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Abstract: Background/Objectives: PET imaging with [18F]F-DOPA has demonstrated high potential
for the evaluation and management of pediatric brain gliomas. Manual extraction of PET parameters
is time-consuming, lacks reproducibility, and varies with operator experience. Methods: In this
study, we tested whether a semi-automated image processing framework could overcome these
limitations. Pediatric patients with available static and/or dynamic [18F]F-DOPA PET studies were
evaluated retrospectively. We developed a Python software to automate clinical index calculations,
including preprocessing to delineate tumor volumes from structural MRI, accounting for lesions
with low [18F]F-DOPA uptake. A total of 73 subjects with treatment-naïve low- and high-grade
gliomas, who underwent brain MRI within two weeks of [18F]F-DOPA PET, were included and
analyzed. Static analysis was conducted on all subjects, while dynamic analysis was performed
on 32 patients. Results: For 68 subjects, the Intraclass Correlation Coefficient for T/S between
manual and ground truth segmentation was 0.91. Using our tool, ICC improved to 0.94. Our
method demonstrated good reproducibility in extracting static tumor-to-striatum ratio (p = 0.357);
however, significant differences were observed in tumor slope (p < 0.05). No significant differences
were found in time-to-peak (p = 0.167) and striatum slope (p = 0.36). Conclusions: Our framework
aids in analyzing [18F]F-DOPA PET images of pediatric brain tumors by automating clinical score
extraction, simplifying segmentation and Time Activity Curve extraction, reducing user variability,
and enhancing reproducibility.

Keywords: automatic pipeline; brain gliomas; [18F]F-DOPA PET imaging; FLAIR MRI;
pediatric gliomas

1. Introduction

Gliomas are the most common central nervous system (CNS) neoplasms in child-
hood, accounting for 35% of pediatric CNS tumors [1]. They encompass a wide range
of entities (including astrocytic and mixed neuronal-glial tumors), exhibiting different
growth patterns (from diffuse to circumscribed), and comprising both high- and low-grade
malignancies [1]. Gliomas present different characteristics between pediatric and adult age,
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such as genetic mutations and response to therapy [2]. In the assessment of pediatric brain
gliomas, PET imaging employing amino acid radionuclides has demonstrated the ability to
address limitations of (i) conventional magnetic resonance imaging (MRI) [2] and (ii) the re-
stricted contrast associated with the use of the radiopharmaceutical 18F-fluorodeoxyglucose
([18F]-FDG) in neuro-oncology [3,4]. Furthermore, 18F-labeled tracers are becoming more
prevalent due to their extended half-life, in contrast to 11C tracers [5]. Among these ra-
dionuclides, 18F-dihydroxyphenylalanine (DOPA) has emerged as particularly notable
because its uptake significantly correlates with tumor grading [6] and prognosis [7] in
patients with infiltrating gliomas. Additionally, [18F]F-DOPA PET demonstrated a potential
role to non-invasively determine the H3K27M mutation status in diffuse midline gliomas
(DMG), such as diffuse intrinsic pontine gliomas (DIPG), which are malignant brainstem
gliomas where biopsy is not routinely performed since diagnosis can still be made based on
clinical and imaging features alone [8–10]. In clinical practice, [18F]F-DOPA PET analysis of
pediatric gliomas is based on standard parameters such as tumor-to-striatum (T/S) and
tumor-to-background tissue (T/N) ratios. However, these parameters may show limitations
for certain lesion types, and in recent years, the use of dynamic parameters (i.e., the shape
of the time activity curve and the steepness of the uptake curve) has increased to overcome
these limitations [10,11]. Of note, in 2022 Fiz et al. [12] conducted a pioneering study of
static and dynamic [18F]F-DOPA PET parameters in 15 children with brain gliomas. They
highlighted the correlation of the T/S ratio with outcomes and observed that time-activity
curve (TAC) patterns best correlated with OS and progression-free survival (PFS). Two
distinct patterns were identified: an accumulated trend in low-grade neoplasms and a
plateau pattern in aggressive gliomas, consistent with the guidelines in [13]. Despite these
significant research advancements, highlighting the diagnostic and prognostic value of
[18F]F-DOPA PET-derived parameters, clinical practice still faces challenges in accurately
and reproducibly measuring these markers. Nuclear medicine physicians typically measure
quantitative markers from PET scans with limited computer assistance. For instance, they
delineate a circular ROI centered on the maximum tumor and striatum uptake to compute
maximum T/S. When the lesion uptake resembles that of healthy brain tissue, clinicians
manually place a ROI on the area of signal abnormality in the T2-weighted MRI scan and
transfer it to the coregistered PET scan. The normal uptake region (N) is traditionally
delineated by positioning a sphere on the contralateral semi-oval center, including gray and
white matter [14,15]. This approach is also applied to TAC extraction, where segmentation
is particularly challenging due to the limited anatomical information within the dynamic
PET scans. This working method is time consuming and has low reproducibility, so it is
essential to define an automatic workflow that is less dependent on the manual definition of
ROI or VOI. Our work aims to implement a semi-automated image processing framework
for [18F]F-DOPA PET, integrating it into the clinical workflow of neuro-oncology. This
pipeline is designed to extract both static and dynamic parameters to support nuclear
medicine specialists in assessing pediatric brain tumors by accelerating analysis time and
improving the accuracy of PET-derived parameters to overcome the inherent drawbacks of
manual analysis.

2. Materials and Methods
2.1. Patient Population

A retrospective evaluation was conducted on all consecutive pediatric patients (aged
younger than 18 years on diagnosis) referred to our institutions between 2011 and 2024
for newly diagnosed treatment-naïve (except biopsy) brain gliomas who had undergone
conventional MRI and [18F]F-DOPA PET (including static and/or dynamic acquisition)
within 2 weeks of each other. Tumor grade was determined according to the 2021 WHO
Classification of Tumors of the Central Nervous System. Exclusion criteria were poor image
quality due to artifacts (e.g., movement, altered distribution due to venous extravasation,
etc.), multiple active malignancies, unavailability of MRI images, or lack of histological
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confirmation. Patients’ characteristics are reported in Table 1 following nomenclature
reported in [16].

Table 1. Characteristics of the study cohort.

Variable Categories Subjects Included (%)

Sex Female, n (%) 37 (50.6)
Male, n (%) 36 (49.3)

Age on diagnosis, median <12 35 (47.9)
≥12 38 (52)

Classification of Tumors

Circumscribed astrocytic gliomas 6 (8.2)
Glioneuronal and neuronal tumors 4 (5.4)

Pediatric type diffuse low-grade gliomas 16 (21.9)
Pediatric type diffuse high-grade gliomas 47 (64.3)

2.2. Image Protocol

[18F]F-DOPA PET studies were executed with a Discovery ST PET/CT or with a
Discovery MI PET/CT system (GE Healthcare, Milwaukee, WI, USA). Both static and
dynamic acquisitions were included in the analysis. [18F]F-DOPA was administered as
a bolus injection. PET scans were acquired using a ninety-second emission scan per bed
position from the lower extremities to the vertex. Raw PET data were reconstructed using
an OSEM algorithm (four iterations, eight subsets, and a 5 mm filter), and the reconstructed
voxel size was 2.027 × 2.036 × 2.036 mm with a 256 × 256 matrix. Low-dose CT was used
for both attenuation correction and topographic localization. MRI studies were performed
on 1.5T (Intera Achieva, Philips, Best, The Netherlands) or 3T (Ingenia Cx, Philips, Best,
The Netherlands) scanners. All patients underwent routine clinical MRI examinations
including axial fluid attenuation inversion recovery (FLAIR), T2-weighted images, and pre-
and post-contrast (0.1 mmol/kg, macrocyclic ionic agent) T1-weighted images.

2.3. Implementation

The final version of the proposed pipeline is structured into 5 distinct modules, as
illustrated in Figure 1: preprocessing, coregistration, region selection, tumor segmentation,
and static and dynamic parameters extraction. The software code has been developed
using Python 3.11 version (https://www.python.org), running in Centos 7, version 7.9.2009.
Coregistration of different imaging modalities relies on Python code defined in Automated
Pipeline for PET Imaging ANalysis (APPIAN) software [17], which requires all acquired
images to be converted from Digital Imaging and Communications in Medicine (DICOM) to
Neuroimaging Informatics Technology Initiative (NIfTI) format. This step was executed by
utilizing MRIcroGL software version: v1.2.20220720b, available at the following link https:
//www.nitrc.org/projects/mricrogl/ visited 1 March 2023, which employs the dcm2nii
function [18]. Additionally, the input data repository has been systematically organized
following the Brain Imaging Data Structure (BIDS) standard [19]. For each subject, it
is imperative to create a folder specific to the imaging modality, e.g., ‘anat’ for MRI,
where both the NIfTI and the associated JSON file are placed. The pipeline is designed
to delineate tumor volume with minimal manual intervention, applicable to both static
and dynamic PET volumes. It employs an automatic thresholding algorithm to segment
the [18F]F-DOPA PET tumor. This method directly relying on [18F]F-DOPA PET scan only
works in case of neoplasms with both T/S and T/N ratios exceeding 1 in the two VOIs
considered. Conversely, to include neoplasms with diminished [18F]F-DOPA uptake, the
pipeline integrates the lesion drawn from FLAIR MRI using a region-growing algorithm
implemented in MRIcroGL.

https://www.python.org
https://www.nitrc.org/projects/mricrogl/
https://www.nitrc.org/projects/mricrogl/
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Figure 1. Image analysis framework is composed of 5 interconnected modules. (a) The first module
consists of pre-processing, that is, (i) the erosion of reference regions to dissipate the impact of
partial volume effect, (ii) FLAIR MRI skull stripping to eliminate the high level of uptake in non-
encephalic regions, and (iii) FLAIR tumor delineation with advanced drawing tool of MRIcroGL. All
the outcomes of this step are used as input for subsequent pipeline steps. (b) The second module is
represented by the registration of different imaging modalities in PET coordinate space. (c) Reference
regions are selected by considering the intersection between the FLAIR lesion and the white matter
of the Desikan–Killiany atlas. (d) FLAIR MRI lesion in PET space is used in the segmentation process
in case of low-grade neoplasms. For high-grade neoplasms, this module employs an automatic
thresholding to segment PET tumors. (e) After lesion delineation, the last module extracts static and
dynamic parameters within the tumor, the reference, and the striatum region. All these measures are
saved in CSV files for each subject.

2.4. Preprocessing
2.4.1. FLAIR MRI Segmentation

FLAIR MRI tumor volume was outlined using the advanced drawing tool of MRI-
croGL. This tool operates in a semi-automatic mode and employs a region-growing segmen-
tation: the central portion of the lesions was chosen as a seeding point for the algorithm.
The resultant VOI can be refined by adjusting two parameters: the radius of the VOI and
the difference from the initial point. The binary volumetric images corresponding to the
tumor volumes were incorporated into the pipeline as NIfTI files. In addition, the obtained
VOIs were processed with a closing operator to enhance the homogeneity and uniformity
of the mask. An example of this step is reported in Figure A1.

2.4.2. Skull Stripping

Visual inspection of the static [18F]F-DOPA PET images revealed a significant uptake
signal in non-encephalic regions, particularly in the skull. To enhance the accuracy of the
analysis, we performed skull stripping on FLAIR MRI, using the BET tool, developed by
the Oxford Centre for Functional MRI of the Brain (FMRIB), located at the University of
Oxford, Oxford, United Kingdom within FSL [20]. The resulting skull-stripped images
were then employed as a mask to isolate the brain, as shown in Figure A2.
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2.4.3. Erosion of Reference Region

The Desikan–Killiany atlas (DKA) [21] was applied to automate the identification
of white matter and corpus striatum regions from both hemispheres. The white matter
volumes, designated as reference regions, were eroded to mitigate the spillover effect,
which might arise around regions with intensive tracer uptake (Figure A3). The erosion of
white matter is specifically conceived to separate the signal of the reference region from
adjacent encephalic structures.

2.5. Coregistration

In this module, our code coregisters Montreal Neurological Institute [22] and DKA
atlases and all FLAIR MRI volumes into the PET coordinate space. The alignment and
transformation steps are based on the APPIAN software [17]. The alignment procedure
consists of two steps: (i) the MRI volume is aligned with the PET, and (ii) the Montreal
Neurological Institute atlas is aligned with the MRI. To perform this first step, the align
function was defined using the registration function provided by Python’s ANTspy li-
brary [23]. The PET volume, established as the reference image, and the MRI volume,
which is the source image, were used as inputs for this function. Considering that both the
source and the reference images refer to the same subject, a rigid body (6 parameter) linear
transformation is applied. The output of the align function provides the transformation to
move from the MRI system to the PET coordinate space. MNI atlas was aligned to the MRI
using a non-linear transformation with ANTs. For the transformation step, the MNI to PET
coordinate transformations were applied to the DKA and tumor VOI to warp them into
PET coordinate space using nearest neighbor interpolation.

2.6. Region Selection

This study focuses on individuals affected by hemispheric or subtentorial tumors. For
hemispheric tumors, the white matter of the opposite hemisphere was employed as the
reference region, and the selection of the reference region was verified by overlaying the
tumor outline on key regions such as the white matter, thalamus, and pons. The striatum
was defined by combining specific areas for each hemisphere based on the look-up table.
When dealing with subtentorial tumors, the left hemisphere was consistently employed as
the reference.

2.7. Tumor Segmentation

Before identifying lesions, the defined pipeline removes the skull signal from the [18F]-
FDOPA PET using a brain mask obtained from the skull-stripped FLAIR. We implemented a
thresholding algorithm that automatically identifies tumor lesions within the [18F]-FDOPA
PET volume. To obtain the maximum radiotracer uptake value of the reference region, the
entire white matter in the hemisphere opposite the lesion was considered. The semioval
center was not included because the DKA atlas does not encompass this region and we
chose not to manually add this VOI to the atlas in order to minimize manual intervention.
The semioval center was not considered because the DKA atlas does not encompass this
region and we chose not to manually add this VOI to the atlas in order to minimize manual
intervention. Furthermore, considering a large reference region, such as the entire white
matter, provides greater reliability of its maximum value and the extracted parameters:

SUVrmax =
PET3D
maxN

(1)

SUVrmax > 1 (2)

The SUVr volume represents a map of the radiotracer uptake normalized to the maxi-
mum concentration level within the white matter of the hemisphere opposite to the lesion
site. The voxels with concentration values above the maximum observed in the reference
region define the tumor volume. Once the PET tumor volume was defined, the T/S and
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T/N ratios were calculated for both the PET and FLAIR tumor VOI. The automatically
derived volume was used in subsequent pipeline modules only if all parameters had values
greater than 1; otherwise, the FLAIR-drawn VOI was used.

2.8. Enhancement of Tumor Segmentation

In static PET images derived from dynamic scans, a high uptake signal from the
superior sagittal sinus is frequently observed. This was also our case within the tumor
mask. To address this issue, we devised a two-step approach, as follows:

1. A probability map representing the sinus sagittalis was obtained by performing a
weighted sum of the initial two frames of the 4D PET scan. The first two frames
were employed because the sagittal sinus signal decays in the following frames.
Normalizing this volume to its maximum yields a pseudo-probability map.

2. Next, the tumor mask was refined by removing small connected components and
integrating it with the FLAIR tumor using logical OR operation. A Gaussian filter,
with FWHM equal to 5, was applied to generate a probability distance map.

Subsequently, probability values were extracted within the original tumor mask for
both maps. These values served as inputs for training a K-means algorithm to discern
between tumor and sinus labels [24]. Following label assignment, Support Vector Machine
(SVM) was employed as a classifier to enhance the accuracy of tumor–sinus classifica-
tion [25]. This approach aligns with recent advancements in clustering functional magnetic
resonance imaging (fMRI) time series, which have shown promise in glioblastoma char-
acterization by enhancing the identification of tumor regions [26]. Both algorithms are
implemented in the scikit-learn Python library [27]. This step was executed only for the
lesions with T/S and T/N both > 1, an example of this step is reported in Figure 2.

Figure 2. Refinement step for automatically segmented lesions. We present exemplary cases of
subjects with: a diffuse midline glioma (DMG), H3 K27-altered involving the right thalamus (a–d), a
DIPG (e–h), and a DMG, H3 K27-altered of the left diencephalic–mesencephalic junction (i–l). The
tumor masks in the first column encompass the superior sagittal sinus. Probability maps consistently
reveal elevated values within this structure. The third column displays the lesion’s distance map. In
the last column, refined tumor regions are shown after excluding the sinus structure. This refinement
eliminates artifacts and provides a clearer representation of the tumor.

2.9. Static Parameters Extraction

In DKA, the corpus striatum is defined by the aggregation of three different VOIs:
caudate, putamen, and pallidum. Our pipeline assembles the striatal volume before static
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parameters analysis with OR operation. The maximum values within (i) the tumor region,
(ii) the corpus striatum, and (iii) white matter are used for calculating the T/S and the T/N:

T
S
=

Tumormax

Striatummax
(3)

T
N

=
Tumormax

Re f erencemax
(4)

2.10. Dynamic Parameters Extraction

The dynamic parameters were calculated following the methodology outlined in
reference [12]. The same VOI defined in the tumor segmentation step was used to calculate
the dynamic indices. The 4D [18F]-FDOPA PET scans were used as input to generate
time-activity curves (TAC), which were recorded in a CSV file for each subject. The TAC
was calculated by averaging the uptake values within a specific VOI for each frame of
the dynamic scan; the standard deviation is also reported in the CSV file. The dynamic
parameters included Time-To-Peak (TTP), tumor slope, striatum slope, and the Dynamic
Slope Ratio (DSR) [28] . TTP represents the time point at which the maximum uptake of
TAC is reached. The two slopes were calculated via linear regression of the mean values,
within a specific VOI, during the interval between the second minute and the end of the
acquisition. DSR is represented as a normalization of the tumor slope to the striatum
slope. The proposed semi-automatic method overcomes the limitations of manual tumor
segmentation techniques in standard clinical practice. In Figure 3, we report exemplary
cases of the 3 uptake pattern.

Figure 3. Time Activity Curves of tumor lesions. We report three exemplary subjects affected by:
a Diffuse astrocytoma, NOS (WHO grade 2) of the right frontal lobe (a–c), a DMG H3 H27-altered
(WHO grade 4) of the medulla (d–f), and a Pilocytic astrocytoma (WHO grade 1) of the cerebellum
(g–i). In the first column, we report the FLAIR MRI. In the second column, we show the [18F]F-
DOPA PET with superimposition of the lesion. In the third column, we report the Time Activity
Curves showing three different patterns: (c): an accumulation pattern. (f): a plateau pattern (i): a
downward pattern.
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2.11. Intra-Tumor Heterogeneity Analysis

We analyzed voxel-level TAC within the tumor volumes to identify sub-regions based
on radionuclide uptake. Three regions were hypothesized at the tumor level, demarcated
by the following three intervals:

Uptakemaximum = PETvol > meantumore + 2stdtumor (5)

Uptakemean = meantumor < PETvol

< meantumor + 2stdtumor
(6)

Uptakeminimum = meantumor − 2stdtumor < PETvol

< meantumor
(7)

These regions were included alongside the DKA atlas as new labels, as shown in
Figure 4. Finally, TACs were calculated to assess a possible differentiation in the uptake
pattern of the three volumes considered. This step represents a first attempt to visualize
different areas of hyperactivity, which can be crucial for radiotherapy planning.

Figure 4. Visualization of tumor sub-volumes. (a–d): A Patient with a DMG H3 K27-altered (WHO
grade 4) of the right thalamus. The first column depicts the [18F]F-DOPA PET SUVr volume. The
following columns show the three sub-tumor masks. (e–h): A subject with a diffuse pediatric-type
high-grade glioma, H3-wildtype, and IDH-wildtype (WHO grade 4) of the left paracentral lobule; in
the following columns, we show the SUVr volume and the three masks. (i–l): Finally, we report a
patient with a DMG H3 K27-altered (WHO grade 4) of the left thalamus, as shown in (i).

2.12. Manual Analysis

To validate our pipeline, static and dynamic indices were compared between the
proposed extraction method and the conventional clinical workflow. The PET Volume
Computer-Assisted Reading (VCAR) [29] tool was used on the GE HealthCare AW, located
in Waukesha, Wisconsin, United States. server to analyze static indices. To calculate T/S
ratios, the maximum value expressed in Bq/ml was calculated for both tumor and striatum
using a growing region algorithm with the maximum value as the seeding point to establish
these VOIs. For T/N ratios, the reference region was determined using a sphere in the
contralateral centrum semiovale. The radius of the sphere was adjusted for each subject
to include both white and gray matter. TACs were extracted with the 3D PET viewer on
the AW server with the PET 4D tool, allowing for visualization and extraction of the TAC.
The tumor lesion was manually defined using a growing region method in the final frame
of acquisition, due to higher anatomical detail. This VOI was then projected to all other
frames, and the TAC was saved as a CSV file for further analysis. A correlation analysis of
the T/S ratios extracted by both the manual analysis and our algorithm was performed
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to assess reliability with the measurements reported in the clinical records, which were
considered ground truth. This analysis specifically focused on the T/S ratio because it is
the most reported metric and was based on a subset of 68 subjects, excluding those with
negative PET scan results.

3. Results
3.1. Comparison Between Automatic and Manual Static Indexes

During the study period, 89 pediatric patients with brain gliomas who had undergone
[18F]F-DOPA PET were evaluated. Out of the initial population, 73 subjects (37 females)
were included in our study based on the selection criteria. Sixteen subjects were excluded
due to the following reasons: ten subjects had a low resolution within the FLAIR MRI and
we could not use it for coregistration; one subject, whose FLAIR was acquired post-surgery,
was excluded because it showed signal abnormalities not compatible with the coregistration
process; the remaining were excluded due to problems with the PET acquisition (two
dynamic PET images had no signal within the volume, two subjects did not undergo PET
acquisition due to health issues, and one dynamic PET had a different field of view to its
static image). Static PET was available for all subjects, whereas dynamic PET scans were
performed in 32. Our pipeline was employed within a cohort of 73 subjects and tested the
performance of our algorithm by comparing the results with indexes and curves obtained
manually. The manual and semi-automatic indices do not follow a normal distribution, as
confirmed by the Shapiro–Wilk test. The two extraction methods were compared using
the Wilcoxon test. For the T/S there are no statistical differences (p = 0.357), as shown
in Figure 5b . Conversely, there is a significant difference for T/N (p < 0.005). As we
are considering two metrics, the Bonferroni correction is applied. For T/S there are no
statistical differences (p = 0.713), contrary to T/N (p < 0.005). Cohen’s D effect size and the
confidence interval (CI) were calculated for the two static parameters. For T/S a D = 0.026
and CI = [−0.037, 0.014] were obtained. For T/N, however, the effect size was 0.55 and the
CI = [−0.32, −0.23]. Cohen’s D was calculated according to [30].

Figure 5. Raincloud plots depicting the distribution of T/N and T/S, computed with the proposed
pipeline and with the manual method. Black dots refer to outliers. Panel (a) displays the distribution
of the automatic T/N alongside the manual T/N index. These two indices have shown significant
differences, as indicated by the ‘**’ in the figure, which denotes a p-value much less than 0.05. Panel
(b) depicts the automatic T/S alongside the manual T/S index.
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3.2. Comparison Between Automatic and Manual Dynamic Indexes

The dynamic indexes of 32 subjects were compared between the two methods. One
subject was excluded because the dynamic PET contained noise due to [18F]F-DOPA admin-
istration error; a second subject was excluded because the tumor presented two dislocated
lesions. All the dynamic indexes do not follow a normal distribution, as demonstrated by
the Shapiro–Wilk test, so the Wilcoxon test was applied. No significant differences were
found between the striatum slopes for the two methods (p = 0.369, p = 0.9 after Bonferroni
correction) and the TTP (p = 0.167, p = 0.67 after Bonferroni correction). However, significant
differences were observed between the tumor slopes and the DSR (p < 0.05, p = 0.09 after
Bonferroni correction), as depicted in Figure 6a. Cohen’s D effect size and the CI were
calculated for the dynamic parameters. For TTP, the effect size was D = 0.18 with a CI of
[−33.12, 288.4]. The tumor slope yielded an effect size of D = 0.14 and a CI of [0.043, 0.34].
The striatum slope had an effect size of D = 0.088 with a CI of [−0.17, 0.017]. Finally, for
DSR, the effect size was D = 0.17 and the CI was [0.094, 0.81].

Figure 6. Raincloud plots depicting the distribution of the slopes, both for the tumor and striatum,
the time-to-peak and the dynamic slope ratio derived from regions compared between the manual
and the semi-automatic method. Black dots refer to outliers. Panel (a) displays the distribution
of the semi-automatic tumor slope alongside the manual index, proposed pipeline and with the
manual method. Black dots refer to outliers. Panel (a) displays the distribution of the automatic
T/N alongside the manual T/N index. These two indices have shown significant differences, as
indicated by the ‘*’ in the figure, which denotes a p-value much less than 0.05. Panel (b) depicts the
semi-automatic striatum slope alongside the manual index. In (c), we display the distribution of the
time-to-peak obtained using the two methods. In (d) we reported the semi-automatic and manual
distributions of the dynamic slope ratio.

3.3. Agreement Between Ground Truth, Manual and Automatic Static Indexes

A subset of 68 subjects was employed in this analysis, excluding those with negative
PET scans due to the absence of T/S ratios in their reports. To evaluate the reliability of the
manual analysis and our tool in segmenting the tumor region, an intra-class correlation
(ICC) analysis was performed against the ground truth from the clinical reports. First, the
ICC (type 3) were calculated between the T/S ratios from the reports and those obtained
through manual analysis, resulting in an ICC of 0.91. Then, the average T/S ratio was
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obtained from manual analysis and clinical reports. The ICC between the T/S obtained
by our tool and this averaged T/S ratio were calculated, achieving an ICC of 0.94. ICC
analysis was performed with the function implemented in Python [31].

4. Discussion

There are several open-source software that allow for automated analysis of PET
images. In 2018 Funck et al. [17] introduced APPIAN, a comprehensive tool designed to
automate the analysis of PET scans. This pipeline encompasses critical stages, including
coregistration with structural MRI images, partial volume correction, and quantification.
Notably, APPIAN is developed using Nipype, making it open-source and compatible with
various programs executable in a Bash shell environment. Its modular architecture facili-
tates easy expansion and customization, empowering users to integrate new algorithms or
entirely novel analyses into the workflow. In 2023, Nordio et al. [32], implemented a pipeline
to perform kinetic analyses of [18F]-DOPA PET. The main steps can be summarized as fol-
lows: image motion correction, coregistration with stereotactic atlases, and quantification.
To the best of our knowledge, these existing tools primarily facilitate quantitative studies
of predefined regions already mapped in an atlas. However, to apply these frameworks
effectively in the clinical routine examination of brain tumors, physicians would still need
to delineate the tumor region manually. Consequently, this approach does not completely
address the need for automation in nuclear medicine analysis. Peira et al. [33], in 2023,
defined an automatic approach for the extraction of static parameters from [18F]F-DOPA
PET in pediatric diffuse gliomas. The analysis follows the clinical workflow defined in [34].
This work represents a first attempt at the implementation of an automatic computer-aided
tool to assist clinicians in the extraction of semi-quantitative parameters. This software
is structured in three modules: (i) spatial normalization of the PET volume to the MNI
atlas, (ii) identification of the non-affected brain hemispheres, and (iii) extraction of the
standardized uptake value ratio (SUVr) volume and static parameters. The source code is
defined in MatLab, which limits the availability of the code since it is not an open-source
environment. Furthermore, this code is not structured into a pipeline, as the coregistration
was implemented with Insight Toolkit (ITK, version 4.12) and all subsequent steps are
implemented in MatLab. Lastly, this software does not compute dynamic parameters. With
our work we present a tool designed to assist nuclear medicine clinicians in assessing pedi-
atric brain gliomas by automatizing the extraction of both static and dynamic parameters.
This tool was tested on a cohort of 73 pediatric patients, showcasing a variety of ages and
tumor aggressiveness. In our study, the indexes obtained automatically by the pipeline
were compared against those derived from the manual method performed with PET VCAR
tools. Our software is open-source, written entirely in Python, and has a modular and
extensible architecture that allows users to add new elements to the analysis. The proposed
pipeline offers several significant advantages over manual analysis. Firstly, it mitigates
individual interpretation errors and provides a reliable aid in clinical decision-making.
Additionally, it ensures faster processing times and offers an accessible framework for
clinicians with varying experience levels. By employing a hybrid approach for tumor
segmentation, our software is also effective for lesions with low [18F]F-DOPA uptake.
This approach mitigates potential uncertainties associated with automated segmentation
in such instances. In the literature, the centrum semiovale, comprising both white and
gray matter, is commonly used as the reference region. However, in our study, the entire
contralateral white matter to the tumor lesion was identified as reference. Indeed, we
believe that considering a larger region enhances the reliability of the extracted maximum
value. The reason behind observing a significant difference between semi-automatic and
manual T/N ratios is precisely attributable to the different reference regions employed
(p < 0.005). Nevertheless, the maximum uptake value of N is used for tumor segmentation,
and consequently, the maximum lesion absorption value is employed to calculate T/S. For
this second index, we have demonstrated that our software achieves good reproducibility
compared to the manual method and the ground truth. The Wilcoxon test was employed to
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statistically analyze these differences. For the T/S ratio, no statistically relevant differences
were found between the semi-automatic and manual approaches (p = 0.357, p = 0.713, after
Bonferroni correction). To further quantify these findings Cohen’s D effect size and CI were
calculated. For the T/S ratio, Cohen’s D was 0.026 with a confidence interval of [−0.037,
0.014]. This negligible effect size and the narrow CI strongly support the conclusion that
there are minimal differences between the semi-automatic and manual T/S measurements.
The consistency of T/S across methods reinforces the reliability of the proposed software in
accurately replicating the manual analysis for this parameter. These results are particularly
important for two reasons: (i) it indicates that the DKA atlas is accurately coregistered with
the PET images, and (ii) it ensures consistent identification of the tumor VOI. Conversely,
for T/N, the effect size was larger, with Cohen’s D equal to 0.55 and a confidence interval
of [−0.32, −0.23]. These results indicate a pronounced difference between the two methods
for T/N, further highlighting the impact of reference region selection. One of the most
innovative parts of our work is the automatic extraction of TAC and dynamic parameters
from tumor lesions, which significantly leverages clinical workflow. It is also one of the first
projects to automate the extraction of dynamic parameters. Typically, calculating dynamic
parameters is onerous and heavily reliant on the user’s experience in lesion delineation.
The proposed software employs the segmented tumor lesion from the static PET scan
as the VOI for curve extraction. In contrast, physicians usually delineate the lesion in
the last frame of the dynamic acquisition and back-project it onto previous frames. This
approach is challenging due to the reduced anatomical information of dynamic PET scans,
complicating the segmentation process. Although PET VCAR tools allow a growing region
algorithm to accelerate segmentation, the defined volume often requires refinement to
minimize artifacts from adjacent regions in the TAC calculation. Moreover, this method
is only effective for lesions with an absorption of the radiopharmaceutical higher than
cerebral parenchyma. For tumors with low uptake, it is necessary to utilize information
derived from structural MRI. Our method accelerates these steps by delineating the FLAIR
lesion as a pre-processing step and performing artifact removal from the tumor region
as an automatic refinement process. To minimize the need for manual post-processing, a
tumor VOI refinement step was implemented to remove all non-tumor voxels from the
lesion mask. The statistical analysis of the dynamic parameters revealed varying outcomes
between the manually and automatically calculated indices. For the striatum slopes, no
significant difference was found between the two methods (p = 0.369, p = 0.9 after Bon-
ferroni correction), and similarly, the TTP did not show a significant difference (p = 0.167,
p = 0.67 after Bonferroni correction). However, for the tumor slopes and the DSR, significant
differences were observed (p < 0.05). The effect size for TTP was small, with a Cohen’s D
value of 0.18 and a wide CI of [−33.12, 288.4]. The tumor slope had a similarly low effect
size (D = 0.14) and a CI of [0.043, 0.34]. The striatum slope yielded an even smaller effect
size (D = 0.088) with a CI of [−0.17, 0.017]. Finally, for DSR, the effect size was D = 0.17,
with a CI ranging from [0.094, 0.81]. These results suggest that, although there are some
differences, the small effect sizes indicate that the variations between manual and automatic
methods are likely not significant, except for tumor slope and DSR. Moreover, the wide
CI of the TTP, despite the lack of significant differences, suggests the importance of better
investigating the reliability of the tool in extracting dynamic parameters by increasing the
cohort of patients with available dynamic scans.

5. Limitations

The principal constraints of this study can be summarized as follows: (i) the semi
automatic approach deriving from the inclusion of cases with low uptake and (ii) the
low number of subjects with dynamic PET availability. The initial aim was to define a
fully automatic tool; however, during the development of the code, it became evident
that it was not feasible to employ a thresholding algorithm for cases of tumors with a low
radionuclide uptake. Moreover, the limited number of subjects in the Galliera Hospital
database constrains the possibility of employing deep learning (DL) techniques for a fully
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automated analysis of [18F]F-DOPA PET imaging. The final software is therefore semi-
automatic, as the FLAIR tumor lesion is delineated using the MRIcroGL software. The
second limitation is related to the low number of subjects with the availability of dynamic
PET scan. Indeed, this imaging modality was only introduced in the nuclear medicine
department in 2018. The statistical results obtained on the dynamic parameters represent an
initial and preliminary analysis. The small sample size for dynamic PET scans introduces
challenges regarding the reliability and generalizability of the findings. Future studies
with larger datasets will be necessary to confirm the preliminary trends observed. One last
significant constraint is that the resolution of MRI data can affect the coregistration process.
In fact, different subjects were excluded due to signal abnormalities within the FLAIR MRI
due to low resolution or different protocols applied in the acquisition protocol.

6. Conclusions

Our work introduces a new framework to assist nuclear medicine physicians in
analyzing [18F]F-DOPA PET imaging for pediatric brain gliomas. Our study showed that
this framework reliably extracts static parameters across a large group of pediatric patients
and automates the extraction of dynamic data. Traditionally, analyzing [18F]F-DOPA
PET scans involves a lot of manual work, but our framework streamlines this process,
providing more reliable and reproducible results. Additionally, it simplifies segmentation
and extraction processes, paving the way for the broader adoption of dynamic metrics in
the diagnosis and prognosis of brain gliomas. To assist clinicians in the prognostic process,
this study focused on the extraction of fundamental parameters. In future works, we intend
to investigate the correlation between these metrics and significant clinical outcomes, e,g.,
OS, PFS, and genetic mutations. Furthermore, the next target is to investigate the potential
of radiomics analysis within this cohort, with a view to identifying which characteristics
may prove more informative in terms of outcome. Additionally, a comparison between
the developed tool and various existing platforms, such as APPIAN, will be conducted to
evaluate processing times and examine the correlation of the extracted clinical metrics to
better understand the reliability of the defined tool.
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Appendix A

Figure A1. We show an axial slice of MRI FLAIR of an exemplary subject affected by a diffuse intrinsic
pontine glioma. (a) The lesion appears hyperintense. (b) We report the superimposition of the binary
mask obtained with the semi-automatic growing region method of MRIcroGL.

Figure A2. We report an axial slice of FLAIR MRI of an exemplary subject (a) original structural
image. (b) Skull stripped MRI obtained using FSL BET tool.

Figure A3. In this figure we show the comparison between the original Desikan–Killiany atlas and
the one obtained after a cycle of erosion. (a) It is possible to see how the voxels of gray matter, white
matter, and subcortical structures are not separated. (b) After erosion of the white matter, of both
hemispheres, all structures become distinguishable. We chose the eroded atlas to reduce the partial
volume effect in subsequent pipeline steps.
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