
UNIVERSITA’ DEGLI STUDI DI TORINO

Department of Medical Sciences

PhD Program in Biomedical Sciences and Oncology XXXIV cycle

Human Genetic Curriculum

Academic Year 2021/2022

EPIGENOMICS OF
MESOTHELIOMA

computational methods

in cancer research

Giovanni Cugliari

Tutor: Prof. Giuseppe Matullo

PhD coordinator: Prof. Emilio Hirsch
1



2



ABSTRACT

Malignant pleural mesothelioma (MPM) is a rare and aggressive neoplasm with median

survival of 12 months. Patients are usually diagnosed when current treatments have

limited benefits, highlighting the need for noninvasive tests aimed at an MPM risk

assessment tool that might improve life expectancy. Three hundred asbestos-exposed

subjects (163 MPM cases and 137 cancer-free controls), from the same geographical region

in Italy, were recruited. The evaluation of asbestos exposure was conducted considering

the frequency, the duration and the intensity of occupational, environmental and domestic

exposure. A genome-wide methylation array was performed to identify novel blood DNA

methylation (DNAm) markers of MPM.

The first study “New DNA methylation signals for Malignant Pleural Mesothelioma risk

assessment” investigated DNA methylation differences in easily accessible white blood

cells (WBCs) between malignant pleural mesothelioma (MPM) cases and asbestos-exposed

cancer-free controls. Epigenome-wide analysis (EWAS) revealed 12 single-CpGs associated

with the disease and two of these showed high statistical power (99%) and effect size

(>0.05) after false discovery rate (FDR) multiple comparison corrections: (i) cg03546163 in

FKBP5 significantly hypomethylated in cases, and (ii) cg06633438 in MLLT1 statistically

hypermethylated in cases. Based on the interaction analysis, asbestos exposure and

epigenetic profile together may improve MPM risk assessment. Receiver Operation

Characteristics (ROC) for Case-Control Discrimination showed a significant increase in

MPM discrimination when DNAm information was added in the model (baseline model,

BM: asbestos exposure, age, gender and white blood cells); area under the curve, AUC =

0.75; BM + cg03546163 at FKBP5. AUC = 0.89, 2.1 × 10−7; BM + cg06633438 at MLLT1. AUC =

0.89, 6.3 × 10−8. Validation and replication procedures, considering independent sample

size and a different DNAm analysis technique, confirmed the observed associations. Our
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results suggest the potential application of DNAm profiles in blood to develop

noninvasive tests for MPM risk assessment in asbestos-exposed subjects.

The second study “DNA methylation of FKBP5 as predictor of overall survival in

Malignant Pleural Mesothelioma” is the first one to investigate DNA methylation changes

in WBCs from easily accessible peripheral blood as MPM survival biomarkers.

Considering 12 months as a cut-off for OS, epigenome-wide association study (EWAS)

revealed statistically significant (p value = 7.7E-09) OS-related differential methylation of a

single-CpG (cg03546163), located in the 5'UTR region of FKBP5 gene. The Cox

proportional hazards regression model highlighted that cg03546163 is an independent

marker of prognosis in MPM patients with a better performance than traditional

inflammation-based scores such as lymphocyte-to-monocyte ratio (LMR). Cases with

DNAm < 0.45 at the cg03546163 had significantly poor survival compared with those

showing DNAm ≥ 0.45 (mean: 243 versus 534 days; p value< 0.001). Epigenetic changes at

the FKBP5 gene were robustly associated with OS in MPM cases. Our results showed that

blood DNA methylation levels could be promising and dynamic prognostic biomarkers in

MPM.

The third study “Relationship between aging and Malignant Pleural Mesothelioma:

epigenetic clock analyses” was focused on the investigations of the interaction between

epigenetic age acceleration measures and asbestos exposure in easily accessible white

blood cells (WBCs) between malignant pleural mesothelioma (MPM) cases and

asbestos-exposed cancer-free controls. Age is one of the strongest predictors of chronic

disease and mortality. Aging denotes a multitude of processes at the cellular level, and

biological responses to aging differ among people, having thus an important role when

considering the relationship with other disease-related covariates. Using two previously

established methylation-based "clocks" (proposed by S. Horvath), namely intrinsic

epigenetic age acceleration (IEAA) and extrinsic epigenetic age acceleration (EEAA), we

defined biological age acceleration for each of three hundred asbestos-exposed subjects.

First, we explained the relationship between asbestos exposure and disease; EEAA
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showed that biological age acceleration was statistically significantly associated with

increased asbestos exposure (Estimate = 0.704, 95% CI: 0.067, 1.475, P= 0.043). Then,

statistically significant differences between cases and controls were found. Considering

interaction effects we showed the OR increase in the group with higher median values of

asbestos exposure and DNAm-aging respect to the others. Finally, about 10% of the total

effect of the asbestos exposure on MPM was independently mediated by biological aging

variation (mediation effect). As a second outcome, we demonstrated that the mean of the

number of total stochastic epigenetic mutations (hypo and hyper) was higher in cases with

respect to controls. In particular, hypo-stochastic epigenetic mutations showed a mean

difference between cases and controls about three-fold higher than hyper-stochastic

epigenetic mutations. Moreover, mean stochastic epigenetic mutations increase in relation

to asbestos exposure in cases but not in controls. Lastly, the trend of stochastic epigenetic

mutations seems to be in the opposite direction stratifying by the two aging-related

measures (EEAA and IEAA).

The fourth study “Epigenomics of Malignant Pleural Mesothelioma: a structural equation

modeling” analyzed the overall MPM path including single-CpGs, asbestos exposure and

epigenetic age acceleration measures in easily accessible white blood cells (WBCs)

between malignant pleural mesothelioma (MPM) cases and asbestos-exposed cancer-free

controls. No study has shown the simultaneous effect combining all these predictors with

the aim to test the epigenomic pathway using a statistical approach. Structural equation

modeling (SEM) is a largely confirmatory, rather than exploratory, technique; it is used to

determine whether a model is valid than to find a suitable model. Asbestos exposure

levels were extracted considering a quantitative measure; DNAm profiles have been used

as single CpGs and to compute WBCs estimation and biological age measures. The SEM

showed that all ten relationships (4 four associations and 6 covariances) included in the

graph model were statistically significant.

The fifth study “FKBP5, a modulator of stress responses involved in Malignant

Mesothelioma: the link between stress and cancer” reviewed the FKBP5 gene involvement
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in Malignant Pleural Mesothelioma (MPM) with the aim to investigate and explain the

potential link between stress and cancer related outcomes. Stress is a well-established risk

factor for a lot of disease phenotypes, including cancer. The risk for stress-related

disorders is shaped by complex interactions among multiple environmental stressors and

many genes with small individual effects on expressed phenotypes.

The results suggest the potential application of DNAm profiles in blood to develop

noninvasive tests for MPM risk assessment in asbestos-exposed subjects. The identification

of simple and valuable prognostic markers for MPM will enable clinicians to select

patients who are most likely to benefit from aggressive therapies and avoid subjecting

non-responder patients to ineffective treatment. Furthermore, aging-acceleration measures

and stochastic epigenetic mutations should be considered as a proxy of stress-related

environmental phenotype associations. Overall results explain the potential use of a suite

of peripheral blood DNA methylation measures to better characterize the MPM biological

path. Computational methods such as epigenome-wide association study (EWAS),

mediation, interaction, structural equation modeling (SEM) are fundamental

methodological approaches to better characterize causality in epigenetics. This

investigation will increase the knowledge about the epigenetics contribution (in detail,

blood DNm) in MPM focused on the development of non-invasive tests for

asbestos-exposed subjects with the aim to monitor early detection indicators during the

risk assessment and prognostic factors in MPM cases.
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ABBREVIATIONS

AA: age acceleration

AUC: area under the curve

CpGs: cytosine-guanine dinucleotides

DNAm: DNA methylation

DNAm-age: DNA methylation age

EEAA: extrinsic epigenetic age acceleration

EWAS: epigenome-wide association study

FDR: false discovery rate

GLM: generalized regression models

GWAS: Genome-wide analysis

IEAA: intrinsic epigenetic age acceleration

LMR: lymphocyte-to-monocyte ratio

MPM: Malignant Pleural Mesothelioma

PCs: principal components

ROC curves: receiver operating characteristic curves

SEM: structural equation modeling

WBCs: white blood cells
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INTRODUCTION

Disease

Main characteristics

Malignant pleural mesothelioma (MPM) is an aggressive tumor. The disease usually

develops after a long latency (20-40 years) following asbestos exposure [1]. The

International Agency for Research on Cancer confirmed that all fibrous forms of asbestos

are carcinogenic to humans, causing mainly mesothelioma, respiratory-tract tumors,

mesothelioma, and cancer at other tissue sites [2].

Incidence and prevalence

Although MPM is considered a rare malignancy (prevalence 1–9/100,000), about 40,000

deaths have been estimated to occur each year globally [3, 4]. The World Health

Organization estimates that 125 million people annually around the world are exposed to

asbestos.

Risk factors

Asbestos is the principal carcinogen associated with MPM with an attributable risk of

80–90% [5]. In 1960 the first convincing epidemiologically evidence of a link between MPM

and both occupational and environmental asbestos exposure was reported [6]. Later, many

in vitro studies have demonstrated cytotoxic effects of asbestos fibers [7]. The use of

asbestos began in the 1930s with the development of asbestos mines. Many developed

industrialized countries have banned or restricted asbestos use in the past 30 years.

Despite the ban on asbestos use, asbestos-containing construction materials still expose

construction workers and civilians to asbestos, especially during demolition or

reconstruction processes. At the same time, asbestos continues to be mined, exported and

widely used in many nations including China, India and some Latin American countries.

The disease usually develops after a long latency (20-40 years) following asbestos
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exposure with risk increasing depending on duration and intensity of exposure [8]. Those

at risk are the asbestos workers themselves and their family members. Male are more

likely to get a mesothelioma than females [9]; cigarette smoking is not involved in

mesothelioma development [10].

Pathogenesis

The rationale linked to the pathogenesis of MPM is that the asbestos fibers stick out from

the lung surface and cause repeated cycles of scratching, damage, inflammation, and

repair in the adjacent parietal mesothelial-cell layer [11, 12]. Inhaled asbestos (fibers longer

than 5μm) is thought to arrive in the peritoneal cavity via the lymph nodes or entering by

sputum or drinking water.

Figure 1. Netter, F. H. 1988. The CIBA Collection of Medical Illustrations, Volume 7: Respiratory

System. CIBA-Geigy, Summit. (left). Malignant mesothelioma in pleural effusion sample. a

Hypercellular specimen containing mostly mesothelial cells in clusters or 3D formations (H&E, ×

20). b Loss of BAP1 by immunohistochemistry confirms a diagnosis of malignant mesothelioma

(IHC, × 40) (right).
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Phagocytosis of fibers by macrophages and oxidoreduction reactions on fiber surfaces are

known to generate genotoxic reactive oxygen species that are capable of inducing DNA

damage [13] and leading to genetic alterations in MPM [14] as for example the

chromosomal aberrations [15, 16]. Recent research on the pathogenesis of MPM has

indicated that both epigenetic and genetic alterations contribute to tumorigenesis.

Asbestos affects mitochondrial DNA and functional electron transport resulting in

mitochondrial-derived ROS, which has been shown to induce base oxidation,

single-strand breaks, micronuclei, and apoptosis in lung alveolar epithelial cells [7, 18].

Lesions at sites of fiber deposition and alterations in gene expression are other relevant

mechanisms in asbestos-induced neoplasia in lungs and other target organs [19].

Diagnosis

The combination of an unexplained pleural effusion and pleural pain should raise the

suspicion of malignant mesothelioma, even if the initial cytologic findings are negative.

Weight loss and fatigue are common later in the progression of pleural mesothelioma but

are less so at presentation. Although a cytologic diagnosis can be made quickly, malignant

mesothelioma is usually not diagnosed until two or three months after the onset of

symptoms; delays of this length are especially frequent in centers in which the disease is

uncommon. Mesothelioma is occasionally discovered incidentally on routine chest

radiography. The most common presenting features in patients with peritoneal malignant

mesothelioma are distention due to ascites, abdominal pain, and occasionally organ

impairment, such as bowel obstruction.

Treatment

The patient with localized MPM was surgically cured and survived; however, the patient

with diffuse MPM was ineligible for surgical treatment. Treatment ranges from

chemotherapy or supportive care for advanced disease to aggressive surgery-based

multimodality regimens for fit patients with limited disease. Available treatments have not

proven their ability in significantly prolonging survival in comparison to supportive care.

Currently, a randomized trial has demonstrated an increase of response rate and survival
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when comparing cisplatin and pemetrexed versus cisplatin alone [20]. The first-line

treatment is a combination of a multi targeted anti folate (pemetrexed or raltitrexed) and a

platinum compound (cisplatin or carboplatin) [21, 22]. This regimen yields the best

outcome in terms of median survival (12 months), median time to disease progression (6

months) and response rate (41%). There is no standard regimen for second line treatment,

the chemotherapeutic agents used showed only marginal response rates [23-25].

Radiotherapy can be used to prevent tumor seeding along intervention sites, as adjuvant

therapy after surgery or as palliative treatment. Other therapeutic strategies such as for

example immunotherapy are promising but require further investigation and

improvement. As other cancers, genesis of MPM is associated with genomic mutations but

also epigenetic errors leading to modifications of gene expression [26, 27].

Prognosis

High mortality rate is associated with MPM. Although significant progress has been made

in terms of etiology and pathogenesis, currently available therapeutic options have not

significantly improved the survival outcome of patients on standard chemotherapeutic

regimens [21]. The impact of chemotherapy on the outcome of patients with MPM is still

controversial, the median survival being about 8-12 months [28-31]. Median survival

duration post-diagnosis is less than 1 year. The roles of the new and old inflammatory

indexes and markers in MPM prognosis were evaluated: increased age, stage 3–4 disease,

the non-epithelial type, a low Karnofsky performance score, a high white blood cell count,

and a low lymphocyte-to-monocyte ratio (LMR) were associated with a poor prognosis.

The European Organization for Research and Treatment of Cancer (EORTC) and Cancer

and Leukemia Group B (CALGB) devised two prognostic scoring systems for use in

patients with mesothelioma and considered a combination of biological and clinical

factors. However, these scoring systems are not routinely used for MPM prognosis

because they are time-consuming and require costly equipment. Lastly, metastases are

rarely the cause of death.
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METHODOLOGICAL BACKGROUND

Epigenomics

Epigenomics focuses on genome-wide characterization of reversible modifications of DNA

or DNA-associated proteins, such as DNA methylation or histone acetylation. Covalent

modifications of DNA and histones are major regulators of gene transcription and

subsequently of cellular fate.. Those modifications can be influenced both by genetic and

environmental factors, can be long lasting, and are sometimes heritable.. While the role of

epigenetic modifications as mediators of transgenerational environmental effects remains

controversial, their importance in biological processes and disease development is evident

from many epigenome-wide association studies that have been reported.

Figure 2. Epigenetics regulation.
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Epigenetic signatures are often tissue-specific.. Thus, in addition to insight gained from

identifying epigenetic modifications correlating with diseases, data generated by these

studies has great potential to enhance our functional interpretation of genetic variants

residing in those regions or of epigenetic markers associated with disease independently

of genetic variation.

Presently, less information is available regarding mechanisms and clinical relevance of

epigenetic derangements in cancer. Although genomic alterations are clearly associated

with oncogenesis, more recent evidence shows that epigenetic modifications affect

temporal and spatial control of gene activity required for homeostasis of complex

organisms. By affecting gene activity, epigenetics also plays a major role during

tumorigenesis.

DNA methylation (DNAm) is one of the epigenetic modifications with a key role in

neoplasia and silencing repeat elements, which may also have an impact on disease

etiology. DNAm patterns are specific to tissues and developmental stages, and they also

change over time. The epigenome of a cell is highly dynamic, being governed by a

complex interplay of genetic and environmental factors. Functionally, these perturbations

may be involved, respectively, in tumor-suppressor genes silencing and genomic

destabilization, crucial events in tumor development.

Distinguishing if epigenetic variation is causative or not of the disease process is not

straightforward; this is a crucial step because it will help to elucidate the functional role of

the disease-associated variation and its potential utility in terms of diagnosis or therapies.

Computational methods

Epigenome-wide association study (EWAS)

Generalized regression models (GLM) are very much like classical (Gaussian) linear

models in most aspects, let aside the distribution of the error term and the expected value

of the response, µ = E (Y), that is related to the linear predictor by means of a link function

η (µ). Differential methylation (DMe) between cases and controls was tested by GLM at
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single CpGs (EWAS, Epigenome-wide analysis) adjusted for the main predictors as

gender, age, estimated WBCs, population stratification, and technical variability. For

multiple comparisons tests, a Benjamini-Hochberg false discovery rate (FDR) p-value ≤

0.05 was considered statistically significant. To ensure a power of the study greater than

99% (two-tailed test at 0.05 alpha error), only CpGs with mean difference (MD) of

Beta-value between cases and controls ≥ |0.05|. Covariates were included step-by-step in

sensitivity analysis to validate the association output considering effect size, standard

error, 95% confidence interval and p-value variations. CpGs with MD between cases and

controls ≥ |0.05| and Pfdr ≤ 0.05 were i) underwent gene set enrichment analysis to

identify pathways potentially affected by MPM related methylation change; and ii)

included in future statistical models to test for association. Then, we compared the area

under the curve (AUC) for test receiver operating characteristic of two models by the

DeLong test (R packages ‘pROC’ and ‘ROCR’): this was done to test the potential

improvement in disease discrimination when considering DMe information together with

the main contributors information.

Parametric statistics make strong assumptions about the distribution: the distribution is

normal, it’s symmetric, the error term is independent of x (homoscedasticity), and there

are no outliers. One way around this is to use non-parametric methods that make no

assumptions about the underlying distribution. A common class of non-parametric

methods are resampling methods, which allows the estimation of population variables via

continual resampling of the empirical sample. Bootstrap is also an appropriate way to

control and check the stability of the results. The number of resamples is the number of

random samples with replacement from the original dataset. The sample size for each

resample is equal to the sample size of the original dataset (for ex, n = 300). The number of

resamples equals the number of observations on the histogram (for ex, B = 2000). The

bias-corrected and accelerated (BCa) bootstrap interval was calculated with regard to

single CpGs. The error of the estimates was also evaluated. Data were analyzed with R

package ‘bootstrap’. In the second step, we compared unsupervised clustering and

conditional subgroups (quantile distribution) of single CpG. Gaussian finite mixture
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model fitted by EM algorithm was implemented to highlight the classification components

related to single-CpG (R package ‘mclust’).

Interaction

Most parametric tests require that residuals be normally distributed and that the residuals

be homoscedastic. One approach when residuals fail to meet these conditions is to

transform one or more variables to better follow a normal distribution. Often, just the

dependent variable in a model will need to be transformed. For all the regression analyses,

asbestos exposure doses (fibers/mL years) were rank transformed (R packages ‘e1071’ and

‘GenABEL’) to remove skewness. A two-sided test was used, with a 0.05 level of

significance.

The statistical consideration of interaction effects in GLM, dichotomous choice models, is a

well-developed tool in bioassay and epidemiology. Traditionally, the most frequent

practice has been the analysis of simple main effects. Interactions are said to exist when a

change in the level of one factor has different effects on the response variable, depending

on the value of the other factor.

For example, The relationship between CpGs and asbestos exposure in MPM risk (odds

ratio) was analyzed by logistic regression method adjusting by age, gender, SNP PCs,

technical covariates and WBCs estimates. A binary classification was used both for

asbestos exposure (above-median versus below-median) and for CpG methylation

(above-median and below-median). MPM risk for a given CpG level and asbestos

exposure was expressed by ORij, where the first index (i) indicated the asbestos exposure

coded as below-median and above-median subjects; the second index (j) indicated the

CpG coded as above-median and below-median; considering the direction of the effect,

the same approach was used: regard to hypo-methylated CpGs above-median was the

reference level; On the contrary, considering Hyper-methylated CpGs the reference level

was below-median. Subjects with below-median asbestos exposure and reference level of

CpG DNA methylation were considered as the baseline group, thus coding their MPM

risk as OR00 = 1.
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Interaction was analyzed in respect to both additive and multiplicative models based on

the ORs obtained by logistic regression. Under the null hypothesis of no interaction under

the additive model, OR (01,10,11) is not significantly different from 1. Synergistic

interaction (positive interaction) implies that the combined action between two factors in

an additive model is greater than the sum of individual effects. On the contrary,

antagonistic interaction means that in the presence of two factors in an additive model, the

action of one reduces the effects of the other. Deviations from a multiplicative model were

explored by multivariable logistic regression models including: asbestos exposure, CpG,

the corresponding interaction term (CpG × exposure), adjusted by age, gender, SNP PCs,

technical covariates and WBCs estimates. p-value < 0.05 was considered statistically

significant. The same approach was considered using aging related measures with

asbestos exposure to infer about the MPM OR.

Mediation

A mediator (M) is a variable that is on the causal path from an exposure (E) to an outcome

variable (Y). Understanding mediation is useful for identifying potential modifiable risk

factors lying between an exposure and an outcome including linear equations, structural

equation models, marginal structural models and G-computation. Causal mediation

analysis plays an essential role by helping to identify intermediate variables (or mediators)

that lie in the causal pathway between the exposure and the outcome. Mediation (R

package ‘lavaan’) aims to partition the total (causal) effect of E on Y into mediated effects

(effects that operate by changing the mediator, M) and non-mediated effects.

In the MPM context, the rationale is: statistically significant CpGs (that show differential

methylation between cases and controls in EWASs) are tested in subsequent analyses to

investigate whether environmentally modified (asbestos exposure); age acceleration

measures as mediators were also considered using the same path. Age, gender, SNP PCs,

technical covariates and WBCs estimates were included in the statistical models to adjust

for the potential confounding effect.
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Structural equation modeling (SEM)

Path Diagrams play a fundamental role in structural equation modeling (SEM) as a device

for showing which variables cause changes in other variables. Notice that, besides

representing the linear equation relationships with arrows, the diagrams also contain

some additional aspects. As the equation systems we examine become increasingly

complicated, so do the covariance structures they imply. What causal modeling does allow

us to do is examine the extent to which data fail to agree with one reasonably viable

consequence of a model of causality. Although path diagrams can be used to represent

causal flow in a system of variables, they need not imply such a causal flow. As such, they

can convey linear relationships when no causal relations are assumed. SEM was

implemented to simultaneously analyze any relationship previously performed (R

package ‘lavaan’).

Survival analysis

The duration of survival and the median and mean event times with 95% confidence

intervals were estimated according to the Kaplan–Meier method. The duration of survival

was determined as the period between the time of diagnosis and the time of death (R

package ‘survival’). If patients were still alive, survival was defined as the period between

the times of diagnosis until June 2016. The proportional hazards regression model was

used for both the univariate and multivariate analyses (Cox proportional hazards model).

Comparisons of overall survival were made using two-tailed log-rank tests with a 0.05

level of significance. Only variables with p values <0.1 in the univariate analysis were

included in the final model for the multivariate analysis. In the Cox regression analysis,

the backward conditional (stepwise-AIC, R package ‘MASS’) method was used. A p value

<0.05 was considered to indicate statistical significance. LMR, CpG sites and age

acceleration measures were considered as predictors in the regression model. Continued

and categorical variables (quantile consideration) were also used.
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Epigenomics biomarkers

Beta values

Genomic DNA was extracted from whole blood collected in EDTA by an on-column DNA

purification method (QIAamp DNA Blood Mini Kit, QIAGEN GmbH, Germany),

according to manufacturer’s instructions. DNA integrity was checked by an

electrophoretic run in standard TBE 0.5X buffer on a 1% low melting agarose gel

(Sigma-Aldrich GmbH, Germany); DNA purity and concentration were assessed by a

NanoDrop 8000 Spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA).

Five-hundred nanograms of genomic DNA for each sample were bisulfite treated (EZ-96

DNA Methylation-Gold Kit, Zymo Research Corporation, Irvine, CA, USA) to convert

un-methylated cytosine to uracil. In downstream analyses the methylation status of a CpG

site can thus be assessed by distinguishing between a C or T residue at the same position

in the bisulfite treated DNA. The Infinium HumanMethylation450 BeadChip (Illumina

Inc., San Diego, CA, USA) was used to measure the methylation level of more than 485,000

individual CpG loci at a genome-wide resolution. Cases and controls were randomly and

blindly distributed across conversion plates and methylation BeadChips. Twelve samples

were analyzed on each BeadChip. As a “position effect” was reported for Illumina

Methylation BeadChips, each sample position on the BeadChip was completely random as

well. We further verified the randomization of the position on each BeadChip was effective

by checking for a position effect, and we found no occurrence of position effect. BeadChips

were processed according to manufacturer protocols. Briefly, the enzymatically

fragmented bisulfite converted DNA is hybridized on-chip to locus specific DNA

oligomers. A subsequent single base extension reaction with Biotin- or DNP-labeled

ddNTPs allows the discrimination between methylated (unconverted) or un-methylated

(converted) cytosines at each CpG site. After fluorescent staining, the BeadChips were

imaged with a dedicated scanner and fluorescent signals recorded.

Data were inspected with the dedicated GenomeStudio software v2011.1 with Methylation

module 1.9.0 (Illumina Inc., San Diego, CA), and quality checked according to the built in
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quality controls, i.e. more than 200 control probes specifically designed to assess technical

aspects of the bisulfite conversion process and of the BeadChip assay itself, including

bisulfite Conversion, normalization (system background), staining efficiency, extension

efficiency, hybridization efficiency, target removal (stripping after extension reaction), and

specificity.

Figure 4. Whole genome microarray including 22 autosomes and 485,000 individual CpGs.

Raw data were analyzed with the R package ‘methylumi’. The average methylation value

at each locus, was computed as the ratio of the intensity of the methylated signal over the

total signal (un-methylated + methylated): Beta-values represent the percentage of

methylation at each individual CpG locus, ranging from 0 (no methylation) to 1 (full

methylation). We excluded from the analyses: i) single Beta-values with detection p-value

≥ 0.01; ii) CpG loci with missing Beta-values in more than 20% of the assayed samples; iii)
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CpG loci detected by probes containing SNPs with MAF ≥ 0.05 in the CEPH (Utah

residents with ancestry from northern and western Europe, CEU) population; iv) samples

with a global call rate ≤ 95%. Lastly, CpGs on chromosomes X and Y were excluded from

the analysis.

To account for methylation assay variability and batch effects, we corrected all differential

methylation analyses for “control probes” Principal Components (PCs). Using PCs

assessed by principal a component analysis (PCA, R package ‘stats’) of the BeadChip’s

built-in control probes as a correction factor for statistical analyses of microarray data is a

method that allows to consider the technical variability of several steps in the

DNA-methylation analysis, from the bisulfite conversion to BeadChip processing. The first

10 PCs were thus included into the differential methylation analyses to correct for

technical variability and batch effect.

White blood cells (WBCs)

WBC subtype percentages from genome-wide methylation data for each subject was used

as a correction factor in regression models; in partially-adjusted regression models the first

PC was included to correct for a substantial WBC variability.

Aging related measures

DNA methylation age (DNAm-age) of each subject was calculated by the algorithms

proposed by Horvath which was derived from a range of tissues and cell types, using 353

probes targeted in the Illumina 27k and 450k methylation arrays. Aging eludes precise

definition at the systemic level and denotes a multitude of processes at the cellular level.

DNAm profiles of cytosine phosphate guanines (CpGs) have been used as indices of

biological age. Notably, measures of epigenetic age in blood have been reported to be

predictive of all-cause mortality after adjusting for chronological age and traditional risk

factors. A positive residual of the DNAm-age estimate regressed on chronological age

(AA) indicates that an individual is ahead of his or her chronological age, and a negative

one suggests an individual is biologically “younger” than reflected by the chronological

age. Two age AA indices, namely intrinsic epigenetic age acceleration (IEAA) and extrinsic
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epigenetic age acceleration (EEAA), were calculated as well. EEAA is influenced by blood

cell count contribution, whereas IEAA value is only weakly correlated with estimated

measures of blood cell counts. EEAA is defined as the weighted average of DNAm age

and imputed proportions of naïve CD8+ T cells, memory CD8+ T cells and plasmablasts.

Stochastic epigenetic mutations

The distribution and variability of methylation levels in our population were studied for

each one of the 445,254 CpG sites using Box-and-whiskers plots in order to identify

stochastic epigenetic mutations. For each probe, whenever the methylation level of one

subject differed from the rest of the population we considered the outlier sample as

epimutated for that locus. Thus, for each locus, epimutated subjects were identified as the

extreme outliers with methylation level exceeding three times interquartile ranges Q1-(3 ×

IQR) and Q3+(3 × IQR). Finally, all epimutated loci were annotated in a new data matrix

that allowed to calculate, for each subject, the total amount of epimutations and their

genomic position. The Box-and-whiskers plot analysis was conducted using the boxplot

function provided in the R car package and confirmed using the outlier function in the R

outliers package. The analysis identified genes with an enriched number of epimutated

probes (bonferroni corrected p-value < 0.05) confirming the presence of the epigenetic

alterations previously reported in the medical report.

Lymphocyte-to-monocyte ratio (LMR)

Chronic inflammation plays a key role in the pathogenesis of cancer because of specific

exposure. Several inflammation-based prognostic scores including the

lymphocyte-to-monocyte ratio (LMR) reportedly predict survival in many malignancies.

Several studies have shown that inflammation-based prognostic scores that include a

combination of serum C-reactive protein (CRP) and albumin (ALB), a combination of

neutrophil and lymphocyte counts (the neutrophil-to-lymphocyte ratio, NLR), a

combination of platelet (PLT) and lymphocyte counts (the platelet-to-lymphocyte ratio,

PLR) are associated with survival in patients with various cancers. Lymphocytes act as

tumor suppressors by inducing cytotoxic cell death and inhibiting tumor cell proliferation
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and migration. The important role of monocytes and macrophages in cancer has recently

been uncovered.

Study design

Study population

Study subjects belong to a wider ongoing collaborative study on MPM, which is actively

enrolling MPM cases and healthy subjects in the municipalities of Casale Monferrato

(Piedmont region, Italy), an area with an exceptionally high incidence of mesothelioma

caused by asbestos contamination at work and in the general environment from the

asbestos-cement Eternit plant that was operational until 1986; additional MPM cases

recruited in the main hospitals of the municipalities of Turin, Novara and Alessandria

(Piedmont region, Italy).

The population-based case-control study included the incident cases of MPM diagnosed

between 2000 and 2010 in the main hospitals of the reference centers after histological

and/or cytological confirmation of MPM diagnosis; controls were selected (matched by

date of birth and gender) during the same range of years from the local population, or

among subjects not affected by neoplastic or respiratory conditions admitted to general

medicine at the reference hospital. Subjects included in this study were selected according

to the following criteria: i) availability of good quality DNA at the time of the analyses and

ii) asbestos exposure above the background level. In total, 300 samples, 163 MPM cases of

MPM and 137 non-MPM controls underwent DNAm analysis. Our study complies with

the Declaration of Helsinki principles, and conforms to ethical requirements. All

volunteers signed an informed consent form at enrollment. The study protocol was

approved by the Ethics Committee of the Italian Institute for Genomic Medicine (formerly

Human Genetics Foundation, Turin, Italy).
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Figure 5. Population-based case-control study. Subjects were recruited in the municipalities of

Casale Monferrato, Novara, Vercelli and Turin (Piedmont region, Italy).

Exposure assessment

For all subjects, occupational history and lifestyle habits information was collected

through interviewer-administered questionnaires filled out at enrollment during a
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face-to-face interview. Job titles were coded according to the International Standard

Classification of Occupations, and trades according to the Statistical Classification of

Economic Activities in the European Community. Frequency, duration and intensity of

exposure were estimated, then a cumulative exposure index was computed. The

evaluation of asbestos exposure (occupational, environmental, domestic) was conducted

blindly to the case/control status by an experienced occupational epidemiologist: as

regards occupational exposure, at least one and potentially many exposure patterns were

assigned to every job held by a study subject; while regard to environmental exposures,

exposures unrelated with work included living in proximity to industrial or natural

sources of airborne asbestos were evaluated; then referring to domestic exposures, having

asbestos containing materials installed at home or handling such materials during home

repairs or leisure-time activities were considered. A score was assigned to the exposure

determinants included in a fixed list, including active and passive exposures. Scores were

not intended to directly drive exposure assessment, but their pattern drew exposure

scenarios, documenting how the rater reconstructed each exposure circumstance. This step

accomplished, exposure was assessed along the four axes of probability, frequency,

intensity and duration.

Limitations

One potential limitation of this study is that this is a retrospective study. A large-scale

prospective validation study is needed to confirm the results. Furthermore, EWAS

associations can be causal as well as consequential for the phenotype in question, a

difference from GWASs]. Reverse causation and confounding are particular issues for

EWAS design. Although any EWAS association with disease is potentially an advance,

being able to identify the direction of causality will greatly aid in determining the

usefulness of epigenetic variation as, for example, a marker of disease progression, a target

for reversal by treatment with drug or a measure of drug response by monitoring the

kinetics of drug-induced epigenetic changes.
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Study1

New DNA methylation signals for Malignant Pleural

Mesothelioma risk assessment

Simple Summary: Our study investigated DNA methylation differences in easily

accessible white blood cells (WBCs) between malignant pleural mesothelioma (MPM)

cases and asbestos-exposed cancer-free controls. A multiple regression model highlighted

that the methylation level of two single CpGs (cg03546163 in FKBP5 and cg06633438 in

MLLT1) are independent MPM markers. The epigenetic changes at the FKBP5 and MLLT1

genes were robustly associated with MPM in asbestos-exposed subjects. Interaction

analyses showed that MPM cases and cancer-free controls showed DNAm differences

which may be linked to asbestos exposure.

Abstract: Malignant pleural mesothelioma (MPM) is a rare and aggressive neoplasm.

Patients are usually diagnosed when current treatments have limited benefits, highlighting

the need for noninvasive tests aimed at an MPM risk assessment tool that might improve

life expectancy. Three hundred asbestos-exposed subjects (163 MPM cases and 137

cancer-free controls), from the same geographical region in Italy, were recruited. The

evaluation of asbestos exposure was conducted considering the frequency, the duration

and the intensity of occupational, environmental and domestic exposure. A genome-wide

methylation array was performed to identify novel blood DNA methylation (DNAm)

markers of MPM. Multiple regression analyses adjusting for potential confounding factors

and interaction between asbestos exposure and DNAm on the MPM odds ratio were

applied. Epigenome-wide analysis (EWAS) revealed 12 single-CpGs associated with the

disease. Two of these showed high statistical power (99%) and effect size (>0.05) after false

discovery rate (FDR) multiple comparison corrections: (i) cg03546163 in FKBP5,
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significantly hypomethylated in cases (Mean Difference in beta values (MD) = −0.09, 95%

CI = −0.12|−0.06, p = 1.2 × 10−7), and (ii) cg06633438 in MLLT1, statistically hypermethylated

in cases (MD = 0.07, 95% CI = 0.04|0.10, p = 1.0 × 10−6). Based on the interaction analysis,

asbestos exposure and epigenetic profile together may improve MPM risk assessment.

Above-median asbestos exposure and hypomethylation of cg03546163 in FKBP5 (OR =

20.84, 95% CI = 8.71|53.96, p = 5.5 × 10−11) and hypermethylation of cg06633438 in MLLT1

(OR = 11.71, 95% CI = 4.97|29.64, p = 5.9 × 10−8) genes compared to below-median asbestos

exposure and hyper/hypomethylation of single-CpG DNAm, respectively. Receiver

Operation Characteristics (ROC) for Case-Control Discrimination showed a significant

increase in MPM discrimination when DNAm information was added in the model

(baseline model, BM: asbestos exposure, age, gender and white blood cells); area under the

curve, AUC = 0.75; BM + cg03546163 at FKBP5. AUC = 0.89, 2.1 × 10−7; BM + cg06633438 at

MLLT1. AUC = 0.89, 6.3 × 10−8. Validation and replication procedures, considering

independent sample size and a different DNAm analysis technique, confirmed the

observed associations. Our results suggest the potential application of DNAm profiles in

blood to develop noninvasive tests for MPM risk assessment in asbestos-exposed subjects.

Keywords: malignant pleural mesothelioma; asbestos exposure; DNA methylation;

epigenome-wide analysis; interaction analysis

1. Introduction

Mesothelioma has a long latency period, usually emerging 20–40 years after asbestos

exposure [1]. Malignant pleural mesothelioma (MPM) is rare (prevalence 1–9/100,000), but

the corresponding annual death toll worldwide is still estimated at about 40,000 [2,3]. Each

year, 125 million people are exposed to asbestos, according to a World Health

Organization report [4]. The International Agency for Research on Cancer confirmed that

all fibrous forms of asbestos are carcinogenic to humans. The main outcome of exposure is
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mesothelioma, but cancer at other sites, such as respiratory-tract tumors, are moderately

frequent [4]. Previous in vitro studies have demonstrated the cytotoxic effects of asbestos

fibers [5,6].

A significant association between MPM and asbestos exposure has been reported, showing

a clear, increasing trend in the odds ratio (OR) with increasing cumulative exposure

among subjects exposed to over 10 fiber/mL-years [7]. Another study reported that the

incidence of malignant mesothelioma (MM) was strongly associated with the proximity of

one’s residence to an asbestos exposure source [8].

DNA methylation (DNAm) is an epigenetic mechanism involved in gene expression

regulation. In particular, dysregulation of promoter DNAm and histone modification are

epigenetic mechanisms involved in human malignancies [9].

According to recent papers, both DNAm and genetic alterations may contribute to MPM

tumorigenesis [10–15]. Whereas the genome remains consistent throughout one’s lifetime,

factors like ageing, lifestyle, environmental exposures and diseases can modify DNAm.

The adaptive nature of DNAm means that it can be used to link environmental factors to

the development of pathologic phenotypes such as cancers. Fasanelli et al. observed an

association between exposure to tobacco and site-specific CpG methylation. They also

used peripheral blood DNA to evaluate the importance of these epigenetic alterations in

the aetiology of lung cancer [16].

There is less information on the mechanisms and clinical outcomes of epigenetic

derangements in MPM [17–19]. Several studies have evaluated DNAm alterations in MM

samples [20–22], but few of them focused on DNAm alteration in blood as a circulating

marker. Fischer et al. examined serum DNAm of nine gene-specific promoters from MM

cases [23]. A more recent paper identified hypomethylation of a single CpG in FKBP5 in

whole blood cells as a predictor of overall survival in MPM cases [13]. Guarrera et al.

evaluated methylation levels in DNA from whole blood leukocytes as potential diagnostic

markers for MPM and found a differential methylation between asbestos-exposed MPM

cases and controls, mainly in genes related to the immune system [11]. The identification
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of reliable DNAm biomarkers with high sensitivity and specificity for MPM risk

assessment would be a major advancement.

This study was undertaken with the goal to identify new biomarkers for MPM risk

assessment and to determine if peripheral blood DNAm profiles have any predictive

value. The second goal was to evaluate the interaction effect of asbestos exposure with

DNAm on MPM risk. Currently, there are no sensitive testing methods available for the

screening of asbestos-exposed individuals who are at high risk of developing MPM. Thus,

the identification of reliable MPM diagnostic biomarkers in peripheral blood might

provide a tool for detecting the disease at an early stage.

2. Results

2.1. Epigenome-Wide Association Study (EWAS)

CpGs (445,254) passed quality control procedures and were considered for statistical

analyses. EWAS revealed two statistically significant differentially methylated single-CpGs

between case and control groups: cg03546163 in the FKBP5 gene (Mean Difference in beta

values (MD) = 0.09, 95% CI = −0.12|−0.06, p = 1.2 × 10−7, p = 0.028) and cg06633438 in the

MLLT1 gene (MD = 0.07, 95% CI = 0.04|0.10, p = 1.0 × 10−6, p = 0.049) after False Discovery

Rate (FDR) post hoc correction (Figure 1; Table 1).

Another 10 CpGs showed hypo/hypermethylation in MPM considering FDR < 0.05 but not

effect size (MD) cut off ≥ |0.05| (Table 1).
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Figure 1. Manhattan plot for EWAS test on 450k single CpGs. Single-CpG DNAm was used as

dependent variable adjusting for age, gender, White blood cells (WBCs: monocytes, granulocytes,

natural killer, B cells, CD4+ T and CD8+ T) estimation, population stratification and technical

variability. FDR post hoc line highlights statistically significant differences between cases and

controls at single CpG level.

Bootstrap was computed to estimate measures of accuracy using random sampling

methods. The bias-corrected and accelerated (BCa) bootstrap interval was calculated for

cg03546163 in FKBP5 (95% CIBCa = −0.16|−0.10, z0 = −0.008, a = 0.002) and cg06633438 in

MLLT1 (95% CIBCa = −0.06|−0.1, z0 = −0.011, a = 0.0004) genes, confirming the robustness

of the results considering the sample under study.

Statistically significant differences in MD between cases and controls were found in the

WBCs estimated (monocytes, p = 6.0 × 10−3; granulocytes, p = 2.2 × 10−16; B cells, p = 1.1 ×
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10−12; NK cells, p = 3.6 × 10−4; CD4+ T, p = 2.2 × 10−16; CD8+ T, p = 6.8 × 10−11; naïve CD4T, p =

0.012; naïve CD8T, p = 7.0 × 10−3).

In order to assess if smoking status, classified as current, former and never-smokers, could

modify DNAm profiles, we performed a multivariate regression analysis with the same

model used for the discovery phase. No evidence of methylation differences linked to

different smoking levels was found for any of the twelve statistically significant CpGs.

Table 1. Differential DNAm analyses ordered by effect size. Information about single-CpGs,

including location-related values and model outputs (effect size, standard error, p values).

Probe ID Chr
Map

Position

Gene

Symbol

Ucsc Refgene

Group
Snp Probe

Effect

Size

Standard

Error
p Value Fdr Sign

cg0286923512 124726864 rs73223527 0.058 0.011 1.3 × 10−7 0,028 *§

cg035461636 35654363 FKBP5 5′UTR −0.089 0.016 1.3 × 10−7 0,028 *§₼

cg0235304812 124718401 0.033 0.006 2.2 × 10−7 0,032 *§

cg0663343819 6272158 MLLT1 Body 0.069 0.014 1.0 × 10−6 0,049 *§₼

cg1886032913 43354421 C13orf30 TSS1500 0.050 0.010 1.3 × 10−6 0,049 *§

cg1978219014 103487004 CDC42BPB Body 0.043 0.009 1.2 × 10−6 0,049 *§

cg068349165 95610 0.037 0.008 1.4 × 10−6 0,049 *§

cg0947965016 85578516 rs4843449 0.037 0.007 1.2 × 10−6 0,049 *§

cg2668098916 85560739 rs80332660 0.036 0.007 7.6 × 10−7 0,049 *§

cg254095541 234871422 0.034 0.007 1.1 × 10−6 0,049 *§

cg0120139916 30793389 ZNF629 Body 0.030 0.006 6.1 × 10−7 0,049 *§

cg1728326611 111717611 ALG9 Body −0.030 0.006 1.1 × 10−6 0,049 *§

Control group was set as reference. Adjustment covariates: age, gender, population stratification,

WBCs (monocytes, granulocytes, natural killer, B cells, CD4+ T and CD8+ T) estimation and

technical variability. *: statistically significant at p value < 0.05; §: statistically significant at FDR

post hoc adjustments. ₼: statistically significant at beta = 0.01.
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2.2. Receiver Operation Characteristics (ROC) for Case-Control Discrimination

The baseline model (BM) including age, gender, asbestos exposure and WBCs was

compared with BM adding the DNAm levels of cg03546163 or cg06633438. Receiver

Operation Characteristics 8ROC9 curves showed a significant increase in MPM

discrimination when DNAm information was added in the model (Table 2).

Table 2. Disease discrimination test considering (AUC) comparison between baseline model and

models additionally including single-CpG.

Model AUC DeLong’s Test

BM (asbestos exposure, age, gender and WBCs) 0.75 Reference

BM + cg03546163 (FKBP5) 0.89 2.1 × 10−7

BM + cg06633438 (MLLT1) 0.89 6.3 × 10−8

Models are shown as baseline model (BM) or BM + Single CpG DNAm. AUC Differences between

the considered model and BM were estimated with DeLong's test.

2.3. Interaction Analysis

CpG sites and asbestos exposure were considered as predictors of MPM risk in the

interaction model. Categorical variables (quantile information) were used considering

median values.

We tested the interaction between asbestos exposure and DNAm levels at cg03546163 in

FKBP5 and cg06633438 in MLLT1.

Considering cg03546163 in FKBP5, DNA hypermethylation and low asbestos exposure

levels were used as references, while for cg06633438 in MLLT1, DNA hypomethylation and

low asbestos exposure levels were set as references (Table 3).

The OR was estimated as the relationship between the combination of single-CpGs DNAm

levels and asbestos exposure quantile, and the reference (low median asbestos exposure

and hypermethylation status for cg03546163, or hypomethylation status for cg06633438).
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Age, gender, population stratification, and WBCs were included in the GLM (family =

binomial) to adjust the interaction effect.

The relationship between asbestos exposures and single-CpG DNAm levels was evaluated.

An increase of one unit of asbestos exposure (rank transformed fibers/mL years) was

related to the FKBP5 gene (β = −0.016, 95% CI = −0.031|−0.001, p = 0.044) and MLLT1 gene

(β = −0.014, 95% CI = 0.001|0.026, p = 0.035) methylation level variations.

Strong association between asbestos exposure and MPM risk, considering dichotomous

distribution of asbestos exposure, was found (OR = 6.11, 95% CI = 3.73|10.20, p = 1.8 ×

10−12). Quartile distribution of asbestos exposure was evaluated to estimate the potential

incremental association with MPM risk (1st quartile: used as reference; 2nd quartile: OR =

1.83, 95% CI = 0.93|3.69, p = 0.09; 3rd quartile: OR = 6.63, 95% CI = 3.30|13.81, p = 2.1 × 10−7;

4th quartile: OR = 11.00, 95% CI = 5.26|24.30, p = 7.3 × 10−10).

Table 3. Interaction between asbestos exposure and single CpG DNAm on the MPM Odds ratios.

DNAm Asbestos Exposure OR Std. Error 95% CI p Value

cg03546163 (FKBP5)

Hypo Low 2.79 1.51 1.26|6.33 0.013

Hyper High 7.21 1.54 3.17|17.27 4.6 × 10⁻6

Hypo High 20.84 1.59 8.71|53.96 5.5 × 10⁻11

cg06633438 (MLLT1)

Hyper Low 1.29 1.63 0.70|3.81 0.258

Hypo High 7.27 1.55 3.17|17.65 5.3 × 10⁻6

Hyper High 11.71 1.57 4.97|29.64 5.9 × 10⁻8

Reference for cg03546163 in FKBP5: hypermethylation and low asbestos exposure levels; reference

for cg06633438 in MLLT1: hypomethylation and low asbestos exposure levels.

2.4. Validation and Replication

For the replication and validation approaches, an independent sample of 140 MPM cases

and 104 cancer-free asbestos-exposed controls from the same areas were considered, using

a targeted DNAm analysis technique.
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The direction and magnitude of the association was consistent for cg03546163 and

cg06633438 DNAm. Patients showed significantly lower DNAm at cg03546163 (MD =

−0.061, 95% CI = −0.087|−0.036, p = 4.5 × 10−6) and higher DNAm at cg06633438 (MD =

0.024, 95% CI = 0.061|0.013, p = 4.0 × 10−2) compared with controls. A multivariate analysis

confirmed that DNAm at cg03546163 in FKBP5 and cg06633438 in MLLT1 were

independently associated with MPM detection.

3. Discussion

In the present study, we used a whole genome microarray approach to investigate DNAm

in WBCs from MPM cases and asbestos-exposed cancer-free controls from a region with a

history of asbestos exposure (Piedmont, Italy) [10] in order to identify new noninvasive

epigenetic markers related to MPM. The identification of reliable MPM diagnostic

biomarkers in peripheral blood might improve risk assessment.

We observed hypomethylation of CpG cg03546163, located in the 5′ UTR region of FKBP5

gene, in MPM cases compared to controls.

Epigenetic activation of the FKBP Prolyl Isomerase 5 (FKBP5) gene has been shown to be

associated with increased stress sensitivity and the risk of psychiatric disorders [24].

FKBP5 is an immunophilin and has an important role in immunoregulation and in protein

folding and trafficking. It plays a role in transcriptional complexes and acts as a

cotranscription factor, along with other proteins in the FKBP family [25]. The suggestion of

a possible role of FKBP5 in the development and progression of different types of cancer

has stemmed from several studies. In particular, high protein expression has been linked

to either suppression or promotion of tumour growth, depending on tumour type and

microenvironment [26,27].

FKBP5 is involved in the NF-kB and AKT signaling pathways, both of which are

implicated in tumorigenesis [28]. Notably, NF-kB appears to be frequently constitutively

activated in malignant tumours and involved in the modulation of genes linked to cell

motility, neoangiogenesis, proliferation and programmed cell death [29]. An epigenetic
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upregulation of FKBP5 could promote NF-kB activation [30]. STAT3-NFkB activity is

involved in chemoresistance in MM cells [31], and NFkB was shown to be constitutively

active as a result of asbestos-induced chronic inflammation [32].

CpG cg06633438 located in the body region of the MLLT1 gene was hypermethylated in

cases compared to controls.

The MLLT1 gene encodes the ENL protein, a histone acetylation reader component of the

super elongation complex (SEC), which promotes transcription at the elongation stage by

suppressing transient pausing by the polymerase at multiple sites along the DNA. In acute

myeloid leukemia, MLLT1 regulates chromatin remodeling and gene expression of many

important proto-oncogenes [31]. Yoshikawa and colleagues suggested that mesothelioma

may be the consequence of the somatic inactivation of chromatin-remodeling complexes

and/or histone modifiers, including MLLT1 [30].

In mesothelioma patients with short-term recurrence after surgery, frequent 19p13.2 loss

was reported. This region encompasses several putative tumor suppressors or oncogenes,

including MLLT1 [32].

Figure 2. Expression profiles in normal human haematopoiesis. MLLT1 (A) and FKBP5 (B)

expression profiles in normal human haematopoiesis as reported in the Blood Spot database

(http://servers.binf.ku.dk/bloodspot/,accessed on 26 May 2021).
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Interestingly, MLLT1 and FKBP5 showed opposite behavior, increasing and decreasing

DNAm levels, respectively, in relation to MPM. This finding could reflect the opposite

expression profiles of the two genes among all the different subtypes of white blood cells

in normal human hematopoiesis, as reported in the Blood Spot database

(http://servers.binf.ku.dk/bloodspot/,accessed on 26 May 2021) (Figure 2) [33].

Our interaction analysis showed that considering DNAm levels at FKBP5 and MLLT1

genes together with asbestos exposure levels may help to better define MPM risk for

asbestos-exposed subjects.

Six single-CpGs showed differential methylation in patients, including those located in

C13orf30, CDC42BPB, ZNF629 and ALG9 genes; the other six were not annotated to named

genes. ALG9 is a glycogene whose reduced expression has been described during the

epithelial-to-mesenchymal transition, an essential process also involved in cancer

progression [34]. The CDC42BPB gene is ubiquitously expressed in mammals and encodes

a serine/threonine protein kinase, a member of the MRCK family [35]. The role of MRCKs

in cytoskeletal reorganization during cell migration and invasion has been characterized

[36]. The biological function of C13orf30 and ZNF629, a DNA-binding transcription factor,

is still to be established.

MPM cases and asbestos-exposed controls showed different proportions of estimated

WBCs, which may denote the crucial implication of the immune system. It is known that

in cancer, including mesothelioma, the immune system is affected [37], and there is

evidence that asbestos directs antigen overstimulation, and that reactive oxygen species

production induces functional changes in WBCs [38]. Indeed, in MPM cases, we showed a

reduction of estimated CD4+ and CD8+ T lymphocytes, suggesting a weaker adaptive

immune system [39]. This may reflect the possible occurrence of functional changes in

WBC subtypes in MPM [40,41].

The need for reliable biomarkers is of extreme relevance for a disease such as MPM, which

is characterized by the accumulation and persistence of asbestos fibers in the lungs,

leading to a long latency period before clear clinical signs of the tumor are detectable.

Several biomarkers for early MPM detection (e.g., mesothelin, osteopontin and fibulin-3)
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have been proposed so far; however, some of them are still under investigation [42]. In this

context, DNAm changes in easily-accessible WBCs may provide a useful tool to better

assess MPM risk in asbestos-exposed subjects.

Our findings that DNAm levels in single-CpGs in FKBP5 and MLLT1 genes are

independent markers of MPM in asbestos-exposed subjects suggest the potential use of

blood DNAm analysis as a noninvasive test for MPM detection.

Some somatic gene alterations in lung cancer have been linked to tobacco smoke, but few

data are available on the role of asbestos fibers: Andujar and colleagues investigate the

mechanism of P16/CDKN2A alterations in lung cancer including asbestos-exposed

patients. P16/CDKN2A gene inactivation in asbestos-exposed non-small-cell lung

carcinoma (NSCLC) cases, a tumor independent of tobacco smoking but associated with

asbestos exposure, mainly occurs via promoter hypermethylation, loss of heterozygosity

and homozygous deletion, suggesting a possible relationship with an effect of asbestos

fibers [43].We observed epigenetic deregulations in the blood of MPM patients compared

to that of cancer-free controls, suggesting the potential use of DNAm for risk stratification

among asbestos-exposed individuals.

If this observation can be verified in prospectively collected samples, it may be possible to

use CpGs methylation to further improve MPM risk estimation for subjects with

occupational and/or environmental asbestos exposure.

Limitation of the Study

Leukocyte DNAm may be a nonspecific marker related to a general, tumour-induced

inflammatory status rather than a specific MPM biomarker. Further studies are therefore

needed to support our findings.

One main limitation of the functional interpretation of our results is that all our cases had

already developed MPM at recruitment: thus, our findings likely reflect disease status

rather than being markers of the dynamic processes leading to MPM onset. The lack of

MPM tissue from the same subjects also poses major constraints to the functional

interpretation of our findings.

43



Notwithstanding the above limitations, the discrimination between MPM cases and

asbestos-exposed cancer-free controls improved when DNAm levels were considered

together with asbestos exposure levels.

4. Material and Methods

4.1. Study Population

Study subjects were part of a wider, ongoing collaborative study, which is actively

enrolling MPM cases and cancer-free controls in the municipality of Casale Monferrato

(Piedmont Region, Italy). This area was chosen due to its exceptionally high incidence of

mesothelioma, caused by widespread occupational and environmental asbestos exposure

originating from the Eternit asbestos-cement plant, which was operational until 1986 [44].

Additional MPM cases and cancer-free controls were recruited from other main hospitals

of the Piedmont Region (in the municipalities of Turin, Novara and Alessandria). The

ongoing collaborative study includes MPM cases diagnosed between incident MPM cases

diagnosed between 2000 and 2010 after histological and/or cytological confirmation, and

matched controls [45].

The present study included 159 MPM cases and 137 cancer-free controls from a larger

case-control study, all of whom had genetic and blood DNAm data [46], good quality

DNA at the time of the analyses, and information on asbestos exposure above the

background level, as defined in Ferrante et al. [47]. MPM cases and asbestos-exposed

cancer-free controls were matched by date of birth (±18 months) and gender. An additional

244 (140 MPM cases and 104 cancer-free controls) independent samples from the same

case-control study were included for validation/replication analyses.

Table 4,5 shows the descriptive characteristics of controls and cases (Min, 1st Q, Median,

Mean, 3rd Q and Max) that were considered in the statistical analysis (gender, age,

asbestos exposure and WBC estimates: monocytes, granulocytes, natural killer, B cells,

CD4+ T and CD8+ T). Asbestos exposure (occupational, environmental and domestic) was
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normalized considering frequency, duration and intensity. Smoking status (current,

former and never smokers) is also explained in Table 6.

Our study complied with the Declaration of Helsinki principles and conformed to ethical

requirements. All volunteers signed an informed consent form at enrollment. The study

protocol was approved by the Ethics Committee of the Italian Institute for Genomic

Medicine (IIGM, Candiolo, Italy).

Table 4. Descriptive characteristics of cancer-free control group.

Variable Controls (Male 100, Female 37)

Min 1st Q Median Mean 3rd Q Max

Age 41.60 57.41 65.65 64.59 72.63 90.94

Asbestos exposure −2.71 −0.97 −0.48 −0.44 0.09 1.73

Monocytes 0.00 0.05 0.06 0.07 0.08 0.26

Granulocytes 0.36 0.54 0.60 0.62 0.68 0.99

Natural Killer 0.00 0.04 0.07 0.08 0.11 0.29

B cells 0.00 0.07 0.09 0.09 0.11 0.19

CD4+ T 0.00 0.10 0.14 0.14 0.19 0.35

CD8+ T 0.00 0.03 0.06 0.07 0.10 0.23

Minimum (Min), First Quartile (1st Q), Median, Mean, Third Quartile (3rt Q) and Maximum (Max)

of variables related to cancer-free controls.

Table 5. Descriptive characteristics of MPM group.

Variable Cases (Male 113, Female 50)

Min 1st Q Median Mean 3rd Q Max

Age 33.90 61.19 68.68 67.59 75.17 90.80

Asbestos exposure −2.71 −0.21 0.39 0.37 0.98 2.94

Monocytes 0.00 0.05 0.07 0.08 0.10 0.20

Granulocytes 0.37 0.67 0.74 0.74 0.81 1.03

Natural Killer 0.00 0.02 0.05 0.06 0.08 0.23

B cells 0.00 0.05 0.06 0.06 0.08 0.16

CD4+ T 0.00 0.03 0.07 0.08 0.11 0.22

CD8+ T 0.00 0.00 0.02 0.03 0.04 0.22

Minimum (Min), First Quartile (1st Q), Median, Mean, Third Quartile (3rt Q) and Maximum (Max)

of variables related to MPM cases.
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Table 6. Descriptive characteristics of smoking status stratified by disease.

Smoking Habits Cases (163) Controls (137)

n % n %

Current smokers 29 17.79 30 21.90

Former smokers 54 33.13 60 43.80

Never smokers 75 46.01 47 34.31

n and % of the three levels of smoking status stratified by disease.

4.2. Exposure Assessment

Information on occupational history and lifestyle habits were collected from all subjects

through interviewer-administered questionnaires, which were completed during

face-to-face interviews at enrollment. Job titles were coded in two ways according to the

International Standard Classification of Occupations [47] and the Statistical Classification

of Economic Activities in the European Community.

A cumulative exposure index was computed considering frequency, duration and

intensity of asbestos exposure. Occupational, environmental and domestic asbestos

exposure were evaluated by an experienced occupational epidemiologist [47], and

exposure doses (fibers/mL years) were rank-transformed to remove skewness.

4.3. Blood DNAm Analysis and Beta-Value Extraction

DNAm levels were measured in DNA from whole blood collected at enrollment using the

Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA). For blood

DNAm analysis (including quality control) please refer to the previous work of the same

group [11].

We used the R package ‘methylumi’ to analyze DNAm data. The average methylation

value at each locus was computed as the ratio of the intensity of the methylated signal over

the total signal (unmethylated + methylated) [48]. Beta-values ranging from 0 (no

methylation) to 1 (full methylation) represent the percentage of methylation at each

individual CpG locus.
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We excluded the following from the analyses: (i) single beta-values with a p-value for

detection ≥ 0.01; (ii) CpG loci that had missing beta-values in more than 20% of the assayed

samples; (iii) CpG loci detected by probes containing single nucleotide polymorphisms

(SNPs) with MAF ≥ 0.05 in the CEPH (Utah residents with ancestry from northern and

western Europe, CEU) population; and iv) samples with a global call rate ≤ 95%. We also

excluded CpGs on chromosomes X and Y.

4.4. Batch Effect, Population Stratification and White Blood Cells Estimations

All differential methylation analyses were corrected for “control probes” Principal

Components (PCs) to account for variability and batch effects in methylation assays. We

used PCs assessed by principal component analysis of the BeadChip’s built-in control

probes as a correction factor for statistical analyses of microarray data. This method allows

researchers to account for the technical variability in the different steps in DNAm analysis,

from bisulfite conversion to BeadChip processing [49].

An individual’s geographic origins may influence DNAm profiles, which could potentially

introduce bias. To take this into consideration, we took advantage of the available data

from our previous study, which includes a genome-wide genotyping dataset from the

same study subjects [50]. When genome-wide genotyping was used to calculate the first

PCs, they were shown to correlate with different geographic origins [51].

For each subject, we extracted WBC subtype percentages, estimated based on

genome-wide methylation data. This method provides quantification of the composition of

leukocytes that can be achieved by simple histological or flow cytometric assessments,

with an admissible range of variability [52].

4.5. Statistical Analyses

4.5.1. Epigenome-Wide Association Study

An association test was used to analyze the mean differences (MD) in single-CpG

methylation between MPM cases and asbestos-exposed cancer-free controls. We

performed multiple regression analysis adjusted for age, gender, estimated WBCs
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(monocytes, granulocytes, natural killer, B cells, CD4+ T and CD8+ T), population

stratification (first 2 PCs) and technical variability (first 10 PCs). For multiple comparison

tests, a FDR p value ≤ 0.05 was considered statistically significant.

Bootstrapping was performed using random sampling methods to estimate the measures

of accuracy defined in terms of bias, variance, confidence intervals and prediction error.

Bootstrapping can also be applied to control and check the results for stability. The

bias-corrected and accelerated (BCa) bootstrap interval was calculated with regard to

single CpGs.

ROC for Case-Control Discrimination was implemented, and the AUC metric was applied

to estimate the predictive performance of a binary classification (cases/controls). The

baseline model (BM) included age, gender, asbestos exposure and WBCs, and was

compared with the BM after adding the DNAm levels of statistically significant,

single-CpGs at EWAS. AUC differences between BMs before and after the addition of

DNAm levels were estimated with DeLong’s test.

4.5.2. Statistical Power

To ensure a study power greater than 99% (two-tailed test at α = 0.05 and β = 0.01), only

CpGs with a MD between cases and controls ≥ |0.05| were selected.

Covariates were included step-by-step in a sensitivity analysis to validate the association

output considering effect size, standard error, 95% confidence interval and p value

variations.

Gene set enrichment analyses were carried out on CpGs with a False Discovery Rate p

value (PFDR) ≤ 0.05 to identify pathways that may be affected by MPM-related changes in

methylation.

All statistical analyses were conducted using the open source software R (4.0.2).

4.5.3. Interaction Analysis

Logistic regression was used to analyze the relationship between CpGs and asbestos

exposure in MPM risk (odds ratio), adjusting for age, gender, SNP PCs and WBCs
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estimates. Asbestos exposure was classified as above-median or below-median, and CpG

methylation was categorized as above-median or below-median.

MPM risk for a given CpG level and asbestos exposure was expressed by ORij, where i

indicates the asbestos exposure (below-median or above-median) and j indicates the CpG

(above-median or below-median). Considering the direction of the effect, the same

approach was used: for hypomethylated CpGs, above-median was used as the reference

level, whereas below-median was used for hypermethylated CpGs.

Subjects with below-median asbestos exposure and reference-level CpG DNAm were

considered the baseline group, and their MPM risk was coded as OR00 = 1. Interaction was

analyzed with respect to both additive and multiplicative models based on the ORs

obtained by logistic regression.

Synergistic interaction (positive interaction) implies that the combined action of two

factors in an additive model is greater than the sum of their individual effects.

Antagonistic interaction, on the other hand, means that when two factors are present in an

additive model, the action of one reduces the effect of the other.

Multivariable logistic regression models were used to explore any deviations from a

multiplicative model, including asbestos exposure, CpG and the corresponding interaction

term (CpG × exposure). All models were adjusted for age, gender, SNP PCs, technical

covariates and WBCs estimates. p-values < 0.05 were considered statistically significant.

4.6. Validation and Replication

DNAm signal validation and replication was done by the EpiTYPER MassARRAY assay

(Agena Bioscience). This assay uses a MALDI-TOF mass spectrometry-based method to

quantitatively assess the DNA methylation state of the CpG sites of interest [53]. DNA (500

ng) was bisulfite-converted as indicated in Section 4.3.

PCR amplification, treatment with SAP solution and Transcription/RNase A cocktails were

performed according to the manufacturer’s instructions, and the mass spectra were

analyzed by an EpiTYPER analyzer. The MassARRAY assay cannot discriminate between

CpGs located in close proximity in the sequence, so instead, the close neighboring CpGs
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are analyzed as “Units”, i.e., the measured methylation level is the average of the

methylation levels of the CpGs cumulatively analyzed within the Unit. In the case of

cg03546163, the measured methylation level is the average between two CpG sites located

in very close proximity (Figure S1). For cg06633438, the two adjacent signals were

considered, since the results for the model did not differ for effect size, standard error, 95%

CI or p value (Figure S2).

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1:

Location of cg03546163 investigated by EpiTYPER MassARRAY, Figure S2: Location of cg06633438

investigated by EpiTYPER MassARRAY.

Figure S1. Location of cg03546163 investigated by EpiTYPER MassARRAY. Locations of

cg03546163 (CpG2, in yellow) and a second CpG site very close (CpG1, in red), investigated by

EpiTYPER MassARRAY. Flanking primers are underlined. The CpG sites could not be tested

individually due to MassARRAY technology constraints, but had to be tested jointly as a single

unit: the methylation level is the cumulative value of all the sites within the CpG unit.
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Figure S2. Location of cg06633438 investigated by EpiTYPER MassARRAY. Locations of

cg06633438 (CpG10, in yellow) and other CpG sites very close (CpGn, in red), investigated by

EpiTYPER MassARRAY. Flanking primers are underlined. The CpG sites could not be tested

individually due to MassARRAY technology constraints, but had to be tested jointly as a single

unit: the methylation level is the cumulative value of all the sites within the CpG unit.

Institutional Review Board Statement: Ethics approval and consent to participate: The study

protocol was approved by the Ethics Committee of the Italian Institute for Genomic

Medicine (IIGM, Candiolo, Italy).
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Study2

DNA methylation of FKBP5 as predictor of overall

survival in Malignant Pleural Mesothelioma

Simple Summary: Our study is the first one to investigate DNA methylation changes in

WBCs from easily accessible peripheral blood as MPM survival biomarkers. The Cox

proportional hazards regression model highlighted that cg03546163 is an independent

marker of prognosis in MPM patients with a better performance than traditional

inflammation-based scores such as lymphocyte-to-monocyte ratio (LMR). Biological

validation and replication showed that epigenetic changes at the FKBP5 gene were

robustly associated with OS in MPM cases. The identification of simple and valuable

prognostic markers for MPM will enable clinicians to select patients who are most likely to

benefit from aggressive therapies and avoid subjecting non-responder patients to

ineffective treatment.

Abstract: Malignant pleural mesothelioma (MPM) is an aggressive tumor with median

survival of 12 months and limited effective treatments. The scope of this study was to

study the relationship between blood DNA methylation (DNAm) and overall survival

(OS) aiming at a non-invasive prognostic test. We investigated a cohort of 159 incident

asbestos exposed MPM cases enrolled in an Italian area with high incidence of

mesothelioma. Considering 12 months as a cut-off for OS, epigenome-wide association

study (EWAS) revealed statistically significant (p value = 7.7E-09) OS-related differential

methylation of a single-CpG (cg03546163), located in the 5'UTR region of FKBP5 gene. This

is an independent marker of prognosis in MPM patients with a better performance than

traditional inflammation-based scores such as lymphocyte-to-monocyte ratio (LMR). Cases

with DNAm < 0.45 at the cg03546163 had significantly poor survival compared with those
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showing DNAm ≥ 0.45 (mean: 243 versus 534 days; p value< 0.001). Epigenetic changes at

the FKBP5 gene were robustly associated with OS in MPM cases. Our results showed that

blood DNA methylation levels could be promising and dynamic prognostic biomarkers in

MPM.

Keywords: malignant pleural mesothelioma; asbestos exposure; DNA methylation;

lymphocyte-to-monocyte ratio; epigenome-wide analysis; survival analysis

1. Introduction

Malignant pleural mesothelioma (MPM) is an aggressive tumor. The disease usually

develops after a long latency (20-40 years) following asbestos exposure [1]. Although MPM

is considered a rare malignancy (prevalence 1–9/100,000), about 40,000 deaths have been

estimated to occur each year globally [2, 3]. The World Health Organization estimates that

125 million people annually around the world are exposed to asbestos. The International

Agency for Research on Cancer confirmed that all fibrous forms of asbestos are

carcinogenic to humans, causing mainly mesothelioma, respiratory-tract tumors,

mesothelioma, and cancer at other tissue sites [4].

The prognosis of MPM is poor with a median survival of about 12 months from the

diagnosis [5].

Generally, the first-line treatment is a combination of a multi-targeted anti folate

(pemetrexed or raltitrexed) drug and a platinum compound (cisplatin or carboplatin) [6].

Currently, only a single randomized trial demonstrated an increase in survival time when

comparing cisplatin and pemetrexed versus cisplatin alone [7]; unfortunately, most

patients became resistant to this treatment and relapsed rapidly. No oncogenic driver has

been identified and molecular pathways leading to MPM have also not yet been clearly

determined. Other therapeutic strategies such as immunotherapy are promising but

require further investigation and improvement [8].
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Recent research on the pathogenesis of MPM indicated that i) both genetic and epigenetic

alterations contribute to asbestos-induced tumorigenesis [9, 10], ii) inflammation-based

prognostic scores that include lymphocyte counts are associated with survival [11].

MPM has a low frequency of protein-altering mutations (∼25 mutations per tumor),

compared to many other tumors [12]. Moreover, germline mutations in different genes

mainly involved in DNA damage repair confer moderate-to-high genetic risk of MPM

development [13]. The BAP1-tumor predisposition syndrome is the most studied genetic

condition associated with MPM development and is caused by mutations in the

BRCA1-associated protein 1 (BAP1) gene [13].

In the last 10 years, epigenetic markers, such as DNA methylation (DNAm) and

microRNAs (miRNAs), have gained popularity as possible early diagnostic and prognostic

biomarkers in cancer research, including MPM. While genetic markers may differ from

case to case in most cancer patients (i.e., each patient may carry a different mutation

within the same gene), different subjects show variable levels of epigenetic biomarkers in

specific target regions and different tissues depending on disease status [14].

DNA methylation is one of the epigenetic factors that can be altered in cancer tissues [15].

However, regarding mechanisms and clinical outcome of epigenetic derangements in

MPM, less information is available [16]. Although DNAm is stable, it can be modified

throughout life by several factors such as ageing, lifestyle, environmental exposures, and

diseases. It thus represents an adaptive phenomenon linking environmental factors and

the development of pathologic phenotypes such as cancers. DNAm changes are

considered to possibly play a role in MPM progression, and have therefore been suggested

as a potential tool for prognosis [18].

The fact that epigenetic modifications, unlike genetic changes, are potentially reversible,

may open new perspectives for patient clustering and novel therapeutic options. A reliable

prognostic biomarker that offers high sensitivity and specificity would be a major

advancement for MPM. Blood-based biomarkers that have been explored in MPM include

megakaryocyte potentiating factor (an alternative cleavage product of the mesothelin
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precursor protein) [19]; fibulin 3 is also found in pleural fluid, and high levels appear to

correlate with advanced disease [20].

Considering clinical end-point, low pleural fluid glucose and high C-reactive protein and

pleural thickening represent the main prognosis factors [21]. Recent studies confirm that a

combination of epigenetic alterations is superior with respect to an only genetic approach

on overall survival [17].

This study was undertaken with the goal of better characterizing the MPM overall survival

(OS) evaluating the potential predictive value of peripheral blood DNAm profiles. The

second goal was the comparison of the DNAm prognostic performance with the broadly

used lymphocyte-to-monocyte ratio (LMR) method.

2. Results

2.1. Epigenome-wide association study

EWAS revealed a statistically significant hypo-methylated single-CpG (cg03546163) in

FKBP5 gene in the low survival group after Bonferroni post-hoc correction (Figure 1).

Bootstrap was computed to estimate the measures of accuracy, using random sampling

methods.

Other 5 CpGs in FKBP5 gene showed hypomethylation in poor MPM survivors, with

un-adjusted p value < 0.05 (Table 2); instead, no CpGs in FKBP5 gene showed statistically

significant hypermethylation in poor MPM survivors.
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Figure 1. Manhattan plot for EWAS test on 450k single CpGs. Overall survival was used as a

dependent variable considering 12 months as cut-off adjusting for age, gender, histological

subtype, asbestos exposure, WBCs estimation, population stratification and technical variability.

Bonferroni post hoc line highlights statistically significant differences on OS at single CpG level.
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Table 2. Differential DNAm analyses at FKBP5 gene ordered by effect size (low survival group was used as reference). Information about

single CpGs including location-related values and model outputs (effect size, standard error, p values).

TargetID
CHR

UCSC_REFGENE_GR

OUP

ENHA

NCER Probe_start Probe_end

Closest_

TSS

Dist_clos

est_TSS

Gene_

name

Effect

_size SE p_value Bonf Sign

cg03546163 6

5'UTR;5'UTR;5'UTR;5'U

TR NA 35654313 35654363 35656691 2329 FKBP5 0.12 0.02 7.71E-09 0.0032804 *§

cg00052684 6 5'UTR TRUE 35694195 35694245 35696396 2152 FKBP5 0.04 0.02 0.0145890 1 *

cg00130530 6

5'UTR;TSS1500;TSS1500

;TSS1500 NA 35657152 35657202 35656718 -483 FKBP5 0.03 0.01 0.0014908 1 *

cg19226017 6 TSS1500;Body NA 35697185 35697235 35696396 -788 FKBP5 0.03 0.01 0.0216391 1 *

cg08915438 6 TSS1500;Body NA 35697709 35697759 35696396 -1362 FKBP5 0.02 0.01 0.0507796 1 *

cg14642437 6

5'UTR;5'UTR;5'UTR;5'U

TR NA 35652471 35652521 35656691 4171 FKBP5 0.02 0.01 0.0307181 1 *

cg25114611 6 TSS1500;Body NA 35696820 35696870 35696396 -473 FKBP5 0.02 0.01 0.0804351 1  

cg16052510 6 Body;Body;Body;Body TRUE 35603093 35603143 35656691 53549 FKBP5 0.01 0.01 0.2017837 1  

cg03591753 6 5'UTR NA 35659141 35659191 35656718 -2422 FKBP5 0.01 0.01 0.0712878 1  

cg23416081 6 5'UTR TRUE 35693573 35693623 35696396 2824 FKBP5 0.01 0.01 0.3001815 1  

cg19014730 6

5'UTR;5'UTR;5'UTR;5'U

TR TRUE 35635985 35636035 35656691 20707 FKBP5 0.01 0.01 0.5109240 1  

cg20813374 6

5'UTR;TSS1500;TSS1500

;TSS1500 NA 35657130 35657180 35656718 -461 FKBP5 0.01 0.01 0.5386224 1  
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cg07061368 6

5'UTR;5'UTR;5'UTR;5'U

TR TRUE 35631736 35631786 35656691 24956 FKBP5 0.00 0.01 0.4407199 1  

cg08636224 6

5'UTR;TSS1500;TSS1500

;TSS1500 NA 35657871 35657921 35656718 -1202 FKBP5 0.00 0.00 0.18248273 1  

cg01294490 6

TSS200;TSS200;5'UTR;T

SS1500 NA 35656906 35656956 35656718 -187 FKBP5 0.00 0.01 0.4213002 1  

cg07485685 6 5'UTR;Body NA 35696060 35696110 35696396 336 FKBP5 0.00 0.00 0.8479419 1  

cg14284211 6 Body;Body;Body;Body TRUE 35570224 35570274 35656691 86468 FKBP5 0.00 0.01 0.9743447 1  

cg17030679 6 5'UTR;Body;1stExon NA 35696300 35696350 35696396 97 FKBP5 0.00 0.00 0.9557194 1  

cg00862770 6

5'UTR;5'UTR;5'UTR;5'U

TR NA 35655764 35655814 35656691 928 FKBP5 0.00 0.00 0.9399041 1  

cg00140191 6

5'UTR;5'UTR;5'UTR;5'U

TR NA 35656193 35656243 35656691 450 FKBP5 0.00 0.00 0.8823881 1  

cg00610228 6 5'UTR;Body NA 35695934 35695984 35696396 463 FKBP5 0.00 0.00 0.873762 1  

cg07633853 6 Body;Body;Body;Body TRUE 35569421 35569471 35656691 87221 FKBP5 0.00 0.01 0.9654276 1  

cg10300814 6 Body;Body;Body;Body TRUE 35565066 35565116 35480646 -84469 TULP1 0.00 0.00 0.6206779 1  

cg16012111 6

TSS200;TSS200;TSS200;

5'UTR NA 35656758 35656808 35656718 -39 FKBP5 0.00 0.00 0.5190471 1  

cg06937024 6 5'UTR;Body NA 35695440 35695490 35696396 908 FKBP5 0.00 0.00 0.1350045 1  

cg08586216 6

5'UTR;5'UTR;5'UTR;5'U

TR TRUE 35612301 35612351 35656691 44341 FKBP5 0.00 0.00 0.1056313 1  

cg17085721 6

5'UTR;5'UTR;5'UTR;5'U

TR TRUE 35645291 35645341 35656691 11351 FKBP5 0.00 0.00 0.2115825 1  

cg02665568 6 Body;Body;Body NA 35544468 35544518 35480646 -63821 TULP1 -0.01 0.01 0.2947576 1  
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cg15929276 6 5'UTR TRUE 35687456 35687506 35696396 8940 FKBP5 -0.01 0.01 0.4559690 1  

cg06087101 6 Body;3'UTR;Body;Body NA 35551882 35551932 35480646 -71285 TULP1 -0.02 0.02 0.2037838 1  

Low survival group was set as reference. Adjustment covariates: age, gender, asbestos exposure, histological subtype, smoke, population

stratification, WBCs estimation and technical variability. *: statistically significant at p value< 0.05; §: statistically significant at Bonferroni

and FDR post hoc adjustments.
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2.2. Survival analysis

CpG sites and LMR were considered as predictors in the regression model. Categorical

variables (quantile information) were used.

Figure 2. K-M survival curves show a) cg03546163: patients with a DNAm < 0.45 had significantly

poor survival compared with a DNAm ≥ 0.45 (mean, 243 versus 534 days; p value< 0.001); and b)

LMR: patients with values < 2.86 had significantly poor survival compared with patients with

values ≥ 2.86 (mean, 310 versus 528 days; p value< 0.001). cg03546163 is an independent marker of

prognosis in patients with MPM and performs better than LMR (HRcg03546163= 2.14 vs HRLMR= 1.66).

Cox model was computed considering the same list of covariates included in the EWAS.

Patients with DNAm < 0.45 at the cg03546163 had significantly poorer survival compared

with subjects with DNAm ≥ 0.45 (mean, 243 versus 534 days; p value < 0.001). Survival at

the 1st and the 3rd Quartiles was 135 versus 209 days and 401 versus 842 days, respectively,

comparing patients with single CpG DNAm < 0.45 with those with single CpG DNAm ≥

0.45. The Multivariate analysis showed that cg03546163 DNAm at FKBP5 was

independently associated with OS. Kaplan–Meier curves revealed that a decrease of
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methylation at cg03546163 (< 0.45) was significantly associated with worse OS (HR = 2.14 p

value< 0.0001) (Figure 2a).

Patients with LMR < 2.86 had significantly poorer survival compared with patients with

LMR ≥ 2.86 (mean, 310 versus 528 days; p value< 0.001). Survival at 1st Quartile was 175

versus 262 days whereas at 3rd Quartile was 484 versus 969 days comparing patients with

LMR < 2.86 with those with LMR > 2.86. LMR was independently associated with OS:

Kaplan–Meier curves showed that decreased LMR (< 2.86) was significantly associated

with decreased OS (HR= 1.66; p value<0.01) (Figure 2b).

Histological subtype (epithelioid versus non-epithelioid), smoking status (current, never

and former) and asbestos exposure showed no statistically significant results on survival.

2.3. Validation and replication

The statistically significant association between cg03546163 DNAm and OS was confirmed

in an independent sample of patients (replication) and using a different targeted DNAm

analysis technique (validation). A sample of 133 MPM cases (58 low survivors and 75 high

survivors) was recruited and stratified in low and high OS considering the same cut-off

(365 days).

The same model used for the discovery phase was performed. Patients with below median

OS had significantly lower DNAm at the cg03546163 compared with those with above

median OS (mean, 188 versus 786 days; p value< 0.001). The 1st Quartile was 113 versus 482

days and the 3rd Quartile was 262 versus 862 days comparing patients with DNAm

difference (reference above median OS, MD: -0.04, 95%CI: -0.07|-0.01, p value: 0.04) at the

cg03546163. The Multivariate analysis confirmed that cg03546163 DNAm at FKBP5 was

independently associated with OS.

3. Discussion

A growing number of studies reported on the identification of epigenetic prognostic

biomarkers in several cancers [17, 35].
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This study focused on the exploration of epigenetic factors related to MPM survival in

MPM incident cases from Piedmont (Italy), a region with a well documented history of

asbestos exposure [36].

More than 450k methylation sites were evaluated in DNA from whole blood looking for

new insights related to overall survival in MPM. The main result was the hypomethylation

of a single CpG (cg03546163) in the 5’ UTR region of FKBP5 gene in patients with poorer

survival compared to patients with longer survival; it also showed to be an independent

marker of prognosis in MPM patients. This result has been replicated in a different series

of patients belonging to the same cohort using the Sequenom Quantitative DNAm

analysis.

In general, a combination of epigenetic and clinical factors is under investigation in clinical

prognosis and survival, including tumor histology, gender, hemoglobin level, platelet and

white blood cell count, and lactate dehydrogenase level [37].

Recently, due to the important role of inflammation in the development of MPM, several

studies investigated the effect of inflammation-based biomarkers on the prognosis [11, 35].

We selected the LMR for the comparison because its performance was previously reported

to be higher than other inflammation-based markers in MPM [38].

To validate the prognostic value of the observed CpG methylation site, we compared our

result with the LMR score.

Kaplan–Meier survival curves for MPM patients highlighted cg03546163 methylation at

FKBP5 gene as a prognostic factor superior to the LMR score.

The FKBP Prolyl Isomerase 5 (FKBP5), also known as FK506 binding protein 51 (FKBP51)

is a member of immunophilin protein family, which contributes to the immunoregulation

and to the basic cellular processes involving protein folding and trafficking. Together with

other members of the FKBPs family, this protein participates in transcriptional complexes

and acts as a co-transcription factor.

Although no studies have investigated the methylation of FKBP5 as a prognostic factor in

MPM, a growing number of whole-blood studies investigated its DNA methylation levels
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in order to explain the impact of environmental stress in the aetiology and treatment of

several diseases [39]. Interestingly, in a recent study on the Behcet’s disease (BD) it was

demonstrated that hypomethylation in the 5’UTR region (including cg03546163) of FKBP5

characterized cases and it was strongly associated with high gene expression, suggesting a

possible role of DNA methylation in the pathogenesis [40].

Other five single CpGs at FKBP5 showed hypomethylation in poor survivors: this evidence

supports the potential overall contribution of FKBP5 on the patient differentiation by OS.

In several human cancer tissues, a relevant role for FKBP5 in sustaining cancer cell growth

and aggressiveness has been documented. In particular, for glioma [41], prostate cancer

and melanoma [42], a strict correlation between protein abundance and aggressiveness has

been demonstrated.

Probably, the relationship between FKBP5 and tumor progression and aggressiveness, is

represented by its implication in NF-kB and AKT signaling pathways, with key roles in

tumorigenesis and response to antineoplastic chemotherapy [43].

Moreover, a well characterized anti-apoptotic effect is mediated by NF-κB transcription

factors and FKBP5 has documented anti-apoptotic effects: recent studies hypothesized that

FKBP5 could promote inflammation, by activating the master immune regulator NF-kB,

after an epigenetically upregulation due to aging and stress [44, 45].

Previous studies conducted on various cancer types, showed that upregulation of FKBP5

gene expression is associated with drug resistance [46]. In a study on ovarian cancer cell

lines, the up-regulation of FKBP5 increased the resistance to chemotherapeutic agents,

whereas the gene silencing sensitized ovarian cancer cells to taxol [47]. In the present

study we could not evaluate FKBP5 gene expression due to the lack of available RNA,

which was not collected in the study. However, this should be further addressed and

verified in future studies.

One study demonstrated that overexpression of FKBP5 increased the chemosensitivity

through the AKT pathway [44]. Similar research supported this observation making
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FKBP5 an effective biomarker for sensitivity to chemotherapy; patient responses to

chemotherapy may be determined by the variation in FKBP5 levels [48].

Limitation of the study

Being able to identify the direction of causality will greatly aid in determining the

usefulness of epigenetic variation.

Leukocyte DNA methylation could mainly represent a nonspecific marker related to a

general inflammatory status due to the presence of a tumor rather than a specific MPM

biomarker and further studies should be carried out to support our findings.

As an additional limitation, we have therapy information only for a small subset of

patients and we could not test treatment-specific OS differences in relation to FKBP5

methylation levels.

4. Material and methods

4.1. Study population

Study subjects belong to a wider ongoing collaborative study on MPM, which is actively

enrolling MPM cases in the municipalities of Casale Monferrato (Piedmont region, Italy),

an area with an exceptionally high incidence of mesothelioma caused by widespread

asbestos exposure for locals, both occupational and environmental, due to the

asbestos-cement Eternit plant that was operational until 1986 [22]. Additional MPM cases

were recruited in the main hospitals of the municipalities of Turin, Novara and

Alessandria (Piedmont region, Italy). The study included incident MPM cases diagnosed

between 2000 and 2010 after histological and/or cytological confirmation of MPM

diagnosis [23, 24].

No peritoneal cases were considered with the aim to better identify epigenetics

characteristics of MPM.
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In the present study, 159 MPM cases belonging to a larger case-control study with genetic

[10, 25] and blood DNAm dat [9] were selected according to the following criteria: i)

availability of good quality DNA at the time of the analyses and ii) asbestos exposure

above the background level, as defined in [26]. Additional 133 independent samples from

the same cohort have been included for the validation/replication analyses.

Descriptive information of MPM patients are shown in Table 1. Median survival (365

days) was used as a cut-off value to stratify patients in high and low survivors.

No differences in categorical (centre, gender, smoke, histotype) and continuous (Asbestos

exposure, WBCs composition) variables among low and high survivors were found.

Our study complies with the Declaration of Helsinki principles and conforms to ethical

requirements. All volunteers signed an informed consent form at enrollment. The study

protocol was approved by the Ethics Committee of the Italian Institute for Genomic

Medicine (IIGM, Candiolo, Italy).

Table 1. Descriptive information of MPM patients. Median survival (365 days) was used as a

cut-off value to stratify patients in high and low survivors.

Categorical variable level low OS (n = 79) high OS (n = 80)

    N % N %

Centre
Casale 50 63.3 46 57.5

Torino 29 36.7 34 42.5

Gender
Males 59 74.7 50 62.5

Females 20 25.3 30 37.5

Smoke

Current 20 26.3 8 10.3

Former 24 31.6 29 37.2

Never 32 42.1 41 52.6

Histotype

Epithelioid 44 55.7 61 76.3

Sarcomatoid 14 17.7 2 2.5

Biphasic 17 21.5 11 13.8

Undefined 2 2.5 1 1.3

Not known 2 2.5 5 6.3
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Continuous variable level low OS high OS

    Mean SD Mean SD

Overall Survival (days) - 198.7 101.6 957.8 698.7

Age (years) - 67.7 12.4 67.5 9.6

Asbestos Exp. (norm) - 1.4 1.5 1.5 1.9

CD8T (%) - 2.9 4.5 3 3.4

CD4T (%) - 6.8 5.3 8.8 5.4

Natural Killer (%) - 4.9 4.9 6.3 4.1

B cell (%) - 6.1 2.8 6.4 2.7

Monocytes (%) - 8.1 4.1 7.6 4.4

Granulocytes (%) - 75 13 72 10

Asbestos Exposure (occupational, environmental and domestic) was normalized considering

frequency, duration and intensity.

4.2. Exposure assessment

For all subjects, occupational history and lifestyle habits information were collected

through interviewer-administered questionnaires filled out at enrollment during a

face-to-face interview. Job titles were coded according to the International Standard

Classification of Occupation [26] and according to the Statistical Classification of Economic

Activities in the European Community.

Frequency, duration and intensity of exposure were estimated, then a cumulative

exposure index was computed. The evaluation of asbestos exposure (occupational,

environmental and domestic) was conducted by an experienced occupational

epidemiologist. For the selection criteria and descriptive evaluation, asbestos exposure

doses (fibers/mL years) were rank transformed to remove skewness.

4.3. Blood DNAm analysis

Genomic DNA was extracted from whole blood collected in EDTA by an on-column DNA

purification method (QIAamp DNA Blood Mini Kit, QIAGEN GmbH, Germany),
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according to manufacturer’s instructions. DNA integrity was checked by an

electrophoretic run in standard TBE 0.5X buffer on a 1% low melting agarose gel

(Sigma-Aldrich GmbH, Germany); DNA purity and concentration were assessed by a

NanoDrop 8000 Spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA).

Five hundred nanograms of genomic DNA for each sample were bisulfite treated (EZ-96

DNA Methylation-Gold Kit, Zymo Research Corporation, Irvine, CA, USA) to convert

un-methylated cytosine to uracil. Cases were randomly and blindly distributed across

conversion plates.

The Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA, USA) was

used to measure the methylation level of more than 485,000 individual CpG loci at a

genome-wide resolution [27].

Twelve samples were analyzed on each BeadChip. As a “position effect” was reported for

Illumina Methylation BeadChips, each sample position on the BeadChip was completely

random as well. We further verified the randomization of the position on each BeadChip

was effective by checking for a position effect, and we found no occurrence of it.

BeadChips were processed according to manufacturer protocols. Data were inspected with

the dedicated GenomeStudio software v2011.1 with Methylation module 1.9.0 (Illumina

Inc., San Diego, CA), and quality checked as previously described [28].

4.4. Beta-value extraction

Raw DNAm data were analyzed with the R package ‘methylumi’. The average methylation

value at each locus was computed as the ratio of the intensity of the methylated signal over

the total signal (un-methylated + methylated) [29]. Beta-values represent the percentage of

methylation at each individual CpG locus, ranging from 0 (no methylation) to 1 (full

methylation).

We excluded from the analyses: i) single Beta-values with detection p-value ≥ 0.01; ii) CpG

loci with missing Beta-values in more than 20% of the assayed samples; iii) CpG loci

detected by probes containing SNPs with MAF ≥ 0.05 in the CEPH (Utah residents with
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ancestry from northern and western Europe, CEU) population; iv) samples with a global

call rate ≤ 95%. Lastly, CpGs on chromosomes X and Y were excluded from the analysis.

4.5. Batch effect, population stratification and White Blood Cells estimations

To account for methylation assay variability and batch effects, we corrected all differential

methylation analyses for “control probes” Principal Components (PCs). Using PCs

assessed by principal component analysis of the BeadChip’s built-in control probes as a

correction factor for statistical analyses of microarray data is a method that allows to

account for the technical variability of several steps in the DNAm analysis, from the

bisulfite conversion to BeadChip processing [30].

Geographic origins of subjects may influence DNAm profiles. To consider this source of

potential bias, we took advantage of the whole genome genotyping dataset from the same

subjects from our previous study [10]. The first PCs calculated based on genome-wide

genotyping were shown to correlate with different geographic origins of people [31, 32].

White Blood Cells (WBC) subtype percentages calculated based on genome-wide

methylation data [33]. for each subject were extracted. This method quantifies the

normally mixed composition of leukocytes beyond what is possible by simple histological

or flow cytometric assessments. In a diverse array of diseases and following numerous

immune-toxic exposures, leukocyte composition will critically inform the underlying

immune-biology to most chronic medical conditions. Then, it is necessary to extract and

control for the percentage of involved WBCs with the aim to infer a functional biological

pathway.

LMR score was calculated from the DNAm-estimated WBCs by dividing the total

lymphocyte count by the monocyte count.

4.6. Epigenome-wide association study  (EWAS)

Association test was used to analyze the mean differences (MD) at single-CpG methylation

between low and high survival. Multiple regression analysis adjusted for age, gender,

histological subtype, asbestos exposure, smoke, estimated WBCs, population stratification
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(first 2 PCs) and technical variability (first 10 PCs) was implemented. For multiple

comparisons tests, Bonferroni p value≤ 0.05 was considered statistically significant.

Using random sampling methods, bootstrap was implemented to estimate the measures of

accuracy defined in terms of bias, variance, confidence intervals and prediction error.

Bootstrap is also an appropriate way to control and check the stability of the results. The

bias-corrected and accelerated (BCa) bootstrap interval was calculated with regard to

single CpGs.

4.7. Survival analysis

The survival time was determined as the time between the date of diagnosis and the date

of death. If patients were still alive at the last follow-up (2016), survival was defined as the

time from the date of diagnosis until June 2016. The time and the median event times with

95% confidence intervals were estimated according to the Kaplan–Meier method. The

proportional hazards regression model was used for both the univariate and multivariate

analyses (Cox model).

Comparison of OS curves was performed using two-tailed log-rank tests with a 0.05 level

of significance. Only variables with p value < 0.1 in the univariate analysis were included

in the final model for the multivariate analysis. In the Cox regression analysis, the

backward conditional method (stepwise-AIC) was used. LMR and CpG sites were

considered as predictors in the regression model.

4.8. Statistical Power

To ensure a power of the study greater than 80% (two-tailed test at 0.05 alpha error), only

CpGs with mean difference (MD) of Beta-value between low and high survival of ≥ |0.035|

were selected. Covariates were included step-by-step in sensitivity analysis to validate the

association output considering effect size, standard error, 95% confidence interval and p

value variations.

CpGs with Bonferroni p value (PFDR) ≤ 0.05 underwent gene set enrichment analysis to

identify pathways potentially affected by MPM related methylation changes.
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All statistical analyses were conducted using the open source software R (4.0.2).

4.9. Validation and replication

Sequenom MassARRAY for the DNAm signal validation and replication was used. In

detail, the EpiTYPER assay (Sequenom) uses a MALDI-TOF mass spectrometry-based

method to quantitatively assess the DNA methylation state of CpG sites of interest [34].

DNA (500 ng) was bisulfite-converted using the EZ-96 DNA Methylation Kit (Zymo

Research) with the following modifications: incubation in CT buffer for 21 cycles of 15

minutes at 55°C and 30 seconds at 95°C, elution of bisulfite-treated DNA in 100 μl of

water. The treatment converts unmethylated Cytosine into Uracil, leaving methylated

Cytosine unchanged. In this way, variations in the sequence are produced depending on

DNA methylation status of the original DNA molecule.

PCR amplification, treatment with SAP solution and Transcription/RNase A cocktails were

performed according to the protocol provided by Sequenom and the mass spectra were

analyzed by EpiTYPER analyzer (Sequenom, San Diego, CA). As the MassARRAY assay is

unable to discriminate between CpGs located at close vicinity to each other in the

sequence, the close neighboring CpGs are analyzed as “Units”, i.e. the measured

methylation level is the average of the methylation levels of the CpGs cumulatively

analyzed within the Unit. In the case of cg03546163 the measured methylation level is the

average between two CpG sites located very close (Figure S1).

The amplicon for cg03546163 (chr6:35,654,364) encompasses 196bp

(chr6:35,654,222-chr6:35,654,418 (GRCh37/hg19)) and PCR was performed on 10 ng of

converted DNA using the following primers:

-cg03546163_10FW: aggaagagagTTTTTGTTTAGGATGAATTAGTTTGG;

-cg03546163_T7RV:cagtaatacgactcactatagggagaaggctAAAAACTACAATCTTATCCAATTC

CTTT.
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5. Conclusions

Our results suggest the potential use of DNAm analysis in blood to develop non-invasive

tests for prognostic evaluation in MPM; our study is the first to demonstrate that a single

CpG in FKBP5 gene is an independent marker of prognosis in patients with MPM and is

superior to the LMR inflammation-based prognostic score. The identification of simple

and valuable prognostic markers for MPM will enable clinicians to select patients who are

most likely to benefit from aggressive therapies and avoid subjecting non-responder

patients to ineffective treatment. Moreover, epigenetic modifications such as DNAm are

potentially reversible and can open new perspectives for epigenetic therapies in MPM.

Knowledge of epigenetic changes has provided new therapeutic opportunities against

cancer. To allow better approach of cancer cell inhibitory strategies, may be useful the

understanding of molecular mechanisms that underlie cellular DNA epigenetic

alterations. In this context, we reported epigenetic deregulations in blood samples from

MPM patients in relation to OS, paving the road to both patients’ stratification and the

possible discovery of new combined therapeutic options in MPM.

Variables such as histological subtype, in previous literature have been associated with

prognostic outcome [49-52]. In this study, to achieve the highest level of statistical power,

it was not possible to stratify the analyses by histotype due the non-equal proportion of

MPM cases, but we considered the histotype for all adjustments. Studies of large

populations are needed to investigate the relationship between prognostic markers and

treatment regimens focusing on specific histological subtypes.

MPM is an aggressive tumor associated with poor outcomes, yet the best treatment

options remain controversial, in particular with regards to the role of surgery in treatment

of this disease. To address this topic, some population-based studies demonstrated the

effect of surgery on improved survival in the epithelioid group but not in biphasic or

sarcomatoid groups; Although cancer-directed surgery was used more often in epithelioid

and biphasic patients compared with sarcomatoid patients [53]. In this analysis, the

authors did not observe statistically significant differences in overall survival between
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stages for any histologic subtype. This was similar to results reported in the IASLC-IMIG

study, which did not find differences in median survival between stages for patients who

underwent any type of cancer-directed surgery [54].

The usage of Methylation alterations in clinical specimens as biomarkers could be

recognized. Non-invasively obtained, methylation-based biomarkers detected in blood

cells from cancer patients offer significant practical advantages, being promising and

dynamic prognostic markers.

Appendices: Supplementary:

Figure S1. Locations of cg03546163 (CpG2, in bold) and a second CpG site very close (CpG1, in

red), investigated by Sequenom MassARRAY. Flanking primers are underlined. The CpG sites

could not be tested individually due to MassARRAY technology constraints, but had to be tested

jointly as a single unit: the methylation level is the cumulative value of all the sites within the CpG

unit.

Institutional Review Board Statement: Ethics approval and consent to participate: The study

protocol was approved by the Ethics Committee of the Italian Institute for Genomic

Medicine (IIGM, Candiolo, Italy).
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Study3

Relationship between aging and Malignant Pleural

Mesothelioma: epigenetic clock analyses

Simple Summary: The study was focused on the investigations of the interaction between

epigenetic age acceleration measures and asbestos exposure in easily accessible white

blood cells (WBCs) between malignant pleural mesothelioma (MPM) cases and

asbestos-exposed cancer-free controls.

Abstract: Age is one of the strongest predictors of chronic disease and mortality. Aging

denotes a multitude of processes at the cellular level, and biological responses to aging

differ among people, having thus an important role when considering the relationship

with other disease-related covariates. Malignant Pleural Mesothelioma (MPM) patients are

characterized by a short overall survival time, highlighting the need for non-invasive tests

aiming at an MPM risk assessment. Three hundred asbestos-exposed subjects (163 MPM

cases and 137 cancer-free controls), from the same geographical region in Italy, were

recruited. Using two previously established methylation-based "clocks" (proposed by S.

Horvath), namely intrinsic epigenetic age acceleration (IEAA) and extrinsic epigenetic age

acceleration (EEAA), we defined biological age acceleration for each of three hundred

asbestos-exposed subjects. Asbestos exposure-related variation in age acceleration indices

and 95% confidence intervals (CIs) were estimated using multiple linear regression

models. First, we explained the relationship between asbestos exposure and disease;

EEAA showed that biological age acceleration was statistically significantly associated

with increased asbestos exposure (Estimate = 0.704, 95% CI: 0.067, 1.475, P= 0.043). Then,

statistically significant differences between cases and controls were found; considering
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interaction effect we showed the OR increase in the group with higher median values of

asbestos exposure and DNAm-aging respect to the others; finally, about 10% of the total

effect of the asbestos exposure on MPM was independently mediated by biological aging

variation (mediation effect). As a second outcome, we demonstrated that the mean of the

number of total stochastic epigenetic mutations (hypo and hyper) was higher in cases with

respect to controls. In particular, hypo-stochastic epigenetic mutations showed a mean

difference between cases and controls about three-fold higher than hyper-stochastic

epigenetic mutations. Moreover, mean stochastic epigenetic mutations increase in relation

to asbestos exposure in cases but not in controls. Lastly, the trend of stochastic epigenetic

mutations seems to be in the opposite direction stratifying by the two aging-related

measures (EEAA and IEAA).

Our results suggest the potential use of age acceleration measures from DNAm profiles in

blood as a proxy of asbestos exposure assessment. This will allow the development of

non-invasive tests for asbestos-exposed subjects with the aim to best characterize and

monitor early detection indicators in MPM.

Keywords: asbestos exposure; DNA methylation; age acceleration, malignant pleural

mesothelioma.

1. Introduction

Malignant pleural mesothelioma (MPM) is a rare (prevalence 1–9/100,000) [2] tumor

characterized by a long latency period of 20-40 years after first asbestos exposure [1,5,6].

A significant association between MPM and asbestos exposure has been reported, showing

a clear, increasing trend in the odds ratio (OR) with increasing cumulative exposure

among subjects exposed to over 10 fiber/mL-years [1].
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According to recent papers, both DNAm and genetic alterations may contribute to MPM

tumorigenesis [2-7]. Whereas the genome remains consistent throughout one’s lifetime,

factors like ageing, lifestyle, environmental exposures, and diseases can modify DNAm.

The adaptive nature of DNAm means that it can be used to link environmental factors to

the development of pathologic phenotypes such as cancers.

There is less information on the mechanisms and clinical outcomes of epigenetic

derangements in MPM [8-10]. Several studies have evaluated DNAm alterations in MM

samples [11-13], but few of them focused on DNAm alteration in blood as a circulating

marker. Fischer et al. examined serum DNAm of nine gene-specific promoters from MM

cases [14]. The identification of reliable DNAm based scores with high sensitivity and

specificity for MPM risk assessment would be a major advancement.

This study was undertaken with the goal to indagate new biomarkers for MPM risk

assessment and to determine if peripheral blood DNAm profiles, asbestos exposure values

and epigenetic age measures simultaneously analyzed have any predictive value.

The idea was to evaluate the interaction effect of asbestos exposure with epigenetic ages

measures on MPM risk. Currently, there are only one sensitive testing methods available

for the screening of asbestos-exposed individuals, who are at high risk of developing

MPM. Thus, the identification of reliable age related MPM diagnostic biomarkers in

peripheral blood might increase the biological path of MPM development and the tools

performance for detecting the disease at an early stage.

Stochastic epimutations (SEMs) that are not shared among subjects and that only partially

affect the mean methylation level of the group remain unexplored. Another aspect of this

study is to investigate the relationship between stochastic epigenetic mutations (SEMs)

and MPM with the aim to better characterize the burden between MPM cases and controls.

Interaction between asbestos exposure and SEM was evaluated to infer on the MPM odds

ratio (OR).

87



2. Results

DNA methylation (DNAm) profiles have been used to compute biological age. Using two

previously established methylation-based "clocks" (Horvath), namely intrinsic epigenetic

age acceleration (IEAA) and extrinsic epigenetic age acceleration (EEAA), we defined

biological age acceleration for each of three hundred asbestos-exposed subjects.

Strong association between asbestos exposure and MPM risk, considering dichotomous

distribution of asbestos exposure, was found (OR = 6.11, 95% CI = 3.73 | 10.20, P = 1.8 ×

10⁻12); quartile distribution of asbestos exposure was evaluated to estimate the potential

incremental association with MPM risk (1st quartile: used as reference; 2nd quartile: OR =

1.83, 95% CI = 0.93 | 3.69, P = 0.09; 3rd quartile: OR = 6.63, 95% CI = 3.30 | 13.81, P = 2.1 ×

10⁻07; 4th quartile: OR = 11.00, 95% CI = 5.26 | 24.30, P = 7.3 × 10⁻10).

DNAm-age was estimated for each subject from methylation levels in blood cells and

showed a strong correlation with chronological age (Spearman’s rank correlation rho =

0.80, p < 2.2E-16).

EEAA, which does not account for WBC composition, was significantly different between

cases and controls: EEAAcases = 0.51 [-3.35–5.75], EEAAcontrols = -0.42 [-5.04–2.57],

Wilcoxon p = 0.007, GLM effect size(se) = 2.27(0.86), p = 0.009.

EEAA showed that biological age acceleration was statistically significantly associated

with increased asbestos exposure (Estimate = 0.704, 95% CI: 0.067, 1.475, P= 0.043).

As a second outcome, we demonstrated that the mean of the number of total stochastic

epigenetic mutations (hypo and hyper) was higher in cases with respect to controls.

In particular, hypo-stochastic epigenetic mutations showed a mean difference between

cases and controls about three-fold higher than hyper-stochastic epigenetic mutations.

Moreover, mean stochastic epigenetic mutations increase in relation to asbestos exposure

in cases but not in controls. Lastly, the trend of stochastic epigenetic mutations seems to be

in the opposite direction stratifying by the two aging-related measures (EEAA and IEAA).
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2.1. Interaction Analysis

Asbestos exposure-related variation in age acceleration indices and 95% confidence

intervals (CIs) were estimated using multiple linear regression models. First, we explained

the relationship between asbestos exposure and disease (Figure 1);

EEAA showed that biological age acceleration was statistically significantly associated

with increased asbestos exposure (Estimate = 0.704, 95% CI: 0.067, 1.475, P= 0.043) (Figure

2);

than, statistically significant differences between cases and controls were found (Figure 3);

considering interaction effect we showed the OR increase in the group with higher median

values of asbestos exposure and DNAm-aging respect to the others (Figure 4);

finally, about 10% of the total effect of the asbestos exposure on MPM was independently

mediated by biological aging variation (mediation effect).

EEAA and asbestos exposure were considered as predictors of MPM risk in the interaction

model. Categorical variables (quantile information) were used considering median values.

We tested the interaction between EEAA and asbestos exposure.

The OR was estimated as the relationship between the combination of EEAA levels and

asbestos exposure quantile, and the reference (low median EEAA levels and low median

asbestos exposure levels). Age, gender, population stratification, and WBCs (monocytes,

granulocytes, natural killer, B cells, CD4+ T and CD8+ T) were included in the GLM

(family=Binomial) to adjust the interaction effect.

As shown in Table 1 high (>median) levels of EEAA and asbestos exposure refer to an OR

of 9 respect to low levels.
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Figure 1-4. Interaction chart. Asbestos exposure, EEAA and MPM were included in the path.

Table 1. Interaction between aging (EEAA) and asbestos exposure on the MPM Odds ratios.

Aging Asbestos exposure OR 95% CI P Value

(EEAA)

HIgh Low 1 -1 | 2 NS

Low HIgh 4 2 | 8 1 × 10⁻04

High High 9 4 |19 1 × 10⁻09

Reference: hyper-methylation and low asbestos exposure levels.

3. Discussion

In the present study, we used DNAm values to investigate aging in WBCs from MPM

cases and asbestos-exposed cancer-free controls from a region with a history of asbestos

exposure (Piedmont, Italy) [10] in order to improve the assessment using new

non-invasive epigenetic markers related to MPM. The identification of reliable MPM age

related biomarkers in peripheral blood might improve risk assessment. DNAm profiles

have been used as indices of biological age and the roles of epigenetic age acceleration

measures were investigated.
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Our results suggest the potential application of DNAm profiles, considering age

acceleration measures, in blood to develop non-invasive tests for asbestos-exposed

subjects. In detail, epigenetic age acceleration may play a role as a proxy of internal dose of

asbestos exposure with the aim to better estimate individual risk and possibly for early

detection of MPM.

The stochastic epigenetic mutations approach can add information at the level of

epigenetic evaluation in the context of MPM. stochastic epigenetic mutations can be used

as outcome or mediator in association models in order to better understand its

contribution to MPM development. Considering stochastic epigenetic mutations

occurrence and asbestos exposure levels may allow clinicians to better evaluate MPM risk.

3.1. Limitation of the Study

EEAA values may be a nonspecific marker related to a general, tumour-induced

inflammatory status rather than a specific MPM biomarker; further studies are therefore

needed to support our findings.

One main limitation of the functional interpretation of our results is that all our cases had

already developed MPM at recruitment: thus, our findings likely reflect disease status

rather than being markers of the dynamic processes leading to MPM onset. The lack of

MPM tissue from the same subjects also poses major constraints to the functional

interpretation of our findings.

Notwithstanding the above limitations, the discrimination between MPM cases and

asbestos-exposed cancer-free controls improved when DNAm levels were considered

together with asbestos exposure levels.

4. Material and Methods

4.1. Study Population

Study subjects are part of a wider, ongoing collaborative study, which is actively enrolling

MPM cases and cancer-free controls in the municipality of Casale Monferrato (Piedmont
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Region, Italy). This area was chosen due to its exceptionally high incidence of

mesothelioma, caused by widespread occupational and environmental asbestos exposure

originating from the Eternit asbestos-cement plant, which was operational until 1986 [15].

Additional MPM cases and cancer-free controls were recruited from other main hospitals

of the Piedmont Region (in the municipalities of Turin, Novara and Alessandria). The

ongoing collaborative study includes MPM cases diagnosed between incident MPM cases

diagnosed between 2000 and 2010 after histological and/or cytological confirmation, and

matched controls [16].

The present study included 159 MPM cases and 137 cancer-free controls from a larger

case-control study, all of whom had genetic and blood DNAm data [17], good quality

DNA at the time of the analyses, and information on asbestos exposure above the

background level, as defined in Ferrante et al. [18]. MPM cases and asbestos-exposed

cancer-free controls were matched by date of birth (±18 months) and gender. An additional

244 (140 MPM cases and 104 cancer-free controls) independent samples from the same

case-control study were included for validation/replication analyses.

Our study complies with the Declaration of Helsinki principles and conforms to ethical

requirements. All volunteers signed an informed consent form at enrollment. The study

protocol was approved by the Ethics Committee of the Italian Institute for Genomic

Medicine (IIGM, Candiolo, Italy).

4.2. Exposure Assessment

Information on occupational history and lifestyle habits were collected from all subjects

through interviewer-administered questionnaires, which were completed during

face-to-face interviews at enrollment. Job titles were coded in two ways: according to the

International Standard Classification of Occupations [18] and the Statistical Classification

of Economic Activities in the European Community.

A cumulative exposure index was computed, considering frequency, duration and

intensity of asbestos exposure. Occupational, environmental and domestic asbestos
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exposure was evaluated by an experienced occupational epidemiologist [18], and exposure

doses (fibers/mL years) were rank-transformed to remove skewness.

4.3. Batch Effect, Population Stratification and White Blood Cells estimations

An individual’s geographic origins may influence DNAm profiles, which could potentially

introduce bias. To take this into consideration, we took advantage of the available data

from our previous study, which includes a genome-wide genotyping dataset from the

same study subjects [50]. When genome-wide genotyping was used to calculate the first

PCs, they were shown to correlate with different geographic origins [19]. For each subject,

we extracted WBC subtype percentages, estimated based on genome-wide methylation

data; this method gives a quantification of the composition of leukocytes than can be

achieved by simple histological or flow cytometric assessments, with an admissible range

of variability [20].

4.4. Aging measures calculation

DNAm-age was estimated for each subject from DNAm levels on the overall sample

according to the method proposed by Horvath et al. Estimated DNAm-age was compared

with chronological age by the Spearman correlation test. Age acceleration (AA) was

calculated as the residuals of the DNAm-age estimate regressed on chronological age in

both MPM cases and cancer-free controls: positive AA suggests a biological age older than

chronological age, whereas a negative AA suggests that the individual is biologically

younger.

Two additional AA indices, intrinsic epigenetic AA (IEAA) and extrinsic epigenetic AA

(EEAA), were calculated as well. EEAA is influenced by blood cell count contribution,

whereas IEAA value is only weakly correlated with estimated measures of blood cell

counts. The two indices, estimated from DNAm data, are thus indicators of two different

cellular ageing processes, one (EEAA) dependent on and the other (IEAA) independent

from WBC count.
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4.5.  Statistical Analysis

An association test was used to analyze the mean differences (MD) in EEAA and asbestos

exposure levels between MPM cases and asbestos-exposed cancer-free controls.

Multiple regression analysis adjusted for age, gender, estimated WBCs (monocytes,

granulocytes, natural killer, B cells, CD4+ T and CD8+ T), population stratification (first 2

PCs) and technical variability (first 10 PCs) was performed. For multiple comparison tests,

a FDR p value ≤ 0.05 was considered statistically significant.

Logistic regression was used to analyze the relationship between EEAA and asbestos

exposure in MPM risk (odds ratio), adjusting for age, gender, SNP PCs and WBCs

(monocytes, granulocytes, natural killer, B cells, CD4+ T and CD8+ T) estimates. Asbestos

exposure and EEAA were classified as above-median or below-median.

MPM risk for a given EEAA level and asbestos exposure was expressed by ORij, where i

indicates the asbestos exposure (below-median or above-median) and j indicates the EEAA

(above-median or below-median).

Subjects with below-median asbestos exposure and EEAA were considered the baseline

group, and their MPM risk was coded as OR00 = 1. Interaction was analyzed in respect to

both additive and multiplicative models based on the ORs obtained by logistic regression.

Synergistic interaction (positive interaction) implies that the combined action of two

factors in an additive model is greater than the sum of their individual effects.

Antagonistic interaction, on the other hand, means that when two factors are present in an

additive model, the action of one reduces the effect of the other.

Multivariable logistic regression models were used to explore any deviations from a

multiplicative model, including asbestos exposure, EEAA, and the corresponding

interaction term (EEAA × exposure). All models were adjusted for age, gender, SNP PCs,

technical covariates and WBCs (monocytes, granulocytes, natural killer, B cells, CD4+ T

and CD8+ T) estimates. p-values < 0.05 were considered statistically significant.

All statistical analyses were conducted using the open source software R (4.0.2).
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4.5.  Stochastic epigenetic mutations

The distribution and variability of methylation levels in our population were studied for

each one of the 445,254 CpG sites using Box-and-whiskers plots in order to identify

stochastic epigenetic mutations [21]. For each probe, whenever the methylation level of

one subject differed from the rest of the population we considered the outlier sample as

epimutated for that locus. Thus, for each locus, epimutated subjects were identified as the

extreme outliers with methylation level exceeding three times interquartile ranges Q1-(3 ×

IQR) and Q3+(3 × IQR). Finally, all epimutated loci were annotated in a new data matrix

that allowed to calculate, for each subject, the total amount of epimutations and their

genomic position. The Box-and-whiskers plot analysis was conducted using the boxplot

function provided in the R car package and confirmed using the outlier function in the R

outliers package. The analysis identified genes with an enriched number of epimutated

probes (bonferroni corrected p-value < 0.05) confirming the presence of the epigenetic

alterations previously reported in the medical report.

Institutional Review Board Statement: Ethics approval and consent to participate: The study

protocol was approved by the Ethics Committee of the Italian Institute for Genomic

Medicine (IIGM, Candiolo, Italy).
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Study4

Epigenomics of Malignant Pleural Mesothelioma: a

structural equation modeling

Simple Summary: The study was focused on the investigations of the overall MPM path

including single-CpGs, asbestos exposure, epigenetic age acceleration measures in easily

accessible white blood cells (WBCs) between malignant pleural mesothelioma (MPM)

cases and asbestos-exposed cancer-free controls.

Abstract: Malignant Pleural Mesothelioma (MPM) patients are characterized by a short

overall survival time, highlighting the need for non-invasive tests aiming at an MPM risk

assessment. Three hundred asbestos-exposed subjects (163 MPM cases and 137 cancer-free

controls), from the same geographical region in Italy, were recruited. Recently, asbestos

exposure, aging, single CpGs DNA methylation (DNAm) and white blood cells (WBCs)

composition have been individually associated with Malignant Pleural Mesothelioma

(MPM). No study has shown the simultaneous effect combining all these predictors with

the aim to test the epigenomic pathway using a statistical approach. Structural equation

modeling (SEM) is a largely confirmatory, rather than exploratory, technique; It is used to

determine whether a model is valid than to find a suitable model. Asbestos exposure levels

were extracted considering a quantitative measure; DNAm profiles have been used as

single CpGs and to compute WBCs estimation and biological age measures. The SEM

showed that all ten relationships (4 four associations and 6 covariances) included in the

graph model were statistically significant. Our results suggest the potential use of a suite

of peripheral blood DNA methylation measures to better characterize the MPM biological

path. This will allow to increase the knowledge about the epigenetics contribution in MPM
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and more in detail to develop non-invasive tests for asbestos-exposed subjects with the

aim to monitor early detection indicators during the risk assessment.

Keywords: asbestos exposure; DNA methylation; SEM, Malignant Pleural Mesothelioma.

1. Introduction

Malignant Pleural Mesothelioma (MPM) patients are characterized by a short overall

survival time, highlighting the need for non-invasive tests aiming at an MPM risk

assessment. Three hundred asbestos-exposed subjects (163 MPM cases and 137 cancer-free

controls), from the same geographical region in Italy, were recruited.

Recently, asbestos exposure, aging related measures, single CpGs DNA methylation

(DNAm) and white blood cells (WBCs) composition have been individually associated

with Malignant Pleural Mesothelioma (MPM). No study has shown the simultaneous

effect combining all these predictors with the aim to test the epigenomic pathway using a

statistical approach.

Structural equation modeling (SEM) is a versatile framework that enables modeling of

complex multivariate data and multiple predictors in unison [1]. Furthermore, SEMs allow

for the evaluation of total, path-specific, direct, and indirect effects between all specified

variables [2]. SEM is a largely confirmatory, rather than exploratory, technique; it is used

to determine whether a model is valid rather than to find a suitable model. Asbestos

exposure levels were extracted considering a quantitative measure; DNAm profiles have

been used as single CpGs and to compute WBCs estimation and biological age measures.

Structural equation modeling (SEM) is a powerful, multivariate technique found

increasingly in scientific investigations to test and evaluate multivariate causal

relationships. SEMs differ from other modeling approaches as they test the direct and

indirect effects on pre-assumed causal relationships.
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SEM is a combination of two statistical methods: confirmatory factor analysis and path

analysis. Confirmatory factor analysis should be the best approach to infer causality in

medicine. Omics data can be simultaneously used with phenotypes with the goal to

extract a multitude of relationships including regressions and covariates. Traditional

approaches differ from the SEM approach in several areas: First, SEM is a highly flexible

and comprehensive methodology; Second, traditional methods specify a default model

whereas SEM requires formal specification of a model to be estimated and tested. SEM

offers no default model and places few limitations on what types of relations can be

specified. SEM model specification requires researchers to support hypotheses with theory

or research and specify relations a priori; Third, SEM is a multivariate technique

incorporating observed (measured) and unobserved variables (latent constructs) while

traditional techniques analyze only measured variables. Multiple, related equations are

solved simultaneously to determine parameter estimates with SEM methodology; Fourth,

SEM allows researchers to recognize the imperfect nature of their measures. SEM

explicitly specifies error while traditional methods assume measurement occurs without

error; Fifth, traditional analysis provides straightforward significance tests to determine

group differences, relationships between variables, or the amount of variance explained.

SEM provides no straightforward tests to determine model fit. Instead, the best strategy

for evaluating model fit is to examine multiple tests; Sixth, SEM resolves problems of

multicollinearity. Multiple measures are required to describe a latent construct

(unobserved variable). Multicollinearity cannot occur because unobserved variables

represent distinct latent constructs; Finally, a graphical language provides a convenient

and powerful way to present complex relationships in SEM. Model specification involves

formulating statements about a set of variables. A diagram, a pictorial representation of a

model, is transformed into a set of equations. The set of equations are solved

simultaneously to test model fit and estimate parameters.
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2. Results

The result of single path analysis determines if the relationships are unidirectional or

bidirectional, by using the study design characteristics; in this context, the retrospective

direction is able to adopt the specifications related to any single row. After this phase we

move to the outline of the model by determining the number and relationships of

measured and latent variables. A path diagram depicting the structural and measurement

models will guide the second phase when the focus will be on the model identification and

test, as described next.

The SEM showed that all ten relationships (Table 1) (4 four associations and six

covariances) included in the graph model were statistically significant.

Table 1. SEM analyses of MPM path.

Lhs Op Rhs Estimate SE P value 95%CI L 95%CI U

MPM ~ Asbestos exposure 0,19732 0,02686 2,05E-13 0,14467 0,24998

cg03546163 ~ Asbestos exposure -0,02973 0,00805 2,20E-04 -0,04551 -0,01396

PC-WBC ~ Asbestos exposure 0,00244 0,00084 3,49E-03 0,0008 0,00408

EEAA ~ Asbestos exposure 0,70416 0,39329 4,34E-02 0,06668 1,47500

cg03546163 ~~ MPM -0,02669 0,00401 2,67E-11 -0,03454 -0,01884

MPM ~~ PC-WBC 0,00282 0,00042 1,37E-11 0,002 0,00364

cg03546163 ~~ PC-WBC -0,00084 0,00012 2,06E-11 -0,00108 -0,00059

EEAA ~~ PC-WBC 0,02373 0,00578 4,03E-05 0,01241 0,03506

MPM ~~ EEAA 0,43976 0,18192 1,56E-02 0,0832 0,79632

cg03546163 ~~ EEAA -0,11628 0,05438 3,25E-02 -0,22287 -0,00968

SEM including all selected covariates. Stratification by the relationship as regression or covariance.

102



3. Discussion

Our insights suggest the potential use of a suite of peripheral blood DNA methylation

measures to better characterize the MPM biological path. We simultaneously analyzed i)

asbestos exposure (continuous, log-transformed to optimize the normality of the

distribution), ii) MPM risk (binomial distribution, cases-controls), iii) single-CpG DNAm

(cg03546163 in FKBP5, strongly associated with MPM risk), PC-WBCs (1st principal

component, calculated using the 6 common WBCs) and EEAA (extrinsic epigenetic age

acceleration, one of the most aging-related epigenetic measures). Conceptually, due the

study design charachteristics, asbestos exposure is the only one variable that should be

considered as a predictor in all regression between the available information. SEM results

depict the effect of asbestos exposure on MPM risk, single-CpG DNAm, PC-WBCs and

EEAA. Moving to covariance considerations, MPM risk shows correlation with single-CpG

DNAm, PC-WBCs and EEAA. Single-CpG also shows significant direct negative

correlation with PC-WBCs and EEAA; lastly, PC-WBCs show direct positive correlation

with EEAA. As per my knowledge, this study is the first to show causal relationship

between all the included information focusing on the MPM epigenetics. SEM estimated all

the coefficients in the model to be the best fit in determining the causality through direct

and indirect relationships. The outcome of the study is shown in the illustrated

diagrammatic representation (Figure 1). This study addresses gaps in knowledge

pertaining to epigenetic factors affected by asbestos exposure and its rate of change.

However, SEMs only test the associations of the assumed causal structure as specified by

the investigator. The presence or absence of arrows must be specified a priori based on

expert subject matter knowledge and assumptions. This study will increase the knowledge

about the epigenetics contribution in MPM and more in detail to develop non-invasive

tests for asbestos-exposed subjects with the aim to monitor early detection indicators

during the risk assessment.
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4. Material and Methods

Path diagram (Figure 1), on the other hand, aimed to find the causal relationship among

variables by creating a path diagram.

Figure 1. Path diagram. Asbestos exposure, EEAA, MPM, Single-CpG DNAm and PC-WBCs were

included in the path. A single-headed arrow shows the regression while a double-headed arrow

shows the covariance between the two variables.

Thanks to the previous works, I identified the MPM Research Problem developing

hypotheses about the relationships among variables that are based on theory, previous

empirical findings or both. These relationships may be direct or indirect whereby

intervening variables may mediate the effect of one variable on another.

The Two main goals in SEM are: i) to understand the patterns of correlation/covariance

among a set of variables and ii) to explain as much of their variance as possible with the
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model specified. Structural Equation modeling relies on several statistical tests to

determine the adequacy of model fit to the data.

The chi-square test indicates the amount of difference between expected and observed

covariance matrices. A chi-square value close to zero indicates little difference between the

expected and observed covariance matrices. In addition, the probability level must be

greater than 0.05 when chi-square is close to zero.

The Comparative Fit Index (CFI) is equal to the discrepancy function adjusted for sample

size. CFI ranges from 0 to 1 with a larger value indicating better model fit. Acceptable

model fit is indicated by a CFI value of 0.90 or greater.

Root Mean Square Error of Approximation (RMSEA) is related to residuals in the model.

RMSEA values range from 0 to 1 with a smaller RMSEA value indicating better model fit.

In general, acceptable model fit is indicated by an RMSEA value of 0.06 or less.

SEM was implemented to simultaneously analyze any relationship previously performed

(R package ‘lavaan’) [3].

Institutional Review Board Statement: Ethics approval and consent to participate: The study

protocol was approved by the Ethics Committee of the Italian Institute for Genomic

Medicine (IIGM, Candiolo, Italy).
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Study5

FKBP5, a modulator of stress responses involved in

Malignant Mesothelioma: the link between stress and

cancer

Simple Summary: The study reviewed the FKBP5 gene involvement in Malignant Pleural

Mesothelioma (MPM) with the aim to investigate and explain the potential link between

stress and cancer related outcomes.

Abstract: Malignant pleural mesothelioma (MPM) is a rare and aggressive neoplasm.

Stress is a well-established risk factor for a lot of disease phenotypes, including cancer. The

risk for stress-related disorders is shaped by complex interactions among multiple

environmental stressors and many genes with small individual effects on expressed

phenotypes. Asbestos exposure-related epigenetics modifications can be considered as risk

mediator and driver for MPM prognosis evaluation. Furthermore, aging-acceleration

measures should be considered as a proxy of stress-related environmental phenotype

associations. Some recent research showed that FKBP5 may be a key factor in the stress

response and that transcriptomic data can provide insight into stress-related

pathophysiology. Epigenetic activation of the FKBP5 gene has increased stress sensitivity

and the MPM risk of disease or prognosis outcomes and may be studied for potential

treatment evaluation.

Keywords: Mesothelioma, stress, FKBP5, risk assessment, survival, asbestos exposure,

aging, white blood cells
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Malignant pleural mesothelioma (MPM) is a rare tumour characterized by a long latency

period after asbestos exposure and poor survival. Due to the complexity of risk assessment

of exposed subjects, the studies focused on biological mechanisms need to be improved.

Stress related measures are involved in a multitude of disease phenotypes, including

cancer.

An important modulator of stress responses is FK506-binding protein 51 (FKBP5/FKBP51),

which, among other functions, acts as a co-chaperone that modulates glucocorticoid

receptor (GR) activity. These results suggest that FKBP5 may be a key factor in the stress

response and that transcriptomic data can provide insight into stress-related

pathophysiology [1]. A recent list of reports indicates a strong association of FKBP5

functions with several neurological diseases, including posttraumatic stress disorder

(PTSD) [2-4]. Epigenetic activation of the FKBP5 gene has increased stress sensitivity and

the risk of psychiatric disorders [5].

By modulating GR signaling, FKBP5 has the potential to modulate the actions of

glucocorticoids, hormones with pleiotropic effects that can affect essentially every body

tissue [6]. Although in psychiatry and neuroscience FKBP5 is most discussed as a

modulator of glucocorticoid signaling, it is important to highlight that it also interacts with

a host of other molecular partners, affecting several cellular processes.

However, none of the GWAS meta-analyses showed strong associated signals for this

genetic locus yet. More consistent are reports of FKBP5 × specific environmental stress

interactions altering the risk for psychiatric disorders. Furthermore, FKBP5 functions have

also been correlated with multiple other diseases and processes, including type 2 diabetes,

adipogenesis, fatty acid metabolism, and cancers [7].

In several cancers, a strong negative correlation of FKBP5 expression with severity of

disease has been observed [8-11]. Epigenetics can represent one concrete possibility to

improve the mechanical characterization of the disease with the goal of early detection and

prognosis stratification.
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DNA methylation differences in white blood cells (WBCs) between MPM cases and

asbestos-exposed cancer-free controls highlighted some interesting differences [12],

including asbestos exposure-related hypo-methylation of FKBP5 in the top marker of risk

assessment; interaction analysis showed that considering DNAm levels at FKBP5 together

with asbestos exposure levels may help to better define MPM risk for asbestos-exposed

subjects [13]; another recent paper identified hypomethylation of the same CpG in FKBP5

as a predictor of overall survival in MPM cases with better performance than traditional

inflammation-based scores such as lymphocyte-to-monocyte ratio (LMR) [14].

FKBP5 is an immunophilin and has an important role in immunoregulation and protein

folding and trafficking. It plays a role in transcriptional complexes and acts as a

co-transcription factor, along with other proteins in the FKBP family [15]. During the last

few years, The hypothesis of a possible role of FKBP5 in the development and progression

of different types of cancer has stemmed from several studies. High protein expression has

been linked to either suppression or promotion of tumor growth, depending on tumor

type and microenvironment [16-17].

FKBP5 is involved in the NF-kB and AKT signaling pathways, both of which are

implicated in tumorigenesis [18]. Notably, NF-kB appears to be frequently constitutively

activated in malignant tumors and involved in the modulation of genes linked to cell

motility, neoangiogenesis, proliferation, and programmed cell death [19]. Epigenetic

upregulation of FKBP5 could promote NF-kB activation [20]. STAT3-NFkB activity is

involved in chemoresistance in MM cells, and NFkB was shown to be constitutively active

because of asbestos-induced chronic inflammation [21]. Previous studies conducted on

various cancer types showed that upregulation of FKBP5 gene expression is associated

with drug resistance [22]. The tissue- and context-specific FKBP5 expression should be

considered when examining the consequences of FKBP5 dysregulation and when

considering FKBP5 as a candidate therapeutic target. A similar study supported this

observation by making FKBP5 an effective biomarker for sensitivity to chemotherapy;

patient responses to chemotherapy may be determined by the variation in FKBP5 levels
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[17]. One study on ovarian cancer cells lines denoted that the upregulation of FKBP5 may

increase the resistance to chemotherapeutic agents, whereas the gene silencing sensitized

ovarian cancer cells to taxol [23].

Lastly, the risk for stress-related disorders is shaped by complex interactions among

multiple environmental stressors and many genes with small individual effects on

expressed phenotypes. Elucidating these complex interactions at a systems level is a

challenging task but may contribute to improving the holistic understanding of

stress-related disorders. Furthermore, aging-related epigenetics measures should show

interesting associations between stress-related phenotypes and disease to better

characterize clusters of exposed subjects. This review further supports the notion that

stress can affect cancer outcomes in exposed subjects, perhaps by interfering with neural

mechanisms involved in controlling the oncogenesis pathway for early detection,

prognosis, and treatment.
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CONCLUSION

Although the mechanisms of carcinogenesis in MPM are incompletely understood, chronic

inflammation is critically involved in the pathogenesis of MPM. It is well known that

systemic inflammatory response plays an important role in cancer progression. Generally

cases showed higher values for Granulocytes and lower values for Monocytes, B cells,

Natural Killer cells CD4+ T, CD8+ T, Naïve CD4T and Naïve CD8T compared to controls.

Moreover, functional changes in WBCs were related to asbestos-induced immune system

deregulation and autoimmune response asbestos related antigenic overstimulation,

putatively linked to MPM occurrence. Indeed, in our study, the observed reduction of

estimated CD4+ and CD8+ T lymphocytes in MPM cases suggests a weaker adaptive

immune system and is compatible with the possible occurrence of functional changes in

cellular subpopulations in MPM.

This population-based case-control study was conducted to improve knowledge on the

relationship between MPM and quantitative exposure to asbestos, based on the evidence

arising from the area of Casale Monferrato (Italy). MPM strongly denoted association with

asbestos. Only a limited number of studies on MPM had previously been carried out in

general populations and comparison of results was made difficult by differences in the

assessment of exposure and in criteria of analysis.

In recent years, there is a growing interest in DNAm profile changes as possible diagnostic

biomarkers in cancer research. Altered DNA methylation is frequently observed in cancer,

and DNAm profiles of specific genes were already proposed as potential tools for cancer

detection, risk prediction, and prognosis. In this context, we used novel insights and

statistical methodologies with the aim to improve the knowledge related to the early

detection in MPM. Thus, the identification of reliable MPM diagnostic biomarkers in

peripheral blood might provide the tool for detecting the disease at a more treatable stage.
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In the present project, we used a whole genome microarray approach to investigate

DNA-methylation in white blood cells (WBCs) from MPM cases and healthy controls,

aiming at the identification of a panel of differentially methylated CpG markers indicative

of MPM in asbestos exposed subjects. Cases denoted hypomethylation detected in FKBP5

gene. Adding this statistically significant single-CpG DNAm to only asbestos exposure

risk factor, operating characteristic (ROC) curves showed a significant increase in MPM

discrimination. If confirmed by functional studies, our findings of DMe in WBCs suggest

that DNAm changes in the immune system components may play a role in the oncogenic

process triggered by asbestos exposure.

Exposure to asbestos fibers has been shown to be associated with aberrant patterns of

DNA methylation at single CpG in FKBP5 in peripheral blood of exposed individuals.

Concerning the relationship of epigenetic age acceleration measures and MPM, cases show

high levels compared to controls in extrinsic epigenetic age acceleration (EEAA), while no

statistically significant differences on intrinsic epigenetic age acceleration (IEAA) were

found. Based on the interaction analysis, it appears that the effect of asbestos exposure on

MPM depends on age acceleration measures. The mediation analysis identified that part

of the total effect was mediated by differential single-CpG methylation in the FKBP5; one

potential explanation for these findings, restricting to the level of DNA methylation at

same single CpG in FKBP5, is that the association between DNA methylation and MPM

might just reflect the known causal effect of asbestos exposure on MPM, as DNA

methylation is a strong biomarker for asbestos exposure. Lastly structural equation

modeling (SEM) was implemented to simultaneously analyze any prior relationship. DNA

methylation plays an important role in the etiology of cancer, through the use of mediation

analysis.

Although several treatment options have been delivered to patients with MPM, the

median survival time is approximately 12 months. It is well known that systemic

inflammatory response plays an important role in cancer progression. Chronic

inflammation is critically involved in the pathogenesis of MPM as a potential result of
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asbestos exposure. Systemic inflammation can predict clinically meaningful outcomes,

such as overall survival (OS) and response to systemic treatment. Considering WBCs,

lymphocytes act as tumor suppressors by inducing cytotoxic cell death and inhibiting

tumor cell proliferation and migration, then the important role of monocytes in cancer has

recently been uncovered. More recently, some studies demonstrated that

lymphocyte-to-monocyte ratio (LMR) is associated with prognosis in several cancers. In

our cohort, the multivariate analysis showed that the single CpG DNA methylation at

FKBP5 gene and LMR were independently associated with OS.

Our results suggest the potential use of DNA methylation profiles, considering age

acceleration measures and LMR, in blood to develop non-invasive tests for MPM detection

in asbestos-exposed subjects. Using advanced statistical modeling, as for example the

SEM,  can improve the knowledge about complex system biology of MPM.

High-throughput technologies have revolutionized medical research. The advent of

genotyping arrays enabled large-scale genome-wide association studies and methods for

examining global transcript levels, which gave rise to the field of "integrative genetics".

Other omics technologies, such as proteomics and metabolomics, are now often

incorporated into the methodology of biological researchers. As compared to studies of a

single omics type, multi-omics offers the opportunity to understand the flow of

information that underlies disease. Such complementary effects and synergistic

interactions between omic layers in the life course can only be captured by integrative

study of multiple molecular layers. Building upon the success in single-omics discovery

research, population studies started adopting the multi-omics approach to better

understanding the molecular function and disease etiology. Multi-omics approaches

integrate data obtained from different omic levels to understand their interrelation and

combined influence on the disease processes.

The identification of simple and valuable prognostic markers for MPM will enable

clinicians to select patients who are most likely to benefit from intensive therapy, and

avoid subjecting unsuitable candidates to futile treatment. In addition to its involvement
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in the pathogenesis of cancer-related cachexia, systemic inflammation can predict

clinically meaningful outcomes, such as overall survival and response to systemic

treatment. Knowledge of epigenetics has provided new therapeutic opportunities against

cancer. Here, we summarize the current knowledge pertaining to epigenetic deregulations

(restricting to peripheral blood DNA methylation) in MPM and present different useful

models for estimating the occurrence of malignant mesothelioma (MM) after asbestos

exposure and predicting potential treatment options.
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