 332,771.46 332,771.46 Dsc  1,777,334.18 2.29% 1.09% 1.21% 1.21% Cold, dry summer, cold summer

Csa  1,968,415.66 1.34% 1,422,928.25 0.97% 545,487.41 545,487.41 BWk  1,633,250.84 4.09% 5.20% -1.11% 1.11% Arid, desert, cold  

Csb  555,629.36 0.38% 854,369.60 0.58% -298,740.24 298,740.24 Dwc  1,558,537.41 0.99% 2.05% -1.06% 1.06% Cold, dry winter, cold summer

Csc   6,261.21 0.00% 7,905.39 0.01% -1,644.18 1,644.18 Cwa  1,280,208.18 1.98% 2.85% -0.87% 0.87% Temperate, dry winter, hot summer   

Cwa  2,919,790.08 1.98% 4,199,998.25 2.85% -1,280,208.18 1,280,208.18 Cwb  1,035,759.99 0.48% 1.18% -0.70% 0.70% Temperate, dry winter, warm summer    

Cwb  706,411.72 0.48% 1,742,171.71 1.18% -1,035,759.99 1,035,759.99 Dwa  883,263.54 1.42% 0.82% 0.60% 0.60% Cold, dry winter, hot summer

Cwc  2,046.54 0.00% 6,698.84 0.00% -4,652.30 4,652.30 EF   772,228.04 9.01% 9.53% -0.52% 0.52% Polar, frost

Cfa  7,358,221.29 4.99% 5,490,516.44 3.73% 1,867,704.85 1,867,704.85 Af   690,080.08 4.32% 4.79% -0.47% 0.47% Tropical, rainforest            

Cfb 1,967,741.29 1.34% 2,525,032.43 1.71% -557,291.14 557,291.14 Dfd  615,016.17 0.00% 0.42% -0.42% 0.42% Cold, no dry season, very cold winter

Cfc  139,557.87 0.09% 106,362.40 0.07% 33,195.48 33,195.48 Dfb  611,064.43 5.44% 5.03% 0.41% 0.41% Cold, no dry season, warm summer 

Dsa  254,186.00 0.17% 255,656.19 0.17% -1,470.19 1,470.19 Cfb 557,291.14 1.34% 1.71% -0.38% 0.38%  Temperate, no dry season, warm summer 

Dsb  749,099.82 0.51% 587,156.44 0.40% 161,943.38 161,943.38 Csa  545,487.41 1.34% 0.97% 0.37% 0.37% Temperate, dry summer, hot summer   

Dsc  3,378,272.03 2.29% 1,600,937.85 1.09% 1,777,334.18 1,777,334.18 Am    466,624.44 3.77% 3.45% 0.32% 0.32% Tropical, monsoon      

Dsd  21.32 0.00% 58,703.30 0.04% -58,681.98 58,681.98 BSk  332,771.46 6.31% 6.08% 0.23% 0.23% Arid, steppe, cold  

Dwa  2,090,540.03 1.42% 1,207,276.49 0.82% 883,263.54 883,263.54 Csb  298,740.24 0.38% 0.58% -0.20% 0.20% Temperate, dry summer, warm summer  

Dwb  1,312,075.34 0.89% 1,206,630.77 0.82% 105,444.56 105,444.56 Dwd  227,454.28 0.00% 0.15% -0.15% 0.15% Cold, dry winter, very cold winter

Dwc  1,459,829.37 0.99% 3,018,366.78 2.05% -1,558,537.41 1,558,537.41 Dsb  161,943.38 0.51% 0.40% 0.11% 0.11% Cold, dry summer, warm summer

Dwd  267.69 0.00% 227,721.97 0.15% -227,454.28 227,454.28 Dwb  105,444.56 0.89% 0.82% 0.07% 0.07% Cold, dry winter, warm summer 

Dfa  7,995,941.31 5.43% 2,011,148.88 1.37% 5,984,792.43 5,984,792.43 Dsd  58,681.98 0.00% 0.04% -0.04% 0.04% Cold, dry summer, very cold winter

Dfb  8,017,569.22 5.44% 7,406,504.79 5.03% 611,064.43 611,064.43 Cfc  33,195.48 0.09% 0.07% 0.02% 0.02% Temperate, no dry season, cold summer 

Dfc  6,520,689.87 4.43% 15,596,892.09 10.59% -9,076,202.22 9,076,202.22 Cwc  4,652.30 0.00% 0.00% 0.00% 0.00% Temperate, dry winter, cold summer  

Dfd  7.04 0.00% 615,023.21 0.42% -615,016.17 615,016.17 Csc   1,644.18 0.00% 0.01% 0.00% 0.00% Temperate, dry summer, cold summer

ET   3,082,824.69 2.09% 7,953,888.66 5.40% -4,871,063.98 4,871,063.98 Dsa  1,470.19 0.17% 0.17% 0.00% 0.00% Cold, dry summer, hot summer

EF   13,273,539.52 9.01% 14,045,767.56 9.53% -772,228.04 772,228.04 NonLand 155.02

   Abs(Change in Sq Km)          Future - Current

Future - Current 
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C.2 Landcover Global Coverage 

 

GLCNMO Landuse/Landcover  
  

Description sq km % 
Earth 

Broadleaf Evergreen Forest 9,686,507 1.90% 

Broadleaf Deciduous Forest 6,636,292 1.30% 

Needleleaf Evergreen Forest 4,010,189 0.79% 

Needleleaf Deciduous Forest 5,625,814 1.10% 

Mixed Forest 4,996,624 0.98% 

Tree Open 13,430,207 2.63% 

  FOREST/WOODLAND 44,385,633 8.70% 

Shrub 8,346,598 1.64% 

Herbaceous 14,410,931 2.83% 

Herbaceous with Sparse Tree/Shrub 2,559,545 0.50% 

Sparse vegetation 10,336,721 2.03% 

  GRASSLAND/SHRUBLAND 35,653,794 6.99% 

Cropland 10,626,938 2.08% 

Paddy field 1,676,802 0.33% 

Cropland / Other Vegetation Mosaic 7,111,474 1.39% 

  CROPLAND 19,415,214 3.81% 

Mangrove 64,428 0.01% 

Wetland 1,206,413 0.24% 

Bare area, consolidated (gravel, rock) 5,106,962 1.00% 

Bare area, unconsolidated (sand) 6,003,915 1.18% 

  BARE GROUND 12,381,717 2.43% 

Urban 420,736 0.08% 

Snow / Ice 54,430,306 10.67% 

Water bodies 343,384,598 67.32% 

 

C.3 Aridity Global and Continental Coverage 

 

 

Aridity Classification Distribution

GLOBAL Africa Asia Australia Europe No America Oceania So America

Hyper-Arid 6.4% 28.2% 4.5% 0.0% 0.0% 0.1% 0.0% 1.7%

Arid 15.6% 21.6% 19.0% 65.2% 1.0% 5.7% 0.0% 9.1%

Semi-Arid 19.6% 19.8% 21.4% 25.2% 12.5% 21.6% 1.1% 12.9%

Dry Sub-Humid 12.0% 8.2% 14.7% 4.7% 12.3% 14.1% 4.4% 7.6%

Humid 46.3% 22.2% 40.4% 4.9% 74.3% 58.5% 94.5% 68.7%
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C.4 Landform Global Coverage 

 

Murphy Bridges Ecophysical Region % Total Area (km2)

Mountains in Alpine System 14.0% 20,598,913

Humid Plains on Sedimentary Lithology 10.4% 15,280,803

Hills or Tablelands in Alpine System 10.3% 15,173,709

null 9.2% 13,477,087

Humid Mountains in Alpine System 7.9% 11,592,738

Humid Hills or Tablelands in Alpine System 7.1% 10,420,467

Dry Hills or Tablelands on Sedimentary Lithology 4.6% 6,791,995

Humid Depressions or Basins in Alpine System 4.1% 6,040,808

Plains on Sedimentary Lithology 3.9% 5,700,728

Dry Plains on Sedimentary Lithology 3.7% 5,414,018

Plains in Alpine System 3.6% 5,269,229

Hills or Tablelands on Sedimentary Lithology 3.4% 4,938,424

Mountains on Sedimentary Lithology 3.1% 4,520,414

Humid Hills or Tablelands on Sedimentary Lithology 2.4% 3,499,916

Humid Plains in Alpine System 1.8% 2,698,149

Dry Mountains in Alpine System 1.4% 2,030,136

Dry Widely Spaced Mountains in Alpine System 1.4% 2,006,615

Widely Spaced Mountains in Alpine System   1.2% 1,708,549

DryPlains on Sedimentary Lithology 0.9% 1,254,926

Dry Depressions or Basins in Alpine System 0.8% 1,223,009

Dry Hills or Tablelands in Alpine System 0.8% 1,161,698

Depressions or Basins in Alpine System 0.7% 1,023,209

Long Term Snow or Icein Alpine System 0.6% 955,745

Depressions or Basins on Sedimentary Lithology 0.6% 939,951

Dry Plains in Alpine System 0.6% 867,898

in Alpine System 0.4% 658,119

on Sedimentary Lithology 0.4% 548,906

Humid 0.3% 392,736

Humid Widely Spaced Mountains in Alpine System 0.2% 262,228

Dry High Tablelands in Alpine System 0.2% 232,286

Humid Mountains on Sedimentary Lithology 0.1% 205,585

Widely Spaced Mountains on Sedimentary Lithology 0.1% 121,110

null 0.1% 120,793

Dry Widely Spaced Mountains on Sedimentary Lithology 0.0% 33,782

Dry Plains on Shield 0.0% 20,317

Hills in Alpine System 0.0% 17,828

Dry 0.0% 6,136

Humid Plains 0.0% 21

Total 100.0% 147,208,983
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C.5 Elevation Global and Continental Coverage 

 

 

 

C.6 Fault Density Global and Continental Coverage 

 

from "Continental Hypsography" Harrison 1983 except Oceania which was calculated in ArcGIS

ELEVATION (m)
 AFRICA 

(km2)
% ASIA  (km2) %

N AMERICA 

(km2)

S AMERICA 

(km2)
%

EUROPE 

(km2)
%

AUSTRALIA 

(km2)
%

OCEANIA 

(km2)
%

0-1000 23,381,600 80.6% 29,498,900 72.3% 16,878,000 73.1% 14,557,600 86.9% 8,790,000 96.7% 7,634,500 96.6% 375,998 88.2%

1000-1500 4,617,000 15.9% 4,838,300 11.9% 2,645,300 11.5% 484,600 2.9% 186,300 2.0% 108,200 1.4% 35,330 8.3%

1500-2000 823,000 2.8% 2,301,300 5.6% 2,213,800 9.6% 488,500 2.9% 87,500 1.0% 49,200 0.6% 11,518 2.7%

2000-2500 135,100 0.5% 741,500 1.8% 717,000 3.1% 173,300 1.0% 25,000 0.3% 24,600 0.3% 2,158 0.5%

2500 - 3000 54,800 0.2% 698,200 1.7% 628,700 2.7% 308,500 1.8% 2,300 0.0% 61,500 0.8% 593 0.1%

3000-3500 3,100 0.0% 290,100 0.7% 15,100 0.1% 173,900 1.0% 0 0.0% 12,300 0.2% 298 0.1%

3500-4000 0 0.0% 319,600 0.8% 0 0.0% 186,700 1.1% 0 0.0% 12,300 0.2% 200 0.0%

4000-5000 0 0.0% 1,561,200 3.8% 0 0.0% 383,400 2.3% 0 0.0% 0 0.0% 17 0.0%

5000-6750 0 0.0% 569,700 1.4% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

from ArcGIS and miscellaneous tools

Qualitative 

Label
Value Range (km/sq km) Global % Africa % Asia %

Australia 

%
Europe %

North 

America 

%

Oceania 

%

South 

America %

Very Low <= 0.033885 99.2% 97.3% 96.4% 98.3% 94.0% 99.1% 59.4% 95.6%

Low > 0.033885 and <= 0.067771 0.7% 2.3% 3.4% 1.6% 4.8% 0.8% 23.7% 4.1%

Moderate > 0.067771 and <= 0.101656 0.1% 0.4% 0.3% 0.1% 1.1% 0.1% 12.7% 0.3%

High > 0.101656 and <= 0.135542 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 3.7% 0.0%

Very High > 0.135542 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0%
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C.7 Tectonics Global and Continental Coverage 

 

Four of seven continents (Asia, Australia, Oceania, South America) have Reverse faults as major 

percentage in fault length (km). Three of seven continents (Africa, Europe, North America) exhibit 

Normal faults as the majority by length (km). Only Oceania switches dominant slip type when evaluating 

based on frequency versus length. Globally, Reverse faults dominate by km length. Globally, Normal 

faults dominate by frequency. However, this is dependent on the level of data uncertainty in the source 

tectonic maps. 

C.7.1 Tectonics Global Coverage 

 

Slip Type GLOBAL 
   
SLIP TYPE LINEAR 

TOTAL (km) 
% Total (by km) Slip Type Count % Total by Count 

unknown 15,259 3.2% 1,275 11.2% 

Anticline 19,043 4.0% 312 2.7% 

Blind Thrust 35 0.0% 1 0.0% 

Dextral 83,691 17.8% 1,168 10.3% 

Dextral-Normal 9,309 2.0% 202 1.8% 

Dextral-Oblique 47 0.0% 1 0.0% 

Dextral-Reverse 12,158 2.6% 360 3.2% 

Dextral_Transform 22 0.0% 1 0.0% 

Normal 87,488 18.6% 2,966 26.1% 

Normal-Dextral 880 0.2% 26 0.2% 

Normal-Sinistral 635 0.1% 15 0.1% 

Normal-Strike-Slip 40 0.0% 2 0.0% 

Reverse 132,711 28.2% 2,635 23.2% 

Reverse-Dextral 3,424 0.7% 77 0.7% 

Reverse-Sinistral 1,303 0.3% 24 0.2% 

Reverse-Strike-Slip 2,796 0.6% 396 3.5% 

Sinistral 75,613 16.1% 946 8.3% 

Sinistral-Normal 7,966 1.7% 158 1.4% 

Sinistral-Reverse 11,220 2.4% 172 1.5% 

Sinistral_Transform 135 0.0% 6 0.1% 

Spreading_Ridge 366 0.1% 13 0.1% 

Strike-Slip 5,106 1.1% 568 5.0% 

Subduction_Thrust 975 0.2% 15 0.1% 

Syncline 718 0.2% 9 0.1% 

TOTALS 470,940 
 

11,348 
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C.7.2 Tectonics Africa Coverage 

 

 

Slip Type AFRICA

Count
Slip Type Count 

% By Continent
Linear Total (km)

SlipType (km)% 

Continent

SlipType (km)% 

Global

unknown 51 8.9% 4,138 10.81% 0.88%

Anticline 4 0.7% 167 0.44% 0.04%

Blind Thrust 1 0.2% 35 0.09% 0.01%

Dextral 7 1.2% 228 0.60% 0.05%

Dextral-Normal 3 0.5% 72 0.19% 0.02%

Dextral-Oblique 0 0 0 0 0

Dextral-Reverse 3 0.5% 117 0.31% 0.02%

Dextral_Transform 0 0 0 0 0

Normal 416 72.5% 26,524 69.29% 5.63%

Normal-Dextral 0 0.0% 0 0 0

Normal-Sinistral 2 0.3% 41 0.11% 0.01%

Normal-Strike-Slip 0 0 0 0 0

Reverse 70 12.2% 5,915 15.45% 1.26%

Reverse-Dextral 1 0.2% 36 0.09% 0.01%

Reverse-Sinistral 1 0.2% 100 0.26% 0.02%

Reverse-Strike-Slip 0 0 0 0 0

Sinistral 8 1.4% 510 1.33% 0.11%

Sinistral-Normal 1 0.2% 28 0.07% 0.01%

Sinistral-Reverse 5 0.9% 302 0.79% 0.06%

Sinistral_Transform 0 0 0 0 0

Spreading_Ridge 0 0 0 0 0

Strike-Slip 1 0.2% 65 0.17% 0.01%

Subduction_Thrust 0 0 0 0 0

Syncline 0 0 0 0 0

TOTALS 574 38,277 1 8.1%
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C.7.3 Tectonics Asia Coverage 

 

Slip Type ASIA

Count

Slip Type 

Count % By 

Continent

Linear 

Total (km)

SlipType (km)% 

Continent

SlipType 

(km)% Global

unknown 18 0.53% 379 0.15% 0.08%

Anticline 308 9.05% 18,876 7.43% 4.01%

Blind Thrust 0 0 0 0 0

Dextral 745 21.89% 59,637 23.49% 12.66%

Dextral-Normal 94 2.76% 5,031 1.98% 1.07%

Dextral-Oblique 1 0.03% 47 0.02% 0.01%

Dextral-Reverse 65 1.91% 5,276 2.08% 1.12%

Dextral_Transform 0 0 0 0 0

Normal 439 12.90% 22,258 8.77% 4.73%

Normal-Dextral 1 0.03% 58 0.02% 0.01%

Normal-Sinistral 0 0 0 0 0

Normal-Strike-Slip 0 0 0 0 0

Reverse 810 23.80% 67,401 26.55% 14.31%

Reverse-Dextral 10 0.29% 710 0.28% 0.15%

Reverse-Sinistral 6 0.18% 403 0.16% 0.09%

Reverse-Strike-Slip 7 0.21% 348 0.14% 0.07%

Sinistral 698 20.51% 58,807 23.16% 12.49%

Sinistral-Normal 97 2.85% 5,281 2.08% 1.12%

Sinistral-Reverse 83 2.44% 7,367 2.90% 1.56%

Sinistral_Transform 0 0 0 0 0

Spreading_Ridge 0 0 0 0 0

Strike-Slip 6 0.18% 691 0.27% 0.15%

Subduction_Thrust 6 0.18% 617 0.24% 0.13%

Syncline 9 0.26% 718 0.28% 0.15%

TOTALS 3403 253,906 1 53.9%
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C.7.4 Tectonics Australia Coverage 

 

Slip Type AUSTRALIA

Count

Slip Type 

Count % By 

Continent

Linear 

Total 

(km)

SlipType 

(km)% 

Continen

t

SlipType 

(km)% 

Global

unknown 859 50.71% 9,073 30.4% 1.9%

Anticline 0 0 0 0

Blind Thrust 0 0 0 0

Dextral 0 0 0 0

Dextral-Normal 0 0 0 0

Dextral-Oblique 0 0 0 0

Dextral-Reverse 170 10.0% 222 0.7% 0.0%

Dextral_Transform 0 0 0 0

Normal 7 254 0.9% 0.1%

Normal-Dextral 0 0 0 0

Normal-Sinistral 0 0 0 0

Normal-Strike-Slip 0 0 0 0

Reverse 625 36.9% 19,182 64.3% 4.1%

Reverse-Dextral 0 0 0 0

Reverse-Sinistral 0 0 0 0

Reverse-Strike-Slip 0 0 0 0

Sinistral 0 0 0 0

Sinistral-Normal 0 0 0 0

Sinistral-Reverse 10 0.6% 208 0.7% 0.0%

Sinistral_Transform 0 0 0 0

Spreading_Ridge 0 0 0 0

Strike-Slip 23 1.4% 892 3.0% 0.2%

Subduction_Thrust 0 0 0 0

Syncline 0 0 0 0

TOTALS 1694 29,832 1 6.3%
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C.7.5 Tectonics Europe Coverage 

 

Slip Type EUROPE

Count

Slip Type 

Count % 

By 

Continent

Linear 

Total 

(km)

SlipType 

(km)% 

Continen

t

SlipType 

(km)% 

Global

unknown 1 0.001366 80 0.2% 0.02%

Anticline 0 0 0 0 0

Blind Thrust 0 0 0 0 0

Dextral 48 6.6% 3,806 9.6% 0.8%

Dextral-Normal 41 5.6% 1,534 3.9% 0.3%

Dextral-Oblique 0 0 0 0 0

Dextral-Reverse 56 7.7% 2,917 7.4% 0.6%

Dextral_Transform 1 0.1% 22 0.1% 0.0%

Normal 300 41.0% 12,779 32.3% 2.7%

Normal-Dextral 0 0 0 0 0

Normal-Sinistral 4 0.5% 120 0.3% 0.0%

Normal-Strike-Slip 0 0 0 0 0

Reverse 116 15.8% 7,380 18.7% 1.6%

Reverse-Dextral 0 0 0 0 0

Reverse-Sinistral 2 0.3% 54 0.1% 0.0%

Reverse-Strike-Slip 0 0 0 0 0

Sinistral 80 10.9% 7,035 17.8% 1.5%

Sinistral-Normal 40 5.5% 1,940 4.9% 0.4%

Sinistral-Reverse 24 3.3% 1,118 2.8% 0.2%

Sinistral_Transform 3 0.4% 103 0.3% 0.0%

Spreading_Ridge 11 1.5% 351 0.9% 0.1%

Strike-Slip 0 0 0 0 0

Subduction_Thrust 5 0.7% 280 0.7% 0.1%

Syncline 0 0 0 0 0

TOTALS 732 39,519 1 8.4%
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C.7.6 Tectonics North America Coverage 

 

Slip Type NORTH AMERICA

Count

Slip Type 

Count % By 

Continent

Linear 

Total 

(km)

SlipType 

(km)% 

Continen

t

SlipType 

(km)% 

Global

unknown 185 6.0% 1,015 0 0

Anticline 0 0 0 0

Blind Thrust 0 0 0 0

Dextral 175 5.7% 8,272 16.92% 1.76%

Dextral-Normal 17 0.6% 595 1.22% 0.13%

Dextral-Oblique 0 0 0 0

Dextral-Reverse 7 0.2% 398 0.82% 0.08%

Dextral_Transform 0 0 0 0

Normal 1071 34.8% 18,653 38.16% 3.96%

Normal-Dextral 8 0.3% 255 0.52% 0.05%

Normal-Sinistral 5 0.2% 343 0.70% 0.07%

Normal-Strike-Slip 0 0 0 0

Reverse 590 19.2% 7,806 15.97% 1.66%

Reverse-Dextral 6 0.2% 364 0.74% 0.08%

Reverse-Sinistral 2 0.1% 70 0.14% 0.01%

Reverse-Strike-Slip 374 12.2% 2,078 4.25% 0.44%

Sinistral 93 3.0% 5,019 10.27% 1.07%

Sinistral-Normal 6 0.2% 269 0.55% 0.06%

Sinistral-Reverse 15 0.5% 597 1.22% 0.13%

Sinistral_Transform 3 0.1% 32 0.06% 0.01%

Spreading_Ridge 2 0.1% 16 0.03% 0.003%

Strike-Slip 516 16.8% 3,081 6.30% 0.65%

Subduction_Thrust 1 0.0% 13 0.03% 0.00%

Syncline 0 0 0 0

TOTALS 3076 48,876 1 10.4%
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C.7.7 Tectonics Oceania Coverage 

 

Slip Type OCEANIA

Count

Slip Type 

Count % By 

Continent

Linear 

Total 

(km)

SlipType 

(km)% 

Continen

t

SlipType 

(km)% 

Global

unknown 156 15.8% 363 3.2% 0.1%

Anticline 0 0 0 0

Blind Thrust 0 0 0 0

Dextral 25 2.5% 784 7.0% 0.2%

Dextral-Normal 18 1.8% 726 6.5% 0.2%

Dextral-Oblique 0 0 0 0

Dextral-Reverse 45 4.6% 2,298 20.5% 0.5%

Dextral_Transform 0 0 0 0

Normal 587 59.5% 1,825 16.3% 0.4%

Normal-Dextral 13 1.3% 358 3.2% 0.1%

Normal-Sinistral 0 0 0 0

Normal-Strike-Slip 1 0.1% 20 0.2% 0.0%

Reverse 71 7.2% 2,512 22.4% 0.5%

Reverse-Dextral 53 5.4% 1,926 17.2% 0.4%

Reverse-Sinistral 8 0.8% 236 2.1% 0.1%

Reverse-Strike-Slip 2 0.2% 42 0.4% 0.0%

Sinistral 0 0 0 0

Sinistral-Normal 0 0 0 0

Sinistral-Reverse 1 0.1% 38 0.3% 0.0%

Sinistral_Transform 0 0 0 0

Spreading_Ridge 0 0 0 0

Strike-Slip 4 0.4% 12 0.1% 0.0%

Subduction_Thrust 2 0.2% 59 0.5% 0.0%

Syncline 0 0 0 0

TOTALS 986 11,199 1 2.4%
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C.7.8 Tectonics South America Coverage 

 

Slip Type SOUTH AMERICA

Count

Slip Type 

Count % By 

Continent

Linear Total 

(km)

SlipType (km)% 

Continent

SlipType (km)% 

Global

unknown 5 0.6% 211 0.4% 0.0%

Anticline 0 0 0 0

Blind Thrust 0 0 0 0

Dextral 168 19.0% 10,965 22.2% 2.3%

Dextral-Normal 29 3.3% 1,352 2.7% 0.3%

Dextral-Oblique 0 0 0 0

Dextral-Reverse 14 1.6% 930 1.9% 0.2%

Dextral_Transform 0 0 0 0

Normal 146 16.5% 5,195 10.5% 1.1%

Normal-Dextral 4 0.5% 208 0.4% 0.0%

Normal-Sinistral 4 0.5% 131 0.3% 0.0%

Normal-Strike-Slip 1 0.1% 20 0.0% 0.0%

Reverse 353 40.0% 22,514 45.6% 4.8%

Reverse-Dextral 7 0.8% 389 0.8% 0.1%

Reverse-Sinistral 5 0.6% 440 0.9% 0.1%

Reverse-Strike-Slip 13 1.5% 328 0.7% 0.1%

Sinistral 67 7.6% 4,242 8.6% 0.9%

Sinistral-Normal 14 1.6% 448 0.9% 0.1%

Sinistral-Reverse 34 3.9% 1,590 3.2% 0.3%

Sinistral_Transform 0 0 0 0

Spreading_Ridge 0 0 0 0

Strike-Slip 18 2.0% 364 0.7% 0.1%

Subduction_Thrust 1 0.1% 5 0 0

Syncline 0 0 0 0

TOTALS 883 49,332 1 10.5%
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C.8 Precipitation 

 

 

PRECIPITATION - Average Monthly by Continent

Area Sq Km

PRECIPITATION  (mm) AFRICA % ASIA % AUSTRALIA % EUROPE % N AMERICA % OCEANIA S AMERICA %

<=10 9,066,803 30.3% 6,344,900 14.8% 92,048 1.2% 0 610,948 2.5% 0 537,617 0

>10 and <= 20 2,066,967 6.9% 6,850,466 16.0% 1,805,885 23.5% 123,715 2,854,980 11.8% 0 788,207 4.5%

>20 and <= 30 2,035,205 6.8% 7,606,165 17.8% 2,094,027 27.2% 341,539 3,861,280 15.9% 0 470,412 2.7%

> 30 and <= 40 1,609,586 5.4% 5,644,396 13.2% 1,042,781 13.6% 1,087,101 10.9% 3,692,472 15.2% 337 0.1% 386,998 2.2%

> 40 and <= 50 1,338,048 4.5% 4,825,631 11.3% 679,843 8.8% 3,651,505 36.7% 2,623,367 10.8% 2,490 0.6% 497,066 2.8%

> 50 and <= 60 1,487,293 5.0% 2,065,903 4.8% 596,058 7.8% 2,479,932 25.0% 1,644,290 6.8% 9,318 2.2% 723,257 4.1%

> 60 and <= 70 1,454,380 4.9% 1,196,688 2.8% 378,328 4.9% 831,297 8.4% 1,702,339 7.0% 11,991 2.8% 750,900 4.2%

> 70 and <= 80 1,440,546 4.8% 934,733 2.2% 304,349 4.0% 439,571 4.4% 1,578,428 6.5% 14,454 3.4% 778,317 4.4%

> 80 and <= 90 1,616,140 5.4% 866,756 2.0% 189,120 2.5% 291,208 2.9% 1,467,088 6.0% 17,998 4.2% 730,348 4.1%

> 90 and <= 100 1,492,886 5.0% 806,579 1.9% 149,785 1.9% 204,398 2.1% 1,321,350 5.4% 20,416 4.8% 703,828 4.0%

> 100 and <= 200 6,010,443 20.1% 5,166,234 12.1% 345,681 4.5% 465,634 4.7% 2,541,883 10.5% 194,421 45.4% 8,593,374 48.5%

> 200 and <= 300 279,528 0.9% 10,510 0.0% 7,890 0.1% 21,916 0.2% 327,755 1.4% 129,577 30.2% 2,601,303 14.7%

> 300 and <= 400 6,709 0.0% 386,911 0.9% 653 0.0% 0 0.0% 26,983 0.1% 26,986 6.3% 99,929 0.6%

> 400 0 0.0% 34,965 0.1% 0 0.0% 0 0.0% 416 0.0% 522 0.1% 41,776 0.2%
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C.9 Elevation 
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C.10 Lithology 
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C.11 Soils   

C.11.1 Soil Type   

 

 

AFRICA ASIA AUSTRALIA EUROPE No AMERICA OCEANIA So AMERICA

SOIL TYPE Area (sq km) Area (sq km) Area (sq km) Area (sq km) Area (sq km) Area (sq km) Area (sq km)

ACRISOLS 856,919 3,963,149 132,005 1,679 1,437,185 32,251 1,938,123

CAMBISOLS 1,054,624 4,391,356 48,678 1,564,837 1,772,861 211,195 347,408

CHERNOZEMS 0 851,327 0 1,006,993 404,003 0 0

PODZOLUVISOLS    1,643,824 2,113,467 1,510,630 52,292 0 0

RENDZINAS  27,699 69,999 0 193,594 151,060 13,208 0

FERRALSOLS    4,203,830 150,413 112,472 0 6,824 16,340 6,117,678

GLEYSOLS 586,558 3,280,335 1,571 193,260 3,597,646 2,040 668,299

PHAEOZEMS    6,691 199,287 30,359 92,491 691,886 1,074 495,653

LITHOSOLS 3,450,274 13,735,854 611,995 703,905 1,941,058 37,546 2,004,454

FLUVISOLS    693,788 1,440,179 0 375,620 135,805 8,090 613,597

KASTAZNOZEMS   25,965 1,813,779 16,596 535,113 1,934,216 0 491,074

LUVISOLS    2,558,189 1,394,243 605,364 1,157,510 2,278,849 17,915 1,155,597

GREYZEMS    0 194,467 0 55,307 52,057 0 0

NITOSOLS    1,141,582 453,172 103,058 0 142,294 143 282,302

HISTOSOLS    16,867 1,120,912 649 282,035 1,031,973 1,463 38,133

PODZOLS    26,701 217,992 80,367 1,838,721 2,453,913 3,523 15,996

ARENOSOLS    4,017,573 744,027 1,269,080 26,276 0 0 784,375

REGOSOLS    1,925,662 930,976 689,115 188,951 3,087,498 12,308 272,880

SOLONETZ    124,470 408,653 379,573 61,695 127,723 0 205,084

ANDOSOLS    47,168 262,329 0 41,258 390,852 62,118 213,805

RANKERS 0 0 0 29,819 0 0 25,888

VERTSOLS    983,145 812,272 868,449 37,382 258,108 399 152,839

PLANOSOLS    438,067 389,395 484,864 199,835 811,478 3,590 710,781

XEROSOLS    1,306,259 1,633,673 725,417 62,429 377,502 0 447,001

YERMOSOLS    4,687,105 3,632,589 1,408,091 0 1,014,523 0 730,328

SOLONCHAKS    160,318 918,552 114,934 15,338 3,505 0 100,616

TOTALS 29,983,278 45,122,397 7,682,637 10,174,678 24,155,111 423,203 17,811,911
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C.11.2 Soil Thickness   

 

 

SOIL AFRICA ASIA AUSTRALIA EUROPE N AMERICA OCEANIA S AMERICA

THICKNESS (m) Area SqKm % Area SqKm % Area SqKm % Area SqKm % Area SqKm % Area SqKm % Area SqKm %

<= 3 m 15,927,869 53.7% 28,502,777 64.8% 4,175,264 54.5% 5,213,407 54.7% 10,387,748 50.7% 319,655 77.4% 9,575,692 54.6%

>3 and <=10 1,514,578 5.1% 2,409,490 5.5% 161,098 2.1% 532,755 5.6% 1,525,066 7.4% 42,123 10.2% 809,340 4.6%

>10 and <= 30 2,737,026 9.2% 3,174,267 7.2% 417,049 5.4% 1,294,069 13.6% 2,825,456 13.8% 23,864 5.8% 2,043,676 11.7%

>30 and <=50 9,486,047 32.0% 9,895,688 22.5% 2,912,552 38.0% 2,496,226 26.2% 5,767,840 28.1% 27,458 6.6% 5,109,649 29.1%
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C.11.3 Soil Drainage 

 

 

 

 

 

 

 

 

 

 

 

 

 

Global Soil Drainage     

Classification Pixel Count % World 

Very Poor 443,811 2.6% 

Poor 2,352,556 14.0% 

Imperfectly 3,464,833 20.6% 

Moderately Well 8,126,252 48.2% 

Well 1,050,419 6.2% 

Somewhat Excessive 1,420,806 8.4% 

Excessive 0 0.0% 
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Appendix D  Probability Density, Frequency Ratio, Conditional Probability, and 

Certainty Factor Statistical Model Calculations   

D.1  Precipitation, Aridity, Closest Water Body, Distance to Water Bodies 

 

 

 

 

Factor

Factor Class       (xx 

field)  Factor Class Area 

of Earth Land 

Surface (sq km)  Pr

Factor Class  PREDICTOR 

IMPORTANCE (Pi)    

Probability Density         

Class Area/Total Area 

(Cn/H1 or F3)

Frequency          

DF & MS per 

Factor Class

 Probability Density     

DF&MS in Factor 

Class/TOTAL # DF & 

MS                        

FREQUENCY RATIO               

(FR) Fn/Dn         

Conditional Probability  

(PPa)

CERTAINTY FACTOR  

(CF)       if PPa >= PPs                    

PPa - PPs/PPa (1-PPs)                   

if PPa < PPs                      

Avg Mthly Precip (mm) Occurrence

<=10 225,342 30.4% 45 2.0% 0.06 0.0001997 0.9226

>10 and <= 20 105,710 14.3% 54 2.4% 0.165 0.0005108 0.9697

>20 and <= 30 98,352 13.3% 103 4.5% 0.34 0.0010473 0.9852

>30 and <= 40 75,339 10.2% 90 3.9% 0.39 0.0011946 0.9871

>40 and <= 50 71,603 9.7% 109 4.8% 0.49 0.0015223 0.9899

>50 and <= 60 42,060 5.7% 114 5.0% 0.88 0.0027104 0.9943

>60 and <= 70 27,090 3.7% 118 5.1% 1.41 0.0043559 0.9965

>70 and <= 80 21,728 2.9% 105 4.6% 1.56 0.0048325 0.9968

>80 and <= 90 19,949 2.7% 134 5.8% 2.17 0.0067171 0.9977

>90 and <= 100 17,685 2.4% 166 7.2% 3.03 0.0093865 0.9984

>100 and <= 200 14,273 1.9% 786 34.3% 17.80 0.0550690 0.9997

Count: >200 and <= 300 19,754 2.7% 251 10.9% 4.11 0.0127063 0.9988

14 >300 and <= 400 2,129 0.3% 129 5.6% 19.58 0.0605918 0.9998

> 400 380 0.1% 90 3.9% 76.54 0.2368421 1.0000

PRECIP SUMS/AVGs 741,394 100.0% 2294 100.0% 9.18 0.9883

Aridity Index (x10,000) from EU Comm World Atlas of Desertification

Hyper-Arid 9,491,200 6.4% 6 0.3% 0.04 0.0000006 -0.9591

Semi-Arid 20,168,800 13.6% 493 21.5% 1.58 0.0000244 0.3672

Arid 17,054,500 11.5% 161 7.0% 0.61 0.0000094 -0.3897

Dry Sub-Humid 8,453,100 5.7% 141 6.1% 1.08 0.0000167 0.0726

Count: Humid 62,879,200 42.4% 1493 65.1% 1.53 0.0000237 0.3485

6 Cold 30,253,200 20.4% 0 0.0% 0.00 0.0000000

Aridity SUMS/AVGs 148,300,000 100.0% 2294 100.0% 0.81 -0.0934

Closest H2O Body sq km

Intermittant Stream 172,696 0.05% 3 0.1% 2.77 0.00002 0.1095434

Count: Perennial Stream 13,050,066 3.57% 1839 80.2% 22.47 0.00014 0.8902439

3 Ocean/Sea 352,547,751 96.38% 452 19.7% 0.20 0.00000 -0.9171176

Closest H2O SUMS/AVGs 365,770,513 100.0% 2294 100.0% 8.48 0.0275565

Distance to Ocean/Sea Ocean/All Water 96.3%

<= 1 km 352,237,004 96.3% 256 41.8% 0.43 0.00000073 -0.95

>1 and <= 5 km 352,237,004 96.3% 148 24.1% 0.25 0.00000042 -0.97

>5 and <= 10 km 352,237,004 96.3% 65 10.6% 0.11 0.00000018 -0.99

Count= >10 and <= 20 km 352,237,004 96.3% 76 12.4% 0.13 0.00000022 -0.99

5 > 20 km 352,237,004 96.3% 68 11.1% 0.12 0.00000019 -0.99

Ocean/Sea SUMs/AVGs 613 100.0% 0.21 -0.98

Distance to Water <> Sea 3.6%

<= 1 km 469,802 3.6% 102 6.1% 1.69 0.00022 0.93

>1 and <= 5 km 469,802 3.6% 237 14.1% 3.92 0.00050 0.97

>5 and <= 10 km 469,802 3.6% 264 15.7% 4.36 0.00056 0.97

>10 and <= 20 km 469,802 3.6% 386 23.0% 6.38 0.00082 0.98

Count= >20 and <= 30 km 469,802 3.6% 217 12.9% 3.59 0.00046 0.97

6 >30  km 469,802 3.6% 475 28.3% 7.85 0.00101 0.98

Water <> Sea  SUMs/AVGs 1681 100.0% 4.63 0.9672
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D.2 Elevation, Slope, Landcover/Land Use, Soil Thickness, Soil Type 

 

 

 

 

 

 

 

 

Factor

Factor Class       (xx 

field)  Factor Class Area 

of Earth Land 

Surface (sq km)  Pr

Factor Class  PREDICTOR 

IMPORTANCE (Pi)    

Probability Density         

Class Area/Total Area 

(Cn/H1 or F3)

Frequency          

DF & MS per 

Factor Class

 Probability Density     

DF&MS in Factor 

Class/TOTAL # DF & 

MS                        

FREQUENCY RATIO               

(FR) Fn/Dn         

Conditional Probability  

(PPa)

CERTAINTY FACTOR  

(CF)       if PPa >= PPs                    

PPa - PPs/PPa (1-PPs)                   

if PPa < PPs                      
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D.3 Landform 

 

 

 

Factor

Factor Class       (xx 

field)  Factor Class Area 

of Earth Land 

Surface (sq km)  Pr

Factor Class  PREDICTOR 

IMPORTANCE (Pi)    

Probability Density         

Class Area/Total Area 

(Cn/H1 or F3)

Frequency          

DF & MS per 

Factor Class

 Probability Density     

DF&MS in Factor 

Class/TOTAL # DF & 

MS                        

FREQUENCY RATIO               

(FR) Fn/Dn         

Conditional Probability  

(PPa)

CERTAINTY FACTOR  

(CF)       if PPa >= PPs                    

PPa - PPs/PPa (1-PPs)                   

if PPa < PPs                      

Landform null 13,597,881 0.09 22 0.010 0.10 0.0000016 -0.8954
Depressions or Basins in Alpine System1,023,209 0.01 1 0.00044 0.06 0.0000010 -0.9368
Depressions or Basins 

on Sedimentary 

Lithology

939,951
0.01 0 0.00000 0.00 0.0000000

Dry 6,136 0.00004 2 0.00087 21.07 0.0003259 0.9526
Dry Depressions or 

Basins in Alpine 

System

1,223,009
0.01 13

0.00567
0.69

0.0000106
-0.3128

Dry High Tablelandsin 

Alpine System
232,286 0.00 30 0.01308 8.35 0.0001292 0.8802

Dry Hills or Tablelands 

on Sedimentary 

Lithology

6,791,995
0.05 8

0.00349
0.08

0.0000012
-0.9239

Dry Hills or 

Tablelandsin Alpine 

System

1,161,698
0.01 4

0.00174
0.22

0.0000034
-0.7774

Dry Mountains in 

Alpine System
2,030,136 0.01 222 0.097 7.07 0.0001094 0.8586

Dry Plains in Alpine 

System
867,898 0.01 3 0.001 0.22 0.0000035 -0.7765

Dry Plains on 

Sedimentary Lithology
5,414,018 0.04 10 0.004 0.12 0.0000018 -0.8806

Dry Plains on Shield 20,317 0.00 0 0.000 0.00 0.0000000
Dry Widely Spaced 

Mountains in Alpine 

System

2,006,612
0.01 62

0.027
2.00

0.0000309
0.4994

Dry Widely Spaced Mountains on Sedimentary Lithology33,782 0.00 1 0.000 1.91 0.0000296 0.4774
DryPlains on 

Sedimentary Lithology
1,254,926 0.01 0 0.000 0.00 0.0000000

Hills in Alpine System 17,828 0.00 0 0.000 0.00 0.0000000
Hills or Tablelands on Sedimentary Lithology4,938,424 0.03 1 0.000 0.01 0.0000002 -0.9869
Hills or Tablelandsin 

Alpine System
15,173,709 0.10 119 0.052 0.51 0.0000078 -0.4930

Humid 392,736 0.00 0 0.000 0.00 0.0000000
Humid Depressions or 

Basins in Alpine 

System

6,040,808
0.04 19

0.008
0.20

0.0000031
-0.7967

Humid Hills or 

Tablelands on 

Sedimentary Lithology

3,499,916
0.02 135

0.059
2.49

0.0000386
0.5990

Humid Hills or 

Tablelandsin Alpine 

System

10,420,469
0.07 60

0.026
0.37

0.0000058
-0.6278

Humid Mountains in 

Alpine System
11,592,742 0.08 914 0.398 5.10 0.0000788 0.8038

Humid Mountains on 

Sedimentary Lithology
205,585 0.00 82 0.036 25.79 0.0003989 0.9612

Humid Plains 21 0.00 0 0.000 0.00 0.0000000
Humid Plains in Alpine 

System
2,698,149 0.02 21 0.009 0.50 0.0000078 -0.4968

Humid Plains on 

Sedimentary Lithology
15,280,805 0.10 70 0.031 0.30 0.0000046 -0.7039

Humid Widely Spaced 

Mountains in Alpine 

System

262,228
0.00 7

0.003
1.73

0.0000267
0.4205

in Alpine System 658,119 0.00 0 0.000 0.00 0.0000000
Long Term Snow or 

Icein Alpine System
955,745 0.01 0 0.000 0.00 0.0000000

Mountains in Alpine 

System
20,598,908 0.14 401 0.175 1.26 0.0000195 0.2054

Mountains on Sedimentary Lithology4,520,414 0.03 1 0.000 0.01 0.0000002 -0.9857
on Sedimentary 

Lithology
548,906 0.00 0 0.000 0.00 0.0000000

Plains in Alpine System
5,269,229 0.04 44 0.019 0.54 0.0000084 -0.4602

Plains on Sedimentary 

Lithology
5,700,728

0.04 27
0.012

0.31
0.0000047

-0.6938

class count:

Widely Spaced 

Mountains in Alpine 

System

1,708,549
0.01 15

0.007
0.57

0.0000088
-0.4324

36

Widely Spaced 

Mountains on 

Sedimentary Lithology

121,110
0.001 0

0.000
0.00

0.0000000

LANDFORM SUMS/AVGs 147,208,983 99.3% 2,294 100.00% 2.27 -0.1534
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D.4 Closest “Active Faults” Type, Closest Plate Boundary Type, Fault Density 

 

 
Factor

Factor Class       (xx 

field)  Factor Class Area 

of Earth Land 

Surface (sq km)  Pr

Factor Class  PREDICTOR 

IMPORTANCE (Pi)    

Probability Density         

Class Area/Total Area 

(Cn/H1 or F3)

Frequency          

DF & MS per 

Factor Class

 Probability Density     

DF&MS in Factor 

Class/TOTAL # DF & 

MS                        

FREQUENCY RATIO               

(FR) Fn/Dn         

Conditional Probability  

(PPa)

CERTAINTY FACTOR  

(CF)       if PPa >= PPs                    

PPa - PPs/PPa (1-PPs)                   

if PPa < PPs                      

Closest "Active Faults" Type Linear km

<null> 26,373 2.7% 25 1.1% 0.401 0.0009479 0.9837 -5.20

Anticline 23,829 2.5% 36 1.6% 0.639 0.0015108 0.9898 -5.35

Blind Thrust 42 0.0% 0 0.0% 0.000 0.0000000 -14.50

Dextral 120,425 12.4% 280 12.2% 0.984 0.0023251 0.9934 -3.01

Dextral-Normal 14,924 1.5% 9 0.4% 0.255 0.0006031 0.9744 -6.02

Dextral-Oblique 67 0.0% 0 0.0% 0.000 0.0000000 -13.82

Dextral-Reverse 17,508 1.8% 13 0.6% 0.314 0.0007425 0.9792 -5.79

Dextral_Transform 33,024 3.4% 10 0.4% 0.128 0.0003028 0.9489 -4.88

Normal 120,819 12.4% 579 25.2% 2.028 0.0047923 0.9968 -3.01

Normal-Dextral 1,390 0.1% 3 0.1% 0.913 0.0021576 0.9928 -9.45

Normal-Sinistral 889 0.1% 1 0.0% 0.476 0.0011243 0.9863 -10.09

Normal-Strike-Slip 45 0.0% 0 0.0% 0.000 0.0000000 -14.39

Reverse 198,473 20.4% 1035 45.1% 2.207 0.0052148 0.9970 -2.29

Reverse-Dextral 7,012 0.7% 13 0.6% 0.785 0.0018540 0.9917 -7.11

Reverse-Sinistral 2,422 0.2% 3 0.1% 0.524 0.0012386 0.9875 -8.65

Reverse-Strike-Slip 6,261 0.6% 17 0.7% 1.149 0.0027153 0.9943 -7.28

Sinistral 100,131 10.3% 140 6.1% 0.592 0.0013982 0.9890 -3.28

Sinistral-Normal 11,269 1.2% 7 0.3% 0.263 0.0006212 0.9751 -6.43

Sinistral-Reverse 15,215 1.6% 41 1.8% 1.141 0.0026947 0.9943 -6.00

Sinistral_Transform 38,436 4.0% 26 1.1% 0.286 0.0006764 0.9771 -4.66

Spreading_Ridge 110,108 11.3% 14 0.6% 0.054 0.0001271 0.8784 -3.14

Strike-Slip 11,943 1.2% 10 0.4% 0.354 0.0008373 0.9815 -6.35

Count= Subduction_Thrust 109,460 11.3% 32 1.4% 0.124 0.0002923 0.9471 -3.15

24 Syncline 849 0.1% 0.0% 0.000 0.0000000 -10.16

Active Faults SUMs/AVGs 970,914 100.0% 2294 100.0% 0.57 0.8149

Closest "Plate Boundary" Type Linear km

CCB 23,003 8.8% 521 22.7% 2.57 0.0226488 0.9993 -3.50

CRB 27,471 10.5% 160 7.0% 0.66 0.0058244 0.9974 -3.25

CTF 26,174 10.0% 569 24.8% 2.47 0.0217388 0.9993 -3.32

OCB 17,447 6.7% 17 0.7% 0.11 0.0009744 0.9841 -3.90

OSR 67,335 25.8% 58 2.5% 0.10 0.0008614 0.9821 -1.95

Count= OTF 47,894 18.4% 369 16.1% 0.88 0.0077045 0.9980 -2.44

7 SUB 51,470 19.7% 600 26.2% 1.33 0.0116573 0.9987 -2.34

Plate Boundary SUMs/AVGs 260,795 100.0% 2294 100.0% 1.16 0.9941

FaultDensity km/sq km using 5km cell, 25 km search

0 0.009691 49,706,457 94.86% 1044 45.5% 0.48

0.009691 0.03015 2,003,088 3.82% 492 21.4% 5.61

0.03015 0.05384 491,268 0.94% 300 13.1% 13.95

0.05384 0.087221 157,207 0.30% 263 11.5% 38.21

0.087221 0.274585 39,788 0.08% 195 8.5% 111.94

52,397,808 2294
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Appendix E Maximum Entropy Results 

E.1 Global  

Replicated maxent model for debris_flow “LTE 5 km” 

 

This page summarizes the results of 5-fold cross-validation for debris_flow, created 

Sat Sep 25 11:48:47 CEST 2021 using Maxent version 3.4.4. The individual models 

are here: [0] [1] [2] [3] [4] 
 

 
Analysis of omission/commission 

The following picture shows the test omission rate and predicted area as a function of 

the cumulative threshold, averaged over the replicate runs. The omission rate should 

be close to the predicted omission, because of the definition of the cumulative 

threshold. 

 
 

The next picture is the receiver operating characteristic (ROC) curve for the same 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/debris_flow_0.html
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file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/debris_flow_2.html
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/debris_flow_3.html
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/debris_flow_4.html
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data, again averaged over the replicate runs. Note that the specificity is defined using 

predicted area, rather than true commission (see the paper by Phillips, Anderson and 

Schapire cited on the help page for discussion of what this means). The average test 

AUC for the replicate runs is 0.920, and the standard deviation is 0.022. 

 
 

 
Pictures of the model 

The following two pictures show the point-wise mean and standard deviation of the 5 

output grids. Other available summary grids are min, max and median. 

 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_min.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_max.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_median.png
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Response curves 

 

These curves show how each environmental variable affects the Maxent prediction. 

The curves show how the predicted probability of presence changes as each 

environmental variable is varied, keeping all other environmental variables at their 

average sample value. Click on a response curve to see a larger version. Note that the 

curves can be hard to interpret if you have strongly correlated variables, as the model 

may depend on the correlations in ways that are not evident in the curves. In other 

words, the curves show the marginal effect of changing exactly one variable, whereas 

the model may take advantage of sets of variables changing together. The curves show 

the mean response of the 5 replicate Maxent runs (red) and and the mean +/- one 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_avg.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_stddev.png
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standard deviation (blue, two shades for categorical variables). 

 

  

  

  

  

  

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_aridity.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_claypct.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_debth2br.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_elev.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_faultdens.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_kg.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_lc.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_lf.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_lith.png
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In contrast to the above marginal response curves, each of the following curves 

represents a different model, namely, a Maxent model created using only the 

corresponding variable. These plots reflect the dependence of predicted suitability 

both on the selected variable and on dependencies induced by correlations between 

the selected variable and other variables. They may be easier to interpret if there are 

strong correlations between variables. 

 

  

  

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_slope.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_soildrainage.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_soilthick.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_soiltype.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_aridity_only.png
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file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_debth2br_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_elev_only.png
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Analysis of variable contributions 

 

The following table gives estimates of relative contributions of the environmental 

variables to the Maxent model. To determine the first estimate, in each iteration of the 

training algorithm, the increase in regularized gain is added to the contribution of the 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_faultdens_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_kg_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_lc_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_lf_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_lith_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_precip_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_slope_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_soildrainage_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_soilthick_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/GlobalAnalysis/_Global_DF_TRAIN_LTE5km_TEST1_USED_IN_ALL_GLOBALMODELING/plots/debris_flow_global_soiltype_only.png
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corresponding variable, or subtracted from it if the change to the absolute value of 

lambda is negative. For the second estimate, for each environmental variable in turn, 

the values of that variable on training presence and background data are randomly 

permuted. The model is reevaluated on the permuted data, and the resulting drop in 

training AUC is shown in the table, normalized to percentages. As with the variable 

jackknife, variable contributions should be interpreted with caution when the predictor 

variables are correlated. Values shown are averages over replicate runs. 
 

Variable Percent contribution Permutation importance 

global_slope 26.6 8.4 

global_kg 20.2 21.8 

global_lf 18.3 11.3 

global_soiltype 9.4 10.5 

global_soildrainage 9 1.8 

global_faultdens 5.6 4 

global_lc 4.3 7.9 

global_lith 2.2 2.5 

global_soilthick 1.9 8.6 

global_precip 1.6 18.6 

global_aridity 0.4 1.7 

global_elev 0.3 1 

global_debth2br 0.2 1.6 

global_claypct 0 0.2 

 

 

The following picture shows the results of the jackknife test of variable importance. 

The environmental variable with highest gain when used in isolation is global_lf, 

which therefore appears to have the most useful information by itself. The 

environmental variable that decreases the gain the most when it is omitted is 

global_kg, which therefore appears to have the most information that isn't present in 

the other variables. Values shown are averages over replicate runs. 
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The next picture shows the same jackknife test, using test gain instead of training 

gain. Note that conclusions about which variables are most important can change, now 

that we're looking at test data. 
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Lastly, we have the same jackknife test, using AUC on test data. 
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Command line to repeat this species model: java density.MaxEnt nowarnings 

noprefixes -E "" -E debris_flow responsecurves jackknife outputformat=logistic 

"outputdirectory=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\MaxEntResults\GlobalAnalysis\Global_DF_TRAIN_L

TE5km_TEST1" "samplesfile=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EventData_samples\TRAIN_W 

 

 

 

E.2  Africa  

 

Replicated maxent model for DF_MS 
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This page summarizes the results of 5-fold cross-validation for DF_MS, created Tue 

Jun 01 19:15:31 CEST 2021 using Maxent version 3.4.4. The individual models are 

here: [0] [1] [2] [3] [4] 
 

 

Analysis of omission/commission 

The following picture shows the test omission rate and predicted area as a function 

of the cumulative threshold, averaged over the replicate runs. The omission rate 

should be close to the predicted omission, because of the definition of the 

cumulative threshold. 

 
 

The next picture is the receiver operating characteristic (ROC) curve for the same 

data, again averaged over the replicate runs. Note that the specificity is defined 

using predicted area, rather than true commission (see the paper by Phillips, 

Anderson and Schapire cited on the help page for discussion of what this means). 

The average test AUC for the replicate runs is 0.907, and the standard deviation is 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Africa/DF_MS_0.html
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file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Africa/DF_MS_4.html
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0.067. 

 
 

 

Pictures of the model 

The following two pictures show the point-wise mean and standard deviation of the 

5 output grids. Other available summary grids are min, max and median. 

 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Africa/plots/DF_MS_min.png
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Response curves 

 

These curves show how each environmental variable affects the Maxent prediction. 

The curves show how the predicted probability of presence changes as each 

environmental variable is varied, keeping all other environmental variables at their 

average sample value. Click on a response curve to see a larger version. Note that 

the curves can be hard to interpret if you have strongly correlated variables, as the 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Africa/plots/DF_MS_stddev.png
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model may depend on the correlations in ways that are not evident in the curves. In 

other words, the curves show the marginal effect of changing exactly one variable, 

whereas the model may take advantage of sets of variables changing together. The 

curves show the mean response of the 5 replicate Maxent runs (red) and and the 

mean +/- one standard deviation (blue, two shades for categorical variables). 
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In contrast to the above marginal response curves, each of the following curves 

represents a different model, namely, a Maxent model created using only the 

corresponding variable. These plots reflect the dependence of predicted suitability 

both on the selected variable and on dependencies induced by correlations between 

the selected variable and other variables. They may be easier to interpret if there are 

strong correlations between variables. 
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Analysis of variable contributions 

 

The following table gives estimates of relative contributions of the environmental 

variables to the Maxent model. To determine the first estimate, in each iteration of 

the training algorithm, the increase in regularized gain is added to the contribution 

of the corresponding variable, or subtracted from it if the change to the absolute 

value of lambda is negative. For the second estimate, for each environmental 

variable in turn, the values of that variable on training presence and background data 

are randomly permuted. The model is reevaluated on the permuted data, and the 

resulting drop in training AUC is shown in the table, normalized to percentages. As 

with the variable jackknife, variable contributions should be interpreted with caution 

when the predictor variables are correlated. Values shown are averages over 

replicate runs. 
 

Variable Percent contribution Permutation importance 

africa_kg 19.3 8.3 

africa_soiltype 18.1 18.1 
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africa_faultdensity 14.1 3 

africa_lc 13.2 29.6 

africa_arid 12.9 2 

africa_lf 5.9 11.7 

africa_slope 5.6 3.4 

africa_elev 4.5 4.6 

africa_lith 2.3 5.1 

africa_soilthick 1.5 3.4 

africa_precip 1.4 5.6 

africa_drainage 0.8 1.7 

africa_depth2br 0.3 1.5 

africa_claypct 0.2 2 

 

 

The following picture shows the results of the jackknife test of variable importance. 

The environmental variable with highest gain when used in isolation is 

africa_soiltype, which therefore appears to have the most useful information by 

itself. The environmental variable that decreases the gain the most when it is 

omitted is africa_lc, which therefore appears to have the most information that isn't 

present in the other variables. Values shown are averages over replicate runs. 
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The next picture shows the same jackknife test, using test gain instead of training 

gain. Note that conclusions about which variables are most important can change, 

now that we're looking at test data. 
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Lastly, we have the same jackknife test, using AUC on test data. 
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Command line to repeat this species model: java density.MaxEnt nowarnings 

noprefixes -E "" -E DF_MS responsecurves jackknife outputformat=logistic 

"outputdirectory=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\MaxEntResults\ContinentalAnalysis\Africa" 

"samplesfile=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EventData_samples\Africa_TRAIN.csv" 

"environmentallayers=C:\_PhD\_PhD PROJECT\MaxEntropy_Stats\EnvLayers\Africa" 

randomseed replicates=5 -t africa_drainage -t africa_kg -t africa_lc -t africa_lf -t 

africa_lith -t africa_soiltype 

E.3  Asia 

Replicated maxent model for DF_MS 

 

This page summarizes the results of 5-fold cross-validation for DF_MS, created Sun 
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Jun 13 15:42:17 CEST 2021 using Maxent version 3.4.4. The individual models are 

here: [0] [1] [2] [3] [4] 
 

 

Analysis of omission/commission 

The following picture shows the test omission rate and predicted area as a function 

of the cumulative threshold, averaged over the replicate runs. The omission rate 

should be close to the predicted omission, because of the definition of the 

cumulative threshold. 

 
 

The next picture is the receiver operating characteristic (ROC) curve for the same 

data, again averaged over the replicate runs. Note that the specificity is defined 

using predicted area, rather than true commission (see the paper by Phillips, 

Anderson and Schapire cited on the help page for discussion of what this means). 

The average test AUC for the replicate runs is 0.923, and the standard deviation is 

0.008. 
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Pictures of the model 

The following two pictures show the point-wise mean and standard deviation of the 

5 output grids. Other available summary grids are min, max and median. 
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Response curves 

 

These curves show how each environmental variable affects the Maxent prediction. 

The curves show how the predicted probability of presence changes as each 

environmental variable is varied, keeping all other environmental variables at their 

average sample value. Click on a response curve to see a larger version. Note that 

the curves can be hard to interpret if you have strongly correlated variables, as the 

model may depend on the correlations in ways that are not evident in the curves. In 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_avg.png
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other words, the curves show the marginal effect of changing exactly one variable, 

whereas the model may take advantage of sets of variables changing together. The 

curves show the mean response of the 5 replicate Maxent runs (red) and and the 

mean +/- one standard deviation (blue, two shades for categorical variables). 

 

  

  

  

  

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_asia_arid.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_asia_claypct.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_asia_depth2br.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_asia_drainage.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_asia_elev.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_asia_faultdensity.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_asia_kg.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_asia_lc.png


 

229 
 

  

  

  

 

In contrast to the above marginal response curves, each of the following curves 

represents a different model, namely, a Maxent model created using only the 

corresponding variable. These plots reflect the dependence of predicted suitability 

both on the selected variable and on dependencies induced by correlations between 

the selected variable and other variables. They may be easier to interpret if there are 

strong correlations between variables. 
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Analysis of variable contributions 

 

The following table gives estimates of relative contributions of the environmental 

variables to the Maxent model. To determine the first estimate, in each iteration of 

the training algorithm, the increase in regularized gain is added to the contribution 

of the corresponding variable, or subtracted from it if the change to the absolute 

value of lambda is negative. For the second estimate, for each environmental 

variable in turn, the values of that variable on training presence and background data 

are randomly permuted. The model is reevaluated on the permuted data, and the 

resulting drop in training AUC is shown in the table, normalized to percentages. As 

with the variable jackknife, variable contributions should be interpreted with caution 

when the predictor variables are correlated. Values shown are averages over 

replicate runs. 
 

Variable Percent contribution Permutation importance 

asia_precip 46.6 55 

asia_kg 15.6 19.2 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Asia/plots/DF_MS_asia_precip_only.png
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asia_lc 8.1 5 

asia_faultdensity 8 1 

asia_slope 5.9 0.7 

asia_elev 4.6 8.7 

asia_soiltype 4.6 3.9 

asia_lf 2.7 1.3 

asia_claypct 1.5 0.8 

asia_lith 1.2 1 

asia_depth2br 0.6 2.3 

asia_soilthick 0.4 0.6 

asia_drainage 0.1 0.1 

asia_arid 0.1 0.2 

 

 

The following picture shows the results of the jackknife test of variable importance. 

The environmental variable with highest gain when used in isolation is asia_kg, which 

therefore appears to have the most useful information by itself. The environmental 

variable that decreases the gain the most when it is omitted is asia_lc, which 

therefore appears to have the most information that isn't present in the other 

variables. Values shown are averages over replicate runs. 
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The next picture shows the same jackknife test, using test gain instead of training 

gain. Note that conclusions about which variables are most important can change, 

now that we're looking at test data. 
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Lastly, we have the same jackknife test, using AUC on test data. 
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Command line to repeat this species model: java density.MaxEnt nowarnings 

noprefixes -E "" -E DF_MS responsecurves jackknife outputformat=logistic 

"outputdirectory=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\MaxEntResults\ContinentalAnalysis\Asia" 

"samplesfile=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EventData_samples\Asia_TRAIN.csv" 

"environmentallayers=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EnvLayers\Asia\Asia_Redo" randomseed 

noaskoverwrite replicates=5 -t asia_drainage -t asia_kg -t asia_lc -t asia_lf -t asia_lith 

-t asia_soiltype 

E.4 Australia 

Replicated maxent model for DF_MS 
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This page summarizes the results of 5-fold cross-validation for DF_MS, created Mon 

Jun 14 17:33:38 CEST 2021 using Maxent version 3.4.4. The individual models are 

here: [0] [1] [2] [3] [4] 
 

 

Analysis of omission/commission 

The following picture shows the test omission rate and predicted area as a function 

of the cumulative threshold, averaged over the replicate runs. The omission rate 

should be close to the predicted omission, because of the definition of the 

cumulative threshold. 

 
 

The next picture is the receiver operating characteristic (ROC) curve for the same 

data, again averaged over the replicate runs. Note that the specificity is defined 

using predicted area, rather than true commission (see the paper by Phillips, 

Anderson and Schapire cited on the help page for discussion of what this means). 

The average test AUC for the replicate runs is 0.908, and the standard deviation is 
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file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Australia/DF_MS_4.html
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0.101. 

 
 

 

Pictures of the model 

The following two pictures show the point-wise mean and standard deviation of the 

5 output grids. Other available summary grids are min, max and median. 
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Response curves 

 

These curves show how each environmental variable affects the Maxent prediction. 

The curves show how the predicted probability of presence changes as each 

environmental variable is varied, keeping all other environmental variables at their 

average sample value. Click on a response curve to see a larger version. Note that 

the curves can be hard to interpret if you have strongly correlated variables, as the 

model may depend on the correlations in ways that are not evident in the curves. In 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Australia/plots/DF_MS_stddev.png
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other words, the curves show the marginal effect of changing exactly one variable, 

whereas the model may take advantage of sets of variables changing together. The 

curves show the mean response of the 5 replicate Maxent runs (red) and and the 

mean +/- one standard deviation (blue, two shades for categorical variables). 
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In contrast to the above marginal response curves, each of the following curves 

represents a different model, namely, a Maxent model created using only the 

corresponding variable. These plots reflect the dependence of predicted suitability 

both on the selected variable and on dependencies induced by correlations between 

the selected variable and other variables. They may be easier to interpret if there are 

strong correlations between variables. 
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Analysis of variable contributions 

 

The following table gives estimates of relative contributions of the environmental 

variables to the Maxent model. To determine the first estimate, in each iteration of 

the training algorithm, the increase in regularized gain is added to the contribution 

of the corresponding variable, or subtracted from it if the change to the absolute 

value of lambda is negative. For the second estimate, for each environmental 

variable in turn, the values of that variable on training presence and background data 

are randomly permuted. The model is reevaluated on the permuted data, and the 

resulting drop in training AUC is shown in the table, normalized to percentages. As 

with the variable jackknife, variable contributions should be interpreted with caution 

when the predictor variables are correlated. Values shown are averages over 

replicate runs. 
 

Variable Percent contribution Permutation importance 

australia_lc 46 31.8 

australia_kg 16.9 6.8 
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australia_soiltype 13.1 21.8 

australia_lf 12.7 7.9 

australia_lith 7.5 4.4 

australia_soilthick 2.5 18 

australia_drainage 0.8 4.9 

australia_depth2br 0.2 3.6 

australia_elevb 0.1 0.8 

australia_arid 0.1 0 

australia_faultdensity 0 0 

australia_claypct 0 0 

australia_slope 0 0 

australia_precip 0 0 

 

 

The following picture shows the results of the jackknife test of variable importance. 

The environmental variable with highest gain when used in isolation is australia_lc, 

which therefore appears to have the most useful information by itself. The 

environmental variable that decreases the gain the most when it is omitted is 

australia_lc, which therefore appears to have the most information that isn't present 

in the other variables. Values shown are averages over replicate runs. 

 



 

245 
 

 
 

The next picture shows the same jackknife test, using test gain instead of training 

gain. Note that conclusions about which variables are most important can change, 

now that we're looking at test data. 
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Lastly, we have the same jackknife test, using AUC on test data. 
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Command line to repeat this species model: java density.MaxEnt nowarnings 

noprefixes -E "" -E DF_MS responsecurves jackknife outputformat=logistic 

"outputdirectory=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\MaxEntResults\ContinentalAnalysis\Australia" 

"samplesfile=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EventData_samples\Australia_TRAIN.csv" 

"environmentallayers=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EnvLayers\Australia" randomseed noaskoverwrite 

replicates=5 -t australia_drainage -t australia_kg -t australia_lc -t australia_lf -t 

australia_lith -t australia_soiltype 
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E.5 Europe 

 

Replicated maxent model for DebrisFlow 

 

This page summarizes the results of 5-fold cross-validation for DebrisFlow, created 

Mon Aug 02 14:57:26 PDT 2021 using Maxent version 3.4.4. The individual models 

are here: [0] [1] [2] [3] [4] 
 

 

Analysis of omission/commission 

The following picture shows the test omission rate and predicted area as a function 

of the cumulative threshold, averaged over the replicate runs. The omission rate 

should be close to the predicted omission, because of the definition of the 

cumulative threshold. 

 
 

The next picture is the receiver operating characteristic (ROC) curve for the same 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Europe/NEWEST_RESULTS_TrainWithTestWithSlope/DebrisFlow_0.html
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data, again averaged over the replicate runs. Note that the specificity is defined 

using predicted area, rather than true commission (see the paper by Phillips, 

Anderson and Schapire cited on the help page for discussion of what this means). 

The average test AUC for the replicate runs is 0.795, and the standard deviation is 

0.049. 

 
 

 

Pictures of the model 

The following two pictures show the point-wise mean and standard deviation of the 

5 output grids. Other available summary grids are min, max and median. 
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Response curves 

 

These curves show how each environmental variable affects the Maxent prediction. 

The curves show how the predicted probability of presence changes as each 

environmental variable is varied, keeping all other environmental variables at their 

average sample value. Click on a response curve to see a larger version. Note that 

the curves can be hard to interpret if you have strongly correlated variables, as the 

model may depend on the correlations in ways that are not evident in the curves. In 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Europe/NEWEST_RESULTS_TrainWithTestWithSlope/plots/DebrisFlow_avg.png
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other words, the curves show the marginal effect of changing exactly one variable, 

whereas the model may take advantage of sets of variables changing together. The 

curves show the mean response of the 5 replicate Maxent runs (red) and and the 

mean +/- one standard deviation (blue, two shades for categorical variables). 
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In contrast to the above marginal response curves, each of the following curves 

represents a different model, namely, a Maxent model created using only the 

corresponding variable. These plots reflect the dependence of predicted suitability 

both on the selected variable and on dependencies induced by correlations between 

the selected variable and other variables. They may be easier to interpret if there are 

strong correlations between variables. 
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Analysis of variable contributions 

 

The following table gives estimates of relative contributions of the environmental 

variables to the Maxent model. To determine the first estimate, in each iteration of 

the training algorithm, the increase in regularized gain is added to the contribution 

of the corresponding variable, or subtracted from it if the change to the absolute 

value of lambda is negative. For the second estimate, for each environmental 

variable in turn, the values of that variable on training presence and background data 

are randomly permuted. The model is reevaluated on the permuted data, and the 

resulting drop in training AUC is shown in the table, normalized to percentages. As 

with the variable jackknife, variable contributions should be interpreted with caution 

when the predictor variables are correlated. Values shown are averages over 

replicate runs. 
 

Variable Percent contribution Permutation importance 

maxent_euro_depth2br 64.4 93.5 

maxent_euro_precip 11.1 1.7 
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maxent_euro_lc 5 1 

maxent_euro_fltdensity 4.7 0.1 

maxent_euro_slope2 4.6 0.5 

maxent_euro_soil 4.5 0.7 

maxent_euro_kg 2 0.8 

maxent_euro_lith 1.8 0.7 

maxent_euro_soilthick 1 0.6 

maxent_euro_lf_2 0.5 0.3 

maxent_euro_drainage 0.1 0 

maxent_euro_elev 0.1 0.1 

maxent_euro_aridity 0 0 

maxent_euro_pctclay 0 0 

 

 

The following picture shows the results of the jackknife test of variable importance. 

The environmental variable with highest gain when used in isolation is 

maxent_euro_depth2br, which therefore appears to have the most useful 

information by itself. The environmental variable that decreases the gain the most 

when it is omitted is maxent_euro_depth2br, which therefore appears to have the 

most information that isn't present in the other variables. Values shown are averages 

over replicate runs. 
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The next picture shows the same jackknife test, using test gain instead of training 

gain. Note that conclusions about which variables are most important can change, 

now that we're looking at test data. 
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Lastly, we have the same jackknife test, using AUC on test data. 
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Command line to repeat this species model: java density.MaxEnt nowarnings 

noprefixes -E "" -E DebrisFlow responsecurves jackknife outputformat=logistic 

"outputdirectory=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\MaxEntResults\ContinentalAnalysis\Europe\NEWEST_R

ESULTS_TrainWithTestWithSlope" "samplesfile=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EventData_samples\TRAIN_Europe_For_MaxEnt2.csv" 

"environmentallayers=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EnvLayers\Europe" randomseed 

"testsamplesfile=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EventData_samples\Test1_Europe.csv" replicates=5 -t 

maxent_euro_depth2br -t maxent_euro_drainage -t maxent_euro_kg -t 

maxent_euro_lc -t maxent_euro_lf_2 -t maxent_euro_lith -t maxent_euro_soil 
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E.6 North America 

Replicated maxent model for DF_MS 

 

This page summarizes the results of 5-fold cross-validation for DF_MS, created Fri 

Jun 11 13:42:08 CEST 2021 using Maxent version 3.4.4. The individual models are 

here: [0] [1] [2] [3] [4] 
 

 

Analysis of omission/commission 

The following picture shows the test omission rate and predicted area as a function 

of the cumulative threshold, averaged over the replicate runs. The omission rate 

should be close to the predicted omission, because of the definition of the 

cumulative threshold. 

 
 

The next picture is the receiver operating characteristic (ROC) curve for the same 

data, again averaged over the replicate runs. Note that the specificity is defined 
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using predicted area, rather than true commission (see the paper by Phillips, 

Anderson and Schapire cited on the help page for discussion of what this means). 

The average test AUC for the replicate runs is 0.901, and the standard deviation is 

0.005. 

 
 

 

Pictures of the model 

The following two pictures show the point-wise mean and standard deviation of the 

5 output grids. Other available summary grids are min, max and median. 
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Response curves 

 

These curves show how each environmental variable affects the Maxent prediction. 

The curves show how the predicted probability of presence changes as each 

environmental variable is varied, keeping all other environmental variables at their 

average sample value. Click on a response curve to see a larger version. Note that 

the curves can be hard to interpret if you have strongly correlated variables, as the 

model may depend on the correlations in ways that are not evident in the curves. In 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/NoAmerica2/plots/DF_MS_avg.png
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other words, the curves show the marginal effect of changing exactly one variable, 

whereas the model may take advantage of sets of variables changing together. The 

curves show the mean response of the 5 replicate Maxent runs (red) and and the 

mean +/- one standard deviation (blue, two shades for categorical variables). 
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In contrast to the above marginal response curves, each of the following curves 

represents a different model, namely, a Maxent model created using only the 

corresponding variable. These plots reflect the dependence of predicted suitability 

both on the selected variable and on dependencies induced by correlations between 

the selected variable and other variables. They may be easier to interpret if there are 

strong correlations between variables. 
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Analysis of variable contributions 

 

The following table gives estimates of relative contributions of the environmental 

variables to the Maxent model. To determine the first estimate, in each iteration of 

the training algorithm, the increase in regularized gain is added to the contribution 

of the corresponding variable, or subtracted from it if the change to the absolute 

value of lambda is negative. For the second estimate, for each environmental 

variable in turn, the values of that variable on training presence and background data 

are randomly permuted. The model is reevaluated on the permuted data, and the 

resulting drop in training AUC is shown in the table, normalized to percentages. As 

with the variable jackknife, variable contributions should be interpreted with caution 

when the predictor variables are correlated. Values shown are averages over 

replicate runs. 
 

Variable Percent contribution Permutation importance 

noam_kg 31.7 30.3 

noam_faultdensity 14.3 4 
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noam_lf 10 23.9 

noam_soiltype 9.2 10.5 

noam_slopek 7.3 2 

noam_precip 6.7 15.9 

noam_lc 5.9 4 

noam_drainage 5.7 1.8 

noam_soilthick 5.2 1.3 

noam_depth2br 1.7 2.1 

noam_lith 1 0.9 

noam_elev 0.8 1.4 

noam_claypct 0.4 0.3 

noam_arid 0.2 1.7 

 

 

The following picture shows the results of the jackknife test of variable importance. 

The environmental variable with highest gain when used in isolation is noam_kg, 

which therefore appears to have the most useful information by itself. The 

environmental variable that decreases the gain the most when it is omitted is 

noam_kg, which therefore appears to have the most information that isn't present in 

the other variables. Values shown are averages over replicate runs. 
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The next picture shows the same jackknife test, using test gain instead of training 

gain. Note that conclusions about which variables are most important can change, 

now that we're looking at test data. 
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Lastly, we have the same jackknife test, using AUC on test data. 
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Command line to repeat this species model: java density.MaxEnt nowarnings 

noprefixes -E "" -E DF_MS responsecurves jackknife outputformat=logistic 

"outputdirectory=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\MaxEntResults\ContinentalAnalysis\NoAmerica2" 

"samplesfile=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EventData_samples\No_America_TRAIN.csv" 

"environmentallayers=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EnvLayers\No_America" randomseed replicates=5 -N 

noam_slopeb -N noam_slopec -N noam_sloped -N noam_slopee -N noam_slopef -N 

noam_slopeg -N noam_slopei -t noam_drainage -t noam_kg -t noam_lc -t noam_lf -t 

noam_lith -t noam_soiltype 
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E.7 Oceania 

 

Replicated maxent model for DF_MS 

 

This page summarizes the results of 4-fold cross-validation for DF_MS, created Wed 

Jun 02 13:55:18 CEST 2021 using Maxent version 3.4.4. The individual models are 

here: [0] [1] [2] [3] 
 

 

Analysis of omission/commission 

The following picture shows the test omission rate and predicted area as a function 

of the cumulative threshold, averaged over the replicate runs. The omission rate 

should be close to the predicted omission, because of the definition of the 

cumulative threshold. 

 
 

The next picture is the receiver operating characteristic (ROC) curve for the same 
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data, again averaged over the replicate runs. Note that the specificity is defined 

using predicted area, rather than true commission (see the paper by Phillips, 

Anderson and Schapire cited on the help page for discussion of what this means). 

The average test AUC for the replicate runs is 0.745, and the standard deviation is 

0.037. 

 
 

 

Pictures of the model 

The following two pictures show the point-wise mean and standard deviation of the 

4 output grids. Other available summary grids are min, max and median. 
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Response curves 

 

These curves show how each environmental variable affects the Maxent prediction. 

The curves show how the predicted probability of presence changes as each 

environmental variable is varied, keeping all other environmental variables at their 

average sample value. Click on a response curve to see a larger version. Note that 

the curves can be hard to interpret if you have strongly correlated variables, as the 

model may depend on the correlations in ways that are not evident in the curves. In 

other words, the curves show the marginal effect of changing exactly one variable, 

whereas the model may take advantage of sets of variables changing together. The 

curves show the mean response of the 4 replicate Maxent runs (red) and and the 

mean +/- one standard deviation (blue, two shades for categorical variables). 
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In contrast to the above marginal response curves, each of the following curves 

represents a different model, namely, a Maxent model created using only the 

corresponding variable. These plots reflect the dependence of predicted suitability 
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both on the selected variable and on dependencies induced by correlations between 

the selected variable and other variables. They may be easier to interpret if there are 

strong correlations between variables. 
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Analysis of variable contributions 

 

The following table gives estimates of relative contributions of the environmental 

variables to the Maxent model. To determine the first estimate, in each iteration of 

the training algorithm, the increase in regularized gain is added to the contribution 

of the corresponding variable, or subtracted from it if the change to the absolute 

value of lambda is negative. For the second estimate, for each environmental 

variable in turn, the values of that variable on training presence and background data 

are randomly permuted. The model is reevaluated on the permuted data, and the 

resulting drop in training AUC is shown in the table, normalized to percentages. As 

with the variable jackknife, variable contributions should be interpreted with caution 

when the predictor variables are correlated. Values shown are averages over 

replicate runs. 
 

Variable Percent contribution Permutation importance 

oceania_faultdensity 59.9 77.1 

oceania_lith2 16.8 2.1 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Oceania/plots/DF_MS_oceania_precip_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Oceania/plots/DF_MS_oceania_slope_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Oceania/plots/DF_MS_oceania_soilthick_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/Oceania/plots/DF_MS_oceania_soiltype_only.png


 

276 
 

oceania_soiltype 8.1 3.9 

oceania_elev 5.1 6.1 

oceania_lc 4.2 1.8 

oceania_slope 2.9 8.6 

oceania_kg 1.3 0 

oceania_soilthick 1.2 0.2 

oceania_arid 0.3 0 

oceania_depth2br 0.1 0 

oceania_claypct 0.1 0.1 

oceania_lf 0 0 

oceania_drainage 0 0 

oceania_precip 0 0 

 

 

The following picture shows the results of the jackknife test of variable importance. 

The environmental variable with highest gain when used in isolation is 

oceania_faultdensity, which therefore appears to have the most useful information 

by itself. The environmental variable that decreases the gain the most when it is 

omitted is oceania_faultdensity, which therefore appears to have the most 

information that isn't present in the other variables. Values shown are averages over 

replicate runs. 
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The next picture shows the same jackknife test, using test gain instead of training 

gain. Note that conclusions about which variables are most important can change, 

now that we're looking at test data. 
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Lastly, we have the same jackknife test, using AUC on test data. 
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Command line to repeat this species model: java density.MaxEnt nowarnings 

noprefixes -E "" -E DF_MS responsecurves jackknife outputformat=logistic 

"outputdirectory=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\MaxEntResults\ContinentalAnalysis\Oceania" 

"samplesfile=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EventData_samples\Oceania_TRAIN.csv" 

"environmentallayers=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EnvLayers\Oceania" randomseed replicates=5 

writeplotdata -t oceania_drainage -t oceania_kg -t oceania_lc -t oceania_lf -t 

oceania_lith2 -t oceania_soiltype 
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E.8 South America 

 

Replicated maxent model for DF_MS_Event 

 

This page summarizes the results of 5-fold cross-validation for DF_MS_Event, created 

Sat Jun 12 12:44:39 CEST 2021 using Maxent version 3.4.4. The individual models are 

here: [0] [1] [2] [3] [4] 
 

 

Analysis of omission/commission 

The following picture shows the test omission rate and predicted area as a function 

of the cumulative threshold, averaged over the replicate runs. The omission rate 

should be close to the predicted omission, because of the definition of the 

cumulative threshold. 

 
 

The next picture is the receiver operating characteristic (ROC) curve for the same 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/DF_MS_Event_0.html
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/DF_MS_Event_1.html
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/DF_MS_Event_2.html
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/DF_MS_Event_3.html
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/DF_MS_Event_4.html
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data, again averaged over the replicate runs. Note that the specificity is defined 

using predicted area, rather than true commission (see the paper by Phillips, 

Anderson and Schapire cited on the help page for discussion of what this means). 

The average test AUC for the replicate runs is 0.878, and the standard deviation is 

0.021. 

 
 

 

Pictures of the model 

The following two pictures show the point-wise mean and standard deviation of the 

5 output grids. Other available summary grids are min, max and median. 

 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_min.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_max.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_median.png
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file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_avg.png
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Response curves 

 

These curves show how each environmental variable affects the Maxent prediction. 

The curves show how the predicted probability of presence changes as each 

environmental variable is varied, keeping all other environmental variables at their 

average sample value. Click on a response curve to see a larger version. Note that 

the curves can be hard to interpret if you have strongly correlated variables, as the 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_stddev.png
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model may depend on the correlations in ways that are not evident in the curves. In 

other words, the curves show the marginal effect of changing exactly one variable, 

whereas the model may take advantage of sets of variables changing together. The 

curves show the mean response of the 5 replicate Maxent runs (red) and and the 

mean +/- one standard deviation (blue, two shades for categorical variables). 

 

  

  

  

  

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_claypct.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_elev.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_kg.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_lc.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_lith.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_arid.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_depth2br.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_drainage.png
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In contrast to the above marginal response curves, each of the following curves 

represents a different model, namely, a Maxent model created using only the 

corresponding variable. These plots reflect the dependence of predicted suitability 

both on the selected variable and on dependencies induced by correlations between 

the selected variable and other variables. They may be easier to interpret if there are 

strong correlations between variables. 

 

  

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_fltdens.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_lf.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_precip.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_slope2.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_soil.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_soilthick.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_claypct_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_elev_only.png
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file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_kg_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_lc_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_so_am_lith_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_arid_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_depth2br_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_drainage_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_fltdens_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_lf_only.png
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Analysis of variable contributions 

 

The following table gives estimates of relative contributions of the environmental 

variables to the Maxent model. To determine the first estimate, in each iteration of 

the training algorithm, the increase in regularized gain is added to the contribution 

of the corresponding variable, or subtracted from it if the change to the absolute 

value of lambda is negative. For the second estimate, for each environmental 

variable in turn, the values of that variable on training presence and background data 

are randomly permuted. The model is reevaluated on the permuted data, and the 

resulting drop in training AUC is shown in the table, normalized to percentages. As 

with the variable jackknife, variable contributions should be interpreted with caution 

when the predictor variables are correlated. Values shown are averages over 

replicate runs. 
 

Variable Percent contribution Permutation importance 

soam_fltdens 25.5 8.3 

soam_lf 19.4 9.7 

file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_precip_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_slope2_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_soil_only.png
file:///C:/_PhD/_PhD%20PROJECT/MaxEntropy_Stats/MaxEntResults/ContinentalAnalysis/SoAmerica/plots/DF_MS_Event_soam_soilthick_only.png
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so_am_lc 11.9 5.3 

soam_slope2 11.3 4.5 

so_am_elev 7.9 16.6 

so_am_kg 6.4 7.4 

soam_soilthick 4.8 17.6 

soam_soil 4.5 7.6 

so_am_lith 4.2 4.1 

soam_depth2br 1.4 7.8 

soam_precip 1.4 6.8 

so_am_claypct 0.9 2.5 

soam_arid 0.3 1.2 

soam_drainage 0.2 0.6 

 

 

The following picture shows the results of the jackknife test of variable importance. 

The environmental variable with highest gain when used in isolation is soam_lf, 

which therefore appears to have the most useful information by itself. The 

environmental variable that decreases the gain the most when it is omitted is 

so_am_elev, which therefore appears to have the most information that isn't 

present in the other variables. Values shown are averages over replicate runs. 
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The next picture shows the same jackknife test, using test gain instead of training 

gain. Note that conclusions about which variables are most important can change, 

now that we're looking at test data. 
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Lastly, we have the same jackknife test, using AUC on test data. 
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Command line to repeat this species model: java density.MaxEnt nowarnings 

noprefixes -E "" -E DF_MS_Event responsecurves jackknife outputformat=logistic 

"outputdirectory=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\MaxEntResults\ContinentalAnalysis\SoAmerica" 

"samplesfile=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EventData_samples\So_America_TRAIN.csv" 

"environmentallayers=C:\_PhD\_PhD 

PROJECT\MaxEntropy_Stats\EnvLayers\So_America" randomseed noaskoverwrite 

replicates=5 -t so_am_kg -t so_am_lc -t so_am_lith -t soam_drainage -t soam_lf -t 

soam_soil 
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APPENDIX F Susceptibility Analyses  

F.1 Comparison of global susceptibility models with verification data (TEST1)  

 

 

 

FREQUENCY RATIO PROBABILITY DENSITY MAXIMUM ENTROPY

# Factors 

Present

#TEST1 

Events
% TEST1 of Total TRAIN TRAIN %

# Factors 

Present

#TEST1 

Events

% TEST1 

of Total
TRAIN TRAIN %

MaxEnt 5 Equal Interval 

Susc Classes
#TEST1 Events

% TEST1 of 

Total
TRAIN TRAIN %

Low 0 3013 52.9% 1344 58.6% 0 4024 70.7% 1411 61.5% 0 - Very Low 1638 28.8% 512 22.3%

Low 1 1353 23.8% 646 28.2% 1 62 1.1% 7 0.3% 1 - Very  Low 42 0.7% 94 4.1%

Medium 2 791 13.9% 169 7.4% 2 26 0.5% 33 1.4% 2 - Low 821 14.4% 257 11.2%

Medium 3 479 8.4% 103 4.5% 3 388 6.8% 149 6.5% 3 - Medium 1581 27.8% 448 19.5%

Medium 4 59 1.0% 32 1.4% 4 217 3.8% 218 9.5% 4 - High 1413 24.8% 710 31.0%

High 5 0 5 39 0.7% 283 12.3% 5 - Very High 200 3.5% 273 11.9%

High 6 0 6 234 4.1% 133 5.8% N/A 0 0

High 7 0 7 273 4.8% 37 1.6% N/A 0 0

Very High 8 0 8 96 1.7% 10 0.4% N/A 0 0

Very High 9 0 9 336 5.9% 13 0.6% N/A 0 0

Very High 10 0 10 0 0 N/A 0 0

5695 2294 5695 2294 5695 2294

SUMMARY No TEST1 events found in high or very high susceptibility Only 4.5% of TEST1 events found in high or v ery high susceptibility 3194 28.3% of TEST1 in high or very high susceptibility

Medium 23.3% 13.3% 6.8% in medium 11.1% 27.8% in medium

Med to V.High 23.3% TRAIN: 13.3% 11.3% medium to very high28.3% TRAIN: 38.2% 56% of TEST1  medium to very highTRAIN: 62.4%

All Low 76.7% 71.7% 43.9%

All Medium 23.3% 11.1% 27.8%

All High 0 9.6% 24.8%

All Very High 0 7.6% 3.5%
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F.2 MaxEnt global vs continental susceptibility results with Equal Interval 

Classification 

            

 

Max Ent Model, Equal Interval susceptbility classfication

EQUAL INTERVAL CLASSIFICATION

Africa Global Model Africa Continental Model

Class # Events % Events # Pixels % Pixels Prob Density # Events % Events # Pixels % Pixels Prob Density

Very Low 3 18.8% 291,767 89.2% 0.2 4 25.0% 319,542 97.3% 0.3

Low 2 12.5% 26,438 8.1% 1.5 2 12.5% 5,998 1.8% 6.8

Medium 4 25.0% 6,857 2.1% 11.9 3 18.8% 1,564 0.5% 39.4

High 7 43.8% 1,947 0.6% 73.5 0 0.0% 770 0.2% 0.0

Very High 0 0.0% 92 0.0% 0.0 7 43.8% 569 0.2% 252.5

16 327,101 16 328,443

Medium to Very High =

11 68.8% 10 62.5%

EQUAL INTERVAL CLASSIFICATION

Asia Global Model Asia Continental Model

Very Low 17 3.1% 559,660 79.9% 0.04 13 2.3% 607,695 85.5% 0.03

Low 61 11.0% 80,998 11.6% 0.95 399 72.0% 59,733 8.4% 8.57

Medium 341 61.6% 42,969 6.1% 10.03 130 23.5% 29,827 4.2% 5.59

High 133 24.0% 15,395 2.2% 10.92 8 1.4% 11,629 1.6% 0.88

Very High 2 0.4% 1,185 0.2% 2.13 4 0.7% 1,528 0.2% 3.36

554 700,207 554 710,412

Medium to Very High =

476 85.9% 142 25.6%

EQUAL INTERVAL CLASSIFICATION

Oceania Global Model Oceania Continental Model

Class # Events % Events # Pixels % Pixels Prob Density # Events % Events # Pixels % Pixels Prob Density

Very Low 1 20.0% 485 12.1% 1.6 1 20.0% 3118 75.7% 0.3

Low 1 20.0% 1433 35.9% 0.6 1 20.0% 500 12.1% 1.6

Medium 1 20.0% 1249 31.3% 0.6 1 20.0% 297 7.2% 2.8

High 2 40.0% 754 18.9% 2.1 2 40.0% 173 4.2% 9.5

Very High 0 0.0% 73 1.8% 0.0 0 0.0% 31 0.8% 0.0

5 3,994 5 4,119

Medium to Very High =

3 60.0% 3 60.0%

EQUAL INTERVAL CLASSIFICATION

Europe Global Model Europe Continental Model

Class # Events % Events # Pixels % Pixels Prob Density # Events % Events # Pixels % Pixels Prob Density

Very Low 8 0.3% 133150 74.0% 0.0 917 33.4% 1,300,672 84.7% 0.4

Low 466 17.0% 31428 17.5% 1.0 632 23.0% 131,231 8.5% 2.7

Medium 1282 46.7% 12468 6.9% 6.7 559 20.4% 66,283 4.3% 4.7

High 761 27.7% 2786 1.5% 17.9 393 14.3% 30,444 2.0% 7.2

Very High 226 8.2% 220 0.1% 67.4 242 8.8% 7,743 0.5% 17.5

2743 180,052 2743 1,536,373

Medium to Very High =

2269 82.7% 1194 43.5%

EQUAL INTERVAL CLASSIFICATION

No America Global Model No America Continental Model

Class # Events % Events # Pixels % Pixels Prob Density # Events % Events # Pixels % Pixels Prob Density

Very Low 4 0.2% 393,707 73.7% 0.0 12 0.5% 447,486 83.7% 0.0

Low 14 0.6% 75,182 14.1% 0.0 18 0.8% 55,502 10.4% 0.1

Medium 30 1.3% 39,363 7.4% 0.2 140 5.9% 19,037 3.6% 1.7

High 1510 63.7% 21,371 4.0% 15.9 1532 64.6% 11,056 2.1% 31.3

Very High 812 34.3% 4,871 0.9% 37.6 668 28.2% 1,500 0.3% 100.5

2370 534,494 2370 534,581

Medium to Very High =

2352 99.2% 2340 98.7%

EQUAL INTERVAL CLASSIFICATION

So America Global Model So America Continental Model

Class # Events % Events # Pixels % Pixels Prob Density # Events % Events # Pixels % Pixels Prob Density

Very Low 1 16.7% 150,648 71.7% 0.2 6 100.0% 211665 99.5% 1.0

Low 1 16.7% 32,557 15.5% 1.1 0 0.0% 573 0.3% 0.0

Medium 3 50.0% 15,809 7.5% 6.6 0 0.0% 193 0.1% 0.0

High 1 16.7% 9,670 4.6% 3.6 0 0.0% 235 0.1% 0.0

Very High 0 0.0% 1,325 0.6% 0.0 0 0.0% 69 0.0% 0.0

6 210,009 6 212,735

Medium to Very High =

4 66.7% 0 0.0%
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F.3 MaxEnt global vs continental susceptibility results with Jenks Natural Breaks 

Classification. Detailed and summarized 

             

Max Ent Model, Jenks Natural Breaks susceptbility classfication

JENKS CLASSIFICATION

Africa Global Model Africa Continental Model

Class # Events % Events # Pixels % Pixels Prob Density# Events % Events # Pixels % Pixels Prob Density

Very Low 0 0.0% 173,334 53.0% 0.0 1 6.3% 274,279 83.5% 0.07

Low 1 6.3% 88,871 27.2% 0.2 0 0.0% 38,382 11.7% 0.00

Medium 1 6.3% 43,785 13.4% 0.5 5 31.3% 10,992 3.3% 9.34

High 3 18.8% 15,332 4.7% 4.0 3 18.8% 3,396 1.0% 18.13

Very High 11 68.8% 5,779 1.8% 38.9 7 43.8% 1,402 0.4% 102.49

16 327,101 16 328,451

Medium to Very High =

15 93.8% 15 93.8%

JENKS CLASSIFICATION

Asia Global Model Asia Continental Model

Very Low 3 0.5% 416,749 59.5% 0.0 1 0.2% 522,945 73.6% 0.002

Low 17 3.1% 137,891 19.7% 0.2 11 2.0% 83,070 11.7% 0.170

Medium 39 7.0% 71,968 10.3% 0.7 343 61.9% 51,373 7.2% 8.562

High 180 32.5% 46,681 6.7% 4.9 185 33.4% 34,813 4.9% 6.814

Very High 315 56.9% 26,918 3.8% 14.8 14 2.5% 18,211 2.6% 0.986

554 700,207 554 710,412

Medium to Very High =

534 96.4% 542 97.8%

JENKS CLASSIFICATION

Oceania Global Model Oceania Continental Model

Class # Events % Events # Pixels % Pixels Prob Density# Events % Events # Pixels % Pixels Prob Density

Very Low 1 20.0% 737 18.5% 1.1 1 20.0% 2751 66.8% 0.30

Low 1 20.0% 943 23.6% 0.8 0 0.0% 495 12.0% 0.00

Medium 2 40.0% 914 22.9% 1.7 1 20.0% 391 9.5% 2.11

High 0 0.0% 884 22.1% 0.0 1 20.0% 293 7.1% 2.81

Very High 1 20.0% 516 12.9% 1.5 2 40.0% 189 4.6% 8.72

5 3,994 5 4,119

Medium to Very High =

1 60.0% 3 80.0%

JENKS CLASSIFICATION

Europe Global Model Europe Continental Model

Class # Events % Events # Pixels % Pixels Prob Density# Events % Events # Pixels % Pixels Prob Density

Very Low 1 0.0% 110654 53.1% 0.0 486 17.7% 1,129,009 73.5% 0.24

Low 13 0.5% 46712 22.4% 0.0 549 20.0% 182,209 11.9% 1.69

Medium 237 8.6% 27278 13.1% 0.7 563 20.5% 115,145 7.5% 2.74

High 1212 44.2% 16867 8.1% 5.5 612 22.3% 72,629 4.7% 4.72

Very High 1280 46.7% 6809 3.3% 14.3 533 19.4% 37,381 2.4% 7.99

2743 208,320 2743 1,536,373

Medium to Very High =

2492 99.5% 1145 62.3%

JENKS CLASSIFICATION

No America Global Model No America Continental Model

Class # Events % Events # Pixels % Pixels Prob Density# Events % Events # Pixels % Pixels Prob Density

Very Low 1 0.0% 304,459 57.0% 0.0 5 0.2% 137647 148.3% 0.00

Low 6 0.3% 110,044 20.6% 0.0 7 0.3% 37812 53.6% 0.01

Medium 13 0.5% 57,897 10.8% 0.1 13 0.5% 15560 28.2% 0.02

High 35 1.5% 38,953 7.3% 0.2 23 1.0% 8675 19.0% 0.05

Very High 2315 97.7% 23,141 4.3% 22.6 2322 98.0% 5587 11.3% 8.69

2370 534,494 2370 205,281

Medium to Very High =

2363 99.7% 2358 99.5%

JENKS CLASSIFICATION

So America Global Model So America Continental Model

Class # Events % Events # Pixels % Pixels Prob Density# Events % Events # Pixels % Pixels Prob Density

Very Low 0 0.0% 95,905 45.4% 0.0 1 16.7% 177825 83.6% 0.20

Low 1 16.7% 59,705 28.3% 0.6 1 16.7% 28000 13.2% 1.27

Medium 1 16.7% 26,229 12.4% 1.3 4 66.7% 5906 2.8% 24.01

High 0 0.0% 16,771 7.9% 0.0 0 0.0% 619 0.3% 0.00

Very High 4 66.7% 12,613 6.0% 11.2 0 0.0% 385 0.2% 0.00

6 211,223 6 212,735

Medium to Very High =

5 83.3% 4 66.7%
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SUMMARIZED DATA
Max Ent Model, Equal Interval susceptbility classfication Max Ent Model, Jenks Natural Breaks   classfication

EQUAL INTERVAL CLASSIFICATION JENKS CLASSIFICATION

# Events % Events # Events % Events # Events% Events # Events % Events

Africa Global Model Africa Continental Model Africa Global Model Africa Continental Model

Medium to Very High = 11 68.8% 10 62.5% Medium to Very High = 15 93.8% 15 93.8%

Asia Global Model Asia Continental Model Asia Global Model Asia Continental Model

Medium to Very High = 476 85.9% 142 25.6% Medium to Very High = 534 96.4% 542 97.8%

Oceania Global Model Oceania Continental Model Oceania Global Model Oceania Continental Model

Medium to Very High = 3 60.0% 3 60.0% Medium to Very High = 1 60.0% 3 80.0%

Europe Global Model Europe Continental Model Europe Global Model Europe Continental Model

Medium to Very High = 2269 82.7% 1194 43.5% Medium to Very High = 2492 99.5% 1145 62.3%

No America Global Model No America Continental Model No America Global Model No America Continental Model

Medium to Very High = 2352 99.2% 2340 98.7% Medium to Very High = 2363 99.7% 2358 99.5%

So America Global Model So America Continental Model So America Global Model So America Continental Model

Medium to Very High = 4 66.7% 0 0.0% Medium to Very High = 4 83.3% 4 66.7%
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Appendix G Global MaxEnt Susceptibility Model Backward Analyses 
 

 

Köppen-Geiger Climate

KG Class # Pixels % Total Grouped

Water 4 0.0%

Af 4,499 6.3%

Am 4,356 6.1%

Aw 1,079 1.5% 13.9% A - Tropical/megathermal

BWh 4 0.0%

BWk 694 1.0%

BSh 85 0.1%

BSk 4,754 6.6% 7.7% B - Dry (desert and semi-arid)

Csa 2,169 3.0%

Csb 4,297 6.0%

Csc 44 0.1%

Cwa 9,378 13.1%

Cwb 5,484 7.7%

Cwc 17 0.0%

Cfa 10,332 14.4%

Cfb 5,571 7.8%

Cfc 381 0.5% 52.6% C - Continental/mesothermal

Dsa 74 0.1%

Dsb 2,535 3.5%

Dsc 698 1.0%

Dwa 70 0.1%

Dwb 669 0.9%

Dfa 6,152 8.6%

Dfb 6,020 8.4%

Dfc 1,715 2.4% 25.1% D - Continental/microthermal

ET 473 0.7%

EF 29 0.04% 0.7% E - Polar 
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Soil Drainage

Class #Pixels % Total

Very Poor 32 0.05%

Poor 4,334 6.3%

Imperfectly 9,735 14.1%

Moderately Well 53,672 77.7%

Well 86 0.1%

Somewhat Excessive 1,187 1.7%

Clay Pct # Pixels % Total

<= 15% 5026 7.3%

16 - 25% 61614 89.5%

26-57% 2238 3.2%

Soil Type

Grouped # Pixels %

Acrisols 18,707 26.1%

Cambisols 13,231 18.5%

Luvisols 9,830 13.7%

SubTotal 41,768 58.3%

22 other types 29,845 41.7%
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Murphy-Bridges Ecophysiographic Region

% Area EcoPhysReg

1.2% Plains in Alpine System

0.5% Plains on Sedimentary Lithology

23.7% Mountains in Alpine System

0.8% Widely Spaced Mountains in Alpine System

7.2% Hills or Tablelandsin Alpine System

37.2% Humid Mountains in Alpine System

1.2% Humid Hills or Tablelandsin Alpine System

0.4% Dry Depressions or Basins in Alpine System

1.2% Humid Plains on Sedimentary Lithology

6.7% Humid Hills or Tablelands on Sedimentary Lithology

1.2%

0.9% Humid Plains in Alpine System

9.6% Dry Mountains in Alpine System

0.8% Dry High Tablelandsin Alpine System

3.8% Humid Mountains on Sedimentary Lithology

3.5% Dry Widely Spaced Mountains in Alpine System

Elevation (m) % area (pixels)

>0 and <500 30.7%

>=500 and <1000 21.3%

>=1000 and < 2500 37.4%

>=2500 and <=5791 10.6%

Slope Deg # Pixels % Total

<20 deg 2,676,759 77.2%

20-30 deg 535,795 15.4%

31-40 deg 196,111 5.7%

> 40 deg 59,507 1.7%


