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Abstract

In many fields of computer science, matrix and tensor decomposition techniques

are at the bases of many applications that rely on multi-dimensional datasets for

implementing knowledge discovery tasks. Unfortunately, a major shortcoming of

state-of-the-art matrix and tensor analyses is that, despite their effectiveness when

the data is certain, these operations become difficult to apply, or altogether inap-

plicable, in presence of uncertainty in the data, a circumstance common to many

real-world scenarios. Thus, this thesis proposes a way to address this issue by

extending known techniques for matrix and tensor factorization in order to deal

with uncertain data, here modeled as intervals. Working with interval-valued data,

however, presents many challenges, since many algebraic operations that form the

building blocks of the factorization process, as well as the properties that make

these procedures useful for knowledge discovery, cannot be easily extended from

their scalar counterparts, and often require some approximation (including, though

it is not only the case, for keeping computational costs manageable). These chal-

lenges notwithstanding, our proposed techniques proved to be reasonably effective,

and are supported by a thorough experimental validation.
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Chapter 1

Introduction

In this era of big data, increasingly large amounts of information need to be han-

dled and analyzed, presenting us with numerous challenges. In order to address

these issues, and extract useful information from the rapidly growing volumes of

data, knowledge discovery approaches have been highly investigated, from regres-

sion and factor analysis, to dimensionality reduction and clustering algorithms,

over numerous computer science disciplines, such as natural language and image

processing, data mining, and information retrieval. Matrix and tensor factorization

techniques, in particular, have emerged through the years as successful tools for

discovering underlying patterns in the data.

We refer to this hidden information, which cannot be directly observed but is

rather implicit in the data, as latent semantics, a concept derived from natural lan-

guage processing that refers to the high-level concepts that can be inferred (through

a mathematical model, usually based on some form of factorization) from the anal-

ysis of the terms that appear in a set of documents.

The main idea behind the factorization process is the interpretation of a matrix

(but the concept can also be extended to tensors) as the mapping of a set of objects

(the rows of the matrix) in the space identified by a set of features (the columns),

such that each element of the matrix (i.e, the value that that object assumes for

that particular feature) represents the projection of that object on the dimension

identified by that feature. The factorization process helps identifying a new set

of features, initially hidden (and, as such, often referred to as forming a latent

15



16 Chapter 1. Introduction

space) that provide a better representation of the objects, which helps identifying

the patterns among them that can facilitate their interpretation and analysis.

Unfortunately, a major shortcoming of matrix and tensor factorization based

analyses is that, despite their effectiveness when the data is certain (i.e., scalar),

these operations cannot be straightforwardly applied to those scenarios where data

need to be represented as ranges (or intervals) of possible values. Such applications

may include:

Summarized data: Matrix (or tensor) decomposition is an expensive process, there-

fore, analyzing reduced or summarized datasets can ideally be more efficient,

especially for implementing interactive applications [6, 7], which require

a quick response. In order to do so, several observations can be grouped

(or collapsed) into a single interval-valued observation, representing data as

value ranges. While it may sometimes be possible to associate statistical

meanings to such intervals, so that probabilistic matrix factorization tech-

niques (such as [42]) could be leveraged, this approach may be infeasible

or ineffective due to the lack of appropriate statistical representations and/or

computational cost.

Conflicting data: When a dataset reflects knowledge integrated from different

data sources, it might not be feasible to assign a single scalar value to each

observation, while a representation as an interval of possible values might

be more appropriate [7]. Moreover, when analyzing such integrated data,

the resulting intervals may not have a statistical interpretation, given their

different origin.

Anonymized data: Various privacy-preserving data publishing algorithms, replace

exact scalar values with less specific (though semantically consistent) ranges

or intervals, such as those obtained by means of the generalization process

[51]. Since the resulting intervals do not represent any specific data distribu-

tion, and intentionally so, probabilistic techniques for data analysis are not

appropriate for this kind datasets.

Imprecise data: Finally, observations made in the real-world may be subject to

imprecision due to environmental factors or inherent limitations in the sen-

sory devices.

Extending state-of-the-art factorization techniques in order to handle interval-
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valued matrices and tensors presents numerous challenges, since many of the basic

algebraic operations needed to implement this processes are not as straightforward

for intervals as they are for scalars. This thesis tries to address these challenges,

presenting and evaluating the effectiveness of original decomposition techniques,

while also trying to avoid an excessive increase in the computational complexity

of the problem.

Specifically, the present work is organized in two main parts, respectively de-

voted to matrices and tensors, divided as follows:

• I Matrix Decomposition

– Chapter 2 is intended to help the reader familiarizing with the notation

adopted in the text, while also introducing the main algebraic concepts

that will be relied on in order to handle interval-valued matrix and ten-

sor operations.

– Chapter 3 presents a brief overview of the available literature and state

of the art regarding matrix factorization techniques, and how the prob-

lem of dealing with interval-valued data has been tackled so far.

– Chapter 4 addresses the problem of extending known factorization

techniques to interval-valued matrices and presents our proposed ap-

proach to solve this task.

– Chapter 5 provides an experimental validation, under diverse scenar-

ios, of the factorization techniques introduced in the previous chapter.

• II Tensor Decomposition

– Chapter 6 presents a survey on the main tensor decomposition ap-

proaches investigated in the literature, and how these processes are af-

fected by uncertainty in the data.

– Chapter 7 broadens the study presented for matrices in Chapter 4 to

tensors, illustrating and validating our approach on the interval-valued

factorization problem.

• Chapter 8 draws the conclusions on the present work and outlines some

prospective points for the future work of this research.

• Finally, Appendix A, at the end of the dissertation, provides the pseudocode

for the main algorithms presented in the previous chapters.
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Part I

Matrix Decomposition

19





Chapter 2

Background and notation

This chapter briefly formalizes the mathematical notation and tools that will be

adopted in the reminder of the thesis.

2.1 Interval Algebra Notation

The first aspects that need to be formalized regard the notation of interval-

valued data and how the algebraic operations are extended to this domain. These

will form the building blocks for the more complex operations involving matrices,

such as matrix multiplication.

2.1.1 Interval representation

In the course of the thesis, an interval value, represented by the notation ä, is

defined as a pair of scalars

ä = [a∗,a∗], with a∗,a∗ ∈R and a∗ ≤ a∗,

where a∗ represents the minimum value and a∗ the maximum value of the in-

terval ä. The values a∗ and a∗, i.e., the endpoints of the interval, are considered

both included in the interval, as well as all the values between them.

It is to be noticed that if a∗ = a∗, then the interval ä is actually a scalar.

To represent interval-valued matrices, a similar notation is adopted, following

21



22 Chapter 2. Background and notation

the convention of denoting matrices by boldface capital letters. More in detail, an

interval-valued matrix Ä is defined as

Ä = [A∗,A∗], with A∗,A∗ ∈Rn×m and A∗ ≤ A∗,

where the inequality A∗ ≤ A∗ applies to every pair of elements in the interval-

valued matrix, namely, A∗[i, j] ≤ A∗[i, j] ∀i, j1.

2.1.2 Interval range

Given an interval ä, its range (or diameter) is defined as the real number ob-

tained by the absolute difference between the interval endpoints:

range(ä) = range([a∗,a∗]) = |a∗−a∗| ∈R

2.1.3 Interval algebraic operations

Interval arithmetic, or interval computation, has been studied by mathemati-

cians as an approach to put bounds on rounding and measurement errors, thus

developing numerical methods that yield as reliable results as possible [50].

The basic idea is to represent an uncertain value as a range of possibilities.

More in detail, when dealing with an uncertain value x, it is possible to work with

the two ends of the interval [a∗,a∗], if known, that contains x. In this sense, the

variable x can assume any value between a∗ and a∗, or be one of them.

Moreover, a given function f , which applied to x would also give an uncertain

result, in interval arithmetic produces an interval, [b∗,b∗], that covers the range of

all the possible values for f (x), given all x ∈ [a∗,a∗].

A generic operator 〈op〉 on two intervals [a∗,a∗] and [b∗,b∗] is defined as

[a∗,a∗]〈op〉[b∗,b∗] = {a〈op〉b|a ∈ [a∗,a∗]∧b ∈ [b∗,b∗]}

1In the course of the thesis, the notation A[i, j], or ai, j, if there is no ambiguity between the indices
and other subscripts, is adopted to indicate the element at i-th row and j-th column of a matrix A.
To indicate an entire row or column, the notation will be A[i,:] and A[:, j] respectively. In a similar
fashion, the i-th element of a vector x is denoted as x[i], or xi.
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provided that a〈op〉b is well-defined for all a ∈ [a∗,a∗] and b ∈ [b∗,b∗].

The four basic arithmetic operations can be expressed in terms of the combina-

tions of the endpoints of the intervals,

[a∗,a∗]〈op〉[b∗,b∗] = [min(a∗〈op〉b∗,a∗〈op〉b∗,a∗〈op〉b∗,a∗〈op〉b∗),

max(a∗〈op〉b∗,a∗〈op〉b∗,a∗〈op〉b∗,a∗〈op〉b∗)]

and, more in detail, they can be defined as follows:

Addition: [a∗,a∗]+ [b∗,b∗] = [a∗+ b∗,a∗+ b∗],

Subtraction: [a∗,a∗]− [b∗,b∗] = [a∗−b∗,a∗−b∗],

Multiplication: [a∗,a∗] · [b∗,b∗] = [min(a∗ ·b∗,a∗ ·b∗,a∗ ·b∗,a∗ ·b∗),

max(a∗ ·b∗,a∗ ·b∗,a∗ ·b∗,a∗ ·b∗)],

Multiplication with a scalar2: c · [a∗,a∗] = [min(c ·a∗,c ·a∗),

max(c ·a∗,c ·a∗)],

Division: [a∗,a∗]
[b∗,b∗]

= [a∗,a∗] · 1
[b∗,b∗]

= [a∗,a∗] ·
[

1
b∗ , 1

b∗

]
, with 0 /∈ [b∗,b∗].

Note that, given the above definition of interval algebraic operations, more

complex interval-valued operations, such as interval-valued matrix algebra, can

be defined by replacing scalar addition, subtraction, multiplication and division

operations with their interval-valued counterparts. For clarity, in the remainder of

the thesis, the interval-product will be denoted as ⊗.

2if the scalar c is positive, the operation can be further simplified as c · [a∗,a∗] = [c ·a∗,c ·a∗].
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Chapter 3

State of the art

This chapter provides an introduction to the main topics covered in the thesis,

presenting an overview of how the matrix factorization techniques have been ad-

dressed in the literature.

3.1 Matrix Factorization

In the field of linear algebra, many matrix decomposition techniques have been

devised, each finding use among a particular class of problems. In computer sci-

ence, in particular, these techniques have been adopted in solving problems like

feature selection and dimensionality reduction [59], which usually involve some

(often linear) transformation of the vector space containing the data to help focus

on a few features (or combinations of features) that best discriminate the data in

a given corpus, or that can provide a good approximation of the original data, or

that can help removing the redundancy in the data, thus allowing a more efficient

storage.

Among the most adopted of these techniques, the Karhunen-Loeve Transform,

or KLT (also known as the Principal Component Analysis, or PCA [1]), and the

Singular Value Decomposition, or SVD [13], rely on the eigendecomposition to

operate a transformation of the data from one vector space to a different one, pos-

sibly with a fewer number of dimensions, with the resulting basis vectors referred

to as the latent variables [48] or the latent semantics of the data [13].

25



26 Chapter 3. State of the art

These techniques have the key property that the vectors selected as the di-

mensions of the new space are mutually orthogonal and, hence, linearly indepen-

dent, thus guaranteeing no redundancy among the dimensions. However, since the

Karhunen-Loeve Transform and the Singular Value Decomposition may result in

negative values, Non-negative Matrix Factorization techniques (NMF) [4, 33] have

been thoroughly investigated in the literature, since the non-negativity constraints

on the factor matrices enable probabilistic interpretation of the results and discov-

ery of generative models. One key disadvantage of the NMF is that it may be costly

to obtain, making it difficult to be applied in applications where data is dynamic.

However, several approaches have been proposed to leverage the redundancies in

the data (Group Incremental NMF, or GI-NMF, [9]) or to efficiently handle data

evolving over time (Evolutionary NMF, or eNMF, [54]).

On a different note, in many real world applications (such as collaborative fil-

tering for recommender systems or image analysis), data are usually characterized

by a high degree of sparsity (due to missing entries) or may suffer from the presence

of numerous outliers (due to noise or corruption in an image). Since these issues

are not well addressed by classical PCA approaches, many new techniques have

been proposed in recent years, such as Probabilistic Matrix Factorization (PMF

[42]) or Robust Bilinear Factorization (RBF [45]).

Below, four common matrix factorization strategies are briefly outlined: eigen-

decomposition, Singular Value Decomposition (SVD [13]), Non-negative Matrix

Factorization (NMF [4, 33]), and Probabilistic Matrix Factorization (PMF [42]).

In the remainder of the thesis, these techniques would be relied on as the starting

point for the extension of the factorization analysis to interval-valued matrices, as

described in Chapter 4.

3.1.1 Eigendecomposition of a square matrix

In linear algebra, the eigendecomposition (sometimes called spectral decom-

position) is the factorization of a square matrix into a canonical form, whereby the

matrix is represented in terms of its eigenvalues and eigenvectors. More in detail,

a non-zero vector v ∈Rn is called an eigenvector of a square matrix A ∈Rn×n if it

satisfies the linear equation (referred to as the eigenvalue equation)

Av = λv
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where the scalar λ represents the eigenvalue corresponding to the eigenvector v. As

the matrix-vector product of A and v can be interpreted as a linear transformation

for the vector v, the eigenvalue equation above simply states that the eigenvectors

are those vectors that the linear transformation A merely elongates or shrinks, being

equivalent to multiplying the magnitude of such vectors by a scalar, namely the

eigenvalue λ , without affecting their direction.

The eigendecomposition of a square matrix, along with the definition of eigen-

values and eigenvectors, plays a prominent role in many linear algebra applications,

including being at the basis of many factorization approaches, as the following sec-

tions illustrate.

In the reminder of the thesis, we denote the eigendecomposition af a square

matrix A ∈Rn×n as

EIG(A,k)→ [V,Λ] ,

where Λ is a k× k diagonal matrix where the elements on the diagonal are the k

largest (in magnitude) eigenvalues of A and V is an n× k matrix whose columns

are the corresponding eigenvectors.

3.1.2 Singular Value Decomposition (SVD)

The Singular Value Decomposition [47], or SVD for short, is a factorization

method for reducing a matrix to its constituent parts by means of eigenvectors

and eigenvalues extraction. More in detail, given a real matrix A ∈Rn×m of rank

r ≤min(n,m), it can be expressed as the product of three factor matrices:

A = UΣVT

where U ∈Rn×r, V ∈Rm×r, Σ ∈Rr×r, and

Σ = diag(σ1,σ2, . . . ,σr)

is a non-negative diagonal matrix, whose elements, also called the singular values

of A, are arranged in descending order of magnitude, and correspond to the roots

of the eigenvalues of both AAT ∈Rn×n and ATA ∈Rm×m, i.e.,

σi =
√

λ i, ∀i = 1, . . . ,r.
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The factor matrices

U = (u1 u2 · · · ur) and V = (v1 v2 · · · vr)

are two orthonormal1 matrices such that the columns of U, also called the left

singular vectors of A, are the eigenvectors of AAT, while the columns of V, also

called the right singular vectors of A, are the eigenvectors of ATA (see Figure 3.1).

Since the columns of the factor matrices U and V are orthonormal, it holds that

UTU = In and VTV = Im.

A𝑛×𝑚

U𝑛×𝑟

Σ𝑟×𝑟 V𝑚×𝑟 T

× ×

Diagonal Matrix

Eigenvectors of AAT Eigenvectors of ATA

Figure 3.1: Singular Value Decomposition (SVD) of a matrix A. The colors in U
(columns) and VT (rows) highlight the corresponding left and right singular vectors
of A. The fading colors on the diagonal of Σ represent the decrease in magnitude
of the singular values of A (non-diagonal entries are zero).

3.1.3 Non-negative Matrix Factorization (NMF)

Non-negative Matrix Factorization [4, 33], or NMF for short, identifies a group

of algorithms in linear algebra where a matrix A that has no negative values is

factorized into (usually) two factor matrices, U and V, with the property that both

factor matrices also have no negative elements. This non-negativity property makes

the resulting matrices more suitable for numerous applications, however, since the

1More precisely, this is true only for a full SVD, with U ∈Rn×n and V ∈Rm×m; in a rank SVD,
U and V are only columnwise orthonormal, however, for the purpose of this thesis, the distinction is
not crucial.
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factorization problem is not exactly solvable in general, it is commonly approxi-

mated numerically.

More in detail, given a non-negative matrix A ∈Rn×m
+ of rank r ≤ min(n,m),

it is possible to find two non-negative matrices U ∈Rn×r
+ and V ∈Rm×r

+ such that

the following L2 loss function is minimized:

LNMF =
∥∥A−UVT∥∥

F ,

where ‖·‖F denotes the Frobenius norm (also referred to as Euclidean norm),

which, for a given matrix A ∈Rn×m, is defined as the square root of the sum of the

squares of its elements:

‖A‖F =

√
n

∑
i=1

m

∑
j=1

(ai, j)
2

The approximated solutions for U and V are commonly found by means of

iterative update rules, such as

U[i, j]← U[i, j]

(
AVT)

[i, j](
UVVT)

[i, j]

,

V[i, j]← V[i, j]

(
UTA

)
[i, j](

UTUV
)
[i, j]

,

which are proved to reach a local minimum for the loss function above.

Once a good approximation of U and V has been found, the factorization of A
can be expressed as

A' UVT.

3.1.4 Probabilistic Matrix Factorization (PMF)

Probabilistic Matrix Factorization [42], or PMF for short, is a modern factoriza-

tion technique, widely adopted for collaborative filtering problems (i.e., modeling

and making predictions about user preferences over a set of items), which has the

advantage of scaling linearly with the number of observations and of performing

well on very sparse and imbalanced datasets, where conventional approaches have

particular trouble in making accurate predictions for users who have expressed very

few ratings.
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More in detail, let R∈Rn×m be a user-item ratings matrix of rank r≤min(n,m),

with 1 ≤ i ≤ n (number of users) and 1 ≤ j ≤ m (number of items), where R[i, j]

represents the rating that user i assigned to item j. Let then matrices U ∈Rn×r and

V ∈ Rm×r represent the user-specific and item-specific latent feature vectors re-

spectively. Assuming that the entries in R are drawn from a Gaussian distribution,

the conditional distribution over the observed ratings can be defined as

p
(

R[i, j]|U,V,σ2
)
=

n

∏
i=1

m

∏
j=1

[
N (R[i, j]|U[i,:](V[ j,:])

T,σ2)
]Ii j

,

where

• N
(
x|µ ,σ2

)
is the probability density function of a Gaussian distribution

with mean µ and variance σ2;

• Ii j is the indicator function that is equal to 1 if R[i, j] is not null (i.e., if user i

rated item j), and equal to 0 otherwise;

• U[i,:] and V[ j,:] are row vectors of U and V, such that R[i, j] ' U[i,:](V[ j,:])
T.

Moreover, zero-mean spherical Gaussian priors are placed on U and V, i.e.,

each latent feature vector is drawn from a multi-variate Gaussian distribution with

mean 0 and precision multiple of the identity matrix I:

p(U|σ2
U) =

n

∏
i=1
N (U[i,:]|0,σ2

UI),

p(V|σ2
V) =

m

∏
j=1
N (V[ j,:]|0,σ2

VI).

The factor matrices, U and V, can then be computed by minimizing the loss func-

tion

LPMF =
∥∥R−UVT∥∥

F +λU ‖U‖F +λV ‖V‖F ,

where λU = σ2

σ2
U

, λV = σ2

σ2
V

, and ‖·‖F denotes the Frobenius norm.

A local minimum of the loss function LPMF can be found via gradient descent

on U[i,:] and
(

V[ j,:]

)T
:

∂LPMF

∂U[i,:]
=

m

∑
j=1

(
U[i,:]

(
V[ j,:]

)T
−R[i, j]

)
V[ j,:]+λUU[i,:],
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∂LPMF

∂

(
V[ j,:]

)T =
n

∑
i=1

(
U[i,:]

(
V[ j,:]

)T
−R[i, j]

)(
U[i,:]

)T
+λV

(
V[ j,:]

)T
,

and once U and V reach a good approximation, the unknown ratings in R can be

estimated by computing

R̃[i, j] = U[i,:]

(
V[ j,:]

)T
.

3.2 Analysis of interval-valued data

In the real world, data rarely come in simple scalar form: often, the variables

that need to be analyzed may take complex forms, including sets, histograms, vec-

tors, intervals, or probability distributions [2, 37, 15, 36]. This is true, for ex-

ample, when data are aggregated [16] (i.e., collected from multiple sources) or

anonymized [51] (e.g., when exact information is deliberately generalized for pri-

vacy protection).

This new kind of data, referred to as symbolic [16], since they cannot be re-

duced to numbers without loosing much information, required the development of

several data analysis tools, including regression [56, 20], canonical analysis [32],

and multi-dimensional scaling [21]. In particular, given the popularity of latent

semantic extraction techniques in data analysis, several interval-valued PCA al-

gorithms have been proposed [3, 55, 18, 17], most of which leverage the specific

statistical and geometric meanings of principal components of a system of vari-

ables.

3.2.1 The interval eigendecomposition problem

An interesting approach that we took into consideration as a benchmark in our

analysis is the one proposed by the authors in [14, 44], which address the issue of

extending the eigendecomposition problem to interval-valued matrices by finding

interval bounds for the eigenvalues and eigenvectors of a symmetric interval-valued

matrix. More specifically, given an n×n interval-valued matrix defined as

Ä = [AC−∆A,AC +∆A] ,
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with AC being the center scalar matrix of Ä and ∆A its radius, such that they are

both symmetrical (i.e., AC = AT
C and ∆A = ∆T

A), the objective is to find the sets

Λ̈i =
[
λi(A) | A ∈ Ä

]
and Ẍi =

[
xi(A) | A ∈ Ä

]
, i = 1, . . . ,n,

where λi(A) and xi(A) denote the i-th eigenvalue and, respectively, i-th eigenvec-

tor of any given matrix A whose elements are included in the intervals specified in

Ä, with A = AC +δA and |δA| ≤ ∆A. Seeking lower and upper bounds for the sets

Λ̈i and Ẍi, with i = 1, . . . ,n, would thus provide a bounding for, respectively, the

eigenvalues and eigenvectors of Ä.

More in detail, the authors demonstrate in [14] that, if Ä= [AC−∆A,AC +∆A]

is a real symmetric interval-valued matrix, then the eigenvalue λi of A, with A ∈ Ä
and i = 1, . . . ,n, ranges over the interval

λ̈i = [λi∗,λ ∗i ] = [λi(AC−Si∆ASi),λi(AC +Si∆ASi)] ,

where Si = diag (sgn(xi1), . . . , sgn(xin)) is a diagonal matrix whose elements in the

diagonal represent the signs of the eigenvector xi of AC.

To then find a bounding for each component of the eigenvector xi, the authors

introduce in [44] a new numerical technique to solve the task as a linear parametric

programming problem, performing a line search over a parameter λi ∈ [λi∗,λ ∗i ],

under the constraint

−∆A |xi| ≤ (λiI−SiACSi) ≤ ∆A |xi| ,

where I is the n×n unit matrix and λi∗ ≤ λi ≤ λ ∗i .

While the approach proposed by the mentioned authors is very useful to pro-

vide bounds for the eigenvalues and eigenvectors of an interval-valued matrix, it

fails to capture the inherent latent semantics underlaying the data, since the end-

points defining the attained bounds for the eigenvectors’ components cannot be

directly interpreted as the basis of a new vector space. The approach illustrated in

the remainder of the thesis offers a solution to this problem by looking at a way to

at least approximate a suitable basis for a vector space where to represent the latent

information of interval-valued data, relying on an interval-valued latent semantic

alignment process, which can be integrated in common matrix factorization tech-

niques (as the ones reported in Section 3.2), allowing to extend the analysis that
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rely on these facilities to non scalar data (see Chapter 4).

3.2.2 Interval-valued NMF and PMF techniques

The authors in [46] have proposed a way for extending the NMF and PMF

techniques to interval-valued data, in order to resolve alignment approximation

problems in face analysis and to improve rating prediction accuracy in collaborative

filtering.

Interval-valued NMF. The approach taken by the authors to extended the NMF

technique to interval-valued data (they refer to their approach as I-NMF) is done

by extending the loss function and the iterative update rules illustrated in Section

Section 3.1.3 in order to deal with the interval-valued matrices M̈ = [M∗,M∗] and

V̈ = [V∗,V∗] (the other factor matrix, U, is treated as scalar):

LI-NMF =
∥∥M∗−UVT

∗
∥∥

F +
∥∥M∗−UV∗T

∥∥
F ,

where U≥ 0, V∗ ≥ 0 and V∗ ≥ 0. The iterative update rules to minimize this loss

function are:

U[i, j]← U[i, j]

(
M∗VT

∗ +M∗V∗T
)
[i, j](

UV∗VT
∗ +UV∗V∗T

)
[i, j]

,

V∗[i, j]← V∗[i, j]

(
UTM∗

)
[i, j](

UTUV∗
)
[i, j]

,

V∗[i, j]← V∗[i, j]

(
UTM∗

)
[i, j](

UTUV∗
)
[i, j]

.

Once the update rules reach a minimum, an approximation of the interval-valued

input matrix M̈ can be evaluated as

∼
M̈ =

[
M̃∗,M̃

∗]
=
[
U(V∗)T,U(V∗)T] .

Interval-valued PMF. Also in [46], the authors present an Interval-valued PMF

technique (referred to as I-PMF) which has the purpose of improving the task of

predicting the missing entries of a user-item rating matrix drawing on the idea that

an interval-valued rating system would be better suited to capture the preferences

expressed by each user.
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More in detail, taking a scalar rating matrix R ∈Rn×m, where 1≤ i≤ n (num-

ber of users), 1≤ j≤m (number of items) and R[i, j] represents the rating that user i

assigned to item j, an interval-valued matrix M̈ = [M∗,M∗], with M∗,M∗ ∈Rn×m,

is generated by expanding each scalar rating R[i, j] to a range

M̈[i, j] =
[
R[i, j]−δi, j,R[i, j]+ δi, j

]
,

where the radius δi, j is evaluated in terms of the standard deviation over the set of

all the ratings in R that are related to R[i, j] (i.e., user i’s ratings on different items

than j, or the ratings for item j from users other than i)2:

δi, j := α · std
({

R[i′, j′]|(i′ = i∨ j′ = j)∧ (i′, j′) ∈ (i, j)
})

,

where α ∈R+ is a multiplicative scale coefficient.

Then, the factorization of the newly obtained interval-valued matrix M̈ is pro-

cessed in terms of a scalar factor matrix U ∈ Rn×r, representing the user-specific

latent feature vectors, and an interval-valued factor matrix V̈ = [V∗,V∗], with

V∗,V∗ ∈Rm×r, representing the item-specific latent feature vectors.

To evaluate these factor matrices, they first of all proceed with the introduction

of additional constraints on the loss function (see equation 3.1.4 in Section 3.1.4)

in order to deal with the newly defined interval-valued entries:

LI-PMF =
∥∥M∗−UVT

∗
∥∥

F +
∥∥∥M∗−UV∗T

∥∥∥
F
+λU ‖U‖F +λV (‖V∗‖F + ‖V∗‖F) .

Given this loss formulation, a local minimum can be sought by applying a
gradient descent in U[i,:], V∗[ j,:] and V ∗[ j,:] using the following partial derivatives:

∂LI-PMF

∂U[i,:]
=

m

∑
j=1

(
U[i,:]

(
V∗[ j,:]

)T
−M∗[i, j]

)
V∗[ j,:]+

(
U[i,:]

(
V∗[ j,:]

)T
−M∗[i, j]

)
V∗[ j,:]+λUU[i,:],

∂LPMF

∂

(
V∗[ j,:]

)T =
n

∑
i=1

(
U[i,:]

(
V∗[ j,:]

)T
−R[i, j]

)(
U[i,:]

)T
+λV

(
V∗[ j,:]

)T
,

∂LPMF

∂

(
V∗[ j,:]

)T =
n

∑
i=1

(
U[i,:]

(
V∗[ j,:]

)T
−R[i, j]

)(
U[i,:]

)T
+λV

(
V∗[ j,:]

)T
.

2The idea behind this approach is that the higher the variance for a user i’s ratings on different
items, or for the ratings of an item j from different users, the larger the interval-valued entry M̈[i, j]
should be.
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Finally, once U, V∗ and V∗ reach a good approximation, the unknown ratings

in R can be estimated by computing

R̃[i, j] =
U[i,:]VT

∗[:, j]+U[i,:]V∗T[:, j]

2
. (3.1)
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Chapter 4

Matrix factorization with
interval-valued data

This chapter provides a detailed description of how the factorization techniques

illustrated in Section 3.1 can be extended for dealing with interval valued matrices,

and it is based on the work by our research team, described in [34].

4.1 Interval-valued Singular Value Decomposition

As we saw in Section 3.1.2, a scalar-valued matrix M∈Rn×m can be factorized,

by means of the Singular Value Decomposition (SVD), as

M = UΣVT.

Since, by definition, the factor matrices U and V are orthonormal, a common

interpretation of the SVD is to regard the columns of V as basis vectors of a new

vector space, also referred to as latent semantic space. More in detail, the columns

of V identify a new space to map the data stored in M (represented by its row

vectors) in such a way that the new dimensions, also referred to as principal com-

ponents, are oriented in the directions of maximum variability of the data, in de-

creasing order of variance going from one dimension to the other (see Figure 4.1).

As an example, Figure 4.2 shows a scalar-valued latent semantic space super-

imposed on the original bidimensional space where the entries of a given matrix

37
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Figure 4.1: Principal components in a bidimensional space

M ∈ Rn×2 (where an entry i is denoted as the i-th row vector M[i,:]) are mapped.

As we can see, a generic entry M[i,:] is projected on the original space by means

of the components M[i,1] and M[i,2], i.e., the corresponding values on the columns

of M. The same entry, once M is decomposed (with target rank 2 in this case)

as U ∈ Rn×2, Σ = diag(σ1,σ2) ∈ R2×2 and V ∈ R2×2, can be projected on the

newly found vector space (described by the columns of V), where each component

is identified by the stretched unit vectors σ1U[i,1] and σ2U[i,2].

M[:,1]

M[:,2]

M[𝑖,:]

M[𝑖,1]

M[𝑖,2]

Figure 4.2: Scalar latent semantic space

In light of these considerations, the definition of SVD reported in Section 3.1.2

can readily be extended for dealing with interval-valued matrices, although with
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some caveats. Given an interval-valued matrix M̈ ∈ Rn×m and a target rank r ≤
min(n,m), we can define the interval-valued SVD as the factorization

M̈→
[
Ü, Σ̈, V̈

]
, (4.1)

where Ü ∈Rn×r, Σ̈ ∈Rr×r and V̈ ∈Rm×r are (potentially) interval-valued factor

matrices, and the columns of Ü and V̈ are quasi-orthonormal, i.e., it holds that

ÜT⊗ Ü' In and V̈T⊗ V̈' Im. (4.2)

4.1.1 Imprecision of the Interval-valued SVD

Since the orthonormality constraints defined above cannot be completely en-

forced, a perfectly reversible decomposition by means of the factor matrices from

equation 4.1 can never be reached, resulting in an inherent imprecision in the pro-

cess. The reason for this unavoidable relaxation in the orthogonality constraints is

rooted in how the interval multiplication is defined (see Section 2.1.3), and can be

formalized by the following theorem.

Theorem 1. Given two interval-valued vectors of the same length, ẍ, ÿ ∈Rn, their

interval dot product (here denoted as ẍ� ÿ) is scalar-valued only if all the compo-

nents of ẍ and ÿ are themselves scalar-valued, or if either one of the two vectors is

zero (i.e., ẍ = 0∨ ÿ = 0).

Proof. The algebraic definition of dot product between two vectors can be readily

extended to the interval case as follows:

ẍ� ÿ =
n

∑
i=1

ẍi⊗ ÿi,

which, by definition of interval multiplication, ⊗, can be expressed as

ẍ� ÿ =
n

∑
i=1

[
min

(
x∗[i]y∗[i],x∗[i]y

∗
[i],x

∗
[i]y∗[i],x

∗
[i]y
∗
[i]

)
,max

(
x∗[i]y∗[i],x∗[i]y

∗
[i],x

∗
[i]y∗[i],x

∗
[i]y
∗
[i]

)]
=

=

[
n

∑
i=1

min
(

x∗[i]y∗[i],x∗[i]y
∗
[i],x

∗
[i]y∗[i],x

∗
[i]y
∗
[i]

)
,

n

∑
i=1

max
(

x∗[i]y∗[i],x∗[i]y
∗
[i],x

∗
[i]y∗[i],x

∗
[i]y
∗
[i]

)]
.

Since the product of two non-empty, bounded, real intervals, is itself an interval
(see Theorem 2 in [25]), the only way for the overall interval dot product to be a
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scalar, i.e., for the equality

n

∑
i=1

min
(

x∗[i]y∗[i],x∗[i]y
∗
[i],x

∗
[i]y∗[i],x

∗
[i]y
∗
[i]

)
=

n

∑
i=1

max
(

x∗[i]y∗[i],x∗[i]y
∗
[i],x

∗
[i]y∗[i],x

∗
[i]y
∗
[i]

)
to hold, is if (x∗[i] = x∗[i])∧ (y∗[i] = y∗[i]), ∀i = 1, . . . ,n, or if ẍ = 0∨ ÿ = 0, as we

wanted to prove.

Going back to the equations 4.2, we can rewrite the interval-valued matrix

products (and their relation to the identity matrices) as the following interval dot

products:

a) Ü[:,i]� Ü[:,i] ' 1, ∀i = 1, . . . ,r

b) V̈[:,i]� V̈[:,i] ' 1, ∀i = 1, . . . ,r

c) Ü[:,i]� Ü[:, j]' 0, ∀i, j = 1, . . . ,r, i 6= j

d) V̈[:,i]� V̈[:, j]' 0, ∀i, j = 1, . . . ,r, i 6= j

These mean that, for the interval factor matrices Ü and V̈ to be orthonormal,

the equations above should all be exactly equal to either 1 or 0; however, Theorem

1 makes us conclude that:

• Equations (a) and (b) cannot be exact, because for the interval dot product

to be equivalent to a non-zero scalar, also the columns of Ü and V̈ should be

scalar, which is not the case.

• Equations (c) and (d) cannot be exact, because for the interval dot product

to be zero, at least one of the columns of Ü and V̈ involved in the products

should have length 0, which again cannot be the case, since, being the factor

matrices quasi-orthonormal, their columns approximate the unit vector, i.e.,

a vector of length 1.

Thus, we have to conclude that Ü and V̈ can never be exactly orthonormal, and

that an inherent imprecision in the decomposition is inevitable.

Figure 4.3 and 4.4 help visualize the inherent imprecision of an interval-valued

latent space. In the first figure, we can first of all see how a data entry M̈[i,:] from

an interval-valued matrix M̈ = [M∗,M∗], where M∗,M∗ ∈Rn×2, is mapped in the

original space (bidimensional in the example): while a scalar entry is represented as

a point (see Figure 4.2), here, instead, an interval-valued entry identifies a region



4.1. Interval-valued Singular Value Decomposition 41

of the space (a rectangle in this bidimensional example, a high-dimensional box

in general) bounded by the projections of the endpoints of each interval-valued

component (i.e., the columns of M̈ on the i-th row). In the same figure, the basis

vectors of the latent semantic space, V̈[:,1] and V̈[:,2], are represented: as we can see,

each vector of the interval-valued basis is actually identified by a pair of vectors,

one for the minimum values in the interval-valued components (the columns of

V∗), one for the maximum values (the columns of V∗). It is easy to see, then, why

the orthonormality constraint regarding V̈ needs to be relaxed, and where a first

cause of approximation comes from.

M[:,1]

M[:,2]

ሷM[𝑖,:]

M∗[𝑖,2]

M[𝑖,2]
∗

M∗[𝑖,1] M[𝑖,1]
∗

Figure 4.3: Interval-valued latent semantic space

Figure 4.4 shows how the interval-valued data entry M̈[i,:] maps in the newly

found latent semantic space, identified by the column vectors of V̈ (approximated

in figure as an orthonormal basis to help the visualization): the projection of the

data entry onto each basis vectors, V̈[:,1] and V̈[:,2], is again represented by an inter-

val, this time identified by the products Ü[i,1]⊗ Σ̈[i,1] and Ü[i,2]⊗ Σ̈[i,2], respectively.

Since the interval multiplication is a costly operation (especially when matrices are

involved), it usually requires to be approximated, further decreasing the accuracy

of the decomposition process.

4.1.2 Accuracy measure for the interval-valued SVD

Given the inherent imprecision in the decomposition process, the recombina-

tion of the factor matrices (by means of the interval-valued matrix product) will
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ሷV[:,1]
ሷU 𝑖,1 ⨂ ሷΣ[1,1] ∗

ሷV[:,2]

ሷU 𝑖,1 ⨂ ሷΣ[1,1]
∗

ሷU 𝑖,2 ⨂ ሷΣ[2,2] ∗

ሷU 𝑖,2 ⨂ ሷΣ[2,2]
∗

ሷM[𝑖,:]

Figure 4.4: Mapping of an object in an interval-valued latent semantic space

produce an approximation
∼
M̈ of the original matrix M̈, such that

∼
M̈= Ü⊗ Σ̈⊗ V̈T,

where
∼
M̈=

[
M̃∗,M̃

∗]
and

∼
M̈' M̈. The discrepancy between

∼
M̈ and M̈, can be

measured by means of the normalized Frobenius norm of the difference of their

endpoint matrices:

∆
(

M∗,M̃∗
)
=

∥∥∥M∗−M̃∗
∥∥∥

F
‖M∗‖F

,

∆
(

M∗,M̃
∗)

=

∥∥∥M∗−M̃
∗∥∥∥

F
‖M∗‖F

.

These values can then be converted into accuracies, and, for ease of interpreta-

tion, clipped between 0 and 1:

Θ
(

M∗,M̃∗
)
= max

[
0,1−∆

(
M∗,M̃∗

)]
,

Θ
(

M∗,M̃
∗)

= max
[
0,1−∆

(
M∗,M̃

∗)]
.
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Finally, these separate measures of accuracy can be combined in a single one

through their harmonic mean:

ΘHM

(
M̈,

∼
M̈
)
=


2·Θ(M∗,M̃∗)·Θ(M∗,M̃

∗
)

Θ(M∗,M̃∗)+Θ(M∗,M̃
∗
)

, if Θ
(

M∗,M̃∗
)
+Θ

(
M∗,M̃

∗) 6= 0.

0, otherwise.

4.2 Interval Latent Semantic Alignment (ILSA)

As described in section 4.1.1, one inherent form of imprecision in the inter-

val SVD process (equation 4.1) is due to the impossibility of finding perfectly

orthonormal factor matrices, Ü and V̈. But there is also another aspect to take

into consideration: if we consider the endpoints (scalar) matrices M∗ and M∗ that

form M̈, their factorization can be done independently (through a standard SVD),

obtaining, respectively

M∗ = U∗Σ∗VT
∗ and M∗ = U∗Σ∗V∗T.

We could then be tempted to complete the interval decomposition process by

directly recombining the minimum and maximum factor matrices:

Ü = [U∗,U∗] , Σ̈ = [Σ∗,Σ∗] , and V̈ = [V∗,V∗] ,

but this approach suffers from three major issues:

1. Since the latent components in the factor matrices U∗ and V∗ (as well as in

U∗ and V∗) are arranged according to the magnitude of the relative singular

values (in descending order) in Σ∗ (respectively Σ∗), there is no guarantee

that the singular vectors that express the same concept in the minimum and

maximum matrices will end up in the same position, as the related singular

values may end up in different places in the ordering. Figure 4.5 illustrates

this issue, showing how some of the column vectors (whose latent semantics

is color coded) in U∗ and U∗ (and, likewise, in V∗ and V∗) may be mis-

matched.

2. Moreover, any two given latent components, v∗i and v∗i , that are (approxi-

mately) collinear, may still be oriented in the opposite direction (in general,

the orientation of the singular vectors is not relevant for the decomposition,
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only their direction).

3. There is also no guarantee that the endpoints in [U∗,U∗], [Σ∗,Σ∗] and [V∗,V∗]
would form valid intervals, namely that U∗[i, j]≤U∗[i, j], V∗[i, j]≤V∗[i, j] ∀i, j and

σ∗i ≤ σ∗i ∀i.

M∗

U∗

Σ∗ V∗
T

× ×

M∗

Σ∗ V∗T

× ×

U∗

Figure 4.5: Misaligned latent semantic components: after an independent factor-
ization of M∗ and M∗, the singular vectors expressing the same concepts (high-
lighted with the same colors in the factor matrices) need to be semantically aligned.

To solve this issues, we can first of all take into consideration an alternative

(albeit equivalent) way to represent the SVD of a matrix M ∈ Rn×m of rank r ≤
min(n,m), namely by means of the outer product, ◦, between the singular (column)

vectors in U = (u1 u2 · · · ur) and V = (v1 v2 · · · vr), scaled by the corresponding

singular values Σ = diag(σ1,σ2, . . . ,σr):

A = UΣVT =
r

∑
i=1

σi ·ui ◦vi

This corresponds to a summation of r rank-1 matrices (see Figure 4.6), where,
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since the addition is commutative, the order of the terms is irrelevant. Thanks to

this property, we can address point 1 in the list above by formulating a latent se-

mantic alignment problem, which would match minimum and maximum vectors,

V∗ and V∗, according to their common semantic, without compromising the in-

dependent reconstructions results, thus forming a coherent (though approximated)

interval-valued latent space.

The main idea behind this approach is that the factor matrices V∗ and V∗ (but

the same is also true for U∗ and U∗) represent two different sets of latent seman-

tics corresponding to the minimum and maximum matrices M∗ and M∗, respec-

tively; yet, since they are derived from the same interval-valued input matrix, M̈,

we would expect that the singular vectors corresponding to a related latent seman-

tics would be relatively similar to each other. In other words, if v∗ and v∗ are two

singular vectors corresponding to a related latent semantics, we expect that v∗' v∗.
The latent semantic alignment problem can be formalized as follows:

Problem 1 (Optimal Min-Max Vector Alignment). Given two sets of unit vectors

V∗ = {v∗1,v∗2, . . . ,v∗r} and V ∗ = {v∗1,v∗2, . . . ,v∗r}, and given a cost function be-

tween any two vectors, x and y, defined as 1− |cos(x,y)|, our goal is to find a

mapping µ = {µ1, µ2, . . . , µr} (where µi = 〈µ∗i, µ∗i 〉) among the vectors in V∗ and

V ∗, that minimizes the cumulative cost function

r

∑
i=1

1−
∣∣∣cos(v∗µ∗i ,v

∗
µ∗i
)
∣∣∣ .

This is an instance of the linear assignment problem [5], and can be solved

using one of the many algorithms in the literature, such as the Jonker-Volgenant

formulation [28], which finds an optimal solution in O(r3) time.

= + + … +M𝑛×𝑚

u1

σ1 v1

u2

σ2 v2

u𝑟

σ𝑟 v𝑟

σ1 ∙ u1○v1 σ2 ∙ u2○v2 σ𝑟 ∙ u𝑟○v𝑟

Figure 4.6: SVD as a summation of rank-1 matrices
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The purpose of the mapping is to match the pairs of minimum and maximum

latent components (i.e., the columns of V∗ and V∗) that are as aligned as possible,

namely finding the pairs of vectors such that the cosine of the angle between them

is as close as possible to 1 (in other words, minimizing their cosine distance).

More in detail, we are interested in finding those latent components that are as

collinear as possible, even if oriented in the opposite direction (hence the absolute

value after evaluating the cosine between the two vectors). Once a mapping µ has

been found, for any 1 ≤ i ≤ r such that cos(v∗µ∗i ,v∗µ∗i ) is negative, we can then

effectively align their directions, multiplying v∗i (as well as u∗i , to balance the SVD

equation1) by −1, so that both v∗i and v∗i will have the same orientation, solving

the second issue raised in the list above.

To solve the third issue, and finally validate the interval-valued decomposition

process, we replace the single entries of the factor matrices that do not lead to a

valid interval with their average, compromising a bit on local accuracy (i.e., how

accurately the independent SVDs of M∗ and M∗ could be reversed) for the general

validity of the process:

U∗[i, j] = U∗[i, j] =
U∗[i, j]+U∗[i, j]

2
, ∀i, j | U∗[i, j] > U∗[i, j],

V∗[i, j] = V∗[i, j] =
V∗[i, j]+V∗[i, j]

2
, ∀i, j | V∗[i, j] > V∗[i, j],

σ∗i = σ
∗
i =

σ∗i +σ∗i
2

, ∀i | σ∗i > σ
∗
i .

Figure 4.7 shows how the remapping improves the alignment of the latent com-

ponents (i.e., the columns of V∗ and V∗) of an interval-valued matrix M̈. More in

detail, in (a) is reported the absolute cosine distance between each pair 〈v∗i,v∗i 〉, and

we can see how this metric drops (b) once the remapping is applied.The graphs in

figure are obtained by evaluating the pairwise cosine distances over 1000 randomly

generated sample matrices (with n= 250 and m= 40) decomposed with target rank

r = 20, since in general many factorization-based applications work with low rank

1It is a property of the Singular Valued Decomposition that, for every i = 1, . . . ,k,

σi ·ui ·vT
i ≡ σi · (−ui) · (−vT

i ).
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values (nevertheless, the results are similar also with a full-rank decomposition).

1
−
co
s(
v ∗
𝑖,
v 𝑖∗
)

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

index i of singular vector

(a) Before vector remapping
1
−
co
s(
v ∗
𝑖,
v 𝑖∗
)

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

index i of singular vector

(b) After vector remapping

Figure 4.7: Effects of the Interval Latent Semantic Alignment (ILSA) on the latent
components of an interval-valued matrix

For the experiments that generated the graphs in figure, the cost function has

been evaluated considering the absolute value of the vectors cosine (thus limiting

the function between 0 and 1), in order to avoid, in the (a) case, to take into account

the error resulting from the orientation misalignment of the vectors, while focus-

ing the attention on the improvement resulting in (b) just from the semantic-based

remapping. In a similar way, the correction of the non-valid interval entries by

averaging has not been performed for the (b) case, since it would misrepresent the

results by causing a further improvement simply for the fact that the vectors would

appear closer just for having more components in common (namely the ones re-

placed by their average).

The graphs also show how the alignment is better for the first latent com-

ponents (corresponding to high-magnitude singular values), while it consistently

drops moving along the vectors. This is a positive thing, considering that the con-

tribution of the later dimensions (corresponding to low-magnitude singular values)

tends in general to be small, and can be dropped with minimal loss of information.

4.3 Alternative decomposition options

As we saw in the previous sections, a decomposition of an interval-valued ma-

trix M̈ is possible, but it comes with a few drawbacks. Moreover, having interval-

valued factor matrices, Ü, Σ̈ and V̈, may not be advisable in all contexts, in particu-

lar regarding the non orthogonality of singular vectors, which could be challenging

to handle in some situations more than others. Different applications, in fact, might
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have different requirements in this terms, some favoring generality over precision,

according to the desired outcome. Taking these aspects into account, we have con-

sidered three distinct application scenarios:

4.3.1 Decomposition Target (a): interval-valued Ü, Σ̈ and V̈

In this most general option, all three factor matrices are treated as interval-

valued, and no particular constraints are enforced. More in detail, after the inde-

pendent decomposition of M∗ and M∗, the ILSA procedure (Section 4.2) is applied

to guarantee that the latent semantic components are correctly matched and aligned

in the minimum and maximum factor matrices, and that all the entries in the three

interval-valued factor matrices are actually valid intervals.

4.3.2 Decomposition Target (b): scalar U and V, interval-valued Σ̈

As stated above, some applications may have issues with the fact that interval-

valued singular vectors (i.e., the columns of Ü and V̈) cannot be orthonormal, since

it is difficult to interpret them as the alternative bases of a vector space. The pur-

pose of this strategy is to provide a set of scalar factor matrices, U and V, as close

as possible to being orthonormal, while capturing (at least part of) the underlying

interval information in an interval-valued Σ̈. Intuitively, this would provide alter-

native basis vectors (although approximated) for the rows and columns of the input

matrix M̈, and an interval-valued magnitude for each basis vector (captured by the

corresponding singular value).

More in detail, an additional set of steps can be added to the procedure de-

scribed for option (a), to obtain U and V as a scalar approximation of Ü and V̈
and to (at least) guarantee their columns to be unit vectors, i.e., of having L2-norm

equal to 1 (a property that cannot even be defined for an interval valued vector).

The first step consists in replacing all the interval-valued entries in Ü and V̈
with the average of their endpoints, thus obtaining the scalar matrices U and V,

such that, ∀ j = 1, . . . ,r,

U[i, j] =
U∗[i, j]+U∗[i, j]

2
, ∀i = 1, . . . ,n, (4.3)

V[i, j] =
V∗[i, j]+V∗[i, j]

2
, ∀i = 1, . . . ,m. (4.4)
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Then, we can evaluate the L2-norms of their columns, namely, ∀ j = 1, . . . ,r,

wU
j =

∥∥∥U[:, j]

∥∥∥
2
=

√
n

∑
i=1

(
U[i, j]

)2
,

wV
j =

∥∥∥V[:, j]

∥∥∥
2
=

√
m

∑
i=1

(
V[i, j]

)2
,

and use these weights to normalize the factor matrices U and V, i.e., ∀ j = 1, . . . ,r,

U[i, j] =
U[i, j]

wU
j

, ∀i = 1, . . . ,n,

V[i, j] =
V[i, j]

wV
j

, ∀i = 1, . . . ,m.

Moreover, since, by definition, it holds that, ∀ j = 1, . . . ,r,

σi ·ui ◦vi ≡ σi ·
(
‖ui‖2 ·

ui

‖ui‖2

)
◦
(
‖vi‖2 ·

vi

‖vi‖2

)
≡ (σi · ‖ui‖2 · ‖vi‖2) ·

ui

‖ui‖2
◦ vi

‖vi‖2
,

the normalizing factors in equations 4.3 and 4.4 can also be used to update the

interval-valued singular values in the diagonal of Σ̈, i.e., ∀ j = 1, . . . ,r,

σ̈ j = wU
j ·wV

j ⊗ σ̈ j =

wU
j ·wV

j ·σ j, if σ̈ j was actually scalar1.[
wU

j ·wV
j ·σ∗ j,wU

j ·wV
j ·σ∗j

]
, otherwise2.

4.3.3 Decomposition Target (c): scalar U, Σ and V

This last option is intended for those applications that require all matrices, U,

Σ and V, to be scalar, for example in order to be compatible with algorithms and

tools that assume scalar-valued factor matrices to support recommendations. The

approach follows the same steps of option (b), finding a normalization of matrices

1Namely, if the interval had been replace by the average of its endpoints, if they were in the wrong
ordering.

2Note that, since the norm of a vector is by definition always positive, the endpoints in the interval
are scaled, but they keep the same ordering.
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U and V by means of the column weights wU
j and wV

j . This time, also the singular

values in the diagonal of Σ̈ are averaged, as well as rescaled, resulting in a scalar

valued matrix Σ = diag(σ1,σ2, . . . ,σr), such that, ∀ j = 1, . . . ,r,

σ j = wU
j ·wV

j ·
σ∗ j +σ∗j

2

4.4 Interval SVD (ISVD) implementation

In this section, a detailed description is presented of how the Singular Value

Decomposition extension to interval-valued matrices can be implemented, illus-

trating a set of five approaches incrementally building on each other, starting from

a very naive way of approximating the data as scalar (by simply averaging all the

interval-valued entries) and then applying standard factorization algorithms, to in-

creasingly more complex methods which rely on our proposed Interval Latent Se-

mantic Alignment (ILSA, Section 4.2) to properly factorize the data while preserv-

ing the interval information. The set of factor matrices resulting from the various

decomposition methods, each with its own set of properties, can then be recom-

bined to reach a more or less faithful representation of the original data, yielding a

level of accuracy that can then be evaluated, in order to validate and compare each

approach. Figure 4.8 outlines the basic steps of the decomposition and reconstruc-

tion process for each strategy, whose details are described in the following.

4.4.1 ISVD0, a naive approach: Average and Decompose

As we formalized in Section 4.1.1, an exact decomposition of an interval-

valued matrix, M̈ = [M∗,M∗], can never be reached, only an approximation. Thus,

since some level of approximation is inevitable, a first naive approach that can be

considered (and also serve as a reference) for solving the interval SVD problem is

to simplify the input interval-valued matrix into a scalar matrix by replacing each

interval entry with its average, namely, by defining a matrix Mavg ∈ Rn×m such

that, ∀i = 1, . . . ,n and ∀ j = 1, . . . ,m,

Mavg[i, j] =
M∗[i, j]+M∗[i, j]

2
.
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Preprocessing

Decomposition

Alignment

Renormalization

ISVD0 ISVD1 ISVD2 ISVD3

None

None

None

SVD M∗, 𝑟 → U∗,Σ∗,V∗

SVD M∗, 𝑟 → U∗,Σ∗,V∗

Align V∗ and V∗ according to their 

cosine distance, then adjust the 

rank-order and directions of related 

U∗, U
∗ and the rank order of Σ∗, Σ

∗

Uavg =
U∗+U∗

2
,  Vavg =

V∗+V∗

2
Normalize Uavg, Vavg in L2-norm 

and update Σ∗ and Σ∗. 

b) c)

Uavg =
U∗+U∗

2
, Σavg =

Σ∗+Σ∗

2
, Vavg =

V∗+V∗

2
Normalize Uavg and Vavg in L2-norm

and update Σavg

ሷA = A∗,A
∗ = ሷMT ⊗ ሷM

EIG A∗, 𝑟 → V∗,Σ∗
2

EIG A∗, 𝑟 → V∗,Σ∗2

U∗ =M∗ ∙ V∗
T −1

∙ Σ∗
−1

U∗ =M∗ ∙ V∗T
−1

∙ Σ∗ −1

ሷU ≃ ሷM⊗ ሷVT −1
⊗ ሷΣ−1

෩M∗ = ෩M∗ = ෩Mavg = Uavg ∙ Σavg ∙ Vavg
T

Reconstruction

a)

෩ሷM = ሷU⊗ ሷΣ⊗ ሷVT
෩M∗ = Uavg ∙ Σ∗ ∙ Vavg

T

෩M∗ = Uavg ∙ Σ
∗ ∙ Vavg

T

෩M∗ = ෩M∗ = ෩Mavg =

= Uavg ∙ Σavg ∙ Vavg
T

𝑟 : target rank

Mavg =
(M∗ +M∗)

2

Align V∗ and V∗ according to their 

cosine distance, then adjust the 

rank-order and directions of related 

U∗, U
∗ and the rank order of Σ∗, Σ

∗

Align V∗ and V∗ according to their cosine distance, and then 

adjust the rank-order of related Σ∗, Σ
∗

ISVD4

ሷU ≃ ሷM⊗ ሷVT −1
⊗ ሷΣ−1

ሷV ≃ ሷΣ−1⊗ ሷU−1⊗ ሷM
T

None

Restoring Intervals

Restoring Intervals None None None

None

Correct min-max order in ሷΣ :

Replace min-max misordered elements in ሷΣ with their average.

Correct min-max order in ሷU and ሷV:

Replace min-max misordered elements in ሷU and ሷV with their average.

Correct min-max order in ෩M∗ and ෩M∗:

Replace min-max misordered elements 

in ෩M∗ and ෩M∗ with their average.

None

SVD Mavg, 𝑟 → Uavg,Σavg,Vavg

Figure 4.8: ISVD decomposition strategies for interval-valued input data



52 Chapter 4. Matrix factorization with interval-valued data

We can then approximate the interval singular value decomposition of M̈ (with a

given target rank r) by applying the standard SVD to the scalar matrix Mavg, i.e.,

ISVD0(M̈,r) ' SVD(Mavg,r).

This approach (outlined in the column labeled ISVD0 in Figure 4.8) results in all

scalar-valued factor matrices, U, V (both orthonormal) and Σ, so that it ends up

being compatible only with the decomposition target-c application scenario, pre-

sented in Section 4.3.3.

Of course, an evident drawback of this naive strategy is that all the interval

information in the original data gets lost in the process, but it may prove to be the

only option, for example, in any given situation when the orthonormality of the

latent components is paramount.

4.4.2 ISVD1: Independently Decompose and Align

This second strategy (outlined in the column labeled ISVD1 in Figure 4.8)

formalizes the idea, introduced in Section 4.2, of approaching the decomposition

of an interval-valued matrix M̈ = [M∗,M∗] by independently applying the standard

SVD (with the same target rank r) to the scalar matrices that identify its endpoints

(i.e., M∗ and M∗), such that

SVD(M∗,r) = U∗Σ∗VT
∗ and SVD(M∗,r) = U∗Σ∗V∗T.

Once we obtain the interval-valued factor matrices, we then apply the Inter-

val Latent Semantic Alignment procedure (ILSA, Section 4.2) to match the latent

components (i.e., the columns of V∗ and V∗) expressing the same semantics (pair-

ing, where needed, the orientations of the singular vectors that are approximately

collinear, but which point in opposite directions). In this way, we find a new rank-

order for the columns of V∗ and V∗ that is then used to also rearrange the columns

of U∗ and U∗, as well as the elements on the diagonals of Σ∗ and Σ∗.

Then, the interval-valued factor matrices can be formalized as Ü = [U∗,U∗],
Σ̈ = [Σ∗,Σ∗] and V̈ = [V∗,V∗] and finally validated by replacing the endpoints of

the entries that do not form valid intervals with their average (as also described

in Section 4.2). This last step is actually related to the intended decomposition
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target: option ISVD1-a (Section 4.3.1), meant for applications that call for all three

factor matrices to be interval-valued, would require a correction for all Ü, Σ̈ and

V̈; options ISVD1-b (Section 4.3.2), which leads to scalar-valued factor matrices,

Uavg and Vavg, would require the correction to be applied only to Σ̈, since the

averaging to obtain Uavg and Vavg already makes up for the non-valid interval-

valued entries in Ü and V̈, respectively; finally, option ISVD1-c (Section 4.3.3),

which results in all scalar-valued factor matrices, Uavg, Σavg and Vavg, does not

require any correction at all, since, again, the correction is implicit in the averaging

process.

4.4.3 ISVD2: Decompose, Solve, Align

The ISVD1 algorithm described in the previous section first splits the interval-

valued input matrix M̈ into its (scalar-valued) minimum and maximum entries, M∗
and M∗, decomposes them independently by means of the standard SVD, and then

applies the ILSA procedure to match the latent components, providing in output

the interval-valued factor matrices Ü, Σ̈ and V̈.

A way to improve this strategy (as outlined in the column labeled ISVD2 in

Figure 4.8) can be derived from the definition of the standard SVD reported in

Section 3.1.2, in particular considering that, when M is a scalar-valued matrix and

M = UΣVT is its singular value decomposition, it holds that:

• the columns of U, also called the left singular vectors of matrix M, are the

eigenvectors of the matrix MMT ∈Rn×n;

• the columns of V, or the right singular vectors of M, are the eigenvectors of

the MTM ∈Rm×m;

• the diagonal entries of Σ, also known as the singular values of M, are the

square roots of the eigenvalues of both MMT and MTM.

Thus, a more principled way to seek the SVD of an interval-valued matrix M̈
would be to first compute an n× n interval-valued matrix, Ä = M̈T⊗ M̈, through

interval-valued matrix multiplication (discussed in Section 2.1) and then, by means

of the eigendecomposition of this matrix, obtain the Σ̈
2 and V̈ matrices2.

2Alternatively, we could get Ü, instead of V̈, by means of the eigendecomposition of M̈⊗M̈T
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Eigendecomposition of an interval-valued matrix, Ä

The problem of extending the eigendecomposition (defined in Section 3.1.1) to

interval-valued matrices has been tackled by the linear algebra community under

various approaches. As we reported in Section 3.2.1, the authors in [14, 44] tackle

this problem by looking for interval bounds for the eigenvectors and the eigenval-

ues, by means of linear-programming based algorithms.

What we are interested in here is a more general solution, actually seeking

interval-valued eigenvectors (and the corresponding interval-valued eigenvalues)

that could form a consistent vector space where the latent information of the interval-

valued data can be represented. Specifically, we look for a solution to the following

eigenvalue equation:

Ä⊗ v̈ = λ̈ ⊗ v̈

Let us assume, for simplicity, that Ä= [A∗,A∗] is a 3×3 interval-valued square

matrix

Ä =

[a∗,a
∗] [b∗,b∗] [c∗,c∗]

[d∗,d∗] [e∗,e∗] [ f∗, f ∗]

[g∗,g∗] [h∗,h∗] [i∗, i∗]

 ,

λ̈ = [λ∗,λ ∗] be an interval-valued eigenvalue of A and

v̈ =

[x∗,x
∗]

[y∗,y∗]

[z∗,z∗]

 ,

be the corresponding interval-valued eigenvector. The eigenvalue equation can

then be rewritten as[a∗,a
∗] [b∗,b∗] [c∗,c∗]

[d∗,d∗] [e∗,e∗] [ f∗, f ∗]

[g∗,g∗] [h∗,h∗] [i∗, i∗]

⊗
[x∗,x

∗]

[y∗,y∗]

[z∗,z∗]

= [λ∗,λ ∗]⊗

[x∗,x
∗]

[y∗,y∗]

[z∗,z∗]

 .

Unfortunately, finding a solution for a linear system of equations like this is not

at all straightforward, but we can at least try to find an approximation assuming,
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for starters, that the eigenvector v̈ is actually scalar, i.e.,

v =

x

y

z

 ,

so that the eigenvalue equation can be formulated as[a∗,a
∗] [b∗,b∗] [c∗,c∗]

[d∗,d∗] [e∗,e∗] [ f∗, f ∗]

[g∗,g∗] [h∗,h∗] [i∗, i∗]

⊗
x

y

z

= [λ∗,λ ∗]⊗

x

y

z

 .

If we now assume that all the components of v, as well as the endpoints of

λ̈ , are non-negative, by applying interval-valued algebra (in particular, the scalar-

interval multiplication reported in Section 2.1.3) and simple matrix algebra, the

above equality can be rewritten as[a∗x+ b∗y+ c∗z, a∗x+ b∗y+ c∗z]

[d∗x+ e∗y+ f∗z, d∗x+ e∗y+ f ∗z]

[g∗x+ h∗y+ i∗z, g∗x+ h∗y+ i∗z]

=

[λ∗x, λ ∗x]

[λ∗y, λ ∗y]

[λ∗z, λ ∗z]


which can then be easily split into a minimum and maximum components:a∗x+ b∗y+ c∗z

d∗x+ e∗y+ f∗z

g∗x+ h∗y+ i∗z

=

λ∗x

λ∗y

λ∗z


a∗x+ b∗y+ c∗z

d∗x+ e∗y+ f ∗z

g∗x+ h∗y+ i∗z

=

λ ∗x

λ ∗y

λ ∗z

 .

In other words, to obtain an approximation of the eigendecomposition of the

original interval-valued matrix Ä, we could seek the independent eigendecomposi-

tions of the matrices A∗ and A∗, as

A∗v = λ∗v

and

A∗v = λ
∗v
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where

A∗ =

a∗ b∗ c∗
d∗ e∗ f∗
g∗ h∗ i∗

 and A∗ =

a∗ b∗ c∗

d∗ e∗ f ∗

g∗ h∗ i∗

 .

The problem is that, in general, it may be hard to find two eigenvalues of A∗
and A∗ sharing the same eigenvector. Reasonably, the independent decompositions

would also imply separate eigenvectors, as in

A∗v1 = λ1v1

and

A∗v2 = λ2v2,

hopefully having v1 and v2 as close as possible. We could then define an interval-

valued eigenvector, v̈ = [v∗,v∗], such that, for every i,

v̈i =

[v1i,v2i], if v1i ≤ v2i.
v1i+v2i

2 otherwise.

and an interval-valued eigenvalue, λ̈ = [λ∗,λ ∗], such that, for every i,

λ̈i =

[λ1i,λ2i], if λ1i ≤ λ2i.
λ1i+λ2i

2 otherwise.

As we can see, the eigendecomposition of an interval-valued matrix presents

the same problems found for the ISVD (see Section 4.1.1), namely that the eigen-

vector, as well as the singular vectors, may not be aligned, and the interval-valued

entries of the matrices involved may not be valid. Luckily, these problems can be

addressed with the same approach used for the ISVD, namely, the Interval Latent

Semantic Alignment (ILSA), presented in Section 4.2.

More in detail, going back to our case, we can initially seek the eigendecom-

position of the interval-valued (square) matrix Ä = M̈T⊗M̈ by independently de-

composing the endpoints matrices A∗ and A∗, namely, given a target rank r ≤ n,

EIG(A∗,r)→ [V∗,Λ∗] , and EIG(A∗,r)→ [V∗,Λ∗] , (4.5)
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where V∗ and V∗ are the singular values of M∗ and M∗, respectively, and Σ∗ =√
Λ∗ and Σ∗ =

√
Λ∗ are the relative singular values.

Given these matrices, we can then obtain the left singular vectors by solving

the SVD equations M∗ = U∗Σ∗VT
∗ and M∗ = U∗Σ∗V∗T, by, respectively, U∗ and

U∗, i.e.,

U∗ = M∗ ·
(
VT
∗
)−1 · (Σ∗)−1 and U∗ = M∗ ·

(
V∗T
)−1 · (Σ∗)−1 .

Once all the factor matrices have been evaluated, we can then proceed with the

alignment of the latent components by means of the ILSA procedure and with the

correction of non-valid intervals in their entries, thus providing consistent interval-

valued factor matrices Ü, Σ̈ and V̈. Once again, according to the decomposition

target option (either a, b, or c) the factor matrices can be averaged or left as interval-

valued, producing the final output of the procedure.

4.4.4 ISVD3: Decompose, Align, Solve

This strategy (outlined in the column labeled ISVD3 in Figure 4.8) follows the

same approach as the previous one, up to the factorization of the interval-valued

matrix Ä = M̈T⊗M̈ through the independent eigendecomposition of its endpoints

matrices A∗ and A∗ (equation 4.5). In contrast with ISVD2, here we promptly ad-

dress the alignment issue in the resulting factor matrices by means of the ILSA pro-

cedure3, in order to produce interval-valued matrices, Σ̈ and V̈, which are already

semantically consistent. Only at this point the left singular values are computed,

solving the ISVD equation M̈' Ü⊗ Σ̈⊗ V̈T by Ü, i.e.,

Ü' M̈⊗
(

V̈T
)−1
⊗ Σ̈

−1.

However, this last step requires the computation of the inverse of two interval-

valued matrices, a not so straightforward procedure, that needs to be discussed.

3Excluding the correction of the non-valid interval entries in Σ̈ and V̈, which can be postponed
as the last step of the entire procedure, when all the interval-valued matrices need to be validated in
order to provide a consistent output, both semantically and in terms of interval-valued entries.
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Inverse of a non-negative and diagonal interval-valued matrix, Σ̈

The interval-valued factor matrix Σ̈ = [Σ∗,Σ∗], with Σ∗,Σ∗ ∈Rr×r is a diago-

nal matrix such that, ∀i = 1, . . . ,r,

Σ̈[i,i] = σ̈i = [σ∗i,σ∗i ] , with σ∗i ≤ σ
∗
i

By definition, an r× r diagonal matrix D = diag(d1,d2, . . . ,dr), is invertible if

all the elements on its diagonal are non-zero, i.e., if ∀i = 1, . . . ,r, di 6= 0, and its

inverse is defined as the also diagonal matrix D−1 = diag( 1
d1

, 1
d2

, . . . , 1
dr
), such that

the elements in the diagonal are the reciprocal of the entries in D.

Known this, and given the definition of the division of two intervals (see Sec-

tion 2.1.3), we could assume that the inverse of an interval-valued matrix Σ̈ could

be defined as the (diagonal) interval-valued matrix Σ̈
−1 such that, ∀i = 1, . . . ,r,

Σ̈
−1
[i,i] = τ̈i =

1
[σ∗i,σ∗i ]

= 1 ·
[

1
σ∗i

,
1

σ∗i

]
=

[
1

σ∗i
,

1
σ∗i

]
.

The problem with this definition, however, is that (as we already saw in Section

4.1.1) the product of two intervals is itself an interval (see Theorem 2 in [25]),

hence, an important property of the inversion, i.e., that D ·D−1 = I, cannot be

extended to interval-valued diagonal matrices.

What can be done is to find an approximation of the inversion process such that

the product with the original matrix is as close as possible to the identity, namely,

find Σ̈
−1

= diag(τ̈1, τ̈2, . . . , τ̈r) such that

Σ̈⊗ Σ̈
−1

=
∼
Ï r ,

where
∼
Ï r is an interval-valued diagonal matrix (approximately equal to the identity

matrix Ir) such that, ∀i = 1, . . . ,r,

∼
Ï r[i,i]= [1− εi,1+ εi] , with 0≤ εi ≤ 1.

Our problem can be formulated as finding, ∀i= 1, . . . ,r, an interval τ̈i = [τ∗i,τ∗i ]
such that εi is minimum, and is subject to the following constraints:

1. σ∗i · τ∗i = 1− εi;

2. σ∗i · τ∗i = 1+ εi;
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3. τ∗i ≤ τ∗i ,

4. 0≤ εi ≤ 1.

By rewriting constraints (1) and (2) as τ∗i =
1−εi
σ∗i

and τ∗i = 1+εi
σ∗i

, and by combining

them under constraint (3), we obtain the following equality:

1− εi

σ∗i
≤ 1+ εi

σ∗i
;

(1− εi)σ∗i − (1+ εi)σ∗i
σ∗i ·σ∗i

≤ 0;

σ∗i −σ∗i
σ∗i ·σ∗i

≤ ε · σ
∗
i +σ∗i

σ∗i ·σ∗i
;

σ∗i −σ∗i
σ∗i +σ∗i

≤ εi;

which, combined with constraint (4), and considering that, by definition, σ∗i ≥ σ∗i,

can be rewritten as

0≤ σ∗i −σ∗i
σ∗i +σ∗i

≤ εi ≤ 1.

From this inequality, we can conclude, first of all, that εi would be 0 only if

σ∗i = σ∗i , namely if and only if Σ̈ would be scalar which, unfortunately, is not our

case. And we can also conclude that εi is minimum when it is equal to σ∗i −σ∗i
σ∗i +σ∗i

, i.e.,

the solution of the equation
σ∗i −σ∗i
σ∗i +σ∗i

= εi, (4.6)

which holds, going back to constraints (1) and (2), if and only if τ∗i = τ∗i . This

means that, for better approximating the identity matrix, we need to settle for an

inverse of Σ̈ that needs to be scalar.

In particular, considering τ∗i = τ∗i = τi, and rewriting constraints (1) and (2) as

σ∗i =
1−εi

τi
and σ∗i = 1+εi

τi
, we can rewrite equation 4.6 as

1+εi
τi
− 1−εi

τi

σ∗i +σ∗i
= εi,

and solve by τi:
1+ εi−1− εi

τi(σ∗i +σ∗i)
= εi;
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τi =
2

σ∗i +σ∗i
,

so that we can finally define the inverse of Σ̈ as the scalar diagonal matrix Σ̈
−1

=

diag(τ1,τ2, . . . ,τr) such that, ∀i = 1, . . . ,r,

Σ̈
−1
[i,i] = τi =

2
σ∗i +σ∗i

.

Inverse of an interval-valued matrix, V̈

The inversion process detailed above is applicable to only square, diagonal

interval-valued matrices, but, unfortunately, the factor matrix V̈ is not diagonal.

Therefore, since there is no straightforward way to invert a generic interval-valued

matrix, we need to resort to an approximation that leverages the known inversion

of a scalar-valued matrix. More in detail, given our interval valued matrix V̈ =

[V∗,V∗], where V∗,V∗ ∈Rm×r, we take the following steps:

• we compute an approximation of V̈ by replacing its interval-valued entries

with the average of their endpoints, i.e., we compute Vavg such that, ∀i =
1, . . . ,m and ∀ j = 1, . . . ,r,

Vavg[i, j] =
V∗[i, j]+V∗[i, j]

2
;

• we invert Vavg by means of the know inversion algorithms for scalar-valued

matrices;

• we return an approximation of V̈−1 as V−1
avg.

It is to be noticed, that this approach may present some difficulties, namely that

the matrix Vavg, though scalar-valued, may not always be invertible. We, therefore,

first need to check whether Vavg is well-conditioned (i.e., if its condition number4 is

over a certain threshold) and, if that is not the case, use the Moore-Penrose pseudo-

inverse [41] to compute an approximation of V−1
avg. If the condition number were to

4The condition number of a matrix can be leveraged to infer how accurately such matrix can be
inverted: if the condition number is not too much larger than 1, then the matrix is said to be well-
conditioned, meaning that its inverse can be computed with good accuracy. If the condition number
however gets very large (namely, the matrix is ill-conditioned), the computation of its inverse could
be prone to large numerical errors.
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be too high, the best choice could be to revert back to the ISVD2 strategy.

Now that all the factor matrices have been evaluated, we can proceed with the

correction of non-valid intervals in their entries, thus providing consistent interval-

valued factor matrices Ü, Σ̈ and V̈. As for the previous strategies, according to the

decomposition target option (either a, b, or c) the factor matrices can be averaged

or left as interval, producing the final output of the procedure.

4.4.5 ISVD4: Decompose, Align, Solve, Recompute

In this section, we consider a variant of the ISVD3 strategy, which not only in-

herits its benefits, but also further reduces the degree of imprecision in the resulting

interval-valued factor matrices, Ü and V̈, as the experimental validation (Chapter

5) will confirm.

More in detail, the ISVD4 approach follows the same steps of ISVD3 up to the

computation of the left singular vectors matrix, obtained solving the ISVD equation

M̈' Ü⊗ Σ̈⊗ V̈T by Ü, i.e.,

Ü' M̈⊗
(

V̈T
)−1
⊗ Σ̈

−1,

where the right interval-valued singular vectors (i.e., the columns of V̈), obtained

through the independent eigendecomposition of A∗ and A∗, had already been align-

ed, by means of the ILSA procedure.

At this point, an extra step is introduced, namely the recomputation of these

same right singular vectors, V̈, by solving, again, the ISVD equation M̈' Ü⊗ Σ̈⊗
V̈T, this time by V̈:

V̈'
(

Σ̈
−1⊗ Ü−1⊗M̈

)T

The basic idea behind this strategy is related to what we have discussed in Section

4.1.1 regarding the inherent imprecision in the factorization of an interval-valued

matrix. In particular, we came to the conclusion that interval-valued factor ma-

trices, Ü and V̈, can never be orthonormal, hence making it difficult to interpret

their columns as the basis of a transformed vector space. We then saw that the

alignment of the latent components according to their semantics (i.e., the ILSA

procedure, described in Section 4.2) mitigates this problem by matching the singu-

lar vectors which are closer, reducing the overall (cosine) distance between each
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pair v∗ and v∗ (see Figure 4.7), approaching a situation where the interval-valued

components are scalar, and approximate more easily a vector basis (thus proving

that the similarity between interval-valued factor matrices is crucial for capturing

the latent semantics in interval-valued data).

Here we try to take this idea a bit further, attempting to bring the minimum and

maximum components of the interval-valued singular vectors in V̈ even closer, on

the one hand loosing some accuracy in terms of the factorized data (i.e., how well

the singular vectors would work in an independent reconstruction of the minimum

and maximum values), but on the other getting a more truthful representation of the

data in the transformed vector space, hopefully reaching a favorable compromise

that would increase the accuracy of the overall interval decomposition process.

Figure 4.9 helps visualize this approach, showing how the matrix recompu-

tation affects the alignment of the minimum and maximum components of the

interval-valued singular vectors, both for Ü and V̈. In the figure, we plot the ab-

solute cosine distance between each corresponding pair of column vectors x∗i and

x∗i (where x∗i can either be U∗[:,i] or V∗[:,i], and similarly for x∗i ), considered in

increasing order of singular values 5. Specifically, Figures 4.9(a) and 4.9(b) re-

port the cosine distance values before recomputation and after recomputation of V̈,

basically illustrating the differences between the strategies ISVD3 and ISVD4.
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(b) After recomputation of V̈

Figure 4.9: Effects of the recomputation of the right singular vectors V̈

First of all, what we can already see in Figure 4.9(a) is that the distances be-

5Note that, the lower the cosine distance, the more similar the minimum and maximum compo-
nents of the singular vectors
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tween the corresponding vectors in U∗ and U∗, obtained in ISVD3 through the

equation

Ü' M̈⊗
(

V̈T
)−1
⊗ Σ̈

−1,

are already pretty low, especially if compared with the vectors in V̈, suggesting

that the process of deriving Ü through the inversion of V̈ and Σ̈ (which, as we saw

in Section 4.4.4, requires some averaging) smoothens the differences between each

pair ui∗ and u∗i , bringing them closer.

Figure 4.9(b) shows how the same is true for V∗ and V∗: as we can see, the

cosine distance between each pair of column vectors vi∗ and v∗i gets noticeably

smaller after the re-computation and, as the experiments will confirm (Chapter 5),

they are in this way able to more precisely capture (w.r.t. ISVD3) the significant

latent semantics in the interval-valued data, thus leading to an overall improvement

in terms of the accuracy of the interval decomposition process.

4.4.6 ISVD complexity analysis

A complexity analysis for the ISVD algorithms presented in the previous sec-

tions can be performed by looking at the local complexity of the primitive proce-

dures that form each step in the overall decomposition processes. Specifically, we

can draw general conclusions by inspecting in detail the ISVD4 implementation,

given that it is the most demanding in terms of resources and, as the experimental

validation presented in Chapter 5 will confirm, is in general the most robust option.

Preprocessing. Following the chart in Figure 4.8, we can see that first step in

the ISVD4 procedure (i.e., the preprocessing of the input data) has the purpose

of computing the interval-valued symmetric square matrix Ä, whose factorization

will provide the latent components ot the input matrix M̈. The implementation of

this step relies on the interval-valued matrix product, ⊗, an operation that, like its

scalar counterpart, has time complexity O(n3), supposing a general matrix M̈ of

size n×n. To reduce the computational impact of this step, we have implemented

(see Appendix A.1.1) an approximated algorithm that leverages the efficiency of

matrix operations in MATLAB by avoiding for-loops, trading a bit of accuracy6 for

6It is important to notice that if both the factor matrices are non-negative, which is the case for
most applications, their product by means of our algorithm will be exact.
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a huge advantage in terms of execution times.

In terms of space complexity, the number of elements of matrix Ä, of size

m×m, can represent an issue in case the input matrix Ä, of size n×m, is such that

m� n. In these circumstances, if the latent semantics in the data allows it, it would

be preferable to evaluate Ä = M̈⊗ M̈T and operate the latent semantic alignment

on the left singular vectors, Ü, instead that on the right ones, V̈.

Decomposition. The factorization of the interval-valued matrix Ä is done by in-

dependently applying the eigendecomposition to the scalar endpoints matrices A∗
and A∗, both of size m×m. The eigendecomposition procedure is implemented

in MATLAB by means of the QR Algorithm [40] which, for an m×m real and

symmetric matrix has complexity O(m3).

Alignment. The latent semantic alignment step, as detailed in Section 4.2 (see

Problem 1), requires the solution of a linear assignment problem, in order to find

the optimal matching between the r columns of V∗ and V∗. An optimal solution

to this problem can be found, by means of known algorithms such as the Jonker-

Volgenant [28], in time O(r3). However, in order to reduce the computation time

to O(r2), it is possible to consider the alignment task as a stable marriage (or

stable matching) problem [26], trading off the optimality of the solution for the

speed of execution. More specifically, a matching is considered stable when there

does not exist any non-matched vectors vi∗, v∗j which would both be closer to each

other than to the vectors they are paired under the current assignment. Such a solu-

tion, however, is not optimal, since it does not guarantee that the overall distances

between the paired vectors are minimized.

Since the remaining steps in the procedure (restoring intervals and renormal-

ization) are just O(n2), we can conclude, by looking at the worst-case step in the

chain, that the overall complexity of ISVD4 (and, by extension, of all the ISVD

approaches) is O(n3).

4.5 Aligned Interval-valued PMF (AI-PMF)

In the previous sections of this chapter, we focused our attention on how to

extend the Singular Value Decomposition technique to interval-valued data. Here

we show that applying our proposed Interval-Valued Latent Semantic Alignment
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(ILSA) method for processing interval-valued basis vectors can also be effective

in alternative factorization algorithms, such as Probabilistic Matrix Factorization

(PMF), introduced in Section 3.1.4.

As we reported in Section 3.2, various efforts to adapt PMF models to interval-

valued data has been investigated in the literature. Our approach is built on the

work proposed in [46], reported in Section 3.2.2, where the authors present an

Interval-valued PMF technique (referred to as I-PMF) with the purpose of improv-

ing the prediction of the missing entries of a user-item rating matrix.

More specifically, although I-PMF adopts extra constraints in the loss function

to capture the interval nature of the data, in our opinion it fails to consider the

need for alignment in the interval-valued latent semantics spaces, as discussed in

Section 4.2.

Hence, we propose a semantically aligned interval-valued PMF formulation

(AI-PMF for short), which adjusts the rank-order of the eigen-vectors in V∗ and

V∗ in each gradient descent iteration, after obtaining U, V∗ and V∗ from the above

equations:

V̈aligned = [V∗aligned,V∗aligned] = ILSA(V∗,V∗).

As we will see in the next chapter, the latent semantic alignment procedure yields

significant improvements in the decomposition accuracy of interval-valued (prob-

abilistic) data.
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Chapter 5

Experiments on Interval-valued
matrix factorization

The purpose of this chapter is to provide a thorough description of the set of ex-

periments that we devised to validate our approach on the factorization of interval-

valued data presented in Chapter 4, while also comparing our decomposition strate-

gies with state of the art algorithms on different fields, including face image analy-

sis and collaborative filtering. Specifically, various scenarios have been considered

in choosing a sample base for our experiments, ranging from synthetic data, specif-

ically designed to test various kinds of interval distributions in a controlled manner,

to real-world datasets, in order to prove the actual effectiveness of our decomposi-

tion strategies.

Let’s start with a description of the datasets that we relied on for the experi-

ments.

5.1 Choosing the right datasets

As stated above, we relied upon both synthetic and readily available real datasets

to evaluate the proposed interval-valued matrix decomposition techniques in the

context of several data reconstruction and classification scenarios.

67
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5.1.1 Synthetic datasets

The purpose of generating a synthetic set of interval-valued matrices was aimed

at providing an easy to control scenario, were various parameters could be purpose-

fully set in order to evaluate our approach over a range of test cases as diverse as

possible. More in detail, we relied on the following set of parameters (summarized

in Table 5.1):

Matrix size: we considered various possible sizes for the test matrices, to see how

it would affect the decomposition performances; this include having matrices

with more rows than column, or vice-versa, while keeping the same number

of entries overall (10 thousand for the first three sets), and also matrices with

more elements (100 thousand for the last two sets), to see how this would

affect the time of execution.

Matrix density: this parameter indicates the percentage of zero-valued entries

(randomly placed) in a matrix, and is meant to test how the sparsity of a

matrix affects its decomposition process. It is quite common, in fact, to have

quite sparse matrices in various domain, for example in the case of user-item

rating matrices in collaborative filtering applications.

Interval density: this parameter determines the ratio between scalar and interval-

valued entries of a matrix: 5% density indicates that only 5 (non-zero) entries

out of 100 are interval-valued, while 100% indicates a fully interval-valued

matrix. In this way we can test precisely how the interval-valued nature of a

matrix affects its decomposition.

Interval intensity: another aspect to take into account when generating an interval-

valued matrix is how wide the range of each entry should be. More in detail,

to get an interval-valued entry starting from a scalar one, given an intensity

value X , the range of the interval is uniformly selected between 0% and X%

of the original scalar entry.

Target rank: this parameter is related to the actual decomposition process, and

varies according to objective of each particular application (generally speak-

ing, full or high rank if we are interested in the accuracy of the reconstruc-

tion, low if we want to extract just a few latent semantics components).

We then consider two types of interval-valued data, uniform and anonymized:
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Parameter Values

Matrix size 40×250, 250×40, 25×400, 400×250, 250×400

Matrix density percentage of 0-values: 0%, 50%, 90%

Interval density 5%, 25%, 50%, 75%, 90%, 95%, 99%, 100%

Interval intensity 10%, 25%, 50%, 75%, 100%

Target rank
Uniform data: 5, 10, 20, 40, 100, full

Anonymized and social media data: 5%;50%;100%

Table 5.1: Experiment parameters for synthetic data (values in bold are defaults)

1. Uniform matrices do not have inherent structures – the entries are generated

according to the parameters described above. More in detail, once a set of parame-

ters has been selected, the process of generating a synthetic interval-valued matrix

M̈ starts by randomly creating a scalar matrix M with values in a domain that goes

from 1 to 100. Then, according to the chosen matrix density, a percentage of the

entries is set to zero. At this point, some of the non-zero scalar entries remain-

ing (how many depends on the interval density) are replaced by an interval, whose

range is evaluated from the initial scalar value and the selected interval intensity.

For example, given a scalar value M[i, j] and an interval intensity value of X%, we

generate the interval-valued entry M̈[i, j] as

M̈[i, j] =

[
M[i, j],M[i, j]+M[i, j] · x∼ U

(
0,

X
100

)]
,

where x is extracted form a uniform distribution, U , between 0 and the interval

intensity value X .

2. Anonymized matrices are obtained by means of a generalization process ap-

plied to random scalar matrices in order to get to a specific degree of anonymiza-

tion; in particular, we start as before by creating a random scalar matrix M with

values in a domain that goes from 1 to 100, then we consider four generalization

levels (in increasing order of anonymization1), each characterizing a subset of the

1The higher the generalization level, the larger the corresponding intervals replacing each scalar
entry and the more anonymized the data.
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Anonymization L1 L2 L3 L4

Low 40% 30% 20% 10%

Medium 25% 25% 25% 25%

High 10% 20% 30% 40%

Table 5.2: Percentages of elements in each generalization level for three degree of
anonymization

entries of M:

L1: the entries of M that will end up in this subset are simply rounded to the near-

est integer, down to generate the minimum endpoint, up for the maximum, so

that a given scalar entry M[i, j] is generalized as M̈[i, j] = [bM[i, j]c,dM[i, j]e];

L2: for this level of generalization, the entire range of values in the domain (1 to

100) is divided into a series of 50 bins, and each entry of M[i, j] is replaced

by the endpoints of the bin in which it falls into, so, for example, a scalar

entry M[i, j] = 2.35, that ends up in the bin bk = [2,4] would be generalized

as the interval-valued entry M̈[i, j] = [2,4];

L3: the generalization process is the same as with L2, only here the number of

bins to divide the entries in is 20 (thus increasing the level of generalization);

L4: finally, with 5 bins, the highest degree of anonymization is reached.

Given these, we then define three classes of anonymization (low, medium and

high) by assigning different percentages of elements to each generalization level,

(as summarized in Table 5.2): the rationale is to assign more and more elements

to higher levels of generalization in order to reach an overall higher degree of

anonymization in the matrix.

For each scenario, we created 100 random matrices and the results presented

are averages of the corresponding runs.

5.1.2 The ORL face dataset

The Olivetti Research Laboratory (ORL) face dataset [43] is composed of a

collection of images portraying the faces (in an upright position and in frontal view)

of 40 different people. For each individual, a total of 10 photos have been taken,
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each one under slightly different conditions, either regarding the light exposure,

the position of the face w.r.t. the center of the image, or the left-right rotation of

the head. More in detail, these 400 images, each of 32× 32 pixels, are stored in

form of a single matrix, M ∈Nn×m
+ , with n = 400, m = 1024, where each row

stores a person’s face image and each column entry represents the pixel value at

that specific coordinate (a pixel is encoded as a gray-scale level from 0 to 255).

We then adopt the strategy proposed in [46] to generate an interval-valued ma-

trix M̈ starting from M, which is based on the assumption that face analysis can be

seriously hindered from a lack of alignment between the facial features in different

pictures of the same individual. For example, in the first row of pictures in Figure

5.1, we can see how the position of the tip of the nose (marked with a cross), can

be located in different coordinates in the image.

Since standard decomposition strategies are particularly sensitive to this lack

of alignment, the proposed solution by the authors in [46] is to replace the scalar

brightness level of the pixels corresponding to each facial feature (i.e., around their

edges) with an interval, and then applying interval-valued decomposition tech-

niques, that may be more tolerant to such alignment errors.

In order to generate an interval-valued entry M̈[i, j] starting from a scalar value

M[i, j], a radius δi, j is evaluated, leading to a larger interval for the pixels whose

surroundings are characterized by a high brightness variance (i.e., the pixel on a

feature’s edge or in its proximity), as follows

M̈[i, j] =
[
M[i, j]−δi, j,M[i, j]+ δi, j

]
. (5.1)

The radius δi, j for a given pixel M[i, j] is evaluated as the brightness variance of the

pixels in the surrounding of M[i, j]:

δi, j := α · std
({

M[i, j′]|
(
|x(i, j′)− x(i, j)| ≤ r

)
∧
(
|y(i, j′)− y(i, j)| ≤ r

)})
,

where α ∈ R+ is a multiplicative scale coefficient, r is the coordinates’ radius

circumscribing the surrounding of M[i, j], and the notation x(i, j) and y(i, j) is used

to represent the coordinates 〈x,y〉 of the j-th pixel in the i-th image, i.e., the j-th

element on the row vector M[i,:]. For the experiments presented later on, we set

r = 5 and α = 2.5.
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The second row of pictures in Figure 5.1 shows the radius matrices correspond-

ing to each face image on the first row, with lighter gray level representing a larger

radius (and thus a larger interval in M̈[i, j]).

Figure 5.1: An example of how the radius matrices are generated from a set of face
images from the ORL dataset

The approach taken by the authors in [46] to address the factorization require-

ments in face analysis is, as we detailed in Section 3.2.2, to extended the NMF

technique to interval-valued data (they refer to their approach as I-NMF).

Instead, our approach for the factorization of this kind of interval-valued ma-

trices relies again on the ISVD algorithms illustrated in Section 4.4, given that

the non-negativity constraint doesn’t affect the procedure. We will thus compare

our results with the ones obtained by the authors in [46] over a set of experiments

regarding the following three applications:

Nearest Neighbor Classification: For this task, the dataset is divided (by ran-

domly selecting 50% of the rows for each individual) in a training set and

a test set. The goal is to then assign the faces in the test set to the correct

individual. The classification is performed on the principal components that

represent the people-latent semantic of the input data. More in detail, for the

I-NMF approach these principal components correspond to the columns of

the (scalar) matrix U, while for our ISVD approach, they need to be evaluated

as the combination of both Ü and Σ̈, namely [U∗Σ∗,U∗Σ], either directly as

interval-valued (ISVD1−4), or averaged (ISVD0). The classification is done

using a 1-nearest neighbor classifier with Euclidean distance, that, when nec-

essary, is extended to interval-valued data as the function that, taken the in-

tervals ä = [a∗,a∗] and b̈ = [b∗,b∗] as input, evaluates their distance as:

d(ä, b̈) =
√
(a∗−b∗)2 +(a∗−b∗)2.
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We then evaluate the accuracy by means of the F1-score measure, defined as

the harmonic mean of the precision and recall of the classifier:

F1 =

(
2

recall−1 + precision−1

)
= 2 · precision · recall

precision+ recall
.

Clustering-based Classification: Here we try to classify the pictures in the ORL

dataset through the K-means algorithm, attempting to cluster the 400 pic-

tures in 40 clusters (hence k = 40), one for each individual. As in the previ-

ous task, the analysis is performed on the principal components that repre-

sent the people-latent semantic of the input data, and the Euclidean distance

is used to measure the separation of the pictures in the latent space. The clus-

tering accuracy between the known classification C and the retrieved result

R is then measured by means of the Normalized Mutual Information (NMI),

a similarity measure derived from information theory [10], defined as:

NMI(C,R) =
I(C,R)√

H(C) ·H(R)
,

where I(C,R) is the mutual information between C and R, defined as

I(C,R) = I(C)− I(C|R),

which provides a sound indication of the shared information between the

two clusterings, while the normalizing factor is evaluated by means of the

entropy H, which measures the degree of disorder inside each cluster.

Reconstruction: In this task, we attempt to reconstruct an approximation M̃ of

the original data matrix M from a low-rank decomposition of the interval-

valued matrix M̈, and then we evaluate the reconstruction accuracy. For the

I-NMF approach in [46], after decomposing the interval-valued matrix M̈,

obtaining the factor matrices U and V̈ (the first scalar, the second interval-

valued), the estimated scalar matrix M̃ is reconstructed through the following

computation:

M̃ =
UVT
∗ +UV∗T

2

To achieve a fair and consistent comparison, we compute the decomposition

of M̈ by means of the ISVD algorithms presented in Section 4.4, but, for the

reconstruction options that return an interval valued approximation in terms
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of the matrices M̃∗ and M̃
∗
, we also take their average to get an estimation

of M, i.e.,

M̃ =
M̃∗+ M̃

∗

2

We then evaluate the accuracy of both approaches by means of the Root-

Mean Square Error (RMSE):

RMSE(M̃,M) =

√
∑

n
i=1 ∑

m
j=1(M̃[i, j]−M[i, j])2

n ·m
.

For each task, the accuracies are evaluated by averaging 100 different runs.

5.1.3 The social media datasets

In order to test our approaches also on data that are typically used in collab-

orative filtering scenarios, we took in consideration the following social media

datasets:

Ciao and Epinions

On these two ratings data sets, Ciao and Epinions [52], we have performed

a set of interval-valued matrix reconstruction experiments, in order to compare

the accuracies of our ISVD strategies illustrated in Section 4.4 among each other.

In particular, for both datasets we have considered user-category rating matrices,

where each non-zero entry corresponds to the range of ratings that a user provided

for the items of a given category. In this way, we simulate a scenario in which users

are allowed to provide a range of ratings (modeled as interval-valued data), instead

of a single one.

The characteristics and test parameters for the two datasets are:

Ciao

• 22 thousand users;

• 27 categories;

• Matrix Density= 26% of zero entries;

• Interval Density= 49%;

• Interval Intensity= 24.4%;

• Target Rank: 5%, 50%, 100% of the number of categories.
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Epinions

• 7 thousand users;

• 28 categories;

• Matrix Density= 28% of zero entries;

• Interval Density= 44%;

• Interval Intensity= 22%;

• Target Rank: 5%, 50%, 100% of the number of categories.

After obtaining an approximation of the input data through the decomposition

process, we evaluate the performance of the ISVD strategies by means of the har-

monic mean, as described in Section 4.1.2.

MovieLens

The MovieLens dataset [22], made available by the GroupLens research group2,

contains 100 thousand ratings for 1682 movies (categorized in 19 genres) by 943

users, making the entries of a rating matrix R ∈R943×1682. We rely on this dataset

to evaluate the performance of our approaches in terms of reconstruction and miss-

ing ratings prediction (collaborative filtering).

For the reconstruction evaluation, we generate a user-genre interval-valued

matrix M̈ = [M∗,M∗], with M∗,M∗ ∈ R943×19, where each entry M̈[i, j] corre-

sponds to the range of ratings user i provided for all the movies of genre j, i.e.,

given G j as the set of all the movie ids of genre j:

M∗[i, j] = min
(

R[i,k]|k ∈ G j

)
,

M∗[i, j] = max
(

R[i,k]|k ∈ G j

)
.

We then apply our ISVD strategies to factorize M̈ trying different target ranks

(5%, 50%, 100% of the number of categories) and then, after reconstructing an

approximation
∼
M̈ of the input data, we evaluate the accuracy of the overall process

by means of the harmonic mean, as described in Section 4.1.2.

For the collaborative-filtering evaluation, we followed the procedure explained

2http://www.grouplens.org
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by the authors in [46], and illustrated in Section 3.2.2, to generate the interval-

valued rating matrix M̈ defined as

M̈[i, j] =
[
R[i, j]−δi, j,R[i, j]+ δi, j

]
,

where the parameter δi, j takes into account the variability of user i’s rating habit,

as well as the variability of the evaluations on movie j, to transform a scalar rating

R[i, j] into a more general preference degree, M̈[i, j]. The missing ratings can then

be computed (through equation 3.1 in Section 3.2.2) reconstructing the original

matrix after a low-rank approximation.

We then use the Root-Mean Square Error (RMSE) to evaluate the accuracy

of the reconstruction-based rating predictions, comparing the I-PMF factorization

method of the authors in [46], with our AI-PMF decomposition (see Section 4.5),

in order to show the benefits of a latent semantic alignment approach.

5.2 Competitors

As we discussed in Section 3.2.1, the authors in [14, 44] proposed a linear-

programming based approach to solve the eigendecomposition problem for interval-

valued data by looking for interval bounds to the eigenvector and eigenvalues. We

have, therefore, implemented and experimented also with their proposed solution.

We denote their linear-programming based approaches as LPx, where the subscript

x denotes one of the three application semantics (or options), a, b or c, described

in Section 4.3.

As described in Section 5.1.2, we also compare our proposed ISVD approaches

with NMF and I-NMF [46] for the face analysis tasks: data reconstruction and

classification.

For collaborative filtering with social media data, discussed in Section 5.1.3,

we used PMF and I-PMF [46] as competitors to our AI-PMF approach.
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5.3 Experiments results

In this section we present the results for the sets of experiments described in

Section 5.1 on the various datasets, synthetic and real-world.

5.3.1 Experiments on synthetic datasets

Uniform Data

Figure 5.2 provides an overview of the accuracy and execution times for the

default configuration of the first batch of experiments described in Section 5.1.1.

These results help us drawing the following conclusions:

• we obtain the highest accuracies using the ISVD#-b class of techniques3 (re-

turning both scalar-valued factors and interval-valued core); in particular, the

highest overall accuracy is provided by ISVD4-b, which leverages both se-

mantic alignment and latent space recomputation techniques, as described in

Section 4.4.5;

• the naive approach, ISVD0, is the fastest overall, but does not match the

accuracy of the ISVD#-b class, which capture the interval information in the

core matrix;

• the ISVD#-a class of techniques (returning both interval-valued factors and

core) does not lead to a high overall reconstruction accuracy, proving that

relying on the interval matrix product for the reconstruction is not a good

option;

• the ISVD#-c class of techniques (returning all factor matrices as scalar) has

similar results to the ISVD0 strategy, since the approximations involved in

the latent semantic alignment process (which, at this point, would be redun-

dant) have a slightly negative impact on the final accuracy – this reconstruc-

tion option is thus indicated only with ISVD0 strategy;

• the linear-programing (LPx) based competitors’ [14, 44] approach shows

poor accuracies and massive execution times: the reason for this poor per-

formance is that, since these approaches look at finding interval bounds

3Here, ISVD# is a shorthand for the set {ISVD1, ISVD2, ISVD3, ISVD4} of algorithms that rely
on latent semantic alignment techniques for decomposing the given interval-valued input matrix.
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for eigenvectors and eigenvalues, they are not very suited for the task at

stake, failing to provide a valid representation of the latent information of

the interval-valued data in a transformed vector space. Moreover, looking

for the bounds of each component of every eigenvector is necessarily a very

resource-intensive task.

Table 5.3 shows the accuracy results for ISVD#-b class of techniques (which,

as we have seen above, provide the best overall accuracies) under the various con-

figurations reported in Table 5.1. In particular, for each set of experiments, we vary

one of the parameters at a time (according to its possible values), while keeping the

others as default. As a reference, we also included the results for ISVD0, since it

is the fastest alternative option4 (although less accurate). From these experiments,

we can conclude that:

• In Table 5.3(a) we see how the size of the input matrices affects the decom-

position process: as expected, we get higher accuracies for smaller matrices,

however, the relative performances between the different approaches stay the

same, with ISVD4-b still providing the best accuracies.

• In Table 5.3(b), we see that all algorithms perform more accurately with

denser data (i.e., less sparse input matrices), however, again, their relative

performances stay the same.

• In Table 5.3(c), we see that ISVD4-b is fairly robust also against different

interval densities, proving its efficacy also with input matrices entirely made

of interval-valued entries. In comparison, ISVD0 worsen quickly as the in-

terval density increases (as expected, since more of the interval information

gets lost in the averaging processes).

• Table 5.3(d), where the intensities of the interval-valued entries varies (i.e.,

we get progressively larger intervals), shows a similar pattern: ISVD0 is

competitive only when the interval intensity is very low (∼10%), while

ISVD#-b strategies prove robust even against large interval intensities with,

again, ISVD4-b providing the highest effectiveness overall.

• Finally, Table 5.3(e) shows the impact of different decomposition target

4We left out the LPx based competitors results since, as stated above, this approach performs very
poorly for this kind of data.
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Figure 5.2: Comparison of the alternative approaches for Synthetic Uniform Data
reconstruction – default configuration (the higher the Harmonic mean, the better
the result)
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Matrix size ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

25-by-400 0.697 0.758 0.758 0.789 0.789
40-by-250 0.627 0.670 0.670 0.691 0.691
250-by-40 0.627 0.670 0.670 0.691 0.691
400-by-250 0.503 0.535 0.535 0.541 0.542
250-by-400 0.503 0.535 0.535 0.541 0.542

(a) Varying matrix size

Matrix density ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

0% 0.627 0.670 0.670 0.691 0.691
50% 0.493 0.511 0.511 0.530 0.530
90% 0.425 0.431 0.431 0.451 0.451

(b) Varying matrix density

Interval density ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

10% 0.702 0.689 0.689 0.702 0.702
25% 0.678 0.659 0.659 0.682 0.683
75% 0.641 0.657 0.657 0.681 0.681
100% 0.627 0.670 0.670 0.691 0.691

(c) Varying interval density

Interv. intensity ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

10% 0.708 0.709 0.709 0.709 0.696
25% 0.702 0.704 0.704 0.708 0.709
75% 0.658 0.681 0.681 0.698 0.698

100% 0.627 0.670 0.670 0.691 0.691
(d) Varying interval intensity

Target Rank ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

5 0.501 0.537 0.537 0.539 0.539
10 0.546 0.585 0.585 0.591 0.592
20 0.627 0.670 0.670 0.691 0.691
40 0.758 0.814 0.814 0.895 0.896

(e) Varying decomposition target rank

Table 5.3: Comparison of the alternative ISVD#-b reconstruction approach with
varying parameters over the Uniform Synthetic Data (the higher the Harmonic
Mean, the better the result)
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ranks. Here, we see that, when the rank is very low, ISVD0 provides a some-

what competitive accuracy. However, as the decomposition rank increases

(i.e., as we try to maintain more detailed information while we factorize the

input data matrix), ISVD4-b provides increasingly better accuracy.

Overall, the reported experiments show that ISVD4-b provides the best accu-

racy under all data scenarios considered, while the fastest alternative, ISVD0, is

not able, in general, to provide competitive results.

Anonymized Data

As we discussed in Section 5.1.1, we have also run experiments on synthetic

interval-valued data generated by means of a generalization process that simulates

an anonymized dataset. Figure 5.3 shows how our ISVD strategies perform over

this kind of data (measuring the accuracy through the harmonic mean), considering

three levels of generalization (high, medium, and low) and, for each of those, three

decomposition target ranks (100%, 50% and 5%). We left off the results for the

LPx based comptetitors since, again, they don’t perform well for this kind of tasks,

leading to harmonic mean accuracies lower than 0.01.

From the results we can see that, once again, the ISVD#-b strategy (which

returns interval-valued Σ̈ and scalar factor matrices U and V) provides the best

overall accuracy, except for the very low-rank (5%) decomposition under the low-

privacy scenario (Figure 5.3(c)), where the interval-valued entries are fewer and

with closer endpoints. In this case, decomposition target a, which maintains the

interval information not only for the core, but also for the factor matrices, leads to

slightly better results.

Once again, these results confirm that ISVD4-b provides the overall best accu-

racy in the most part of the scenarios inspected.
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Figure 5.3: Accuracy comparison for Anonymized Synthetic Data for different
target ranks (the greener the cell, the better the result – the tables are best viewed
in color)
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5.3.2 Experiments on the ORL Face datasets

With this set of experiments, we were particularly interested in evaluating the

performances of our ISVD approach in terms of classification accuracy in a real-

world scenario (in this case being able to assign a face image to a specific indi-

vidual). From what we observe in the results, it appears that the interval latent

features that we are able to extract (especially with low rank decompositions) are

indeed very effective at identifying the salient characteristics of an individual. We

also report the results for the reconstruction experiments since, even if the data in

exam are not particularly suited for this task, they can still provide insight on the

overall accuracy of the decomposition process.

Nearest Neighbor-based classification

Figure 5.4(a) shows the results for a set of experiments on the Nearest Neigh-

bor classification task described in Section 5.1.2. The performance of the various

approaches (our ISVD strategies compared to NMF and I-NMF) is measured by

means of the F1-score function, varying the target rank of the decomposition from

10 (2.5%) to 200 (50%).

As we can see, the best classification results are obtained using the ISVD1 and

ISVD2 techniques, both of which leverage the latent semantic alignment, and this

is particularly evident under low rank scenarios (r = 20 or r = 30). It is important

to notice that, since the classification task only relies on the interval-valued Ü fac-

tors and core matrix Σ̈, the ISVD3 and ISVD4 techniques (which attempt to further

improve the latent space defined by the V̈ factor) do not provide, as expected, ad-

ditional benefits: they in fact actually hurt the classification accuracy, by bringing

the interval-valued vectors closer, while losing some of the interval information.

The NMF and I-NMF competitors, both provide significantly lower accuracies

than our ISVD-based approaches, however their relation confirms the advantage of

leveraging the interval information in the data for this kind of task.

Clustering-based classification

Figure 5.4(b) shows the results for the clustering-based classification task (also

described in Section 5.1.2) based on the the K-means algorithm, measuring the
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ISVD1 26,82 11 24,26 11 26,10 9
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Figure 5.4: (a) Reconstruction and (b,c) Classification results for the ORL face
dataset experiments
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Clustering on: rows of M rows of M̈ ÜΣ̈ (ISVD2, r = 20)

Accuracy (NMI) 0.69 0.72 0.72

Exectution time (sec) 0.04 1.14 0.11 (0.08+ 0.03)

Table 5.4: Accuracy and execution time (decomposition + clustering, or just clus-
tering time) for clustering-based classification using original data row vectors,
interval-valued data row vectors, and low-rank interval-valued principal compo-
nents

accuracy by means of the Normalized Mutual Information (NMI). The results con-

firm the outcome of the NN-based classification task discussed above showing that,

once again, the best accuracies are obtained relying on the ISVD1 and ISVD2 tech-

niques (both of which leverage the latent semantic alignment), especially under

low rank (r ' 10) decomposition scenarios.

Finally, in Table 5.4 we report the results (in terms of accuracy, as NMI, and

time of execution, in seconds) for a set of experiments devised for comparing three

types of clustering:

1. A clustering directly applied to the raw scalar data, namely the row vectors

of the input matrix M (where each row represents a face in the dataset).

2. A clustering applied to the interval-valued data (generated by means of equa-

tion 5.1 in Section 5.1.2), namely the row vectors of M̈.

3. A clustering applied to the principal components, i.e., ÜΣ̈, obtained through

the ISVD2 decomposition with target rank 20 (i.e., the best option from the

experiments reported in Figure 5.4(b)).

As we see in Table 5.4, adding interval information already significantly im-

proves the clustering accuracy, however this comes at a significant execution time

cost. Our proposed interval-valued decomposition strategy cuts down the execu-

tion time significantly, almost being comparable with the scalar approach (although

adding a bit of overhead for the decomposition process), while matching the accu-

racy provided by the interval-valued option.
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Reconstruction

Here we inspect the reconstruction accuracy of our ISVD approaches in com-

parison with the NMF and I-NMF strategies, as described in Section 5.1.2.

Figure 5.4(c) shows the reconstruction performances (in terms of Root Mean

Square Error, RMSE) of the considered options for three classes of target rank:

50% (r = 200), 25% (r = 100) and 2.5% (r = 10). As we can see, ISVD0 provides

the overall best reconstruction accuracies (slightly overtaking ISVD4), while the

competitor techniques, NMF and I-NMF, perform poorly in comparison with most

of our methods.

Looking at these results, it seems to be the case that for this particular task

the introduction of interval information does not provide a sufficient advantage to

justify the overhead required for the decomposition process. In fact, since the gen-

erated intervals are symmetrical (see equation 5.1 in Section 5.1.2), the average

of the interval-valued matrix matches exactly the original data, so that the ISVD0

process becomes analogous to the standard SVD applied to the original scalar ma-

trix. This seems to be true also looking at how NMF and I-NMF compare to one

another, with the standard decomposition working better than the one extended to

manage interval-valued data. It is still interesting to see, however, how ISVD4

doesn’t loose too much information, proving to be a reasonably effective decom-

position approach even under unfavorable conditions.

5.3.3 Experiments on social media datasets

Reconstruction

Figure 5.5 presents, in a similar way as for the synthetic datasets, the re-

construction accuracy (again in terms of harmonic mean) of our ISVD approach,

this time on three real world datasets, Ciao, Epinions, and MovieLens, where the

interval-valued data has been generated as described in Section 5.1.3.

These results are comparable, confirming that, in general, the decomposition

strategies ISVD#-b (with interval-valued core and scalar factor matrices) lead to

the best results, except for very low-rank decompositions, where option ISVD#-a

(with interval-valued core and factor matrices) performs better.
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More in detail, for the Ciao and Epinion datasets, we see that ISVD3 and ISVD4

(which perform latent alignment early), lead to better results, while ISVD1 and

ISVD2 (which perform the latent alignment later in the process) are more effective

than ISVD3 and ISVD4 only for very low rank decompositions.

The MovieLens dataset also has a similar behavior: for relatively large de-

composition ranks, ISVD3 and ISVD4 lead again to better results, while for low

rank decompositions (r ≤ 10) the benefit of early alignment is lost and ISVD1

and ISVD2 are (slightly) more effective. However, the behavior w.r.t. the other

two dataset is a bit different for medium (50%) target rank decompositions, where

ISVD1 and ISVD2 are here more effective than ISVD3 and ISVD4.

Prediction (Collaborative Filtering)

In this set of experiments we show how our proposed latent semantic alignment

method can be applied to (interval) probabilistic matrix factorization to achieve

more effective performances in collaborative filtering. Figure 5.6 shows the ac-

curacies (in terms of Root Mean Square Error, RMSE) of the PMF, I-PMF and

(our) AI-PMF approaches on the MovieLens dataset, varying the target rank of the

decomposition from 10 (2.5%) to 200 (50%).

As the chart shows, the prediction accuracy of all algorithms improves as we

consider higher decomposition ranks and the proposed latent semantic alignment

based approach, AI-PMF, leads to better prediction performance than both PMF

and I-PMF for decomposition ranks greater than 60.

Most importantly, however, AI-PMF always performs better than I-PMF indi-

cating that, as expected, latent semantic alignment helps achieve better handling of

interval-valued factors, also when considering factors with probabilistic interpre-

tations, rather than eigen-vector based interpretations, as they were considered in

Section 4.2.
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Figure 5.5: Accuracy comparison for Social Media Data for different target ranks
(the greener the cell, the better the result – the tables are best viewed in color)



5.4. Conclusions 89

1,02

1,04

1,06

1,08

1,10

1,12

1,14

1,16

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

R
M
SE

Decomposition Rank

Collaborative Filtering (MovieLens)

PMF IPMF AI­PMF

RMSE Higher than
1.16

RMSE Lower than
1.10

Figure 5.6: Collaborative filtering for the MovieLens Dataset (the lower, the bet-
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5.4 Conclusions

The set of experiments presented in this chapter confirmed our expectations re-

garding the decomposition techniques (illustrated in Chapter 4) applied to interval-

valued datasets, both synthetic and real-world ones.

In fact, our ISVD approaches (Section 4.4) proved efficient for the reconstruc-
tion task, where we were interested in evaluating the accuracy of our approach

in providing a truthful representation of the data in the transformed vector space

while, at the same time, not loosing too much of the interval information in the

original data. Specifically, the ISVD4 method, designed to improve the interval-

valued latent-space representation, is confirmed to be the better suited for this task,

particularly following the (b) option (see Figure 4.8 for details) for the reconstruc-

tion steps, reaching the best compromise in keeping the interval information while

avoiding the introduction of too much noise.

As regards the classification task, we followed the intuition of the authors in

[46] of relying on interval-valued data for highlighting the facial features of the

ORL face dataset for improving the overall accuracy, but thanks to our Interval

Latent Semantic Alignment (ILSA, Section 4.2) method, we managed to get even
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better results, thanks to a more faithful factorization of the interval-valued com-

ponents. The ISVD2 strategy, in particular, proved to be the most efficient, since

(although less accurate in representing an interval-valued latent semantic space

w.r.t. ISVD3 and ISVD4) it better discriminates the features (represented by the

weighted left singular vectors) that help identifying the specific characteristics of a

given individual.

In a similar way, the results for the collaborative filtering experiments show

that the latent semantic alignment helps improving the prediction capability of

probabilistic models (see AI-PMF, Section 4.5) when dealing with interval-valued

data.
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Tensor Decomposition

91





Chapter 6

Tensors and Tensor Factorization

In the context of this thesis, a tensor is intended as a multi-dimensional array, i.e., a

generalizations of a matrix with order (its number of dimensions, or modes) greater

than 2. More in detail, while a vector can be thought of as a tensor of order one and

a matrix as a tensor of order two, a generic tensor is intended as an array of order

three or higher 1.

The fibers of a tensor are the higher order analogue of matrix rows and columns,

namely one-dimensional sections of the tensor along each of the modes. For

a generic third-order tensor X ∈ RI1×I2×I3 , the fibers are referred to as columns

(mode-1), rows (mode-2) and tubes (mode-3), see Figure 6.1, and can be denoted

(fixing two of the three indices) as x[:,i2,i3], x[i1,:,i3] and x[i1,i2,:] respectively. Slices,

instead, are two-dimensional sections, in a third-order tensor referred to as horizon-

tal, lateral and frontal, see Figure 6.2, defined by fixing one of the three indices,

and denoted as X[i1,:,:], X[:,i2,:] and X[:,:,i3].

In literature, many decomposition techniques have been applied to tensors,

forming the basis for many data analysis and knowledge discovery tasks, from

clustering, trend and anomaly detection [30], correlation analysis [49], to pattern

discovery [27]. Initially originated in the field of psychometrics [8], tensor decom-

1In terms of notation, we follow the convention [29] of denoting higher-order tensors (order three
or higher) by boldface Euler script letters, e.g., X, Y.

93
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(a) Mode-1 fibers
(columns)

(b) Mode-2 fibers
(rows)

(c) Mode-3 fibers
(tubes)

Figure 6.1: Tensor Fibers

(a) Horizontal slices (b) Lateral slices (c) Frontal slices

Figure 6.2: Tensor Slices

position has been used in a large number of domains of computer science, including

signal processing, computer vision, and data mining.

In the following, two of the most adopted tensor factorization techniques, CP

and Tucker decompositions [53], are briefly outlined, followed by a description of a

more recent approach to the problem, the Tensor-Train decomposition [38], which

would serve as the starting point for the extension of the factorization analysis to

interval-valued tensors, as will be described in Chapter 7.

6.1 CP Decomposition

The CANDECOMP [8] (CANonical DECOMPosition) and PARAFAC [23]

(PARAllel FACtors) decompositions (together known as the CP decomposition) in-

troduced the idea of expressing a generic higher-order tensor as the sum of a finite

number of rank-one tensors (polyadic form). More specifically, the CP Decompo-

sition of a d-mode tensor, X ∈RI1×I2×···×Id , is a weighted sum of rank-one tensors,
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expressed as

X'
r

∑
k=1

λkA(1)
[:,k] ◦A(2)

[:,k] ◦ · · · ◦A(d)
[:,k], (6.1)

where the columns of the factor matrices A(i) ∈ Ii× r (with i = 1, · · · ,d and r =

rank(X)), combined by means of the outer product, ◦, form the component rank-

one tensors in the summation, with λ = [λ1,λ2, . . . ,λr] absorbing the normalizing

factors of each column vector.

An alternative way to view the CP decomposition is in the form of a diagonal

tensor and a set of factor matrices, one for each dimension of the input tensor (see

Figure 6.3 for a three-mode example).

𝐼1

𝐼2

𝐼3
𝑟

≃
l

𝐼1
𝑟

𝑟

𝑟

𝑟

𝐼2

A(1) A(2)

X

Figure 6.3: Candecomp/Parafac (CP) Decomposition of a three-mode tensor X into
three factor matrices (one for each mode) and a diagonal core tensor (whose non-
zero elements absorb the normalizing factors of each column vector in the factor
matrices).

When there is an equality in 6.1, the equation represents an exact decompo-

sition (also referred to as rank decomposition), where the rank of the tensor X

corresponds to the smallest number of rank-one tensors that generate X as their

sum. It is important to notice, however, that (unlike with matrices) there usually

is no straightforward way to determine the rank of a given tensor (the problem is,

in fact, NP-hard [24]). Thus, the most common approach to obtain a decomposi-

tion of an input tensor with good approximation, is to rely on an Alternating Least

Squares (ALS) based method [8, 23]: the factor matrices associated to the modes

of the input tensor are randomly initialized and, at each iteration, the algorithm

finds a better estimation for one of the factor matrices while maintaining the oth-

ers fixed; the process is then repeated for each factor matrix until a convergence

condition is reached.
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6.2 Tucker Decomposition

The Tucker decomposition can be seen as a generalization of the Singular Value

Decomposition (SVD) for higher-order arrays. More in detail, a d-mode tensor

X ∈ RI1×I2×···×Id can be expressed, by means of the Tucker decomposition, as a

core tensor multiplied by a matrix along each mode:

X' G×1 A(1)×2 A(2) · · ·×d A(d) =

=
r1

∑
k1=1

r2

∑
k2=1
· · ·

rd

∑
kd=1

G[k1,k2,...,kd ]A
(1)
[:,k1]
◦A(2)

[:,k2]
◦ · · · ◦A(d)

[:,kd ]
,

where A(i) ∈ RIi×ri are d factor matrices that can be thought of as the principal

components along each mode of X (capturing the “group membership” relation-

ship for the modes), while the entries of the core tensor G ∈Rr1×r2×···×rd represent

the level of interaction between the different components (capturing the relation-

ships among the “groups”). The operator ×n, referred to as the n-mode product,

is used to multiply a tensor, specifically, its mode-n matricization, for a matrix.

The mode-n matricization (or unfolding) is the operation that turns a given tensor

X ∈ RI1×I2×···×Id into a matrix X(n) ∈ RIn×(I1·...·In−1·In+1·...·Id), namely turning the

mode-n fibers of X into the columns of X(n).

Figure 6.4 illustrates the Tucker factorization for a three-mode tensor. The

resemblance to Figure 6.3 is no coincidence: the CP decomposition, in fact, can be

viewed as a special case of Tucker, where the core tensor is super-diagonal (i.e., all

its elements are zero, except on the main diagonal) and r1 = r2 = · · ·= rd .

The most efficient way to compute the Tucker decomposition of a tensor, re-

ferred to as the Higher-Order Singular Value Decomposition (HOSVD for short)

[11], relies on the SVD of the matricizations of the tensor along each mode to

evaluate the factor matrices, which can then be used (along with the input tensor)

to evaluate the core. However, while being simple, this process does not neces-

sarily lead to an optimal decomposition, although it can be improved by using an

ALS method to find better estimates of the factor matrices [31], thus increasing the

accuracy.
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Figure 6.4: Tucker Decomposition of a three-mode tensor X into three factor ma-
trices (which are usually orthogonal and can be thought of as the principal compo-
nents in each mode) and a core tensor (whose entries show the level of interaction
between the different components).

6.3 Tensor-Train Decomposition

The growing importance of tensor analysis in the fields of computational math-

ematics and computer science over the years has prompted the search for an effi-

cient representation of a tensor by means of a small number of parameters, in order

to tackle d-dimensional problems efficiently. As the number of dimensions in-

creases, in fact, these problems cannot be handled by standard numerical methods

due to the curse of dimensionality: everything (memory, number of operations,

time of execution) grows exponentially in d.

The CP and Tucker decompositions of a tensor, illustrated in the previous sec-

tions, allow for effective representations, however, both suffer from several draw-

backs.

The CP decomposition guarantees a low parametric format (by means of factor

matrices) but, as stated above, has the disadvantage of requiring the computation of

the tensor rank (an NP-hard problem [24]), which not only is not guaranteed to be

found, but also its numerical approximation is proven to be an ill-posed problem

[12], leading to algorithms that can be stuck in local minima and might fail in

providing a reliable answer even if a good approximation is known to exist.

On the other hand, the Tucker decomposition has the advantage of being more

stable, but it suffers from requiring a number of parameters that grows exponen-

tially with the number of dimensions of the input tensor. Thus, while proven suit-
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able when dealing with a low number of dimensions (especially three, [39]), it is

rarely a good option when d gets larger.

The Tensor-Train decomposition [38] tackles this issues by, (a), relying en-

tirely on the matrix Singular Value Decomposition (SVD) for its operations and, (b)

by representing any given d-dimensional tensor by means of d three-dimensional

ones.

More in detail, a d-mode tensor X ∈ Rn1×n2×···×nd is said to be in Tensor-

Train form if it is expressed as d three-mode core tensors Gk ∈ Rrk−1×nk×rk , with

k = 1, . . . ,d and r0 = rd = 1. The ranks rk, referred to as compression ranks, define

the accuracy of the decomposition, which not only can be exact (full-rank decom-

position), but can also be approximated with any given accuracy ε (a common

practice in scientific computing when it is necessary to prioritize efficiency over

accuracy), such that ∥∥∥X− X̃
∥∥∥

F
‖X‖F

≤ ε ,

where X̃ is the approximation of X, and ‖·‖F is the Frobenius norm.

Figure 6.5 illustrates the process to compute the Tensor-Train form of a given

tensor X. The procedure is based on the Singular Value Decomposition of the

auxiliary matrices Ck, obtained by reshaping2 (a step notated as in figure) either

the input tensor, to obtain C1, or the product of the factor matrices Σk and VT
k

(resulting from the SVD of Ck) to obtain the following Ck+1.

The compression ranks rk, with k = 1, . . . ,d−1 (as stated above, r0 = rd = 1),

are defined as the target ranks for the SVDs of the auxiliary matrices Ck: a full-

rank decomposition at each SVD step in the process will yield an exact (and thus

fully reversible) Tensor-Train decomposition of X, while lower-rank choices will

result in less accurate core tensors, with the benefit, however, of reducing their

overall sizes, thus sacrificing accuracy over efficiency.

2Rather than a mathematical operation, the reshape function, common to many programming
languages (MATLAB is among them), implements a way of rearranging the elements of an array (of
two or more dimensions) into a new one of different size (and/or different number of dimensions),
but without changing neither its number of elements nor their linear index (i.e., their index when
treating the array as if its elements were strung out in a long column vector).



6.3. Tensor-Train Decomposition 99

Σ1
𝑟1×𝑟1C1

𝑟0𝑛1×𝑛2⋯𝑛𝑑 G1
𝑟0×𝑛1×𝑟1SVD

RS

RS

U1
𝑟0𝑛1×𝑟1 V1

𝑛2⋯𝑛𝑑×𝑟1

C2
𝑟1𝑛2×𝑛3⋯𝑛𝑑 G2

𝑟1×𝑛2×𝑟2SVD
U2
𝑟1𝑛2×𝑟2 Σ2

𝑟2×𝑟2 V2
𝑛3⋯𝑛𝑑×𝑟2

RS ⋮

C𝑑−1
𝑟𝑑−2𝑛𝑑−1×𝑛𝑑 G𝑑−1

𝑟𝑑−2×𝑛𝑑−1×𝑟𝑑−1SVD
U𝑑−1
𝑟𝑑−2𝑛𝑑−1×𝑟𝑑−1 Σ𝑑−1

𝑟𝑑−1×𝑟𝑑−1 V𝑑−1
𝑛𝑑×𝑟𝑑−1

G𝑑
𝑟𝑑−1×𝑛𝑑×𝑟𝑑

RS

RS

RS

X
𝑛1×𝑛2×⋯×𝑛𝑑

RS

Figure 6.5: Tensor-Train Decomposition

Figure 6.6 illustrates the process that, taking the d cores G of the Tensor-Train

decomposition, reconstructs either the original tensor X, or a close approximation,

X̃, according to the accuracy of the initial decomposition. The procedure relies

again on the reshape (either of tensors or matrices) into auxiliary matrices that are

easily combined by means of matrix multiplication (notated as in figure).
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Figure 6.6: Tensor-Train Reconstruction

The property of the Tensor-Train decomposition of relying on simple matrix

operations, such as the Singular Value Decomposition and the matrix product,

proved particularly useful for the extension of the factorization analysis to interval-

valued tensors, as will be described in Chapter 7.
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6.4 Tensor decomposition in presence of uncertainty

One major problem facing the tensor decomposition approaches illustrated in

the previous sections is that the factorization process can be negatively affected

from noise and low quality in the data. Specifically, avoiding over-fitting to the

noisy data (especially if very sparse) can be a significant challenge, particularly

for large web-based user data. Recent research has shown that this issues can be

addressed by modeling the decomposition as a probabilistic tensor factorization

problem [57], relying on Bayesian techniques to avoid over-fitting.

This approach, however, has the significant drawbacks of assuming that all the

data processed can fit in the main memory, while also ignoring the possible non-

uniformities in the distribution of noise in the given input tensor. To address these

issues, the authors in [35] propose a Noise-profile adaptive Tensor Decomposition

(nTD) method which leverages a priori information about the noise in the data to

partition the input tensor into multiple sub-tensors, proceeding then to decompose

each of the sub-tensors by means of Bayesian probabilistic techniques, assigning

the computational resources that are better suited for each subtask.

Other proposed methods to handle uncertainty and imprecision in the data,

besides probabilistic approaches, rely on fuzzy set theory [58], where imprecise

data are modeled by means of degree of membership to a given set (or interval)

instead of crisp values. The author in [19], for example, proposes a generalization

of the CP and Tucker decomposition techniques to three-way imprecise data that

are transformed into fuzzy sets by means of a fuzzification process.

What we propose here, instead, is a way for directly working with interval-

value high-dimensional data, a problem not yet thoroughly investigated in the lit-

erature, by relying on the findings of our work with matrices, presented in the first

part of the thesis.



Chapter 7

Tensor factorization with
interval-valued data

This chapter describes how the techniques explored in Chapter 4 for dealing with

interval-valued matrices can be leveraged to also factorize interval-valued tensors.

In particular, as a case study, we present an extension of the tensor train decom-

position (introduced in section 6.3), taking advantage of the fact that its core oper-

ations just involve matrices, allowing us to exploit the interval-valued decomposi-

tion strategies (ISVD) already developed (see Section 4.4).

7.1 Interval-valued Tensor-Train Decomposition (ITTD)

As we saw in section 6.3, the Tensor-Train decomposition is mainly based on

the matrix Singular Value Decomposition (SVD) and has the purpose of represent-

ing any given d-dimensional tensor by means of d three-dimensional ones.

For an interval-valued scenario, we can consider the factorization of a d-mode

tensor

Ẍ= [X∗,X∗],

where X∗,X∗ ∈Rn1×n2×···×nd , as the set of d three-mode core tensors, such that

G̈k = [G∗k,G∗k ],

101
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where G∗k,G∗k ∈Rrk−1×nk×rk , with k = 1, . . . ,d and r0 = rd = 1.

Figure 7.1 illustrates the Interval Tensor-Train Decomposition (ITTD) proce-

dure, that computes the Tensor-Train form of a given interval-valued tensor Ẍ.

While the standard tensor train decomposition relied on the SVD, here, since at

each step k the auxiliary matrices C̈k are also interval-valued, we can apply one of

our ISVD strategies to obtain their factorization in terms of the factor matrices Ük,

V̈k and Σ̈k. However, since we are dealing with interval-valued entries, a few more

measures need to be taken into account, as detailed by the following operations

(also notated in figure):

The ReShape function, already introduced for the scalar scenario, is easily

extended to the interval-valued case, since it just operates separately for the

minimum and maximum endpoints of the matrix (or tensor) that needs to be

reshaped (i.e., whose entries need to be rearranged to obtain an array of a

different size).

The ReCombination function represents the extension of the standard matrix

product to the interval-valued factor matrices Σ̈k and V̈k (obtained from the

ISVD of C̈k), that need to be recombined in order to obtain C̈k+1 and proceed

with the next step of the decomposition procedure. More specifically, we

contemplate four options, according to whether we want to keep them either

as interval-valued or scalar (in which case the average of their endpoints is

considered, as Vk =
Vk∗+Vk∗

2 and Σk =
Σk∗+Σ∗k

2 ):

(a) C̈k+1 = Σ̈k⊗ V̈k;

(b) C̈k+1 =
[
Σk∗ ·Vk,Σ∗k ·Vk

]
;

(c) C̈k+1 =
[
Σk ·Vk∗,Σk ·V∗k

]
;

(d) Ck+1 = Σk ·Vk.

The AVerage function has the purpose of validating the interval-valued entries

of the output core tensors, and operates (similarly to the validation step of the

ISVD procedure, discussed in 4.2) by replacing the wrongly ordered entries

in each core tensor G̈k with their average.

The MiNimization function is intended as a sort of optimization of the de-

composition process, and has the purpose of reducing the number of entries

of a factor matrix that need to be made scalar during the validation process

described in the previous point (thus avoiding the interval information that
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they carry to be lost in the averaging process). More in detail, let’s consider

a pair of interval-valued factor matrices Ü = [U∗,U∗], with U∗,U∗ ∈ Rn×r,

and V̈ = [V∗,V∗], with V∗,V∗ ∈ Rm×r and let’s suppose that some of their

entries are not valid intervals (i.e., their endpoints are misordered and would

need to be replaced with their average). We can then define the following set

of variables, one for each column vector k of Ü and V̈, with k = 1, . . . ,r:

∆U
k =

n

∑
i=1

U∗[i,k]−U∗[i,k],

∆V
k =

n

∑
i=1

V∗[i,k]−V∗[i,k],

where the signs (either positive or negative) of ∆U
k and ∆V

k give us an idea

of whether, in the validation process, we would save more of the interval

information leaving the k column vectors as they are, or if it would be better

to swap their signs.

As we already saw in Section 4.2, in fact, a property of the singular value

decomposition is that we can swap the directions of a corresponding pair of

left and right singular vectors without compromising the overall decomposi-

tion process1. However, precisely because each adjustment on Ü would also

affect V̈, we have to either prioritize one of the two, or reach a compromise.

Specifically, for every k = 1, . . . ,r, we have the following three options:

1. Prioritize Ü:

if ∆U
k < 0 then Ü[:,k] := −1 · Ü[:,k] ∧ V̈[:,k] := −1 · V̈[:,k];

2. Prioritize V̈:

if ∆V
k < 0 then Ü[:,k] := −1 · Ü[:,k] ∧ V̈[:,k] := −1 · V̈[:,k];

3. Reach a compromise between Ü and V̈:

if
(
|∆U

k |> |∆V
k | ∧ ∆U

k < 0
)
∨
(
|∆V

k |> |∆U
k | ∧ ∆V

k < 0
)

then Ü[:,k] := −1 · Ü[:,k] ∧ V̈[:,k] := −1 · V̈[:,k].

1Specifically, for every i = 1, . . . ,k, it holds that σi ·ui ·vT
i ≡ σi · (−ui) · (−vT

i ).



104 Chapter 7. Tensor factorization with interval-valued data

ሷΣ1
𝑟1×𝑟1ሷC1

𝑟0𝑛1×𝑛2⋯𝑛𝑑 ሷG1
𝑟0×𝑛1×𝑟1ISVD

RS

RS

ሷU1
𝑟0𝑛1×𝑟1 ሷV1

𝑛2⋯𝑛𝑑×𝑟1

ሷC2
𝑟1𝑛2×𝑛3⋯𝑛𝑑 ሷG2

𝑟1×𝑛2×𝑟2ISVD
ሷU2
𝑟1𝑛2×𝑟2 ሷΣ2

𝑟2×𝑟2 ሷV2
𝑛3⋯𝑛𝑑×𝑟2

RS ⋮

ሷC𝑑−1
𝑟𝑑−2𝑛𝑑−1×𝑛𝑑 ሷG𝑑−1

𝑟𝑑−2×𝑛𝑑−1×𝑟𝑑−1ISVD
ሷU𝑑−1
𝑟𝑑−2𝑛𝑑−1×𝑟𝑑−1 ሷΣ𝑑−1

𝑟𝑑−1×𝑟𝑑−1 ሷV𝑑−1
𝑛𝑑×𝑟𝑑−1

ሷG𝑑
𝑟𝑑−1×𝑛𝑑×𝑟𝑑

RS

ሷX
𝑛1×𝑛2×⋯×𝑛𝑑

RS

RS

MN

AV

MN

AV

MN

AV

AV

RC

RC

RC

RS

Figure 7.1: Interval Tensor-Train Decomposition (ITTD) of an n-mode interval-
valued tensor. Colors help visualize the relationship between the input tensor sizes
(in green) and the auxiliary matrices ranks (in blue) with the core tensors sizes.

The decision on which option to choose at each step of the decomposi-

tion is application-oriented and, specifically, it’s related to whether we would

like to prioritize one of the resulting cores over the others (maybe because

we expect the bulk of the interval information to be collected in it), in which

case we would prioritize for V̈ (option 2) for each step that leads to its ex-

traction, and lastly for Ü (option 1) when we actually extract it. If instead we

presume that all the interval information would be equally spread over al the

cores, the best choice is to try to lower the overall number of elements that

need to be averaged between both Ü and V̈ (option 3).

7.2 Interval-valued Tensor-Train Reconstruction

Figure 7.2 illustrates the Interval Tensor-Train reconstruction process, which,

similarly to what happens in the scalar scenario (see Figure 6.6), takes the d cores

G̈ from the ITTD procedure and returns either the original tensor Ẍ, or a close

approximation,
∼
Ẍ, according to the accuracy of the initial decomposition (i.e., if

the decomposition was either full-rank or low-rank).
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Figure 7.2: Interval Tensor-Train Reconstruction of an n-mode interval-valued ten-
sor. Colors help visualize the relationship between the core tensors sizes (in green)
and the auxiliary matrices ranks (in blue) with the output tensor sizes.

As for the decomposition, the interval-valued nature of the data requires the

introduction of following additional operations:

For the ReShape function the same observations made for the decomposition

are valid.

The AVerage function, used for validating the interval-valued entries, is here

applied in the last step, just before returning the output tensor.

The ReAssembling function replaces what in the scalar scenario was repre-

sented by the matrix product, and is equivalent to the ReCombination func-

tion of the ITTD procedure. Here, again, we have four options for the re-

combination of the auxiliary matrices Ä and B̈, according to which one we

want to keep as interval-valued or scalar:

(α) Ä := Ä⊗ B̈;

(β ) Ä :=
[
A∗ ·B,A∗ ·B

]
;

(γ) Ä :=
[
A ·B∗,A ·B∗

]
;

(δ ) Ä := A ·B.

7.3 Experiments on interval-valued tensor factorization

In order to validate our approach on the decomposition of interval-valued ten-

sors, we have devised a set of experiments that evaluate the accuracy of the recon-

struction of a d-dimensional tensor Ẍ from its cores G̈1, G̈2, . . . , G̈d obtained from

the ITTD procedure.
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In particular, we are interested in finding the ReCombination and ReAssem-
bling assignments (at each step of the decomposition and reconstruction proce-

dures, respectively) that lead to the best accuracy, i.e., that minimize the harmonic

mean function2 ΘHM

(
Ẍ,

∼
Ẍ
)

between the input tensor Ẍ and its approximation
∼
Ẍ.

From the experiments on interval-valued matrices, reported in Chapter 5, we

can draw the following conclusions, that will help us setting up the test cases:

• the best strategy for decomposing an interval-valued matrix is, in general,

ISVD4 (detailed in Section 4.4.5), so we will rely on this method for the

decomposition steps in the ITTD procedure (indicated as ISVD in Figure

7.1).

• When two interval-valued matrices need to be multiplied, it is better in gen-

eral to avoid the interval-valued matrix product, and choose, if possible, a

scalar product, where one of the two matrices is averaged. In light of this

fact, in the following experiments we will not take into account options a

and α in the ReCombination and ReAssembling, respectively.

The second point in the list affects, first of all, the reconstruction procedure:

if we want to avoid the interval-valued product between two matrices, in fact, it

is easy to see that only one core tensor can be taken as interval-valued in the pro-

cess, since only one branch of the procedure represented in Figure 7.2 can carry

interval-valued variables at any time. From these consideration, we can define a

general strategy to assign the ReAssembling steps of the reconstruction procedure

precisely according to which core we want to keep as interval. This strategy is

summarized in Table 7.1, which shows, for each core tensor G̈k obtained from the

ITTD procedure that we want to keep as interval-valued, which set of options for

the ReAssembling steps needs to be assigned. These steps will allow the interval

information, stored in the chosen core tensor, to trickle down the branches of the

reconstruction procedure and end up in the final approximation of the initial tensor.

2Note that the harmonic mean function ΘHM, presented in Section 4.1.2, can be readily extended
from matrices to tensors considering that the Frobenius norm of a tensor is simply the extension of
the one for a matrix to higher dimensions, namely, given a tensor X ∈RI1×I2×···×Id ,

‖X‖F =

√√√√ I1

∑
i1=1

I2

∑
i2=1
· · ·

Id

∑
id=1

(xi1,i2,...,id )
2
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Interval core ReAssembling step options

G̈1 β β β · · · β β

G̈2 γ β β · · · β β

G̈3 δ γ β · · · β β

...
. . .

G̈d δ δ δ · · · δ γ

1 2 3 · · · d−2 d−3

Table 7.1: ReAssembling options according to which core tensor is selected as the
interval-valued one

Since in this formulation of the reconstruction procedure only one core tensor

can be taken as interval-valued, it seems appropriate to make sure that already

in the decomposition process most of the interval information from the original

tensor will end up in that particular core. Our approach to facilitate this outcome is

twofold:

1. First of all, we can make sure that the interval information propagates through

each step in the decomposition by selecting an option for the ReCombina-
tion step that would keep either Σ̈k or V̈ as interval (i.e., option b or c, re-

spectively). Once we reach the ISVD step that returns the Ü factor matrix

that would be reshaped into the desired core tensor, then there is no need

for the next steps to still process interval information, so, from then on, we

can keep Σ and V as scalar (after all, the following core tensors would be

averaged anyway). We can in this way further reduce the branching factor

regarding the possible options for the ReCombination steps in the decom-

position, obtaining also in this case a general assignment strategy, which is

reported in Table 7.2.

2. We can also leverage the MiNimization step to make sure that as less of

the interval information as possible gets lost in the decomposition process:

when we reach the step of the ITTD procedure wherein we get the factor

matrix Ü that is the one that will end up forming the core tensor that we

intend to keep as interval-valued, then we prioritize Ü (so that, as explained

in Section 7.1, it will loose as less information as possible in the validation

process), otherwise we prioritize for V̈ (including the case in which we are
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Interval core ReCombination step options

G̈1 d d d · · · d d

G̈2 b/c d d · · · d d

G̈3 b/c b/c d · · · d d
...

. . .

G̈d b/c b/c b/c · · · b/c b/c

1 2 3 · · · d−2 d−3

Table 7.2: ReCombination options in the ITTD procedure according to which core
tensor we would want to keep as interval-valued in the reconstruction

interested in keeping the last core tensor as interval-valued, since it will be

the outcome of the recombination of Σ̈d−1 and V̈d−1).

7.3.1 Experiments on synthetic datasets

The experiments reported in this section have been devised with the purpose

of finding the assignment (or assignments) for the ReCombination steps in the

ITTD procedure that lead to the best approximation for a given input tensor, after

its decomposition and reconstruction.

The dataset we relied on have been randomly generated, following a similar

approach to the one discussed for the interval-valued matrices scenario (see Section

5.1.1). More in detail, the following parameters have been specified:

Tensor size: we considered 5-dimensional 8×8×8×8×8 tensors (for a total of

32768 entries each), for which the decomposition and reconstruction pro-

cesses (tailored for this particular size) are illustrated in Figures 7.3 and 7.4,

respectively.

Interval density: this parameter is set to 50% (half of the entries in each tensor is

set as interval valued).

Interval intensity: also this parameter is set to 50% (the range of each interval en-

try is uniformly selected between 0% and 50% of the original scalar value).

Target rank: at each ISVD step in the ITTD procedure, a full-rank decomposition

is performed.
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Interval information disposition: one aspect that is interesting to explore regard-

ing interval-valued tensors is how the intervals are disposed in the data. Here

we consider two options, one where the interval-valued entries are randomly

placed in the tensor, and one where the interval information is localized along

one of the modes. Figure 7.5 illustrates this concept for a 3D 16× 16× 16

tensor (for ease of visualization), (a) with random intervals, (b) with the in-

tervals along mode-1 (i.e., the horizontal slices of the tensor). The same

idea can be extended to 5D tensors, where the interval information can be

localized along any of the five modes.

More in detail, given a scalar tensor X ∈RI×J×K×L×M (with I = J = K = L =

M = 8), whose entries are randomly generated from a uniform distribution of real

values from 1 to 100, we generate the interval-valued tensor Ẍ, according to the

type of noise, as follows:

• Random interval information: we uniformly select 50% (according to the

interval density parameter) of the scalar entries in X and we replace them

with an interval defined as

Ẍ[i, j,k,l,m] =
[
X[i, j,k,l,m],X[i, j,k,l,m]+X[i, j,k,l,m] ·α ∼ U (0,0.5)

]
.

• Localized interval information: we uniformly select 50% (according to

the interval density parameter) of the first mode indices, i ∈ [1, . . . , I], and

we replace the scalar slices they identify, X[i,:,:,:,:], with interval-valued ones

Ẍ[i,:,:,:,:] =
[
X[i,:,:,:,:],X[i,:,:,:,:] ·α ∼ U (1,1.5)

]
;

the same process is then repeated along the other modes J, K, L and M to

generate the rest of the localized interval information dataset.

For each type of noise, we created 100 random tensors and the results presented

in the following are the average of each corresponding run.

Random interval information experiments

Figure 7.6 illustrates the results for a run of experiments over the synthetic

dataset with the interval information randomly placed in each tensor. The figure

reports the Harmonic Mean results (averaged over 100 runs and color-coded from
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Figure 7.3: Instantiation of the Interval Tensor-Train Decomposition (ITTD) (see
Figure 7.1) procedure for 5-dimensional (8× 8× 8× 8× 8) tensors. Colors help
visualize the relationship between the input tensor sizes (in green) and the auxiliary
matrices ranks (in blue) with the core tensors sizes. Notice also how the number
of elements are substantially different from one core tensor to the other, with G̈3
being the largest by a significant margin.
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Figure 7.4: Instantiation of the Interval Tensor-Train Reconstruction procedure
(see Figure 7.2) for 5-dimensional (8×8×8×8×8) tensors. Colors help visualize
the relationship between the core tensors sizes (in green) and the auxiliary matrices
ranks (in blue) with the output tensor sizes.
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Figure 7.5: Disposition of the interval information in a 3D tensor, represented as
the ratio between maximum and minimum values
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red, poor reconstruction, to green, best reconstruction) for each possible combina-

tion of the ReCombination options (b, c and d) at each of the four ISVD steps

in the decomposition procedure (see Figure 7.3). Each decomposition scenario is

then evaluated over five possible reconstruction schemes, according to which of

the core tensors, G̈1 to G̈5, we want to keep as interval.

From these results we can conclude that:

• when the interval information is randomly placed in the tensors, taking any

of the core tensors as interval-valued gives a reasonably good accuracy;

• however, we get a slightly better result (highlighted in light green in figure)

if we take G̈3 as interval, which seems to be related, intuitively, to the fact

that (as we can see in Figure 7.4) it is the one with the largest size (and,

consequently, the one with more entries) of all, thus being able to maintain

more of the original interval information;

• in terms of the ReCombination options, our strategy (summarized in Table

7.2) seems to hold true: in order to get the best accuracy, while keeping G̈3 as

interval, it is important to let the interval information propagate through the

ISVD steps (in this case, option c is the best option, keeping V̈k as interval-

valued and Σ̈k scalar). After the third ISVD step, from which we extract the

factor matrix Ü3 (which after a reshape becomes G̈3), both Σ̈k and V̈k might

as well be treated as scalar, choosing option d for the following ReCombi-
nation steps3.

Localized interval information experiments

For this set of experiments we considered a synthetic dataset where the interval

information is localized along any of the modes in the input tensors. Specifically,

Figures 7.7 to 7.11 report the reconstruction accuracies (in terms of the average

Harmonic Mean over 100 samples, with the results color-coded from red, poor re-

construction, to green, best reconstruction) for each set of experiments where the

interval information is localized along mode I to M, respectively. We again search

for the assignment of ReCombination options (b, c and d) at each of the four

3Notice that the first nine results in the column relative to Ẍ3 in figure 7.6 are equivalent, and
they are just ordered alphabetically according to the recombination options.
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0,924781737 [b b b b] 0,924903241 [b b b b] 0,938030943 [c c b b] 0,92440716 [b c b b] 0,924508243 [b b b c]
0,924781737 [b b b c] 0,924903241 [b b b c] 0,938030943 [c c b c] 0,92440716 [b c b c] 0,924507046 [b b b b]
0,924781737 [b b b d] 0,924903241 [b b b d] 0,938030943 [c c b d] 0,92440716 [b c b d] 0,924496331 [b c b c]
0,924781737 [b b c b] 0,924903241 [b b c b] 0,938030943 [c c c b] 0,924405153 [b c c b] 0,924495103 [b c b b]
0,924781737 [b b c c] 0,924903241 [b b c c] 0,938030943 [c c c c] 0,924405153 [b c c c] 0,924480652 [b c c c]
0,924781737 [b b c d] 0,924903241 [b b c d] 0,938030943 [c c c d] 0,924405153 [b c c d] 0,924479337 [b c c b]
0,924781737 [b b d b] 0,924903241 [b c b b] 0,938030943 [c c d b] 0,924383779 [b b c b] 0,924476022 [b b c c]
0,924781737 [b b d c] 0,924903241 [b c b c] 0,938030943 [c c d c] 0,924383779 [b b c c] 0,924474804 [b b c b]
0,924781737 [b b d d] 0,924903241 [b c b d] 0,938030943 [c c d d] 0,924383779 [b b c d] 0,921901021 [c b b c]
0,924781737 [b c b b] 0,924903241 [b c c b] 0,924370483 [b b b b] 0,924381144 [b b b b] 0,921899913 [c b b b]
0,924781737 [b c b c] 0,924903241 [b c c c] 0,924370483 [b b b c] 0,924381144 [b b b c] 0,921863653 [c b c c]
0,924781737 [b c b d] 0,924903241 [b c c d] 0,924370483 [b b b d] 0,924381144 [b b b d] 0,921862241 [c b c b]
0,924781737 [b c c b] 0,924903241 [b c d b] 0,924370483 [b b c b] 0,921832284 [c b c b] 0,918835383 [c c c c]
0,924781737 [b c c c] 0,924903241 [b c d c] 0,924370483 [b b c c] 0,921832284 [c b c c] 0,918804178 [c c c b]
0,924781737 [b c c d] 0,924903241 [b c d d] 0,924370483 [b b c d] 0,921832284 [c b c d] 0,9186875 [c c b c]
0,924781737 [b c d b] 0,924903241 [b d b b] 0,924370483 [b b d b] 0,92182547 [c b b b] 0,918685267 [c c b b]
0,924781737 [b c d c] 0,924903241 [b d b c] 0,924370483 [b b d c] 0,92182547 [c b b c] 0,904019975 [b b b d]
0,924781737 [b c d d] 0,924903241 [b d b d] 0,924370483 [b b d d] 0,92182547 [c b b d] 0,904019975 [b b c d]
0,924781737 [b d b b] 0,924903241 [b d c b] 0,924343108 [b c b b] 0,92011705 [c c c b] 0,904019975 [b b d b]
0,924781737 [b d b c] 0,924903241 [b d c c] 0,924343108 [b c b c] 0,92011705 [c c c c] 0,904019975 [b b d c]
0,924781737 [b d b d] 0,924903241 [b d c d] 0,924343108 [b c b d] 0,92011705 [c c c d] 0,904019975 [b b d d]
0,924781737 [b d c b] 0,924903241 [b d d b] 0,924343108 [b c c b] 0,918573575 [c c b d] 0,904019975 [b c b d]
0,924781737 [b d c c] 0,924903241 [b d d c] 0,924343108 [b c c c] 0,918573575 [c c b b] 0,904019975 [b c c d]
0,924781737 [b d c d] 0,924903241 [b d d d] 0,924343108 [b c c d] 0,918573575 [c c b c] 0,904019975 [b c d b]
0,924781737 [b d d b] 0,924903241 [b b d b] 0,924343108 [b c d b] 0,904019975 [b b d b] 0,904019975 [b c d c]
0,924781737 [b d d c] 0,924903241 [b b d c] 0,924343108 [b c d c] 0,904019975 [b b d c] 0,904019975 [b c d d]
0,924781737 [b d d d] 0,924903241 [b b d d] 0,924343108 [b c d d] 0,904019975 [b b d d] 0,904019975 [b d b b]
0,924781737 [d b b b] 0,924748989 [c b b b] 0,921724704 [c b b b] 0,904019975 [b c d b] 0,904019975 [b d b c]
0,924781737 [d b b c] 0,924748989 [c b b c] 0,921724704 [c b b c] 0,904019975 [b c d c] 0,904019975 [b d b d]
0,924781737 [d b b d] 0,924748989 [c b b d] 0,921724704 [c b b d] 0,904019975 [b c d d] 0,904019975 [b d c b]
0,924781737 [d b c b] 0,924748989 [c b c b] 0,921724704 [c b c b] 0,904019975 [b d b b] 0,904019975 [b d c c]
0,924781737 [d b c c] 0,924748989 [c b c c] 0,921724704 [c b c c] 0,904019975 [b d b c] 0,904019975 [b d c d]
0,924781737 [d b c d] 0,924748989 [c b c d] 0,921724704 [c b c d] 0,904019975 [b d b d] 0,904019975 [b d d b]
0,924781737 [d b d b] 0,924748989 [c b d b] 0,921724704 [c b d b] 0,904019975 [b d c b] 0,904019975 [b d d c]
0,924781737 [d b d c] 0,924748989 [c b d c] 0,921724704 [c b d c] 0,904019975 [b d c c] 0,904019975 [b d d d]
0,924781737 [d b d d] 0,924748989 [c b d d] 0,921724704 [c b d d] 0,904019975 [b d c d] 0,904019975 [d b b b]
0,924781737 [d c b b] 0,924748989 [c d b b] 0,904019975 [b d b b] 0,904019975 [b d d b] 0,904019975 [d b b c]
0,924781737 [d c b c] 0,924748989 [c d b c] 0,904019975 [b d b c] 0,904019975 [b d d c] 0,904019975 [d b b d]
0,924781737 [d c b d] 0,924748989 [c d b d] 0,904019975 [b d b d] 0,904019975 [b d d d] 0,904019975 [d b c b]
0,924781737 [d c c b] 0,924748989 [c d c b] 0,904019975 [b d c b] 0,904019975 [d b b b] 0,904019975 [d b c c]
0,924781737 [d c c c] 0,924748989 [c d c c] 0,904019975 [b d c c] 0,904019975 [d b b c] 0,904019975 [d b c d]
0,924781737 [d c c d] 0,924748989 [c d c d] 0,904019975 [b d c d] 0,904019975 [d b b d] 0,904019975 [d b d b]
0,924781737 [d c d b] 0,924748989 [c d d b] 0,904019975 [b d d b] 0,904019975 [d b c b] 0,904019975 [d b d c]
0,924781737 [d c d c] 0,924748989 [c d d c] 0,904019975 [b d d c] 0,904019975 [d b c c] 0,904019975 [d b d d]
0,924781737 [d c d d] 0,924748989 [c d d d] 0,904019975 [b d d d] 0,904019975 [d b c d] 0,904019975 [d c b b]
0,924781737 [d d b b] 0,92138904 [c c b b] 0,904019975 [d b b b] 0,904019975 [d b d b] 0,904019975 [d c b c]
0,924781737 [d d b c] 0,92138904 [c c b c] 0,904019975 [d b b c] 0,904019975 [d b d c] 0,904019975 [d c b d]
0,924781737 [d d b d] 0,92138904 [c c b d] 0,904019975 [d b b d] 0,904019975 [d b d d] 0,904019975 [d c c b]
0,924781737 [d d c b] 0,92138904 [c c c b] 0,904019975 [d b c b] 0,904019975 [d c b b] 0,904019975 [d c c c]
0,924781737 [d d c c] 0,92138904 [c c c c] 0,904019975 [d b c c] 0,904019975 [d c b c] 0,904019975 [d c c d]
0,924781737 [d d c d] 0,92138904 [c c c d] 0,904019975 [d b c d] 0,904019975 [d c b d] 0,904019975 [d c d b]
0,924781737 [d d d b] 0,92138904 [c c d b] 0,904019975 [d b d b] 0,904019975 [d c c b] 0,904019975 [d c d c]
0,924781737 [d d d c] 0,92138904 [c c d c] 0,904019975 [d b d c] 0,904019975 [d c c c] 0,904019975 [d c d d]
0,924781737 [d d d d] 0,92138904 [c c d d] 0,904019975 [d b d d] 0,904019975 [d c c d] 0,904019975 [d d b b]
0,922138002 [c b b b] 0,904019975 [d b b b] 0,904019975 [d c b b] 0,904019975 [d c d b] 0,904019975 [d d b c]
0,922138002 [c b b c] 0,904019975 [d b b c] 0,904019975 [d c b c] 0,904019975 [d c d c] 0,904019975 [d d b d]
0,922138002 [c b b d] 0,904019975 [d b b d] 0,904019975 [d c b d] 0,904019975 [d c d d] 0,904019975 [d d c b]
0,922138002 [c b c b] 0,904019975 [d b c b] 0,904019975 [d c c b] 0,904019975 [d d b b] 0,904019975 [d d c c]
0,922138002 [c b c c] 0,904019975 [d b c c] 0,904019975 [d c c c] 0,904019975 [d d b c] 0,904019975 [d d c d]
0,922138002 [c b c d] 0,904019975 [d b c d] 0,904019975 [d c c d] 0,904019975 [d d b d] 0,904019975 [d d d b]
0,922138002 [c b d b] 0,904019975 [d b d b] 0,904019975 [d c d b] 0,904019975 [d d c b] 0,904019975 [d d d c]
0,922138002 [c b d c] 0,904019975 [d b d c] 0,904019975 [d c d c] 0,904019975 [d d c c] 0,904019975 [d d d d]
0,922138002 [c b d d] 0,904019975 [d b d d] 0,904019975 [d c d d] 0,904019975 [d d c d] 0,90185101 [c b b d]
0,922138002 [c d b b] 0,904019975 [d c b b] 0,904019975 [d d b b] 0,904019975 [d d d b] 0,90185101 [c b c d]
0,922138002 [c d b c] 0,904019975 [d c b c] 0,904019975 [d d b c] 0,904019975 [d d d c] 0,90185101 [c b d b]
0,922138002 [c d b d] 0,904019975 [d c b d] 0,904019975 [d d b d] 0,904019975 [d d d d] 0,90185101 [c b d c]
0,922138002 [c d c b] 0,904019975 [d c c b] 0,904019975 [d d c b] 0,90185101 [c b d b] 0,90185101 [c b d d]
0,922138002 [c d c c] 0,904019975 [d c c c] 0,904019975 [d d c c] 0,90185101 [c b d c] 0,90185101 [c d b b]
0,922138002 [c d c d] 0,904019975 [d c c d] 0,904019975 [d d c d] 0,90185101 [c b d d] 0,90185101 [c d b c]
0,922138002 [c d d b] 0,904019975 [d c d b] 0,904019975 [d d d b] 0,90185101 [c d b b] 0,90185101 [c d b d]
0,922138002 [c d d c] 0,904019975 [d c d c] 0,904019975 [d d d c] 0,90185101 [c d b c] 0,90185101 [c d c b]
0,922138002 [c d d d] 0,904019975 [d c d d] 0,904019975 [d d d d] 0,90185101 [c d b d] 0,90185101 [c d c c]
0,918878016 [c c b b] 0,904019975 [d d b b] 0,90185101 [c d b b] 0,90185101 [c d c b] 0,90185101 [c d c d]
0,918878016 [c c b c] 0,904019975 [d d b c] 0,90185101 [c d b c] 0,90185101 [c d c c] 0,90185101 [c d d b]
0,918878016 [c c b d] 0,904019975 [d d b d] 0,90185101 [c d b d] 0,90185101 [c d c d] 0,90185101 [c d d c]
0,918878016 [c c c b] 0,904019975 [d d c b] 0,90185101 [c d c b] 0,90185101 [c d d b] 0,90185101 [c d d d]
0,918878016 [c c c c] 0,904019975 [d d c c] 0,90185101 [c d c c] 0,90185101 [c d d c] 0,899169549 [c c b d]
0,918878016 [c c c d] 0,904019975 [d d c d] 0,90185101 [c d c d] 0,90185101 [c d d d] 0,899169549 [c c c d]
0,918878016 [c c d b] 0,904019975 [d d d b] 0,90185101 [c d d b] 0,899169549 [c c d b] 0,899169549 [c c d b]
0,918878016 [c c d c] 0,904019975 [d d d c] 0,90185101 [c d d c] 0,899169549 [c c d c] 0,899169549 [c c d c]
0,918878016 [c c d d] 0,904019975 [d d d d] 0,90185101 [c d d d] 0,899169549 [c c d d] 0,899169549 [c c d d]

G1 as interval G2 as interval G3 as interval G4 as interval G5 as interval

Figure 7.6: Reconstruction accuracies for tensors with random interval information
(the greener the cell, the better the result, best option highlighted in light green –
the tables are best viewed in color)
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ISVD step in the decomposition procedure that leads to the highest reconstruction

accuracy, highlighting the best (or one of the best, in case of a tie) set of assign-

ments in light green. Finally, Figure 7.12 summarizes these results by comparing

the best option from each set.

These results help us conclude that:

• the localization of the interval information along one of the input tensor’s

mode affects the choice on which one of the core tensors is best keeping as

interval-valued. In particular, it is always the case that if the noise is along

mode k, then it is best to keep G̈k as interval;

• our strategy for choosing the ReCombination options at each step of the

ITTD procedure is once again confirmed to be reasonable, guaranteeing the

best accuracy (or one of the best in case of tie) in each scenario, according

to which core tensor we intend to keep as interval-valued;

• the results in Figure 7.12 imply that, whether possible, keeping the first core

as interval-valued would be the overall optimal solution, suggesting that it is

better to extract the interval information as soon as possible in the decompo-

sition procedure. This would imply, in general, that, given a generic tensor

where the interval information is localized along one mode, it would be best

to first re-orient the tensor so that that specific mode becomes the one related

to the first core resulting from the decomposition procedure.
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0,963362235 [b d d c] 0,922447982 [b d d c] 0,906248657 [d c d c] 0,898473249 [b b d c] 0,898473249 [b c d d]
0,963362235 [b d d d] 0,922447982 [b d d d] 0,906248657 [d c d d] 0,898473249 [b b d d] 0,898473249 [b d b b]
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0,957351605 [c c c b] 0,906248657 [d c c b] 0,898473249 [b d c b] 0,896118892 [c b d b] 0,896118892 [c b d d]
0,957351605 [c c c c] 0,906248657 [d c c c] 0,898473249 [b d c c] 0,896118892 [c b d c] 0,896118892 [c c b d]
0,957351605 [c c c d] 0,906248657 [d c c d] 0,898473249 [b d c d] 0,896118892 [c b d d] 0,896118892 [c c c d]
0,957351605 [c c d b] 0,906248657 [d c d b] 0,898473249 [b d d b] 0,896118892 [c c d b] 0,896118892 [c c d b]
0,957351605 [c c d c] 0,906248657 [d c d c] 0,898473249 [b d d c] 0,896118892 [c c d c] 0,896118892 [c c d c]
0,957351605 [c c d d] 0,906248657 [d c d d] 0,898473249 [b d d d] 0,896118892 [c c d d] 0,896118892 [c c d d]
0,957351605 [c d b b] 0,906248657 [d d b b] 0,896118892 [c d b b] 0,896118892 [c d b b] 0,896118892 [c d b b]
0,957351605 [c d b c] 0,906248657 [d d b c] 0,896118892 [c d b c] 0,896118892 [c d b c] 0,896118892 [c d b c]
0,957351605 [c d b d] 0,906248657 [d d b d] 0,896118892 [c d b d] 0,896118892 [c d b d] 0,896118892 [c d b d]
0,957351605 [c d c b] 0,906248657 [d d c b] 0,896118892 [c d c b] 0,896118892 [c d c b] 0,896118892 [c d c b]
0,957351605 [c d c c] 0,906248657 [d d c c] 0,896118892 [c d c c] 0,896118892 [c d c c] 0,896118892 [c d c c]
0,957351605 [c d c d] 0,906248657 [d d c d] 0,896118892 [c d c d] 0,896118892 [c d c d] 0,896118892 [c d c d]
0,957351605 [c d d b] 0,906248657 [d d d b] 0,896118892 [c d d b] 0,896118892 [c d d b] 0,896118892 [c d d b]
0,957351605 [c d d c] 0,906248657 [d d d c] 0,896118892 [c d d c] 0,896118892 [c d d c] 0,896118892 [c d d c]
0,957351605 [c d d d] 0,906248657 [d d d d] 0,896118892 [c d d d] 0,896118892 [c d d d] 0,896118892 [c d d d]

G1 as interval G2 as interval G3 as interval G4 as interval G5 as interval

Figure 7.7: Reconstruction accuracies for tensors with interval information local-
ized along the first mode, I (the greener the cell, the better the result, best option
highlighted in light green – the tables are best viewed in color)
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0,929048675 [b d b d] 0,939617233 [c c b d] 0,928121105 [b c b d] 0,909474205 [c b b d] 0,906248657 [b b d d]
0,929048675 [b d c b] 0,939617233 [c c c b] 0,928121105 [b c c b] 0,909461429 [c b c b] 0,906248657 [b c b d]
0,929048675 [b d c c] 0,939617233 [c c c c] 0,928121105 [b c c c] 0,909461429 [c b c c] 0,906248657 [b c c d]
0,929048675 [b d c d] 0,939617233 [c c c d] 0,928121105 [b c c d] 0,909461429 [c b c d] 0,906248657 [b c d b]
0,929048675 [b d d b] 0,939617233 [c c d b] 0,928121105 [b c d b] 0,906248657 [b b d b] 0,906248657 [b c d c]
0,929048675 [b d d c] 0,939617233 [c c d c] 0,928121105 [b c d c] 0,906248657 [b b d c] 0,906248657 [b c d d]
0,929048675 [b d d d] 0,939617233 [c c d d] 0,928121105 [b c d d] 0,906248657 [b b d d] 0,906248657 [b d b b]
0,929048675 [d b b b] 0,92907181 [b b b b] 0,90960417 [c b b b] 0,906248657 [b c d b] 0,906248657 [b d b c]
0,929048675 [d b b c] 0,92907181 [b b b c] 0,90960417 [c b b c] 0,906248657 [b c d c] 0,906248657 [b d b d]
0,929048675 [d b b d] 0,92907181 [b b b d] 0,90960417 [c b b d] 0,906248657 [b c d d] 0,906248657 [b d c b]
0,929048675 [d b c b] 0,92907181 [b b c b] 0,90960417 [c b c b] 0,906248657 [b d b b] 0,906248657 [b d c c]
0,929048675 [d b c c] 0,92907181 [b b c c] 0,90960417 [c b c c] 0,906248657 [b d b c] 0,906248657 [b d c d]
0,929048675 [d b c d] 0,92907181 [b b c d] 0,90960417 [c b c d] 0,906248657 [b d b d] 0,906248657 [b d d b]
0,929048675 [d b d b] 0,92907181 [b b d b] 0,90960417 [c b d b] 0,906248657 [b d c b] 0,906248657 [b d d c]
0,929048675 [d b d c] 0,92907181 [b b d c] 0,90960417 [c b d c] 0,906248657 [b d c c] 0,906248657 [b d d d]
0,929048675 [d b d d] 0,92907181 [b b d d] 0,90960417 [c b d d] 0,906248657 [b d c d] 0,906248657 [d b b b]
0,929048675 [d c b b] 0,92907181 [b c b b] 0,906248657 [b d b b] 0,906248657 [b d d b] 0,906248657 [d b b c]
0,929048675 [d c b c] 0,92907181 [b c b c] 0,906248657 [b d b c] 0,906248657 [b d d c] 0,906248657 [d b b d]
0,929048675 [d c b d] 0,92907181 [b c b d] 0,906248657 [b d b d] 0,906248657 [b d d d] 0,906248657 [d b c b]
0,929048675 [d c c b] 0,92907181 [b c c b] 0,906248657 [b d c b] 0,906248657 [d b b b] 0,906248657 [d b c c]
0,929048675 [d c c c] 0,92907181 [b c c c] 0,906248657 [b d c c] 0,906248657 [d b b c] 0,906248657 [d b c d]
0,929048675 [d c c d] 0,92907181 [b c c d] 0,906248657 [b d c d] 0,906248657 [d b b d] 0,906248657 [d b d b]
0,929048675 [d c d b] 0,92907181 [b c d b] 0,906248657 [b d d b] 0,906248657 [d b c b] 0,906248657 [d b d c]
0,929048675 [d c d c] 0,92907181 [b c d c] 0,906248657 [b d d c] 0,906248657 [d b c c] 0,906248657 [d b d d]
0,929048675 [d c d d] 0,92907181 [b c d d] 0,906248657 [b d d d] 0,906248657 [d b c d] 0,906248657 [d c b b]
0,929048675 [d d b b] 0,92907181 [b d b b] 0,906248657 [d b b b] 0,906248657 [d b d b] 0,906248657 [d c b c]
0,929048675 [d d b c] 0,92907181 [b d b c] 0,906248657 [d b b c] 0,906248657 [d b d c] 0,906248657 [d c b d]
0,929048675 [d d b d] 0,92907181 [b d b d] 0,906248657 [d b b d] 0,906248657 [d b d d] 0,906248657 [d c c b]
0,929048675 [d d c b] 0,92907181 [b d c b] 0,906248657 [d b c b] 0,906248657 [d c b b] 0,906248657 [d c c c]
0,929048675 [d d c c] 0,92907181 [b d c c] 0,906248657 [d b c c] 0,906248657 [d c b c] 0,906248657 [d c c d]
0,929048675 [d d c d] 0,92907181 [b d c d] 0,906248657 [d b c d] 0,906248657 [d c b d] 0,906248657 [d c d b]
0,929048675 [d d d b] 0,92907181 [b d d b] 0,906248657 [d b d b] 0,906248657 [d c c b] 0,906248657 [d c d c]
0,929048675 [d d d c] 0,92907181 [b d d c] 0,906248657 [d b d c] 0,906248657 [d c c c] 0,906248657 [d c d d]
0,929048675 [d d d d] 0,92907181 [b d d d] 0,906248657 [d b d d] 0,906248657 [d c c d] 0,906248657 [d d b b]
0,909947618 [c b b b] 0,906248657 [d b b b] 0,906248657 [d c b b] 0,906248657 [d c d b] 0,906248657 [d d b c]
0,909947618 [c b b c] 0,906248657 [d b b c] 0,906248657 [d c b c] 0,906248657 [d c d c] 0,906248657 [d d b d]
0,909947618 [c b b d] 0,906248657 [d b b d] 0,906248657 [d c b d] 0,906248657 [d c d d] 0,906248657 [d d c b]
0,909947618 [c b c b] 0,906248657 [d b c b] 0,906248657 [d c c b] 0,906248657 [d d b b] 0,906248657 [d d c c]
0,909947618 [c b c c] 0,906248657 [d b c c] 0,906248657 [d c c c] 0,906248657 [d d b c] 0,906248657 [d d c d]
0,909947618 [c b c d] 0,906248657 [d b c d] 0,906248657 [d c c d] 0,906248657 [d d b d] 0,906248657 [d d d b]
0,909947618 [c b d b] 0,906248657 [d b d b] 0,906248657 [d c d b] 0,906248657 [d d c b] 0,906248657 [d d d c]
0,909947618 [c b d c] 0,906248657 [d b d c] 0,906248657 [d c d c] 0,906248657 [d d c c] 0,906248657 [d d d d]
0,909947618 [c b d d] 0,906248657 [d b d d] 0,906248657 [d c d d] 0,906248657 [d d c d] 0,890691925 [c b c d]
0,909947618 [c d b b] 0,906248657 [d c b b] 0,906248657 [d d b b] 0,906248657 [d d d b] 0,890691925 [c b b d]
0,909947618 [c d b c] 0,906248657 [d c b c] 0,906248657 [d d b c] 0,906248657 [d d d c] 0,890691925 [c b d b]
0,909947618 [c d b d] 0,906248657 [d c b d] 0,906248657 [d d b d] 0,906248657 [d d d d] 0,890691925 [c b d c]
0,909947618 [c d c b] 0,906248657 [d c c b] 0,906248657 [d d c b] 0,890691925 [c b d b] 0,890691925 [c b d d]
0,909947618 [c d c c] 0,906248657 [d c c c] 0,906248657 [d d c c] 0,890691925 [c b d c] 0,890691925 [c d b b]
0,909947618 [c d c d] 0,906248657 [d c c d] 0,906248657 [d d c d] 0,890691925 [c b d d] 0,890691925 [c d b c]
0,909947618 [c d d b] 0,906248657 [d c d b] 0,906248657 [d d d b] 0,890691925 [c d b b] 0,890691925 [c d b d]
0,909947618 [c d d c] 0,906248657 [d c d c] 0,906248657 [d d d c] 0,890691925 [c d b c] 0,890691925 [c d c b]
0,909947618 [c d d d] 0,906248657 [d c d d] 0,906248657 [d d d d] 0,890691925 [c d b d] 0,890691925 [c d c c]
0,909772758 [c c b b] 0,906248657 [d d b b] 0,890691925 [c d b b] 0,890691925 [c d c b] 0,890691925 [c d c d]
0,909772758 [c c b c] 0,906248657 [d d b c] 0,890691925 [c d b c] 0,890691925 [c d c c] 0,890691925 [c d d b]
0,909772758 [c c b d] 0,906248657 [d d b d] 0,890691925 [c d b d] 0,890691925 [c d c d] 0,890691925 [c d d c]
0,909772758 [c c c b] 0,906248657 [d d c b] 0,890691925 [c d c b] 0,890691925 [c d d b] 0,890691925 [c d d d]
0,909772758 [c c c c] 0,906248657 [d d c c] 0,890691925 [c d c c] 0,890691925 [c d d c] 0,890533581 [c c b d]
0,909772758 [c c c d] 0,906248657 [d d c d] 0,890691925 [c d c d] 0,890691925 [c d d d] 0,890533581 [c c c d]
0,909772758 [c c d b] 0,906248657 [d d d b] 0,890691925 [c d d b] 0,890533581 [c c d b] 0,890533581 [c c d b]
0,909772758 [c c d c] 0,906248657 [d d d c] 0,890691925 [c d d c] 0,890533581 [c c d c] 0,890533581 [c c d c]
0,909772758 [c c d d] 0,906248657 [d d d d] 0,890691925 [c d d d] 0,890533581 [c c d d] 0,890533581 [c c d d]

G1 as interval G2 as interval G3 as interval G4 as interval G5 as interval

Figure 7.8: Reconstruction accuracies for tensors with interval information local-
ized along the second mode, J (the greener the cell, the better the result, best option
highlighted in light green – the tables are best viewed in color)
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0,929048675 [c d b b] 0,933109207 [c b b b] 0,969000273 [c c b b] 0,932627566 [c c c b] 0,928994244 [c c c c]
0,929048675 [c d b c] 0,933109207 [c b b c] 0,969000273 [c c b c] 0,932627566 [c c c c] 0,928964615 [c c c b]
0,929048675 [c d b d] 0,933109207 [c b b d] 0,969000273 [c c b d] 0,932627566 [c c c d] 0,92861358 [b c c c]
0,929048675 [c d c b] 0,933109207 [c b c b] 0,969000273 [c c c b] 0,929375888 [c c b b] 0,928613579 [b c c b]
0,929048675 [c d c c] 0,933109207 [c b c c] 0,969000273 [c c c c] 0,929375888 [c c b c] 0,928608405 [c c b c]
0,929048675 [c d c d] 0,933109207 [c b c d] 0,969000273 [c c c d] 0,929375888 [c c b d] 0,928608004 [c c b b]
0,929048675 [c d d b] 0,933109207 [c b d b] 0,969000273 [c c d b] 0,928446671 [c b c b] 0,928599471 [c b c c]
0,929048675 [c d d c] 0,933109207 [c b d c] 0,969000273 [c c d c] 0,928446671 [c b c c] 0,928599254 [c b c b]
0,929048675 [c d d d] 0,933109207 [c b d d] 0,969000273 [c c d d] 0,928446671 [c b c d] 0,928591507 [b b b c]
0,929048675 [b b b b] 0,933109207 [c c c b] 0,92853121 [c b b b] 0,928437629 [c b b b] 0,928591504 [b b b b]
0,929048675 [b b b c] 0,933109207 [c c c c] 0,92853121 [c b b c] 0,928437629 [c b b c] 0,928589531 [b c b c]
0,929048675 [b b b d] 0,933109207 [c c c d] 0,92853121 [c b b d] 0,928437629 [c b b d] 0,92858953 [b c b b]
0,929048675 [b b c b] 0,933109207 [c c d b] 0,92853121 [c b c b] 0,92831276 [b c c b] 0,928588432 [b b c c]
0,929048675 [b b c c] 0,933109207 [c c d c] 0,92853121 [c b c c] 0,92831276 [b c c c] 0,928588427 [b b c b]
0,929048675 [b b c d] 0,933109207 [c c d d] 0,92853121 [c b c d] 0,92831276 [b c c d] 0,928576612 [c b b c]
0,929048675 [b b d b] 0,933109207 [c d b b] 0,92853121 [c b d b] 0,928311914 [b c b b] 0,928576598 [c b b b]
0,929048675 [b b d c] 0,933109207 [c d b c] 0,92853121 [c b d c] 0,928311914 [b c b c] 0,906248657 [b b b d]
0,929048675 [b b d d] 0,933109207 [c d b d] 0,92853121 [c b d d] 0,928311914 [b c b d] 0,906248657 [b b c d]
0,929048675 [c c b b] 0,933109207 [c d c b] 0,928472463 [b c b b] 0,928311524 [b b c b] 0,906248657 [b b d b]
0,929048675 [c c b c] 0,933109207 [c d c c] 0,928472463 [b c b c] 0,928311524 [b b c c] 0,906248657 [b b d c]
0,929048675 [c c b d] 0,933109207 [c d c d] 0,928472463 [b c b d] 0,928311524 [b b c d] 0,906248657 [b b d d]
0,929048675 [c c c c] 0,933109207 [c d d b] 0,928472463 [b c c b] 0,9283105 [b b b b] 0,906248657 [b c b d]
0,929048675 [c c d b] 0,933109207 [c d d c] 0,928472463 [b c c c] 0,9283105 [b b b c] 0,906248657 [b c c d]
0,929048675 [c c d c] 0,933109207 [c d d d] 0,928472463 [b c c d] 0,9283105 [b b b d] 0,906248657 [b c d b]
0,929048675 [c c d d] 0,933109207 [c c b b] 0,928472463 [b c d b] 0,906248657 [b b d b] 0,906248657 [b c d c]
0,929048675 [d b b b] 0,933109207 [c c b c] 0,928472463 [b c d c] 0,906248657 [b b d c] 0,906248657 [b c d d]
0,929048675 [d b b c] 0,933109207 [c c b d] 0,928472463 [b c d d] 0,906248657 [b b d d] 0,906248657 [b d b b]
0,929048675 [d b b d] 0,929071724 [b b b b] 0,928471211 [b b b b] 0,906248657 [b c d b] 0,906248657 [b d b c]
0,929048675 [d b c b] 0,929071724 [b b b c] 0,928471211 [b b b c] 0,906248657 [b c d c] 0,906248657 [b d b d]
0,929048675 [d b c c] 0,929071724 [b b b d] 0,928471211 [b b b d] 0,906248657 [b c d d] 0,906248657 [b d c b]
0,929048675 [d b c d] 0,929071724 [b b c b] 0,928471211 [b b c b] 0,906248657 [b d b b] 0,906248657 [b d c c]
0,929048675 [d b d b] 0,929071724 [b b c c] 0,928471211 [b b c c] 0,906248657 [b d b c] 0,906248657 [b d c d]
0,929048675 [d b d c] 0,929071724 [b b c d] 0,928471211 [b b c d] 0,906248657 [b d b d] 0,906248657 [b d d b]
0,929048675 [d b d d] 0,929071724 [b b d b] 0,928471211 [b b d b] 0,906248657 [b d c b] 0,906248657 [b d d c]
0,929048675 [d c b b] 0,929071724 [b b d c] 0,928471211 [b b d c] 0,906248657 [b d c c] 0,906248657 [b d d d]
0,929048675 [d c b c] 0,929071724 [b b d d] 0,928471211 [b b d d] 0,906248657 [b d c d] 0,906248657 [c b b d]
0,929048675 [d c b d] 0,929071724 [b d b b] 0,906248657 [b d b b] 0,906248657 [b d d b] 0,906248657 [c b c d]
0,929048675 [d c c b] 0,929071724 [b d b c] 0,906248657 [b d b c] 0,906248657 [b d d c] 0,906248657 [c b d b]
0,929048675 [d c c c] 0,929071724 [b d b d] 0,906248657 [b d b d] 0,906248657 [b d d d] 0,906248657 [c b d c]
0,929048675 [d c c d] 0,929071724 [b d c b] 0,906248657 [b d c b] 0,906248657 [c b d b] 0,906248657 [c b d d]
0,929048675 [d c d b] 0,929071724 [b d c c] 0,906248657 [b d c c] 0,906248657 [c b d c] 0,906248657 [c c b d]
0,929048675 [d c d c] 0,929071724 [b d c d] 0,906248657 [b d c d] 0,906248657 [c b d d] 0,906248657 [c c c d]
0,929048675 [d c d d] 0,929071724 [b d d b] 0,906248657 [b d d b] 0,906248657 [c c d b] 0,906248657 [c c d b]
0,929048675 [d d b b] 0,929071724 [b d d c] 0,906248657 [b d d c] 0,906248657 [c c d c] 0,906248657 [c c d c]
0,929048675 [d d b c] 0,929071724 [b d d d] 0,906248657 [b d d d] 0,906248657 [c c d d] 0,906248657 [c c d d]
0,929048675 [d d b d] 0,929071724 [b c d b] 0,906248657 [c d b b] 0,906248657 [c d b b] 0,906248657 [c d b b]
0,929048675 [d d c b] 0,929071724 [b c d c] 0,906248657 [c d b c] 0,906248657 [c d b c] 0,906248657 [c d b c]
0,929048675 [d d c c] 0,929071724 [b c d d] 0,906248657 [c d b d] 0,906248657 [c d b d] 0,906248657 [c d b d]
0,929048675 [d d c d] 0,929071724 [b c b b] 0,906248657 [c d c b] 0,906248657 [c d c b] 0,906248657 [c d c b]
0,929048675 [d d d b] 0,929071724 [b c b c] 0,906248657 [c d c c] 0,906248657 [c d c c] 0,906248657 [c d c c]
0,929048675 [d d d c] 0,929071724 [b c b d] 0,906248657 [c d c d] 0,906248657 [c d c d] 0,906248657 [c d c d]
0,929048675 [d d d d] 0,929071724 [b c c b] 0,906248657 [c d d b] 0,906248657 [c d d b] 0,906248657 [c d d b]
0,929048675 [b c b b] 0,929071724 [b c c c] 0,906248657 [c d d c] 0,906248657 [c d d c] 0,906248657 [c d d c]
0,929048675 [b c b c] 0,929071724 [b c c d] 0,906248657 [c d d d] 0,906248657 [c d d d] 0,906248657 [c d d d]
0,929048675 [b c b d] 0,906248657 [d b b b] 0,906248657 [d b b b] 0,906248657 [d b b b] 0,906248657 [d b b b]
0,929048675 [b c c b] 0,906248657 [d b b c] 0,906248657 [d b b c] 0,906248657 [d b b c] 0,906248657 [d b b c]
0,929048675 [b c c c] 0,906248657 [d b b d] 0,906248657 [d b b d] 0,906248657 [d b b d] 0,906248657 [d b b d]
0,929048675 [b c c d] 0,906248657 [d b c b] 0,906248657 [d b c b] 0,906248657 [d b c b] 0,906248657 [d b c b]
0,929048675 [b c d b] 0,906248657 [d b c c] 0,906248657 [d b c c] 0,906248657 [d b c c] 0,906248657 [d b c c]
0,929048675 [b c d c] 0,906248657 [d b c d] 0,906248657 [d b c d] 0,906248657 [d b c d] 0,906248657 [d b c d]
0,929048675 [b c d d] 0,906248657 [d b d b] 0,906248657 [d b d b] 0,906248657 [d b d b] 0,906248657 [d b d b]
0,929048675 [b d b b] 0,906248657 [d b d c] 0,906248657 [d b d c] 0,906248657 [d b d c] 0,906248657 [d b d c]
0,929048675 [b d b c] 0,906248657 [d b d d] 0,906248657 [d b d d] 0,906248657 [d b d d] 0,906248657 [d b d d]
0,929048675 [b d b d] 0,906248657 [d c b b] 0,906248657 [d c b b] 0,906248657 [d c b b] 0,906248657 [d c b b]
0,929048675 [b d c b] 0,906248657 [d c b c] 0,906248657 [d c b c] 0,906248657 [d c b c] 0,906248657 [d c b c]
0,929048675 [b d c c] 0,906248657 [d c b d] 0,906248657 [d c b d] 0,906248657 [d c b d] 0,906248657 [d c b d]
0,929048675 [b d c d] 0,906248657 [d c c b] 0,906248657 [d c c b] 0,906248657 [d c c b] 0,906248657 [d c c b]
0,929048675 [b d d b] 0,906248657 [d c c c] 0,906248657 [d c c c] 0,906248657 [d c c c] 0,906248657 [d c c c]
0,929048675 [b d d c] 0,906248657 [d c c d] 0,906248657 [d c c d] 0,906248657 [d c c d] 0,906248657 [d c c d]
0,929048675 [b d d d] 0,906248657 [d c d b] 0,906248657 [d c d b] 0,906248657 [d c d b] 0,906248657 [d c d b]
0,929048675 [c b b b] 0,906248657 [d c d c] 0,906248657 [d c d c] 0,906248657 [d c d c] 0,906248657 [d c d c]
0,929048675 [c b b c] 0,906248657 [d c d d] 0,906248657 [d c d d] 0,906248657 [d c d d] 0,906248657 [d c d d]
0,929048675 [c b b d] 0,906248657 [d d b b] 0,906248657 [d d b b] 0,906248657 [d d b b] 0,906248657 [d d b b]
0,929048675 [c b c b] 0,906248657 [d d b c] 0,906248657 [d d b c] 0,906248657 [d d b c] 0,906248657 [d d b c]
0,929048675 [c b c c] 0,906248657 [d d b d] 0,906248657 [d d b d] 0,906248657 [d d b d] 0,906248657 [d d b d]
0,929048675 [c b c d] 0,906248657 [d d c b] 0,906248657 [d d c b] 0,906248657 [d d c b] 0,906248657 [d d c b]
0,929048675 [c b d b] 0,906248657 [d d c c] 0,906248657 [d d c c] 0,906248657 [d d c c] 0,906248657 [d d c c]
0,929048675 [c b d c] 0,906248657 [d d c d] 0,906248657 [d d c d] 0,906248657 [d d c d] 0,906248657 [d d c d]
0,929048675 [c b d d] 0,906248657 [d d d b] 0,906248657 [d d d b] 0,906248657 [d d d b] 0,906248657 [d d d b]
0,929048675 [c c c b] 0,906248657 [d d d c] 0,906248657 [d d d c] 0,906248657 [d d d c] 0,906248657 [d d d c]
0,929048675 [c c c d] 0,906248657 [d d d d] 0,906248657 [d d d d] 0,906248657 [d d d d] 0,906248657 [d d d d]

G1 as interval G2 as interval G3 as interval G4 as interval G5 as interval

Figure 7.9: Reconstruction accuracies for tensors with interval information local-
ized along the third mode, K (the greener the cell, the better the result, best option
highlighted in light green – the tables are best viewed in color)
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0,929048675 [b c b b] 0,933109207 [c b b b] 0,944289019 [c c b b] 0,944128581 [c c c b] 0,928617234 [b c c c]
0,929048675 [b c b c] 0,933109207 [c b b c] 0,944289019 [c c b c] 0,944128581 [c c c c] 0,928617231 [b c c b]
0,929048675 [b c b d] 0,933109207 [c b b d] 0,944289019 [c c b d] 0,944128581 [c c c d] 0,928599454 [c b c c]
0,929048675 [b c c b] 0,933109207 [c d b b] 0,944289019 [c c c b] 0,928259941 [c b c b] 0,928599247 [c b c b]
0,929048675 [b c c c] 0,933109207 [c d b c] 0,944289019 [c c c c] 0,928259941 [c b c c] 0,928595043 [b b b c]
0,929048675 [b c c d] 0,933109207 [c d b d] 0,944289019 [c c c d] 0,928259941 [c b c d] 0,92859504 [b b b b]
0,929048675 [b c d b] 0,933109207 [c d c b] 0,944289019 [c c d b] 0,928242171 [b c c b] 0,928592673 [b c b c]
0,929048675 [b c d c] 0,933109207 [c d c c] 0,944289019 [c c d c] 0,928242171 [b c c c] 0,928592664 [b c b b]
0,929048675 [b c d d] 0,933109207 [c d c d] 0,944289019 [c c d d] 0,928242171 [b c c d] 0,928589173 [b b c c]
0,929048675 [d b b b] 0,933109207 [c d d b] 0,929193044 [c b b b] 0,928240483 [b c b b] 0,928589168 [b b c b]
0,929048675 [d b b c] 0,933109207 [c d d c] 0,929193044 [c b b c] 0,928240483 [b c b c] 0,928584066 [c b b c]
0,929048675 [d b b d] 0,933109207 [c d d d] 0,929193044 [c b b d] 0,928240483 [b c b d] 0,928583959 [c b b b]
0,929048675 [d b c b] 0,933109207 [c b c b] 0,929193044 [c b c b] 0,928234019 [c b b b] 0,913732209 [c c c b]
0,929048675 [d b c c] 0,933109207 [c b c c] 0,929193044 [c b c c] 0,928234019 [c b b c] 0,91365019 [c c c c]
0,929048675 [d b c d] 0,933109207 [c b c d] 0,929193044 [c b c d] 0,928234019 [c b b d] 0,913610689 [c c b b]
0,929048675 [d b d b] 0,933109207 [c b d b] 0,929193044 [c b d b] 0,928168543 [b b c b] 0,913595907 [c c b c]
0,929048675 [d b d c] 0,933109207 [c b d c] 0,929193044 [c b d c] 0,928168543 [b b c c] 0,906248657 [b b b d]
0,929048675 [d b d d] 0,933109207 [c b d d] 0,929193044 [c b d d] 0,928168543 [b b c d] 0,906248657 [b b c d]
0,929048675 [d c b b] 0,929071724 [b b b b] 0,928030283 [b c b b] 0,928168408 [b b b b] 0,906248657 [b b d b]
0,929048675 [d c b c] 0,929071724 [b b b c] 0,928030283 [b c b c] 0,928168408 [b b b c] 0,906248657 [b b d c]
0,929048675 [d c b d] 0,929071724 [b b b d] 0,928030283 [b c b d] 0,928168408 [b b b d] 0,906248657 [b b d d]
0,929048675 [d c c b] 0,929071724 [b b c b] 0,928030283 [b c c b] 0,91345514 [c c b b] 0,906248657 [b c b d]
0,929048675 [d c c c] 0,929071724 [b b c c] 0,928030283 [b c c c] 0,91345514 [c c b c] 0,906248657 [b c c d]
0,929048675 [d c c d] 0,929071724 [b b c d] 0,928030283 [b c c d] 0,91345514 [c c b d] 0,906248657 [b c d b]
0,929048675 [d c d b] 0,929071724 [b b d b] 0,928030283 [b c d b] 0,906248657 [b b d b] 0,906248657 [b c d c]
0,929048675 [d c d c] 0,929071724 [b b d c] 0,928030283 [b c d c] 0,906248657 [b b d c] 0,906248657 [b c d d]
0,929048675 [d c d d] 0,929071724 [b b d d] 0,928030283 [b c d d] 0,906248657 [b b d d] 0,906248657 [b d b b]
0,929048675 [d d b b] 0,929071724 [b c b b] 0,928030134 [b b b b] 0,906248657 [b c d b] 0,906248657 [b d b c]
0,929048675 [d d b c] 0,929071724 [b c b c] 0,928030134 [b b b c] 0,906248657 [b c d c] 0,906248657 [b d b d]
0,929048675 [d d b d] 0,929071724 [b c b d] 0,928030134 [b b b d] 0,906248657 [b c d d] 0,906248657 [b d c b]
0,929048675 [d d c b] 0,929071724 [b c c b] 0,928030134 [b b c b] 0,906248657 [b d b b] 0,906248657 [b d c c]
0,929048675 [d d c c] 0,929071724 [b c c c] 0,928030134 [b b c c] 0,906248657 [b d b c] 0,906248657 [b d c d]
0,929048675 [d d c d] 0,929071724 [b c c d] 0,928030134 [b b c d] 0,906248657 [b d b d] 0,906248657 [b d d b]
0,929048675 [d d d b] 0,929071724 [b c d b] 0,928030134 [b b d b] 0,906248657 [b d c b] 0,906248657 [b d d c]
0,929048675 [d d d c] 0,929071724 [b c d c] 0,928030134 [b b d c] 0,906248657 [b d c c] 0,906248657 [b d d d]
0,929048675 [d d d d] 0,929071724 [b c d d] 0,928030134 [b b d d] 0,906248657 [b d c d] 0,906248657 [c b b d]
0,929048675 [b b b b] 0,929071724 [b d b b] 0,906248657 [b d b b] 0,906248657 [b d d b] 0,906248657 [c b c d]
0,929048675 [b b b c] 0,929071724 [b d b c] 0,906248657 [b d b c] 0,906248657 [b d d c] 0,906248657 [c b d b]
0,929048675 [b b b d] 0,929071724 [b d b d] 0,906248657 [b d b d] 0,906248657 [b d d d] 0,906248657 [c b d c]
0,929048675 [b b c b] 0,929071724 [b d c b] 0,906248657 [b d c b] 0,906248657 [c b d b] 0,906248657 [c b d d]
0,929048675 [b b c c] 0,929071724 [b d c c] 0,906248657 [b d c c] 0,906248657 [c b d c] 0,906248657 [c d b b]
0,929048675 [b b c d] 0,929071724 [b d c d] 0,906248657 [b d c d] 0,906248657 [c b d d] 0,906248657 [c d b c]
0,929048675 [b b d b] 0,929071724 [b d d b] 0,906248657 [b d d b] 0,906248657 [c d b b] 0,906248657 [c d b d]
0,929048675 [b b d c] 0,929071724 [b d d c] 0,906248657 [b d d c] 0,906248657 [c d b c] 0,906248657 [c d c b]
0,929048675 [b b d d] 0,929071724 [b d d d] 0,906248657 [b d d d] 0,906248657 [c d b d] 0,906248657 [c d c c]
0,929048675 [b d b b] 0,917345364 [c c b b] 0,906248657 [c d b b] 0,906248657 [c d c b] 0,906248657 [c d c d]
0,929048675 [b d b c] 0,917345364 [c c b c] 0,906248657 [c d b c] 0,906248657 [c d c c] 0,906248657 [c d d b]
0,929048675 [b d b d] 0,917345364 [c c b d] 0,906248657 [c d b d] 0,906248657 [c d c d] 0,906248657 [c d d c]
0,929048675 [b d c b] 0,917345364 [c c c b] 0,906248657 [c d c b] 0,906248657 [c d d b] 0,906248657 [c d d d]
0,929048675 [b d c c] 0,917345364 [c c c c] 0,906248657 [c d c c] 0,906248657 [c d d c] 0,906248657 [d b b b]
0,929048675 [b d c d] 0,917345364 [c c c d] 0,906248657 [c d c d] 0,906248657 [c d d d] 0,906248657 [d b b c]
0,929048675 [b d d b] 0,917345364 [c c d b] 0,906248657 [c d d b] 0,906248657 [d b b b] 0,906248657 [d b b d]
0,929048675 [b d d c] 0,917345364 [c c d c] 0,906248657 [c d d c] 0,906248657 [d b b c] 0,906248657 [d b c b]
0,929048675 [b d d d] 0,917345364 [c c d d] 0,906248657 [c d d d] 0,906248657 [d b b d] 0,906248657 [d b c c]
0,929048675 [c b b b] 0,906248657 [d b b b] 0,906248657 [d b b b] 0,906248657 [d b c b] 0,906248657 [d b c d]
0,929048675 [c b b c] 0,906248657 [d b b c] 0,906248657 [d b b c] 0,906248657 [d b c c] 0,906248657 [d b d b]
0,929048675 [c b b d] 0,906248657 [d b b d] 0,906248657 [d b b d] 0,906248657 [d b c d] 0,906248657 [d b d c]
0,929048675 [c b c b] 0,906248657 [d b c b] 0,906248657 [d b c b] 0,906248657 [d b d b] 0,906248657 [d b d d]
0,929048675 [c b c c] 0,906248657 [d b c c] 0,906248657 [d b c c] 0,906248657 [d b d c] 0,906248657 [d c b b]
0,929048675 [c b c d] 0,906248657 [d b c d] 0,906248657 [d b c d] 0,906248657 [d b d d] 0,906248657 [d c b c]
0,929048675 [c b d b] 0,906248657 [d b d b] 0,906248657 [d b d b] 0,906248657 [d c b b] 0,906248657 [d c b d]
0,929048675 [c b d c] 0,906248657 [d b d c] 0,906248657 [d b d c] 0,906248657 [d c b c] 0,906248657 [d c c b]
0,929048675 [c b d d] 0,906248657 [d b d d] 0,906248657 [d b d d] 0,906248657 [d c b d] 0,906248657 [d c c c]
0,929048675 [c d b b] 0,906248657 [d c b b] 0,906248657 [d c b b] 0,906248657 [d c c b] 0,906248657 [d c c d]
0,929048675 [c d b c] 0,906248657 [d c b c] 0,906248657 [d c b c] 0,906248657 [d c c c] 0,906248657 [d c d b]
0,929048675 [c d b d] 0,906248657 [d c b d] 0,906248657 [d c b d] 0,906248657 [d c c d] 0,906248657 [d c d c]
0,929048675 [c d c b] 0,906248657 [d c c b] 0,906248657 [d c c b] 0,906248657 [d c d b] 0,906248657 [d c d d]
0,929048675 [c d c c] 0,906248657 [d c c c] 0,906248657 [d c c c] 0,906248657 [d c d c] 0,906248657 [d d b b]
0,929048675 [c d c d] 0,906248657 [d c c d] 0,906248657 [d c c d] 0,906248657 [d c d d] 0,906248657 [d d b c]
0,929048675 [c d d b] 0,906248657 [d c d b] 0,906248657 [d c d b] 0,906248657 [d d b b] 0,906248657 [d d b d]
0,929048675 [c d d c] 0,906248657 [d c d c] 0,906248657 [d c d c] 0,906248657 [d d b c] 0,906248657 [d d c b]
0,929048675 [c d d d] 0,906248657 [d c d d] 0,906248657 [d c d d] 0,906248657 [d d b d] 0,906248657 [d d c c]
0,913949869 [c c b d] 0,906248657 [d d b b] 0,906248657 [d d b b] 0,906248657 [d d c b] 0,906248657 [d d c d]
0,913949869 [c c c b] 0,906248657 [d d b c] 0,906248657 [d d b c] 0,906248657 [d d c c] 0,906248657 [d d d b]
0,913949869 [c c b b] 0,906248657 [d d b d] 0,906248657 [d d b d] 0,906248657 [d d c d] 0,906248657 [d d d c]
0,913949869 [c c b c] 0,906248657 [d d c b] 0,906248657 [d d c b] 0,906248657 [d d d b] 0,906248657 [d d d d]
0,913949869 [c c c c] 0,906248657 [d d c c] 0,906248657 [d d c c] 0,906248657 [d d d c] 0,894106975 [c c b d]
0,913949869 [c c c d] 0,906248657 [d d c d] 0,906248657 [d d c d] 0,906248657 [d d d d] 0,894106975 [c c c d]
0,913949869 [c c d b] 0,906248657 [d d d b] 0,906248657 [d d d b] 0,894106975 [c c d b] 0,894106975 [c c d b]
0,913949869 [c c d c] 0,906248657 [d d d c] 0,906248657 [d d d c] 0,894106975 [c c d c] 0,894106975 [c c d c]
0,913949869 [c c d d] 0,906248657 [d d d d] 0,906248657 [d d d d] 0,894106975 [c c d d] 0,894106975 [c c d d]

G1 as interval G2 as interval G3 as interval G4 as interval G5 as interval

Figure 7.10: Reconstruction accuracies for tensors with interval information local-
ized along the fourth mode, L (the greener the cell, the better the result, best option
highlighted in light green – the tables are best viewed in color)
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0,913949869 [c c d c] 0,906248657 [d d d c] 0,906248657 [d d d c] 0,894106975 [c c d c] 0,894106975 [c c d c]
0,913949869 [c c d d] 0,906248657 [d d d d] 0,906248657 [d d d d] 0,894106975 [c c d d] 0,894106975 [c c d d]
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Figure 7.11: Reconstruction accuracies for tensors with interval information local-
ized along the fifth mode, M (the greener the cell, the better the result, best option
highlighted in light green – the tables are best viewed in color)
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Figure 7.12: Best reconstruction accuracies for tensors with interval information
localized along each mode (the greener the cell, the better the result, best option
highlighted in light green – the tables are best viewed in color)



Chapter 8

Conclusions and Future Work

We have presented, in the foregoing pages, a generalization of the factorization

process in order to deal with interval-valued matrices and tensors, the motivation

being that, although many applications involve this kind of data, existing analysis

tools assume in general that all observations are scalar-valued.

Building on this observation, we have proposed a set of tools to tackle this prob-

lem by extending both eigenvector-based and probabilistic state-of-the-art tech-

niques. These approaches have then been validated by a set of experiments under

diverse data scenarios and application semantics, in order to prove their robustness

and efficiency.

More in detail, Chapter 4, in the first part of the thesis, illustrates the challenges

that emerged when trying to extend known matrix factorization techniques (such as

Singular Value Decomposition, SVD and Probabilistic Matrix Factorization, PMF)

to interval-valued data, and we proposed a set of algorithms (ISVD and AI-PMF,

respectively) to address them.

The main idea behind our approach is that of guaranteeing that the latent se-

mantic components in the minimum and maximum factor matrices are always cor-

rectly matched and aligned, a goal that can be achieved by means of the Interval

Latent Semantic Alignment (ILSA, Section 4.2) procedure. Particular effort has

been devoted to an incremental study for the implementation of the ISVD strat-

egy (see Section 4.4), starting from a very naive approach (ISVD0) and gradually
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building up to more elaborate versions (from ISVD1 to ISVD4), each adding to the

previous one by either including additional steps or by improving existing ones.

We then conclude the chapter by presenting a method for improving on the

work of the authors in [46], who already proposed an approach for extending the

PMF method to interval-valued data. Also in this case, we relied on the latent

semantic alignment intuition for defining our AI-PMF strategy (Section 4.5).

All the presented approaches have then been validated with a set of experi-

ments over various scenarios and under different conditions, as detailed in Chapter

5, proving their effectiveness in dealing with applications such as matrix recon-

struction, image classification and collaborative filtering.

The second part of the thesis is dedicated to the application of the techniques

proposed for matrices to tackle the tensor factorization problem in presence of

interval-valued data. Specifically, after a brief overview of the state of the art

(Chapter 6), we present an extension of the tensor train decomposition algorithm

based on the ISVD strategy (Chapter 7). The chapter also presents a set of experi-

ments (on synthetic data) devised to provide a first validation of our approach. In

particular, we assess the accuracy of the decomposition and reconstruction process

when dealing with different types of interval information, either with the interval-

valued data uniformly distributed in the input tensors, or localized along one par-

ticular mode.

In conclusion, this dissertation has presented an investigation on the interval-

valued data factorization problem that is in no way intended to be exhaustive, and

we believe there is much progress to be made. In fact, our decision of modeling

uncertainty as intervals is just one among many (probabilistic, fuzzy, etc.) and it

could be interesting to investigate how our approach could be improved by taking

in considerations aspects from each one of those. This could provide a more robust

approach for dealing with real-world scenarios where uncertain data are not easily

categorized.

Regarding the tensor decomposition approach presented in Chapter 7, a lot of

work is still to be done in terms of validation, especially in real-world scenarios:

being a relatively unexplored field of study, we expect plenty of opportunities for

our interval-valued based approach to find useful applications. An interesting as-

pect which emerged from our analysis, and that certainly requires further investiga-
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tion, is how the disposition of the interval information inside the input tensors can

be exploited to drive the decomposition process. From what we saw with synthetic

data, in fact, a clear-cut case where the interval-valued data are concentrated along

only one of the modes has a noticeable impact on how these information should

be preserved in the factorization, but it would be interesting to see how a more

complex (i.e., multi-modal) arrangement would require the algorithm to adapt, ei-

ther by defining a general strategy through a preliminary analysis of the data, or by

tailoring the parameters at each step of the process.
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Appendix A

Main Functions Pseudocode

This appendix reports the pseudocode for the main functions related to the interval-

valued matrix factorization problem that we introduced throughout the thesis.

A.1 Pseudocode for the Supporting Functions

First of all, we provide here the pseudocode for some of the key supporting

functions introduced in the thesis, including interval-valued matrix multiplication,

average replacement for vectors and matrices with invalid interval-valued entries,

the function for evaluating the inverse of a non-negative diagonal interval-valued

matrix, and the L2-norm based matrix normalization.

A.1.1 Interval-valued Matrix Multiplication

Interval-valued matrix multiplication, introduced in Section 2.1, is a core ma-

trix algebraic operation that is often relied on when is necessary to extend the

standard matrix product.

Algorithm 1 Interval-valued Matrix Multiplication

Input:

Interval-valued matrices Ä = [A∗,A∗] ∈ RnA×mA , B̈ = [B∗,B∗] ∈ RnB×mB , with

mA = nB.

127
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Output:

Interval-valued matrix R̈ = [R∗,R∗] ∈RmB×nA .

1: procedure INTERVAL-MAT-MULT(Ä, B̈)

2: Initialize R̈,T1,T2,T3,T4 ∈RmB×nA

3: T1← A∗ ·B∗
4: T2← A∗ ·B∗

5: T3← A∗ ·B∗
6: T4← A∗ ·B∗

7:

8: for i← 1 to mB do
9: for j← 1 to nA do

10: R∗[i, j]←min{T1[i, j],T2[i, j],T3[i, j],T4[i, j]}
11: R∗[i, j]←max{T1[i, j],T2[i, j],T3[i, j],T4[i, j]}
12: end for
13: end for
14: return R̈
15: end procedure

A.1.2 Vector and Matrix Average Replacement

The average replacement is a mechanism introduced (see Section 4.2) in order

to correct vectors and matrices that include entries that are not valid intervals. Sev-

eral steps of the decomposition procedures potentially introduce such incorrectly

formed intervals (where the minimum values are larger than the maximum) in their

intermediary steps: these proposed functions help to validate the final factorization

output, in order to provide coherent interval-valued matrices.

Algorithm 2 Vector Average Replacement

Input:

Interval-valued vector v̈ = [v∗,v∗] ∈R1×n.

Output:

Interval-valued vector ẅ = [w∗,w∗] ∈R1×n.
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1: procedure AVERAGE-REPLACEMENT-VEC(v̈)

2: Initialize ẅ ∈R1×n

3: ẅ← v̈
4:

5: for i← 1 to n do
6: if v∗[i] > v∗[i] then

7: w∗[i]←
v∗[i]+v∗[i]

2

8: w∗[i]← w∗[i]
9: end if

10: end for
11: return ẅ
12: end procedure

Algorithm 3 Matrix Average Replacement

Input:

Interval-valued matrix M̈ = [M∗,M∗] ∈Rn×m.

Output:

Interval-valued matrix N̈ = [N∗,N∗] ∈Rn×m.

1: procedure AVERAGE-REPLACEMENT-MAT(M̈)

2: Initialize N̈ ∈Rn×m

3: N̈← M̈
4:

5: for i← 1 to n do
6: for j← 1 to m do
7: if M∗[i, j] > M∗[i, j] then

8: N∗[i, j]←
M∗[i, j]+M∗[i, j]

2

9: N∗[i, j]← N∗[i, j]

10: end if
11: end for
12: end for
13: return N̈
14: end procedure
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A.1.3 Inverse of a diagonal non-negative interval-valued matrix

Several ISVD algorithms require the inverse of a non-negative interval-valued

core matrix Σ̈. As discussed in Section 4.4.4, we can only provide an approxima-

tion of the inverse problem, which can be implemented as follows.

Algorithm 4 Inverse of a diagonal non-negative interval-valued matrix Σ̈

Input:

Interval-valued matrix Σ̈ = [Σ∗,Σ∗] ∈Rr×r, target rank r.

Output:

Scalar matrix Σinv ∈Rr×r, approximating the inverse of the input matrix Σ̈.

1: procedure INVERSE-Σ(Σ̈,r)

2: Initialize Σinv ∈Rr×r : ∀i, j Σinv
[i, j]← 0

3: for i← 1 to r do
4: if Σ∗[i,i] = 0∧Σ∗[i,i] = 0 then
5: Σinv[i,i]← 0

6: else if Σ∗[i,i] = 0∧Σ∗[i,i] 6= 0 then
7: Σinv[i,i]← 2

Σ∗[i,i]
8: else if Σ∗[i,i] 6= 0∧Σ∗[i,i] = 0 then
9: Σinv[i,i]← 2

Σ∗[i,i]

10: else
11: Σinv[i,i]← 2

Σ∗[i,i]+Σ∗[i,i]
12: end if
13: end for
14: return Σinv

15: end procedure

A.1.4 L2-Norm based Matrix Normalization

As we see in 4.8 and discuss in Section 4.2 of the thesis, results may need to

be L2-normalized before being returned to the end-user.
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Algorithm 5 L2-Norm Matrix Normalization

Input:

Scalar matrix A ∈Rn×m.

Output:

Scalar matrix Â ∈Rn×m, vector of A columns norms w ∈R1×m.

1: procedure NORM-MAT(A)

2: Initialize Â ∈Rn×m

3: Initialize w ∈R1×m

4:

5: for j← 1 to n do
6: w[ j]←‖A[:, j]‖2

7: for i← 1 to m do
8: Â[i, j]←

Â[i, j]
w[ j]

9: end for
10: end for
11: return Â,w
12: end procedure

A.2 Pseudocode for Interval-Valued Latent Semantic Align-
ment (ILSA)

The Interval-valued Latent Semantic Alignment (ILSA), discussed in Section

4.2, is a key process of our proposed decomposition strategy, helping combine sep-

arately obtained minimum and maximum basis vectors to form a coherent interval-

valued latent space. Here we provide the pseudocode for the algorithm we used in

our implementation of the latent semantic alignment process.

Algorithm 6 Interval-Valued Latent Semantic Alignment (ILSA)

Input:

Interval-valued matrix V̈ = [V∗,V∗] ∈Rn×r, with V∗ = {v∗1, . . . ,v∗r},
V∗ = {v∗1, . . . ,v∗r}, target rank r.

Output:
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Indices vector mappingIdx ∈ R1×r (for aligning the interval-valued components

of V̈), where mappingIdx j is the remapped index for v∗ j, u∗ j and σ∗ j.

Indicator vector dirFlag ∈R1×r (to swap direction of misaligned V̈ components),

where dirFlag[ j] = 1 if v∗ j needs to be swapped to better align with v∗j , otherwise

dirFlag[ j] = 0.

1: # Main procedure

2: procedure ILSA(V̈,r)

3: simMat,dirFlag← PAIRSIM(V̈,r)

4: mappingIdx← MAPPING(simMat,r)
5: return mappingIdx,dirFlag
6: end procedure
7:

8: # Compute pairwise cosine similarity

9: procedure PAIRSIM(V̈,r)

10: Initialize simMat ∈Rr×r

11: Initialize dirFlag ∈R1×r

12: for i← 1 to r do
13: for j← 1 to r do
14: if cos(v∗i,v∗j) < 0 then . cosine similarity

15: simMat[i,i]← cos(v∗i,−v∗j)
16: dirFlag[i] = 1

17: else
18: simMat[i,i]← cos(v∗i,v∗j)
19: dirFlag[i] = 0

20: end if
21: end for
22: end for
23: return simMat,dirFlag
24: end procedure
25:

26: # Find the mapping maximizing the pairwise similarity between V∗ and V ∗

27: procedure MAPPING(simMat,r)

28: Initialize mappingIdx ∈R1×r

29: for j← 1 to r do
30: mappingIdx j← i | @k : simMat[k, j] < simMat[i,i]
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31: end for
32: spareidx← i | @ j : mappingIdx j = i

33: if spareidx 6= ∅ then
34: conflictIdx∗← i | ∃ j1, j2 : mappingIdx[ j1] = i ∧
35: ∧mappingIdx[ j2] = i∧ j1 6= j2
36: for i ∈ conflictIdx∗ do
37: conflictIdx∗← j |mappingIdx j = i

38: sort(conflictIdx∗,simMat[i,i],descending)

39: conflictIdx∗← conflictIdx∗ \{conflictIdx∗[1]}
40: for j ∈ conflictIdx∗ do
41: mappingIdx j← k | k ∈ spareidx ∧
42: ∧ @h : simMat[h, j] < simMat[k, j]∧h ∈ spareidx
43: spareidx← spareidx\{k}
44: end for
45: end for
46: end if
47: return mappingIdx
48: end procedure

A.3 Pseudocodes for ISVD Algorithms

As discussed in Section 4.4 (and summarized in Figure 4.8), we propose four

different approaches (five including the naive one, ISVD0) to decompose interval-

valued matrices. Here we provide the detailed pseudocode for each one of these

ISVD algorithms.

A.3.1 ISVD0 (Naive Approach): Average and Decompose

The naive ISVD0 algorithm, which simply operates by averaging the input

interval-valued entries, is discussed in Section 4.4.1.

Algorithm 7 ISVD0

Input:

Interval-valued matrix M̈ = [M∗,M∗] ∈Rn×m, target rank r.
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Output:

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and scalar-valued singular

matrix Σavg ∈Rr×r.

1: procedure ISVD0(M̈,r)

2: Mavg← M∗+M∗
2

3: Uavg,Σavg,Vavg← SVD(Mavg,r) . Singular value decomposition

4: return Uavg,Σavg,Vavg

5: end procedure

A.3.2 ISVD1: Independently Decompose and Align

The ISVD1 algorithm is described in Section 4.4.2 and is implemented as fol-

lows.

Algorithm 8 ISVD1

Input:

Interval-valued matrix M̈ = [M∗,M∗] ∈Rn×m, target rank r, decomposition target

option optDT .

Output:

Decomposition target option (a):

Interval-valued factor matrices Ü ∈ Rn×r, V̈ ∈ Rm×r and interval-valued singular

matrix Σ̈ ∈Rr×r.

Decomposition target option (b):

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and interval-valued singu-

lar matrix Σ̈ ∈Rr×r.

Decomposition target option (c):

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and scalar-valued singular

matrix Σavg ∈Rr×r.

1: procedure ISVD1(M̈,r,optDT )

2: U∗,Σ∗,V∗← SVD(M∗,r) . Singular Value Decomposition

3: U∗,Σ∗,V∗← SVD(M∗,r)
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4: mappingIdx,dirFlag← ILSA(V∗,V∗) . See Algorithm 6

5:

6: for j← 1 to r do
7: U∗[:, j]← U∗[:,mappingIdx j ]

. Apply remapping

8: V∗[:, j]← V∗[:,mappingIdx j ]

9: Σ∗[ j, j]← Σ∗[ j,mappingIdx j ]

10: if dirFlag[ j] = 1 then . Swap misaligned vectors

11: U∗[:, j]← U∗[:, j] · (−1)

12: V∗[:, j]← V∗[:, j] · (−1)

13: end if
14: end for
15:

16: Ü← AVERAGE-REPLACEMENT-MAT(Ü) . See Algorithms 3 and 2

17: V̈← AVERAGE-REPLACEMENT-MAT(V̈)

18: diag(Σ̈)← AVERAGE-REPLACEMENT-VEC(diag(Σ̈))

19:

20: if optDT = ‘a’ then
21: return Ü, Σ̈, V̈
22: else if optDT = ‘b’ then
23: Uavg← U∗+U∗

2

24: Vavg← V∗+V∗
2

25: Uavg,wU ← NORM-MAT(Uavg) . See Algorithm 5

26: Vavg,wV ← NORM-MAT(Vavg)

27: Σ∗← (wU ·wV ) ·Σ∗
28: Σ∗← (wU ·wV ) ·Σ∗

29: return Uavg, Σ̈,Vavg

30: else if optDT = ‘c’ then
31: Uavg← U∗+U∗

2

32: Σavg← Σ∗+Σ∗

2

33: Vavg← V∗+V∗
2

34: Uavg,wU ← NORM-MAT(Uavg) . See Algorithm 5

35: Vavg,wV ← NORM-MAT(Vavg)

36: Σavg← (wU ·wV ) ·Σavg

37: return Uavg,Σavg,Vavg

38: end if
39: end procedure
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A.3.3 ISVD2: Decompose, Solve, Align

The ISVD2 algorithm is described in Section 4.4.3 and is implemented as fol-

lows.

Algorithm 9 ISVD2

Input:

Interval-valued matrix M̈ = [M∗,M∗] ∈Rn×m, target rank r, decomposition target

option optDT .

Output:

Decomposition target option (a):

Interval-valued factor matrices Ü ∈ Rn×r, V̈ ∈ Rm×r and interval-valued singular

matrix Σ̈ ∈Rr×r.

Decomposition target option (b):

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and interval-valued singu-

lar matrix Σ̈ ∈Rr×r.

Decomposition target option (c):

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and scalar-valued singular

matrix Σavg ∈Rr×r.

1: procedure ISVD2(M̈,r,optDT )

2: Ä← INTERVAL-MAT-MULT(M̈T,M̈) . See Algorithm 1

3: V∗, Σ2
∗← EIG(A∗,r) . Eigen Decomposition

4: V∗, Σ∗2← EIG(A∗,r)

5: U∗←M∗ · (VT
∗ )
−1 · (Σ∗)−1

6: U∗←M∗ · (V∗T)−1 · (Σ∗)−1

7: mappingIdx,dirFlag← ILSA(V∗,V∗) . See Algorithm 6

8:

9: for j← 1 to r do
10: U∗[:, j]← U∗[:,mappingIdx j ]

. Apply remapping

11: V∗[:, j]← V∗[:,mappingIdx j ]

12: Σ∗[ j, j]← Σ∗[ j,mappingIdx j ]

13: if dirFlag j = 1 then . Swap misaligned vectors
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14: U∗[:, j]← U∗[:, j] · (−1)

15: V∗[:, j]← V∗[:, j] · (−1)

16: end if
17: end for
18:

19: Ü← AVERAGE-REPLACEMENT-MAT(Ü) . See Algorithms 3 and 2

20: V̈← AVERAGE-REPLACEMENT-MAT(V̈)

21: diag(Σ̈)← AVERAGE-REPLACEMENT-VEC(diag(Σ̈))

22:

23: if optDT = ‘a’ then
24: return Ü, Σ̈, V̈
25: else if optDT = ‘b’ then
26: Uavg← U∗+U∗

2

27: Vavg← V∗+V∗
2

28: Uavg,wU ← NORM-MAT(Uavg) . See Algorithm 5

29: Vavg,wV ← NORM-MAT(Vavg)

30: Σ∗← (wU ·wV ) ·Σ∗
31: Σ∗← (wU ·wV ) ·Σ∗

32: return Uavg, Σ̈,Vavg

33: else if optDT = ‘c’ then
34: Uavg← U∗+U∗

2

35: Σavg← Σ∗+Σ∗

2

36: Vavg← V∗+V∗
2

37: Uavg,wU ← NORM-MAT(Uavg) . See Algorithm 5

38: Vavg,wV ← NORM-MAT(Vavg)

39: Σavg← (wU ·wV ) ·Σavg

40: return Uavg,Σavg,Vavg

41: end if
42: end procedure

A.3.4 ISVD3: Decompose, Align, Solve

The ISVD3 algorithm is described in Section 4.4.4 and is implemented as fol-

lows.
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Algorithm 10 ISVD3

Input:

Interval-valued matrix M̈ = [M∗,M∗] ∈Rn×m, target rank r, decomposition target

option optDT , condition number threshold condT hr.

Output:

Decomposition target option (a):

Interval-valued factor matrices Ü ∈ Rn×r, V̈ ∈ Rm×r and interval-valued singular

matrix Σ̈ ∈Rr×r.

Decomposition target option (b):

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and interval-valued singu-

lar matrix Σ̈ ∈Rr×r.

Decomposition target option (c):

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and scalar-valued singular

matrix Σavg ∈Rr×r.

1: procedure ISVD3(M̈,r,optDT ,condT h)

2: Ä← INTERVAL-MAT-MULT(M̈T,M̈) . See Algorithm 1

3: V∗, Σ2
∗← EIG(A∗,r) . Eigen Decomposition

4: V∗, Σ∗2← EIG(A∗,r)

5: mappingIdx,dirFlag← ILSA(V∗,V∗) . See Algorithm 6

6:

7: for j← 1 to r do . Apply remapping

8: V∗[:, j]← V∗[:,mappingIdx j ]

9: Σ∗[ j, j]← Σ∗[ j,mappingIdx j ]

10: if dirFlag j = 1 then . Swap misaligned vectors

11: V∗[:, j]← V∗[:, j] · (−1)

12: end if
13: end for
14:

15: Vavg← V∗+V∗
2

16: condNum← COND(Vavg) . Condition Number

17: n,m← SIZE(Vavg)

18: if condNum > condT hr∨n 6= m then
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19: Vinv
avg← PINV(Vavg) . Moore-Penrose pseudo-inverse

20: else
21: Vinv

avg← (Vavg)−1

22: end if
23: Σinv← INVERSE-Σ(Σ∗,Σ∗) . See Algorithm 4

24: Ü← INTERVAL-MAT-MULT(M̈, (Vinv
avg ·Σinv)) . See Algorithm 1

25:

26: Ü← AVERAGE-REPLACEMENT-MAT(Ü) . See Algorithms 3 and 2

27: V̈← AVERAGE-REPLACEMENT-MAT(V̈)

28: diag(Σ̈)← AVERAGE-REPLACEMENT-VEC(diag(Σ̈))

29:

30: if optDT = ‘a’ then
31: return Ü, Σ̈, V̈
32: else if optDT = ‘b’ then
33: Uavg← U∗+U∗

2

34: Vavg← V∗+V∗
2

35: Uavg,wU ← NORM-MAT(Uavg) . See Algorithm 5

36: Vavg,wV ← NORM-MAT(Vavg)

37: Σ∗← (wU ·wV ) ·Σ∗
38: Σ∗← (wU ·wV ) ·Σ∗

39: return Uavg, Σ̈,Vavg

40: else if optDT = ‘c’ then
41: Uavg← U∗+U∗

2

42: Σavg← Σ∗+Σ∗

2

43: Vavg← V∗+V∗
2

44: Uavg,wU ← NORM-MAT(Uavg) . See Algorithm 5

45: Vavg,wV ← NORM-MAT(Vavg)

46: Σavg← (wU ·wV ) ·Σavg

47: return Uavg,Σavg,Vavg

48: end if
49: end procedure

A.3.5 ISVD4: Decompose, Align, Solve, Recompute

The ISVD4 algorithm is described in Section 4.4.5 and is implemented as fol-

lows.
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Algorithm 11 ISVD4

Input:

Interval-valued matrix M̈ = [M∗,M∗] ∈Rn×m, target rank r, decomposition target

option optDT , condition number threshold condT hr.

Output:

Decomposition target option (a):

Interval-valued factor matrices Ü ∈ Rn×r, V̈ ∈ Rm×r and interval-valued singular

matrix Σ̈ ∈Rr×r.

Decomposition target option (b):

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and interval-valued singu-

lar matrix Σ̈ ∈Rr×r.

Decomposition target option (c):

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and scalar-valued singular

matrix Σavg ∈Rr×r.

1: procedure ISVD4(M̈,r,optDT ,condT h)

2: Ä← INTERVAL-MAT-MULT(M̈T,M̈) . See Algorithm 1

3: V∗, Σ2
∗← EIG(A∗,r) . Eigen Decomposition

4: V∗, Σ∗2← EIG(A∗,r)

5: mappingIdx,dirFlag← ILSA(V∗,V∗) . See Algorithm 6

6:

7: for j← 1 to r do . Apply remapping

8: V∗[:, j]← V∗[:,mappingIdx j ]

9: Σ∗[ j, j]← Σ∗[ j,mappingIdx j ]

10: if dirFlag j = 1 then . Swap misaligned vectors

11: V∗[:, j]← V∗[:, j] · (−1)

12: end if
13: end for
14:

15: Vavg← V∗+V∗
2

16: condNum← COND(Vavg) . Condition Number

17: n,m← SIZE(Vavg)
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18: if condNum > condT hr∨n 6= m then
19: Vinv

avg← PINV(Vavg) . Moore-Penrose pseudo-inverse

20: else
21: Vinv

avg← V−1
avg

22: end if
23: Σinv← INVERSE-Σ(Σ∗,Σ∗) . See Algorithm 4

24: Ü← INTERVAL-MAT-MULT(M̈, (Vinv
avg ·Σinv)) . See Algorithm 1

25:

26: Uavg← U∗+U∗
2

27: condNum← COND(Uavg) . Condition Number

28: n,m← SIZE(Uavg)

29: if condNum > condT hr∨n 6= m then
30: Uinv

avg← PINV(Uavg) . Moore-Penrose pseudo-inverse

31: else
32: Uinv

avg← (Uavg)−1

33: end if
34: V̈←

[
INTERVAL-MAT-MULT((Σinv ·Vinv

avg),M̈)
]T

. See Algorithm 1

35:

36: Ü← AVERAGE-REPLACEMENT-MAT(Ü) . See Algorithms 3 and 2

37: V̈← AVERAGE-REPLACEMENT-MAT(V̈)

38: diag(Σ̈)← AVERAGE-REPLACEMENT-VEC(diag(Σ̈))

39:

40: if optDT = ‘a’ then
41: return Ü, Σ̈, V̈
42: else if optDT = ‘b’ then
43: Uavg← U∗+U∗

2

44: Vavg← V∗+V∗
2

45: Uavg,wU ← NORM-MAT(Uavg) . See Algorithm 5

46: Vavg,wV ← NORM-MAT(Vavg)

47: Σ∗← (wU ·wV ) ·Σ∗
48: Σ∗← (wU ·wV ) ·Σ∗

49: return Uavg, Σ̈,Vavg

50: else if optDT = ‘c’ then
51: Uavg← U∗+U∗

2

52: Σavg← Σ∗+Σ∗

2

53: Vavg← V∗+V∗
2
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54: Uavg,wU ← NORM-MAT(Uavg) . See Algorithm 5

55: Vavg,wV ← NORM-MAT(Vavg)

56: Σavg← (wU ·wV ) ·Σavg

57: return Uavg,Σavg,Vavg

58: end if
59: end procedure

A.4 Pseudocodes for Reconstruction Algorithms

Here we provide the pseudocode for the matrix reconstruction process and its

variations according to which decomposition target has been selected by the user

(as described in Section 4.3 and summarized in Figure 4.8).

A.4.1 Reconstruction Target (a): Interval-valued Ü, Σ̈, V̈

Algorithm 12 Reconstruction Target (a)

Input:

Interval-valued factor matrices Ü ∈ Rn×r, V̈ ∈ Rm×r and interval-valued singular

matrix Σ̈ ∈Rr×r.

Output:

Interval-valued matrix
∼
M̈=

[
M̃∗,M̃

∗] ∈Rn×m.

1: procedure TARGETa(Ü, Σ̈, V̈)

2: T̈← INTERVAL-MAT-MULT(Ü, Σ̈) . See Algorithm 1

3:
∼
M̈← INTERVAL-MAT-MULT(T̈, V̈T

)

4:
∼
M̈← Ü · Σ̈ · V̈T

5: return
∼
M̈

6: end procedure

A.4.2 Reconstruction Target (b): Scalar U, V̈, Interval Σ̈

Algorithm 13 Reconstruction Target (b)

Input:
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Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and interval-valued singu-

lar matrix Σ̈ ∈Rr×r.

Output:

Interval-valued matrix
∼
M̈=

[
M̃∗,M̃

∗] ∈Rn×m.

1: procedure TARGETb(Uavg, Σ̈, Vavg)

2: M̃∗← Uavg ·Σ∗ ·VT
avg

3: M̃
∗← Uavg ·Σ∗ ·VT

avg

4:
∼
M̈=

[
M̃∗,M̃

∗]
5:

∼
M̈← AVERAGE-REPLACEMENT-MAT(M̈) . See Algorithm 3

6: return
∼
M̈

7: end procedure

A.4.3 Reconstruction Target (c): Scalar U, Σ, V

Algorithm 14 Reconstruction Target (c)

Input:

Scalar-valued factor matrices Uavg ∈Rn×r,Vavg ∈Rm×r and scalar-valued singular

matrix Σavg ∈Rr×r.

Output:

Scalar-valued matrix M̃avg ∈Rn×m.

1: procedure TARGETc(Uavg, Σavg, Vavg)

2: M̃avg← Uavg ·Σavg ·VT
avg

3: return M̃avg

4: end procedure

A.5 Aligned Interval Probabilistic Matrix Factorization
(AI-PMF)

As discussed in Section 4.5, the aligned interval probabilistic matrix factoriza-

tion (AI-PMF) algorithm leverages the ILSA technique to obtain an interval-valued

latent semantic space to help reduce the negative impact of interval-valued projec-
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tions. Below, we provide the pseudocode of the AI-PMF algorithm.

Algorithm 15 AI-PMF

Input:

Interval-valued matrix M̈ = [M∗,M∗] ∈ Rn×m, target rank r, number of epoch

nE poch and number of batches nBatch.

Output:

Scalar-valued factor matrix U ∈Rn×r and interval-valued factor matrix V̈ ∈Rm×r.

1: procedure AI-PMF(M̈,r,nEpoch,nBatch)

2: Initialize random U ∈Rn×r

3: Initialize random V̈ = [V∗,V∗] ∈Rm×r

4: batchSize← n
nBatch

5: for e← 1 to nEpoch do
6: Shuffle and divide row vectors in M̈ into nBatch batches.

7: for each batch B ∈RbatchSize×m do
8: for reIdxi← 1 to batchSize do
9: i← row index in M̈ mapping to row index reIdxi in B

10: for reIdx j← 1 to m do
11: j← column ind. in M̈ mapping to column ind. reIdx j in B
12: U[i,:] = U[i,:]−

∂LI−PMF
∂U[i,:]

13: V∗[ j,:]
T = V∗[ j,:]

T− ∂LI−PMF
∂V∗[ j,:]

T

14: V∗[ j,:]
T = V∗[ j,:]

T − ∂LI−PMF

∂V∗[ j,:]
T

15: end for
16: end for
17: end for
18: end for
19: mappingIdx,dirFlag← ILSA(V∗,V∗) . See Algorithm 6

20:

21: for j← 1 to r do . Apply remapping

22: V∗[:, j]← V∗[:,mappingIdx j ]

23: if dirFlag j = 1 then . Swap misaligned vectors

24: V∗[:, j]← V∗[:, j] · (−1)

25: end if
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26: end for
27: return U, V̈
28: end procedure
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