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Abstract

We study learning with bounded memory in zero-sum repeated games with one-sided incom-
plete information. The uninformed player has only a fixed number of memory states available.
His strategy is to choose a transition rule from state to state, and an action rule, which is a
map from each memory state to the set of actions. We show that the equilibrium transition
rule involves randomization only in the intermediate memory states. This is in contrast with
the earlier literature on optimal finite memory, as in Hellman and Cover (1970) and Wilson
(2003), where randomization occurred only at the extreme states. Such randomization, or less
frequent updating, is interpreted as a way of testing the opponent, which generates inertia in
the player’s behavior and is the main short-run bias in information processing exhibited by the
bounded memory player.

JEL classification : C72, D82, D83
Keywords: bounded memory, incomplete information games, repeated games.

1 Introduction

In this paper we assume that people categorize the world in a coarse way. This is consistent, for

example, with the fact that consumer reports often come in the form of finite ratings. It is also

consistent with the view that it may not be possible to distinguish beliefs about two agents or

products that differ only by a negligible fraction (in a particular dimension). In fact this is also

how some authors in psychology model working memory.1 To illustrate, assume that an agent

thinks of his opponent as being someone “trustworthy”, “not trustworthy”or “unclear,”instead of

having a precise posterior distribution about the opponent’s true underlying type.

In our model, bounded memory captures this coarse categorization. Apart from bounded mem-

ory, the agent is rational, and updating from one category to another is part of her strategy. A

∗This paper is a substantially revised version of my Ph.D. dissertation at Yale University. I am very thankful
to Ben Polak, Dirk Bergemann, and Stephen Morris for their constant guidance. Many people have helped me
throughout the process and I am very thankful to them. I am particularly thankful for conversations with Attila
Ambrus, Faruk Gul, Pei-Yu Lo, George Mailath, Tymofiy Mylovanov, and Arthur Robson.
†Sao Paulo School of Economics - FGV. Email: daniel.monte@fgv.br. Phone: (55-11)-3799-3727.
1See for example Miller (1956), and Cowan (2001).
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bounded memory player has only a fixed number of memory states available. All she knows about

the history of the game is her current memory state. The player is aware of her memory constraints,

and her strategy is to choose a transition rule from state to state and an action rule, which is a

map from each memory state to the set of actions. We show how this agent updates her beliefs and

the implications of this chosen updating rule in a strategic setting. In particular, we show that the

equilibrium updating rule in a reputation game involves randomization at the intermediate memory

states (as opposed to what has been found in decision problems), and we argue that this inertia is

a short-run bias in information processing in the behavior of the bounded memory player.

Given that the player is only constrained in her memory, we view memory as a “conscious”

process, i.e. the player is subject to “incentive compatibility constraints” (sequential rationality

constraints extended to games with bounded memory). The action that the player chooses at each

memory state and the transition from state to state must be optimal given her beliefs at that state,

and taking as given her own strategy - both action and transition rules - at all other states. In

contrast to sequential rationality in models with perfect recall, incentive compatibility constraints

here do not imply an optimal continuation strategy. The reason a bounded-memory player must

take her own strategy at all periods (including future periods) as given when deciding on an action

or on which state to move is that if she deviates today, she will not remember it tomorrow.

Conscious memory distinguishes our model from other models of bounded rationality in the

literature, in particular, from the standard finite automata. Like ours, a standard automaton has a

fixed set of states, a transition rule, and an action rule. However, a standard automaton is assumed

to fully (and credibly) commit to a strategy at an ex-ante stage, and, hence, it does not face

incentive compatibility constraints.2 The idea of incentive compatibility constraints, or sequential

rationality in bounded memory, was introduced by Piccione and Rubinstein (1997) and Wilson

(2003), but these authors studied single-person decision problems for which commitment ex-ante

has been shown to be ineffective. Here, we study games, in which the inability to commit matters.

To be able to isolate the effects of bounded memory from complexity considerations, we focus on

zero-sum games. An infinitely repeated zero-sum game with complete information requires minimal

complexity. We look at the incomplete information case in which the probability of a commitment

type is suffi ciently low, in the spirit of Kreps et al. (1982).

The precise setting of this study is an infinitely repeated two player game with incomplete

2Rubinstein (1986) and Kalai and Neme (1992) also studied automata models with a perfection requirement. The
solution concept used in this paper is substantially different, since it requires consistent beliefs, as will be discussed
later.
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information. One player is uncertain about his opponent’s true type, which we assume to be

either a commitment type that is restricted to only one action or a normal type that has opposite

preferences to those of the uninformed player. Our main propositions apply to a general class

of zero-sum games, but memory restrictions will only bind in games in which learning the true

type of the opponent is profitable for the uninformed player. Thus, we focus on games in which

the equilibrium payoff of the uninformed player in the complete information game against the

commitment type is strictly higher than her equilibrium payoff in the incomplete information game

(we want to rule out uninteresting cases, such as when all payoffs are the same). The matching

pennies is a canonical example for our stage game. We assume that only the uninformed player

has finite memory, whereas the informed player is an unbounded player.

Every period the two agents play a simultaneous finite game. The payoffs are realized and the

actions are observed with certainty. Then, the uninformed player updates her beliefs (according to

her chosen memory rule) on the opponent’s true type.

Equilibrium will always exist and, typically, not be unique. In propositions 1 and 2, we show

conditions that must be satisfied in any equilibrium of the game. In particular, we show that the

updating rule must be weakly increasing after observing actions that are consistent with the action

a commitment type would play. This implies that the uninformed player’s belief on the commitment

type is stochastically higher after observing the commitment type’s action. In addition, because

a different action outside this set leaves no uncertainty in the mind of the uninformed player, she

moves to her “lowest”memory state after such an action. We show that, in this “lowest” state,

her belief on the informed player being the commitment type is close to zero, and, in her “highest”

state, the belief is close to one. This result holds even for the minimal case of only two memory

states, or one-bit memory.

In the cases in which the prior belief on the commitment type is suffi ciently small, the equilib-

rium transition rule will require randomization in any equilibrium in which memory states are used

in an “effi cient”way. Informally, we interpret this result as indicating that when the uninformed

player does not have enough memory to keep track of all the actions played by the opponent,

she will use randomization to overcome the memory problem and to “test” the opponent before

updating.

The role of random transition rules in an optimal finite memory has been studied in single

person decision problems. Hellman and Cover (1970) studied the two-hypothesis testing problem

with a finite automaton (with ex-ante commitment to the strategy). A decision maker has to make
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a decision after a very long sequence of signals. However, the decision maker cannot recall all the

sequence and, instead, has to choose the best way to store information given his finite set of memory

states. A key result of that paper is that, for the discrete signal case, the transition rule is random

in the extreme states. The authors concluded that, perhaps counter intuitively, the decision maker

uses randomization as a memory-saving device.3

Wilson (2003) studied a problem similar to Hellman and Cover (1970). In her model the decision

maker was subject to sequential rationality constraints. The optimal memory rule obtained was

similar to Hellman and Cover’s rule and it included randomization in the extreme states. She

showed that this randomization at the extreme states can explain several biases in information

processing, such as confirmatory bias and overconfidence/underconfidence bias.

In contrast to the results of Hellman and Cover (1970) and Wilson (2003), we show that in

our setting the randomization occurs at the intermediate states and not at the extreme states.

Thus, the main behavioral bias exhibited by the bounded memory player in this class of games

is infrequent updating in the short-run, which is a result of randomization in the transition rule

of memory states associated with intermediate beliefs. We interpret this infrequent updating as

excessive inertia and occasional overreaction (when updating does occur).

The results of this paper depend on the perfect monitoring assumption, or similarly that the

commitment type is playing a pure strategy. The absorbing state depends on this assumption, and,

in turn, it allows us to characterize the necessary conditions for equilibria, stated in proposition

1. In a separate paper (Monte (2013)) we study a similar problem, but in a game in which the

commitment type is playing a mixed strategy. In that paper, we focus on the implications of

bounded memory in long-run reputations. In particular, we show that the important recent result

in repeated games with incomplete information in which the play of the game converges to the play

of a complete information game (e.g., Cripps et al. (2004)) may not hold if the uninformed player

has bounded memory.

This paper is organized as follows. Section 2 consists of the description of the model and the

definitions of memory, strategies, and the equilibrium concept. In section 3, we briefly discuss the

full memory case. Section 4 we show the main result of the paper, i.e., the characterization of

the memory rule in any equilibrium of the game. Section 5 shows that for low prior beliefs on

the commitment type, the transition rule will involve randomization at the intermediate states. In

Section 6 we present a result on the value of memory. Section 7 presents the conclusions of the

3“It is somewhat surprising that randomization is needed at all, since randomization usually decreases informa-
tion.”(Hellman and Cover (1970), p 781).
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paper. The proofs not in the main text are left in the Appendix.

2 Model

The setting of our study is an infinitely repeated game in which one player has incomplete in-

formation on the opponent’s type. The informed player can be one of two possible types: with

probability ρ he is a commitment type, committed to a known pure strategy. This commitment

type will be denoted c. With probability (1− ρ) the informed player is a rational player which we

call the normal type and denote r, with utility opposite to the uninformed player’s. We denote the

uninformed player by b.

The stage game is a finite game Γ where the set of actions for the uninformed player is Ab and

for the normal type it is Ar. The commitment type is playing a fixed action ā ∈ Ar. At every

period both players choose actions from the sets Ab and Ar, then they both observe the outcome

and the uninformed player updates his beliefs on the informed player’s type. Denote ub (a, a′) to

be the utility of the uninformed player in the stage game if the action that he chose was a ∈ Ab
and the action chosen by the informed player was a′ ∈ Ar. Similarly, denote ur (a, a′) to be the

normal type’s stage game payoff. We also denote ui, for i = b, r to be the mixed extension of ui.

Thus, ui (τ b, τ r) = Eui (ab, ar), for ab ∈ Ab and ar ∈ Ar, where the expectation is with respect to

the measure over Ab ×Ar defined by the mixed action profile (τ b, τ r) ∈ ∆ (Ab)×∆ (Ar).

The game between the uninformed player and the normal type is a zero-sum game. We will

assume that the game is such that there are gains form learning the opponent’s true type; and

that learning is not trivial. Memory restrictions will bind in games in which the normal type has a

strict incentive to play some action other than ā, whenever the uninformed player is playing a best

response to ā. For simplicity, we make the following assumption on the stage game Γ: each player

has two actions only, and there are no (strictly or weakly) dominated actions.

This implies that the complete information game against the normal type has a unique Nash

equilibrium in the stage game, denoted by τ = (τ∗b , τ
∗
r). It can be shown that in this equilibrium

the uninformed player plays the pure strategy best response to ā, denoted by b (ā) , with positive

probability and the normal type plays ā with positive probability, τ∗r (ā) > 0. Moreover, the

uninformed player’s stage game payoff when he is choosing b (ā) ∈ Ab and the informed player is

choosing ā is higher than the uninformed player’s stage game equilibrium payoff in the complete

information game against the normal type:
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ub (b (ā) , ā) > ub (τ∗b , τ
∗
r) .

The reason we make these assumptions is to rule out games in which there are no gains from

learning, and thus, no need for memory (e.g. when all outcomes yield the same payoff to both

players). An example that satisfies our restrictions is given by the traditional matching pennies

game, where the commitment type is playing one of the two actions with probability 1.4

We assume that the game is repeated, but after every period there is a positive exogenous

stopping probability η < 1. We will focus on the case where this probability η is very small so that

the players expect the game to go on for a very long horizon. The players discount their repeated

game payoff using the discount factor δ = (1− η) < 1.5

In the model with no memory constraints, the trade-off for the normal type of the informed

player is between building reputation or revealing himself. He might want to mimic the commitment

type and build reputation for the following stage game. Or, he might want to choose an action a 6= ā

and reveal himself. Once he reveals himself, he plays a zero-sum game with the uninformed player,

and there is a unique equilibrium payoff for this subgame. We will later see that this trade-off is

still present in the game with a bounded memory uninformed player.

2.1 Memory and Strategies

A history in this game is defined as nature’s choice of the actual type of the informed player, the

sequences of action profiles, and the memory states of the uninformed player. A history of length

t ≥ 1 is denoted ht =
(
k,
{(
alb, a

l
)}t

l=1
,
{(
sli
)t
l=1

})
, where k ∈ {c, r} , ab ∈ Ab, a ∈ Ar and si ∈M.

The initial history is denoted t0. The set of histories of length t is denoted Ht, and let H = ∪∞t=0Ht.

We will assume throughout the paper that beliefs are public, so that memory states are observed by

the opponent. Although this is an assumption that is hard to justify, it is not crucial for our main

result, namely that randomization occurs only at intermediate memory states.6 The case of public

beliefs will give tractability to this model and we will be able to provide a complete characterization

4A more applied game with bounded memory can be found in Monte (2007). There, we study the same underlying
bounded memory problem, but the stage game is a cheap talk game, very much based on the credibility model of
Sobel (1985).

5The assumption of the stopping probability η is done for technical reasons, which will be discussed in section
(2.3).

6This assumption can be motivated in two different ways. First, a slightly modified model in which the uninformed
player takes an observable continuous action before the agent acts together with a single peaked utility function would
give us the same results as in this paper—without the assumption of observable memory states. Second, one can
think of this as literally being public beliefs, such as institutions that publish credit ratings.
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of the equilibrium updating rule. 7

The informed player, who is unconstrained, will condition his strategy on the observed history

of the game.

The normal type’s behavioral strategy is:

τ r : H → ∆ (Ar) .

Let Σr be the set of all behavioral strategies τ r. The commitment type’s repeated game strategy

is τ c and it is defined to be the constant play of ā, regardless of the history.

The memory of the uninformed player is defined as a finite set of states M = {s1, s2, ..., sn}.

A typical element ofM is denoted by si or sj .

At the start of each period, the bounded memory player must decide on an action based on his

current memory state, which is all the information that he has about the history of the game. We

write his action rule as:

τ b :M→ ∆ (Ab) . (1)

At the end of each period, the uninformed player must decide to which memory state to move to

based on his current memory state and on the opponent’s action.8 Allowing for the possibility of

randomization, we write the transition rule as a map

ϕ :M×Ar → ∆ (M) . (2)

We denote ϕa (i, j) as the probability of moving from state si to state sj given that the informed

player chose a ∈ Ar. This transition rule will determine how the uninformed player updates beliefs.

One way to think of this is that the bounded memory player’s knowledge about the history of the

game is summarized by an n—valued statistic si, which is updated according to the map ϕ.

Finally, it is also part of the uninformed player’s strategy to decide, before the first stage game,

his initial distribution over the memory states g ∈ ∆ (M) . The strategy for the uninformed player

is the triple (g, ϕ, τ b) and we denote the strategy profile by σ = ((g, ϕ, τ b) , τ r).

7 In the case where the informed player does not observe the current memory state, he must keep track of the
history to infer the current memory state of the uninformed player. This private belief of the informed player will
impose an additional inference problem on the bounded memory player: he is learning about the opponent’s type
but also about the opponent’s private belief of his current memory state. With private beliefs there is no recursive
form, which greatly complicates the analysis. This is in the same way that much of the ‘tractability’is lost when we
move from a repeated game with public monitoring to a repeated game with private monitoring.

8We could allow the uninformed player to condition his transition rule in his own current action as well. However,
since he is forgetful, he will choose to condition his transition only on relevant new information (the informed player’s
action). We discuss this in section 2.4. In the automata literature, this is the distinction between full and exact
automata, see Kalai and Neme (1992).
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Given the assumption on public beliefs, we focus on Markovian equilibria and the memory state

will serve as the state variable, so with slight abuse of notation, we will refer to τ r,i (a) as the

probability of choosing a given a memory state si.

2.2 Payoffs

For every strategy profile σ, every memory state will have an associated expected continuation

payoff for the bounded memory player conditional on the actual type of the informed player. The

expected continuation payoff for the bounded memory player at the beginning of a stage game at

memory state si, given that the informed player is a commitment type, is denoted by vci . This

expected continuation payoff is the sum of the stage game payoff and the continuation payoff

induced by the strategy profile. Formally, this expected continuation payoff vci can be written as:

vci = ub (τ b,i, ā) + δ

n∑
j=1

ϕā (i, j) vcj , (3)

where τ b,i is the probability distribution over the set of actions Ab in memory state si, according

to τ b. The first term on the right of (3) is the payoff of the bounded memory player in the stage

game. This payoff is given by the equilibrium behavioral strategy τ b and the strategy of the

commitment type of the informed player, which is to choose ā with probability 1. The second term

is the expected continuation payoff of the continuation game. This depends on the transition rule

and on the associated continuation payoffs of all states reached with positive probability given the

transition rule ϕ. The expected continuation payoff for the uninformed player given a normal type

of the informed player is denoted by vri , and we can write this expected payoff as:

vri = ub (τ b,i, τ r,i) + δ

 ∑
al∈Ar

τ r,i (al)

n∑
j=1

ϕal (i, j) vrj

 , (4)

where τ r,i is the probability distribution over the set of actions Ar used by the normal type in

memory state si and τ r,i (al) is the probability of choosing al at memory state si.

When deciding on an action to take, and on which state to move, the bounded memory player

makes his decisions based on the expected continuation payoffs associated with his decisions.

Given a strategy profile σ, we denote the informed player’s expected continuation payoff in state

si as Uσr (si), and when there is no confusion, we omit the superscript and write simply Ur (si). This

utility is given by a stage-game payoff and a discounted expected continuation payoff that depends

on the transition rule ϕ as well as on Ur (sj) for all sj ∈ M reached through ϕ. If the strategy
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of the informed player depends only on the current memory state of the uninformed player, the

informed player’s expected utility Ur (si) can be written as:

Ur (si) = ur (τ b,i, τ r,i) + δ

 ∑
al∈Ar

τ r,i (al)

n∑
j=1

ϕal (i, j)Ur (sj)

 . (5)

Note that if the true type of the informed player is the normal type, then the informed player and

the uninformed player are playing a zero-sum game. This implies that their expected continuation

payoffs are exactly the opposite, i.e. vri = −Ur (si).

2.3 Beliefs

As described, we view memory as a conscious process. Players know that they are forgetful. At

every memory state they will hold a distribution of beliefs over the set of histories. Given a strategy

profile σ = ((g, ϕ, τ b) , τ r) , let µ (h|si, σ) denote the belief of the uninformed player in state si that

the correct history is h, given the strategy profile σ. As usual, at any information set the beliefs

about all histories must sum up to one

∑
h∈si

µ (h|si, σ) = 1.

Following Piccione and Rubinstein (1997), we assume that the beliefs correspond to “relative

frequencies”as follows.9 Let f (h|σ) be the probability that the play of the game passes through

the history h given the strategy profile σ. Here, note that it is possible that f (h|σ)+f (h′|σ) > 1 for

two histories on the same information set. Indeed, this is the case if h is reached with probability

greater than 0.5 under strategy profile σ and from h the game moves to h′ with probability 1 (and

the bounded memory player does not distinguish h from h′). In other words, while the beliefs in

any particular information set must sum to one, the relative frequencies f (·) need not (see Remark

2).

With abuse of notation, we will denote h ∈ si, for each history h and memory state si, for a

history with its last component being memory state si. That is, at each time t, the history ht ∈ sti
if ht =

(
k,
{(
alb, a

l
)}t

l=1
,
{(
sli
)t
l=1

})
.

We will say that the strategy profile σ is consistent with beliefs µ if these beliefs are given by

the relative frequencies as defined below.

9Since the player is not forgetful within the period, but only across periods, we only have to define how he computes
beliefs at the beginning of a stage game. At the end of the stage the player updates his beliefs using Bayes’rule.
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Definition 1 (Consistency)

A strategy profile σ is consistent with the beliefs µ if, for every memory state si and for every

history h ∈ si, we have that the beliefs are computed as follows:10

µ (h|si, σ) =
f (h|σ)∑

h′∈si

f (h′|σ)
. (6)

Remark 1 The exogenous probability of the game ending, η, is important in infinite horizon games

with imperfect recall. When computing beliefs in an infinite horizon game, the bounded memory

player must have priors about the time periods. Given that the game is infinite, a uniform prior

is not feasible. The exogenous stopping probability generates a well defined probability distribution

over the different time periods.

Remark 2 Notice that the denominator in expression (6) can be greater than one. The underlying

reason for this is that the uninformed player only keeps track of the time (the period of the game)

insofar as his transition rule allows. Thus, for example, depending on the transition rule, a t-

period history and its parent (t− 1)-period sub-history could place the uninformed player in the

same memory state. This contrasts with what would be the uninformed player’s information sets

in the standard game without bounded memory. In the extreme case of one memory state, all

histories must be in the same state and the denominator in (6) would be 1
η , where recall that η is

the exogenous stopping probability. Even in this case, however, the exogenous stopping probability

ensures that the denominator in (6) is bounded and, thus, that the beliefs are well defined (the

bounded memory player will have well defined priors over the time periods).

Let Hc be the set of histories for which the actual type is c. Similarly, Hr is the set of histories

for which the actual type is r; hence, Hc ∪Hr = H. At the beginning of a stage game, given some

memory state si, the prior belief that the opponent is a commitment type is denoted by:11

ρi ≡ Pr (c|si, σ) =
∑

h∈si∩Hc

µ (h|si, σ) . (7)

At the beginning of every stage game, we denote πi ≡ Pr (ā|si, σ) as the probability that the

informed player will choose the action ā in that stage game, given the current memory state si. If

10 In our analysis we will only consider memory states that are reached on equilibrium path, so the ratio is well-
defined.
11Recall that we say that a history h ∈ si if the last memory state of h is memory state si Thus, with abuse of

notation, a memory state h ∈ ∩Hc if h ∈ Hc and the last memory state of history h is si.
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the informed player is using a Markovian strategy, we can write the probability of ā being chosen

at memory state si as:

πi = ρi + (1− ρi) τ r,i (ā) . (8)

After observing whether the action played, the bounded memory player updates his belief

concerning the probability that the informed player is a commitment type. We denote this posterior

after observing ā as pi ≡ Pr (c|ā, si). These beliefs are computed using (7) and (8).

pi =
ρi
πi
. (9)

Whenever action a 6= ā is played, the uninformed player’s posterior belief that the informed

player is a commitment type is zero, since the commitment type always chooses ā (we assume that

this is true even following histories off-equilibrium path).

In a game with full memory, the player’s posterior in the end of a stage game is also his prior

in the next stage game. This is not true in general for games with bounded memory players. In

any stage game, the player does not necessarily know which was the previous stage game; or the

belief he held in the last period. Upon reaching a memory state si, the uninformed player will hold

a belief about his opponent given by (7), regardless of the actual history. Since all his knowledge

about the history of the game is given by the statistic si, the belief he holds in si must depend only

on this information.

2.4 Equilibrium

In our concept of equilibrium, we use the notion of incentive compatibility as described by Pic-

cione and Rubinstein (1997) and Wilson (2003).12 The assumption that we make is that at every

information set the player holds beliefs induced by the strategy profile σ. If there is a deviation in

the play of the game, the agent will not remember it, and his future beliefs will still be the ones

induced by the strategy σ. Thus, a player might decide to deviate at a particular time, but he

cannot trigger a sequence of deviations.

We say that a pair (µ, σ) is incentive compatible when it satisfies two specific conditions. First,

the strategy of the normal type of the informed player is a best response for him at every history,

given the strategy of the bounded memory player (ϕ0, ϕ, τ b). Second, the strategy of the bounded

memory player is a best response for him at every point in time, given his beliefs and taking as

12Piccione and Rubinstein (1997) refer to this solution concept as “modified multiself consistency”. The term
incentive compatibility is taken from Wilson (2003).
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given the strategy of the informed player and his own strategy at all memory states. Again, the

reason for taking his own strategy as given when deciding on which action to take or what state

to move is that a deviation is not remembered in future periods and the beliefs in the following

periods will be the ones obtained by assuming that the strategy profile is σ.

For the reason stated in the previous paragraph, sequential equilibrium is not the appropriate

solution concept for games with absentmindedness, as was pointed out by Piccione and Rubinstein

(1997). The formal notion of sequential equilibrium requires the strategy of the player to be optimal

at every information set, given the beliefs induced by this strategy. In games with bounded memory

the continuation strategy need not be optimal to an outside observer, since the player cannot revise

his entire strategy during the play of the game. In other words, the player might be “trapped”in

bad equilibria.

We define equilibrium in this game using the notion of incentive compatibility. An equilibrium

in this game is a pair (µ, σ) such that the strategies and beliefs are consistent, and the strategies

are incentive compatible.

Definition 2 (Incentive Compatible Equilibrium)

The strategy profile σ = ((g, ϕ, τ b) , τ r) is an incentive compatible equilibrium if there exists a belief

µ such that the pair (µ, σ) is consistent and σ satisfies the conditions below:

1. U ((ϕ0,ϕ,τb),τr)
r (si) ≥ U ((ϕ0,ϕ,τb),τ

′
r)

r (si), ∀τ ′r ∈ Σr, ∀si ∈M.

2. For all states si ∈M, we must have:

ρiv
c
i + (1− ρi) vri ≥ ρi

ub (a, ā) + δ
n∑
j=1

αj (ā) vcj

+

+ (1− ρi)

ub (a, τ r,i) + δ

 ∑
al∈Ar

τ r,i (al)
n∑
j=1

αj (al) v
r
j

 ,

for any a ∈ Ab, and ∀α : Ar → [0, 1] such that for ∀al ∈ Ar,
∑n

j=1 α (al) = 1, and αj (al) ≥ 0,

for ∀j ∈ {1, ..., n} .

In the context of this game, and given that the player is not forgetful within the period, but only

across periods, the incentive compatibility constraint of the bounded memory player (condition 2

in the definition above) can be written as two separate conditions: one condition for the transition

rule and another one for the action rule.
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The condition for incentive compatibility on the action rule of the uninformed player requires

that he takes the myopic best action at all stage games. For suppose not: at some memory state

si the specified action is different from the myopic best one. If the uninformed player deviates to

the best current action he will not remember it in the following period. Since histories are private,

the informed player will only punish the uninformed player for this deviation if this punishment

is profitable even in the case of no deviations. This implies that it must not be profitable, and

thus, the uninformed player should deviate and play the myopic best one. For the same reason, the

uninformed player will not consider his own current action when deciding on which state to move

next.

The incentive compatibility condition for the transition rule requires that the uninformed player

moves to the memory state that gives him the highest expected payoff given his beliefs. Thus, if his

transition rule assigns positive probability to move from state si to state sj after the action played

by the informed player a ∈ Ar, then given his beliefs at state si, it must be optimal for him to do

so. We state the definition of incentive compatibility in the uninformed player’s transition rule.

Definition 3 (Incentive Compatibility: Transition Rule)

If a strategy σ = ((g, ϕ, τ b) , τ r) is incentive compatible, then the transition rule ϕ satisfies the

following condition. For any states si, sj , and sj′ ∈M:

ϕā (i, j) > 0⇒ piv
c
j + (1− pi) vrj ≥ pivcj′ + (1− pi) vrj′ ,

ϕal (i, j) > 0⇒ vrj ≥ vrj′ , ∀al ∈ Ar\ {ā}

In games with imperfect recall there are typically multiple equilibria (even in one person

games).13 Some authors take the view that in decision problems, the ex-ante agent will coor-

dinate his actions in the most profitable equilibrium, as discussed by Aumann et al (1997). In a

multi-player game this assumption is less appealing, since instead of ex-ante optimality we look for

equilibria. Therefore, in this paper, we characterize all equilibria and point out the ones in which

memory states are not used in a redundant way.

3 Full Memory

We first study the game under the assumption that both players have full memory. A version of

this game has been studied by Sobel (1985). To construct the perfect Bayesian equilibrium we first

13Absentmindedness as defined in Piccione and Rubinstein (1997) is a special case of imperfect recall. In this paper
the bounded memory player is in fact absentminded. The issues of games with absentminded players discussed in
this section applies more generally to games with imperfect recall as well.
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note that whenever the informed player chooses an action different from ā, the unique equilibrium

in the following subgame is the zero-sum equilibrium, since the normal type of the informed player

has revealed its type. When the informed player chooses ā, the uninformed player updates his

beliefs using Bayes rule. The trade-off for the normal type at every period is between getting a

high stage game payoff (by choosing a′ 6= ā) or getting a worse stage game payoff but building

reputation (by playing ā).

A second property of the equilibrium is that the uninformed player plays a myopic best response

to his beliefs and the normal type’s strategy at every stage game, regardless of the discount factor δ.

For suppose not. Then there exists a history h with corresponding belief on the commitment type

ρh, in which the uninformed player plays an action a ∈ Ar with a probability different from the one

specified by the myopic best response. The expected continuation payoff for the uninformed player

following the play of this stage game is: phUb (σb, τ c)+(1− ph)Ub (σb, τ r) . If the uninformed player

deviates to the myopic best response, his stage game payoff is at least as high and his expected

continuation payoff if he sticks to his continuation strategy from the following period onwards is:

phUb (σb, τ c) + (1− ph)Ub (σb, τ
′
r) . Suppose that Ub (σb, τ r) > Ub (σb, τ

′
r) . Given that this is a zero-

sum game, it immediately implies that Ur (σb, τ
′
r) > Ur (σb, τ r). Therefore, τ r is not consistent

with perfect Bayesian equilibrium, which is a contradiction.

The perfect Bayesian equilibrium is characterized by the informed player choosing ā with posi-

tive probability in all histories but one: when the uninformed player’s belief (on the commitment

type) is so high that the uninformed player plays a best response against the commitment type’s

action. When this is the case, the informed player strictly prefers to play some other a′ 6= ā.

We have that if p > τ∗r (ā), then the uninformed player plays a best response to ā, which we

have denoted b (ā) . The normal type plays a stage game best response to b (ā), which, given the

restrictions that we have made in Γ, is different from ā. The types are then revealed and from the

following stage game on, the game is of complete information.

As long as the informed player plays ā, the uninformed player’s belief increases monotonically

until it becomes greater than τ∗r (ā). When this happens, the normal type of the informed player

plays a best response to a 6= ā with probability one and the following continuation game is a

complete information game.

Let the equilibrium strategy of the informed player be such that at the ith stage game he plays

ā with probability τ r,i (ā) , after histories in which the actions played by the informed player are

only ā in the last i− 1 stage games. Moreover, players play (τ∗b , τ
∗
r) at every stage game following
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a single play of a 6= ā by the informed player. Formally, for a history in which the informed player

has only played ā, the uninformed player updates his beliefs as follows:

ρi+1 =
ρi

ρi + (1− ρi) τ r,i (ā)
,

if ā has been played and

ρi+1 = 0,

if a 6= ā was played by the informed player.

Reputation increases monotonically until the normal type reveals itself. When this happens, if

it does, the reputation immediately drops to zero where it stays forever. We contrast this game and

this equilibrium with the case where the uninformed player has a finite number of memory states,

so that he can only hold a finite number of beliefs in equilibrium.

4 Equilibrium Memory Rule

As we have discussed previously, there are typically multiple equilibria in games with imperfect

recall. In our game, there are many equilibria in which the memory rule of the uninformed player

has redundant states. In particular, there is always an equilibrium in which all memory states

induce the same belief. In the appendix we show necessary conditions for any equilibria, but in

this section we focus on equilibria with non-redundant states. First, we construct a non-trivial

equilibrium in the two-state case. Then, we proceed to the general case of n memory states, for

which we characterize the equilibrium transition rule of the bounded memory player. We show that

it satisfies a weak monotonicity condition. Hence, the resulting updating rule resembles Bayesian

updating whenever possible.

From what follows, we label the states in increasing order of continuation payoffs given a com-

mitment type. Thus, if i > j then vci > vcj . This is w.l.o.g. because all the equilibria are the same

up to relabeling.

One of our main results is to show that in the two extreme states, s1 and sn, the beliefs of the

bounded memory player on the opponent’s type are zero, in the lowest state, and very close to one

—in some precise sense —in the highest state. This is true even for the simple case of two memory

states only. The outcome in the intermediate states is shown to depend critically on the size of the

memory and the initial prior on the commitment type.

Throughout the paper we consider only strategies in which all states are reached with positive

probability in equilibrium. Suppose, for now, that all states have different vci and, consequently,
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different vri (memory states with the same expected continuation payoff v
c
i = vcj will be shown to

be redundant and are considered in the appendix).

4.1 2 Memory States

In this section we restrict attention to the two-memory state case. This is a very special case, since

the memory is minimal: one bit only. We can interpret a two-memory state person as someone

who thinks only through two categories; he either thinks of his opponent as a “high type”or as a

“low type.”The resulting equilibrium in this two-state world will help us understand the outcome

on the extreme states of more general memories (n > 2), which we will examine in detail in the

next section.

An updating rule for the two-memory state case is a probability of switching from state 1 to

state 2 and vice-versa, after observing each action. A general updating rule is depicted in the figure

below.

Fig. 1: General Updating Rule

There are multiple equilibria in this two-state case: one equilibria is when both states induce

the same belief (the prior) and thus any transition from one state to the other is interim optimal.

In this case, it is as if the bounded memory player is playing an infinite sequence of one-shot games.

As we have mentioned, in this section we focus on the case where the states are not identical and

induce different actions from the bounded memory player. This excludes the case where the prior

on the commitment type is very small.14

We now construct this equilibrium in what follows. Given our convention, we fix vc2 > vc1. Thus,

the expected continuation payoff given a normal type is higher in state 1: vr1 > vr2 (and, because

of the zero-sum game, Ur (s2) > Ur (s1)). To construct this equilibrium, we will proceed in 4 steps.

14For a small prior on the commitment type, the constant play of the unique stage game Nash equilibrium is the
only possible incentive compatible equilibrium in the infinite horizon game. We prove this result formally in section
5, where we also show how to find this threshold prior.
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First, note that after observing the action a 6= ā, the bounded memory player becomes convinced

that the opponent is a normal type, that is, her posterior on the normal type is one. Thus, by

incentive compatibility, ϕa (i, 1) = 1, for i = 1, 2 for a 6= ā.

Thus, the utility of the informed player at state s2 if she plays a 6= ā can be written as:

Ur (a|s2) = ur (τ b,2, a) + δUr (s1) . (10)

Second, in equilibrium, it must be that

ur (τ b,2, a) ≥ ur (τ∗b , τ
∗
r) ≥ ur (τ b,2, ā) , (11)

To prove this, we use the fact that Ur (s1) ≤
∑2

j=1 ϕā (2, j)Ur (sj) and the restrictions on the

stage game. Suppose, by contradiction that ur (τ b,2, ā) > ur (τ b,2, a) , then:

Ur (a|s2) = ur (τ b,2, a) + δUr (s1)

< ur (τ b,2, ā) + δ (ϕā (2, 1)Ur (s1) + ϕā (2, 2)Ur (s2))

= Ur (ā|s2) .

This would imply that the informed player should play ā with probability one at every history

in memory state 2. The myopic best response of the uninformed player should be to play b (ā) and

ur (b (ā) , a) > ur (b (ā) , ā) by assumption. This leads to a contradiction. Therefore, in equilibrium

(11) must hold.

We now proceed to argue that Ur (a|s2) > Ur (ā|s2), but before, note that Ur (si) ≥
ur(τ∗b ,τ

∗
r)

1−δ ,

for any si ∈M. Suppose, by contradiction, that Ur (ā|s2) ≥ Ur (a|s2). The informed player’s payoff

at memory state s2 is Ur (s2) = Ur (ā|s2) and

Ur (s2) ≤ ur (τ b,2, ā) + δUr (s2) ,

Therefore:

Ur (s2) ≤ ur (τ b,2, ā)

1− δ

≤ ur (τ b,2, a)

1− δ ≤ Ur (s1)

However, note that we have assumed that the memory states do not induce the same payoffs

in equilibrium, and, in particular, we have focused on the case in which Ur (s2) > Ur (s1), which

implies a contradiction. Therefore, Ur (a|s2) > Ur (ā|s2) and the normal type plays a 6= ā in every
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history at state s2. The intuition for this result is that the trade-off between stage-game payoff and

reputation incentives does not exist in this highest state: given that the state is the highest one, in

the subsequent period the normal type will at most be as well-off as she is in the current period.

The transition rule in memory state s2 must be such that after observing ā, the bounded memory

player chooses to stay in that state, that is: ϕā (2, 2) = 1. The transition rule must be such that

either the bounded memory player starts at memory state s2, or the probability of moving away

from that state after action ā must be positive. Following the argument, the long-run probability

of having a commitment type in state s1, is zero. This is true since, given a commitment type, the

bounded memory player either starts at state s2, or eventually reaches that state and stays there

forever. On the other hand, given a normal type, the bounded memory player will visit state s1

infinitely often, since whenever she reaches state s2, she immediately goes back to state s1. As

the stopping probability η goes to zero, or equivalently, as δ → 1, the expected length of the game

increases. Therefore in state s1 the bounded memory player’s belief on a normal type goes to zero

as δ → 1. We prove this result formally in the appendix for a memory with n states.

The equilibrium in the case of a not very small prior and non-redundant memory states is

depicted below.

Fig. 2: Equilibrium Rule with Separation

This shows that the bounded memory player, having a very small memory, will start the game

with “long run beliefs”. Another interesting property of the equilibrium is that the bounded memory

player keeps track of the normal types. The normal type will still benefit from the fact that his

opponent is boundedly rational, but not because the bounded memory player forgets her actions,

but because the bounded memory player doesn’t know the period that she is in when she starts

the game. In other words, the bounded memory player is confused about the time period when she
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is in state s2, so she doesn’t know if she has already separated the types.

In the initial state, the bounded memory player not knowing the actual period will think that

it is much more likely that the types have already been separated (as δ → 1 the probability that

she attaches to the time period being the first one—the only period in which the normal type is

also possible at that state— is very close to zero). This “inflates” the belief in state s2 and gives

the informed player a high payoff in the initial period. For the same reason, conditional on the

commitment type, the expected payoff is indeed higher for the bounded memory player than it is

for her counter factual Bayesian version.

4.2 n Memory States

Consider now the general case in which the bounded memory player is restricted to n memory

states, where n ≥ 2.

Our main result is shown in proposition 1 below. We show that any equilibrium memory rule will

satisfy a weakly increasing property. The equilibrium updating rule is such that the uninformed

player separates the types. Since only the normal type can play action a 6= ā, this actions is

completely revealing. Thus, the uninformed player’s posterior belief after such action is zero. He

will then move to his lowest state, and therefore ϕa (i, 1) = 1, a 6= ā for any memory state si. The

same intuition holds for histories in which the normal type strictly prefers to play a 6= ā. In this

case, action ā is completely revealing. The uninformed player then moves to his highest state with

probability one.

While the uninformed player might ignore information by not updating after ā, he will never

update to a worse belief after observing ā. The uninformed player will get a better payoff from

staying in the same state rather than moving to a lower state. One interpretation of this result is

that the uninformed player might ignore new information, but he will not forget the information

that he already holds.

Finally, the extreme states s1 and sn must have beliefs about the opponent’s type that are zero

and one, or close to one, respectively. The intuition is that at state sn there are no reputation

incentives, thus the normal type of the informed player will reveal himself right away. If the

uninformed player is at this memory state, the only chance that the informed player is the normal

type is if this is the first stage game being played at this memory state. In other words, the normal

type of the informed player will stay in this state for at most one period. On the other hand, if

the informed player is a commitment type, the state is absorbing and this type will be in state

sn forever. The probability of being at state sn for the first time goes to zero as the stopping
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probability gets smaller. The same argument holds for what happens at state s1. If this is not the

initial state, as we will show for the case of η close to zero, then only the normal type of informed

player can reach this state. In this case, the result is obvious. If this was the initial state, the

probability of having a normal type at that state would go to one as the stopping probability goes

to zero, therefore this state would be absorbing and in equilibrium, it would not be the initial state.

We should remark here that while an equilibrium always exists in our game, we were unable

to establish under what conditions an equilibrium in which all states are used in a non-redundant

way exists. For that reason, the results of sections 4 and 5 are necessary conditions for equilibria.

We state the result below for the case where the stopping probability is very small, δ → 1.

In the appendix we prove a more general version of the proposition, which holds for any stopping

probability η, and which allows for redundant states.

Proposition 1 (Updating Rule)

If the strategy profile σ = ((g, ϕ, τ b) , τ r) is an equilibrium with non redundant states, then, we have

that:

1. After observing the action a 6= ā move to an absorbing state: ϕa (j, 1) = 1.

2. Never go back after observing ā: ρj > ρi ⇒ ϕā (j, i) = 0.

3. The initial state is the lowest state after the absorbing one:

lim
δ→1

g (s1) = 0 and lim
δ→1

g (s2) > 0.

4. The lowest belief approaches zero: limδ→1 ρ1 = 0.

5. The highest belief approaches one: limδ→1 ρn = 1.

In our game, in any equilibrium with non-redundant states, the normal type is revealed either

in finite time or asymptotically. The result that types are eventually revealed is derived from

results 4 and 5 of the proposition above. They imply that the informed player reveals her type

immediately in the case of 2 states — as we have mentioned in the end of section 4.1— and that

she will reveal her type at the first period in which the memory state sn is reached. Recall that

in the Bayesian version of this game, that is, with both players fully rational, the informed player

reveals her type in finite time.15 That is, given the stage game and the prior on the commitment
15This game was analyzed by Sobel (1985) under a somewhat different stage game —with cheap talk and conflicting

preferences, but with the same properties of my game.
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type, one can calculate the maximum number of periods before which the normal type reveals her

type with probability one. Under bounded memory, depending on the memory size and the initial

prior on the commitment type, randomization in the transition rule might be a necessary condition

for equilibrium (see section 5), implying that there are arbitrarily long histories on-equilibrium

path in which the normal type does not reveal her type. However, these histories are reached with

probability that approach zero exponentially. This comes from the fact that at every period the

normal type plays a 6= ā with a positive probability.16 Thus, similarly to the Bayesian version,

types are also revealed in the bounded memory world, either in finite time or asymptotically. We

state this result below.

Corollary 1 For any given prior ρ and a number of memory states n, and any ε > 0, there exists

a period t̄ ≥ 1, after which the normal type is revealed with probability at least 1 − ε. That is,

conditional on the normal type, f (ht|σ) > 1− ε, for every ht ∈ s1 ∩Hr, ∀t > t̄.

At this point, we have ruled out some memory rules that could never be played in equilibrium—in

particular, rules with loops and rules that don’t separate the types. The proposition below tells

how the updating happens after action ā. All the results depend on a condition that the posteriors

about the informed player’s type are different on the states. To weaken this restriction, in the

appendix we prove the following result: ρj > ρi ⇒ pj ≥ pi.

Proposition 2 (Monotonicity)

For any two states si, sj ∈ M such that pi 6= pj, i.e. states with different posteriors, then we have

the following.

1. (Single crossing) ϕā (i, k) > 0 , ϕā (i,m) > 0 and ϕā (j, k) > 0⇒ ϕā (j,m) = 0,

for ∀k,m such that ρk 6= ρm.

2. (Weak Monotonicity) ϕā (i, k′) > 0 ,ϕā (i, k′′) > 0 ⇒ ϕā (j, k) = 0,

for ∀k′ < k < k′′.

3. (Increasing Rule) If ϕā (j,m) > 0⇒ ϕā (i,m′) = 0,

for ∀ m′ < m, and pi > pj.

16This is proved in the appendix, Lemma 5 and corollary 1.
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Proof. For the single crossing property, suppose that ϕā (i, k) > 0 and also that ϕā (i,m) > 0.

This implies that:

pi (vck − vcm) + (1− pi) (vrk − vrm) = 0. (12)

Suppose now that ϕā (j, k) > 0 and ϕā (j,m) > 0, then

pj (vck − vcm) + (1− pj) (vrk − vrm) = 0. (13)

If pi 6= pj then (12) and (13) cannot hold at the same time. Thus, two states must have at most

one state in common in their transition rules.

The next step is to show a “weak monotonicity”result for states where pi and pj are different.

Suppose that ϕā (i, k + 1) > 0 and ϕā (i, k − 1) > 0. This implies that:

pi
(
vck+1 − vck

)
+ (1− pi)

(
vrk+1 − vrk

)
≥ 0, (14)

pi
(
vck − vck−1

)
+ (1− pi)

(
vrk − vrk−1

)
≤ 0. (15)

If in addition we also have that ϕā (j, k) > 0. Then it must be true that :

pj
(
vck+1 − vck

)
+ (1− pj)

(
vrk+1 − vrk

)
≤ 0, (16)

pj
(
vck − vck−1

)
+ (1− pj)

(
vrk − vrk−1

)
≥ 0. (17)

The equations above cannot hold for ρk+1 > ρk > ρk−1 and pi 6= pj .

Finally, to prove the monotonicity condition, first note that by incentive compatibility we must

have that:

ϕā (j,m) > 0⇒ pjv
c
m + (1− pj) vrm ≥ pjvcm′ + (1− pj) vrm′,

which means that:

pj (vcm − vcm′) + (1− pj) (vrm − vrm′) ≥ 0. (18)

Note that (vcm − vcm′) ≥ 0 and (vrm − vrm′) ≤ 0. Thus, since pi > pj , we have that:

pi (vcm − vcm′) + (1− pj) (vrm − vrm′) > 0, (19)

which proves our last condition.

This last result tells us that for any two states with different posteriors, the transition rule of

both states might have at most one state in common. This ‘common state’is the highest point on

the support of the transition rule of the lower posterior state. Moreover, from the lower posterior

state the uninformed player does not move to any other state in the higher posterior state’s support.

22



As we mentioned before, there are always equilibria with redundant sates. Lemma 1 below

shows that we can ignore the redundant states without loss of generality. This result tells us that

any equilibrium in which the uninformed player is using a redundant state can be reproduced with

a strategy without redundant states. Therefore, we can focus only on rules where all states have

different beliefs.

Lemma 1 (Redundant States)

Consider an uninformed player with memoryM that has only n states. The strategy σ = ((g, ϕ, τ b) , τ r)

gives the uninformed player a payoff of U∗b . Now suppose that ρi = ρj , for some si, sj ∈M. Then,

there ∃ σ′ for some other memory M′ with n− 1 states and that also gives the uninformed player

a payoff U∗b .

Proof. Let ρi = ρj . From the proof of proposition 1 this implies that vri = vrj . Thus, if

both states are reached in equilibrium it must be that vci = vcj . The uninformed player is always

completely indifferent between the two states i and j after any action played by the opponent. If

pi = pj , then the states are identical and we can consider them as being a single state (just rewrite

the transition rules). If pi > pj , then they must have the same transition rules, or else vci = vcj

would not hold. But, if they have the same transition rules then again they are identical and we

can group them as one.

A class of memory rules that satisfies propositions 1 and 2 is depicted in figure 3 below.

Fig. 3: A Class of Equilibrium Memory Rules

In the following section, we will show the conditions under which the only equilibria with non-

redundant memory states involve random updating rule, ϕā (i, i+ 1) ∈ (0, 1) for some states si,
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with n > i > 1.

5 Random Updating Rule and Inertia

In the previous section, we characterized the equilibrium transition rule. In this section, we show

that for suffi ciently small prior on the commitment type the equilibrium transition rule will involve

randomization, but not at the extreme states. A bounded memory player updates less frequently

than a Bayesian player. We interpret this result as indicating that the bounded memory player

ignores relevant information as a way of overcoming his limited memory. This infrequent updating

in the transient states (the intermediate states) is our interpretation of inertia as a bias in the short

run for the uninformed player. It is as if he is being ‘skeptical’and testing the informed player

before updating him to a higher reputation.

Given a memory of size n, there is a threshold in the prior space such that if the prior is smaller

than this threshold, the uninformed player will not use deterministic transition rules.

Proposition 3 (Random Transition Rule)

Given any number of memory states n > 2, there exists a threshold on the prior on the commitment

type, ρ∗n, such that if the actual prior is smaller than this threshold, ρ < ρ∗n, then an equilibrium

with non-redundant states must involve randomization in the transition rule at the intermediate

memory states.

Proof. The proof is by induction. Consider first the two last states, sn−1 and sn. We will

compute a threshold on the prior of memory state sn−1 such that the uninformed player will choose

ϕā (n− 1, n) = 1.

The informed player will weakly prefer to play a 6= ā in state sn−1 if:

ur (τ b,n−1, a) + δur (τ∗b , τ
∗
r) ≥ ur (τ b,n−1, ā) + δur (b (ā) , a) . (20)

We need to find the highest τ r,n−1 (ā) that can support (20). The intuition is that if τ r,n−1 (ā)

is too high, the posterior on state sn−1 will be too low and the uninformed player will not want

to move to state sn. Thus, we need to consider the uninformed player’s incentive compatibility

constraint as well. For the uninformed player’s incentive compatibility to hold, we need that:

pn−1

(
vcn − vcn−1

)
+ (1− pn−1)

(
vrn − vrn−1

)
≥ 0.

Given that at state sn, the normal type plays a 6= ā, for non-trivial equilibria (in which induced

beliefs are different), we must have that that ρn ≥ τ∗r (ā) (otherwise, τ b,n = τ∗b and all states would
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be identical). If the equilibria is in pure strategies, pn−1 = ρn. Therefore, the prior on memory

state sn−1 must be such that:

ρn−1

ρn−1 +
(
1− ρn−1

)
τ r,n−1 (ā)

≥ τ∗r (ā) . (21)

At memory state si, in which i < n, it must be that ρi+(1− ρi) τ r,i (ā) = τ∗r (ā), since if this equality

does not hold, then the bounded memory player would not mix in her actions in that stage game and,

as result, the informed player would not either. If ρi+ (1− ρi) τ r,i (ā) > τ∗r (ā), then τ b,i (b (ā)) = 1

and, the normal type would play a 6= ā, which means that τ r,i (ā) = 0, which can only be consistent

with the inequality if ρi ≥ τ∗r (ā). On the other hand, if ρi + (1− ρi) τ r,i (ā) < τ∗r (ā), then

τ b,i (b (ā)) = 0, and the normal type should play ā with probability one, which is a contradiction.

Therefore a lower bound on ρi is obtained by setting ρi + (1− ρi) τ r,i (ā) = τ∗r (ā). Using (21) we

get that:

ρn−1 ≥ τ∗r (ā)
(
ρn−1 +

(
1− ρn−1

)
τ r,n−1 (ā)

)
ρn−1 ≥ (τ∗r (ā))2

By induction, we have that:

ρ ≥ (τ∗r (ā))n

6 Payoffs: The Value of Memory

In this section we compute a bound on the value of memory. We show that the difference between

the payoff obtained by an unconstrained uninformed player and the payoff obtained by a bounded

memory uninformed player is bounded by the maximum difference of payoffs in one stage game. In

equilibrium, a bounded memory player benefits from the type separation, but pays a high screening

cost.

Consider the class of two-player finite stage games specified in Section 2 and their incomplete

information version with a commonly known prior ρ that the informed player is a commitment

type. In the benchmark case where both players are unconstrained in their memory capacities (and

otherwise), denote by UBayes the expected payoff of the uninformed player in the perfect Bayesian

equilibrium of the game.

Now consider the same game above but in which the uninformed player is restricted to limited

memory. We write Ub ((g, ϕ, τ b) , τ r) to be the expected discounted repeated game payoff ob-
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tained by the bounded memory player when the incentive compatible equilibrium strategy profile

is ((g, ϕ, τ b) , τ r).

Before we proceed, let us introduce some new notation. Let M = max(ab,ar) ub (ab, ar) and

m = min(ab,ar) ub (ab, ar), ∀ab ∈ Ab,∀ar ∈ Ar. Define SN to be the set of incentive compatible

equilibria in the repeated game in which the bounded memory player is restricted to N memory

states. Denote by UN the upper bound on the payoff that the uninformed player restricted to

N memory states can achieve in any incentive compatible equilibrium of the repeated game with

incomplete information. Formally, define UN ≡ sup {Ub ((g, ϕ, τ b) , τ r) | ((g, ϕ, τ b) , τ r) ∈ SN}.17

We now prove the following result: UN ≥ U2, ∀N > 2. The intuition here is straightforward: for

any number of memory states N , there always exists an incentive compatible equilibrium that is

equivalent to the most profitable equilibrium of a player restricted to m ≤ N − 1 memory states.

The extra state(s) could be off-equilibrium path, or, in case of equilibria in which all states are

reached on-equilibrium path, some states could be redundant, as we show below.

Lemma 2 (Payoff s: Non-decreasing in the Number of States)

The upper bound on the payoffs of the equilibria with non-redundant states are non-decreasing in

the uninformed player’s number of memory states:

UN ≥ U2,∀N ≥ 2.

Proof. Consider a memoryM that has only N states. Let σ = ((g, ϕ, τ b) , τ r) be an incentive

compatible equilibrium (without redundant states, see lemma 1) in such a world. In this equi-

librium, denote the expected repeated game payoff of the bounded memory player by U∗b . Now

consider a different game in which the uninformed player is restricted to N+∆ memory states, with

∆ ≥ 1. Then, there exists an incentive compatible equilibrium σ′ = ((g′, ϕ′, τ ′b) , τ
′
r) in which the

bounded memory player gets payoffU∗b . To see this, let the strategy of the bounded memory player,

(g′, ϕ′, τ ′b), be such that: (1) g
′ = g; (2) τ ′b,i = τ b,i ∀i = 1, ..., N and τ ′b,j =τ b,1, ∀j = N+1, ..., N+∆;

and (3) ϕ′ā (i, j) = ϕā (i, j), ∀i, j = 2, ..., N , moreover, ϕ′a (i, 1) = ϕa (i, 1) = 1, a 6= ā,∀i = 1, ..., N,

but ϕ′â (j, j + 1) = ϕ′â (1, N + 1) = ϕ′â (N + ∆, 1) = 1, ∀â ∈ Ar, ∀j = N + 1, .., N + ∆− 1. Let the

strategy of the normal type be τ ′r,i = τ r,i, ∀i = 1, ..., N and τ ′r,i = τ r,1, ∀i = N + 1, ..., N + ∆. It is

straightforward to notice that if σ = ((g, ϕ, τ b) , τ r) is an incentive compatible equilibrium, then σ′

must also be an equilibrium.

We are now ready to prove our main result in this section:
17Recall that the set {Ub ((g, ϕ, τ b) , τr) | ((g, ϕ, τ b) , τr) ∈ SN} is bounded, since M

1−δ ≥ UN ≥ m
1−δ , and is non-

empty.
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Proposition 4 (Payoff Difference)

The difference in the uninformed player’s equilibrium payoff in the case in which he is a fully

Bayesian player and the case in which he has bounded memory is bounded by the largest difference

in the payoffs of the stage game. That is, ∀N > 1, ∃ δ̄ < 1, such that ∀δ > δ̄:

UBayes − UN ≤M −m.

Proof. To prove this result, we will compare the payoff of a Bayesian uninformed player with

the payoff achieved by a bounded memory player restricted to two memory states and we use the

result of lemma 2 above. We can write UBayes as follows:

UBayes = ρ

{
uc1 + δuc2 + ...+ δT−1ucT + δT

ucT+1

1− δ

}
+ (1− ρ)

{
ur1 + δ

ub (τ∗b , τ
∗
r)

1− δ

}
,

where uct ≡ ub
(
τ tb, ā

)
and τ tb is the probability distribution over Ab induced by the equilibrium

strategy σb following the history ht−1 =
{(
alb, ā

)}t−1

l=1
, ∀alb ∈ Ab. Similarly, ur1 ≡ ub

(
τ1
b , a
)
, where

a 6= ā. We use here two direct implications of the full memory perfect Bayesian equilibrium

discussed in Section 3 (see Sobel (1985) for a more detailed construction of such equilibria). In the

first term, we note that there exists T > 0 such that uct′ = ucT+1 for any t
′ > T. That is, for a fixed

game and prior ρ, there exists a time period after which the subsequent subgame is a complete

information game. The second term in the expression above follows from the fact that in the perfect

Bayesian equilibrium, the normal type weakly prefers to play action a 6= ā in the initial period.

Now consider the case in which the uninformed player is constrained to two memory states only.

Denote his payoff in the incentive compatible equilibrium in which there are no redundant states

by U2. We can write this term as:

U2 = ρvc2 + (1− ρ) vr2 = ρ
ub (τ b,2, ā)

1− δ + (1− ρ)

{
ub (τ b,2, a) + δ

ub (τ∗b , τ
∗
r)

1− δ

}
.

We can write:

UBayes − U2 = ρ

{
(uc1 − ub (τ b,2, ā)) + ...+ δT−1 (ucT − ub (τ b,2, ā)) + δT

(
ucT+1 − ub (τ b,2, ā)

)
1− δ

}
+ (1− ρ)

{
ub
(
a1
b , a
)
− ub (τ b,2, a)

}
Recall that in equilibrium the uninformed player (Bayesian or not) always chooses a probability

over the stage-game-actions that is a myopic best response to the strategy of the normal type given

his beliefs at that point in the game (see discussion in Section 2.4 and Section 3). Moreover, recall

from our equilibrium construction of the two-memory state case in Section 4 that limδ→1 ρ1 = 0
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and limδ→1 ρ2 = 1 (see Proposition 5 in the appendix for the detailed proof). These two results

together immediately imply that for any fixed finite stage game Γ satisfying the conditions that

we have described in Section 2, it must be that ∃ δ̄ > 0 such that for any δ > δ̄, the equilibrium

strategy of the bounded memory player, (g, ϕ, τ b) , specifies that τ b,2 is the degenerate play of b (ā).

Therefore, we have that for any given δ > δ̄ :

vc2 =
ub (b (ā) , ā)

1− δ ,

vr2 = ub (b (ā) , a) + δ
ub (τ∗b , τ

∗
r)

1− δ .

Note that by definition of b (ā) it must be that uct = ub
(
τ tb, ā

)
≤ ub (b (ā) , ā), ∀t. Therefore, we

have the following result: ∀δ > δ̄ it must be that:

UBayes − U2 ≤ (1− ρ)
{
ub
(
τ1
b , a
)
− ub (τ b,2, a)

}
,

≤ (1− ρ) (M −m).

From lemma (2), we know that UN ≥ U2, which completes the proof.

This result reminds us that the value of (even a minimal) memory is quite large: if a player has

no memory at all (1 memory state), the unique incentive compatible equilibrium is the constant

play of the static Bayesian Nash equilibrium. If the prior on the commitment type is relatively

high, the normal type will benefit from the limited resources of his opponent indefinitely. On the

other hand, a player with minimal memory (2 states) is able to perfectly screen the opponent in

the initial period and thus will pay a cost of at most one-period. Additional memory states (i.e.

more than 2 states) may diminish the one-period screening cost, but observing the bound obtained

in the previous proposition. In particular, the benefit from additional states is not larger than the

difference (M −m).

This stark result stems from the properties of the underlying game and the monitoring assump-

tion. In a game with imperfect monitoring, this result no longer holds. In Monte (2013) we show

that the normal type will benefit indefinitely from the bounded memory of his opponent creating

cycles of permanent reputations.

7 Conclusion

This paper is a study of bounded memory in a reputation game. It differs from the existing literature

on imperfect memory by considering a game in which the memory rule is chosen by the player and

satisfies incentive compatibility constraints. Most models of bounded memory assume that, during
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the play of a game, people have no control whatsoever over what to remember or what to forget.

Our view is that, although forgetful, players have some ability over what information to retain. A

player that is aware of his limitations will sort the information received and, in particular, may

choose to ignore relevant information.

We characterized the updating rule and showed that in this game it is rather simple: monotonic

and weakly increasing. We show that for a suffi ciently low probability of a commitment type, the

updating rule will involve random transition rules in the intermediate states. Our interpretation

is that this randomization in the transition rule is being used for two different reasons. First, it

is used to overcome the memory problem by not storing all the signals. This intuition was also

present in single player games. Second, in a multi-player game, randomization may be used as a

strategic element: to test the opponents before updating. We interpreted this infrequent updating

as indicating that, in the short-run, a bounded memory player may exhibit inertia in her behavior,

updating less frequently than what we would expect from a fully Bayesian player.

8 Appendix

The appendix is divided as follows. First, we show a general version for proposition 1 in the text.

The result holds for transition rules that are random or deterministic (in which case it is trivially

true). Second, we show under which conditions the equilibria with non redundant memory states

must involve random transition rules.

Fix a strategy profile σ = ((g, ϕ, τ b) , τ r). This induces an expected continuation payoff for every

memory state. Define sl to be a state with highest expected continuation payoff if the uninformed

player is facing a normal type, given σ. Formally: Dσ ≡ {sl ∈ M|vrl ≥ vri , ∀si ∈ M}, similarly

define: Uσ ≡ {su ∈M|vcu ≥ vci ,∀si ∈M}.

We label the states in an increasing order of induced reputation. If two states are such that

i > j then it must be that ρi ≥ ρj . Moreover, if a state is reached with positive probability in

equilibrium, then there must not exist another state that has higher expected continuation payoff

for the bounded memory player regardless of the type of the informed player (i.e. higher vci and

vri ). If there exists a state sj with v
c
j higher than v

c
i it must be that v

r
j is lower than v

r
i , otherwise

for whatever posterior the bounded memory player holds, he will find it better to move to state sj

and si would never be reached in equilibrium.

Finally, we also have that if ρi ≥ ρj then vci > vcj . The intuition for this result is that in
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equilibrium it must be that

ρi
(
vci − vcj

)
+ (1− ρi)

(
vri − vrj

)
≥ 0,

otherwise, the bounded memory player can behave ‘as if’he was in state sj . I.e., he can choose

τ b,j and ϕa (j, j′), instead of τ b,i and ϕa (i, j′) , ∀a ∈ Ar,∀sj′ ∈ M. Now suppose that ρi > ρj and

vci < vcj , then

ρj
(
vcj − vci

)
+
(
1− ρj

) (
vrj − vri

)
≥ 0⇒ ρi

(
vcj − vci

)
+ (1− ρi)

(
vrj − vri

)
≥ 0,

which means that state si would be identical to state sj . Thus, ρi > ρj implies that v
c
i ≥ vcj .

With these results in mind, we can state and prove our main result of the paper. We will denote

Ur (a|si) as the expected repeated game payoff of the normal type r if he plays a ∈ Ar and the

current memory state of the bounded memory player is si.

Proposition 5 (Increasing Updating Rule: General version of Proposition 1)

If the strategy profile σ = ((g, ϕ, τ b) , τ r) is an equilibrium, then:

1. After an action a 6= ā, always move to the lowest state: ϕa (j, l′) = 0, for any state sl′ such

that vrl′ > mini v
r
i and a 6= ā.

2. If there is some state si ∈ M, in which the informed player strictly prefers to play a 6= ā,

then the transition rule of the bounded memory player must be such that he would move to

the highest state after observing ā: Ur (a 6= ā|si) > Ur (ā|si) ⇒ ϕā (i, h′) = 0, for any state

sh′ such that vch′ < maxi v
c
i .

3. After ā, never move to a lower state: vcj > vci ⇒ ϕā (j, i) = 0.

4. Always start at the state with lower reputation or the second lowest: g (s1) > 0 or g (s2) > 0.

Moreover: limη→0 g (s1) = 0 and limη→0 g (s2) > 0.

5. The prior belief in the lowest state is close to zero: limη→0 ρl = 0, ∀sl ∈ Dσ.

6. The prior belief in the highest state is close to one:limη→0 ρu = 1, ∀su ∈ Uσ.

We show the proof of this proposition through lemmas 3 to 10. These are conditions that must

hold in any equilibrium.

Our first result comes from incentive compatibility. After a 6= ā, the uninformed player knows

the actual type of the informed player and moves to a state with the highest expected continuation

payoff given a normal type. As defined above, this is a state sl ∈ Dσ.
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Lemma 3 The uninformed player always moves to the state with lowest continuation payoff after

an action other than ā:

sj /∈ Dσ ⇒ ϕa (i, j) = 0, a 6= ā and ∀si ∈M.

Proof. After a 6= ā, the uninformed player knows with probability one that the informed player

is the normal type. Thus, by incentive compatibility, whenever ϕa (i, j) > 0, for a 6= ā it must be

true that vrj ≥ vrj′ , ∀sj′ ∈M.

Therefore, we can write the payoff of the informed player for not playing ā at state si as:

Ur (a|si) = ur (τ b,i, a) + δUr (sl) . (22)

Lemma 4 In equilibrium, it must be that

ur (τ b,i, a) ≥ ur (τ∗b , τ
∗
r) ≥ ur (τ b,i, ā) ,

for all si ∈M.

Proof. Suppose that there exists a state si such that ur (τ b,i, ā) > ur (τ b,i, a) , for a 6= ā. We

know from lemma 3 that the utility of the informed player at state si if he plays a 6= ā can be

written as (22). His utility for playing ā is:

Ur (ā|si) = ur (τ b,i, ā) + δ
n∑
j=1

ϕā (i, j)Ur (sj) .

Moreover, since vrl = −Ur (sl) it is also true that Ur (sl) ≤
∑n

j=1 ϕā (i, j)Ur (sj). This, in turn

implies that Ur (ā|si) > Ur (a|si), which implies that the informed player plays ā with probability

one at every history in that memory state. The myopic best response of the uninformed player

should be to play b (ā) and ur (b (ā) , a) > ur (b (ā) , ā) by assumption. This is a contradiction, and

therefore, in equilibrium it must be that ur (τ b,i, a) ≥ ur (τ b,i, ā). If it holds with equality, then

ur (τ b,i, a) = ur (τ∗b , τ
∗
r) = ur (τ b,i, ā), otherwise, given the restrictions in the stage game, it must

be that ur (τ b,i, a) > ur (τ∗b , τ
∗
r) > ur (τ b,i, ā).

Lemma 5 If at a state the normal type has a lower expected stage game payoff for revealing its

type than the payoff at state sn, then it must be that at that state her payoff for revealing his type

is at least as high as for mimicking the commitment type. Formally:

ur (τ b,n, a) > ur (τ b,j , a)⇒ Ur (a|sj) ≥ Ur (ā|sj)
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Proof. Suppose that for some state sj , ur (τ b,j , a) ≥ ur (τ b,n, a) and the normal type strictly

prefers to play ā: Ur (ā|sj) > Ur (a|sj). This implies that the informed player plays ā with prob-

ability one, and thus the reputation in that state is one, ρj = 1 and the uninformed player plays

b (ā) . Her expected payoff at that state is Ur (a|sj) = ur (b (ā) , a) + δUr (sl) ≥ Ur (ā|sj), where

the last inequality comes from lemmas 2 and 3 above (the normal type will get a payoff less than

ur (τ∗b , τ
∗
r) as long as she plays ā and will move to state sl the time that he plays a 6= ā).

Given this result, we have that for any state sj such that ur (τ b,n, a) > ur (τ b,j , a), the informed

player’s utility can be written as:

Ur (sj) = Ur (a|sj) = ur (τ b,j , a) + δUr (sl) < Ur (a|sn) (23)

The next result shows that whenever the informed player reaches the highest state, she will

strictly prefer to reveal his type. The intuition for this result is that, given lemma 3, the informed

player can get an expected stage game payoff greater than ur (τ∗b , τ
∗
r) at most once in the game.

Thus, in the state with highest stage game payoff, her best response is to play a 6= ā.

Lemma 6 In the highest state the utility of the normal type is strictly higher for playing a 6= ā

(except for the trivial equilibrium where all the states are the same):

Ur (a|sn) > Ur (ā|sn) .

Proof. We can write the utility of the normal type as:

Ur (a|sn) = ur (τ b,n, a) + δUr (sl) ,

Ur (ā|sn) = ur (τ b,n, ā) + δ

n∑
j=1

ϕā (n, j)Ur (sj) .

Suppose, by contradiction, that Ur (ā|sn) ≥ Ur (a|sn). Then, by definition, Ur (sn) = Ur (ā|sn).

Consider two different cases: i) Ur (sn) ≥ Ur (sj) for all states sj such that ϕā (n, j) > 0; ii)

Ur
(
sj′
)
> Ur (sn) for some state sj′ such that ϕā (n, j′) > 0.

For the first case, we have that:

Ur (sn) ≤ ur (τ b,n, ā) + δUr (sn) ,

Ur (sn) ≤ ur (τ b,n, ā)

1− δ ≤ ur (τ b,n, a) + δUr (sl) .

Where the last step follows directly from lemma 4 (remember that Ur (sl) ≥
ur(τ∗b ,τ

∗
r)

1−δ ).
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For the second case let sj′ be such that Ur
(
sj′
)
≥ Ur (si), ∀si ∈M with ϕā (n, i) > 0. Together

with (23), this gives us the following inequality:

Ur (ā|sn) ≤ ur (τ b,n, ā) + δUr
(
sj′
)

≤ ur (τ b,n, ā) + δ
(
ur
(
τ b,j′ , a

)
+ δUr (sl)

)
≤ ur (τ b,n, a) + δ (ur (τ b,l, a) + δUr (sl))

= Ur (a|sn) .

This proves our result. Thus, the normal type reveals himself with probability one in the highest

state.

Corollary 2 If the uninformed player plays b (ā) with probability 1 then the normal type strictly

prefers to play a 6= ā.

The reputation in state all states sl ∈ Dσ must be the lowest ones. The uninformed player

always moves to some state sl ∈ Dσ after a 6= ā, which means that

vrl = ub (τ b,l, a) + δvrl ,

vrl =
ub (τ b,l, a)

1− δ .

It must also be true that:

vr1 ≥
ub (τ b,1, a)

1− δ .

Since, by definition, vrl ≥ vr1 it must be that ub (τ b,l, a) ≥ ub (τ b,1, a). Thus, in fact, ur (τ b,1, a) ≥

ur (τ b,l, a).

Lemma 7 If the uninformed player knows with probability one that the informed player is a com-

mitment type, he will update to the state with highest expected continuation payoff given a commit-

ment type of informed player. In particular:

Ur (a|si) > Ur (ā|si)⇒ ϕā (i, j) = 0 for all states sj such that ρj < ρn.

Proof. If the normal type strictly prefers to play a 6= ā at some state si, the uninformed player’s

posterior on the commitment type after ā is one: pi = 1. The uninformed player then updates to

the state with highest expected payoff given a commitment type, i.e. to the state with highest vci .

(This result is in fact stronger: if τ r,i (ā) = 0 then ϕā (i, j) = 0 for all sj such that ρj < ρn.
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The lemma below shows that the uninformed player will not move to a lower state after observing

ā.

Lemma 8 Following the action ā, the transition rule is weakly increasing:

ρj > ρi ⇒ ϕā (j, i) = 0.

Proof. First note that,

ρj
(
vcj − vci

)
+
(
1− ρj

) (
vrj − vri

)
≥ 0.

A posterior following ā is always such that: pk ≥ ρk, ∀sk. Therefore:

pi
(
vcj − vci

)
+ (1− pi)

(
vrj − vri

)
> 0.

Lemma 9 For any prior on the commitment type ρ, ∃ η̄ > 0, δ̄ < 1 such that in any equilibrium

with non-redundant states of a game in which η < η̄, and δ > δ̄, it must be true that state s1 is

absorbing. The reputation in the lowest state approaches zero:

lim
η→0

ρ1 = 0.

Proof. We need to consider only two possibilities of equilibria. First, suppose that ∃ η∗ > 0 and

kη∗ < 1 such that for ∀η < η∗ the equilibrium is such that ϕā (1, 1) < kη∗ . We know from lemmas

(3) and (8) that as η → 0, if the uninformed player starts at state s1, then given a commitment

type of the informed player, the uninformed player eventually leaves that state and never returns.

On the other hand, given a normal type of the informed player the uninformed player visits state

s1 infinitely often. Since the probability of remaining in the same state after ā is bounded by kη∗ ,

as the stopping probability goes to zero the uninformed player will believe that it is unlikely that

the informed player is a commitment type if he finds himself in state s1. Formally, remember that

ρi =
∑

h∈si∩Hc µ (h|si, σ) , where:

µ (h|si, σ) =
f (h|σ)∑

h′∈si

f (h′|σ)
.

For ease of notation, denote ϕā (1, 1) simply by ϕ1. We can write the prior ρi as:

ρi =
ρ∑

h′∈si

f (h′|σ)
{1 + δϕ1 + δ2ϕ2

1 + ...} (24)

=
ρ∑

h′∈si

f (h′|σ)

1

1− δϕ1

.
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We know that the informed player plays a 6= ā at memory state si with probability 1− τ r,i (ā).

We also know that this probability is bounded above by the stage game Nash Equilibrium prob-

ability τ∗r (ā). Denote τ̃ r = max {τ r,1 (ā) , τ r,2 (ā) , τ r,3 (ā) , ..., τ r,n (ā)}. Then, at all periods the

probability that the normal type of the informed player is at memory state s1 is at least (1− τ̃ r).

Therefore, we have a bound on the denominator of (24):∑
h′∈s1

f
(
h′|σ

)
≥ (1− τ̃ r)

(
1 + δ + δ2 + ...

)
=

(1− τ̃ r)
1− δ

This, in turn, gives us an upper bound on the belief that the informed player is a commitment

type, at the beginning of a stage game when the current memory state is s1.

ρi =
ρ∑

h′∈si

f (h′|σ)

1

1− δϕ1

≤ ρ

1− δϕ1

η

(1− τ̃ r)

Finally, we have that as the stopping probability goes to zero:

lim
η→0

ρ1 ≤ lim
η→0

ρ

1− δϕ1

η

(1− τ̃ r)
= 0

Now lets consider the second possibility. Suppose that for any k < 1 and any η∗ we have that

1 > ϕā (1, 1) > k for some η < η∗. The uninformed player must be indifferent between staying at

state s1 and moving to some state sj after ā. Otherwise, either ϕā (1, 1) = 1 in which case we would

have an equilibrium with only one memory state used in equilibrium, or, we could have ϕā (1, 1) = 0

for any η > η∗, but in this case we are back to the first argument of this proof and limη→0 ρ1 = 0.

Before the start of the first stage game, the uninformed player decides where in her memory she

should start the game. She chooses based on her prior belief ρ. We consider here only the decision

between state s1 and state sn. We will show that if the equilibrium transition rule ϕā (1, 1) → 1

as η → 0, then g (s1) = 0, i.e., the uninformed player will not start the game in state s1. In this

case, we have that ρ1 = 0 immediately from lemmas (3) and (8). If the uninformed player starts

at state s1, it must be that her payoff from starting at state s1 is greater or equal than starting at

any other state, in particular at state sn. Thus:

ρ (vcn − vc1) + (1− ρ) (vrn − vr1) ≤ 0

First, note that given the result in lemma (8), we have that once the uninformed player reaches

memory state sn, if the informed player is a commitment type, she will be in that state forever.

Thus, we can write: ∑
h∈sn∩Hc

f (h|σ) =

∑
h̃∈H f

(
h̃|σ
)

1− δ ,
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where h̃ is a history where the uninformed player reaches memory state sn for the first time, given

a commitment type.

The normal type of the informed player plays ā less often than the commitment type does.

Given lemma (3), the probability that the uninformed player reaches state sn from state s1 is lower

given a normal type than given a commitment type. Moreover, given a normal type, the uninformed

player remains in state sn for only one period and then moves back to state s1. Thus, we have:

∑
h∈sn∩Hr

f (h|σ) ≤

∑
h̃∈H f

(
h̃|σ
)

1− δ
∑

h̃∈H f
(
h̃|σ
) .

Therefore:

lim
η→0

∑
h∈sn∩Hr f (h|σ)∑
h∈sn∩Hc f (h|σ)

≤ lim
η→0

∑
h̃∈H f

(
h̃|σ
)

1− δ
∑

h̃∈H f
(
h̃|σ
) η∑

h̃∈H f
(
h̃|σ
)

= lim
η→0

η

1− δ
∑

h̃∈H f
(
h̃|σ
) = 0.18

Thus, if ϕ1 → 1 as η → 0, then the belief in state sn approaches one:

lim
η→0

ρn = lim
η→0

∑
h∈sn∩Hc f (h|σ)∑

h∈sn∩Hc f (h|σ) +
∑

h∈sn∩Hr f (h|σ)
= 1. (25)

For equilibria with more than one state, we must have that the informed player is mixing

between both actions in state s1 as we saw in lemma (5).

From lemma (5):

vri = ub (τ b,i, a) + δvr1.

Therefore,

vrn − vr1 = ub (τ b,n, a)− ub (τ b,1, a)

≤ ub (b (ā) , a)− ub (τ∗b , τ
∗
r) ,

where the last inequality comes from lemma (4). The r.h.s. of the inequality above depends on the

particular stage game payoffs, not on the equilibrium strategies. In particular, it is not a function

of the transition rule ϕ and also not a function of the stopping probability η.

Moreover, for the commitment type, we have that

vc1 ≤ ub (τ b,1, ā) + δ {ϕ1v
c
1 + (1− ϕ1) vcn}

vc1 ≤ ub (τ b,1, ā)

1− δϕ1

+
δ (1− ϕ1)

1− δϕ1

vcn,
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and vcn can be written as

vcn = ub (τ b,n, ā) + δvcn

vcn = ub (τ b,n, ā) + δ {ϕ1v
c
n + (1− ϕ1) vcn}

vcn =
ub (τ b,n, ā)

1− δϕ1

+
δ (1− ϕ1)

1− δϕ1

vcn

This implies that

vcn − vc1 ≥ ub (τ b (sn) , ā)

1− δϕ1

− ub (τ b (s1) , ā)

1− δϕ1

≥ ub (τ b (sn) , ā)− ub (τ∗b , τ
∗
r)

1− δϕ1

Given (25) we have that

vcn − vc1 ≥
ub (b (ā) , ā)− ub (τ∗b , τ

∗
r)

1− δϕ1

.

Finally, note that the l.h.s. of the inequality above is decreasing in η and increasing in ϕ1. For

a discount factor not too small (as a function of ρ and the stage game payoffs), it follows directly

that

ρ (vcn − vc1) + (1− ρ) (vrn − vr1) ≥ 0,

for η small enough and ϕ1 high enough. Therefore, the bounded memory player would prefer to

start at memory state sn, implying that ρ1 = 0.

Lemma 10 The uninformed player starts either at the lowest memory state or at the second lowest

state:

lim
η→0

g (s1) = 0,

lim
η→0

g (s2) > 0.

Proof. The ex-ante uninformed player chooses in which memory state to start the game. She

will start the game at state si0 that maximizes her ex-ante payoff. Thus, she will choose si0 such

that:

ρvci0 + (1− ρ) vri0 ≥ ρv
c
i + (1− ρ) vri for ∀si ∈M.

Given the results 1 and 3 in proposition (5), we have that ρ < pTj ,∀j > 1. Thus, if g (si′) > 0,for

some i′ > 2, then state s2 is not reached with positive probability in the game, except for time

t = 0. Thus, if g (si′) > 0 and g (s2) = 0 then s2 would never be reached. On the other hand, if

the uninformed player starts at memory state s1, she will locked in that state forever. Thus, in an

equilibrium where she uses all her states, she will start the game in state s2.
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