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A LAGRANGE-TYPE PROJECTOR ON THE REAL LINE

G. MASTROIANNI AND I. NOTARANGELO

Dedicated to Professor J. Szabados on the occasion of his 70th birthday

Abstract. We introduce an interpolation process based on some of the ze-
ros of the mth generalized Freud polynomial. Convergence results and error
estimates are given. In particular we show that, in some important func-
tion spaces, the interpolating polynomial behaves like the best approxima-
tion. Moreover the stability and the convergence of some quadrature rules are
proved.

1. Introduction

In this paper we study the approximation of functions f : R → R, by means of
Lagrange interpolation, in some suitable weighted Lp–spaces. To be more precise,
we consider functions increasing exponentially for |x| → ∞ and having a singular
inner point, which we assume to be 0.

Accordingly, we introduce a weight of the form

u(x) = |x|γ(1 + |x|)µe−
|x|λ
2 , γ ≥ 0 ,

and we investigate the convergence of the interpolation process in Lp
u, for 1 ≤ p ≤

∞. We remark that, since u(0) = 0, the singularity of the function at 0 generates
further difficulties and requires a more careful study of the polynomial behaviour
in suitable neighborhoods of the origin (see for instance [23, 24, 25, 1] for the
case [−1, 1], and more recent papers [21, 22] for the case of unbounded domains).
Lemma A in Section 2 answers this problem.

In order to introduce our interpolation process, we consider the weight w(x) =

|x|αe−|x|λ and the corresponding sequence {pm(w)}m∈N of orthonormal polyno-
mials with positive leading coefficients. Unfortunately, the behaviour of the pro-
jectors related to {pm(w)}m∈N is poor. For instance, in [19], the corresponding
Fourier sums Sm(w, f) have been considered for functions f ∈ Lp

u and, similarly
to the cases of Freud and Laguerre systems, it has been proved that the inequality
‖Sm(w, f)u‖p ≤ C ‖fu‖p, with C > 0 a constant, holds true only if p ∈ (4/3, 4).
Furthermore, the Lagrange polynomials Lm(w, f) interpolating f at the zeros of
pm(w) behave as those based on Freud zeros.
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“Numerical methods for structured linear algebra and applications”.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

327



328 G. MASTROIANNI AND I. NOTARANGELO

To overcome such a problem, in [26, 17, 30] the authors have suggested to in-
terpolate a “finite section” of the function and then to estimate a finite section
of the interpolating polynomial in suitable weighted norms. A similar method
has been used for Fourier sums in [26, 19]. To fix the idea, denoting by am =
am(w) the Mhaskar–Rahmanov–Saff number of w and by χm the characteristic
function of the interval [−θam, θam], 0 < θ < 1, the Lp

u–convergence of the se-
quences {χmLm(w, χmf)}m∈N and {χmSm(w, χmf)}m∈N has been proved in [26],
for 1 < p < ∞ and α = γ = µ = 0.

But χmLm(w, χmf) is a “truncated” polynomial, and therefore χmLm(w) does
not project a function belonging to L∞

u into the space Pm−1 of the polynomials
of degree at most m − 1. On the other hand, bounded projectors as well as those
having the smallest norm are crucial tools in different contexts, for instance in the
numerical treatment of functional equations.

In order to obtain these kinds of projectors, following an idea previously used in
[33, 10], we denote by Lm+2(w, f) the Lagrange polynomial interpolating f ∈ L∞

u

at the zeros of pm(w) and the extra points ±am. Then we set L∗
m+2(w, f) =

Lm+2(w, χjf), where f ∈ L∞
u and χj denotes the characteristic function of [−xj , xj ],

with xj = xj(m) = mink {xk : xk ≥ θam}, θ ∈ (0, 1). The operator L∗
m+2(w) does

not project L∞
u onto Pm+1, but onto a subspace Pm+1 ⊂ Pm+1. We prove that⋃

m Pm+1 is dense in Lp
u, for 1 ≤ p ≤ ∞, and that for each element of Pm+1,

both Marcinkiewicz inequalities hold true. As a by-product, we characterize the
Marcinkiewicz bases in Pm+1. Moreover, under simple necessary and sufficient
conditions on the weights w and u, we show that L∗

m+2(w) is a uniformly bounded
operator in some important subspace of Lp

u, with 1 < p < ∞.
Finally, using the same operator, we introduce a Gauss-type rule and a “product

rule” and we prove their stability and convergence.
This paper is structured as follows. In Section 2 we recall some basic facts. In

Section 3 we give our main results and in Section 4 we prove them.

2. Basic facts

Function spaces. Let v : [0,+∞) → R
+ be a continuous and nondecreasing

function with v(0) = 0. Additionally assume that, for each ε > 0, v(x)/xε is non–
increasing and limx→0+ [v(x)/x

ε] = +∞. Simple examples of such kinds of weight

functions are given by v(x) = logα log(e + x) and v(x) = log−β (1 + 1/x), with
α, β > 0. Setting �(x) = |x|γ(1+ |x|)µv(|x|), γ ≥ 0, µ ∈ R, we introduce the weight
function

(2.1) u(x) = �(x)e−
|x|λ
2 , λ > 1 .

For 1 ≤ p < ∞ we denote by Lp
u the set of all measurable functions f such that

‖f‖Lp
u
:= ‖fu‖p =

(∫
R

|f(x)u(x)|p dx

)1/p

< ∞ ,

while for p = ∞ we introduce the space

Cu := L∞
u =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
f ∈ C0(R) : lim

x→±∞
f(x)u(x) = 0

}
, γ = 0 ,

{
f ∈ C0(R \ {0}) : lim

x→0 or ±∞
f(x)u(x) = 0

}
, γ > 0 ,
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with the norm

‖f‖L∞
u

:= ‖fu‖∞ = sup
x∈R

|f(x)u(x)| .

Such spaces Lp
u with the above-defined norms are Banach spaces. Note that a

function in Lp
u does not belong necessarily to Lp and that the Weierstrass theorem

implies the limit conditions in the definition of Cu.
We remark that, by definition of v, if a weight of the form |x|σ(1 + |x|)τ is

integrable on R, so is also |x|σ(1 + |x|)τv(|x|) (see for instance [20]).
Let us define the Sobolev spaces by

W p
r (u) =

{
f ∈ Lp

u : f (r−1) ∈ AC(R \ {0}), ‖f (r)u‖p < ∞
}
, r ≥ 1 ,

where AC(R \ {0}) denotes the set of all the functions which are absolutely contin-
uous on every closed subset of R \ {0}. We equip these spaces with the norm

‖f‖Wp
r (u) = ‖fu‖p + ‖f (r)u‖p .

For any f ∈ Lp
u, 1 ≤ p ≤ ∞, we consider the following rth (r ∈ Z

+) modulus of
smoothness (this definition appeared in [21, 22])

ωr(f, t)∗u,p = Ωr(f, t)∗u,p +
3∑

k=1

inf
P∈Pr−1

‖(f − P )u‖Lp(Ik) ,

with step t < t0 (t0 sufficiently small), I1 = (−∞,−Ar t−1/(λ−1)), I2 = (−4r t, 4r t)
and I3 = (Ar t−1/(λ−1),+∞). Its main part Ωr(f, t)∗u,p is defined by

Ωr(f, t)∗u,p = sup
0<h≤t

‖∆r
h(f)u‖Lp(Ir,h)

,

where Ir,h = [−Ar h−1/(λ−1),−4r h]∪ [4r h,Ar h−1/(λ−1)], A > 0 is a constant and

∆hf(x) = f

(
x+

h

2

)
− f

(
x− h

2

)
, ∆r = ∆(∆r−1) .

In the sequel, C will stand for a positive constant that could assume different
values in each formula and we shall write C 	= C(a, b, . . .) when C is independent
of a, b, . . .. Furthermore A ∼ B will mean that if A and B are positive quantities
depending on some parameters, then there exists a positive constant C independent
of these parameters such that (A/B)±1 ≤ C.

Let us denote by Pm the set of all algebraic polynomials of degree at most m and
by Em(f)u,p = infP∈Pm

‖(f − P )u‖p the error of best polynomial approximation
in Lp

u. In [21, 22] the following Jackson and Stechkin-type inequalities have been
proved:

Em(f)u,p ≤ Cωr
(
f,

am
m

)∗
u,p

, r < m ,(2.2)

ωr
(
f,

am
m

)∗
u,p

≤ C
(am
m

)r � m
am

�∑
k=1

(
k

ak

)r
Ek(f)u,p

k
,(2.3)

where f ∈ Lp
u, 1 ≤ p ≤ ∞, am ∼ m1/λ is the Mhaskar–Rahmanov–Saff (M–R–S,

for short) number related to the weight u; in both cases, C is independent of f and
m, and �a� stands for the largest integer smaller than a ∈ R

+ or equal.



330 G. MASTROIANNI AND I. NOTARANGELO

An estimate, weaker than (2.2), for the error of best polynomial approximation
is given by

Em(f)u,p ≤ C

∫ am
m

0

[
Ωr(f, t)∗u,p + inf

P∈Pr−1

‖(f − P )‖Lp(−4rt,4rt)

]
dt

t
(2.4)

=: C

∫ am
m

0

Ar(f, t)u,p
t

dt ,

where 1 ≤ p ≤ ∞ and C 	= C(m, f). Inequality (2.4) can be deduced from [22] (see
also [2]). In order to estimate the second addend in (2.4), we can use the following
lemma, proved in [1, 22].

Lemma A. Let f ∈ W p
r (u), 1 ≤ p ≤ ∞, r ≥ 1, γ > 0. If γ + 1/p > r, then

(2.5) ‖fu‖Lp(−t,t) ≤ C tr
(
‖fu‖Lp(−a,a) + ‖f (r)u‖Lp(−a,a)

)
, a > t .

While if γ+1/p ≤ r, γ+1/p 	= 1, 2, . . . , r and fr−1−τ (0) exists, with τ = �γ + 1/p�,
then there exists a polynomial P ∈ Pr−1−τ such that

(2.6) ‖(f − P )u‖Lp(−t,t) ≤ C tr
(
‖fu‖Lp(−a,a) + ‖f (r)u‖Lp(−a,a)

)
.

In both cases, C is independent of f and t.

To complete Lemma A, we remark that if γ+1/p = r, then (2.5) holds true with
tr log t−1 in place of tr and if γ + 1/p = ν ∈ N, ν < r, then (2.6) holds true with ν
and tr log t−1 in place of τ and tr, respectively.

For simplicity, in the sequel we will assume that γ + 1/p is not an integer.
By means of the modulus of smoothness, for 1 ≤ p ≤ ∞, we can define the

Zygmund spaces

Zp
s (u) =

{
f ∈ Lp

u : sup
t>0

ωr(f, t)∗u,p
ts

< ∞, r > s

}
, s ∈ R

+,

equipped with the norm

‖f‖Zp
s (u) = ‖f‖Lp

u
+ sup

t>0

ωr(f, t)∗u,p
ts

.

We remark that, by inequalities (2.4) and (2.3), supt>0 A
r(f, t)u,p t

−s < ∞ im-
plies supt>0 ω

r(f, t)∗u,p t
−s < ∞. Therefore, in the definition of the Zygmund space,

ωr(f, t)∗u,p can be replaced by Ar(f, t)u,p.

Orthonormal polynomials and Lagrange-type projector. Let us consider

the weight w(x) = |x|αe−|x|λ , α > −1, λ > 1, and the related M–R–S number am,
defined by (see for instance [11])

(2.7) am = am(w) =

[
2π

λB
(
λ+1
2 , 1

2

)]1/λ (1 + α

2m

)1/λ
m1/λ,

where B is the beta function.
Let {pm(w)}m∈N be the corresponding sequence of orthonormal polynomials with

positive leading coefficients. These polynomials, sometimes called generalized Freud
polynomials, have been extensively studied in [5, 13, 28, 6, 7].
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We denote by xk, 1 ≤ k ≤ �m/2�, the positive zeros of pm(w) and by x−k the
negative ones. If m is odd, then x0 = 0 is a zero of pm(w). These zeros are located
as follows:

−am

(
1− C

m2/3

)
≤ x−�m/2� < · · · < x1 < x2 < · · · < x�m/2� ≤ am

(
1− C

m2/3

)
,

where C is a positive constant independent of m (see [13]).
In order to introduce a subspace of Pm+1, we assume m to be even and, for a

fixed θ ∈ (0, 1), we set

(2.8) xj = min
1≤k≤m

2

{xk : xk ≥ θam} .

So we call Pm+1 the subspace of Pm+1 defined by

Pm+1 = {Q ∈ Pm+1 : Q(±am) = Q(xi) = 0, |i| > j} .
Setting

ϕk(x) =
�∗k(w;x)

u(xk)
, |k| ≤ j ,

with

(2.9) �∗k(w;x) =
pm(w;x)

p′m(w;xk)(x− xk)

(a2m − x2)

(a2m − x2
k)

,

the collection {ϕ−j , . . . , ϕ−1, ϕ1, . . . , ϕj} is a basis of Pm+1 and, therefore, every
polynomial Q ∈ Pm+1 can be written in a unique manner as

Q(x) =
∑
|k|≤j

ϕk(x)Q(xk)u(xk) =: L∗
m+2(w,Q;x) .

Extending the operator L∗
m+2(w) to the functions f ∈ Cu, we introduce

L∗
m+2(w, f ;x) =

∑
|k|≤j

�∗k(w;x)f(xk) .

This polynomial interpolates the function f at each zero xk (|k| ≤ j), and it vanishes
at the points ±am and xi (|i| > j). So it belongs to Pm+1. Therefore L∗

m+2(w) :
Cu → Pm+1 is a projector.

Notice that the Lagrange polynomial, Lm+2(w, f), interpolating f at the knots
xi (i ≤ m/2) and ±am(w), can be written as

Lm+2(w, f ;x) =
∑

|k|≤m
2 +1

�∗k(w;x)f(xk) ,

where �∗k(w) are defined as in (2.9) for |k| ≤ m/2 and

(2.10) �∗±(m
2 +1)(w;x) =

am ± x

2am

pm(w;x)

pm(w;±am)
.

Then L∗
m+2(w, f) is not a “truncated” polynomial as in [26, 30], but it satisfies

L∗
m+2(w, f) = Lm+2(w, fj) ,

where fj = χjf and χj is the characteristic function of the interval [−xj , xj ].
Up to now we supposed m to be even. Nevertheless, if m is odd, we can replace

pm(w;x) by pm(w;x)(x− x̃0)/x, where x̃0 	= 0 is such that x1 − x̃0 ∼ am/m. For
instance we can choose x̃0 = x1/2 (see [30] for more details). So, without loss of
generality, from now on we tacitly assume m to be even.
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From a numerical point of view, in order to compute L∗
m+2(w, f), we observe

that if λ = 2, i.e. w(x) = |x|αe−x2

, then {pm(w)}m∈N is the sequence of Sonin–
Markov polynomials, which are simply related to Laguerre polynomials (see [8]).
In the case λ 	= 2 we can use the Mathematica Package “OrthogonalPolynomials”
(see [4]).

The following Marcinkiewicz-type inequality holds true.

Lemma 2.1. Let 1 ≤ p < ∞, u(x) = �(x)e−
|x|λ
2 , λ > 1. Let xk, k ≤ m/2, be the

zeros of pm(w) and set

(2.11) ∆xk =

{
xk+1 − xk , k > 0 ,
xk − xk−1 , k < 0 .

For any polynomial Q ∈ Pbm, with b a fixed integer, there exists θ1 ∈ (θ, 1) such
that

(2.12)
∑
|k|≤j

∆xk |Q(xk)|p up(xk) ≤ C

∫
A∗

m

|Q(x)|p up(x) dx ,

where A∗
m := [−θ1am,−x1] ∪ [x1, θ1am], j and θ are defined in (2.8) and C is a

positive constant independent of m and Q.

If u(x) = e−x2/2 and xk are Hermite zeros, an inequality similar to (2.12) was
first proved by P. Nevai in [29].

We will omit the proof of Lemma 2.1, because it follows by the same method
as in [26, 30]. But we emphasize that (2.12) seems to be false for j = m/2 and
Q ∈ Pbm (see [14, 15] for similar remarks).

3. Main results

First of all we are going to show that
⋃

m Pm+1 is dense in Lp
u, 1 ≤ p ≤ ∞. To

this end in the next lemma we will prove a stronger statement.
In order to state the lemma we need some notation. We say that PM ∈ PM is

a “near best polynomial approximant” of f ∈ Lp
u if ‖(f − PM )u‖p ≤ CEM (f)u,p,

with C 	= C(m, f). Moreover, with θ and j defined in (2.8), we choose

(3.1) M =

⌊(
θ

θ + 1

)λ
m

2

⌋
=: cm,

with 0 < c < 1. Finally, we set

Ẽm+1(f)u,p = inf
Q∈Pm+1

‖(f −Q)u‖p .

Lemma 3.1. Suppose that w and u are the weights defined above with arbitrarily
fixed parameters λ > 1, α, γ, µ. Then, for every function f ∈ Lp

u, 1 ≤ p ≤ ∞, we
have

(3.2) Ẽm+1(f)u,p ≤
∥∥[f − L∗

m+2(w,PM )
]
u
∥∥
p
≤ C

{
EM (f)u,p + e−Am‖fu‖p

}
and

(3.3)
(am
m

)r ∥∥∥L∗
m+2(w,PM )(r)u

∥∥∥
p
≤ C

{
ωr
(
f,

am
m

)∗
u,p

+
(am
m

)r
‖fu‖p

}
,

where r ∈ Z
+, M is defined by (3.1), and C and A are positive constants independent

of m and f .
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Therefore, by virtue of Lemma 3.1, every f ∈ Lp
u can be approximated by means

of elements of Pm+1. Moreover if PM ∈ PM is a near best polynomial approximant
of f , its projection in Pm+1 has an analogous behaviour with respect to f .

Now we are able to study the interpolation process {L∗
m+2(w)}m∈N in Cu.

Theorem 3.2. Let w and u be the weights defined above and assume that their
parameters α, γ, µ satisfy

(3.4) 0 ≤ γ − α

2
≤ 1 and 0 ≤ µ ≤ 1 .

Then, for every f ∈ Cu, we have

‖Lm+2(w, f)u‖∞ ≤ C logm ‖fu‖∞ ,(3.5)

‖[f − Lm+2(w, f)]u‖∞ ≤ C logmEm+1(f)u,∞(3.6)

and

(3.7)
∥∥[f − L∗

m+2(w, f)
]
u
∥∥
∞ ≤ C

{
logmEM (f)u,∞ + e−Am‖fu‖∞

}
,

where M = cm, 0 < c < 1, is defined by (3.1), C 	= C(m, f) and A 	= A(m, f).

Hence, by virtue of a result due to P. Vértesi [34], Lm+2(w) : Cu → Pm+1

and consequently L∗
m+2(w) : Cu → Pm+1 are projectors having the smallest norm

(as order), but L∗
m+2(w) has the advantage of requiring only �bm� (0 < b < 1)

evaluations of the function f .
In the case λ = 2 and α = γ = µ = 0, Theorem 3.2 recovers a result due to

J. Szabados (see [33]).
The following lemma states a converse inequality of (2.12) for polynomials be-

longing to Pm+1. To this purpose we recall that u(x) = |x|γ(1 + |x|)µv(|x|)e−|x|λ/2

and w(x) = |x|αe−|x|λ , α > −1, λ > 1; moreover we denote by xk (|k| ≤ m/2) the
zeros of pm(w) and by ∆xk the distance between two consecutive zeros defined in
(2.11).

Lemma 3.3. Let 1 < p < ∞ and µ ≥ 0. Then, for every polynomial Q ∈ Pm+1,
we have

(3.8) ‖Qu‖p ≤ C

⎛⎝∑
|k|≤j

∆xk |Q(xk)|p up(xk)

⎞⎠1/p

, C 	= C(m,Q) ,

if and only if

(3.9) −1

p
< γ − α

2
< 1− 1

p
− µ .

We remark that (3.9) implies µ < 1. Moreover, recalling Lemma 2.1, under the
assumptions of Lemma 3.3, the equivalence

(3.10) ‖Qu‖p ∼

⎛⎝∑
|k|≤j

∆xk |Q(xk)|p up(xk)

⎞⎠1/p

holds true for all polynomials Q ∈ Pm+1.
If j = m/2 and Q ∈ Pm+1, equivalence (3.10) is in general false, as has been

proved in [26] when w(x) = e−|x|λ and u =
√
w (see also [16]).

We want to show an interesting consequence of Lemma 3.3 and equivalence
(3.10). Let u be a weight function in (a, b), −∞ ≤ a < b ≤ +∞. A basis of
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Pm, {ψ1, . . . , ψm}, is said to be a Marcinkiewicz basis if, for every polynomial
qm(x) =

∑m
i=1 βiψi(x), it satisfies(

m∑
i=1

|βi|p
)1/p

∼ ‖qmu‖Lp(a,b) .

These bases appear in different contexts. If p = 2 they are the well-known Riesz’s
bases. In the numerical treatment of functional equations, they play a crucial rule in
the estimates of the condition numbers of matrices, coming from the discretization
of operators.

J. Marcinkiewicz was the first one who introduced these kinds of bases, in the
case of trigonometric polynomials. In the algebraic case, the Marcinkiewicz bases,
related to the interval (−1, 1) and to generalized Jacobi weights, were constructed
in [9] and [20]. According to our knowledge, up to now in the literature there
were no examples of Marcinkiewicz bases on (−∞,+∞) and related to exponential
weights.

Now, by Lemma 3.3 and by (3.10), we can deduce that the functions

ψk(x) =
�∗k(w;x)

(∆xk)1/p u(xk)
, |k| ≤ j ,

form a Marcinkiewicz basis of Pm+1 with respect to the weight u if and only if (3.9)
is satisfied.

A further consequence of Lemma 3.3 is given by the following corollary.

Corollary 3.4. Let u be defined by (2.1) and σ(x) = (1 + |x|)νu(x). Assume
1 < p < ∞ and ν > 1

p . If (3.9) is fulfilled, then, for any f ∈ Cσ, we get

(3.11)
∥∥L∗

m+2(w, f)u
∥∥
p
≤ C ‖fσ‖∞ ,

where C is a positive constant independent of m and f .

Now we want to show that L∗
m+2(w, f) behaves like the best polynomial approx-

imation in the Zygmund spaces Zp
r (u) and in the Sobolev spaces W p

r (u). We will
prove that in these spaces the operator L∗

m+2(w) is uniformly bounded (obviously
if (3.9) is fulfilled). To this end the following lemma is crucial.

Lemma 3.5. Let 1 < p < ∞. Let w and u be defined as before and assume that
f ∈ Lp

u satisfies

(3.12) Ωr(f, t)∗u,p t
−1−1/p ∈ L1(0, 1) .

Then (3.9) is equivalent to each of the following estimates:

(3.13)
∥∥L∗

m+2(w, f)u
∥∥
p
≤ C

{
‖fu‖p +

(am
m

)1/p ∫ am
m

0

Ωr(f, t)∗u,p
t1+1/p

dt

}
and ∥∥[f − L∗

m+2(w, f)
]
u
∥∥
p

(3.14)

≤ C

{
ωr
(
f,

am
m

)∗
u,p

+
(am
m

)r
‖fu‖p +

(am
m

)1/p ∫ am
m

0

Ωr(f, t)∗u,p
t1+1/p

dt

}
,

with C a positive constant independent of m and f .
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In particular, if f ∈ Zp
r (u) and r > 1/p, i.e. supt>0 ω

k(f, t)∗u,p t
−r < ∞, k > r >

1/p, then by (3.14) we have

(3.15)
∥∥[f − L∗

m+2(w, f)
]
u
∥∥
p
≤ C

(am
m

)r
‖f‖Zp

r (u) .

The following theorem shows the uniform boundedness of the operator L∗
m+2(w)

in Zp
r (u).

Theorem 3.6. Let 1 < p < ∞. Under the assumption (3.9), for every f ∈ Zp
r (u),

r > 1/p, we have

(3.16)
∥∥L∗

m+2(w, f)
∥∥
Zp

r (u)
≤ C ‖f‖Zp

r (u) .

Moreover, for every f ∈ Zp
s (u), s > r > 1/p, we get

(3.17)
∥∥f − L∗

m+2(w, f)
∥∥
Zp

r (u)
≤ C

(am
m

)s−r

‖f‖Zp
s (u) ,

where in both cases, C is a positive constant independent of m and f .

Concerning the behaviour of L∗
m+2(w, f), with f ∈ W p

r (u), we will assume (in
addition to (3.9)) that γ + 1/p is not an integer. Then from (3.14) the inequality

(3.18)
∥∥[f − L∗

m+2(w, f)
]
u
∥∥
p
≤ C

(am
m

)r
‖f‖Wp

r (u)

follows.

Theorem 3.7. Let 1 < p < ∞, assume γ + 1/p is not an integer and let (3.9) be
fulfilled. Then, for every f ∈ W p

r (u), we have

(3.19)
∥∥L∗

m+2(w, f)
∥∥
Wp

r (u)
≤ C ‖f‖Wp

r (u) .

Moreover, for every f ∈ W p
s (u), s > r, we have

(3.20)
∥∥f − L∗

m+2(w, f)
∥∥
Wp

r (u)
≤ C

(am
m

)s−r

‖f‖Wp
s (u) ,

where C in both cases is a positive constant independent of m and f .

We finally remark that, for α = 0, hypothesis (3.9) becomes −1/p < γ < 1 −
µ − 1/p, and thus all the previous results are true for a more restricted class of
functions.

Quadrature rules. We want to establish two statements concerning the main
quadrature rules. Let us first consider a Gauss-type rule defined as

(3.21)

∫
R

f(x)w(x) dx =
∑
|k|≤j

λk(w)f(xk) + em(f) ,

where m is even, w is the weight defined above, xk are the zeros of pm(w), λk(w)
are the Christoffel numbers and em(f) is the remainder term. Rules of the form
(3.21) for Laguerre and Freud weights appeared for the first time in [17, 3, 18].

The rule (3.21) can be obtained by replacing the integrating function f by
L∗
m+2(w, f) and using the ordinary Gaussian rule. Obviously em(f) = 0 if f ∈

Pm+1. In the following proposition we give a simple estimate of the error, which
can be useful in different contexts.
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Proposition 3.8. Let f ∈ Cσ, where σ(x) = |x|γ(1+ |x|)µv(|x|)e−b|x|λ , 0 < b ≤ 1.
If
∫
R
w(x)σ−1(x) dx < ∞, then

(3.22) |em(f)| ≤ C
{
EM (f)σ,∞ + e−Am‖fσ‖∞

}
,

where M = cm, c ∈ (0, 1) is fixed, and C is a positive constant independent of m
and f .

In many applications the following “product rule” can be useful:

(3.23)

∫
R

f(x)k(x, y)u(x) dx =
∑
|k|≤j

Ak(y)f(xk) + e∗m(f) =: Gm(f, y) + e∗m(f) ,

where e∗m(f) is the remainder term, u(x) = |x|γ(1 + |x|)µe−|x|λ/2 and

(3.24) Ak(y) =

∫
R

�∗k(w;x)k(x, y)u(x) dx ,

with �∗k(w) the fundamental polynomials of L∗
m+2(w, f), defined in (2.9), w(x) =

|x|αe−|x|λ , xj = min1≤k≤m
2
{xk : xk ≥ θam}, θ ∈ (0, 1).

We will treat in a further work the construction of the coefficients Ak(y), which
depend on the parameters of the weights u and w, and strongly on the form of the
kernel k. Here, we want to assign the conditions under which the quadrature rule
Gm(f, y) converges to the integral uniformly with respect to the parameter y.

Theorem 3.9. Let us assume that k : R2 → R and the weights u and w satisfy:

(3.25) sup
x∈R

√
w(x)

u(x)
< ∞

and

(3.26) sup
y∈R

∫
R

u(x)√
w(x)

|k(x, y)|
(
1 + log+|x|+ log+ |k(x, y)|

)
dx < ∞ ,

where log+ x = log(max{1, x}). Then, for every function f such that ‖fu‖∞ < ∞,
we have

(3.27) sup
m

sup
y∈R

|Gm(f, y)| ≤ C ‖fu‖∞ , C 	= C(f) .

Moreover (3.27) implies

(3.28) sup
y∈R

∫
R

u(x)√
w(x)

|k(x, y)| dx < ∞ .

Thus, under the assumptions of Theorem 3.9, for every function f ∈ Cu, we have

|e∗m(f)| ≤ C Ẽm+1(f)u,∞ ,

and to estimate Ẽm+1(f)u,∞, we can use Lemma 3.1.
Furthermore, we emphasize that if k(x, y) ≡ 1, then, by (3.28), inequality (3.27)

is not true. However, Theorem 3.9 comes in useful for a wide class of kernels. For
instance, let us consider a kernel of the form

(3.29) k̃(x, y) =
P (x, y)

Q(x, y)
,
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where

P (x, y) =
∑
h,i

ci|x− th|γh |y − τi|δi ,

Q(x, y) =
∑
η,ν

dν |x− aη|αη |y − bν |βν > 0 ,

with ci, dν , γh, δi, αη, βν , th, τi, aη, bν ∈ R and h, i, η, ν ≤ N ∈ N. In this case,
Theorem 3.9 turns into the following corollary.

Corollary 3.10. Let k̃ : R2 → R be as in (3.29). Assume that the weights w and
u satisfy (3.25). Then, for every f such that ‖fu‖∞ < ∞, we get

sup
y∈R

|Gm(f, y)| ≤ C ‖fu‖∞ , C 	= C(m, f) ,

if and only if

sup
y∈R

∫
R

u(x)√
w(x)

∣∣∣k̃(x, y)∣∣∣dx < ∞ .

4. Proofs

First of all we recall some known results. The following lemma states some
polynomial inequalities, which can be found in [21] (see also [31], pp. 277–343).

Lemma B. Let u(x) = |x|γ(1 + |x|)µe− |x|λ
2 , with λ > 1, µ ∈ R and γ > − 1

p if

1 < p < ∞, γ ≥ 0 if p = ∞. Moreover let am := am(u) be the M–R–S number
related to u. Then for any polynomial P ∈ Pm, we have

(4.1) ‖P ′u‖p ≤ C
m

am
‖Pu‖p

and

(4.2) ‖Pu‖q ≤ C

(
m

am

) 1
p−

1
q

‖Pu‖p , 1 ≤ p < q ≤ ∞ ,

where C is a constant independent of m and P in both cases.
Moreover, for any fixed d > 0, there exists C = C(d) 	= C(m,P ) such that

(4.3) ‖Pu‖p ≤ C ‖Pu‖Lp(Am) ,

where Am =
[
−am,−dam

m

]
∪
[
dam

m , am
]
. Finally, ∀δ > 0, the inequality

(4.4) ‖Pu‖Lp(Bm) ≤ Ce−Am‖Pu‖p
holds with Bm = {x ∈ R : |x| > (1+δ)am}, C and A positive constants independent
of m and P .

The following inequalities deal with the behaviour of the orthonormal polyno-
mials and their zeros xk. In [5] it has been proved that

sup
x∈[−am,am]

∣∣∣∣pm(w;x)e−
|x|λ
2

(
|x|+ am

m

)α/2
4
√
a2m − x2

∣∣∣∣ ∼ 1

and

(4.5) |pm(w;x)|
√
w(x) ≤ C

4
√
a2m − x2 +m−2/3a2m

, x ∈ Am ,
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where Am is the subset defined in Lemma B with am(w) in place of am(u). More-
over, the equivalence

(4.6)
1

|p′m(w, xk)|
√
w(xk)

∼ ∆xk
4

√
a2m − x2

k +
a2m
m2/3

, |k| ≤ m

2
,

holds. Finally, the distance between two consecutive zeros of pm(w), defined by
(2.11) (setting xm

2 +1 = −x−m
2 −1 = am(w)), can be estimated by

∆xk ∼ a2m
m

1√
a2m − x2

k +m−2/3a2m

, |k| ≤ m

2
,

from which we have

(4.7) ∆xk ∼ am
m

, |k| ≤ j .

Here C and the constants in “∼” are independent of m and k.
Using the previous inequalities, we can estimate the fundamental Lagrange poly-

nomials, defined by (2.9) and (2.10). By (4.5) and (4.6), if |k| ≤ m
2 , we get

|�∗k(w;x)|u(x)
u(xk)

=
|pm(w;x)| (a2m − x2)u(x)

|p′m(w;xk)| |x− xk|(a2m − x2
k)u(xk)

≤ C
v(|x|)
v(|xk|)

∣∣∣∣ xxk

∣∣∣∣γ−α
2
(

1 + |x|
1 + |xk|

)µ
∆xk

|x− xk|
(4.8)

for x ∈ Am and xk 	= xd, xd being a node closest to x. Furthermore, the following
equivalence is well known (see [11], or [12, pp. 320–321]):

(4.9)
|�∗d(w;x)|u(x)

u(xd)
∼ 1

uniformly with respect to d and m. Finally, by (4.9) and (4.6), with x = am and
xd = xm

2
, it follows that

(4.10) |pm(w; am)|
√
w(am) ≥ C

√
m1/3

am
.

By (4.10) we get∣∣∣�∗m
2 +1(w;x)

∣∣∣u(x)
u(am)

≤ |pm(w;x)|
√
w(x)

|pm(w; am)|
√
w(am)

v(|x|)
v(am)

∣∣∣∣ xam
∣∣∣∣γ−α

2
(
1 + |x|
1 + am

)µ

≤ C
4
√

a2m − x2 +m−2/3a2m

√
am
m1/3

v(|x|)
v(am)

∣∣∣∣ xam
∣∣∣∣γ−α

2
(
1 + |x|
1 + am

)µ

≤ C
v(|x|)
v(am)

∣∣∣∣ xam
∣∣∣∣γ−α

2
(
1 + |x|
1 + am

)µ

,(4.11)

for x ∈ Am. An analogous inequality holds for �∗−m
2 −1(w).
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Now, for x ∈ Am, the sum

Sm(α, γ, µ, x) :=
∑

|k|≤m
2 , k 	=d

v(|x|)
v(|xk|)

∣∣∣∣ xxk

∣∣∣∣γ−α
2
(

1 + |x|
1 + |xk|

)µ
∆xk

|x− xk|

+ 2
v(|x|)
v(am)

∣∣∣∣ xam
∣∣∣∣γ−α

2
(
1 + |x|
1 + am

)µ

can be estimated as follows:

(4.12) Sm(α, γ, µ, x) ≤ C logm if 0 ≤ γ − α

2
≤ 1 , 0 ≤ µ ≤ 1 ;

otherwise

(4.13) Sm(α, γ, µ, x) ≤ Cmτ ,

for some τ > 0 and α, γ, µ arbitrarily fixed.

Proof of Lemma 3.1. We are going to prove (3.2) and (3.3) only for 1 ≤ p < ∞, the
case p = ∞ being simpler. Let PM ∈ PM be a near best polynomial approximant

of f ∈ Lp
u, M =

⌊(
θ

θ+1

)λ
m
2

⌋
and Q = L∗

m+2(w,PM ). Using (4.3), we have

Ẽm+1(f)u,p ≤ ‖(f −Q)u‖p
≤ ‖(Q− PM )u‖p +CEM (f)u,p

=
∥∥[L∗

m+2(w,PM )− Lm+2(w,PM )
]
u
∥∥
p
+CEM (f)u,p

≤ C
∥∥[L∗

m+2(w,PM )− Lm+2(w,PM )
]
u
∥∥
Lp(Am)

+CEM (f)u,p .

The first addend is dominated by

C am(u)1/p sup
|x|≥θam(w)

|PM (x)u(x)| sup
x∈Am

∑
|k|≤m

2 +1

|�∗k(w;x)|u(x)
u(xk)

,

where Am =
[
−am(u),−dam(u)

m

]
∪
[
dam(u)

m , am(u)
]
, d > 0. Using (4.9) and (4.13)

the sum is not greater than Cmτ for some τ > 0. Therefore it remains to estimate
the quantity

γm := am(u)1/p mτ sup
|x|≥θam(w)

|PM (x)u(x)| .

But, for the choice of M , it is easily seen that θam(w) ≥ (1+θ)aM(u). Then, using
(4.4) and (4.2), we get

γm ≤ Ce−Am‖PMu‖p ≤ Ce−Am‖fu‖p ,

from which (3.2) follows.
Now we prove (3.3). By the Bernstein inequality (4.1), we have(am

m

)r ∥∥∥L∗
m+2(w,PM )(r)u

∥∥∥
p

≤
(am
m

)r ∥∥∥[Lm+2(w,PM )− L∗
m+2(w,PM )

](r)
u
∥∥∥
p
+
(am
m

)r ∥∥∥P (r)
M u

∥∥∥
p

≤ C
∥∥[Lm+2(w,PM )− L∗

m+2(w,PM )
]
u
∥∥
p
+
(am
m

)r ∥∥∥P (r)
M u

∥∥∥
p
.
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We have already seen that the first addend is less than C e−Am‖fu‖p, while, in
order to estimate the second addend, we can use the inequality(am

m

)r ∥∥∥P (r)
M u

∥∥∥
p
≤ C

{
ωr
(
f,

am
m

)∗
u,p

+
(am
m

)r
‖fu‖p

}
,

proved in [22]. This completes the proof. �

Proof of Theorem 3.2. By the Remez-type inequality (4.3) we have

‖Lm+2(w, f)u‖∞ ≤ C ‖Lm+2(w, f)u‖L∞(Am) .

For every x ∈ Am, we can write

|Lm+2(w, f ;x)|u(x) ≤ u(x)
∑

|k|≤m
2 +1

|�∗k(w;x)f(xk)|

≤ ‖fu‖∞

{
|�∗d(w;x)|u(x)

u(xd)
+

∑
k 	=d, |k|≤m

2

|�∗k(w;x)|u(x)
u(xk)

+

∣∣∣�∗m
2 +1(w;x)

∣∣∣u(x)
u(am)

+

∣∣∣�∗−m
2 −1(w;x)

∣∣∣u(x)
u(−am)

}
=: ‖fu‖∞ {I1 + I2 + I3 + I4} ,

where xd ∈ {−xm
2
, . . . , xm

2
} is a zero closest to x.

By (4.9) and (4.12) we have

I1 + I2 ≤ C [1 + Sm(α, γ, µ, x)] ≤ C logm,

recalling the assumptions on α, γ, µ and x.
Let us estimate only the term I3, since I4 can be handled in a similar way. By

(4.11), since γ − α
2 ≥ 0 and 0 ≤ µ ≤ 1, we have∣∣∣�∗m

2 +1(w;x)
∣∣∣u(x)

u(am)
≤ C

v(|x|)
v(am)

∣∣∣∣ xam
∣∣∣∣γ−α

2
(
1 + |x|
1 + am

)µ

≤ C ,

v being a nondecreasing function. Thus (3.5) and (3.6) remain proved.
Finally, by (3.2), inequality (3.7) follows from (3.5). �

In the sequel we will need the following proposition.

Proposition 4.1. Let t(x) = pm(w;x)
√
w(x) 4

√
a2m − x2 and g ∈ Lp, 1 ≤ p < ∞.

Then we have

(4.14)

(∫
R

|g(x)t(x)|p dx
)1/p

≥ C

(∫ am

−am

|g(x)|p dx
)1/p

with C 	= C(g, t).

Proof. Let m be even. Set

Im =
⋃

|k|≤m
2

(
xk −

δ

8
∆xk, xk +

δ

8
∆xk

)
,

with a fixed δ > 0 sufficiently small and xk the zeros of pm(w). Moreover, define
Cm = (−am, am) \ Im.
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From (4.9) it follows that

|pm(w;x)|
√
w(x) 4

√
a2m − x2 ∼ |x− xd|

∆xd
,

where xd is a zero closest to x, and then we have

|t(x)| ≥ C , x ∈ Cm .

Hence we get

‖gt‖pp ≥ C

∫
Cm

|g(x)|p dx

= C

{∫ am

−am

|g(x)|p dx+

∫
Im

|g(x)|p dx
}

= C am

{∫ 1

−1

|g(amy)|p dy +
∫
I∗
m

|g(amy)|p dy
}
,

with

I∗m =
⋃

|k|≤m
2

(
xk

am
− δ

8

∆xk

am
,
xk

am
+

δ

8

∆xk

am

)
.

The measure of the subset I∗m is less than C δ/2 and, by the absolute continuity of
the integral, we can choose δ such that the integral extended to Im is one half of
that extended to [−1, 1] and then we obtain (4.14).

Note that the same proof works if m is odd. �

In order to prove Lemma 3.3, we need the following result, proved in [27].

Lemma C. Denote by xr,s = |x|r(1 + |x|)s−r and 1 < p < ∞. If r ≥ R, s ≤ S,
r > − 1

p , s < 1− 1
p , R < 1− 1

p , S > − 1
p , then there exists a constant C, independent

of f , such that ∫
R

∣∣∣∣∫
R

f(y)

x− y
xr,sdy

∣∣∣∣p dx ≤ C

∫
R

∣∣f(x)xR,S
∣∣p dx .

Proof of Lemma 3.3. Let us first prove that (3.9) implies (3.8). By (4.3) and since
Q ∈ Pm+1, we have

‖Qu‖p ≤ C ‖Qu‖Lp(Am)

= C sup
‖g‖Lq(Am)=1

∣∣∣∣∫
Am

Q(x)g(x)u(x) dx

∣∣∣∣
= C sup

‖g‖Lq(Am)=1

∣∣∣∣∫
Am

L∗
m+2(w,Q;x)g(x)u(x) dx

∣∣∣∣
=: C sup

‖g‖Lq(Am)=1

|A(g)| ,

where 1
p + 1

q = 1.
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Using (4.6) we get

|A(g)| =

∣∣∣∣∣∣
∑
|k|≤j

Q(xk)u(xk)

p′m(w;xk)u(xk)(a2m − x2
k)

∫
Am

pm(w;x)(a2m − x2)g(x)u(x)

x− xk
dx

∣∣∣∣∣∣
≤ C

a
3/2
m

∑
|k|≤j

∆xk |Q(xk)|u(xk)|xk|
α
2 −γ

v(|xk|)(1 + |xk|)µ

∣∣∣∣∫
Am

pm(w;x)(a2m − x2)g(x)u(x)

x− xk
dx

∣∣∣∣
≤ C

a
3/2
m

∑
|k|≤j

∆xk |Q(xk)|u(xk)|xk|
α
2 −γ

v(|xk|)(1 + |xk|)µ
|Π(xk)| ,

where

Π(y) :=

∫
Am

(a2m − x2)pm(w;x)R(x)− (a2m − y2)pm(w; y)R(y)

x− y

g(x)u(x)

R(x)
dx

= HAm
(G; y)− Γ(y)HAm

(gu
R

; y
)
,

G(y) := (a2m − y2)pm(w; y)g(y)u(y) ,

Γ(y) := (a2m − y2)pm(w; y)R(y) ,

R is an arbitrary polynomial of degree bm (b > 0), which will be specified in the
sequel, and HAm

is the Hilbert transform extended to the subset Am. Here and in
the sequel, for each set A, we denote by

HA(f ; y) =

∫
A

f(x)

x− y
dx and H(f ; y) =

∫
R

f(x)

x− y
dx

the Cauchy principal values of these integrals.
Note that Π is a polynomial of degree at most m+ 2 + bm.
Using the Hölder inequality and Lemma 2.1 we get

|A(g)| ≤ C

a
3/2
m

S(Q)

⎛⎝∑
|k|≤j

∆xk

[
|xk|

α
2 −γ

v(|xk|)(1 + |xk|)µ
|Π(xk)|

]q⎞⎠1/q

≤ C

a
3/2
m

S(Q)

{(∫
A∗

m

[
|y|α2 −γ

v(|y|)(1 + |y|)µ |HAm
(G; y)|

]q
dy

)1/q

+

(∫
A∗

m

[
|y|α2 −γ

v(|y|)(1 + |y|)µ
∣∣∣Γ(y)HAm

(gu
R

; y
)∣∣∣]q dy)1/q }

≤ C

a
3/2
m

S(Q)

{(∫
A∗

m

[
|y|α2 −γ

v(|y|)(1 + |y|)µ |HAm
(G; y)|

]q
dy

)1/q

+

(∫
A∗

m

[
|y|α2 −γ

v(|y|)(1 + |y|)µ
∣∣∣Γ(y)HAm

(gu
R

; y
)∣∣∣]q dy)1/q }

=:
C

a
3/2
m

S(Q)
{
B1 +B2

}
,(4.15)
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where

S(Q) :=

⎛⎝∑
|k|≤j

∆xk |Qu|p (xk)

⎞⎠1/p

,

A∗
m :=

[
−θ1am,−dam

m

]
∪
[
dam

m , θ1am
]
, d is a fixed constant and 0 < θ < θ1 < 1.

Using (4.5) we have

(4.16) |G(y)| ≤ C a3/2m |y|γ−α
2 v(|y|)(1 + |y|)µ |g(y)|

for every y ∈ Am.
Setting r = R = α

2 −γ and s = S = α
2 −γ−µ, with p replaced by q, and recalling

(3.9), we can use Lemma C. Thus, by (4.16), we get

B1 = C

(∫
A∗

m

[
|y|α2 −γ

v(|y|)(1 + |y|)µ |HAm
(G; y)|

]q
dy

)1/q

≤ C

(∫
R

[
|y|α2 −γ

v(|y|)(1 + |y|)µ |HAm
(G; y)|

]q
dy

)1/q

= C

(∫
R

[
|y|α2 −γ

v(|y|)(1 + |y|)µ |H(χAm
G; y)|

]q
dy

)1/q

≤ C

(∫
Am

[
|y|α2 −γ

v(|y|)(1 + |y|)µ |G(y)|
]q

dy

)1/q

≤ C a3/2m

(∫
Am

[
|y|α2 −γ

(1 + |y|)µ |y|
γ−α

2 (1 + |y|)µ|g(y)|
]q

dy

)1/q

≤ C a3/2m ‖g‖Lq(Am) = C a3/2m ,(4.17)

where χAm
is the characteristic function of the set Am.

In order to estimate B2 we choose R ∈ Pbm (see for instance [11]) such that

|R(y)| ∼
√
w(y), y ∈ Am .

By (4.5) we have

(4.18) |Γ(y)| ≤ C (a2m − y2)3/4
|R(y)|√
w(y)

≤ C a3/2m .

Using the same arguments as in the estimate of B1, by (4.18), we obtain

B2 ≤ C a3/2m

(∫
Am

[
|y|α2 −γ

v(|y|)(1 + |y|)µ

∣∣∣∣g(y)u(y)R(y)

∣∣∣∣]q dy)1/q

≤ C a3/2m

(∫
Am

[
|y|α2 −γ

v(|y|)(1 + |y|)µ |y|
γ−α

2 (1 + |y|)µ |g(y)|
]q

dy

)1/q

≤ C a3/2m ‖g‖Lq(Am) = C a3/2m .(4.19)

Combining the estimates (4.17) and (4.19) with (4.15) and taking the supremum
on g, we get (3.8).

It remains to prove that (3.8) implies (3.9). Since (3.8) holds true for every
Q ∈ Pm+1, in particular we have

‖�∗1(w)u‖p ≤ C (∆x1)
1/p u(x1) ,
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i.e.

(4.20) C ≥ x
α
2 −γ
1 (∆x1)

1− 1
p

(1 + x1)µ

(∫
R

∣∣∣∣ t(x)(a2m − x2)

(x− x1)(a2m − x2
1)
|x|γ−α

2 (1 + |x|)µ
∣∣∣∣p dx)

1
p

,

where t(x) = pm(w;x)
√
w(x) 4

√
a2m − x2.

For x ∈ [0, 1] we have x1 ∼ ∆x1 ∼ am/m and a2m − x2 ∼ a2m − x2
1. Using

Proposition 4.1, it follows that

C ≥ C a
α
2 −γ+1− 1

p
m

(∫ 1

0

∣∣∣∣ t(x)

x− x1
xγ−α

2 (1 + x)µ
∣∣∣∣p dx)1/p

≥ C
(am
m

)α
2 −γ+1− 1

p

(∫ 1

0

x(γ−
α
2 )p dx

)1/p

,

since |x− x1| ≤ 1 and 1 + x ≥ 1. Hence

−1

p
< γ − α

2
≤ 1− 1

p
.

If γ − α
2 = 1− 1

p , then∫ 1

0

∣∣∣∣ t(x)

x− x1
xγ−α

2

∣∣∣∣p dx >

∫ 1

x2

x(γ−
α
2 −1)p dx

=

∫ 1

x2

dx

x
∼ log

(
m

am

)
.

Thus we get

−1

p
< γ − α

2
< 1− 1

p
.

Moreover, by (4.20), we obtain

C ≥ C

(∫ am/2

am/4

x(γ−
α
2 −1+µ)p dx

)1/p

∼ a
γ−α

2 −1+µ+ 1
p

m ;

then we must have γ − α
2 − 1 + µ + 1

p ≤ 0. But, as before, we cannot have the

equality; otherwise the integral would have order log am. Therefore it must be

γ − α

2
+ µ < 1− 1

p
.

This completes the proof. �

Proof of Lemma 3.5. We first show that (3.9) implies (3.13) and (3.14). By Lemma
3.3 and using well-known arguments (see [26] for more details), we get

∥∥L∗
m+2(w, f)u

∥∥
p
≤ C

⎛⎝∑
|k|≤j

∆xk |f(xk)|p up(xk)

⎞⎠1/p

≤ C

{
‖fu‖Lp(Ãm) +

(am
m

)1/p ∫ am
m

0

Ωr(f, t)∗u,p
t1+1/p

dt

}
,

where Ãm :=
[
−θam,−dam

m

]
∪
[
dam

m , θam
]
, d > 0.
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Let PM ∈ PM be a near best polynomial approximant of f ∈ Lp
u and set Q =

L∗
m+2(w,PM ). By (3.13) we get

‖[f − L∗
m+2(w, f)]u‖p ≤ ‖(f −Q)u‖p + ‖L∗

m+2(w, f −Q)u‖p

≤ C

{
‖(f −Q)u‖p +

(am
m

)1/p ∫ am
m

0

Ωr(f −Q, t)∗u,p
t1+1/p

dt

}

≤ C

{
‖(f −Q)u‖p +

(am
m

)1/p ∫ am
m

0

Ωr(f, t)∗u,p
t1+1/p

dt+
(am
m

)r
‖Q(r)u‖p

}
,(4.21)

since, for any g ∈ W p
r (u), 1 ≤ p ≤ ∞, if γ + 1/p is not an integer, then we have

(see [22])

(4.22) ωr(g, t)∗up
≤ C tr ‖g(r)u‖p

with C 	= C(g, t).
Hence, using Lemma 3.1 and the Jackson-type inequality (2.2), inequality (3.14)

follows from (4.21).
On the other hand, it is easily seen that (3.13) is equivalent to (3.14). Therefore

it remains only to prove that (3.13) implies (3.9). To this end, let us consider the
function

f0(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , x ≤ −x1 ,
x

2x1
+

1

2
, −x1 < x ≤ x1 ,

− x

∆x1
+

x2

∆x1
, x1 < x < x2 ,

0 , x ≥ x2 .

Thus we have L∗
m+2(w, f0) = �∗1(w). By (3.13) we get∥∥L∗

m+2(w, f0)u
∥∥
p
≤ C ‖u‖Lp(−x1,x2) ,

i.e.

(4.23) ‖�∗1(w)u‖p ≤ C (∆x1)
1/p

u(x1) ,

using the Marcinkiewicz-type inequality (3.8). As in the proof of Lemma 3.3, con-
dition (3.9) follows from (4.23). �

Proof of Theorem 3.6. We note that, using the Stechkin-type inequality (2.3), for
every f ∈ Zp

r (u) we have

‖f‖Zp
r (u) ∼ ‖fu‖p + sup

i≥1

(
i

ai

)r

Ei(f)u,p .

Therefore, for every f ∈ Zp
s (u), s ≥ r > 1

p , we get∥∥f − L∗
m+2(w, f)

∥∥
Zp

r (u)

=
∥∥[f − L∗

m+2(w, f)
]
u
∥∥
p
+ sup

i≥1

(
i

ai

)r

Ei

(
f − L∗

m+2(w, f)
)
u,p

=: A+B .(4.24)

By using Lemma 3.5, we obtain

(4.25) A ≤ C
(am
m

)s
‖f‖Zp

s (u) .
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Since

Ei

(
f − L∗

m+2(w, f)
)
u,p

⎧⎨⎩
≤
∥∥[f − L∗

m+2(w, f)
]
u
∥∥
p
, i ≤ m+ 1 ,

= Ei(f)u,p , i ≥ m+ 2 ,

then we have

B = sup
i≥1

(
i

ai

)r

Ei

(
f − L∗

m+2(w, f)
)
u,p

= max

{
sup

i≤m+1

(
i

ai

)r ∥∥[f − L∗
m+2(w, f)

]
u
∥∥
p
, sup
i≥m+2

(
i

ai

)r

Ei (f)u,p

}

≤ max

{
C

(
m

am

)r (am
m

)s
‖f‖Zp

s (u), sup
i≥m+2

(
i

ai

)r−s(
i

ai

)s

Ei (f)u,p

}

≤ C
(am
m

)s−r

‖f‖Zp
s (u) .(4.26)

Combining (4.25) and (4.26) with (4.24), we obtain (3.16) and (3.17). �
Proof of Theorem 3.7. We first prove inequality (3.20). Assume f ∈ W p

s , s > r,
and set Qm+1 = L∗

m+2(w, f). By (3.14) we have

f −Qm+1 =

∞∑
k=0

(
Q2k+1(m+1) −Q2k(m+1)

)
a.e.

and, by the Bernstein inequality (4.1), it follows that∥∥∥(f −Qm+1)
(r) u

∥∥∥
p
≤

∞∑
k=0

∥∥∥(Q2k+1(m+1) −Q2k(m+1)

)(r)
u
∥∥∥
p

≤ C
∞∑
k=0

(
2k+1(m+ 1)

a2k+1(m+1)

)r ∥∥[Q2k+1(m+1) −Q2k(m+1)

]
u
∥∥
p
.

By (3.18) and taking into account that a2k+1(m+1) ∼ 2(k+1)/λam, we get∥∥∥(f −Qm+1)
(r) u

∥∥∥
p
≤ C ‖f‖Wp

s

∞∑
k=0

(
a2k+1(m+1)

2k+1(m+ 1)

)s−r

∼
(am
m

)s−r

‖f‖Wp
s

∞∑
k=0

(
2(k+1)(1−λ)/λ

)s−r

≤ C
(am
m

)s−r

‖f‖Wp
s

∞∑
k=0

2(k+1)(1−λ)/λ

≤ C
(am
m

)s−r

‖f‖Wp
s (u) ,

since 2(1−λ)/λ < 1 for λ > 1.
Now let us prove inequality (3.19). We have

(4.27)
∥∥L∗

m+2(w, f)
∥∥
Wp

r (u)
=
∥∥L∗

m+2(w, f)u
∥∥
p
+
∥∥∥L∗

m+2(w, f)
(r)u
∥∥∥
p
.

By (3.18) we get

(4.28)
∥∥L∗

m+2(w, f)u
∥∥
p
≤ ‖fu‖p +C

(am
m

)r
‖f‖Wp

r (u) ≤ C ‖f‖Wp
r (u) .
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Let us consider PM ∈ PM , with M ∼ m defined by (3.1), a near best polynomial
approximant of f ∈ W p

r (u). We can write∥∥∥L∗
m+2(w, f)

(r)u
∥∥∥
p
≤
∥∥∥L∗

m+2(w, f − PM )(r)u
∥∥∥
p
+
∥∥∥L∗

m+2(w,PM )(r)u
∥∥∥
p
.

By (3.3) and (4.22) we have

(4.29)
∥∥∥L∗

m+2(w,PM )(r)u
∥∥∥
p
≤ C ‖f‖Wp

r (u) ,

since f ∈ W p
r (u) and γ + 1/p is not an integer.

Finally, by (4.1) and (4.28), we get∥∥∥L∗
m+2(w, f − PM )(r)u

∥∥∥
p
≤ C

(
m

am

)r ∥∥L∗
m+2(w, f − PM )u

∥∥
p

≤ C

(
m

am

)r

EM (f)u,p +C ‖f − PM‖Wp
r (u) .

Using Lemma 3.1 and the Jackson-type inequality (2.2), we obtain

(4.30)
∥∥∥L∗

m+2(w, f − PM )(r)u
∥∥∥
p
≤ C ‖f‖Wp

r (u) .

By (4.28), (4.29) and (4.30), inequality (3.19) follows from (4.27). �

Proof of Proposition 3.8. Let PM ∈ PM , with M given by (3.1) being a “near best
polynomial approximant” of f ∈ Cσ. Then we can write

(4.31) |em(f)| ≤ |em(f − PM )|+ |em(PM )|.
Since the ordinary Gaussian rule is exact for PM , for the choice of M , by (4.4)

and by the hypotheses, we get

|em(PM )| =

∣∣∣∣∣∣
∑
|k|>j

λk(w)PM (xk)

∣∣∣∣∣∣
≤ ‖PMσ‖L∞{|x|>θam(w)}

∑
|k|>j

λk(w)

σ(xk)

≤ ‖PMσ‖L∞{|x|>(1+θ)aM (σ)}

∫
R

w(x)

σ(x)
dx

≤ Ce−Am‖PMσ‖∞ ≤ Ce−Am‖fσ‖∞ .(4.32)

Moreover, we have

|em(f − PM )| ≤ ‖(f − PM )σ‖∞

⎛⎝∫
R

w(x)

σ(x)
dx+

∑
|k|≤j

λk(w)

σ(xk)

⎞⎠
≤ CEM (f)σ,∞ .(4.33)

Hence, by (4.31), (4.32) and (4.33), we get (3.22). �

Proof of Theorem 3.9. First of all we remark that (3.27) is equivalent to

(4.34) sup
y∈R

sup
m

∥∥L∗
m+2(w, f)kyu

∥∥
1
≤ C ‖fu‖∞ ,

where ky(x) := k(x, y).
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Let us prove that (3.25) and (3.26) imply (4.34). By definitions (3.23) and (3.24)
we can write

|Gm(f, y)| =
∥∥L∗

m+2(w, f)kyu
∥∥
1

≤
∥∥L∗

m+2(w, f)kyu
∥∥
L1(Im)

+
∥∥L∗

m+2(w, f)kyu
∥∥
L1(R\Im)

=: A1 +A2 ,(4.35)

where Im = [−am, am].
Using arguments and notation similar to those in the proof of Lemma 3.3, we

get

A1 ≤ C
‖fu‖∞
a
3/2
m

∑
|k|≤j

|xk|
α
2 −γ∆xk

(1 + |xk|)µ
|Π(xk)| ,

where

Π(t) := HIm(G∗; t)− Γ∗(t)HIm

(
gkyu

R
; t

)
,

G∗(x) := (a2m − x2)pm(w;x)g(x)ky(x)u(x) ,

Γ∗(t) := (a2m − t2)pm(w; t)R(t) ,

g(x) := sgn
{
L∗
m+2(w, f ;x)ky(x)

}
, R is an arbitrary polynomial of degree bm (b >

0), which will be specified in the sequel and HIm is the Hilbert transform extended
to Im.

By the Marcinkiewicz-type inequality (2.12), we have

A1 ≤ C
‖fu‖∞
a
3/2
m

∫
Im

|t|α2 −γ

(1 + |t|)µ |Π(t)|dt .

Moreover, by (3.25), it follows that

A1 ≤ C
‖fu‖∞
a
3/2
m

∫
Im

|Π(t)|dt

≤ C
‖fu‖∞
a
3/2
m

{∫
Im

|HAm
(G∗; t)|dt+

∫
Im

|Γ∗(t)|
∣∣∣∣HIm

(
gkyu

R
, t

)∣∣∣∣ dt}
=: C

‖fu‖∞
a
3/2
m

{B1 +B2} .

In order to estimate B1, we can write

G∗(x) =
(
a2m − x2

)3/4 4
√

a2m − x2pm(w;x)g(x)ky(x)u(x) =: a3/2m G1(x) ,

with G1 ∈ L log+ L, and by (4.5) we have

|G1(x)| ≤ C |x|γ−α
2 (1 + |x|)µ |ky(x)| .

Therefore, using a well-known result (see for instance [32]), we get

B1 = C a3/2m

∫
Im

|HIm (G1, t)| dt

≤ C a3/2m

∫
Im

|G1(t)|
(
1 + log+ |G1(t)|

)
dt

≤ C a3/2m

∫
R

|t|γ−α
2 (1 + |t|)µ |ky(t)|

(
1 + log+ |ky(t)|+ log+|t|

)
dt .(4.36)
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By (3.26) the previous integral is bounded.
The term B2 can be estimated in the same way. In fact, choosing R such that

R(x) ∼
√
w(x) for x ∈ Im, we obtain

|Γ∗(t)| ≤ C a3/2m

and

(4.37) B2 ≤ C a3/2m

∫
Im

|ky(x)|
u(x)√
w(x)

(
1 + log+ |ky(x)|+ log+|x|

)
dx .

From the estimates (4.36) and (4.37), it follows that

(4.38) A1 ≤ C ‖fu‖∞ .

Concerning the term A2, we can write

A2 =
∥∥L∗

m+2(w, f)kyu
∥∥
L1(Jδ,m)

+
∥∥L∗

m+2(w, f)kyu
∥∥
L1({|x|>am(1+δ)})

=: D1 +D2 ,

where Jδ,m := {am < |x| < am(1 + δ)}.
By virtue of (4.6), D1 can be estimated as

D1 ≤ C
‖fu‖∞
a
3/2
m

∑
|k|≤j

|xk|
α
2 −γ∆xk

(1 + |xk|)µ
∫
Jδ,m

∣∣pm(w;x)(a2m − x2)ky(x)
∣∣u(x)

x− xk
dx .

Moreover, by inequalities (4.3), for p = ∞, and (4.5), we get

D1 ≤ C
‖fu‖∞
am

∑
|k|≤j

∆xk

∫
Jδ,m

|ky(x)| |x|γ−
α
2 (1 + |x|)µdx

≤ C ‖fu‖∞
∫
R

|ky(x)| |x|γ−
α
2 (1 + |x|)µdx ≤ C ‖fu‖∞ ,

since x− xk ≥ (1− θ)am and |x2 − a2m|3/4 ≤ C a
3/2
m , and using (3.25).

Let us estimate D2. By (4.4) and (4.13), for some τ > 0, we have

D2 ≤ Ce−Am
∥∥L∗

m+2(w, f)u
∥∥
∞ ‖ky‖1

≤ Ce−Ammτ‖fu‖∞‖ky‖1 ≤ C ‖fu‖∞ .

It follows that

(4.39) A2 ≤ C ‖fu‖∞ .

Combining (4.38) and (4.39) in (4.35), and taking the supremum over all y ∈ R we
get (3.27).

Finally, in order to show that (4.34) implies (3.28), let us consider a function
f0 such that |f0(x)| ≤ 1 for every x ∈ R, f0(xk) = sgn [p′m(w;xk)(x− xk)] for
x1 ≤ xk ≤ 1 and f0(xk) = 0 for xk > 1 and for xk < x1. Hence we have

L∗
m+2(w, f0;x) =

∑
x1≤xk≤1

pm(w;x)(a2m − x2)

|p′m(w;xk)| |x− xk|(a2m − x2
k)

.
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Using (4.6), for x ∈ [0, 1], we obtain∣∣L∗
m+2(w, f ;x)

∣∣ = |pm(w;x)|
∑

x1≤xk≤1

(
a2m − x2

a2m − x2
k

)
1

|p′m(w;xk)| |x− xk|

∼ |pm(w;x)| 4
√
a2m − x2

∑
x1≤xk≤1

∆xk

√
w(xk)

≥ |pm(w;x)| 4
√
a2m − x2

∑
x1≤xk≤1

∫ xk+1

xk

√
w(t) dt

≥ |pm(w;x)| 4
√
a2m − x2

∫ 1

1/2

√
w(t) dt

= C |pm(w;x)| 4
√
a2m − x2 .

By (4.34), for every y ∈ R, we have

‖u‖∞ ≥ C

∫
R

∣∣L∗
m+2(w, f0;x)k(x, y)

∣∣u(x) dx
≥ C

∫ 1

0

|pm(w;x)k(x, y)| 4
√
a2m − x2u(x) dx

≥ C

∫ 1

0

|k(x, y)| u(x)√
w(x)

dx ,

using Proposition 4.1. Since∫
R\[0,1]

|k(x, y)| u(x)√
w(x)

dx < ∞ ∀y ∈ R ,

taking the supremum over all y, we get (3.28). �
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