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On learning agent‑based models 
from data
Corrado Monti 1,2*, Marco Pangallo 1,2*, Gianmarco De Francisci Morales 1* & 
Francesco Bonchi 1*

Agent-Based Models (ABMs) are used in several fields to study the evolution of complex systems from 
micro-level assumptions. However, a significant drawback of ABMs is their inability to estimate agent-
specific (or “micro”) variables, which hinders their ability to make accurate predictions using micro-
level data. In this paper, we propose a protocol to learn the latent micro-variables of an ABM from 
data. We begin by translating an ABM into a probabilistic model characterized by a computationally 
tractable likelihood. Next, we use a gradient-based expectation maximization algorithm to maximize 
the likelihood of the latent variables. We showcase the efficacy of our protocol on an ABM of the 
housing market, where agents with different incomes bid higher prices to live in high-income 
neighborhoods. Our protocol produces accurate estimates of the latent variables while preserving 
the general behavior of the ABM. Moreover, our estimates substantially improve the out-of-sample 
forecasting capabilities of the ABM compared to simpler heuristics. Our protocol encourages modelers 
to articulate assumptions, consider the inferential process, and spot potential identification problems, 
thus making it a useful alternative to black-box data assimilation methods.

Agent-Based Models (ABMs) are computational models in which autonomous “agents” interact with one another 
and with their environment, thereby producing aggregate emergent phenomena1. ABMs are an extremely success-
ful tool for theory development, that is, to explore the macro-level implications of micro-level assumptions2. As 
Axelrod3 said “whereas the purpose of induction is to find patterns in data [...], the purpose of agent-based modeling 
is to aid intuition”. In line with this focus on theory development, the ability of ABMs to match empirical data 
and make quantitative forecasts—that is, to learn from data—has been, so far, limited4–7.

At a very high level, all ABMs can be described by the formula

where Zt are the variables of interest in the system, � is a set of parameters, Pt is a probability function implicitly 
defined by model specifications, and t is the discrete time index. Typically, � has relatively few components and 
a fixed dimensionality, is interpretable by a domain scientist, and is the only tuning knob of the model. Z is at 
the same time the state and the output of the model. Each component of Z typically refers to an individual agent, 
which results in high dimensionality. Some of Z is observable, while the rest is latent.

Most of the efforts in learning agent-based models from data have focused on parameter calibration. This 
task refers to the process of finding a parametrization � that can reproduce some macroscopic characteristic of 
the data, and it typically boils down to comparing a few summary statistics of aggregate empirical and model-
generated variables (e.g., time series)6,8. Summary statistics are valuable to focus on the most important charac-
teristics of the data that the modeler wants to explain, but they often have to be chosen arbitrarily, and may hide 
very different underlying patterns (as in the well-known Anscombe quartet).

Estimating agent-specific (or “micro”) variables Z is instead not usually considered. We think this is the main 
obstacle to bringing ABMs closer to data and potentially using them as a forecasting tool. Indeed, if modelers 
do not correctly initialize latent micro variables and update their values as the simulation progresses, and if the 
dynamics of observed variables crucially depend on the initialization of latent variables, then model-generated 
time series are bound to diverge from empirical ones. Additionally, this mismatch implies that model-generated 
and empirical time series cannot be directly compared to produce a “goodness-of-fit” measure, so one must resort 
to summary statistics or “stylized facts” to calibrate parameters. The ABM community has recently started to 
explore data assimilation methods to estimate the latent variables of ABMs4,9–11; we explain the relation of this 
literature to our work in the Discussion.

(1)Zt ∼ Pt(Zt | �,Zτ<t),
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This paper proposes a general methodology for estimating latent variables in ABMs. Our approach proceeds 
in three steps: 

1.	 Given an ABM of reference, translate it into a probabilistic model, by simplifying it until a computationally 
tractable likelihood of the data given the latent variables can be specified.

2.	 Estimate latent variables at each time step while keeping all past input values fixed (as in online learning). 
Solidly rooted in probability theory, our approach maximizes the likelihood at each step via expectation-
maximization12 and gradient descent.

3.	 Repeat this process over multiple epochs, so that temporal dependencies can be appropriately taken into 
account.

We showcase our approach by applying it to a housing market ABM specifically designed to study income 
segregation13 (Fig. 1). We use the ABM to generate synthetic data traces that we can use as ground truth (we 
would not have access to a ground truth for latent variables if we used real-world data traces). We distinguish 
between observable and latent variables based on how easy it usually is to access the relevant real-world data. The 
main latent variable in this model is the distribution of agents’ incomes in each neighborhood, which is often not 
available. We instead assume that we observe neighborhood-level mean prices and the number of transactions 
over time (these data are usually readily available, see e.g.14). We believe this distinction to reflect a common 
real-world setting in economic models: one might have access to which actions are being performed, but not 
to the latent state of agents (e.g., where they live, and what is their income). We write the likelihood of prices 
and of the number of transactions as a function of the household income distribution. Next, we maximize this 
likelihood, thus estimating the time evolution of the spatial income distribution.

In synthetic experiments, we show that our procedure enables learning latent variables accurately: the Pearson 
correlation between the ground truth and learned traces ranges between 0.5 and 0.9, depending on the latent 
variable considered. At the same time, we show that an accurate estimation of latent variables empowers out-of-
sample forecasting. Compared to other benchmarks that use rules of thumb to initialize the model at the begin-
ning of the forecasting window, our procedure obtains lower Root Mean Squared Error (RMSE) with respect to 
the ground truth while being more principled. It also highlights potential identification problems, i.e., situations 

Figure 1.   Our approach compared to a standard approach towards calibrating an ABM of the housing market. 
(A) Focusing on the boroughs in the center of London (bottom layer), we consider the yearly average of 
transaction prices (middle layer) as an example of an observed variable, and the distribution of agent incomes 
(top layer) as an example of a latent variable. (B) For each borough, we observe a time series of transaction 
prices. In the standard approach to calibration, modelers could typically calibrate some parameters � (such as 
the probability for inhabitants to put their home on sale) by computing the moments of transaction prices across 
boroughs and years (as represented through a box plot), and minimizing the distance with the same moments in 
model-generated time series. In our approach, instead, we are able to calibrate the evolution of latent variables 
Z –in this example, borough-level agent incomes– by exploiting all information contained in time series, 
rather than reducing this information to specific summary statistics. (C) In the model, prices depend on agent 
incomes. Thus, since in the standard approach agent incomes are not calibrated, model-generated time series 
are bound to diverge, even if prices are initialized as in the data. With our approach, as we repeatedly estimate 
incomes, we can make model-generated time series track empirical ones. This makes it feasible to forecast future 
prices.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9268  | https://doi.org/10.1038/s41598-023-35536-3

www.nature.com/scientificreports/

wherein multiple configurations of micro-variables correspond to the global maximum of the likelihood, so that 
the ground truth configuration cannot be identified.

Model
We start from the housing market ABM presented by Pangallo et al.13—henceforth, the “original ABM”. Our goal 
is to modify the original ABM until it is possible to write a computationally tractable likelihood of observed vari-
ables given latent variables and parameters. If we are able to do so, we say that the modified model is a learnable 
ABM. While writing a tractable likelihood function, we need to preserve the general behavior of the model, as 
well as its essential causality mechanisms.

In this section, we first give an overview of the original ABM; then, we describe the learnable ABM result-
ing from our ‘translation’ process. Along the way, we highlight the specific transformations needed to make the 
original ABM learnable. A more detailed explanation of the equations describing our learnable model is given 
in Materials and Methods. Supplementary Section S1 provides more details on the models and the translation 
process, and it reports the causal links between variables as a graphical model.

Original ABM13.  The ABM describes the housing market of a city composed of L locations or neighbor-
hoods, each with a number of indistinguishable homes, inhabited by agents. Each agent belongs to an income 
class k, out of K income classes, each characterized by an income Yk . At each time step, individual agents—rep-
resented as discrete units—choose a neighborhood to purchase a home if they act as buyers, or put their home 
on sale if they act as sellers. One fundamental insight encapsulated in this model is the formalization of the 
attractiveness of each neighborhood, which regulates how likely an agent is to bid for that location. The model 
assumes that the higher the income of residents, the more attractive a neighborhood is. In this original model, 
matching between individual buyers searching in a neighborhood and sellers in the same neighborhood is mod-
eled as a continuous double auction. This process selects buyers and sellers sequentially at random, puts buyers 
in a queue ordered from highest to lowest bid price (and sellers from lowest to highest ask price), and, whenever 
a seller asks a price below the maximum bid price in the queue, matches the buyer with highest bid price to the 
seller with the lowest ask price. The social composition of the city evolves as a byproduct of these transactions, as 
high-income buyers may replace low-income sellers and lead to the gentrification of some neighborhoods. We 
report the pseudocode of this original model in Algorithm S1.

Learnable ABM.  In order to translate such ABM into a learnable model, we first rewrite it in terms of 
‘counts’, i.e., instead of having variables for each individual agent, with a small loss of generality we consider the 
aggregated information about the number of identical agents of each income class in each location. This way, 
we obtain a model that revolves around the state variable Mt : at each time step, Mt is a matrix of L× K entries, 
where Mt,x,k represents the number of agents of income class k in location x at time t. Similarly, the number of 
agents of class k buying a house in location x is represented by DB

t,x,k , giving a total of Dt,x =
∑

k D
B
t,x,k transac-

tions. Dt,x is in turn determined as the short side of the market, i.e., the minimum between the number of sellers 
and the number of buyers in each case. While these two numbers in the original model were stochastic, in our 
learnable model we use a mean-field approximation, and replace the stochastic realizations with their expected 
value. The final key variable is Pt,x , which represents the average price of transactions that occur in location x at 
time t.

Matching protocol.  The matching protocol between buyers and sellers clearly exemplifies the type of trans-
formations needed for our purpose. The continuous double auction of the original ABM is indeed hard to trans-
late into a computationally tractable likelihood. First, we assume that we do not have detailed information on 
buyers and sellers for individual transactions, so estimating, e.g., the stochastic sequence in which buyers and 
sellers enter the queue is not feasible. Second, picking the buyer with highest proposed price is equivalent to an 
argmax operation. Such operation is not differentiable, thus causing the whole likelihood to be not differenti-
able. Indeed, estimating its outcome would require enumerating all possible cases. To solve both issues, while 
preserving the properties of the model, we replace the continuous double auction by a multinomial distribution 
that gives higher probability of matching to buyers proposing higher prices. This rule is differentiable and can 
be estimated from observed prices: higher prices indicate that richer agents have settled in the neighborhood.

Algorithms
Once we have translated the original ABM into its learnable counterpart, we design an algorithm that infers 
latent variables by maximizing the likelihood of these variables with respect to observed data and the model’s 
assumptions.

To start with, we need to determine which variables are observed and which are latent. To do so, we think 
of aggregate information about transactions as the only observable at our disposal. In particular, we assume to 
know, for each neighborhood and over time, the number of transactions Dt and the average price Pt . Our key 
latent variable is instead Mt , the distribution of agents of each income class across neighborhoods. We believe 
this distinction to reflect a common real-world setting in economic models: one might have access to which 
actions are being performed, but not to the latent state of agents (e.g., where they live, and what is their income). 
As a matter of fact, in many countries it is relatively easy to obtain spatially granular data on transactions, but it 
is much harder to obtain such data on incomes14.

Note that Mt can be computed deterministically given Mt−1 and DB
t−1 . Therefore, our problem reduces to 

finding an estimate for the latent stochastic variable DB
t  , over all time steps t = 1, . . . ,T , and for the starting 
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condition M0 , given Pt and Dt : all the other variables are in fact deterministic, and their value is fixed given the 
formers. This scenario corresponds to the graphical model shown in Materials & Methods.

However, the number of possible states of DB grows exponentially with the total number of time steps T: 
evaluating all possible paths of agents over all time steps would be unfeasible even for small values of T. There-
fore, we approach our problem as an online task15, a common technique in machine learning in cases where 
processing the entire data set at once is unfeasible. We process the data per time step: at each t, the algorithm 
is presented with the newly observed values Dt and Pt , and it updates its estimate of the latent variables M0 and 
DB
t  , while considering all the values previously estimated as fixed. After the given time step t has been processed, 

the algorithm is applied on t + 1 , and so on until the last time step T. This process—examining each time step 
from t = 0 to T—is iterated for a number of epochs: after the last time step T has been processed, the algorithm 
re-starts from the beginning, so that the first time steps are re-evaluated in light of successive ones.

To solve this likelihood optimization, we propose an expectation-maximization algorithm. Such an algorithm 
is able to obtain a maximum-likelihood estimate of the latent variables by optimizing the complete-data likeli-
hood of the model. We outline its derivation in Materials & Methods “Algorithm derivation” section. It operates 
by repeating at each given time step t the following process. First, it evaluates the likelihood of each possible 
behavior of the agents—i.e, the possible outcomes of DB

t  ; then, it uses back-propagation and online gradient 
descent to find the best M0 under this likelihood. These two steps are alternated until convergence. This way, at 
each time step it recovers the most likely value for DB

t  , and it updates its estimate for M0 . All the other variables 
of the ABM are obtained deterministically from these ones.

In order for the algorithm described thus far to be scalable, we need to solve one last computational challenge: 
even in a single time step t, the space of possible outcomes of each DB

t  is huge, since in principle one should 
consider the decisions of all individual buyers as independent. We solve this problem by considering that, while 
in an ABM simulation it is useful to model the behavior of individual agents, in fitting an ABM to data it is suf-
ficient to evaluate the chances of groups of identical agents moving to one location or another: the behavior of 
a single agent is irrelevant with respect to the data we observe. Therefore, instead of considering all the possible 
outcomes of each DB

t  , we consider only those set apart by at least s agents, where s is a learning hyper-parameter.

Experiments
In order to evaluate the efficacy of our approach, we perform two sets of experiments. First, we assess its fidelity, 
i.e., how well our method recovers latent variables. To do so, we generate a synthetic dataset from the original 
ABM as ground truth, and feed the observable part of such data to our likelihood-maximization algorithm. 
Second, we show that learning latent variables allows us to produce more accurate out-of-sample forecasts 
compared to existing heuristics.

Recovering latent variables.  We consider the time series of the price Pt,x and of the number of transac-
tions Dt,x at each location x to be observable. We also assume that the macro-parameters that generated the data 
set (e.g., the total number of agents per location N, or the global income distribution) are known. Two other time 
series, namely that of inhabitants Mt,x,k and buyers DB

t,x,k , for all locations x and incomes k, are considered latent: 
they are hidden from the algorithm and used as a validation for what the algorithm learns.

We use the original ABM to generate 20 data traces with L = 5 locations, K = 3 income classes, and T = 20 
time steps that we use as ground truth. Each data trace differs from the others in the random initialization of 
M0 . We use the first 10 traces as training set to tune the hyperparameters of the algorithm (see Supplementary 
Figure S1). Then, on the remaining 10 traces that we hold out as test set, we evaluate the performance of the 
algorithm by computing the coefficient of determination R2 between learned time series and ground truth ones. 
For each of the 4 variables listed above (M, DB , D, P) and each of the 10 traces, we compute the R2 by treating 
each variable as if it was a one-dimensional vector, thus comparing the ground truth with its estimate element-
wise. Note that our learning algorithm uses the data from the learnable ABM to specify the likelihood, so there 
is some misspecification compared to the original ABM used to generate the ground truth. For completeness, 
we also repeat the same evaluation by using the learnable ABM to generate ground-truth data traces, thereby 
removing misspecification. We view this latter test as a sanity check for the algorithm.

Figure 2 shows the results for the 10 traces in the test set. As expected, our ability to reconstruct latent 
variables is higher for traces generated with the learnable ABM, as there is no misspecification. Perhaps more 
interestingly, our algorithm reconstructs the time series of buyers DB

t,x,k with higher fidelity than the time series 
of inhabitants Mt,x,k (mean determination coefficient R2 = 0.74 vs. R2 = 0.28 with traces from the original 
ABM). Even though Mt,x,k proves to be harder to reconstruct, we still obtain an informative estimate, that further 
improves when misspecification is removed ( R2 = 0.57 ). We conjecture that this difference in results may be due 
to the fact that DB

t,x,k is a “flow” variable that does not depend explicitly on previous time steps, while Mt,x,k is a 
“stock” variable that depends on the whole history, so errors in estimating Mt=0 accumulate at following time 
steps. These results also hint at an identification problem in the original ABM, which we elaborate on further 
at the end of this section. Regarding the observable variables, our algorithm fits the prices Pt,x almost perfectly 
( R2 = 0.95 ), and the number of transactions Dt,x very well ( R2 = 0.74 ). Without misspecification, the fit for the 
number of transactions is perfect ( R2 = 1.0 ). While such a good fit for observable variables is expected, since our 
inference method works by minimizing the distance from observable variables, this result indicates that there 
is no major misspecification introduced by using the learnable ABM to infer latent variables from traces of the 
original ABM. In other words, our translation does not alter the nature of the original model.

Figure 3 zooms in on a representative trace generated by the original ABM. For fairness, we choose this 
experiment as the median one in terms of performance (i.e., correlation between the ground truth and estimated 
values of M). These time series confirm the intuition from Fig. 2: our approach is able to reconstruct Pt and Dt 
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Figure 2.   Quality of estimation in synthetic experiments with traces generated by the original (left) and 
learnable (right) ABM. For each variable, we report the coefficient of determination R2 between the original 
values and the estimates for each trace. We represent each trace as a dot, with whisker plot as a summary for 
each variable. Whiskers extend from the minimum to the maximum value, while boxes range from the 25th to 
the 75th percentile.

Figure 3.   Estimates for Mt,x,k , DB

t,x,k
 , Pt,x , Dt,x compared to the traces generated with the original ABM, in a 

single experiment, chosen as the median experiment in terms of estimation quality.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9268  | https://doi.org/10.1038/s41598-023-35536-3

www.nature.com/scientificreports/

extremely well and it is also quite precise at reconstructing DB
t  . Our estimate of Mt is also very accurate in most 

cases, but imprecise estimates of the initial conditions M0 lead in a few cases (for instance, in location x = 3 ) 
to an inaccurate reconstruction. In a few cases, in fact, the algorithm finds a local minimum that does not cor-
respond to the ground truth.

One of the possible reasons behind this behavior is the presence of an identification problem. We show in fact 
that, in some cases, the likelihood of the observed data is the same for different possible values of the latent vari-
able M0 . While these possible values include the ground truth (or, in case of misspecification, values extremely 
close to it) the model does not have enough information to distinguish it from the other possible optimal values 
of M0 . This phenomenon is intrinsic to the ABM under study, once we identify P and D as observable and M0 
as latent. We provide a concrete example in Supplementary Section S2.3. Figure S5 shows a representation of 
the likelihood able to efficiently visualize such issues. Our approach allows in fact to formally define and thus 
diagnose such issues. Of course, one could also do this by sampling from the parameter space and computing 
summary statistics, as with Approximate Bayesian Computation (ABC) calibration methods (see, e.g., Ref.16). 
Our approach, which features a closed-form of the likelihood, has three advantages over these methods: (i) 
avoidance of sampling error; (ii) higher efficiency, as we do not need to repeatedly execute the model; and (iii) 
the possibility to look for local minima using gradient-based methods.

Out‑of‑sample forecasting.  Except for a few recent attempts5,17,18, so far the use of ABMs for forecasting 
has been limited. A key problem is that ABM state variables are mostly latent, as it is often hard to observe infor-
mation that describes individual agents. To the extent that the aggregate dynamics depends on the agent states, 
a wrong initialization of the latent state variables is likely to lead to a very inaccurate forecast. In this section, we 
explicitly test whether this is true for our model by using synthetic experiments.

To shift our focus away from misspecification errors, we use the learnable ABM to generate the ground 
truth. We extend each of the 10 test traces for 5 additional time steps, so that the total length of each simulation 
becomes T ′ = 25 . For each trace, starting from the true state, we repeat the simulations of the additional 5 time 
steps 100 times. We take the ensemble average of the time series as the ground truth, thus obtaining a single 
time series that represents the expected evolution of the system. This way, the ground truth is not influenced by 
stochastic noise due to sampling.

Our protocol for the various forecasting methods is the following. We initialize the learnable ABM at t = 20 
with a given estimate of the latent state variables MT=20 , and let it produce the time series Pt and Dt for the 
out-of-sample time steps t ∈ [21, 25] . As in the ground truth, we repeat the simulations 100 times and take the 
average, thus removing stochastic effects. We compare five approaches for the estimate of the latent variable MT : 

1.	 Random: we draw MT from a Dirichlet distribution whose parameters are consistent with the share of buy-
ers Ŵk . A random initialization of latent variables is very common in ABMs, for instance in epidemiological 
ABMs it is common to choose infected seeds at random19.

2.	 Proportional: we draw MT in a way that locations with price higher than the mean price over the city have 
a higher share of high-income inhabitants. The strength of this relation is governed by a hyperparameter 
that we calibrate in-sample on the same 10 traces that we use to select the hyperparameters of the learning 
algorithm.

3.	 Time series: we run 1000 simulations starting from different values of M0 and select the MT corresponding 
to the simulation with the lowest RMSE with respect to the observable time series Pt and Dt in sample, i.e., 
for t ∈ [1, 20] . This is, for instance, the method used by Geanakoplos et al.20.

4.	 Constant predictor: we also compare the forecasts obtained by simulating Pt and Dt with different estimates 
of MT to a constant predictor, i.e., Pt = PT and Dt = DT , t = 21, . . . , 25.

5.	 Learnable: we infer MT with our algorithm by using the estimates obtained as specified in the previous sec-
tion.

To evaluate the quality of the forecasts obtained by these approaches, we compute the Root Mean Squared 
Error (RMSE) for the observable time series Pt and Dt , summing the errors from time step t = 21 up to 
t = T ′ = 25 . Figure 4 shows the results. We do not show the values for the Random approach as it is well above 
that of the other approaches (RMSE Pt ≈ 0.3 , RMSE Dt ≈ 12 ). The Constant predictor approach performs bet-
ter than the Proportional and Time series approaches for Dt , but not for Pt . Most importantly, the Learnable 
approach substantially improves over the Proportional, Time series, and Constant predictor approaches for both 
Pt and Dt . This is a strong improvement that shows the potential of our method in enhancing the forecasting 
capabilities of ABMs.

However, we believe that the value of our approach goes beyond this aspect. In fact, alternative approaches 
are heuristics, that do not yield much insights about inference. By contrast, our approach is more principled: 
it frames the problem of estimating unobservable variables of an ABM into probabilistic inference. This meth-
odology opens new research directions to further improve our results. For instance, designing learnable ABMs 
from the start, for which there would be no misspecification error. Even more importantly, it makes it possible 
to formally reason about the likelihood of an ABM—for instance, to spot potential identification problems.

Discussion
Our proposal aims to integrate the benefits of agent-based modeling with the capability to fit to data. We assert 
that certain systems necessitate an ABM for an accurate representation as other methods may lack the ability to 
incorporate established micro-level causal mechanisms, such as behavioral patterns, as priors. Our methodology 
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strives to develop a learnable ABM that not only represents these rules, but also has a well-defined likelihood 
and can be fitted to data. By doing so, we can create a more credible and accurate representation of the system’s 
behavior, which is essential for policymakers and other decision-makers.

From the specific translation of the housing market ABM considered in this paper, we can identify some 
general design principles, that we believe will be useful in making other ABMs learnable, and eventually lead 
to a streamlined process. First of all, it was necessary to tune the level of stochasticity of the model by consider-
ing which variables are observed and which are latent. In most graphical models, latent variables are stochastic 
random variables that are related to the observable ones—indeed, if they were deterministic, they could be 
computed exactly21. All stochastic variables that are not observed must be estimated, thus increasing both the 
computational complexity of the process and the uncertainty of the model. However, in our translation, we have 
room to decide which variables are deterministic and which are stochastic. To make the model truly learnable, 
we need to balance observable and latent variables so that for every latent variable we have some observable that 
intuitively makes it possible to estimate it. We can encapsulate this first design principle as follows.

Principle 1  Stochasticity parsimony In a learnable ABM, the amount of stochasticity should be commensurate 
to data availability.

Second, we needed to carefully consider which variables and functional forms should be discrete. ABMs 
often consist of discrete units, and it is common for agents to choose between different discrete possibilities. 
However, discreteness makes likelihood optimization problematic. Indeed, whenever we deal with discrete vari-
ables, the likelihood must consider all possible combinations of values for discrete stochastic variables, which 
greatly increases the computational burden of the approach. Moreover, in some cases the likelihood may be flat 
over some region of the latent space, thus hindering the progress of optimization algorithms such as gradient 
descent. Given these considerations, it is important to limit the use of discrete variables to the ones that are 
critical to the behavior of the model.

Principle 2  Differentiability preference A learnable ABM should prefer continuously differentiable functions 
over discrete choices when they do not alter the behavior of the model.

Following these principles, it should be possible to transform any ABM into a learnable one, given enough 
data. While the translation in this paper was still hand-curated, it is a first step towards its proper formalization, 
and thus automatization.

Nevertheless, different alternative methods have been suggested in the literature to obtain similar results. 
Making the state of the system compatible with real-world observations has traditionally been the goal of data 
assimilation techniques, such as the various versions of the Kalman filter or the particle filter. Originally devel-
oped in meteorology and geosciences22, data assimilation techniques have recently been employed in ABM 
research4,9–11. These works treat the ABM as a black box, adjusting ABM state variables so that forecasts come 
closer to observations. The main advantage of data assimilation techniques over our approach is that they do not 
require building a new model (the learnable ABM). At the same time, our approach offers several advantages. 

	 (i)	 It deals with the estimation of discrete variables in a natural and principled way. Standard data assimi-
lation methods only allow to tune continuous variables4,9, and recent attempts to deal with discrete 
variables10,11 tend to be heuristic and problem-specific.

	 (ii)	 Its closed-form likelihood can be maximized with computationally efficient gradient-based methods, by 
leveraging deep learning frameworks/architectures.

Figure 4.   Out-of-sample forecasting error for our method compared to alternative benchmarks for the number 
of transactions Dt (left) and prices Pt (right). We show the forecasting error as the RMSE of each time series. We 
consider the same 10 traces as in the experiments above, and show results for each of the 10 traces as a dot and a 
whisker plot as a summary. Whiskers extend from the minimum to the maximum value, while boxes range from 
the 25th to the 75th percentile.
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	 (iii)	 Such closed-form likelihood is also an essential tool to analyze identification problems, thus offering 
explanations about the estimated variables.

	 (iv)	 While Kalman filters require Gaussian or quasi-Gaussian noise, and linear or weakly non-linear func-
tional forms, our approach can easily integrate most types of stochastic element and non-linearities.

Considering these advantages, we believe that likelihood-based estimation of ABM micro-states is a promising 
direction to obtain more principled approaches to data-driven ABMs.

Conclusions
In this work, we have shown how to translate a complex agent-based model into a probabilistic graphical model to 
obtain a learnable ABM that can be fit to data. By employing techniques such as maximum likelihood estimation, 
we can estimate the latent micro-state variables of the agents in a way that is consistent with both the model and 
observed data. To accomplish this, we developed an expectation-maximization algorithm that estimates the latent 
variables given the observed ones. We have demonstrated that this process is effective in recovering unobserved 
variables that are consistent with both the learnable and original models, across a range of scenarios. This process 
enables us to incorporate learned variables into the ABM, thus resulting in a simulation of the micro-states that 
accurately reflects the provided data. The resulting methodology provides a powerful tool for using ABMs in 
forecasting and policy design.

Building a fine-grained link between an ABM and observed data opens the way for different exciting opportu-
nities. As we have shown in this work, it allows in the first place for better usage of ABMs as tools for prediction. 
Initializing agents’ micro-states in a way that is coherent with observed data ensures that their future trajectory 
can be regarded as the best compromise between the theoretical assumptions of the model and the available 
observations. Consequently, the quality of predictions serves as a direct validation (or falsification) of the causal 
model embodied in the ABM. Besides these immediate advantages, the approach provides opportunities for more 
advanced applications. For instance, defining the likelihood of the model w.r.t. the observations enables model 
selection by using available data. In other words, it allows using ABMs to formulate hypotheses and test them 
against real data as has been demonstrated in simpler cases15. The extension of this technique to more complex 
ABMs requires further analysis and opens avenues for novel research directions. Moreover, the translation of 
an ABM into a probabilistic model compels the modeler to reveal their assumptions and consider the inferen-
tial problem. Consequently, it highlights potential identification issues. For instance, when different models or 
parametrizations of the same model produce the same observable state, how can one choose the correct one in 
practice? Such a problem, frequently ignored in ABM research, will be crucial to address in future applications 
of ABMs to real-world data.

Our approach for creating learnable ABMs builds upon the framework of probabilistic graphical models23, 
which offers exciting opportunities for interdisciplinary collaboration but also presents new theoretical chal-
lenges. Due to the complexity of ABMs, many commonly used methods such as Markov Chain Monte Carlo 
(MCMC)23 become computationally infeasible. ABMs model emergent behavior through the combination of 
many simple rules, often involving long chains of dependencies among variables, with highly non-linear behav-
ior. Hence, many theoretical properties necessary for the convergence of MCMC, such as the uniqueness of the 
posterior distribution24, may be absent. Furthermore, the posterior distribution is often very complex and high-
dimensional, and thus challenging to learn via sampling techniques. Thus, we choose to maximize the likelihood 
by using gradient descent and automatic differentiation25. Interestingly, the long sequences of deterministic 
transformations in ABMs make our optimization task similar to deep learning. However, while the transforma-
tions in deep learning are purely data-driven, aiming only to maximize prediction accuracy, our methodology 
still emphasizes causal mechanisms: each transformation represents an aspect of the theory being modeled.

Materials and methods
Model description.  Here, we give a minimal description of the learnable model. In Supplementary Sec-
tion S1.2 we provide a longer description as well as a detailed interpretation of each modeling assumption.

The model represents the housing market of a city with L locations or neighborhoods denoted by x = 1, . . . , L , 
each with N indistinguishable homes, inhabited by agents that are only distinguished by their income class 
k = 1, . . . ,K . The vector of state variables Zt is composed by the variables 

{

Mt,x,k

}

,
{

Pt,x
}

,
{

Rt,x
}

 , where Mt,x,k 
is the number of agents of income k living in location x at time t; Pt,x is the average price of location x at time t; 
and Rt,x is the inventory of unsold homes at location x at time t. These state variables are updated according to 
deterministic and stochastic equations that represent the demand and supply sides of the housing market, and 
the matching between potential buyers and sellers. The causal links between these variables are summarized in 
Fig. 5. All the equations of the model, Equations (M1) to (M13), are listed in Table 1.

Equations (M1) to (M3) characterize the number of buyers from each income class that try to buy a house 
at each location at time t. Buyers prefer to live in locations with higher attractiveness At,x , which depends on 
a constant local intrinsic attractiveness AI

x and on the time-varying average income at that location, captured 
through Yk—the income of agents in income class k (M1). However, locations with high attractiveness may also 
be more expensive, so the probability πt,x,k for a buyer of income class k to choose location x also depends on 
the difference between their possibility to pay—here exemplified by income Yk—and price Pt,x (M2). Finally, 
the number of potential buyers of income class k for location x at time t, NB

t,x,k , is given by simply assuming that, 
for each income class k, a fraction Ŵk of the total buyers Q distribute themselves among all locations following 
probabilities πt,x,k (M3).

Next, Equations (M4) to (M5) characterize the supply side of the market. The number of sellers NS
t,x is given 

by the inventory of houses on sale at the previous time, Rt−1,x , plus a fraction α of the houses that were not on sale 
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(M4). Moreover, the minimum price that the sellers at location x are willing to accept, PSt,x , is a smooth function 
of the ratio between the number of buyers and sellers at x: when there are more buyers than sellers, sellers refuse 
to sell at a price below Pt−1,x ; conversely, when there are more sellers, they are willing to sell at a discount, up to 
a price that is 1− δ of Pt−1,x (M5).

The demand and supply sides of the market are matched in Equations (M6) to (M11). The number of deals 
or transactions Dt,x is the short side of the market, i.e., the minimum between the number of buyers and sellers 
(M6). When there are more buyers than sellers, only some buyers are able to secure a deal. The probability that 
agents from income class k secure a deal at x is represented by πD

t,x,k , which is proportional to the number of 
buyers from class k and to their income (M7). The number of buyers of each income class who secure a deal, 
DB
t,x,k , is given by the Dt,x realizations of a multinomial with parameter πD

t,x,k (M8). In this way, the outcome of 
this random variable has to be consistent with Dt : the total number of buyers in each location x is fixed to Dt,x ; 
for each location, the buyers are distributed among income classes according to πD

t,x . The number of sellers from 
class k who manage to sell at location x ( DS

t,x,k ) is instead simply proportional to the fraction of k-agents living 
in location x (M9). With Equations (M6) to (M9) having determined the income classes of buyers and sellers, 
Equations (M10) and (M11) specify the average (observed) price of transactions Pt,x . The model assumes that 
this is a weighted mean (M11) of the maximum price that the average buyer is willing to pay, PBt,x (M10), and of 
the minimum price that sellers are willing to accept, PSt,x (M5).

As a last step, we update the remaining state variables in Equations (M12) and (M13), simply by tracking the 
number of buyers and sellers in each class and location.

Algorithm derivation.  Here, we provide a more detailed description of our algorithm. Following our 
online assumption, its goal is to estimate latent variables at time t by looking at observables at the same time 
step, and treating all the previously estimated variables as fixed. Specifically, DB

0 , . . . ,D
B
t−1 , i.e. the buyers who 

previously relocated, and the corresponding sellers DS
0, . . . ,D

S
t−1 , are fixed. Therefore, the algorithm observes Pt 

and Dt , and then it provides a new estimate of DB
t  , and update the estimate of M0 . In fact, since previous DB and 

DS are fixed, Mt is a deterministic function of the latent variable M0

Pt−1

Mt−1 Mt

NB
t

NS
t Dt DS

t

DB
t Pt

Rt−1 Rt

PS
t

M0

Figure 5.   Graphical model diagram of the learnable ABM for a time step t. See Materials & Methods “Model 
description” section for notation. Diamonds indicate deterministic variables, white circles indicate latent 
stochastic variables, grey circles indicate observed stochastic variables.

Table 1.   Equations defining our agent-based model.

At,x = AI
x

k Mt−1,x,kYk/N
x k Mt−1,x,kYk/NL

(M1) πD
t,x,k = NB

t,x,k ·(Yk−PSt,x)

k NB
t,x,k · Yk −PSt,x

(M7)

πt,x,k = (min (0,Yk−Pt−1,x))
1−βAβ

t,x

x (min (0,Yk−Pt−1,x))
1−βAβ

t,x
(M2) DB

t,x,k ∼ multinomial Dt,x , {πD
t,x,k}k (M8)

NB
t,x,k = Q kπt,x,k (M3) DS

t,x,k = Dt,x
Mt−1,x,k
k Mt−1,x,k

(M9)

NS
t,x = Rt−1,x + α(N − Rt−1,x) (M4) PB

t,x = k
YkDB

t,x,k

k DB
t,x,k

(M10)

PS
t,x = Pt−1,x 1− δ 1− tanh k NB

t,x,k
NS
t,x

(M5) Pt,x = νPB
t,x + (1− ν)PS

t,x (M11)

Dt,x = min k NB
t,x,k ,N

S
t,x (M6) Mt,x,k = max 0,Mt−1,x,k + DB

t,x,k − DS
t,x,k (M12)

Rt,x = Rt−1,x + NS
t,x − Dt,x (M13)
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allowing us to treat M0 , and not Mt , as our latent variable.
Since our observed variables are in principle also a deterministic result of the others, we model their observed 

value as a noisy proxy of the value determined by the agent-based model rules. Specifically, for prices we assume 
that we observe P̃t , given by P̃t = Pt + ǫP , where the error ǫP is normally distributed and Pt is the deterministic 
estimate of prices as computed by the model (see (M11)). Similarly, the number of observed deals D̃t will follow 
D̃t = Dt + ǫD.

Now, computing the likelihood of the observed prices P̃t requires knowledge of the latent variable DB
t  , that 

is, the distribution of buyers among classes and locations, which is a discrete outcome of a stochastic process 
dependent on our main latent variable M0 . Therefore we resort to the (Generalized) Expectation Maximization 
algorithm. In this way, we alternate between evaluating the expectation of DB

t  and updating our estimate of M0 
under the current estimate of expectation. The latter can be performed with online gradient descent, since—once 
we fixed the probability of each possible outcome of DB

t —what remains of the likelihood is a continuous and 
differentiable function of M0.

First, observe that P̃t and D̃t are independent given M0 . In fact, Dt is fixed given M0 ; the distribution of DB 
is also fixed, since it is determined from Dt and πD ; and the error ǫD is drawn independently from the extrac-
tion of DB from such distribution and from ǫP . Therefore we can factorize the complete-data likelihood w.r.t. 
observed data D =

{

P̃t , D̃t

}

 as:

Since computing P
(

P̃t |M0

)

=
∑

Db
P(Db|M0)P

(

P̃t |Db,M0

)

 without the knowledge of the latent variable DB
t  

would be unfeasible, we resort to the Generalized Expectation Maximization algorithm, alternating these two 
steps until convergence: 

1.	 First, we evaluate the expectation of DB
t  given the rest of the variables. Given the set � of all possible values 

of DB
t  , for each DB

t ∈ � we evaluate 

 where M∗
0 is the current estimate of M0 . This probability is computed from (M8).

2.	 Then, we update the estimate of M0 in order to increase the likelihood from Equation (2), by increasing the 
auxiliary function 

Noting that D̃t does not depend on DB
t  (see Fig. 5), the last probability can be decomposed as

These two elements are given by the gaussian distribution of the errors ǫP , ǫD ∼ N (0, σ) ( σ being a hyper-
parameter), between Pt and P̃t , and Dt and D̃t respectively. Note that P and D are a deterministic function of the 
latent variable M0 we are optimizing, through the chain of deterministic equations of the ABM (Table 1). The 
only free variable is in fact M0 , since the previous variables from time steps t ′ < t are assumed to be fixed, and the 
value of DB is known for the assumption of EM. Therefore, since all these deterministic functions are continuous 
and differentiable in the general case, it is easy to update M∗

0 ascending the gradient ∇M∗
0
Q
(

M∗
0

)

 . The complexity 
of computing this gradient is left to differentiable programming frameworks.

Nevertheless, this approach presents a problem: the set � of possible values for DB
t  , the matrix of numbers of 

actual buyers for each class and each location, is potentially huge (precisely, 
(n+k−1

n

)

 with n buyers and k classes). 
We solve this problem with two considerations: first, we will show that P̃t,x ⊥⊥ P̃t,y|Dt ,π

D
t  ; second, we are not 

interested in all the possible values for the number of actual buyers: the behavior of a single agent is irrelevant 
with respect to the data we observe. Let us analyze these two key points.

The first consideration stems from the the independence of outcome in different neighborhoods: 
DB
t,x ⊥⊥ DB

t,y|Dt ,π
D
t  . This fact follows naturally from (M8), since all locations are independently drawn. As a 

consequence, also the probability of observed prices P̃t,x and P̃t,y are independent from each other for any two 
locations x  = y , since (M10) and (M11) do not have any inter-location effect, and the observation noise ǫP is 
also independent across locations. Therefore P̃t,x ⊥⊥ P̃t,y|Dt ,π

D
t  and we can write:

Thus, we can factorize Eq. (3) in a more practical way. Let us call �x the set of all possible values for DB
t,x , given 

a location x. Then, our algorithm becomes an iteration of the following two steps until convergence. 

1.	 Evaluate ∀x ∈ {1, . . . , L} and ∀DB
t,x ∈ �x : 

Mt+1 = Mt + DB
t − DS

t = M0 +

t
∑

τ=0

(

DB
τ − DS

τ

)

(2)P(D|M0) = P
(

P̃t |M0

)

· P
(

D̃t |M0

)

.

q
(

DB
t

)

:= P
(

DB
t |M

∗
0

)

(3)
Q
(

M∗
0

)

:=
∑

DB
t ∈�

q(DB
t ) logP

(

P̃t , D̃t , |D
B
t ,M

∗
0

)

(4)logP
(

P̃t , D̃t |D
B
t ,M

∗
0

)

= logP
(

P̃t |M
∗
0 ,D

B
t

)

+ logP
(

D̃t |M
∗
0

)

.

(5)P
(

P̃t |M0,D
B
t

)

=
∏

x

P
(

P̃t,x |M0,D
B
t,x

)
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 Note that any two values in �x are mutually exclusive, so 
∑

DB
t,x∈�x

q(DB
t,x) = 1 holds for all x.

2.	 Update M∗
0 by ascending the gradient ∇M∗

0
Q(M∗

0 ) of 

 because of Eqs. (4) and (5).
To define the set �x we take advantage of the second key point: two different values of DB

t,x might be indistinguish-
able in practice given our data, if they differ only by a few agents. Thus, instead of considering all the possible 
partitions of the integer Dx,t in K positive integers, we only consider their quotient for a given constant s (i.e., 
⌊

Dx,t/s
⌋

 ): this can be thought of as the possible outcomes obtained by moving groups of s agents at a time. Any 
difference below s is considered negligible. In practice, we set s as a consequence of the available memory. Given 
a maximum size for |�| , we set a threshold for each |�x| proportional to its original size 

(n+k−1
n

)

 . Here, we keep in 
consideration the effective number of classes k ≤ K that can afford a location, since both Pt−1 and Y are assumed 
to be known at time t. After setting this threshold, we find the minimum s s.t. |�x| respects such threshold.

Data availability
The datasets generated and analysed during the current study are available in the repository: https://​github.​com/​
corra​domon​ti/​data-​driven-​econ-​abm.
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