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Abstract
Let (M, J , g, ω) be a Kähler manifold. We prove a W 1,2 weak Bott-Chern decom-
position and a W 1,2 weak Dolbeault decomposition of the space of W 1,2 differential
(p, q)-forms, following the L2 weak Kodaira decomposition on Riemannian man-
ifolds. Moreover, if the Kähler metric is complete and the sectional curvature is
bounded, the W 1,2 Bott-Chern decomposition is strictly related to the space of W 1,2

Bott-Chern harmonic forms, i.e., W 1,2 smooth differential forms which are in the
kernel of an elliptic differential operator of order 4, called Bott-Chern Laplacian.

Keywords Bott-Chern harmonic forms · Dolbeault harmonic forms · Kähler
manifolds · L2 Hodge theory

Mathematics Subject Classification 53C55 · 32Q15

1 Introduction

Let (M, g) be a Riemannian manifold of dimension n. Assume, for simplicity, the
manifold is oriented, and consider M endowed with the standard Riemannian volume
form. Denote by Ak the space of smooth k-forms, by Ak

c the space of smooth k-forms
with compact support, and by L2Ak the space of possibly nonsmooth measurable
k-forms which are square integrable on M . Let ∗ : Ak → An−k be the star Hodge
operator. Indicate by d the exterior differential on forms, and by d∗ its formal adjoint.
Define L2H̃k ⊂ L2Ak the subset of L2 forms ϕ such that the forms dϕ and d∗ϕ are
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equal to zero in the sense of distributions. Kodaira, in 1949, [1], proved the following
fundamental orthogonal decomposition of the Hilbert space L2Ak :

Theorem 1.1 [2, Theorem 24] Let (M, g) be a orientable Riemannian manifold. Then

L2Ak = L2H̃k ⊥⊕ d Ak−1
c

⊥⊕ d∗ Ak+1
c .

Moreover, L2H̃k ⊂ Ak, and

L2Ak ∩ Ak = L2H̃k ⊥⊕
(

d Ak−1
c ∩ Ak

) ⊥⊕
(

d∗ Ak+1
c ∩ Ak

)
.

After the establishment of Theorem 1.1 by Kodaira, this new born L2 Hodge theory
was contextualized into the theory of unbounded operators between Hilbert spaces.
See, e.g., [3–5] for some classical reviews, and, e.g., [6, 7] and [8, Chapter VIII] for
some modern reviews of the topic. See [8, Chapter VIII] also for various applications
of this theory on complex manifolds, e.g., L2 estimates for the solutions of equations
∂u = v on weakly pseudoconvex manifolds.

Denote by �d = dd∗ + d∗d the Hodge Laplacian. If the Riemannian manifold
(M, g) is complete, given a form ϕ ∈ L2Ak ∩ Ak , Andreotti and Vesentini, in 1965,
[9, Proposition 7], proved that dϕ = 0 and d∗ϕ = 0 if and only if �dϕ = 0, i.e.,

L2H̃k = L2Hk := {ϕ ∈ L2Ak ∩ Ak | �dϕ = 0}.

These results by Kodaira, Andreotti, and Vesentini hold without any significant
modifications in the context of Hermitian manifolds (M, J , g, ω), substituting the
operators d, d∗, and�d , respectively, eitherwith ∂ , ∂

∗ := −∗∂∗, and�∂ = ∂∂
∗+∂

∗
∂ ,

or with ∂ , ∂∗ := − ∗ ∂∗ and �∂ = ∂∂∗ + ∂∗∂ , where ∗ : Ap,q → An−p,n−q is the
complex anti-linear Hodge operator associated with g, and Ap,q denotes the space of
complex forms of bidegree (p, q).

Kodaira and Spencer, in 1960, [10], while developing the theory of deformations
of complex structures, introduced the following elliptic and formally self-adjoint dif-
ferential operator of order 4

�̃BC := ∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂∗∂∂

∗
∂ + ∂

∗
∂∂∗∂ + ∂∗∂ + ∂

∗
∂

to prove the stability of the Kähler condition under small deformations. Schweitzer,
in 2007, [11], developed a Hodge theory and proved a Hodge decomposition for the
operator �̃BC on compact complex manifolds, naming it the Bott-Chern Laplacian,
since its kernel turns out to be isomorphic to the Bott-Chern cohomology. The Hodge
decomposition proved by Schweitzer is called Bott-Chern decomposition. The kernel
of the Bott-Chern Laplacian is called the space of Bott-Chern harmonic forms, and it
is denoted by Hp,q

BC . He proved
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Theorem 1.2 (Bott-Chern decomposition) [11, Theorem 2.2] Let (M, J , g, ω) be a
compact Hermitian manifold. Then

Ap,q = Hp,q
BC

⊥⊕ ∂∂ Ap−1,q−1 ⊥⊕ ∂∗ Ap+1,q + ∂
∗

Ap,q+1.

During the last years, Tomassini and the author of the present paper studied W 1,2

Bott-Chern harmonic forms, namely smooth forms which are in the kernel of the
operator �̃BC with bounded W 1,2 norm, on d-bounded Stein manifolds [12], and on
complete Hermitian manifolds [13]. We proved some characterizations of W 1,2 Bott-
Chern harmonic forms and vanishing results following Gromov [14]. In particular,
on complete Kähler manifolds with bounded sectional curvature, we generalized the
classical characterization of Bott-Chern harmonic forms holding on compact Kähler
manifolds. The result can be viewed as the Bott-Chern analog of the Theorem by
Andreotti and Vesentini we discussed above. Denote by ‖·‖ the standard L2 norm
defined on tensors, and by ∇ the Levi–Civita connection.

Theorem 1.3 [13, Theorem 4.4] Let (M, J , g, ω) be a complete Kähler manifold.
Assume that the sectional curvature is bounded. Let ϕ ∈ Ap,q , with ‖ϕ‖ < +∞ and
‖∇ϕ‖ < +∞. Then

�̃BCϕ = 0 ⇐⇒ ∂ϕ = 0, ∂ϕ = 0, ∂∗ϕ = 0, ∂
∗
ϕ = 0.

Taking into account Theorem 1.3, we are motivated to investigate a decomposition of
a Sobolev space of differential (p, q)-forms, involving the abovementioned space of
W 1,2 Bott-Chern harmonic forms. To do this, we introduce the following W 1,2 inner
product, as in [9, Section 2].

Let ⟪ ·, · ⟫ be the standard L2 inner product defined for (p, q)-forms on Hermitian
manifolds. For α, β ∈ Ap,q , set the W 1,2 inner product:

⟪ α, β ⟫2:=⟪ α, β ⟫ + ⟪ ∂α, ∂β ⟫ + ⟪ ∂
∗
α, ∂

∗
β ⟫,

and denote by W 1,2
2 Ap,q the completion of the space of (p, q)-forms with compact

support Ap,q
c with respect to the norm ‖·‖2 :=⟪ ·, · ⟫

1
2
2 . Define the space

W 1,2
2 H̃p,q

BC := {ϕ ∈ W 1,2
2 Ap,q | ∀γ ∈ A∗,∗

c ⟪ ϕ, d∗γ ⟫2=⟪ ϕ, ∂∂γ ⟫2= 0}.

Then, we are able to prove the following W 1,2 weak Bott-Chern decomposition. See
Theorem 5.2 and Proposition 5.3.

Theorem 1.4 Let (M, J , g, ω) be a Kähler manifold. Then, we get the following
orthogonal decomposition of the Hilbert space (W 1,2

2 Ap,q ,⟪ ·, · ⟫2):

W 1,2
2 Ap,q = W 1,2

2 H̃p,q
BC

⊥⊕ ∂∂ Ap−1,q−1
c

⊥⊕ ∂∗ Ap+1,q
c + ∂

∗
Ap,q+1

c .
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Moreover, W 1,2
2 H̃p,q

BC ⊂ Ap,q , and

W 1,2
2 Ap,q ∩ Ap,q

= W 1,2
2 H̃p,q

BC

⊥⊕
(

∂∂ Ap−1,q−1
c ∩ Ap,q

) ⊥⊕
(

∂∗ Ap+1,q
c + ∂

∗
Ap,q+1

c ∩ Ap,q
)

.

Define also the space

W 1,2
2 H̃p,q

∂
:= {ϕ ∈ W 1,2

2 Ap,q | ∀γ ∈ A∗,∗
c ⟪ ϕ, ∂

∗
γ ⟫2=⟪ ϕ, ∂γ ⟫2= 0}.

Arguing in a similar way as before, we obtain the following W 1,2 weak Dolbeault
decomposition. See Theorem 5.6 and Proposition 5.7.

Theorem 1.5 Let (M, J , g, ω)be a Kähler manifold. Then we get the following orthog-
onal decomposition of the Hilbert space (W 1,2

2 Ap,q ,⟪ ·, · ⟫2):

W 1,2
2 Ap,q = W 1,2

2 H̃p,q
∂

⊥⊕ ∂ Ap,q−1
c

⊥⊕ ∂
∗

Ap,q+1
c .

Moreover, W 1,2
2 H̃p,q

∂
⊂ Ap,q , and

W 1,2
2 Ap,q ∩ Ap,q = W 1,2

2 H̃p,q
∂

⊥⊕
(

∂ Ap,q−1
c ∩ Ap,q

) ⊥⊕
(

∂
∗

Ap,q+1
c ∩ Ap,q

)
.

This notes are divided in the following way. In Sect. 2, we briefly recall some
concepts from the theory of unbounded operators on a Hilbert space, introduce the
maximal and minimal extension of differential operator on a manifold, and state the
classical results of elliptic regularity which will be useful in the following. In Sect.
3, we set the notation of complex and Kähler manifolds and recall the definitions and
the main properties of the differential operators which will be studied later. In Sect. 4,
we describe four W 1,2 norms of differential (p, q)-forms, which turn to be equivalent
on Kähler manifolds with bounded sectional curvature. In Sect. 5, we prove a rule
of integration by parts for the W 1,2 inner product introduced above, from which we
derive our main results, Theorems 1.4 and 1.5. Finally, in Sect. 6, we highlight the
relation between these W 1,2 weak decompositions and the spaces of W 1,2 Bott-Chern
or Dolbeault harmonic forms, on complete Kähler manifolds with bounded sectional
curvature. We also generalize, to the noncompact case, the well-known property that
on compact Kähler manifolds, the kernel of the Dolbeault Laplacian and the kernel of
the Bott-Chern Laplacian coincide.

We remark that the Kähler condition is fundamental for the kind of proof of a
W 1,2 weak Bott-Chern or Dolbeault decomposition presented in this work. It would
be interesting to understand if a W 1,2 weak Bott-Chern or Dolbeault decomposition
can be determined in full generality for Hermitian manifolds.
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2 Unbounded Operators on Hilbert Spaces and Elliptic Regularity

We briefly recall some concepts from the theory of unbounded operators on a Hilbert
space. IfH is a Hilbert space, the graph of a linear operator P : H → H with domain
D(P) is the set {(x, Px) ∈ H × H | x ∈ D(P)}. An operator is closed if its graph
is a closed subset of H × H. By the closed graph theorem, an everywhere defined
operator with a closed graph is automatically bounded, therefore, when dealing with
unbounded operators we need to also keep track of their domain.

An extension of P is an operator P ′ such that D(P) ⊂ D(P ′) and Px = P ′x for
every x ∈ D(P). An operator is closable if the closure of its graph is the graph of a
linear operator.

IfD(P) is dense inH, then we say that P is a densely defined operator, and we can
define the adjoint of P , indicated by Pt . Its domain is

D(Pt ) := {y ∈ H | x �→⟪ Px, y ⟫ is continuous on D(P)},

where here ⟪ ·, · ⟫ denotes the Hermitian inner product of the Hilbert space. If
y ∈ D(Pt ), then Pt y is defined by the relation:

⟪ Px, y ⟫=⟪ x, Pt y ⟫ ∀x ∈ D(P).

This definition makes Pt a closed operator. If P is closed, then Pt is densely defined
and Ptt = P .

An operator is symmetric if ⟪ Px, y ⟫=⟪ x, Py ⟫ whenever x, y ∈ D(P), and
self-adjoint if moreover D(P) = D(Pt ). A symmetric operator is always closable
since its adjoint is a closed extension. An operator is essentially self-adjoint if it has
a unique closed self-adjoint extension.

Let M be a differentiable manifold of dimension m, and let E, F be C-vector
bundles over M , with rank E = r , rank F = s.

A C-linear differential operator of order l from E to F is a C-linear operator
P : 	(M, E) → 	(M, F) of the form

Pu(x) =
∑

‖α‖≤l

aα(x)Dαu(x) ∀x ∈ 
,

where E|
 � 
 × C
r , F|
 � 
 × C

s are trivialized locally on some open chart

 ⊂ M equipped with local coordinates x1, . . . , xm , and the functions

aα(x) = (aαi j (x))1≤i≤s,1≤ j≤r

are s × r matrices with smooth coefficients on 
. Here

Dα = (∂/∂x1)α1 . . . (∂/∂xm)αm ,

and u = (u j )1≤ j≤r , Dαu = (Dαu j )1≤ j≤r are viewed as column matrices. Moreover,
we require aα ≢ 0 for some open chart 
 ⊂ M and for some ‖α‖ = l.
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Let P : 	(M, E) → 	(M, F) be a C-linear differential operator of order l from
E to F . The principal symbol of P is the operator

σP : T ∗M → Hom(E, F) (x, ξ) �→
∑

‖α‖=l

aα(x)ξα.

We say that P is elliptic if σP (x, ξ) ∈ Hom(Ex , Fx ) is an isomorphism for every
x ∈ M and 0 �= ξ ∈ T ∗

x M .
Let (M, g) a Riemannian manifold of dimension m. Assume, for simplicity, the

manifold is oriented, and consider the standard Riemannian volume form locally given
by

Vol(x) = | det gi j (x)| 12 dx1 . . . dxm,

where g(x) = ∑
gi j (x)dxi ⊗ dx j for local coordinates x1, . . . , xm . Let E be a C-

vector bundle over M , and take a Hermitian metric h over E , i.e., a smooth section
of Hermitian inner products on the fibers. The couple (E, h), or simply E , will be
called a Hermitian vector bundle. We define the Banach space L p E , p ≥ 1, of global
sections u of E with measurable coefficients and finite L p norm, i.e.,

‖ u ‖L p :=
(∫

M
|u(x)|p Vol(x)

) 1
p

< +∞,

where | · | = (〈·, ·〉) 1
2 and 〈·, ·〉 is the Hermitian metric on E . We denote by L p

loc E the
space of global sections u of E with measurable coefficients such that f u ∈ L p E for
every smooth function f ∈ C∞

c (M) with compact support. For p = 2, we denote the
corresponding global L2 inner product by

⟪ u, v ⟫:=
∫

M
〈u(x), v(x)〉Vol(x).

The space L2E together with ⟪ ·, · ⟫ is an Hilbert space. Denote by ‖·‖ the L2 norm
‖·‖L2 .

Let E, F be Hermitian vector bundles, and let P : 	(M, E) → 	(M, F) be a
differential operator. We define the formal adjoint

P∗ : 	(M, F) → 	(M, E)

of P by requiring that for all smooth sections u ∈ 	(M, E) and v ∈ 	(M, F), then

⟪ Pu, v ⟫=⟪ u, P∗v ⟫

whenever supp u ∩ supp v is compactly contained in M .
We remark that the formal adjoint P∗ is a differential operator, it always exists and

it is unique, see e.g., [8, Chapter VI, Definition 1.5]. Note that T ∗∗ = T .
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Let E, F be Hermitian vector bundles, and let P : 	(M, E) → 	(M, F) be a
differential operator. Then it defines an unbounded linear operator P̃ : L2E → L2F
which is densely defined and closable. It is densely defined since its domain contains
the set of smooth sections with compact support 	c(M, E), and we are going to show
two canonical closed extensions of P . The minimal closed extension Pmin , or strong
extension Ps , is defined by taking the closure of the graph of P , i.e.,

D(Ps) := {u ∈ L2E | ∃{u j } j ⊂ 	c(M, E), ∃v ∈ L2F, u j → u, Pu j → v},

and Ps(u) := v. The maximal closed extension Pmax , or weak extension Pw, is defined
by letting P act distributionally, i.e.,

D(Pw) := {u ∈ L2E | ∃v ∈ L2F, ∀w ∈ 	c(M, F) ⟪ v,w ⟫=⟪ u, P∗w ⟫},

and Pw(u) := v. Note that D(Ps) ⊂ D(Pw). Moreover, it is easy to see (P∗)t = Pw.
A densely defined operator and its minimal closed extension have the same adjoint,
[15, Theorem VIII.1]; therefore, ((P∗)s)

t = Pw, implying

(P∗)s = (Pw)t , (P∗)w = (Ps)
t .

Then, a formally self-adjoint operator, i.e., P = P∗, is essentially self-adjoint if and
only if Ps = Pw, see [15, p. 256] for a proof.

Finally, we state the following result about elliptic regularity, for which proof we
refer to [16, Corollary 10.3.10]. Let E, F be Hermitian vector bundles, and let P :
	(M, E) → 	(M, F) be a differential operator. We say that the section u is a weak
solution of Pu = v if u ∈ L1

loc(E), v ∈ L1
loc(F) and

⟪ u, P∗w ⟫=⟪ v,w ⟫ ∀w ∈ 	c(M, F).

Theorem 2.1 Let (M, g)a orientable Riemannian manifold, and let E, F be Hermitian
vector bundles over M. Let P : 	(M, E) → 	(M, F) be an elliptic differential
operator. If u ∈ L1

loc E, u is a weak solution of Pu = v and v is smooth, then u must
be smooth.

3 Complex and Kähler Manifolds

Let (M, J , g, ω) be a Hermitian manifold of complex dimension n, where M is a
smoothmanifold of real dimension 2n, J is a complex structure on M , g is a J -invariant
Riemannian metric on M , andω denotes the fundamental (1, 1)-form associated to the
metric g. We denote by h the Hermitian extension of g on the complexified tangent
bundle TCM = T M ⊗R C, and by the same symbol g the C-bilinear symmetric
extension of g on TCM . Also denote by the same symbol ω the C-bilinear extension
of the fundamental form ω of g on TCM . Recall that h(u, v) = g(u, v̄) for all u, v ∈
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T 1,0M , and ω(u, v) = g(Ju, v) for all u, v ∈ T M . We denote by Ar the space of r -
forms with real values 	(
r M), and by Ap,q the space of (p, q)-forms with complex
values 	(
p,q M). We will consider only manifolds without boundary.

Let (M, J , g, ω) be a Hermitian manifold of dimension n and let Vol = ωn

n! be the
standard volume form. We consider M endowed with the corresponding Riemannian
measure. Given a (possibly nonsmooth)measurable (p, q)-formϕ, the pointwise norm

|ϕ| is defined as |ϕ| = 〈ϕ, ϕ〉 1
2 , where 〈·, ·〉 is the pointwise Hermitian inner product

induced by g on the space of (p, q)-forms. More generally, we define in the same
way | · | and 〈·, ·〉 on tensors. Then, L2Ap,q is defined as the space of measurable
(p, q)-forms such that

‖ϕ‖ :=
( ∫

M
|ϕ|2 Vol

) 1
2

< ∞.

The space L2Ap,q , together with the Hermitian product

⟪ ϕ,ψ ⟫:=
∫

M
〈ϕ,ψ〉Vol,

is a Hilbert space. The space L2Ap,q can be also seen as the completion of Ap,q
c , the

space of smooth (p, q)-forms with compact support, with respect to the norm ‖·‖.
Again, more generally, we define in the same way ‖·‖ and ⟪ ·, · ⟫ on tensors.

For any given tensor ϕ, we also set

‖ϕ‖L∞ := sup
M

|ϕ|,

and we call ϕ bounded if ‖ϕ‖L∞ < ∞.
Denoting by ∗ : Ap,q → An−p,n−q the complex anti-linear Hodge operator asso-

ciated with g, we recall the definitions of the following well-known 2nd-order elliptic
and formally self-adjoint differential operators:

�d := dd∗ + d∗d, �∂ := ∂∂
∗ + ∂

∗
∂, �∂ := ∂∂∗ + ∂∗∂,

which are respectively called Hodge Laplacian, Dolbeault Laplacian, and ∂-
Laplacian, where, as usual

∂∗ := − ∗ ∂∗, ∂
∗ := − ∗ ∂∗, d∗ = − ∗ d∗,

are the formal adjoints respectively of ∂, ∂, d. Moreover, the Bott-Chern Laplacian
and Aeppli Laplacian �̃BC and �̃A are the 4th-order elliptic and formally self-adjoint
differential operators defined respectively as follows:

�̃BC := ∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂∗∂∂

∗
∂ + ∂

∗
∂∂∗∂ + ∂∗∂ + ∂

∗
∂
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and

�̃A := ∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂∂

∗
∂∂∗ + ∂∂∗∂∂

∗ + ∂∂∗ + ∂∂
∗
.

Bott-Chern and Aeppli Laplacians are linked by the duality relation

∗�̃A = �̃BC∗, ∗�̃BC = �̃A ∗ .

We will be only interested in studying differential (p, q)-forms lying in the kernel
of the Bott-Chern Laplacian. The same study can be done for the Aeppli Laplacian,
using this duality relation when necessary.

If (M, J , g, ω) is a Kähler manifold, i.e., dω = 0, then the Bott-Chern Laplacian
and the Aeppli Laplacian can be written in a more concise form. Indeed, by Kähler
identities, see e.g., [8, Chapter VI, Theorem 6.4], we know that ∂ and ∂

∗
anticommute,

as well as ∂∗ and ∂ . Moreover, it follows �d = 2�∂ = 2�∂ . Therefore, we derive

�̃BC = �∂�∂ + ∂∗∂ + ∂
∗
∂

and

�̃A = �∂�∂ + ∂∂∗ + ∂∂
∗
.

In the following, we will make use of normal holomorphic coordinates on Kähler
manifolds. We recall that, if (M, J , g, ω) is a Hermitian manifold of complex dimen-
sion n, then g is Kähler iff for every z0 ∈ M , there exist local complex coordinates
z1, . . . , zn centered in z0 such that g = gi j̄ dzi ⊗dz̄ j +gi j̄ d z̄ j ⊗dzi and gi j̄ = δi j +[2],
where [2] indicates terms of order ≥ 2, which is equivalent to say

∂gi j̄

∂zk
(z0) = ∂gi j̄

∂ z̄k
(z0) = 0 ∀i, j, k = 1, . . . , n.

4 Sobolev Spaces on Kähler Manifolds

Let (M, J , g, ω) be a Hermitian manifold of complex dimension n. Denote by ∇ the
Levi-Civita connection. On the space of (p, q)-forms with compact support Ap,q

c , let
us consider the following global Hermitian inner products:

⟪ α, β ⟫1 := ⟪ α, β ⟫ + ⟪ ∇α,∇β ⟫,

⟪ α, β ⟫2 := ⟪ α, β ⟫ + ⟪ ∂α, ∂β ⟫ + ⟪ ∂
∗
α, ∂

∗
β ⟫,

⟪ α, β ⟫3 := ⟪ α, β ⟫ + ⟪ ∂α, ∂β ⟫ + ⟪ ∂∗α, ∂∗β ⟫,

⟪ α, β ⟫4 := ⟪ α, β ⟫ +1

2
⟪ ∂α, ∂β ⟫ +1

2
⟪ ∂

∗
α, ∂

∗
β ⟫

+1

2
⟪ ∂α, ∂β ⟫ +1

2
⟪ ∂∗α, ∂∗β ⟫ .
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Denote by ‖·‖i the norms defined by ⟪ ·, · ⟫
1
2
i , for i = 1, 2, 3, 4. Define the Sobolev

space W 1,2
i Ap,q as the completion of Ap,q

c with respect to the norms ‖·‖i , for i =
1, 2, 3, 4. By section 2, we may write W 1,2

2 Ap,q = D((∂ + ∂
∗
)s), W 1,2

3 Ap,q =
D((∂ + ∂∗)s), W 1,2

4 Ap,q = D((d + d∗)s).

Remark 4.1 Let us consider, on a Hermitian manifold (M, J , g, ω), possibly non-
Kähler, the Hilbert space W 1,2

2 Ap,q just defined, as in [9, Section 2]. If the Hermitian

metric is complete, Andreotti and Vesentini, [9, Proposition 5], proved that W 1,2
2 Ap,q

can be identified with the space of forms ϕ ∈ L2Ap,q which admit ∂ϕ ∈ L2Ap,q+1

and ∂
∗
ϕ ∈ L2Ap,q−1 in the sense of distributions, i.e., forms ϕ ∈ L2Ap,q such that

there exist α ∈ L2Ap,q+1 and β ∈ L2Ap,q−1 such that for every γ ∈ A∗,∗
c

⟪ α, γ ⟫=⟪ ϕ, ∂
∗
γ ⟫,

⟪ β, γ ⟫=⟪ ϕ, ∂γ ⟫ .

By section 2, this is equivalent to say W 1,2
2 Ap,q = D(∂w) ∩ D((∂

∗
)w). Moreover,

they proved that if ϕ ∈ W 1,2
2 Ap,q , then ∂sϕ = ∂wϕ and (∂

∗
)sϕ = (∂

∗
)wϕ. With

analog proofs, we also derive W 1,2
3 Ap,q = D(∂w) ∩D((∂∗)w), and if ϕ ∈ W 1,2

3 Ap,q ,
then ∂sϕ = ∂wϕ and (∂∗)sϕ = (∂∗)wϕ. Mutatis mutandis, the same holds also for
W 1,2

4 Ap,q .

Note that on Ap,q
c , integrating by parts, we have

⟪ α, β ⟫2=⟪ α, β ⟫ + ⟪ α,�∂β ⟫, (1)

⟪ α, β ⟫3=⟪ α, β ⟫ + ⟪ α,�∂β ⟫, (2)

⟪ α, β ⟫4=⟪ α, β ⟫ + 1
2 ⟪ α,�∂β + �∂β ⟫ . (3)

Now, if we assume that g is Kähler, then �d = 2�∂ = 2�∂ by Kähler identities,
and ⟪ ·, · ⟫2=⟪ ·, · ⟫3=⟪ ·, · ⟫4. Thus, the norms ‖·‖2, ‖·‖3 and ‖·‖4 are equal on
Ap,q

c . Therefore,

W 1,2
2 Ap,q = W 1,2

3 Ap,q = W 1,2
4 Ap,q ,

and the couples (W 1,2
i Ap,q ,⟪ ·, · ⟫i ) are the same Hilbert spaces for i = 2, 3, 4,

when g is Kähler.

Remark 4.2 In the following, when proving a result for ⟪ ·, · ⟫ j , with j equal to 2, 3
or 4 on a Kähler manifold, it means the result holds the same way also for ⟪ ·, · ⟫i ,
with i = 2, 3, 4.

We now focus out attention on the relation between ‖·‖1 and ‖·‖i for i = 2, 3, 4. Let
(M, J , g, ω) be a Kähler manifold of complex dimension n. For any given ϕ ∈ Ap,q ,
and for

Ap = (α1, . . . , αp), Bq = (β1, . . . , βq)
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multiindices of length p, q, respectively, with α1 < · · · < αp and β1 < · · · < βq ,
write

ϕ =
∑

Ap,Bq

ψAp Bq
dz Ap ∧ dzBq

in local complex coordinates. Using local normal holomorphic coordinates at z0 ∈ M ,
we have

|∇ϕ|2(z0) = 2
∑

Ap,Bq

n∑
γ=1

(∣∣∣∣
∂ϕAp Bq

∂zγ

∣∣∣∣
2

+
∣∣∣∣
∂ϕAp Bq

∂zγ

∣∣∣∣
2)

(z0).

Moreover,

∂ϕ(z0) =
∑

Ap,Bq

∑
γ /∈Ap

∂ϕAp Bq

∂zγ
(z0)dzγ Ap Bq (z0),

∂ϕ(z0) =
∑

Ap,Bq

∑
γ /∈Bq

∂ϕAp Bq

∂zγ (z0)dzγ Ap Bq (z0),

∂∗ϕ(z0) = −
∑

Ap,Bq

∑
γ∈Ap

∂ϕγ Ap\{γ }Bq

∂zγ (z0)dz Ap\{γ }Bq (z0),

∂
∗
ϕ(z0) = −(−1)p

∑
Ap,Bq

∑
γ∈Bq

∂ϕApγ Bq\{γ }
∂zγ

(z0)dz Ap Bq\{γ }(z0),

where the signs of the last two equations can be deduced, e.g., from [17, Chapter 3,
Proposition 2.3]. By the previous equations, it follows that ∃C > 0 depending only
on p, q, n, such that

(|∂ϕ|2 + |∂ϕ|2 + |∂∗ϕ|2 + |∂∗
ϕ|2)(z0) ≤ C |∇ϕ|2(z0). (4)

Summing up, from equation (4) we get the following result.

Lemma 4.3 Let (M, J , g, ω) be a Kähler manifold. Then, ∃C > 0 such that for all
ϕ ∈ Ap,q

c (M)

‖ϕ‖4 ≤ C‖ϕ‖1. (5)

The converse inequality turns out to hold when the sectional curvature is bounded.

Lemma 4.4 Let (M, J , g, ω) be a Kähler manifold. Assume that the sectional curva-
ture is bounded. Then ‖ · ‖1 and ‖ · ‖4 are equivalent.

Proof The Weitzenböck formula for ϕ ∈ Ap,q
c is

�dϕ = ∇∗∇ϕ + R(ϕ), (6)
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where ∇∗ is the formal adjoint of ∇, and R denotes an operator of order zero of which
coefficients involve the curvature tensor. In particular, since the sectional curvature is
bounded, then R is a bounded operator. We compute the L2 product of both sides of
equation (6) with the form ϕ:

⟪ �dϕ, ϕ ⟫=⟪ ∇∗∇ϕ, ϕ ⟫ + ⟪ R(ϕ), ϕ ⟫ .

Integrating by parts, we get

‖ dϕ ‖2 +‖ d∗ϕ ‖2 = ‖ ∇ϕ ‖2 + ⟪ R(ϕ), ϕ ⟫ .

Since R is a bounded operator, we derive there exists C > 0 not depending on ϕ such
that

| ⟪ R(ϕ), ϕ ⟫ | ≤ C ‖ ϕ ‖2,

and

‖ dϕ ‖2 +‖ d∗ϕ ‖2 ≥ ‖ ∇ϕ ‖2 −C ‖ ϕ ‖2,

which implies

‖ ϕ ‖21 ≤ 2(C + 1) ‖ ϕ ‖24 .

This, together with (5), ends the proof. ��

Lemma 4.4 implies that

W 1,2
1 Ap,q = W 1,2

2 Ap,q = W 1,2
3 Ap,q = W 1,2

4 Ap,q ,

for a Kähler manifold with bounded sectional curvature.

5 W1,2 Weak Bott-Chern and Dolbeault Decompositions

In this section, we prove our main results, i.e., W 1,2 weak Bott-Chern and Dolbeault
decompositions. The following lemma is essential to derive these decompositions.

Lemma 5.1 (W 1,2 integration by parts) Let (M, J , g, ω) be a Kähler manifold. Let
α, β ∈ A∗,∗. If at least one between α and β has compact support, then

⟪ ∂α, β ⟫2=⟪ α, ∂∗β ⟫2, ⟪ ∂α, β ⟫2=⟪ α, ∂
∗
β ⟫2 .
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Proof By Kähler identities, we know that ∂ and ∂
∗
anticommute, as well as ∂∗ and ∂ .

Using these facts and integrating by parts, we conclude as follows:

⟪ ∂α, β ⟫2 =⟪ ∂α, β ⟫ + ⟪ ∂∂α, ∂β ⟫ + ⟪ ∂
∗
∂α, ∂

∗
β ⟫

=⟪ ∂α, β ⟫ − ⟪ ∂∂α, ∂β ⟫ − ⟪ ∂∂
∗
α, ∂

∗
β ⟫

=⟪ α, ∂∗β ⟫ − ⟪ ∂α, ∂∗∂β ⟫ − ⟪ ∂
∗
α, ∂∗∂∗

β ⟫

=⟪ α, ∂∗β ⟫ + ⟪ ∂α, ∂∂∗β ⟫ + ⟪ ∂
∗
α, ∂

∗
∂∗β ⟫

=⟪ α, ∂∗β ⟫2 .

To prove the second equality, recall that ⟪ ·, · ⟫2=⟪ ·, · ⟫3 and proceed as before:

⟪ ∂α, β ⟫3 =⟪ ∂α, β ⟫ + ⟪ ∂∂α, ∂β ⟫ + ⟪ ∂∗∂α, ∂∗β ⟫
=⟪ ∂α, β ⟫ − ⟪ ∂∂α, ∂β ⟫ − ⟪ ∂∂∗α, ∂∗β ⟫
=⟪ α, ∂

∗
β ⟫ − ⟪ ∂α, ∂

∗
∂β ⟫ − ⟪ ∂∗α, ∂

∗
∂∗β ⟫

=⟪ α, ∂
∗
β ⟫ + ⟪ ∂α, ∂∂

∗
β ⟫ + ⟪ ∂∗α, ∂∗∂∗

β ⟫

=⟪ α, ∂
∗
β ⟫3 .

��
Thanks to Lemma 5.1, the formal adjoint operators of ∂ , ∂ , d, with respect to the
W 1,2

i Ap,q -norms, for i = 2, 3, 4, are the same usual formal adjoint operators ∂∗, ∂∗
,

d∗ computed with respect to the L2Ap,q -norm, on Kähler manifolds.
Let (M, J , g, ω) be a Hermitian manifold of complex dimension n. Given P :

Ap,q → Ar ,s a differential operator, then it defines an unbounded linear operator
P̃i : W 1,2

i Ap,q → W 1,2
i Ar ,s , for i = 1, 2, 3, 4, which is densely defined and closable,

as in the L2 case. Now, assume that P is defined by a linear combination of ∂, ∂, ∂∗, ∂∗

and their compositions, so that its L2 formal adjoint is also the formal adjoint with
respect to the W 1,2

i Ap,q inner products, for i = 2, 3, 4, by Lemma 5.1. We define

D(Pw,i ) := {u ∈ W 1,2
i Ap,q | ∃v ∈ W 1,2

i Ar ,s, ∀w ∈ Ar ,s
c ⟪ v,w ⟫i=⟪ u, P∗w ⟫i },

and set Pw,i (u) := v. The operator Pw,i : W 1,2
i Ap,q → W 1,2

i Ar ,s is a closed and
densely defined operator, which extends P̃i .

In the following, if P : W 1,2
i A∗,∗ → W 1,2

i A∗,∗ is an operator, by Ker P , we denote

the space Ker P ∩ W 1,2
i Ap,q , when the bi-gradation (p, q) is clear.

5.1 Bott-Chern Decomposition of the SpaceW1,2
2 Ap,q

Let (M, J , g, ω) be a Hermitian manifold and define the space

W 1,2
i H̃p,q

BC := ker dw,i ∩ ker(∂
∗
∂∗)w,i ,
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281 Page 14 of 21 R. Piovani

i.e.,

W 1,2
i H̃p,q

BC = {ϕ ∈ W 1,2
i Ap,q | ∀γ ∈ A∗,∗

c ⟪ ϕ, d∗γ ⟫i=⟪ ϕ, ∂∂γ ⟫i= 0}.

We can now prove the analog of Theorem 1.1 by Kodaira in the W 1,2 Bott-Chern case.

Theorem 5.2 (W 1,2 weak Bott-Chern decomposition) Let (M, J , g, ω) be a Kähler
manifold. Then we get the following orthogonal decomposition of the Hilbert space
(W 1,2

2 Ap,q ,⟪ ·, · ⟫2):

W 1,2
2 Ap,q = W 1,2

2 H̃p,q
BC

⊥⊕ ∂∂ Ap−1,q−1
c

⊥⊕ ∂∗ Ap+1,q
c + ∂

∗
Ap,q+1

c , (7)

Ker dw,2 = W 1,2
2 H̃p,q

BC

⊥⊕ ∂∂ Ap−1,q−1
c . (8)

Proof First of all, note that the spaces ∂∂ Ap−1,q−1
c and ∂∗ Ap+1,q

c + ∂
∗

Ap,q+1
c are

orthogonal. Indeed, by Lemma 5.1, it is immediate to show that ∂∂ Ap−1,q−1
c and

∂∗ Ap+1,q
c + ∂

∗
Ap,q+1

c are orthogonal. Set

X = ∂∂ Ap−1,q−1
c

⊥⊕ ∂∗ Ap+1,q
c + ∂

∗
Ap,q+1

c ,

which is a closed subspace. Therefore, we get the orthogonal decomposition of the

Hilbert space W 1,2
2 Ap,q = X

⊥⊕ X⊥. Note that

X⊥ =
(
∂∂ Ap−1,q−1

c

)⊥ ∩
(
∂∗ Ap+1,q

c + ∂
∗

Ap,q+1
c

)⊥ = W 1,2
2

˜Hp,q
BC

by definition. This proves Eq. (7). Equation (8) follows by intersecting Eq. (7) with
Ker dw,2. ��

It remains to understand the regularity of the spaces involved in the decomposition
of Theorem 5.2.

Theorem 5.3 (Bott-Chern Regularity) Let (M, J , g, ω) be a Hermitian manifold.
Then, for i = 2, 3, 4, we get the characterization

W 1,2
i H̃p,q

BC = {ϕ ∈ Ap,q | dϕ = 0, ∂
∗
∂∗ϕ = 0, ‖ϕ‖i < ∞}.

Moreover, if g Kähler, we also get the decomposition

W 1,2
2 Ap,q ∩ Ap,q

= W 1,2
2 H̃p,q

BC

⊥⊕
(

∂∂ Ap−1,q−1
c ∩ Ap,q

) ⊥⊕
(

∂∗ Ap+1,q
c + ∂

∗
Ap,q+1

c ∩ Ap,q
)

.
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Proof For i = 2, let α1 ∈ W 1,2
2 H̃p,q

BC . For every γ ∈ Ap,q
c , keeping in mind the very

definitions of W 1,2
2 H̃p,q

BC and �̃BC , we get

⟪ α1, �̃BCγ ⟫2= 0.

If we see α1 as a W 1,2
2 -limit of a sequence of compactly supported smooth forms

(α1)ν ∈ Ap,q
c and apply Eq. (1), we get

⟪ α1, (1 + �∂)�̃BCγ ⟫= 0.

That is, α1 is a weak solution of �̃BC (1+�∂)α1 = 0. Since �̃BC (1+�∂) is elliptic,

then α1 is smooth by Theorem 2.1. Furthermore, by the very definition of W 1,2
2 H̃p,q

BC ,
we immediately derive

dα1 = 0, ∂
∗
∂∗α1 = 0, �̃BCα1 = 0.

For i = 3, 4, it suffices using respectively Eqs. (2) and (3) instead of Eq. (1).
To finish the proof, let α = α1 + α2 + α3, with α ∈ W 1,2

2 Ap,q ∩ Ap,q , α1 ∈
W 1,2

2 H̃p,q
BC , α2 ∈ ∂∂ Ap−1,q−1

c and α3 ∈ ∂∗ Ap+1,q
c + ∂

∗
Ap,q+1

c . We have to prove that

α2, α3 are smooth. Note that dwα2 = 0 and (∂
∗
∂∗)wα3 = 0, i.e., for all γ ∈ A∗,∗

c

⟪ α2, d∗γ ⟫= 0,

⟪ α3, ∂∂γ ⟫= 0.

Also note that α2 is a weak solution of �̃BCα2 = ∂∂∂
∗
∂∗α, indeed

⟪ α2, �̃BCγ ⟫=⟪ α2, ∂∂∂
∗
∂∗γ ⟫=⟪ α, ∂∂∂

∗
∂∗γ ⟫=⟪ ∂∂∂

∗
∂∗α, γ ⟫,

andα3 is aweak solution of �̃BCα3 = ∂
∗
∂∗∂∂α+∂∗∂∂

∗
∂α+∂

∗
∂∂∗∂α+∂∗∂α+∂

∗
∂α,

indeed

⟪ α3, �̃BCγ ⟫ =⟪ α3, ∂
∗
∂∗∂∂γ + ∂∗∂∂

∗
∂γ + ∂

∗
∂∂∗∂γ + ∂∗∂γ + ∂

∗
∂γ ⟫

=⟪ α, ∂
∗
∂∗∂∂γ + ∂∗∂∂

∗
∂γ + ∂

∗
∂∂∗∂γ + ∂∗∂γ + ∂

∗
∂γ ⟫

=⟪ ∂
∗
∂∗∂∂α + ∂∗∂∂

∗
∂α + ∂

∗
∂∂∗∂α + ∂∗∂α + ∂

∗
∂α, γ ⟫ .

By elliptic regularity, i.e., Theorem 2.1, it follows that since α is smooth, then α2, α3
are smooth. ��
Remark 5.4 (Aeppli decomposition) Note that Theorems 5.2 and 5.3 holds also in the
Aeppli case with analogous proofs. Indeed, let (M, J , g, ω) be a Hermitian manifold
and define the space

W 1,2
i H̃p,q

A := ker(d∗)w,i ∩ ker(∂∂)w,i ,
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i.e.,

W 1,2
i H̃p,q

BC = {ϕ ∈ W 1,2
i Ap,q | ∀γ ∈ A∗,∗

c ⟪ ϕ, dγ ⟫i=⟪ ϕ, ∂
∗
∂∗γ ⟫i= 0}.

Then, forms in the space W 1,2
i H̃p,q

A are smooth, and the following characterization
holds

W 1,2
i H̃p,q

A = {ϕ ∈ Ap,q | d∗ϕ = 0, ∂∂ϕ = 0, ‖ϕ‖i < ∞}.

Let (M, J , g, ω) be a Kähler manifold. Then, we get the following orthogonal decom-
position of the Hilbert space (W 1,2

2 Ap,q ,⟪ ·, · ⟫2)

W 1,2
2 Ap,q = W 1,2

2 H̃p,q
A

⊥⊕ ∂
∗
∂∗ Ap+1,q+1

c
⊥⊕ ∂ Ap−1,q

c + ∂ Ap,q−1
c ,

Ker(∂∂)w,2 = W 1,2
2 H̃p,q

A

⊥⊕ ∂ Ap−1,q
c + ∂ Ap,q−1

c ,

and of the space of smooth forms W 1,2
2 Ap,q ∩ Ap,q

W 1,2
2 Ap,q ∩ Ap,q

= W 1,2
2 H̃p,q

A

⊥⊕
(

∂
∗
∂∗ Ap+1,q+1

c ∩ Ap,q
) ⊥⊕

(
∂ Ap−1,q

c + ∂ Ap,q−1
c ∩ Ap,q

)
.

Remark 5.5 In this work, we are interested in a W 1,2 weak Bott-Chern decomposi-
tion. Nonetheless, we remark that with the same structure of proof of Theorem 5.2,
substituting the application of Lemma 5.1 with the classical L2 integration by parts,
it is possible to show the following L2 weak Bott-Chern decomposition.

Let (M, J , g, ω) be a Hermitian manifold. Then we get the following orthogonal
decomposition of the Hilbert space (L2Ap,q ,⟪ ·, · ⟫):

L2Ap,q = L2H̃p,q
BC

⊥⊕ ∂∂ Ap−1,q−1
c

⊥⊕ ∂∗ Ap+1,q
c + ∂

∗
Ap,q+1

c ,

Ker dw = L2H̃p,q
BC

⊥⊕ ∂∂ Ap−1,q−1
c ,

where L2H̃p,q
BC := ker dw ∩ ker(∂

∗
∂∗)w, and here the closure and the orthogonal

symbols are intended with respect to the L2 inner product. The regularity result holds
the same way in the L2 case, and in particular L2H̃p,q

BC ⊂ Ap,q .
However, in the L2 case, it is not clear how the space L2H̃p,q

BC is related to the space
of L2 Bott-Chern harmonic forms L2Hp,q

BC , namely the space of smooth L2 forms
ϕ satisfying �̃BCϕ = 0. It would be interesting to find geometric assumptions on a
Hermitian manifold yielding a link between the spaces L2H̃p,q

BC and L2Hp,q
BC .
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5.2 Dolbeault Decomposition of the SpaceW1,2
2 Ap,q

Let (M, J , g, ω) be a Hermitian manifold and set

W 1,2
i H̃p,q

∂
:= ker ∂w,i ∩ ker(∂

∗
)w,i ,

i.e.,

W 1,2
i H̃p,q

∂
= {ϕ ∈ W 1,2

i Ap,q | ∀γ ∈ A∗,∗
c ⟪ ϕ, ∂

∗
γ ⟫i=⟪ ϕ, ∂γ ⟫i= 0}.

Arguing in the same way as before, we obtain the following W 1,2 weak Dolbeault
decomposition.

Theorem 5.6 (W 1,2 weak Dolbeault decomposition) Let (M, J , g, ω) be a Kähler
manifold. Then we get the following orthogonal decomposition of the Hilbert space
(W 1,2

2 Ap,q ,⟪ ·, · ⟫2):

W 1,2
2 Ap,q = W 1,2

2 H̃p,q
∂

⊥⊕ ∂ Ap,q−1
c

⊥⊕ ∂
∗

Ap,q+1
c ,

Ker ∂w,2 = W 1,2
2 H̃p,q

BC

⊥⊕ ∂ Ap,q−1
c .

Proof First of all, note that the spaces ∂ Ap,q−1
c and ∂

∗
Ap,q+1

c are orthogonal, by
Lemma 5.1. Set

X = ∂ Ap,q−1
c

⊥⊕ ∂
∗

Ap,q+1
c ,

which is a closed subspace. Therefore we get the orthogonal decomposition of the

Hilbert space W 1,2
2 Ap,q = X

⊥⊕ X⊥. Note that

X⊥ =
(
∂ Ap,q−1

c

)⊥ ∩
(
∂

∗
Ap,q+1

c

)⊥ = W 1,2
2

˜Hp,q
∂

by definition. ��
Concerning the regularity of the spaces involved in the decomposition of Theorem

5.6, we get

Theorem 5.7 (Dolbeault Regularity) Let (M, J , g, ω) be a Hermitian manifold. Then,
for i = 2, 3, 4, we get the characterization

W 1,2
i H̃p,q

∂
= {ϕ ∈ Ap,q | ∂ϕ = 0, ∂

∗
ϕ = 0, ‖ϕ‖i < ∞}.

Moreover, if g is Kähler, we also get the decomposition

W 1,2
2 Ap,q ∩ Ap,q = W 1,2

2 H̃p,q
∂

⊥⊕
(

∂ Ap,q−1
c ∩ Ap,q

) ⊥⊕
(

∂
∗

Ap,q+1
c ∩ Ap,q

)
.
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Proof For i = 2, let α1 ∈ W 1,2
2 H̃p,q

∂
. For every γ ∈ Ap,q

c , keeping in mind the very

definitions of W 1,2
2 H̃p,q

∂
and �∂ , we get

⟪ α1,�∂γ ⟫2= 0.

If we see α1 as a W 1,2
2 -limit of a sequence of compactly supported smooth forms

(α1)ν ∈ Ap,q
c and apply Eq. (1), we get

⟪ α1, (1 + �∂)�∂γ ⟫= 0.

That is, α1 is a weak solution of �∂(1 + �∂)α1 = 0. Since �∂(1 + �∂) is elliptic,

then α1 is smooth by Theorem 2.1. Furthermore, by the very definition of W 1,2
2 H̃p,q

BC ,
we immediately derive

∂α1 = 0, ∂
∗
α1 = 0, �∂α1 = 0.

For i = 3, 4 it suffices using respectively Eqs. (2) and (3) instead of Eq. (1).
To finish the proof, let α = α1 + α2 + α3, with α ∈ W 1,2

2 Ap,q ∩ Ap,q , α1 ∈
W 1,2

2 H̃p,q
BC , α2 ∈ ∂ Ap,q−1

c and α3 ∈ ∂
∗

Ap,q+1
c . We have to prove that α2, α3 are

smooth. Note that ∂wα2 = 0 and (∂
∗
)wα3 = 0, i.e., for all γ ∈ A∗,∗

c

⟪ α2, ∂
∗
γ ⟫= 0,

⟪ α3, ∂γ ⟫= 0.

Also note that α2 is a weak solution of �∂α2 = ∂∂
∗
α, indeed

⟪ α2,�∂γ ⟫=⟪ α2, ∂∂
∗
γ ⟫=⟪ α, ∂∂

∗
γ ⟫=⟪ ∂∂

∗
α, γ ⟫,

and α3 is a weak solution of �∂α3 = ∂
∗
∂α, indeed

⟪ α3,�∂γ ⟫ =⟪ α3, ∂
∗
∂γ ⟫=⟪ α, ∂

∗
∂γ ⟫=⟪ ∂

∗
∂α, γ ⟫ .

By elliptic regularity, i.e., Theorem 2.1, it follows that since α is smooth, then α2, α3
are smooth. ��

6 Complete Kähler Manifolds with Bounded Sectional Curvature

In this section, we gather the known relations between the spaces of W 1,2 Bott-Chern
harmonic forms and the spaces of W 1,2, or L2, Dolbeault harmonic forms, and the
relations between these spaces of forms and theW 1,2 weakdecompositions just proved.
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Let (M, J , g, ω) be a Hermitian manifold. For i = 1, 2, 3, 4, the spaces of W 1,2
i

Bott-Chern and Dolbeault harmonic forms are defined respectively as follows:

W 1,2
i Hp,q

BC :=
{
ϕ ∈ Ap,q | �̃BCϕ = 0, ‖ϕ‖i < ∞

}
,

W 1,2
i Hp,q

∂
:= {

ϕ ∈ Ap,q | �∂ϕ = 0, ‖ϕ‖i < ∞}
.

If themetric is complete, then by [9, Proposition 7] and the characterization ofTheorem
5.7, we get, for i = 2, 3, 4,

W 1,2
i H̃p,q

∂
= W 1,2

i Hp,q
∂

.

Let (M, J , g, ω) be a complete Kähler manifold with bounded sectional curvature.
Theorem 5.3 tells us

W 1,2
2 H̃p,q

BC ⊂ W 1,2
2 Hp,q

BC .

Then, Theorem 1.3, together with Lemma 4.4 shows

W 1,2
2 H̃p,q

BC ⊃ W 1,2
2 Hp,q

BC ,

thus, yielding

W 1,2
2 H̃p,q

BC = W 1,2
2 Hp,q

BC .

Furthermore, Theorem 1.3 and Lemma 4.4 also imply, for i = 1, 2, 3, 4,

W 1,2
i Hp,q

BC = W 1,2
i Hp,q

∂
,

generalizing, to the noncompact case, thewell-known property that on compact Kähler
manifolds the kernel of the Dolbeault Laplacian and the kernel of the Bott-Chern
Laplacian coincide. Investigating a little more in this direction, let us set

L2Hp,q
∂

:= {
ϕ ∈ Ap,q | �∂ϕ = 0, ‖ϕ‖ < ∞}

.

Theorem 1.3 implies W 1,2
1 Hp,q

BC ⊂ L2Hp,q
∂

on complete Kähler manifolds with
bounded sectional curvature. The following Corollary shows that this inclusion is,
in fact, an equality. Arguing like in [18, Lemma 3.10], one gets

Lemma 6.1 Let (M, J , g, ω) be a complete Kähler manifold. Assume that the sectional
curvature is bounded. If ϕ ∈ L2Hp,q

∂
, then ‖ϕ‖1 < +∞, i.e., L2Hp,q

∂
= W 1,2

1 Hp,q
∂

.

Proof The Weitzenböck formula for ϕ ∈ Ap,q is

�dϕ = ∇∗∇ϕ + R(ϕ),
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where R denotes an operator of order zero whose coefficients involve the curvature
tensor. In particular, since the sectional curvature is bounded, then R is a bounded
operator. By Kähler identities, we know �d = 2�∂ . Therefore, if ϕ ∈ L2Hp,q

∂
, then

0 = ∇∗∇ϕ + R(ϕ).

Since themetric is complete, there exists a sequence of compact subsets {Kν}ν∈N, such
that∪ν Kν = M , Kν ⊂ Kν+1 and a sequence of smooth cut-off functions { fν}ν∈N such
that 0 ≤ fν ≤ 1, fν = 1 in a neighborhood of Kν , supp fν ⊂ Kν+1, and |∇ fν | ≤ 1.
For this last fact we refer, e.g., to [8, Chap. VIII, Lemma 2.4]. For every ν ∈ N, we
compute

0 =⟪ ∇∗∇ϕ + R(ϕ), f 2ν ϕ ⟫

=⟪ ∇ϕ,∇( f 2ν ϕ) ⟫ + ⟪ R(ϕ), f 2ν ϕ ⟫

=⟪ ∇ϕ, 2 fν∇ fν ⊗ ϕ ⟫ + ⟪ ∇ϕ, f 2ν ∇ϕ ⟫ + ⟪ R(ϕ), f 2ν ϕ ⟫

= 2 ⟪ fν∇ϕ,∇ fν ⊗ ϕ ⟫ +‖ fν∇ϕ‖2+ ⟪ R(ϕ), f 2ν ϕ ⟫ .

Moreover,

‖∇( fνϕ)‖2 =⟪ ∇ fν ⊗ ϕ + fν∇ϕ,∇ fν ⊗ ϕ + fν∇ϕ ⟫

= ‖∇ fν ⊗ ϕ‖2 + ‖ fν∇ϕ‖2 + 2 ⟪ fν∇ϕ,∇ fν ⊗ ϕ ⟫

= ‖∇ fν ⊗ ϕ‖2− ⟪ R(ϕ), f 2ν ϕ ⟫

≤ C‖ϕ‖2,

for some C > 0. Therefore, by the Fatou’s lemma, it follows

‖∇ϕ‖2 ≤ lim inf
ν→∞ ‖∇( fνϕ)‖2 ≤ C‖ϕ‖2,

which implies ‖ϕ‖1 < +∞. ��
We immediately derive

Corollary 6.2 Let (M, J , g, ω) be a complete Kähler manifold of complex dimension
n. Assume that the sectional curvature is bounded. Then W 1,2

i Hp,q
BC = L2Hp,q

∂
, for

i = 1, 2, 3, 4.

Remark 6.3 Note that Theorems 5.6, 5.7, Lemma 6.1 and Corollary 6.2 still hold if we
substitute the operators ∂, ∂

∗
,�∂ respectively with ∂, ∂∗,�∂ .
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