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Abstract
We find many examples of compact Riemannian manifolds (M, g) whose closed minimal
hypersurfaces satisfy a lower bound on their index that is linear in their first Betti number.
Moreover, we show that these bounds remain valid when the metric g is replaced with g′
in a neighbourhood of g. Our examples (M, g) consist of certain minimal isoparametric
hypersurfaces of spheres, their focal manifolds, the Lie groups SU(n) for n ≤ 17 and Sp(n)

for all n, and all quaternionic Grassmannians.

Mathematics Subject Classification 49Q05 · 53A10 · 53C35 · 53C40

1 Introduction

Let (M, g) be a compact Riemannian manifold. We are interested in closed, immersed,
minimal hypersurfaces � → M . The (Morse) index ind(�) of such � is the maximal
dimension of a space of smooth sections of the normal bundle of� where the second variation
of area is negative-definite. Since � is compact, its index is finite. It is natural to ask what is
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the relation between the index and the topology of�. In this regard, the following conjecture
was first proposed in the 1980s by Schoen, and then rephrased in all dimensions by Marques
and Neves in their ICM lectures in 2014 (cf. [14, page 16], or [1, page 3]):

Conjecture Let (M, g) be a compact Riemannian manifold with positive Ricci curvature,
and dimension at least three. Then there exists C > 0 such that, for all closed, embedded,
orientable, minimal hypersurfaces � → M, one has

ind(�) ≥ Cb1(�)

where b1(�) denotes the first Betti number of � with real coefficients.

Some special cases and related results include: When (M, g) is a flat 3-torus, Ros [17,
Theorem 16] has found affine (in the first Betti number) bounds on the index—see also [5]
and [2]. For (M, g) a round sphere of any dimension, Savo [18] has given linear bounds on
the index. Generalizing Savo’s method, Ambrozio, Carlotto, and Sharp [1] have found linear
bounds on the index when (M, g) is any compact rank-one symmetric space, or Sa × Sb

for (a, b) �= (2, 2). Finally, the second and third authors of the present article have proven a
linear bound on the index plus nullity when (M, g) is any compact symmetric space [11].

Savo’s method, as generalized by Ambrozio–Carlotto–Sharp, relies on the existence of
an isometric immersion of (M, g) into a Euclidean space Rd such that a certain real-valued
function,whichwe call theACS quantity, is everywhere negative. The domain of this function
is the total space of the bundle of Stiefel manifolds V2(T M) of orthonormal 2-frames, and
it depends only on the second fundamental form II of M → R

d , see Definition 1 below
for the precise formula. For instance, the standard inclusion Sn ⊂ R

n+1 satisfies ACS < 0.
It was already recognized in [1] that this method is flexible in the sense that sometimes
the obtained index bound remains valid when the ambient metric g is deformed in certain
directions (see [1, Theorems 12 and 13]). We push this idea further, and obtain:

Theorem A Suppose (M, g) admits a C∞ isometric immersion into R
d with negative ACS

quantity, and with image contained in a sphere. Let λ ∈ (0, 1). Then there exists ε > 0 such
that: For any C∞ metric g′ on M with ‖g − g′‖C2,λ < ε (Hölder norm), and any minimal,
closed, immersed hypersurface � ⊂ (M, g′), one has

ind(�) ≥ 8

d(d + 3)(d2 + 3d − 2)
b1(�).

Compared to the extrinsic flexibility of the method in [1], Theorem A states that, when
the image of the immersion M → R

d is contained in a sphere, then the method is actually
intrinsicallyflexible: that is, the linear index bound remains valid under any small deformation
of the metric itself.

The Proof of TheoremA is based onGünther’s approach to theNash Embedding Theorem.
The hypothesis that the image of M → R

d is contained in a sphere is satisfied by all known
examples (including our new examples described below) of immersions with negative ACS
quantity. If one drops this hypothesis from the statement of Theorem A, our proof still yields
an open set U of metrics on M with respect to which the stated index bound holds. Moreover,
U can be taken so that the original metric g belongs to the closure of U (cf. Remark 8).

Among the ambient symmetric spacesmentioned earlier, TheoremAapplies to Sn , Sa×Sb

for (a, b) �= (2, 2), HPn , and the Cayley plane. It does not apply to RPn and CPn , because
the proof in [1] of the index bound in this cases is less direct, and in particular they do not
produce an immersion of these spaces into Euclidean space with ACS < 0.
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In the second part of the present paper, we drastically expand the list of spaces to which
Theorem A may be applied, and for which, in particular, the conclusion of Conjecture holds.
An interesting feature of our new examples is that they all have positive Ricci curvature
(see Propositions 21 and 22), while it is possible to find a sequence with minimum sectional
curvature tending to −∞ (see Proposition 23), thus providing evidence that the curvature
assumption in Conjecture is the correct one. Another novel feature is that infinitely many
are not symmetric, and in fact not even homogeneous, although they are all curvature-
homogeneous (see Remark 24).

Our first class of examples are among isoparametric hypersurfaces of round spheres,
that is, hypersurfaces with constant principal curvatures; and their focal manifolds. Our
motivation to consider isoparametric submanifolds is that they have the simplest extrinsic
geometry, making the study of the ACS quantitymoremanageable. One interesting fact about
such submanifolds is that, assuming the multiplicities of the principal curvatures are bigger
than one, ACS < 0 implies Ric > 0, see Proposition 21.

Isoparametric hypersurfaces of round spheres have been studied for at least a century by
many prominent geometers, notably E. Cartan and H.Münzner who proved the first structure
results (see Sect. 4.1 below for a short summary, and [3] for a general reference).Nevertheless,
they remain a very active area of research, with interesting questions still open.

One particular feature of isoparametric hypersurfaces of round spheres is that the number
g of principal curvatures is one of {1, 2, 3, 4, 6}, and their multiplicities m1, . . . ,mg satisfy
mi = mi+2, where i runs cyclically from 1 to g (in particular for g = 3 all multiplicities coin-
cide). Therefore, all multiplicities are determined by m1 and m2, and it is customary to order
them by m1 ≤ m2. Furthermore, the set of focal points of any isoparametric hypersurface
M ⊂ Sn+1 is given by the union of two focal manifolds M+, M− ⊂ Sn+1 of codimension
m1 + 1 and m2 + 1 respectively. For any g given, the possible multiplicities (m1,m2) have
been completely determined, and there is always a finite number of possibilities, except when
g = 4, which is the case we will concentrate on. We refer the reader to Sect. 4.1 for more
details on this theory.

Theorem B Let Mn ⊂ Sn+1 be a minimal isoparametric hypersurface with four principal
curvatures, andmultiplicities m1 ≤ m2. Let M+ be the focal manifold of M with codimension
1 + m1 in Sn+1.

(a) If m1 ≥ 5, or if m1 = 4 and m2 is large enough, then M satisfies ACS < 0.
(b) If m2 > (3m1 + 10)/4, then M+ satisfies ACS < 0.

There exist infinitely many homogeneous and inhomogeneous isoparametric hypersur-
facesM ⊂ Sn+1 satisfying the conditions in (a) and (b) of TheoremB (see Sect. 4.3 for precise
statements). The homogeneous spaces satisfying (a) are orbits of the group Sp(k)Sp(2) act-
ing on the space of quaternionic k × 2 matrices in the natural way; as well as the isotropy
representation of the symmetric space E6/Spin(10)U(1). The homogeneous focal man-
ifolds satisfying (b) are Stiefel manifolds of 2-frames over R, C, or H; and one of the
singular orbits of the isotropy representation of the symmetric space E6/Spin(10)U(1). The
inhomogeneous examples satisfying the conditions of Theorem B were constructed using
Clifford systems by Ferus–Karcher–Münzner [8], generalizing previous constructions of
Ozeki–Takeuchi [15,16].

Our second class of new examples are symmetric spaces:

Theorem C The following symmetric spaces admit an embedding into some Euclidean space
with ACS < 0:

(a) The quaternionic Grassmannian of d-planes in Hn, for all d, n;
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(b) The Lie group Sp(n) for all n;
(c) The Lie group SU (n) for n ≤ 17.

This article is organized as follows. In Sect. 2,we recall themethod of Savo andAmbrozio–
Carlotto–Sharp to prove index bounds using an isometric immersion of the ambient manifold
into Euclidean space, and in particular define what we call the ACS quantity. Section 3 is
devoted to the Proof of Theorem A. Section 4 concerns isoparametric hypersurfaces of the
sphere. After some preliminaries, we compute the ACS quantity of such submanifolds, and
prove Theorem B. Then, we apply Theorem B to concrete examples, and finish the section
with remarks about the geometry of these examples. Finally, in Sect. 5 we study equivariant
embeddings of symmetric spaces into Euclidean space, and prove Theorem C: parts (a), (b),
and (c) follow from Propositions 34, 30, and 32, respectively.

2 Index bounds

In this sectionwe recall amethod due toAmbrozio–Carlotto–Sharp [1] (generalizing previous
work, especially [17] and [18]) to prove lower bounds on the index of immersed minimal
hypersurfaces.

Consider a complete Riemannian manifold (M, g). Assume M is isometrically immersed
into some Euclidean space Rd , and denote by II the second fundamental form of this immer-
sion. Inspired by [1, Proposition 2], we define the following quantity:

Definition 1 The ACS quantity associated to the isometric immersion M ⊂ R
d at p ∈ M is

defined as

ACS(X , N ) =
n−1∑

k=1

(‖II(ek, X)‖2 + ‖X‖2‖II(ek, N )‖2) −
n−1∑

k=1

RM (ek, X , ek, X)

− ‖X‖2 RicM (N , N )

where X , N ∈ TpM are such that ‖N‖ = 1 and 〈X , N 〉 = 0; RM denotes the curvature
tensor of M ;1 and e1, . . . en−1 is an orthonormal basis of N⊥ ⊂ TpM .

The geometric significance of theACSquantity stems from the following result,which eas-
ily follows from [1, Theorem A] (and by slight abuse of language, we will attribute to them):

Theorem 2 (Ambrozio–Carlotto–Sharp) Suppose (M, g) admits an isometric immersion into
a Euclidean space Rd such that, for all p ∈ M, and all X , N ∈ TpM with ‖X‖ = ‖N‖ = 1
and 〈X , N 〉 = 0, one has ACS(X , N ) < 0. Then every closed immersed minimal hypersur-
face � ⊂ M satisfies

ind(�) ≥
(
d

2

)−1

b1(M).

In particular, (M, g) satisfies the conclusion of Conjecture with C = (d
2

)−1
.

Remark 3 The main result of [1] is more general, because it only requires to check
ACS(X , N ) < 0 for N normal to a minimal hypersurface in M . Furthermore, the proof
of that Theorem applies in even more generality, since it only requires, for any 2-sided
hypersurface � with normal vector N and any vector field X dual to a harmonic 1-form,
that

∫
�
ACS(X , N ) < 0 (cf. Proposition 2 of [1]). The pointwise condition, albeit more

1 We use the sign convention for R such that sec(v ∧ w) = R(v, w, v, w)/‖v ∧ w‖2.
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restrictive, is still satisfied by the examples provided in [1], and is precisely what allows the
extra flexibility required for Theorem A.

From now on, we will consider the quantity ACS(X , N ) for orthonormal vectors X , N .
It will be convenient to rewrite the ACS quantity in terms of II only.

Lemma 4 In the notation of Definition 1 above, and for X , N orthonormal,

ACS(X , N ) = −〈H , II(X , X) + II(N , N )〉 + 2‖II(X , ·)‖2 + 2‖II(N , ·)‖2
+ 〈II(X , X), II(N , N )〉 − 2‖II(X , N )‖2 − ‖II(N , N )‖2 (1)

where H denotes the mean curvature vector of M ⊂ R
d ; ‖II(X , ·)‖ denotes the Frobenius

norm of the linear map Y �→ II(X , Y ); and similarly for ‖II(N , ·)‖.
Proof First note that

n−1∑

k=1

‖II(ek, X)‖2 = ‖II(X , ·)‖2 − ‖II(X , N )‖2

and similarly for
∑n−1

k=1 ‖II(ek, N )‖2. Next, use the Gauss equation to write

RicM (N , N ) = 〈II(N , N ), H〉 − ‖II(N , ·)‖2
n−1∑

k=1

RM (ek, X , ek, X) = RicM (X , X) − RM (N , X , N , X)

= 〈II(X , X), H − II(N , N )〉 − ‖II(X , ·)‖2 + ‖II(X , N )‖2

Putting these terms together yields the desired formula. ��

3 Robust index bound

The goal of this section is to prove Theorem A. The main ingredient of our proof is also the
main ingredient of the proof of the Nash embedding theorem. For convenience we will use
the simplification of Nash’s proof due to Günther [10].

Following Gromov–Rohlin [9], we define the class of free immersions:

Definition 5 A smooth immersion u : M → R
d with second fundamental form II is called

free if, for any point p ∈ M , and any basis {e1, . . . en} of TpM , the normal vectors II(ei , e j )
for 1 ≤ i ≤ j ≤ n, are linearly independent.

Note that if N → M is an immersion, and M → R
d is a free immersion, then the

composite immersion N → R
d is free.

Fix a “Hölder exponent” λ with 0 < λ < 1, and denote by ‖ · ‖s the Hölder norm of a
real-valued function on the open unit ball B ⊂ R

n , given by

‖u‖s =
∑

|α|≤s

sup
x∈U

|Dαu(x)| +
∑

|α|=s

sup
x �=y∈U

|Dαu(x) − Dαu(y)|
|x − y|λ (2)

Fixing an atlas of M and a partition of unity, there is an extension of the definition above
to smooth functions on M , and sections of any vector bundle on M , all of which are still
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denoted by ‖ · ‖s . We note that Günther uses a different definition (see [10, page 70]) of the
Hölder norm, but it is equivalent to the more common definition (2) above.

Let u : M → R
d be a free immersion. Günther defines a map from the space of smooth

symmetric 2-tensors C∞(M,Sym2 T ∗M) to the space of smooth normal sections, denoted
by f �→ E(u)(0, f ), in the following way. For any p ∈ M , since u is free, there exists a
normal v ∈ νpM such that 〈II(X , Y ), v〉 = f (X , Y ) for all X , Y ∈ TpM . Such v is not
unique, but selecting at every point the unique v with minimal norm yields the normal vector
field E(u)(0, f ). Moreover, there exist constants K , depending only on the fixed atlas and
partition of unity, and D(u), depending on these and the free immersion u, such that, for all
f ∈ C∞(M,Sym2 T ∗M), the following inequality is satisfied (see [10, Equation (34)]):

‖E(u)(0, f )‖2 ≤ K D(u)‖ f ‖2. (3)

Theorem 6 [10] Let M be a compact manifold with fixed atlas and partition of unity as
above. Then, there exists θ > 0 such that, for any free immersion u : M → R

d , and
f ∈ C∞(M,Sym2 T ∗M) such that D(u)‖E(u)(0, f )‖2 ≤ θ , there exists v ∈ C∞(M,Rd)

with ‖v‖2 ≤ ‖E(u)(0, f )‖2 such that u + v is an isometric immersion with respect to the
metric g′ = g + f , where g is the metric induced by u.

The following statement is an immediate consequence of Theorem 6 and (3).

Lemma 7 Let (M, g) be a compact Riemannian manifold, and u : M → R
d a smooth

free isometric immersion. Then, for any δ > 0, there is ε > 0 such that, for all f ∈
C∞(M,Sym2 T ∗M) with ‖ f ‖2 < ε, there is v ∈ C∞(M,Rd) with ‖v‖2 < δ such that
u + v is an isometric immersion with respect to the metric g′ = g + f .

Proof Let δ > 0. Let θ > 0 satisfying the conclusion of Theorem 6. Take

ε = min

{
δ

K D(u)
,

θ

K D(u)2

}
.

Then, for any f ∈ C∞(M,Sym2 T ∗M) with ‖ f ‖2 < ε, (3) implies that

D(u)‖E(u)(0, f )‖2 < θ.

Thus, by Theorem 6, there exists v ∈ C∞(M,Rd) with ‖v‖2 < ‖E(u)(0, f )‖2 such that the
immersion u + v induces the metric g + f . By (3), ‖v‖2 < δ. ��
Proof of Theorem A Wemay assume,without loss of generality, that the image of the isometric
immersion u : (M, g) → R

d is contained in the unit sphere Sd−1 centered at the origin.

Let Sym2
R
d � R(d+1

2 ) denote the space of symmetric d × d matrices with inner product
〈A, B〉 = tr AB, and consider for θ > 0 the “Veronese” embedding

Vθ : Rd → R
d × Sym2

R
d

Vθ (y) = (y, θ yyt ).

The orthogonal group O(d) acts by linear isometries on Rd × Sym2
R
d , via

A · (y, X) = (Ay, AX At ).

With respect to this action, Vθ is:

• O(d)-equivariant: in fact, for A ∈ O(d),

Vθ (Ay) = (Ay, θ Ay(Ay)t ) = (Ay, A(θ yyt )At ) = A · (y, θ yyt ) = A · Vθ (y)
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• A free immersion: in fact, by O(d)-equivariance it is enough to check this for y = re1,
where e1, . . . ed is the standard orthonormal basis of Rd . Let Ei j , 1 ≤ i, j ≤ d , denote
the symmetric matrix with (Ei j )i j = (Ei j ) j i = 1 and 0 otherwise. The differential and
second fundamental form of Vθ at y are then:

dyVθ (ei ) = (ei , θr E1i ), i = 1, . . . , d,

II(ei , e j ) = (0, θEi j ), 2 ≤ i < j ≤ d,

II(ei , ei ) = (0, 2θEii ), 2 ≤ i ≤ d,

II(e1, e j ) = prVθ (Rd )⊥(0, θE1 j )

= (0, θE1 j ) − 2θ2r

1 + 2θ2r2
(e j , θr E1 j )

= θ

1 + 2θ2r2
(−2θre j , E1 j ) 2 ≤ j ≤ d

II(e1, e1) = prVθ (Rd )⊥(0, 2θE11)

= (0, 2θE11) − 2θ2r

1 + θ2r2
(e1, θr E11)

= 2θ

1 + θ2r2
(−θre j , E1 j )

Clearly the vectors II(ei , e j ) are linearly independent.

In particular, the metric on Sd−1 induced by the embedding Vθ |Sd−1 : Sd−1 → R
d ×

Sym2
R
d is O(d)-invariant, hence a constant scalar multiple c = c(θ) of the original (round)

metric, because the isometric action of O(d) on Sd−1 takes any 2-plane to any other 2-plane.
From the computation of dVθ it is easy to check that c(θ) = 1 + 2θ2.

Therefore, the composition Vθ ◦ u : M → R
d × Sym2

R
d is free, and induces a constant

scalar multiple cg of the metric g, where c = c(θ) = 1+2θ2. Moreover, if θ is small enough,
Vθ ◦ u has negative ACS quantity.

The maximum of the ACS quantity depends continuously on the immersion, with respect
to the Hölder norm ‖ · ‖2 [cf. (1)]. Thus there is δ > 0 such that, if v : M → R

d × Sym2
R
d

satisfies ‖v‖2 < δ, then the immersion Vθ ◦ u + v has negative ACS quantity. By Lemma 7,
there is ε > 0 such that, for all metrics g′ on M with ‖g − g′‖2 < ε, there is v : M →
R
d ×Sym2

R
d such that Vθ ◦u+v induces cg′ and has negative ACS quantity. By Theorem 2,

if g′ is such a metric, and � is a closed immersed minimal hypersurface in (M, g′), then

ind(�) ≥
(
d + (d+1

2

)

2

)−1

b1(�) = 8

d(d + 3)(d2 + 3d − 2)
b1(�).

��

Remark 8 In the case that the image of u : (M, g) → R
d is not contained in the unit

sphere (but it still has ACS(X , N ) < 0 for every X , N orthonormal), the family of metrics
{gθ }θ∈(0,∞) onM induced by Vθ ◦u : M → R

d×Sym2
R
d converge smoothly to g as θ → 0.

In particular, there is some θ0 such that for every θ ∈ (0, θ0), the free isometric embedding
Vθ ◦ u : (M, gθ ) → R

d × Sym2
R
d still has ACS < 0. By the Proof of Theorem A, for any

such θ there is a neighbourhood Uθ of gθ in the space of C2,α metrics on M , such that for
every g′ ∈ Uθ and every minimal hypersurface � ⊆ (M, g′) one has
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ind(�) ≥ 8

d(d + 3)(d2 + 3d − 2)
b1(�).

Taking

U =
⋃

θ∈(0,θ0)

Uθ

It then follows that:

• U is open, and contains g in its closure.
• For every g′ ∈ U and every minimal hypersurface � ⊂ (M, g′), one has

ind(�) ≥ 8

d(d + 3)(d2 + 3d − 2)
b1(�).

4 Isoparametric examples

4.1 Preliminaries

We start by recalling some basic definitions and facts, as well as fixing the notation. We refer
the reader to Section 2.9 and Chapter 4 of [3] for a complete treatment.

A submanifoldM of Euclidean space (or the sphere, or hyperbolic space) is called isopara-
metric if it has flat normal bundle, and constant principal curvatures along any locally defined
parallel normal field. Using the Ricci equation, this implies that the tangent bundle T M
decomposes as the orthogonal direct sum of curvature distributions Ei , for i = 1, . . . g,
which are the common eigenspaces for the shape operators. The eigenvalues are encoded
in a family of parallel sections of the normal bundle, called the curvature normals ξi : For
any normal vector ξ , the shape operator Aξ in the direction of ξ has eigenvalues 〈ξ, ξi 〉 with
eigenspaces Ei . It follows that

II(xi , y j ) = 〈
xi , y j

〉
ξi (4)

for xi ∈ Ei and y j ∈ E j . The dimensions mi of the curvature distributions Ei are called
multiplicities [3, pp. 139–140].

Given a parallel normal field ξ , the set Mξ = {p + ξ(p) | p ∈ M} is a smooth manifold.
If dim(Mξ ) = dim(M), Mξ is again an isoparametric submanifold, and is called a parallel
manifold to M . If dim(Mξ ) < dim(M), Mξ is called a focal manifold to M . It still has
constant principal curvatures along any parallel normal field, but the normal bundle is no
longer flat. The set F = {Mξ } of all parallel and focal manifolds of M forms a singular
Riemannian foliation of Euclidean space, called an isoparametric foliation [3, pp. 141–142].

Given an isoparametric submanifoldM of Euclidean space, let V be the normal space ofM
at p ∈ M . In this setting, V is sometimes called a section of the isoparametric foliation. This
section intersects all the parallel and focal submanifolds of F perpendicularly. Furthermore,
Terng ([19], see [3, pp. 142–144]) has shown there is a discrete group W of isometries of V
associated to M , called Coxeter group, with the following properties:

• W is generated by reflections along hyperplanes;
• theW -orbit of any point q ∈ V coincides with the intersection between V and the parallel

or focal manifold Mξ through q .
• the union of all the hyperplanes fixed by some element of W , coincides with the inter-

section between V and the focal manifolds Mξ in the isoparametric foliation.
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Fig. 1 Section through p ∈ M ,
when M ⊂ R

n+2 is an
isoparametric submanifold of
codimension 2 and g = 4
principal curvatures. The origin
coincides with the origin of
R
n+2. The picture shows the

reflection lines Li , as well as the
principal curvature vectors ξi (p),
i = 1, . . . 4. The dots represent
the W -orbit of p, which
coincides with the intersection
between M and V in Rn+2

∑

L1L2L3

L4

•p

ξ1

ξ2

ξ3 ξ4

•

•

•

•

••

•

Wewill consider the casewhereMn ⊂ Sn+1 ⊂ R
n+2 [3, Example 4.2.1 and section 4.2.5].

Münzner [12,13] has shown that, in this case, the possible values for the number g of principal
curvatures are 1, 2, 3, 4, 6. We will consider the case g = 4 only, as it contains the richest
class of examples. In this case, any section V through p ∈ M is a two-dimensional subspace
of Rn+2 with p ∈ V , and the Coxeter group W is a dihedral group with 2g = 8 elements,
corresponding to four reflection lines denoted L1, L2, L3, L4. Again, each parallel and focal
manifold intersects V in the orbit of a point underW , and the focal submanifolds correspond
to points in L1 ∪ L2 ∪ L3 ∪ L4.

Choose an orthonormal basis of V so that Li is the line orthogonal to the vector αi for all
i , where

α1 = (1,−1) α2 = (1, 0) α3 = (1, 1) α4 = (0, 1).

The multiplicities satisfy m1 = m3 and m2 = m4, because W acts on {L1, L2, L3, L4} with
orbits {L1, L3} and {L2, L4}. Because of this, in the literature it is customary to say that such
an isoparametric hypersurface has multiplicities (m1,m2).

The curvature normals at p of the isoparametric submanifold M are given by (Fig. 1)

ξi = − αi

〈αi , p〉 . (5)

(Compare [3, Example 2.7.1] for the homogeneous case.) Note that 〈ξi , p〉 = −1 for every
i . Recall formula (4) for the second fundamental formula. In particular, the mean curvature
vector is given by H = ∑

i miξi .
We will be interested in minimal (in the sphere) isoparametric submanifolds:

Lemma 9 In the notation above, let M be the isoparametric submanifold through p =
(cos(θ), sin(θ)) ∈ V where 0 < θ < π/4. The following are equivalent:

(a) M is minimal in Sn+1.
(b) H = −np.
(c) The volume of M is maximal among its parallel hypersurfaces in the sphere.
(d) θ = (1/2) arctan(

√
m2/m1).
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Proof The mean curvature vector of M in R
n+2 is H = ∑

i miξi = −np + HS , where HS

denotes the mean curvature vector of M in the sphere. Thus, (a) and (b) are equivalent.
We claim that, up to a constant, the function f (p) = Vol(M) is given by

f (p) = 〈α1, p〉m1 〈α2, p〉m2 〈α3, p〉m1 〈α4, p〉m2

Indeed, given two parallel isoparametric submanifolds M, M ′, through points p, p′ ∈ V , let
η = p′ − p, and extend it to a parallel normal field to M , also called η. Then the endpoint
map φ : M → M ′ given by x �→ x + η(x) is a diffeomorphism. Its differential is block
diagonal with dφ|Ei = (1 − 〈η, ξi 〉) Id. In particular,

Vol(M ′)
Vol(M)

= ± det dφ = ±
∏

i

(1 − 〈η, ξi 〉)mi = ±
∏

i

(1 + 〈p, ξi 〉 − 〈
p′, ξi

〉
)mi

= ±
∏

i

〈
p′, αi

〉mi

∏
i 〈p, αi 〉mi

thus finishing the proof of the claim.
Plugging in p = (cos(θ), sin(θ)) yields

f (p) = (cos(θ) − sin(θ))m1 cosm2(θ)(cos(θ) + sin(θ))m1 sinm2(θ)

= cosm1(2θ) sinm2(2θ)/2m2 .

Differentiating with respect to θ and setting equal to zero gives us

cosm1−1(2θ) sinm2−1(2θ)
(− m1 sin

2(2θ) + m2 cos
2(2θ)

) = 0.

So the unique critical point in the open interval (0, π/4) is (1/2) arctan(
√
m2/m1). It is the

maximum because the volume goes to zero as θ → 0 or π/4, thus proving the equivalence
of (c) and (d).

Finally, to prove that (b) and (c) are equivalent, note that

∇(log f ) =
∑

i

mi 〈αi , p〉−1 αi = −H

so that f is maximum subject to ‖p‖2 = 1 if and only if H is parallel to p, that is, if and
only if H = −np. ��

4.2 The ACS quantity of isoparametric submanifolds and their focal manifolds

Since the second fundamental form of an isoparametric submanifold is easy to write down
[cf. (4)], we get a very explicit formula for the ACS quantity. The exact second fundamental
form of a focal manifold is more subtle, but we find estimates that suffice for our purposes.
We state these formulas and estimates only in the special situationwe are considering, namely
minimal isoparametric hypersurfaces of the sphere, with 4 principal curvatures, but similar
formulas hold for isoparametric submanifolds of general codimension, number of principal
curvatures, and multiplicities.

Lemma 10 Assume M ⊂ Sn+1 is a minimal (cf. Lemma 9) isoparametric hypersurface with
four principal curvatures, and p ∈ M. Let X , N ∈ TpM with ‖X‖ = ‖N‖ = 1 and
〈X , N 〉 = 0. Write X = ∑

i xi and N = ∑
i yi , where xi , yi ∈ Ei . Then
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ACS(X , N ) = −2n +
4∑

i, j=1

(
(‖xi‖2 − ‖yi‖2)‖y j‖2 − 2 〈xi , yi 〉

〈
x j , y j

〉 ) 〈
ξi , ξ j

〉

+ 2
4∑

i=1

(
‖xi‖2 + ‖yi‖2

)
‖ξi‖2. (6)

Proof We use the expression for the ACS quantity given in Lemma 4, together with the
formula for the second fundamental form in (4). Since M is minimal in the sphere, the first
term in Lemma 4, namely −〈H , II(X , X) + II(N , N )〉, equals −2n.

We claim that the next term 2‖II(X , ·)‖2 equals 2
∑

i ‖xi‖2‖ξi‖2, and similarly for
2‖II(N , ·)‖2. Indeed, take an orthonormal basis e1, . . . en of TpM where each ek belongs
to Ei(k) for some (unique) index i(k). Then,

‖II(X , ·)‖2 =
∑

k

‖II(X , ek)‖2 =
∑

k

〈
xi(k), ek

〉2 ‖ξi(k)‖2

=
∑

i

∑

k,i(k)=i

〈xi , ek〉2 ‖ξi‖2 =
∑

i

‖xi‖2‖ξi‖2.

Since II(X , N ) = ∑
i 〈xi , yi 〉 ξi , it follows that

−2‖II(X , N )‖2 = −2
∑

i, j

〈xi , yi 〉
〈
x j , y j

〉 〈
ξi , ξ j

〉
,

and similarly for the two remaining terms 〈II(X , X), II(N , N )〉 and −‖II(N , N )‖2. Adding
everything we obtain the expression in the statement of the lemma. ��

For simplicity we make a change of variables:

Lemma 11 Let M ⊂ Sn+1 be a minimal isoparametric hypersurface with four principal
curvatures, all of whose multiplicities are larger than one, and p ∈ M. Then the maximum
of ACS(X , N ) over all pairs X , N ∈ TpM with ‖X‖ = ‖N‖ = 1 and 〈X , N 〉 = 0 is equal
to the maximum ofACS′(s, t) over all (s, t) ∈ 3 ×3, where3 is the standard 3-simplex

3 = {u ∈ R
4 | ui ≥ 0 ∀i, u1 + u2 + u3 + u4 = 1}

and ACS′(s, t) is defined by

ACS′(s, t) = −2n +
4∑

i, j=1

(si − ti )t j
〈
ξi , ξ j

〉+ 2
4∑

i=1

(si + ti )‖ξi‖2. (7)

Proof Given X , N ∈ TpM with ‖X‖ = ‖N‖ = 1 and 〈X , N 〉 = 0, write X = ∑
i xi and

N = ∑
i yi , where xi , yi ∈ Ei . Define si = ‖xi‖2, ti = ‖yi‖2, s = (s1, s2, s3, s4), and

t = (t1, t2, t3, t4). Note that (s, t) ∈ 3 × 3. Moreover, by Lemma 10,

ACS(X , N ) = ACS′(s, t) − 2‖II(X , N )‖2 ≤ ACS′(s, t).

This shows that maxACS ≤ maxACS′.
To prove the reverse inequality, let (s, t) ∈ 3 × 3. Then, since dim(Ei ) > 1 for all

i , there exists (X , N ) such that si = ‖xi‖2, ti = ‖yi‖2, and 〈xi , yi 〉 = 0, for every i . In
particular, 〈X , N 〉 = 0, and

‖II(X , N )‖2 =
∑

i, j

〈xi , yi 〉
〈
x j , y j

〉 〈
ξi , ξ j

〉 = 0.
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Thus ACS′(s, t) = ACS(X , N ), completing the proof. ��
Remark 12 ACS′(s, t) is linear in s, so that the maximum over all s, given a fixed t , must
occur for s at one of the four vertices of3. On the other hand, if one fixes s, then ACS′(s, t)
is quadratic and concave in t . This means that given explicit values of the curvature normals
ξi , the maximum of the ACS quantity may be efficiently computed by solving four convex
quadratic optimization problems over the 3-simplex. In practice this can be donewith interior-
point methods, implemented in e.g. the CVXOPT package for Python.

We start with a simple upper bound for the ACS quantity, which depends only on the
multiplicities:

Lemma 13 In the notations and assumptions of Lemma 11,

ACS ≤ −2n + 10(m1 + m2)

m1

(
1 +

√
m2

m1 + m2

)
.

Proof First we claim that ACS′ ≤ −2n + 5maxk ‖ξk‖2. Indeed,

ACS′ ≤ −2n +
4∑

i, j=1

si t j
〈
ξi , ξ j

〉+ 2
4∑

i=1

(si + ti )‖ξi‖2

≤ −2n +
⎛

⎝
4∑

i, j=1

si t j + 2
4∑

i=1

(si + ti )

⎞

⎠max
k

‖ξk‖2 = −2n + 5max
k

‖ξk‖2.

Since we are assuming m2 ≥ m1, we have θ ≥ π/8, so that ξ1 is the curvature normal with
the largest norm. Computing directly from (5), we obtain

‖ξ1‖2 = 2

(cos(θ) − sin(θ))2
= 2

1 − sin(2θ)
= 2

1 −
√

m2
m1+m2

= 2(m1 + m2)

m1

(
1 +

√
m2

m1 + m2

)
.

Therefore ACS ≤ ACS′ ≤ −2n + 10(m1+m2)
m1

(
1 +

√
m2

m1+m2

)
. ��

Proof of Theorem B part (a) First assume m1 ≥ 5. Then, by Lemma 13,

ACS ≤ −4(m1 + m2) + 10(m1 + m2)

m1

(
1 +

√
m2

m1 + m2

)

< 4(m1 + m2)

(
−1 + 5

m1

)
≤ 0.

Now let m1 = 4. By Lemma 9, since M is minimal, it contains the point p =
(cos(θ), sin(θ)) ∈ V , where θ = (1/2) arctan(

√
m2/4). As m2 goes to infinity, the cur-

vature normals ξ2, ξ3, ξ4 converge, while the norm of ξ1 goes to infinity. More precisely, by
the Proof of Lemma 13,

‖ξ1‖2 = 4 + m2

2

(
1 +

√
m2

4 + m2

)
.

It is enough to show that the maximum of the ACS′(s, t) quantity of M over (s, t) ∈
3 × 3 is negative when m2 is large (see Lemma 11). Moreover, since the maximum
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occurs for s at one of the vertices of3, we need to show that, form2 large and i = 1, 2, 3, 4,
the maximum of ACS′(ei , t) over t ∈ 3 is negative.

Since n = 2(4 + m2), one has

ACS′(s, t) = −4(4 + m2) + [(s1 − t1)t1 + 2(s1 + t1)]‖ξ1‖2 + O(
√
m2)

= 4 + m2

2

(
−8 + [(s1 − t1)t1 + 2(s1 + t1)]

(
1 +

√
m2

4 + m2

))
+ O(

√
m2)

If s = ei for i �= 1, that is, if s1 = 0, then (s1 − t1)t1 + 2(s1 + t1) = −t21 + 2t1 ≤ 1. This
implies that maxt ACS′(ei , t) → −∞ as m2 → ∞.

Assume now that s = e1. We claim that, for largem2, the maximum of ACS′(e1, t) occurs
at t = e1. This will finish the proof, because ACS′(e1, e1) = −2n + 4‖ξ1‖2 < 0.

To prove the claim, it is enough to show that (whenm2 is large) the gradient of ACS′(e1, t)
at t = e1 has negative inner product with the vectors e2 − e1, e3 − e1, and e4 − e1. This is
because ACS′(e1, t) is concave, the simplex 3 is convex, and its tangent cone at t = e1 is
the cone over the convex hull of e2 − e1, e3 − e1, and e4 − e1. But it is clear from the formula
for ACS′ that

∇ ACS′(e1, t)|t=e1 = ‖ξ1‖2e1 + O(
√
m2)

thus finishing the proof. ��

Remark 14 Based on numerical evidence (cf. Remark 12), we believe that the conclusion of
Theorem B(a) also holds without the hypothesis “m2 is large enough”.

Proof of Theorem B(b) The focal submanifold M+ contains the point p = (1, 1)/
√
2, and

the tangent space at p is TpM+ = E2 ⊕ E3 ⊕ E4 (compare [3, Example 3.4.1]). Write the
normal space as an orthogonal direct sum νpM+ = U ⊕ V , where U = E1, and V is the
same section as before, described in Sect. 4.1. Denote by IIU and IIV the components of the
second fundamental form in the directions of U and V .

By the Tube Formula ( [3, Lemma 3.4.7], IIV is given by the same formula as in the
isoparametric case, see Eqs. (5) and (4). More precisely, for i, j ∈ {2, 3, 4} and xi ∈ Ei and
y j ∈ E j , one has IIV (xi , y j ) = 〈

xi , y j
〉
ξi , where

ξ2 = (−√
2, 0), ξ3 = −(1, 1)/

√
2 = −p, ξ4 = (0,−√

2).

As for IIU , one can say that, for every v ∈ U with ‖v‖ = 1, the shape operators of M+
in the directions of v and v0 = (1,−1)/

√
2 ∈ V are conjugate. Indeed, for small ε, p + εv

belongs to an isoparametric manifold parallel toM , whose normal space V ′ contains v. Then,
on V ′ one has the same picture as in V , with v playing the role of v0, so the result follows
from the Tube Formula again. Explicitly, these shape operators have eigenvalues 〈v0, ξi 〉,
that is, −1, 0, 1, with multiplicities m2,m1,m2, respectively. In particular, M+ is minimal
in the sphere, so that the ACS quantity of M+ satisfies

ACS(X , N ) + 2(m1 + 2m2) ≤ 2‖II(X , ·)‖2 + 2‖II(N , ·)‖2 + 〈II(X , X), II(N , N )〉 .

The right-hand side equals the sum of the analogous expressions with II replaced with IIU

and IIV , respectively. The latter is at most 5maxi=2,3,4 ‖ξi‖2 = 10, by the same argument
as in the Proof of Lemma 13. Thus

ACS ≤ −2(m1 + 2m2) + 10 + 2‖IIU (X , ·)‖2 + 2‖IIU (N , ·)‖2 +
〈
IIU (X , X), IIU (N , N )

〉
.
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Since the shape operator in the direction of any v ∈ U with ‖v‖ = 1 has largest eigenvalue
(in absolute value) equal to 1, we have ‖IIU (X , ·)‖2 ≤ dimU = m1, and analogously for
the other terms, so that

ACS ≤ −2(m1 + 2m2) + 10 + 5m1.

Therefore, the ACS quantity is negative provided that m2 > (3m1 + 10)/4. ��

4.3 Examples

Isoparametric hypersurfaces in spheres have been almost completely classified through the
work of several mathematicians (see [3, Section 2.9.6]). The homogeneous ones are precisely
the principal orbits of isotropy representations of rank two symmetric spaces. All known inho-
mogeneous isoparametric hypersurfaces in spheres have 4 principal curvatures. They were
constructed in [8] using Clifford systems, and are usually called of FKM-type (see [6, sec-
tion 3.9] for a detailed construction). We will identify some of these isoparametric foliations
whose multiplicities satisfy the conditions in Theorem B.

Starting with the homogeneous examples, given k ≥ 3 letG = SO(k)SO(2) (respectively
S(U(k)U(2)), Sp(k)Sp(2)) act on the space of k×2 matrices with coefficients inR (respec-
tively C, H), by (A, B)C = ACB−1. These are equivalent to the isotropy representations
of the Grassmannians of two-planes over the reals, complex numbers, or quaternions). The
generic G-orbits are isoparametric hypersurfaces with multiplicities (m1,m2) = (1, k − 2)
(respectively (2, 2k − 3), (4, 4k − 5)) (see Sect. 4.1 for the notation on multiplicities and [3,
p. 86] for the values of the multiplicities). The singular G-orbit with codimension m1 + 1 in
the sphere is the Stiefel variety of 2-planes in k-space.

Applying Theorem B(a) immediately yields:

Corollary 15 For large k, the unique principal orbit of the representation of Sp(k)Sp(2) on
k×2matrices with coefficients inH that is minimal in the sphere has negativeACS quantity.

Applying Theorem B(b) immediately yields:

Corollary 16 The Stiefel variety of 2-frames inRk (respectivelyCk ,Hk), with metric induced
from the embedding in the sphere as the orbit of the matrix

⎛

⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
...

...

0 0

⎞

⎟⎟⎟⎟⎟⎠

under the G-action described above, satisfies ACS < 0 provided that k ≥ 6 (respectively
k ≥ 4, k ≥ 3).

We can also apply Theorem B to one isolated example, which has multiplicities (6, 9) [3,
p. 87] and immediately obtain:

Corollary 17 The unique minimal (in S31) principal orbit of the isotropy representation of
the symmetric space E6/Spin(10)U(1) has ACS < 0. The singular orbit with codimension
7 in S31 also has ACS < 0.

Now we turn to isoparametric hypersurfaces of FKM-type [8]. Recall that a Clifford
system on R

2l is a set of m + 1 symmetric 2l × 2l matrices C = (P0, . . . , Pm) such that
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Table 1 Dimensions of
irreducible Clifford systems m = 1 2 3 4 5 6 7 8 … m′ + 8 …

δ(m) = 1 2 4 4 8 8 8 8 … 16δ(m′) …

P2
i = I for all i , and Pi Pj = −Pj Pi for i �= j . Then l needs to be of the form l = kδ(m),

where δ(m) is described in Table 1 (see [8, page 483]). Conversely, given m and k, there do
exist Clifford systems as above (see [8] for a discussion of different equivalence relations of
Clifford systems, and classification results). An isoparametric foliation of S2l−1 is defined
by the level sets of the polynomial H(x) on R

2l given by

H(x) =
m∑

i=0

(xT Pi x)
2,

where x is regarded as a column vector, and xT denotes its transpose. The regular leaves are
isoparametric with multiplicities (m, l −m − 1). The level set H−1(0) is one of the singular
leaves, and it has codimension 1+m in S2l−1. It is a quadric, because it can also be described
as {x ∈ S2l−1 | xT Pi x = 0 ∀i}, and it is sometimes called a Clifford–Stiefel variety. The
other singular leaf is H−1(1), and it has codimension l − m. In all but finitely many cases,2

m ≤ l − m − 1, so that, in our notation, m1 = m, m2 = l − m − 1, and M+ = H−1(0).
From Theorem B(a) we immediately deduce:

Corollary 18 Let C = (P0, . . . , Pm) be a Clifford system on R
2l , with l = kδ(m). Then the

unique regular leaf with maximal volume satisfies ACS < 0 provided: m, l −m − 1 ≥ 5; or
m = 4 and k is large enough.

Applying Theorem B(b), we obtain:

Corollary 19 Let C = (P0, . . . , Pm) be a Clifford system on R
2l , with l = kδ(m). Assume

k > 7m+14
4δ(m)

. Then the Clifford–Stiefel variety M+ satisfies ACS < 0.

Proof We claim thatm ≤ l −m −1. Indeed, assumingm > l −m −1, we obtain k < 2m+1
δ(m)

,

which, together with k > 7m+14
4δ(m)

, implies m > 10. But then, by Table 1, 2m+1
δ(m)

is less than
one, contradicting the fact that k ≥ 1 and proving the claim.

Thusm1 = m andm2 = kδ(m)−m − 1, so that k > 7m+14
4δ(m)

impliesm2 > (3m1 + 10)/4,
and we may apply Theorem B(b). ��

Note that Corollary 19 applies to all but finitely many FKM-type isoparametric foliations.

4.4 Remarks about the geometry of the examples

In this subsection we collect a few remarks about the curvature and homogeneity of the
isoparametric examples described above.

We start by relating the Ricci curvature and the ACS quantity of general isoparametric
submanifolds of Euclidean space.

Lemma 20 Let M be an isoparametric submanifold of Euclidean space, with curvature dis-
tributions Ei and curvature normals ξi , for i = 1, . . . g. Then the Ricci tensor of M has Ei

as eigenspaces, with respective eigenvalues 〈ξi , H〉 − ‖ξi‖2.
2 More precisely, the values of (m, k) such that 0 < l−m−1 < m are (2, 2), (4, 2), (5, 1), (6, 1), (8, 2), (9, 1).
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Proof Given X = ∑
i xi with xi ∈ Ei , it follows from the Gauss equation that

Ric(X) =
∑

k

R(X , ek, X , ek) =
∑

k

〈II(X , X), II(ek, ek)〉 −
∑

k

‖II(X , ek)‖2

= 〈II(X , X), H〉 − ‖II(X , ·)‖2 =
∑

i

( 〈ξi , H〉 − ‖ξi‖2
)‖xi‖2

where we have used the identity ‖II(X , ·)‖2 = ∑
i ‖xi‖2‖ξi‖2, see the Proof of Lemma 10.

��
Proposition 21 Let M be an isoparametric submanifold of Euclidean space, and assume the
multiplicities mi = dim Ei are larger than one. Then ACS < 0 implies Ric > 0.

Proof We compute the ACS quantity as in Lemma 10. Let p ∈ M , X , N ∈ TpM with
‖X‖ = ‖N‖ = 1 and 〈X , N 〉 = 0. Write X = ∑

i xi and N = ∑
i yi , where xi , yi ∈ Ei .

Then

ACS(X , N ) =
g∑

i, j=1

(
(‖xi‖2 − ‖yi‖2)‖y j‖2 − 2 〈xi , yi 〉

〈
x j , y j

〉 ) 〈
ξi , ξ j

〉

+
g∑

i, j=1

−mi (‖x j‖2 + ‖y j‖2)
〈
ξi , ξ j

〉+ 2
g∑

i=1

(
‖xi‖2 + ‖yi‖2

)
‖ξi‖2.

As in Lemma 11, the assumption that the multiplicities are greater than one implies that
the maximum of the ACS quantity is equal to the maximum of

ACS′(s, t) =
g∑

i, j=1

(− mi (s j + t j ) + (si − ti )t j
) 〈

ξi , ξ j
〉+ 2

g∑

i=1

(si + ti )‖ξi‖2

for (s, t) ∈ g−1 × g−1, where g−1 denotes the standard (g − 1)-simplex.
Let k = 1, . . . , g. Setting si = ti = δik for all i in the equation above, we get ACS′(s, t) =

−2 〈H , ξk〉 + 4‖ξk‖2, where H = ∑
i miξi is the mean curvature vector. This is negative

by assumption, so that, in particular, 〈H , ξk〉 − ‖ξk‖2 > 0. By Lemma 20, these are the
eigenvalues of the Ricci tensor. ��

Thus, isoparametric hypersurfacesMn ⊂ Sn+1 satisfying the conditions of TheoremB(a),
and in particular all isoparametric examples listed in Sect. 4.3, have positive Ricci curvature.
Similarly, one has:

Proposition 22 The focal manifolds M+ satisfying the conditions of Theorem B(b) have
positive Ricci curvature.

Proof We will freely use the notations and facts established in the Proof of Theorem B(b).
Let X = x2 + x3 + x4 ∈ TpM+ − {0} with xi ∈ Ei for i = 2, 3, 4. Then, by the Gauss
equation,

Ric(X , X) = 〈II(X , X), H〉 − ‖II(X , ·)‖2
= (m1 + 2m2)‖X‖2 − ‖IIU (X , ·)‖2 − ‖IIV (X , ·)‖2

because M+ is minimal in the sphere.
But ‖IIV (X , ·)‖2 = ∑ ‖ξi‖2‖xi‖2 = 2‖x2‖2 + ‖x3‖2 + 2‖x4‖2, while ‖IIU (X , ·)‖2 ≤

m1‖X‖2. Therefore, Ric(X , X) > 0. ��
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Proposition 23 Let Mi be a sequence ofminimal isoparametric hypersurfaces of sphereswith
four principal curvatures, with m1 fixed, and m2 → ∞. Then the minimum of the sectional
curvatures of Mi diverges to −∞, while the diameter is bounded from below by π .

Proof The diameter of Mi is at least π because it is contained in the sphere, and is invariant
under the antipodal map. By the Gauss equation, the sectional curvature of a plane of the
form x ∧ y, for x ∈ E1 and y ∈ E4 is:

sec(x ∧ y) = R(x, y, x, y) = 〈II(x, x), II(y, y)〉 − ‖II(x, y)‖2 = 〈ξ1, ξ4〉 < 0.

Moreover, as m2 → ∞, ξ4 → (0,−√
2), so that sec(x ∧ y) is asymptotic to

−‖ξ1‖ = −
√
2(m1 + m2)

m1

(
1 +

√
m2

m1 + m2

)
� −Cm1/2

2 ,

for a positive constant C (see Proof of Lemma 13). In particular, the minimum value of the
sectional curvature of M diverges to −∞ as m2 → ∞. ��
Remark 24 It has been determined in [8] exactly which isoparametric hypersurfaces of FKM-
type are extrinsically homogeneous. In particular, whenm ≤ l−m−1, so that, in our notation,
m1 = m and m2 = l −m − 1, they prove that M is extrinsically homogeneous if and only if
m = 1, 2; or m = 4 and P0P1P2P3P4 = ±I .

Moreover, for isoparametric hypersurfaces M ⊂ Sn+1 with four principal curvatures,
extrinsic and intrinsic homogeneity are equivalent. Indeed, the rank of the shape operator
in the sphere is constant and ≥ 2. Thus, we may apply [7, Theorem 2] to conclude that the
embedding is rigid, so that, in particular, every isometry ofM extends to an isometry of Sn+1.

On the other hand, any isoparametric submanifold M is curvature-homogeneous, by the
Gauss equation and the fact that the second fundamental form is “the same” everywhere.
More precisely, given p, q ∈ M , any linear isometry TpM → TqM that sends each curvature
distribution Ei (p) to Ei (q) maps the curvature operator at p to the one at q .

5 Symmetric examples

5.1 Embeddings of symmetric spaces

The goal of this section is to prove Theorem C, whose parts (a), (b), and (c) correspond
to Propositions 34, 30, and 32, respectively. First we recall some well-known facts about
symmetric spaces and their equivariant embeddings into Euclidean spaces. References for
this material are [20], [4, Chapter 7].

Let K ⊂ G be compact Lie groups. Recall that (G, K ) is called a symmetric pair, and
G/K a (compact) symmetric space, if there is an order two automorphism τ : G → G such
that (Gτ )0 ⊂ K ⊂ Gτ . Here Gτ = {g ∈ G | τ(g) = g}, and (Gτ )0 denotes the connected
component of Gτ .

For example, every compact Lie group G is diffeomorphic to the symmetric space (G ×
G)/G. Here the automorphism τ is given by τ(a, b) = (b, a), and G = (G × G)τ =
{(a, a) | a ∈ G}. The diffeomorphism is given by a ∈ G �→ (a, e)K ∈ G × G/G, where
e ∈ G denotes the identity element.

Let (G, K ) be a symmetric pair with G, K compact, and denote by k ⊂ g their Lie
algebras. Since the K -action CK : K → Aut(G) by conjugation fixes the neutral element
e ∈ G, the differential of CK at e induces a map AdK = deCk : K → GL(g). Let m ⊂ g be
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the AdK -invariant complement of k in g given by the (−1)-eigenspace of the differential of τ
at the identity. Then [k, k] ⊂ k, [k,m] ⊂ m, and [m,m] ⊂ k. The tangent space of G/K at eK
can be identified with m. The G-invariant metrics on G/K correspond to the AdK -invariant
inner products on m. When G is semi-simple, a natural choice for such a metric is (−B)|m,
where B : g × g → R is the Cartan–Killing form, defined by B(X , Y ) = tr(adX ◦ adY ).

Lemma 25 Let (G, K ) be a symmetric pair of compact Lie groups with G semi-simple, and
let B denote the Cartan–Killing form on g.

(a) (N , g) = (G,−B) is Einstein with Ric = (1/4)g.
(b) (N , g) = (G/K ,−B|m) is Einstein with Ric = (1/2)g.

Proof For the symmetric space, see [4, Theorem 7.73]. For the Lie group, note that the
diffeomorphism G → G × G/G is an isometry with respect to the metrics −B and
−2(B ⊕ B). Since the Ricci tensor is scale-invariant, it follows that

Ric(G,−B) = Ric(G×G/G,−2(B⊕B) = −(1/2)B ⊕ B = −(1/4)B.

��

Now we consider G-equivariant embeddings of G/K into Euclidean space:

Lemma 26 Let (G, K ) be a symmetric pair of compact Lie groups. Let ρ : G → O(V )

an orthogonal representation of G on the Euclidean space V , and let p ∈ V with isotropy
K = Gp. Denote by II the second fundamental form of the embedding of G/K as the G-orbit
G · p ⊂ V given by aK ∈ G/K �→ ρ(a)p ∈ V . Then

II (dρ(X), dρ(Y )) = dρ(X)dρ(Y )p

for all X , Y ∈ m.

Proof Let ξ ∈ Tp(G · p) be a normal vector to the orbit G · p at p ∈ V , and X , Y ∈ m.
Extend ξ to a vector field along the curve t �→ ρ(et X )p by the formula ξ̂ (t) = ρ(et X )ξ , so
that

∇V
dρ(X)ξ̂ = d

dt

∣∣∣∣
t=0

ρ(et X )ξ = dρ(X)ξ.

Then

〈II (X , Y ), ξ 〉 = 〈
Sξ (dρ(X)), dρ(Y )p

〉

= −
〈
∇V
dρ(X)ξ̂ , dρ(Y )p

〉

= −〈dρ(X)ξ, dρ(Y )p〉
= 〈dρ(X)dρ(Y )p, ξ 〉 because dρ(X)T = −dρ(X)

It remains to show that dρ(X)dρ(Y )p is normal to the orbit, or, equivalently, that the trilinear
tensor η : m × m × m → R defined by

η(X , Y , Z) = 〈(dρ(X)dρ(Y )p , dρ(Z)p〉
vanishes identically.

123



Robust index bounds for minimal hypersurfaces of… Page 19 of 25 118

Since (G, K ) is a symmetric pair, [X , Y ] ∈ k, and in particular dρ([X , Y ])p = 0. This
means that

η(X , Y , Z) = 〈dρ(X)dρ(Y )p, dρ(Z)p〉
= − 〈dρ(X)dρ(Z)p, dρ(Y )p〉
= −η(X , Z , Y )

= −η(Z , X , Y )

Since the permutation (X , Y , Z) �→ (Z , X , Y ) has order three, we conclude η = −η, that
is, η = 0. ��

5.2 Rewriting the ACS quantity

We start with an equivalent reformulation of the ACS quantity.

Lemma 27 Denoting by H the mean curvature vector of the embedding M ⊂ R
d ,

ACS = −2Ric(X , X) − 2Ric(N , N ) + 〈H , II (X , X) + II (N , N )〉
− 2‖II (X , N )‖2 − ‖II (N , N )‖2 + 〈II (N , N ), II (X , X)〉 . (8)

Proof Use Lemma 4 and the formula Ric(X , X) = 〈II(X , X), H〉 − ‖II(X , ·)‖2, which is a
consequence of the Gauss equation. ��

Now assume (M, g) is Einstein with Ric = E .g and the embedding M ⊂ R
d is minimal

into a sphere S(r) ⊂ R
d . Then:

ACS = −4E + 2 dim(M)

r2
− 2‖II (X , N )‖2 −‖II (N , N )‖2 +〈II (N , N ), II (X , X)〉 . (9)

We will refer to the term −4E + 2 dim(M)/r2 in (9) as the constant term.

Remark 28 The coordinates of the embedding M ⊂ R
d are eigenfunctions of the Laplace–

Beltrami operator with eigenvalue λ = dim(M)/r2 (see [20, Cor. 5.2]). By Lichnerowicz’s
Theorem, λ ≥ E dim(M)/(dim(M) − 1), so that the constant term satisfies

−4E + 2 dim(M)

r2
≥ −2E(dim(M) − 2)

dim(M) − 1
.

5.3 Unitary groups

LetG = SU(n),Sp(n), and consider their natural embedding into V = C
n×n,Hn×n , as n×n

complex-unitary and quaternionic-unitary matrices. We endow G with the metric given by
the negative of the Cartan–Killing form B : g × g → R, and extend it to the inner product
〈·, ·〉 on V defined by

〈X , Y 〉 = cn�(tr(XY ∗)) (10)

where cn equals 2n, 4(n + 1) in the complex and quaternionic cases, respectively, and �
denotes the real part.

Lemma 29 With the notations above, the ACS quantity of the isometric embedding G ⊂ V
is given by:

ACS =
{

− 1
n2

− 〈N X , XN 〉 − ‖N 2‖2 in the complex case

− 1
2(n+1) − 〈N X , XN 〉 − ‖N 2‖2 in the quaternionic case
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where X , N ∈ g such that ‖X‖ = ‖N‖ = 1 and 〈X , N 〉 = 0.

Proof The image of G ⊂ V is contained in the sphere of radius r = √
ncn .

The groupG×G acts orthogonally on V through the representationρ(A, B)Z = AZ B−1,
whose derivative is given by dρ(X , Y )Z = X Z − ZY . The point p = I ∈ V has isotropy
G, and the embedding G ⊂ V factors as G = G × {e} → G × G/G → V , with the
last map given by (A, B)G �→ ρ(A, B)p. By Lemma 26, the second fundamental form is
given by

II (X , Y ) = dρ

(
(X ,−X)

2

)
dρ

(
(Y ,−Y )

2

)
p = dρ

(
(X ,−X)

2

)
Y = XY + Y X

2
.

It follows froman easy computation that the embedding ofG in the sphere of radius r = √
ncn

is minimal.
The constant term in (9) is:

−4E + 2
dim(G)

r2
=
{

−1 + 2 n2−1
ncn

= − 1
n2

in the complex case

−1 + 2 (2n+1)n
ncn

= − 1
2(n+1) in the quaternionic case

Let X , N ∈ g be a pair of orthogonal unit vectors. The non-constant term in (9) is:

− 2‖II (X , N )‖2 − ‖II (N , N )‖2 + 〈II (N , N ), II (X , X)〉
= −2‖(XN + N X)/2‖2 − ‖N 2‖2 + 〈

N 2, X2〉

= −〈N X , XN 〉 − ‖N 2‖2.
We have used the identities ‖N X‖2 = ‖XN‖2 = 〈

N 2, X2
〉
, which follow from the definition

of the inner product and the assumption that X , N are skew-Hermitian. ��
Proposition 30 The standard isometric embedding (Sp(n),−B) into Hn×n satisfies ACS <

0. In particular, every closed embedded minimal hypersurface M ⊂ Sp(n) satisfies

ind(M) ≥
(
4n2

2

)−1

b1(M).

Proof Note that the so-called Frobenius inner product, given by 〈·, ·〉F = (4n + 4)−1 〈·, ·〉,
is sub-multiplicative, which implies that

〈N X , XN 〉 ≥ −‖N X‖2 ≥ −‖X‖2‖N‖2
4n + 4

= − 1

4n + 4

Therefore, using Lemma 29, we conclude that ACS < 0:

− 1

2(n + 1)
− 〈N X , XN 〉 − ‖N 2‖2 ≤ − 1

4n + 4
< 0.

The stated bound for the index of M follows from Theorem 2. ��
To treat the case G = SU(n) we need a lemma:

Lemma 31 Let n ≥ 2. The function tr((XN )2 + N 4) is real-valued on the set {(X , N ) ∈
su(n)2 | tr(X2) = tr(N 2) = −1, tr(XN ) = 0}. Let an denote its minimum value in this set.
Then:

(a) If n is even, then an = 2−n
8n .
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(b) If n is odd, 3−n
8(n−1) = an−1 ≥ an ≥ an+1 = 1−n

8(n+1) .

Proof The functions tr((XN )2) and tr(N 4) are real-valuedbecause X , N are skew-Hermitian.

(a) Since tr((XN )2 + N 4) is invariant under simultaneous conjugation of X and N by
SU(n), we may assume that N = i diag(z1, . . . zn), where z j ∈ R, z1 + · · · + zn = 0,
and z21 + · · · + z2n = 1.

Fixing such N , the (real-valued) function X �→ tr((XN )2) is quadratic, hence achieves
its minimum at an eigenvector associated to the smallest eigenvalue of the map X �→
−N XN . Thus

min
X

tr((XN )2 + N 4) = min
i< j

zi z j +
∑

k

z4k

Since the minimum of zi z j +∑
k z

4
k does not depend on i, j , it suffices to show that one

of them, say z1z2 +∑k z
4
k , has minimum 2−n

8n with the constraints that z1 +· · ·+ zn = 0
and z21 + · · · + z2n = 1.

Moreover, since n is even, it is enough to prove the Claim below. Indeed, the minimum
of z1z2 +∑

k z
4
k will then be achieved at

(z1, z2, . . . , zn) =
(

−
√
n + 2

4n
,+
√
n + 2

4n
,−
√

1

2n
,+
√

1

2n
, . . . −

√
1

2n
,+
√

1

2n

)
,

because, by the Claim, this is the point where the minimum of z1z2 +∑k z
4
k subject only

to z21+· · ·+ z2n = 1 is achieved, and this point happens to also satisfy the other constraint
z1 + · · · + zn = 0.

Claim The minimum of f = −√
w1w2 +∑ j w

2
j subject to

∑
j w j = 1 and w j ≥ 0 ∀ j

equals 2−n
8n and is achieved at

w1 = w2 = n + 2

4n
w j = 1

2n
, j = 3, . . . n.

We prove the Claim by induction on n. The base case n = 2 is straightforward. Assume
n > 2. We use Lagrange multipliers:

∇ f =
(
2w1 − w2

2
√

w1w2
, 2w2 − w1

2
√

w1w2
, 2w3, 2w4, . . . , 2wn

)

The equation ∇ f = a(1, . . . 1) for some a ∈ R implies that

w1 − w2 = −4(w1 − w2)
√

w1w2

and therefore w1 = w2 = 2a+1
4 and w j = a

2 for j = 3, . . . n. Since
∑

j w j = 1, we
have exactly one critical point in the interior of the region defined by w j ≥ 0 for all j ,
namely

wc =
(
n + 2

4n
,
n + 2

4n
,
1

2n
, . . . ,

1

2n

)

Note that f (wc) = 2−n
8n .
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On the other hand, assume w = (w1, . . . wn) lies on the boundary, that is, w j = 0 for
some j . If j = 1, 2, then f (w) ≥ 0 > 2−n

8n . If j > 2, then by the inductive hypothesis

we have f (w) ≥ 2−(n−1)
8(n−1) > 2−n

8n . This concludes the proof of the Claim.
(b) It is true for all n ≥ 2 that an ≥ an+1. Indeed, the sets

Sn = {(X , N ) ∈ su(n)2 | tr(X2) = tr(N 2) = −1, tr(XN ) = 0}
satisfy Sn ⊂ Sn+1, and the function tr((XN )2 + N 4) on Sn is the restriction to Sn of the
corresponding function on Sn+1. The stated result then follows from (a).

��

Proposition 32 Consider the standard isometric embedding of (SU(n),−B) into C
n×n,

where B denotes the Cartan–Killing form.

(a) Suppose n < 18. Then the embedding satisfies ACS < 0. In particular, every closed
embedded minimal hypersurface M ⊂ SU(n) satisfies

ind(M) ≥
(
2n2

2

)−1

b1(M).

(b) If n > 18, the embedding SU(n) ⊂ C
n×n does not satisfy ACS < 0.

(c) The embedding SU(18) ⊂ C
18×18 satisfies ACS ≤ 0.

Proof By Lemma 29, it is enough to determine the sign of

bn = min

(
1

n2
+ 〈N X , XN 〉 + ‖N 2‖2

)

where the minimum is taken over all X , N ∈ su(n) such that ‖X‖ = ‖N‖ = 1 and 〈X , N 〉 =
0.

We claim that bn = 1
n2

+ an
2n , where an is defined in Lemma 31. Indeed, letting X ′ = √

2nX

and N ′ = √
2nN , it follows that ‖X‖ = 1 if and only if tr((X ′)2) = −1, and similarly for

N , N ′. Thus

bn = 1

n2
+ 2nmin

(
tr(N XN X) + tr(N 4)

)

= 1

n2
+ 1

2n
min

(
tr(N ′X ′N ′X ′) + tr((N ′)4)

) = 1

n2
+ an

2n

where the first minimum is taken over X , N ∈ su(n) such that ‖X‖ = ‖N‖ = 1 and
〈X , N 〉 = 0, while the second minimum is taken over X ′, N ′ ∈ su(n) such that tr((X ′)2) =
tr((N ′)2) = −1, and tr(X ′N ′) = 0. This finishes the proof of the claim.

If n is even, then by Lemma 31, an = 2−n
8n , so that bn = 18−n

16n2
. Therefore (c) and the

statements in (a), (b) with n even follow.
If n is odd, then Lemma 31 implies that

1

n2
+ an+1

2n
= −n2 + 17n + 16

16n2(n + 1)
≤ bn ≤ −n2 + 19n − 16

16n2(n − 1)
= 1

n2
+ an−1

2n

In particular, n < 18 implies bn > 0 and n > 18 implies bn < 0, proving (a), (b) for n odd.
��
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5.4 Quaternionic Grassmannians

Given d ≤ n, consider the Grassmannian manifold of d-planes inHn . It is a symmetric space
which we will write as

G/K = Sp(n)

Sp(d) × Sp(n − d)
.

We endow G/K with the metric induced from the Killing form on G (see (10)), so that G/K
is Einstein with constant 1/2, see Lemma 25. The AdK -invariant complement m of k in g

consists of the matrices

X̂ =
[

0 X
−X∗ 0

]

where X is a d × (n − d) matrix with entries in H.
Let V be the space of traceless Hermitian n × n matrices, and endow V with the “same”

metric as g, given by (10). The group G acts on V by conjugation, and the orbit through
p ∈ V is an isometric embedding of G/K into V , with the metrics defined above, where

p = 1

n

[
(n − d)Id 0

0 −d In−d

]

(and Ik denotes the k × k identity matrix).

Lemma 33 With the notations above, theACS quantity of the isometric embeddingG/K ⊂ V
is given by:

ACS = − 2

n + 1
− 8cn� tr(XN∗XN∗ + NN∗NN∗)

where cn = 4(n + 1), and X , N ∈ H
d×(n−d), such that

tr(XN∗) = 0, tr(XX∗) = tr(NN∗) = 1

2cn
.

Proof The image of G/K ⊂ V is contained in the sphere of radius r , where

r2 = cn
d(n − d)

n
.

By Lemma 26, the second fundamental form is given by

II (X , Y ) = dρ(X̂)dρ(N̂ )p = −
[
XN∗ + N X∗ 0

0 −(X∗N + N∗X)

]

From this, an easy computation shows that the embedding G/K ⊂ V is minimal. The
constant term in (9) is:

−4E + 2
dim(G/K )

r2
= −2 + 2

4d(n − d)

cnd(n − d)/n
= − 2

(n + 1)
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Let X , N ∈ m be a pair of orthogonal unit vectors. A straight-forward computation yields
the non-constant term in (9):

− 2‖II (X , N )‖2 − ‖II (N , N )‖2 + 〈II (N , N ), II (X , X)〉
= −cn� tr

[
2(XN∗ + N X∗)2 0

0 2(X∗N + N∗X)2

]

− cn� tr

[
4(NN∗)2 0

0 4(N∗N )2

]

+ cn� tr

[
4NN∗XX∗ 0

0 4N∗N X∗X

]

= −8cn� tr(XN∗XN∗ + NN∗NN∗)

Adding the constant and non-constant terms we arrive at the stated formula for ACS. ��
Proposition 34 Let d ≤ n, and let (M, g) be the quaternionic Grassmannian of d-planes
in n-space. The standard embedding of (M, g) into the space of traceless Hermitian n × n
matrices satisfies ACS < 0 for every d, n.

Proof We use the formula for ACS stated in Lemma 33. Recall that the “Frobenius” norm
‖A‖2F = � tr(AA∗) on matrices is submultiplicative. Thus

− 2

n + 1
− 8cn� tr(XN∗XN∗ + NN∗NN∗) ≤ − 2

n + 1
+ 8cn

1

4c2n
= − 3

2(n + 1)
< 0

because cn = 4(n + 1) in the quaternionic case. ��
Remark 35 The natural embeddings of the group SO(n), and the real and complexGrassman-
nians, analogous to the embeddings of SU(n), Sp(n), and the quaternionic Grassmannians
we have considered in this section, do not satisfy ACS < 0.
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