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Abstract. Aggregate Programming (AP) is a paradigm for developing
applications that execute on a fully distributed network of communicat-
ing, resource-constrained, spatially-situated nodes (e.g., drones, wireless
sensors, etc.). In this paper, we address running an AP application on a
high-performance, centralized computer such as the ones available in a
cloud environment. As a proof of concept, we present preliminary results
on the computation of graph statistics for centralised data sets, by ex-
tending FCPP, a C++ library implementing AP. This: (i) opens the way
to the application of the AP paradigm to problems on large centralised
graph-based data structures, enabling massive parallelisation across mul-
tiple machines, dynamically joining and leaving the computation; and (ii)
represents a first step towards developing collective adaptive systems
where computations dynamically move across the IoT/edge/fog/cloud
continuum, based on mutable conditions such as availability of resources
and network infrastructures.

Keywords: Distributed computing · Collective adaptive systems · Cloud
computing · Graph algorithms.

1 Introduction

In recent years, Aggregate Programming (AP) [14] has attracted significant at-
tention as an innovative approach for the development of fully distributed sys-
tems [32]. The typical applications for which AP is particularly suited involve
resource-constrained, spatially-situated nodes that coordinate through point-to-
point, proximity-based communications. For example, AP has been adopted in
simulations of domains such as swarm-based exploration [21], crowd safety man-
agement and monitoring [7, 8, 11], data collection from sensor networks [4], dy-
namic multi-agent plan repair [5, 6].

The main implementations of AP can be understood as being combinations
of two components: the first component provides full support for the constructs
of the foundational language of AP, namely the Field Calculus (FC) [12]; the
second component connects the FC program with the environment where the
distributed system is deployed and executed. In particular, FC is currently sup-
ported by the following open-source implementations: the FCPP [3, 10] library,
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as a C++ internal Domain-Specific Language (DSL); ScaFi (Scala Fields) [20],
as a Scala internal DSL; and Protelis [29], as a Java external DSL. The main
execution environment provided by existing implementations consists of simula-
tions that run on a single computer, simulating sets of nodes situated in a 2D
or 3D space, their dynamics, and the point-to-point communications between
neighbouring nodes. The FCPP library has an internal simulator, while ScaFi
and Protelis exploit the Alchemist simulator [28]. Recently, the FCPP library
has been adapted to deployment on physical Micro Controller Unit (MCU)-based
boards in a simplified Industrial Internet of Things (IIoT) scenario [31], target-
ing Contiki on DecaWave boards. A further porting to Miosix [2] on WandStem
boards is also currently in progress.

In this paper we start exploring a new direction for the application of AP,
namely, the implementation and execution of distributed algorithms on high-
performance, centralized computers such as the ones typically available in a
cloud environment. Instead of a single CPU-based system, that can run multiple
threads sharing the same memory, it can be interesting to consider clusters of
such systems, communicating through high-speed links for sharing data. While
we will discuss this possibility, the main purpose of the present work will be
handling the execution on a single CPU, as a first preliminary step.

In particular, as a proof of concept, we will describe an extension of the
FCPP library that allows it to ingest a centralized, large-scale graph structure,
and compute some network statistics of its input graph. Preliminary results of
experiments with the extended library will be presented. The ability of execut-
ing algorithms on large static graphs is per-se an important application [13],
that could be further boosted by distribution over several CPU-based systems.
Note that this contribution is different from the one described in [9], where AP
was adopted to compute centrality statistics of dynamic networks, whose struc-
ture was induced by (simulated) spatial-based connectivity, using Alchemist and
Protelis. In this paper, instead, we compute similar statistics for a general static
graph (provided as a single file on disk) which does not arise from any spatial
arrangement: in fact, as sample input data, we will use a (restricted) web graph.

In the long run, the possibility of a centralized (or locally distributed) ex-
ecution of FC programs on graphs may allow the implementation of collective
adaptive systems that exploit the IoT/edge/fog/cloud continuum. In fact, the
same AP paradigm could be exploited for programming the far edge, constrained
devices as well as the intermediate and most powerful nodes in the architecture,
and this would simplify the dynamic migration of computations between dif-
ferent layers based on mutable conditions such as availability of resources and
network infrastructures. In this paper, we devise a roadmap towards this aim,
identifying the current paper’s contribution as a first preliminary step.

The remainder of this paper is structured as follows. Section 2 presents the
necessary background on aggregate programming, FCPP and the graph statis-
tic application. Section 3 delineates a roadmap towards a IoT/edge/fog/cloud
continuum through AP. Section 4 presents the implementation of the first step,
allowing graph-based data processing in FCPP. Section 5 experimentally evalu-
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ates the approach on graph statistic computation, and Section 6 concludes with
final comments and remarks.

2 Background

2.1 Aggregate Programming and the FCPP DSL

AP [14, 32] is an approach for programming networks of devices by abstracting
away from individual devices behaviour and focusing on the global, aggregate
behaviour of the collection of all devices. It assumes only local communication
between neighbour devices, and it is robust with respect to devices joining/leav-
ing the network, or failing; thus supporting an open dynamic topology. Beside
communicating with neighbours, the devices are capable to perform computa-
tions. In particular, every device performs periodically the same sequence of
operations, with an usually steady rate, asynchronously from other devices:

1. retrieval of received messages,
2. computation of the program;
3. transmission of resulting messages.

In case devices are equipped with sensors/actuators, they may use sensor data
and provide instructions to actuators during the program execution. In AP, we
assume that all device execute the same program. Note that this assumption
does not restrict the realisable behaviour, as every device may follow different
branches of the same program, resulting in a radically different behaviour.

AP is formally backed by FC [12], a small functional language for expressing
aggregate programs. Few concrete implementations of FC exist to date: Proto,
Protelis [29], Scafi [20], FCPP [3]. In this paper, we will focus on the latter and
most recent, which is structured as a C++ internal DSL (i.e., library). The syn-
tax of aggregate functions in FCPP is given in Fig. 1. It should be noted that,
since FCPP is a C++ library providing an internal DSL, an FCPP program is
a C++ program (so all the features of C++ are available). For compactness of
presentation, we restrict here to a subset of the language with sufficient expres-
siveness for later examples. In the formal syntax, we use ∗ to indicate an element
that may be repeated multiple times (possibly zero).

An aggregate function declaration consists of keyword FUN, followed by the
return type t and the function name d, followed by a parenthesized sequence
of comma-separated arguments t x (prepended by the keyword ARGS), followed
by aggregate instructions i (within brackets and after keyword CODE), followed
by the export description, which lists the types that are used by the function in
message-exchanging constructs.

Aggregate instructions always end with a return statement, reporting the
function result. Before it, there may be a number of local variable declarations
(assigning the result of an expression e to a variable x of type t), and for loops,
which repeat an instruction i while increasing an integer index x until a condition
e is met. The main types of aggregate expressions are:
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aggregate function declaration
F ::= FUN t d(ARGS, t x∗) {CODE i} FUN_EXPORT d_t = export_type<t ∗ >;

aggregate instructions
i ::= return e;

∣∣ t x = e; i
∣∣ for(LOOP(x, `); e; ++x){i} i

aggregate expression
e ::= x

∣∣ ` ∣∣ t(e∗) ∣∣ ue ∣∣ e o e
∣∣ p(e∗) ∣∣ node.c(e∗) ∣∣ f(CALL, e∗) ∣∣ [&](t x∗)->t {i}

∣∣ e ? e : e
type aggregate function
t ::= T

∣∣ bt ∣∣ tt<t∗, ` ∗ > f ::= b
∣∣ d

built-in aggregate functions
b ::= old

∣∣ nbr ∣∣ oldnbr ∣∣ spawn ∣∣ self ∣∣ mod_self
∣∣ map_hood

∣∣ fold_hood
∣∣ mux

Fig. 1. Syntax of FCPP aggregate functions.

– a variable identifier x, or a C++ literal value ` (e.g. an integer or floating-
point number);

– an unary operator u (e.g. −, ∼, !, etc.) applied to e, or a binary operator
e o e (e.g. +, ∗, etc.);

– a pure function call p(e∗), where p is a basic C++ function which does not
depend on node information nor message exchanges;

– an aggregate function call f(CALL, e∗), where f can be either a defined aggre-
gate function name d or an aggregate built-in function b (see below);

– a conditional branching expression eguard ? e> : e⊥, such that e> is evaluated
and returned if eguard evaluates to true, while e⊥ is evaluated and returned
if eguard evaluates to false.

Finally, several aggregate built-in functions are provided, which allow implicit
message exchange and state preservation across rounds. In this paper, we will
mention the following ones:

– old(CALL,i,v), which returns the value passed for v to the function in the
previous round, defaulting to i on the first call of this function;

– nbr(CALL,i,v), which returns the field (i.e., collection of) values passed for
v to the function in the previous rounds of neighbour devices (including the
current device, defaulting to i for it on the first call of this function);

– self(CALL, v) given a field v returns the value in v for the current device;
– fold_hood(CALL, f, v, i) given a field v and a function f, reduces the field

to a single value by starting from i and repeatedly applying function f to
each element of the collection and to the current partial result.

It is worth observing that the FCPP syntax uses a number of macros (e.g.,
CALL, CODE, etc). These macros ensure that the aggregate context (i.e., the node
object) is carried over throughout the program, also updating an internal rep-
resentation of the stack trace for alignment. Thanks to alignment, the messages
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Fig. 2. The three main layers of the software architecture of FCPP: data structures
for both other layers, and components which provide node and network abstractions to
aggregate functions. Components that have been modified in this work are highlighted
in magenta. Dependencies between components can be either hard (solid), for which
the pointed component is always required as an ancestor of the other; or soft (dotted),
for which the pointed component is required only in some settings.

(implicitly) originating from a old or nbr construct are matched in future rounds
(on the same or different devices) only to the same construct, that is, a construct
called in the same position in the program syntax and in the stack trace. This
mechanism allows to freely compose functions, and use recursion, without risking
interferences of messages between different parts of the program.

2.2 FCPP Library Architecture

FCPP is based on an extensible software architecture, at the core of which are
components, that define abstractions for single devices (node) and overall network
orchestration (net), the latter one being crucial in simulations and cloud-oriented
applications. In an FCPP application, the two types node and net are obtained by
combining a chosen sequence of components, providing the needed functionalities
in a mixin-like fashion.

The FCPP library architecture is divided in three main conceptual layers
represented in Fig. 2: (i) C++ data structures of general use; (ii) components;
(iii) aggregate functions. The first layer comprises data structures needed by the
second layer either for their internal implementation or for the external speci-
fication of their options, but also data structures designed for the third layer.
Some components are sufficiently general purpose to be used across different
domains, including simulations and deployments (calculus, randomizer, storage
and timer). Others may be useful only in certain domains (displayer, navigator,
persister and spawner), or come with variations for different domains, sharing
a common interface (connector, identifier, logger and positioner). For exam-
ple, for simulations the connector component is given as a simulated_connector,
which exchanges messages as pointers between objects in memory, determin-
ing if connection is possible based on simulated positions. For deployments, a
hardware_connector is given, which instead exchanges physical messages through
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some provided networking interface. In order to handle processing of graph-based
data, the timer and spawner components have been extended and a new variation
of the connector component has been provided (cf. Section 4).

The basic structure of each component is as follows:

template <class... Ts>
struct my_functionality {

template <class F, class P>
struct component : public P {

class node : public P::node { ... };
class net : public P::net { ... };

};
};

Thus, each component is a templated class with a variable number of type ar-
guments, which are used to provide compile-time options to be used by the
components to tune their behaviour. This options are empty templated types,
wrapping the data of interest, such as parallel<true> to enable parallelism, or
connector<fixed<100>> to specify that devices are to be connected within a fixed
radius of 100 units. The outer class has a component template subclass with two
type parameters: P, which represents the parent component composition, and F,
the final outcome of the whole component composition, which is retrieved by
the C++ template system thanks to the Curiously Recursive Template Pattern
(CRTP, first introduced in [19]). Both the node and net classes are defined inside
the component subclass to inherit from the corresponding classes in the parent
composition P. The final outcome of the composition F may be used by those
classes to mimic virtual-style calls that are resolved at compile-time.

The scenario originally supported by the first versions of FCPP is the sim-
ulation of distributed systems. Compared to the alternative implementations of
FC (Protelis [29] and Scafi [33] with their simulator Alchemist [28]), it features
additional simulation capabilities (3D environments, basic physics, probabilistic
wireless connection models, fine-grained parallelism), while granting a significant
reduction of the simulation cost in CPU time and memory usage, which comes
with a corresponding speed-up of the development and test of new distributed
algorithms.

2.3 Graph Statistics

Several techniques for collecting statistics from graph-based data have been in-
vestigated in the data mining community. In this section, we recall the statistics
measuring centralities of the nodes of the graph considered in [9]. These are
quite common and can be naturally implemented in FC. We will use them as a
benchmark for the application of AP on graph algorithms.

Degree centrality is the historically first and conceptually simplest cen-
trality measure. It is defined as the number of links incident upon a node (i.e. its
degree): nodes with an higher number of links should be less prone to encounter
network disconnections, so electing these nodes as communication hubs should
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be more effective than electing nodes with a lower degree. Degree centrality is
simple and efficient to calculate. However, compared with other centrality mea-
sures, degree centrality is usually the least effective. In fact, in approximately
homogeneous situated networks – where nodes at the edge of the network have
lower degrees and all other nodes have similar degrees – selecting the node with
the highest degree would correspond to select a random node which is not at the
network edge.

PageRank [26] is an instance of the broader class of eigenvector centrality
measures. This centrality measure has been first introduced for the Google search
engine and it is quite popular in the data mining community. According to
PageRank, the centrality score ri of a node i is defined as the fixed point of the
system of equations:

ri = (1− α) + α
∑

j∈neigh(i)

rj
deg(j)

where α is a parameter (usually set at 0.85 [18]), deg(j) is the degree of node j
and neigh(i) is the set of neighbour nodes j connected to i. PageRank has been
proved effective on logical graphs as the web graph. It can be efficiently calculated
by re-iterating the equations above for each node, starting from r0i = 1.

Closeness Centrality and Harmonic Centrality are the most effective
centrality measures that we consider [16]. They are both derivable from (varia-
tions of) the neighbourhood function of a graph, which is defined as follows.

Definition 1 (Neighbourhood Function). Let G = <V,E> be a graph with
n vertices and m edges. The generalized individual neighbourhood function
NG(v, h, C), given v ∈ V , h ≥ 0 and C ⊆ V , counts the number of ver-
tices u ∈ C which lie within distance h from v. In formulas, NG(v, h, C) =
|{u ∈ C : dist(v, u) ≤ h}|.

Many different questions – like graph similarity, vertex ranking, robustness
monitoring, and network classification – can been answered by exploiting elabo-
rations of the NG values [16, 27]. Unfortunately, exact computation of NG is
impractical: it requires O(nm) time in linear memory and O(n2.38) time in
quadratic memory.

Fast algorithms approximating NG up to a desired precision have been de-
veloped. In particular Vigna et al. [16] improved the original algorithm by: (i)
exploiting HyperLogLog counters (a more effective class of estimators) [23]; (ii)
expressing the “counter unions” through a minimal number of broadword op-
erations; and (iii) engineering refined parallelisation strategies. HyperLogLog
counters maintain size estimates with asymptotic relative standard deviation
σ/µ ≤ 1.06/

√
k, where k is a parameter, in (1 + o(1)) · k · log log(n/k) bits of

space. Moreover, updates are carried out through k independent “max” opera-
tions on log log(n/k)-sized words. As a result, given a fixed precision, NG can
be computed in O(nh) time and O(n log log n) memory. This enables to apply it
on very large graphs like, e.g., the Facebook graph [13].

We are now ready to present closeness centrality and harmonic centrality.
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Closeness centrality of a node i, denoted by ci, is defined as the reciprocal
of the total distance to other nodes. It can be computed in terms of the
neighbourhood function by the following equation:

1

ci
=

∑
j 6=i

dist(i, j) =

D∑
h=1

h (NG(i, h, V )−NG(i, h− 1, V ))

where D is the graph diameter (maximum distance between nodes in G).
Harmonic centrality of a node i, denoted by hi, is defined as the sum of the

reciprocals of distances to other nodes. It can be computed in terms of the
neighbourhood function by the following equation:

hi =
∑
j 6=i

1

dist(i, j)
=

D∑
h=1

NG(i, h, V )−NG(i, h− 1, V )

h

where D is the graph diameter (maximum distance between nodes in G).

Nodes with high closeness/harmonic centrality are connected to many other
vertices through a small number of hops. So, they are best-suited to be elected
as leaders for coordination mechanisms.

3 Roadmap

In this section, we describe a roadmap to make the AP paradigm applicable
beyond the level of a network of constrained devices. The first step has already
been taken, and will be described in more detail in the rest of this paper. The
other three steps, up to a hybrid deployment where computations can be dynam-
ically moved between the devices (far edge) and a central infrastructure (cloud),
will require further research and development efforts. However, we can at least
sketch some concrete lines of work that shall be followed for their realization.

Step 1: Data Processing Support. In order to exploit cloud-based resources and
integrate the AP paradigm with them, it is first of all necessary to provide
a centralized, abstract view of the network in terms of a graph of nodes and
their connections, allowing AP to centrally process this graph-based data. In
this context, the notion of neighbourhood, which is fundamental for AP, can be
derived from the graph structure, instead of being implicitly determined by the
physical vicinity of devices. Note that AP simulators such as Alchemist and the
simulator embedded in FCPP also have the necessity to represent the network
of devices in a centralized structure. However, they assume that (i) the nodes
are deployed in a 2D or 3D euclidean space; that (ii) possible connections are
computed from the physical positions; that (iii) round scheduling is constrained
by energy saving needs; and that (ii) the simulator can take full control of the
nodes (position, velocity, etc.).

In a centralized AP computation, however, some or all of that assumptions
may fail. Nodes may not be deployed in a physical space, or their position may be
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inaccessible due to lack of dedicated sensors. Connections between nodes should
not be computed by the central application, but instead either read from a con-
figuration file or induced by mirroring a physical deployment. Round scheduling
should not be connected with energy saving needs, but instead tuned to get the
best performance out of the available cloud resources. Finally, the amount of
node control available in the central application may be limited.

In order to achieve this goals, we extended FCPP to be able to read and
process locally available graph-based data, while allowing the schedule of rounds
to be determined reactively in order to maximise performance. More details on
this initial step and its implementation in FCPP are given in Sections 4 and 5.

Step 2: Multi-CPU Distribution. The centralized AP computations can of course
benefit of multi-core architectures by associating the nodes of the graph (and
thus their computations) to multiple threads. This is already possible in the
current implementation, and was relatively easy to implement by simply pro-
tecting with locks the (short) critical sections where nodes exchange messages
with neighbours.

However, high-performance centralized infrastructures are often based on
NUMA (Non-Uniform Memory Access) architectures, where multiple CPUs have
(preferred) access to local memories. In such scenarios, the shared-memory model
needed by multi-thread applications is not applicable, and a message-passing
model must be adopted to connect computations carried by different CPUs. A
promising approach consists in the adoption of MPI (Message-Passing Interface),
the de-facto standard for message-passing on high-performance parallel architec-
tures, which defines the syntax and semantics of a rich set of library routines.
Several open-source implementations of MPI are available, in particular for the
C++ language used by the FCPP implementation of the AP paradigm.

The main challenges we envision for integrating MPI with FCPP are: the
automatic partition of the set of graph nodes on different CPUs so as to reduce
as much as possible the cost of message-passing between different memories (we
shall evaluate the applicability of graph partitioning algorithms such as [25]);
and a software architecture that makes as transparent as possible the difference
between shared memory communications (that should continue to be exploited
by nodes assigned to the same CPU) and message-passing communications.

Step 3: Dynamic Multi-CPU Distribution. Up to now, we have assumed that
the graph representing the AP network is static, but in general this is not the
case: nodes and their connections can be added and removed dynamically, to
reflect changes in the structure of the underlying distributed computation. In
fact, dynamism in graph structure is already supported by the single-CPU im-
plementation, as links can be inserted or removed through dedicated methods,
as will be discussed in Section 4.

In multi-CPU scenarios, it is therefore of great importance to implement on-
line mechanisms in charge of deciding if and which nodes should migrate from
one CPU to another, in order to accommodate the changes in graph structure,
while keeping the load balanced among CPUs for better performance. In order to
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implement this point, we predict that mainly two ingredients would be needed:
a node migration mechanism, together with heuristic strategies guiding it.

Step 4: Hybrid and Mirror Systems. Until this point, the centralised AP-based
system we proposed is described as fully logic, directly operating on graph-based
data somehow available on the cloud. This data may have a purely logical origin
as well, being for instance collected by a web crawler. However, it would also be
crucial to consider data obtained by mirroring a physical network of IoT devices.
In particular, we envision scenarios where virtual devices associated with physical
IoT devices [22, 30] perform their computations directly on the cloud, possibly
inter-operating with physical IoT devices directly running the same AP system
without mirroring.

For instance, a group of physical devices deployed at location L1 may directly
execute a FC program by communicating point to point with one another, while
indirectly interacting with physical devices deployed at another location L2.
Those may delegate their executions of the FC program to the cloud, since
too many rounds of computation and communication would be needed to reach
convergence of their results, which is too resource demanding to be handled
locally. Further virtual nodes may also be present in the mirrored network in
the cloud, that are derived fully logically without any physical mirror device, to
perform further heavy assistive tasks (e.g. federated learning computations [24]).

In order to allow the integration of such a system within FCPP, given the
infrastructure available from the previous steps, it would be necessary to add
a component ensuring proper mirroring of a virtual device in the cloud with a
physical IoT device. That may also require some routing mechanism in place,
in case the IoT device to be mirrored does not have direct internet connection.
After such a connection can be established, mirroring may be ensured by an
external daemon process synchronizing the graph-based data on the cloud used
by the centralised AP system with the data obtained from sensors on the mirror
IoT device (possibly including messages listened from its neighbourhood), with
a given frequency depending on energy requirements.

Step 5: Dynamic Hybrid Systems. Similarly to the dynamic distribution of nodes
to different CPUs, it may be useful to enhance hybrid edge-cloud AP systems
with the possibility of dynamically migrating some computations from the edge
to the cloud and vice-versa, depending on the weight of the required computa-
tion, as well as on the current availability of resources. Given that the previous
steps are all met, this could be implemented by proper heuristics guiding a mi-
gration mechanism, as for step 3.

4 A First Step: Extending FCPP to work with Graphs

In this section, we outline the extensions made to the FCPP library in order to
allow FC programs to process centralized graphs. This new feature effectively
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constitutes a first step towards the goal of a self-organising edge-cloud applica-
tion, as outlined in Section 3. Overall, these extensions will culminate into the
definition of two new component compositions.

As mentioned in Section 2.2, an FCPP application is first specified through
such a composition of components from the hierarchy shown in Figure 2, which
are then customised further with suitable parameters. For example, FCPP de-
fines a batch simulation application as:

DECLARE_COMBINE(batch_simulator,
simulated_connector, navigator, simulated_positioner, timer,
logger, storage, spawner, identifier, randomizer, calculus);

exploiting the DECLARE_COMBINE macro to combine into the batch_simulator type
all the components listed as the remaining parameters. The order of the speci-
fied components induces their parent relations, and must comply with compile-
time restrictions enforced by the components themselves (depicted in Figure 2).
For example, in the batch_simulator combination, the spawner component has
identifier as direct parent, and randomizer and calculus as further ancestors.

The new compositions we introduced are called batch_data_processor and
interactive_data_processor, which differ from the existing batch_simulator in:

1. While the nodes of a simulation are situated in a 3D space, and thus have
3D position, velocity and acceleration vectors, the nodes of a graph do not
have such attributes. This can be simply accommodated by omitting the
simulated_positioner and navigator components from the mix.

2. In simulation, rounds are scheduled according to a programmatic policy. In
data processing, we need rounds to be reactively scheduled when neighbours’
values are updated. Since this feature may be relevant for classical simulated
and deployed systems as well, we implemented it by extending the timer
component in order to trigger reactive rounds after a message is received.

3. While in a simulation nodes are usually algorithmically generated across
the simulated space, we need to generate them based on data read from
a file. Since this feature could also be useful in 3D simulations, provided
that position information is stored in the given file, we implemented it by
extending the spawner component with options for file-based generation.

4. Finally, as the main structural difference, the neighbourhood of each node is
not determined by the physical locations of nodes, but is given by the edges
of the graph (also read from a separate file). This requires to introduce a
new variant of the connector component, which we called graph_connector.

Based on this considerations, the mentioned combinations are defined as:

DECLARE_COMBINE(batch_data_processor,
graph_connector, timer, scheduler, logger, storage,
spawner, identifier, randomizer, calculus);

Note that this definition is remarkably similar to that of a batch simulation,
i.e., we have been able to exploit several existing components. We also defined
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a interactive_data_processor combination providing a graphical user interface
through which the network situation can be inspected (based on the existing
similar interactive_simulator composition):

DECLARE_COMBINE(interactive_data_processor,
displayer, graph_connector, simulated_positioner, timer, scheduler,
logger, storage, spawner, identifier, randomizer, calculus);

The main responsibility of the spawner component is that of creating nodes
with unique identifiers exploiting the identifier component (which is its par-
ent). Formerly, that had to happen by algorithmic generation of node param-
eters. We extended the component to provide exactly the same function when
the underlying system is a graph read from the disk. In particular: (i) the net
constructor of the component handles the option nodesinput which specifies the
name of the file where the nodes of the graph are stored; and (ii) each row of the
nodes file is parsed according to a list node_attributes of expected attributes,
which need to contain every mandatory argument needed for node construction
(such as the uid attribute). All file-generated nodes are created at the execution
start, but their first round can be scheduled arbitrarily later exploiting the start
construction argument given by the timer component.

The connector component is in charge of handling the exchange of messages
between neighbours. The graph_connector replaces the simulated_connector used
in simulations by providing exactly the same function when the underlying sys-
tem is a graph read from the disk. In particular:

1. it provides connect and disconnect methods to the node, so that nodes of
the graph can be connected at start and disconnected at end by the compo-
nent, while allowing dynamic connections to be also established through the
program logic;

2. connections can be considered as directed or undirected by simply setting
the Boolean option symmetric;

3. the net constructor of the component handles the option arcsinput which
specifies the name of the file where the initial arcs of the graph are stored;

4. each row of the arcs file is parsed expecting a pair of node identifiers; and
an arc between the two nodes is created by calling the connect method on
the first node with the second node as a parameter;

5. it provides functionality to send messages to the outgoing neighbours of a
node, i.e., the nodes reachable with an outgoing arc in the graph.

The timer component is in charge of scheduling rounds both a-priori and in the
program logic. We extended it by: (i) adding a parameter reactive_time, that
for every node sets a delay for triggering a round after a message is received;
and (ii) through the function node.disable_send() provided by the connector
component, messages can be blocked avoiding triggering rounds in neighbours
whenever the results of the algorithm at hand are stable. By setting a reactive
time that is much shorter than the non-reactive scheduling of rounds, we can
ensure that nodes are reactively processed until convergence before any non-
reactive rounds are scheduled.
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In performing the extensions just described, we had to overcome some notable
issues: (i) in data processing, fine-grained parallelism is necessary, and thus the
implementation had to be designed so to avoid both data races and deadlocks,
which is not trivial for graph-like structures; and (ii) by allowing reactive rounds,
we broke an assumption of FCPP that the next event on a node is scheduled
right after an event is executed. The identifier component keeps a queue of node
events, executing them (in parallel) as necessary. Formerly, this queue could be
updated by adding the next events right after each event is executed. In order to
handle reactive rounds, we had to add an alternative way of updating the event
queue: the identifier checks at each message received whether the next event
changes, updating the queue accordingly. In particular, this introduced a new
component dependency, requiring the timer to appear as parent of the identifier
in order for this interaction to be captured.

5 Experimental Evaluation

5.1 Implementation

We evaluated our approach by implementing a case study on the computation
of graph statistics, focusing on the centrality measures presented in Section 2.3.
These statistics have been implemented as FC programs expressed in the FCPP
DSL described in Section 2.1, similarly as previously done in the Protelis DSL in
[9]. Differently than there, we enhanced the HyperANF algorithm to not require
an upper bound of the diameter in input, computing the neighbourhood function
up to a variable depth, stopping whenever no further nodes are found in the last
level. The resulting code is shown with explanatory comments in Figure 3.

The HyperANF algorithm is based on HyperLogLog counters, which we im-
plemented in C++ with a hyperloglog_counter template class by mimicking the
extremely efficient Java implementation described in [16]. The template param-
eters allow the specification of:

1. number of registers per HLL counter;
2. number of bits per register (defaulting to 4);
3. type of the counted data (defaulting to size_t, i.e., unsigned long integer);
4. hash function used to convert the counted data before HLL operations.

In particular, the implementation exploits broadword programming techniques to
parallelize the union operations on all the registers contained in a word (e.g., 16
registers at a time, if the word is 64 bit and the register is 4 bits), thus signifi-
cantly speeding-up the fundamental operations performed during the computa-
tion of NG. In Figure 3, type hll_t is used for those counters, which is defined
as a specific instantiation of the hyperloglog_counter template.

5.2 Results

In order to evaluate the effectiveness of FCPP on centralised graph-based data
processing, we compared our approach with the state-of-the-art WebGraph-
based implementation [17, 15] of the HyperANF algorithm computing harmonic
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1 FUN tuple<real_t, real_t> hyperANF(ARGS) { CODE
2 real_t h = 0; // harmonic count
3 real_t c = 0; // closeness count
4 bool u = true; // are results unchanged from previous round?
5 hll_t l = hll_t(node.uid); // HLL counter of nodes up to a depth
6 real_t ps = 0; // size at the previous depth
7 real_t cs = l.size(); // size at the current depth
8 // loop over depths until no further nodes discovered
9 for (LOOP(depth, 1); ps < cs; ++depth) {
10 ps = cs; // current size becomes previous size
11 field<hll_t> nl = nbr(CALL, hll_t(), l); // neighbour HLLs
12 u = self(CALL, nl) == l and u; // check for change
13 // accumulate neighbour HLLs into l
14 fold_hood(CALL, [&](hll_t const& x, nullptr_t){
15 l.insert(x); // accumulate as side-effect
16 return nullptr; // dummy return value
17 }, std::move(nl), nullptr);
18 cs = l.size(); // new current size
19 h += (cs-ps)/depth; // update harmonic count
20 c += (cs-ps)*depth; // update closeness count
21 }
22 // notify neighbours with messages only if changes occurred
23 if (old(CALL, hll_t(), l) == l and u) node.disable_send();
24 return tuple<real_t, real_t>(h, c); // return counts
25 }
26 FUN_EXPORT hyperANF_t = export_list<hll_t>; // types used in messages

Fig. 3. Implementation of the HyperANF algorithm in FCPP.

and closeness centrality [16]. As reference graph, we used the cnr-2000 test set
[1] of moderate size, and run 10 executions for both implementations, in order
to account for variability in execution times.

On a MacBook Pro with 2,4GHz Intel Core i9 8 core CPU and 32GB 2667MHz
RAM, the WebGraph implementation took from 28.263s to 36.919s to complete,
with an average of 34.348s. On the other hand, the FCPP implementation took
from 111.230s to 123.950s to complete, with an average of 115.066s. Even though
the FCPP implementation was noticeably slower, requiring about 3× time to
complete, it has other advantages that compensate for this difference: most no-
tably, the generality of the approach, which translates into much lower software
development costs. In fact, the WebGraph implementation is highly specific to
the problem at hand, and low-level optimised for it, so that it cannot be easily
modified to accommodate any other task: the codebase needed to implement
HyperANF is very large and complex, requiring high development costs. The
FCPP codebase is also large and complex, however, it is sufficiently generic so
that any other graph-based problem could be easily formulated in order to be
executed with it, without direct intervention on that codebase. The development
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costs are thus limited to the AP formulation of the problem at hand, and are
thus much lower as can be seen through the code snippet in Figure 3.

We also remark that optimisations reducing execution times are planned for
future releases of the FCPP implementation. These are likely to reduce the per-
formance gap, although we do not expect this gap to be fully compensated. As
the FCPP implementation is subject to the constraint of being able to run any
aggregate program, in a way that is inter-operable with deployed self-organising
systems running the same software, problem-specific optimisations are not pos-
sible, restricting leeway for improvements.

6 Discussion and Conclusions

In the present paper we have extended the FCPP implementation of FC in order
to support a new execution environment, namely high-performance, centralized
computers. In particular, FCPP can now ingest large-scale graph structures and
execute FC programs as if the nodes of the graph were distributed devices,
and the graph arcs represented the proximity-based communication links. The
centrality statistics, chosen as a benchmark to test the extension, have been
coded naturally with the FCPP DSL, and have shown more than decent perfor-
mances compared with a state-of-the-art, carefully crafted Java implementation
[16]. This extension has been carried out as a first step towards an AP-based
IoT/edge/fog/cloud continuum, while also delineating a roadmap of 5 milestones
to reach it, together with the main associated challenges to be overcome.

The evaluation of the extension presents some notable limitations that may
be addressed in future work. First, the single problem of graph statistics com-
putation was considered: the evaluation may be enhanced by considering more
graph-related problems, such as routing, maximum flow or minimum spanning
tree estimation. Furthermore, we carried the evaluation on a relatively small
graph on a laptop computer: more accurate benchmarks could be obtained by
performing a similar computation on larger graphs on an high-performance com-
puter. In fact, such systems are sometimes equipped with Graphics Processing
Unit (GPU)s beside multi-core CPUs: in the present paper we supported only
CPU-based systems, since the Single Instruction, Multiple Data (SIMD) model
of GPUs imposes restrictions on the computations that deserve a separate, in-
depth analysis in future works.
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