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We propose a new fast method to match factorization theorems applicable in different kinematical 
regions, such as the transverse-momentum-dependent and the collinear factorization theorems in 
Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition 
and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using 
the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate 
the unknown complete matched cross section from an inverse-error-weighted average. The method is 
simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated 
with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, 
such as the nonperturbative ones, should be added for a proper comparison with experimental data). 
Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell–
Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–
Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can 
straightforwardly be extended to match any (un)polarized cross section differential in other variables, 
including multi-differential measurements.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Motivation

In processes with a hard scale Q and a measured transverse 
momentum qT , for instance the mass and the transverse momen-
tum of an electroweak boson produced in proton–proton collisions, 
the qT -differential cross section can be expressed through two dif-
ferent factorization theorems. For small qT � Q , the transverse-
momentum-dependent (TMD) factorization applies and the cross 
section is factorized in terms of TMD parton distribution/frag-
mentation functions (TMDs thereafter) [1–3]. The evolution of the 
TMDs resums the large logarithms of Q /qT [4–6]. For large qT ∼
Q � m, with m a hadronic mass of the order of 1 GeV, there is 
only one hard scale in the process and the collinear factorization 
is the appropriate framework. The cross section is then written 
in terms of (collinear) parton distribution/fragmentation functions 
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(PDFs/FFs). In order to describe the full qT spectrum, the TMD and 
collinear factorization theorems must properly be matched in the 
intermediate region.

Many recent works on TMD phenomenology and extractions 
of TMDs from data did not take into account the matching with 
fixed-order collinear calculations for increasing transverse momen-
tum (see e.g. Refs. [7,8]). Such a matching is one of the compelling 
milestones for the next generation of TMD analyses and more gen-
erally for a thorough understanding of TMD observables [9]. In 
addition, it has recently been shown that the precisely measured 
transverse-momentum spectrum of Z boson at the LHC does not 
completely agree with collinear-based NNLO computations,1 hint-
ing at possible higher-twist contributions at the per-cent level. 
Thus having a reliable estimation of the matching uncertainty from 
power corrections is very opportune.

1 See https://gsalam .web .cern .ch /gsalam /talks /repo /2016 -03 -SB +SLAC -SLAC -
precision .pdf.
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This work contributes to this effort by introducing a new ap-
proach, whose main features are its simplicity and its easy and fast 
implementation in phenomenological analyses (fits and/or Monte 
Carlo event generators). In addition, this scheme provides an au-
tomatic estimate of the theoretical uncertainty associated to the 
matching procedure. All these are crucial features in light of the 
computational demands of global TMD analyses and event genera-
tion for the next generation of experiments [10–13].

As we will show, it yields compatible results with other main-
stream approaches in the literature, such as the improved Collins–
Soper–Sterman (CSS) scheme [14] (see also Ref. [15]), which re-
fines the original CSS subtraction approach [16–19]. The latter, in 
simple terms, is based on adding the TMD-based resummed (W ) 
and collinear-based fixed-order (Z) results, and then subtracting 
the double-counted contributions (A). The improved CSS (iCSS) 
approach enforces the necessary cancellations for the subtraction 
method to work.

Other methods have been introduced in the framework of soft-
collinear effective theory by using profile functions for the re-
summation scales in order to obtain analogous cancellations to 
those in the iCSS method, see e.g. Refs. [20–23]. One can also 
find other schemes to match TMD and collinear frameworks, e.g. 
Refs. [24–26].

In the scheme we introduce, no cancellation between the TMD-
based resummed contribution, W , and the collinear-based fixed-
order contribution, Z , is needed. We simply avoid the double 
counting (and therewith the subtraction of A) by weighting both 
contributions to the matched cross section, with the condition that 
the weights add up to unity. This renders the computation of the 
matched cross section very easy to implement. Clearly, the weights 
cannot be arbitrary and should ensure that, in their respective 
domains of applicability, the predictions of both factorization the-
orems are recovered.

Both factorized expressions can be seen as approximations of 
the unknown, true theory, up to corrections expressed as ratios of 
the relevant scales (power corrections, in the following). In TMD 
factorization the power corrections scale as a power of qT /Q , 
whereas in collinear factorization they scale as a power of m/qT , 
up to further suppressed nonperturbative contributions [1]. We 
simply implement an estimate of these uncertainties in the well-
known formula of an inverse-error weighting – or inverse-variance 
weighted average – of two measurements to obtain our matched 
predictions. As such, it also automatically returns an evaluation of 
the corresponding matching uncertainty.

The method we propose can straightforwardly be extended to 
match any (un)polarized cross section differential in other vari-
ables, including for instance event shapes, multi-differential mea-
surements or double parton scattering with a measured transverse 
momentum [27].

This paper is organized as follows: in Sec. 2 we describe both 
factorization theorems for low and high transverse momenta, and 
how they are combined with the inverse-error-weighting method. 
In Sec. 3 we show through several examples (Z , W , H0 and Drell–
Yan lepton-pair production) how the method works. In Sec. 4 we 
compare the numerical results to the iCSS subtraction scheme. Fi-
nally, Sec. 5 gathers the conclusions and briefly discusses the ap-
plicability of our method to other processes.

2. The inverse-error weighting method

The main idea behind the scheme we are proposing is to use 
the power corrections to the involved factorization theorems in or-
der to directly determine to which extent the approximations can 
be trusted in different kinematic regions, and to use this in order 
to bridge the intermediate region obtaining the complete spec-
trum. In this context, an inverse-error weighting is conceptually 
the simplest method one could think of.

Let us have a closer look at the TMD and collinear factorization 
theorems and their regions of validity, by considering a cross sec-
tion dσ differential in at least the transverse momentum qT of an 
observed particle. For qT � Q , the TMD factorization can reliably 
be applied and the qT -differential cross section can generically be 
written as

dσ(qT , Q )

∣∣∣
qT �Q

= W (qT , Q ) +
[

O
(

qT

Q

)a

+ O
(

m

Q

)a′]
dσ(qT , Q ) , (1)

where W is the TMD approximation of the cross section dσ , the 
scale m is a hadronic mass scale on the order of 1 GeV and Q
is the hard scale in the process, for instance the invariant mass of 
the produced particle. As qT increases, the accuracy of the TMD ap-
proximation decreases and the power corrections are increasingly 
relevant until the expansion breaks down as qT approaches Q .

On the contrary, for large qT ∼ Q � m, the collinear factor-
ization theorem applies and the qT -differential cross section can 
generically be written as

dσ(qT , Q )

∣∣∣
qT ∼Q �m

= Z(qT , Q ) + O
(

m

qT

)b

dσ(qT , Q ) , (2)

where Z is the collinear approximation of the full cross section dσ . 
Z is calculated at a fixed-order in the strong coupling constant αs . 
For qT ∼ Q � m, Z is a good approximation of the full cross 
section, but as qT decreases the accuracy of the collinear approxi-
mation diminishes, which finally breaks down as qT approaches m.

Armed with both these factorization theorems, valid in differ-
ent and (sometimes) overlapping regions, the full qT spectrum can 
be constructed through a matching scheme. Such a scheme must 
make sure that the result agrees with W in the small qT region 
and with Z in the large qT region, and that there is a smooth 
transition in the intermediate region.

As announced, in this paper we introduce a new scheme, the 
inverse-error weighting (InEW for short), where the power correc-
tions to the factorization theorems are used to quantify the trust-
worthiness associated to the respective contributions, and thus 
employed to build a weighted average. The resulting matched dif-
ferential cross section over the full range in qT is given by

dσ(qT , Q ) = ω1W (qT , Q ) + ω2Z(qT , Q ) , (3)

where the normalized weights for each of the two terms are

ω1 = �W −2

�W −2 + �Z−2
, ω2 = �Z−2

�W −2 + �Z−2
, (4)

with �W and �Z being the uncertainties of both factorization 
theorems generated by their power corrections. The uncertainty on 
the matched cross section simply follows from the propagation of 
these (uncorrelated) theory uncertainties:

�dσ = 1√
�W −2 + �Z−2

= �W �Z√
�2

W + �2
Z

dσ

≈ �W �Z√
�2

W + �2
Z

dσ , (5)

where {�W , �Z} = {�W , �Z}dσ , and in the last step we have 
replaced the unknown true cross section dσ by its estimated 
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value dσ . We emphasize that the uncertainty on the matched 
cross-section, �dσ , is due only to the matching procedure, which 
in the InEW method comes from the power-corrections. In any 
phenomenological application one should also include, once the 
matched cross-section is obtained, all other sources of uncertainty, 
i.e. the ones related to higher perturbative orders and nonpertur-
bative contributions.

Following Eqs. (1) and (2), we numerically implement the un-
certainties �W and �Z as

�W =
(

qT

Q

)a

+
(

m

Q

)a

, �Z =
(

m

qT

)b
(

1 + ln2
(

mT

qT

))
.

(6)

As an Ansatz, we have taken a = a′ and will discuss the impact 
of this choice at the end of Sec. 3. In the region where qT be-
comes different from Q , large logarithms will reduce the accuracy 
of the power counting which was done in the qT ∼ Q region. We 
have thus included a ln2(mT /qT ) in �Z , where the transverse mass 

is defined as mT =
√

Q 2 + q2
T , which is the expected typical lead-

ing logarithm in the fixed-order calculations. This logarithm then 
allows us to have a more reliable estimation of the power correc-
tions to the collinear result in the whole qT range, and not only at 
qT ∼ Q .

The values of the exponents a and b are given by the strength 
of the power corrections and depend on the details of the pro-
cess and its factorization. In the case of unpolarized processes, 
the smallest values allowed by Lorentz symmetry are a = 2 and 
b = 2, since qT is the only transverse vector that explicitly ap-
pears in the factorization theorems. This is consistent with what 
is found in Refs. [28,29] for the TMD factorization theorem, and in 
Refs. [30,31] for the qT -integrated collinear factorization theorem, 
which should also apply for the qT -unintegrated when qT ∼ Q . We 
thus take a = 2 and b = 2 as the default choice for the numerical 
implementations.

In order to obtain a more conservative estimation of the power 
corrections in the presence of large logarithmic corrections, the 
values of a and b could be reduced (see Sec. 13.12 in Ref. [1]). 
Moreover, smaller values are expected for spin-asymmetry observ-
ables, where qT is not the only explicit vector, but also a transverse 
spin vector S T contributes to the cross section. Even though a = 1
and b = 1 might be an extreme choice, we have considered it to 
get first indications on the matching uncertainty in the polarized 
cases, which we plan to study in more detail in forthcoming pub-
lications.

Summarizing, we obtain the differential cross section for the 
full qT spectrum as the weighted average, Eq. (3), of the TMD and 
collinear approximations W and Z with their weights calculated 
as the inverse of the square of the power corrections to the fac-
torized expressions, as in Eq. (6). The uncertainty of the matched 
result automatically follows from Eq. (5).

Let us note that the derivation of the power corrections in both 
factorization theorems is only valid in and around their regions of 
validity. For example, for qT > Q the power counting leading to 
the power corrections for the TMD cross section breaks down. In 
this region, however, the collinear-factorization theorem fully dom-
inates the result and the matched result correctly reproduces the 
Z-term and thereby the cross section (an analogous logic applies 
to small qT ).

3. Illustration of the method

In the following, we illustrate how the method works for the 
computation of the qT distribution of different electroweak bosons 
produced in proton–proton collisions at the LHC at 
√

s = 8 TeV. In 
particular, we will consider the following processes:

• Z/W boson production (Sec. 3.1)
• Drell–Yan (DY) lepton-pair production (Sec. 3.2)
• H0 boson production (Sec. 3.3).

These processes are sensitive to either quark TMDs (Z/W boson 
and DY production) or gluon TMDs (H0 boson production), and 
allow us to illustrate the implementation of the matching scheme 
from low to high values of the hard scale.

The cross sections differential with respect to the transverse 
momentum qT of Z/W boson and Drell–Yan production have been 
computed using the public code DYqT

2 [32,33]. For H0 boson pro-
duction we have used the public code HqT

3 [34].
We have worked with the highest perturbative accuracy im-

plemented in DYqT and HqT: NNLL (next-to-next-to-leading log-
arithmic) accuracy in the resummed contribution W (i.e. �cusp ∼
O(α3

s )) and NLO (next-to-leading order) corrections (i.e. O(α2
s )) at 

large qT for the fixed-order contribution Z . For collinear PDFs we 
have used the NNPDF3.0 set at NNLO with αs(M Z ) = 0.118 [35].

The treatment of the different bT regions (where bT is the 
Fourier-conjugated variable to the observed transverse momen-
tum qT ) is identical in both HqT and DYqT. The large bT region 
is treated with the so-called complex bT (or minimal) prescription, 
which avoids the Landau pole in the coupling constant by de-
forming the integration contour in the complex plane [36,37]. The 
small bT region, instead, is treated by replacing the log(Q 2b2

T ) with 
log(Q 2b2

T + 1) [38,39], avoiding unjustified higher-order contribu-
tions. This is analogous to introducing a lower cutoff bmin in bT

space [14,40–42]. We note that this cutoff is crucial in order to re-
cover the integrated collinear factorization result upon integration 
over the transverse momentum.

In DYqT, the nonperturbative TMD part in the resummed 
term is implemented as a simple Gaussian smearing factor in 
bT space [32,33] exp(SN P ) = exp(−gN P b2

T ). Since we are inter-
ested in processes at different energy scales, we have included 
a logarithmic dependence of gN P on the invariant mass Q of 
the produced state (see e.g. Ref. [43]) to mimic more realistic 
values: gN P (Q ) = g0

N P ln(Q 2/Q 2
0 ) with Q 0 = 1 GeV. Thus, we 

can write gN P (Q ) = gN P (M Z )ln
(

Q 2
)
/ln

(
M2

Z

)
. In HqT an analo-

gous smearing factor was introduced. For the gluon TMDs there 
is significantly less experimental input and thus phenomenologi-
cal information (see however Ref. [44]) and we have rescaled the 
nonperturbative parameter for quark TMDs by a Casimir scaling 
factor C A/C F (see Sec. 3.3), where C A = Nc , C F = (N2

c − 1)/2Nc

and Nc = 3 is the number of colors. Let us however note that such 
nonperturbative factors, which would be essential for a proper 
comparison with data, are not involved in the matching proce-
dure.

DYqT and HqT allowed us to separately compute the cross sec-
tion at low qT (W ) and at high qT (Z) from which we have im-
plemented the matching following our InEW method. These codes 
also allowed us to compute the asymptotic limit [14,18,19] of the 
resummed contribution (A) which we will use for the comparison 
with iCSS method.

The uncertainties in the following sections will purely be from 
the InEW matching scheme, namely induced by the estimation of 
the power corrections. Additional uncertainties due to scale varia-
tions, collinear-parton distributions and TMD nonperturbative un-
certainties should be added for a fair comparison with data. We 

2 http://pcteserver.mi .infn .it /~ferrera /research .html.
3 http://theory.fi .infn .it /grazzini /codes .html.

http://pcteserver.mi.infn.it/~ferrera/research.html
http://theory.fi.infn.it/grazzini/codes.html
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Fig. 1. The resummed term W (yellow curve), the fixed-order term Z (green curve), and the matched cross section in the InEW approach (blue band) for Z boson production 
(top–left), W + boson production (top–center), H0 boson production (top–right), Drell–Yan lepton-pair production with Q = 4 GeV (bottom–left), Q = 12 GeV (bottom–
center), and Q = 20 GeV (bottom–right). All processes are initiated by proton–proton collisions with √s = 8 TeV. The uncertainty on the matched cross section is only due 
to the matching scheme, i.e. including power-correction uncertainties, and no other effects are added, such as the perturbative-scale variations and the nonperturbative con-
tributions. Lower panels quantify the deviation of the W - and Z-terms with respect to the matched cross section, as well as its matching uncertainty. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article)
stress that this remark would apply to any (un)matched compu-
tations. We leave for a future publication the phenomenological 
study of the InEW scheme, where the uncertainties on the func-
tional form and the parameters of the nonperturbative contribution 
will be considered (see e.g. Refs. [7,8] for recent phenomenological 
works).

3.1. Z/W boson production

In this section we study Z/W boson production. We work in 
the narrow width approximation and include the branching ratio 
into two leptons [32,33].

In Fig. 1 (top–left) we show the full transverse-momentum 
spectrum calculated with our InEW matching of the W and 
Z-terms for Z -boson production. The nonperturbative parameter 
we used is gN P (M Z ) = 0.8 GeV2 [37]. The central curve corre-
sponds to dσ and the band to its variation by ±�dσ (see Eq. (3)
and Eq. (5)). We also show the W - and Z-terms individually. 
The lower panels in Fig. 1 quantify the deviation4 of the W - and 
Z-terms with respect to the matched cross section, as well as its 
matching uncertainty.

4 By deviation we mean the percentage difference between two given curves. For 
the W -term we plot 100 · (W − dσ )/dσ , and similarly for the rest.
The Z-term is ill behaved towards small values of the trans-
verse momentum due to the presence of the large logarithms 
in Q /qT , while the W -term tends towards negative values for 
large qT . There is a quite broad intermediate region where both 
results are similar, and where both factorization theorems are on 
relatively stable ground. This makes the matching between the two 
theorems particularly simple, and well behaved.

The cross section matched in the InEW scheme follows the re-
summed W -term up to qT ∼ 15 GeV and then approaches the 
fixed-order Z-term. The uncertainty from the power corrections is 
small in the large and very small qT regions, but increases in the 
region around the value of qT where �W = �Z (i.e. where both 
weights are close to 1

2 ).
The results for W + production are shown in Fig. 1 (top–center). 

The scale-dependent nonperturbative parameter is modified to 
gN P (MW ) 	 0.78 GeV2 by the change of the hard scale to the mass 
of the W boson (MW = 80.385 GeV). The results for the matched 
cross section closely resemble those for the Z boson, which is to 
be expected since both processes have a similar hard scale and 
probe quark and antiquark distributions. The transition point be-
tween the W -term and the Z-term has moved down to slightly 
lower qT , and the uncertainty is a little larger. The result for W −
production is very similar, with just a different normalization for 
the differential cross section.
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3.2. Drell–Yan process

In this section we study Drell–Yan lepton-pair production, or 
more precisely, virtual-photon (γ �) production. The nonpertur-
bative parameters are now given by gN P (4 GeV) 	 0.25 GeV2, 
gN P (12 GeV) 	 0.44 GeV2 and gN P (20 GeV) 	 0.53 GeV2. The re-
sults for the matched cross section for DY production are shown 
for the invariant masses Q = 4, 12, 20 GeV in Fig. 1 (bottom). The 
values are chosen to complement the results for the heavy vector-
boson and H0 boson cross sections, and to demonstrate how the 
method performs at different scales.

Let us start our discussion from the lowest scale, Q = 4 GeV. 
This value is chosen to demonstrate what happens when the hard 
scale is very low, and when the intermediate region, where both 
TMD and collinear factorizations are valid, collapses. The matched 
cross section follows the TMD result up to larger fractions of Q
than it did for heavy vector-boson production, starting to tend to-
wards the collinear result around qT ∼ Q /2. For such low scales, 
power corrections are of course likely to be large. This is nicely re-
flected by the uncertainty band of the InEW matched result which 
reaches maximum values of around 30%. We note that significantly 
lowering the center of mass energy does not change the qualitative 
discussion of the matching method.

Increasing the invariant mass of the produced boson, the uncer-
tainty of the InEW scheme decreases and the transition between 
the two factorization theorems moves towards smaller fractions of 
qT /Q . The region where the results of both theorems are relevant 
also occupies a smaller and smaller portion of the qT spectrum. At 
Q = 12 GeV, the maximal uncertainty has decreased below 20% 
and, at Q = 20 GeV, is less than 10%.

3.3. H0 boson production

In this section we study H0 boson production. The heavy-top 
effective theory is used to integrate out the top quark, resulting in 
a direct coupling between gluons and the H0 boson.

Unlike the previous processes, H0 production directly probes 
gluon TMDs (see e.g. Refs. [44–57]). There is much less phe-
nomenology and therefore knowledge about gluon TMDs than for 
quarks. As already mentioned in Sec. 3, in order to obtain a rea-
sonable value for the nonperturbative parameter we use Casimir 
scaling. This results in g g

N P (125 GeV) = (C A/C F )gN P (125 GeV) 	
1.93 GeV2.

Fig. 1 (top–right) shows the matched cross section in the InEW
scheme. It follows the W -term up to qT ∼ 15 GeV and then ap-
proaches the Z-term. The uncertainty band is narrow, as power 
corrections are strongly suppressed in the entire spectrum.

The small size of the power corrections in combination with 
the large difference between the two factorized approximations of 
the cross section is a challenge for the matching in the intermedi-
ate region. At qT ∼ 15 GeV, the power corrections �W and �Z are 
both below 0.05, but the Z-term is 50% larger than the W . This is, 
however, no longer surprising when taking into account the large 
uncertainty associated to the H0 boson transverse-momentum 
spectrum coming from the scale variations [23]. It is therefore 
likely that higher-order corrections will bring the collinear and 
TMD results closer to each other, resulting in a smoother matching.

Finally, let us note that we did not observe any relevant vari-
ations of the central value of the matched cross section when 
lowering the exponents from a = b = 2 to a = b = 1. However, as 
expected, the matching uncertainty significantly grows. For Z , W +
and H0 boson production cases, the uncertainty at its maximum is 
inflated 7–8 times, reaching ∼ 15% at qT ∼ 15 GeV and remaining 
larger than 5% from roughly 4 to 40 GeV. For the Drell–Yan case, 
whose transverse-spin-asymmetry study is a hot topic within the 
TMD community, the uncertainty rather inflates by a factor of 2 to 
3 depending on the lepton-pair mass.

On the other hand, the matching is quite stable under varia-
tions of the exponent a′ compared to a. For a = a′ , the uncertainty 
associated with a dominates down to very low qT ∼ 1 GeV, and 
therefore dominates the region where both TMD and collinear 
results are relevant. Lowering a′ leads to a slightly larger uncer-
tainty in the low qT region and can, for low Q Drell–Yan, shift the 
transition between the TMD and collinear results towards slightly 
lower qT . However, we would like to note here that the exponents 
a, a′ and b can be fixed for a given process by the order at which 
the different power corrections contribute.

4. Comparison to CSS subtraction

In this section, we compare the matched-cross-section results 
in the InEW scheme with the results in the iCSS subtraction 
scheme of Ref. [14]. We therefore briefly introduce the features 
of the iCSS method which are of relevance for our comparison, and 
refer to Ref. [14] for a more detailed discussion.

The widely used CSS method [16–19] allows for a matching of 
the TMD result (W ) and the fixed-order result (Z) in an additive 
way. Double counting is avoided by the subtraction of the asymp-
totic term (A), i.e. the fixed-order expansion of the perturbative 
result of W . For applications of the method in processes with a 
low hard-scale, see, e.g., Ref. [58] for Semi-Inclusive Deep-Inelastic 
Scattering (SIDIS) and Chap. 8 in Ref. [40] for ηb production in 
proton–proton collisions. Applications in processes with a higher 
hard scale can be found in, e.g., Refs. [40,59–61].

The method, although successful, runs into difficulties at small 
qT , due to incomplete cancellations between the fixed-order and 
the asymptotic results, and also at large qT , due to incomplete can-
cellations between the resummed and the asymptotic results. At 
low qT the problems are especially manifest when the hard scale 
Q is not large, namely when there is little or no overlap between 
the regions where the TMD and collinear factorization theorems 
are valid [14,58].

Recently, a solution to these issues has been proposed in 
Ref. [14], the iCSS method. In order to enforce the required can-
cellations, the different terms in the cross section are multiplied 
by cutoff functions, damping them outside their region of validity. 
This solves the problem of the incomplete cancellations, but in-
troduces a dependence both on the functional form of the cutoff 
functions and on the point in qT where one switches on and off 
the different contributions.

The cross section in the iCSS method is written as

dσ(qT , Q ) = WiCSS(qT , Q ) + YiCSS(qT , Q ) , (7)

where

WiCSS(qT , Q ) = W (qT , Q )
W (qT , Q ;η, r) ,

YiCSS(qT , Q ) = ZiCSS(qT , Q ) − AiCSS(qT , Q ) ,

ZiCSS(qT , Q ) = Z(qT , Q )
Z(qT ;λ, s) ,

AiCSS(qT , Q ) = A(qT , Q )
W (qT , Q ;η, r)
Z(qT ;λ, s) , (8)

with the cutoff functions


W (qT , Q ;η, r) = exp

{
−

(
qT

ηQ

)r}
,


Z(qT ;λ, s) = 1 − exp

{
−

(
qT

λ

)s}
. (9)

The parameters {η, λ} control the value of qT around which the 
cutoffs start, whereas the exponents {r, s} control the steepness of 
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Fig. 2. From left to right and top to bottom, comparison between the InEW and the iCSS schemes for: Z boson production, W + boson production, H0 boson production and 
Drell–Yan lepton-pair production at Q = 4, 12, 20 GeV.
these cutoffs.5 In simple terms, the damping function 
W switches 
off both the W -term and the A-term at large qT , while the damp-
ing function 
Z switches off both the Z-term and the A-term at 
small qT . For intermediate qT , the three terms are kept.

The values for these four parameters given in Ref. [14] are 
{η, r} = {1/3, 8} and {λ, s} = {2/3 GeV, 4}. We have chosen a dif-
ferent default value for λ (λ = 1 GeV) for switching off the Z and 
A towards low qT values, in order for the cross section not to start 
deviating from the W towards too low qT . The variations of the 
parameters we perform however include also the default value of 
Ref. [14].

To be able to compare with the iCSS approach we need to 
construct a way to estimate the matching uncertainty in the iCSS
scheme, both due to the power corrections and to the parameters 
in the matching scheme. To do so, we note that the cross section 
in the iCSS method can be written as:

dσ(qT , Q ) =

⎧⎪⎨
⎪⎩

W + �W dσ , qT � λ

W + Z − A + �W �Zdσ , λ � qT � ηQ

Z + �Zdσ , qT � ηQ

,

(10)

since the damping functions 
W and 
Z are devised as (almost) 
step functions. At small qT , since the cross section is effectively 
given by the W -term, the power counting (relative) error will be 
�W (see Eq. (1)). At large qT , the cross section is effectively given 
by the Z-term, and the power counting (relative) error will be �Z
(see Eq. (2)). In the intermediate region the cross section is given 
by the subtraction of the double-counted contributions, and thus 
the power counting (relative) error is �W �Z [14]. We therefore 
estimate the error from subleading powers in the iCSS method (as 
a function of qT ) as

1

dσ
�dσ

∣∣∣
iCSS

= �W
[
1 − 
Z] + �W �Z 
W 
Z + �Z

[
1 − 
W ]

.

(11)

5 The authors of Ref. [14] also introduce a small-b cutoff (bmin prescription) in 
the W -term, which has an effect as well in the way the asymptotic A-term is cal-
culated.
In addition to this uncertainty from the power corrections, we 
need to consider the uncertainty that comes from the variation of 
the matching parameters in the iCSS approach.6 In particular, we 
take the default values η = 1/3 and λ = 1 GeV (different from the 
one proposed in Ref. [14]) and vary them by 50%, i.e. η ∈ [1/6, 1/2]
and λ ∈ [0.5, 1.5] GeV. We keep the exponents {r, s} constant, since 
they have to be large enough to give almost step functions, and 
then their variation does not have any relevant impact.

In the intermediate region, this method has a potential advan-
tage over the InEW in terms of the formal power counting uncer-
tainty, i.e. �W �Z/(�2

W + �2
Z)1/2 for InEW compared to �W �Z

for iCSS (where no variation of the matching parameters is in-
cluded [14] though). This is of value, in particular, in high-scale 
processes such as Z boson production, where there is an overlap 
region where the approximations in both of the two factorization 
theorems are appropriate. When the hard scale of the process is 
reduced, the overlap of the two factorization theorems decreases. 
As this happens, the subtraction method no longer benefits from 
the power counting advantage, since the uncertainty from the 
matching parameters is large, as we now demonstrate.

In Fig. 2, we show the numerical differences between the InEW
and the iCSS schemes for Z boson production, W + boson produc-
tion, H0 boson production, and Drell–Yan lepton-pair production 
at Q = 4, 12, 20 GeV. The total uncertainty for the iCSS approach 
shown in Fig. 2 is obtained as the envelope of the uncertainty 
bands dσ ±�dσ , where each band corresponds to one of the men-
tioned choices of the matching parameters {η, λ}. We again note 
that the uncertainties shown in Fig. 2 are only due to the differ-
ent matching schemes, and do not include other effects such as 
the perturbative-scale variations and the nonperturbative contri-
butions, which are common to both.

Starting with the Z and W boson production and comparing 
the InEW results to those in the iCSS scheme, we can notice that 
where the uncertainty in the InEW method is the largest, the iCSS
scheme produces a significantly smaller uncertainty. This is pre-
cisely due to the reduction of the power corrections obtained in 
the intermediate region when subtracting the asymptotic term A . 
At the scale of the Z boson mass, there is a significant overlap 
of the two regions where the two factorization theorems apply. 

6 These should not be confused with the uncertainties from the perturbative-scale 
variations and the nonperturbative contributions.



M.G. Echevarria et al. / Physics Letters B 781 (2018) 161–168 167
However, we can also see that as we approach the regions of 
the matching points between the low and intermediate transverse 
momentum, or between the intermediate and high transverse mo-
mentum, the choice of the matching parameters has a large impact 
on the results. Unlike the InEW scheme, the iCSS follows more 
closely the W -term up to larger values of qT , but the extent to 
which this holds true has a strong dependence on the value of the 
largest matching point. This is clearly reflected in the size of the 
uncertainty in this region of transverse momentum. For both pro-
cesses, the uncertainty band for the InEW method is symmetric 
around the central value, while the estimation of the uncertainty 
for the iCSS is asymmetric, originating mainly from the variation of 
the matching parameters.

For DY at Q = 4 GeV, the iCSS scheme runs into difficulties. 
There is no space left for the intermediate region, and the match-
ing points λ and ηQ are very close to each other. This leads to a 
very large uncertainty. This is not surprising considering that the 
main advantage of the method is in the power counting uncer-
tainty in the intermediate region. Moreover, for our choice of the 
default values for the parameters, the central curve in the iCSS lies 
far away from the central curve in the InEW scheme at low and in-
termediate qT values. The central curve in the iCSS scheme moves 
from the resummed to the fixed-order result at a lower transverse 
momentum than the central curve in the InEW scheme, the oppo-
site to what we could see in Z/W boson production.

Let us now compare the InEW and iCSS schemes at Q =
12, 20 GeV, where there is more space for the intermediate region 
and the uncertainty in the iCSS scheme improves. The iCSS uncer-
tainty at the larger transverse-momentum values is dominated by 
the variation of the matching point and remains of similar size re-
gardless of the scale. A smaller (larger) variation of the associated 
parameter would of course lead to a smaller (larger) estimate of 
the associated uncertainty.

For H0 boson production, the advantage in the intermediate re-
gion of the iCSS scheme is clearly visible, with a very small uncer-
tainty band for low qT . The larger dependence on the choice of the 
upper matching point is however still present. Both schemes pro-
duce results which are clearly outside their uncertainty bands for 
a large range of intermediate transverse momenta. At this point, 
we emphasize that for H0 production there is a large uncertainty 
coming from the scale variations [23]. Therefore, the difference 
between the two methods will be drowned in the other uncertain-
ties, given the currently available perturbative accuracy. At very 
low qT the iCSS rapidly starts to deviate from the resummed cal-
culation, but this is difficult to interpret. Changing the values of 
the matching parameter associated with the transition between 
the low and intermediate region would fix this problem. A detailed 
optimization of the parameter choices in the iCSS scheme is, how-
ever, obviously outside the scope of the present work.

5. Conclusions

The implementation of the matching between the TMD and 
collinear factorization theorems, together with a reliable estima-
tion of its uncertainty from power corrections, is one of the com-
pelling milestones for the next generation of phenomenological 
analyses of qT -spectra. This work contributes to such an effort by 
introducing a new matching scheme: the inverse-error weighting
(InEW).

From the expected scaling of the power corrections for the TMD 
and collinear factorization theorems, we build a matched cross sec-
tion via a weighted average, where the normalized weights are 
given by the inverse of the (square of the) power corrections.

In the InEW scheme, no cancellation of double-counted contri-
butions is needed, since the resummed and fixed-order results are 
averaged, and not summed. This makes the implementation of the 
cross-section matching in phenomenological analyses faster and 
more transparent, an important feature in light of the demands 
of global TMD analyses. Moreover, the InEW scheme yields com-
patible results with other mainstream approaches in the literature, 
such as the improved CSS scheme.

We have illustrated the application of the InEW method with 
the qT -spectra of Z boson, W boson, H0 boson and Drell–Yan 
lepton-pair production at the LHC. However, the InEW scheme can 
be applied in a straightforward manner to any observable where 
a resummed and a fixed-order factorization theorems need to be 
matched in order to describe the full spectrum of a given vari-
able, such as the qT -spectra with polarized beams, event shapes or 
multi-differential observables. We leave for the future the study of 
processes sensitive to (un)polarized TMD fragmentation functions, 
such as e+e− → h1h2 X and SIDIS, and low-scale processes sen-
sitive to (un)polarized gluon TMDs, such as pseudoscalar quarko-
nia produced at a future fixed-target experiment at the LHC (AF-
TER@LHC [12,49,62,63]) or even at the LHC [64–69], and the pro-
duction of a pair of J/ψ [44].
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