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Summary 

 
Radiation therapy uses x-rays, gamma rays and other sources of radiation to induce cell-

killing by breaking up molecules and causing reactions that damage living cells. Since 

radiation, usually delivered with sophisticated equipment of high energy x-rays beams, 

does not distinguish between cancer cells and normal tissue, radiation volumes are very 

carefully planned, during the process of radiation treatment, to protect uninvolved tissue 

and vital organs of the patient. In the radiation treatment of anal canal patients, the 

radiation dose received by active bone marrow comprised within the pelvic bones is a 

predictive factor of acute hematologic toxicity. So, the researchers focused on the 

implementation of strategies to selectively spare pelvic bone marrow through an accurate 

identification and delineation of these areas. Although the use of the whole pelvic bones, 

outlined as the outer contour of bony structures on computed tomography (CT), is the 

most inclusive method with respect to bone marrow identification, other methods have 

been developed to identify haematopoietically active bone marrow. A commonly used 

method relies on the use of 18FDG-PET, based on Standardized Uptake Value (SUV), 

which is often employed in anal patients during diagnosis and staging work up.  

In this thesis, a machine learning technique, based on radiomic features as inputs to 

different classifiers, was applied to CT images in order to identify haematopoietically 

active bone marrow, to be used as avoidance structure during radiation planning and 

delivery. This work has been structured in four phases: i) as first step, we tested an 

identification method for active bone marrow based on the combination of radiomic 

features extracted from pelvic CT scans with a Decision Tree on 5 patients; ii) a total of 

25 patients, splitting the sample in 5 patients used for training and 20 for validation, was 

employed for four different classifiers (Decision Tree, K-Nearest neighbor, Neural 

Network and Support Vector Machine)  with random selection of voxels; iii) we then 

compared the classification performances of  classifiers between the random training set 

and a training set with clustering; iv) as phase iii) with a total of 50 patients, dividing the 

sample between 40 patients used for training and 10 for validation. 

 Pelvic bone marrow was delineated on planning CT and then divided into 3 subregions: 

iliac (IBM), lower pelvis (LPBM) and lumbosacral bone marrow (LSBM). Planning CT 

was then co-registered with 18FDG PET-images and the active part of the three subregions 

was obtained and stored as ground-truth. Radiomic features were extracted from planning 

CT images and used to define the structure of different classifiers. 

Four parameters were used for the correspondence analysis: DICE index, Precision, 

Recall and Mean Distance to Conformity. 

In Phase i) the highest indices values are obtained for LSBM and IBM subregions, where 

we have an overlap above 75% in 4 out of 5 patients. For the LPBM, suboptimal results 

are achieved, as the Dice index is always below 0.5. 

In Phase 2, the results show that the performances of the 4 classifiers are quite similar. 

Then the voting process helps to improve the results in terms of Dice Index especially for 



IBM and LSBM with significative differences for KNN, NN and SVM, while for LPBM 

its effect was similar to the other approaches. 

Changing the SUV threshold by ±10%, starting values of Dice Index of 0.42 for LPBM 

went to 0.47-0.49 for the threshold decreased by 10%, but dropped to 0.29 with the same 

threshold increased by 10%, therefore we felt it was not appropriate to change the 

reference value of SUV. So, the results, in terms of both Dice Index and MDC are 

comparable to those obtained in phase 1 where, on average, they were satisfactory for 

IBM and LSBM subregions (average values of Dice Index between 0.71 and 0.81), even 

if in these cases there are some patients with poor results (minimum values of Dice Index 

of 0.23-0.24). Conversely, inadequate results remain on the LPBM subregion (average 

values of Dice Index between 0.38 e 0.41) with some outliers going towards acceptable 

values of Dice (maximum values of Dice of 0.62-0.63).  

In Phase 3, random extraction performs slightly better in most of the tested classifiers and 

subregions, but for LPBM and KNN classifier the median value of Dice Index increases 

from 0.41 with random extraction to median value of 0.61 with clustering. 

In Phase 4 on the overall 50 patients, we obtain an average Dice Index of 0.64, 0.70 and 

0.39 respectively for IBM, LSBM and LPBM with some patients under-performing for 

the regions of IBM and LSBM and conversely some patients over-performing for the 

region of LPBM. A strong correlation was found between the percentage of active bone 

marrow and the performance of all the classifiers; in particular, for patients having a 

percentage of active bone marrow below a threshold between 60%-70% the values of 

Dice Index were below the acceptability values of 0.6 also for IBM and LSBM. 

An acceptable degree of overlap was found for 2 out of the 3 subregions within pelvic 

bones. Mean values for Dice and MDC may be considered satisfactory for both IBM and 

LSBM even if some cases were found to be underperforming depending on the percentage 

of active bone marrow relative to the total bone marrow. With respect to LPBM, the 

percentage of active bone marrow is significantly lower than for the other two sub-regions 

and the agreement is globally suboptimal; however, for some patients, having more active 

bone marrow, Dice Index values were close to an acceptability threshold.   

While the size of the considered sample may be appropriate with respect to the adopted 

methodology for classifiers, some limitations in the 18FDG-PET method can be 

highlighted including: i) the limited spatial resolution; ii) method for identifying the 

threshold that takes only account of the average value for the SUV, so if the distribution 

of the SUV would be not normal (in the patient with less active bone marrow for 

example), the average value could give rise to a threshold with significant subsampling 

of active bone marrow.  

As further development the addition of another imaging technique such as MRI could 

help us to understand whether the 18FDG-PET can really have limitations or if the problem 

lies in a more correct tuning of the classification process by CT. 
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Chapter 1 

 
Introduction 

 
 

1.1 Radiation therapy overview 
 
 

Radiation therapy (RT) is a cancer treatment method that uses strong energy 

beams to kill cancer cells and about 50% of cancer patients will receive radiotherapy 

during their course of disease. It most often uses X-rays, but protons or other particles 

can also be used. Cell killing is based on DNA damage and its impact on cell growth and 

division. Although both healthy cells and cancer cells are damaged, the goal of 

radiotherapy is to destroy as few normal healthy cells as possible. Normal cells can 

usually repair most of the damage caused by radiation. Technology has always been 

crucial in the development of radiotherapy, and, in the early days, technological 

progresses supported Radiation Therapy improvements. The road to modernity for High-

tech radiation oncology continues discovering and integrating innovative ideas and 

technical solutions from multiple disciplines. The continuous process of integrating other 

disciplines, including mechanics and electronics, engineering, computer science, 

mathematics, imaging physics and technology, statistics and data science, it is essential 

for never-ending improvement. In particular, the rapid progress in computer science 

allowed for the development and integration of IT hardware for clinical Radiation therapy 

solutions and at the same time to improve software for optimizing treatment plans and 

delivery. The main areas where most technology-driven research is being developed 

include image guidance, adaptive radiation therapy, artificial intelligence integration, 

heavy particle therapy, and "flash" ultra-high dose rate radiation therapy. 

 

 

1.2 The Impact of Artificial Intelligence on 

Radiation Oncology 

 
Artificial intelligence (AI) approaches have focused the attention of many in 

medicine and in particular in Radiation Oncology and current writings recommend there 

are numerous potential advantages that could change future clinical work processes and 

dynamic. Compared to past transformative innovations such as the Monte Carlo method 
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or intensity-modulated radiotherapy, the development and adoption of AI-based tools is 

occurring at faster rates and promises to transform practices of the radiation treatment 

planning team.  

Inserting AI methods in the training and qualification program of medical 

physicists could be an essential advance in preparing radiation specialists (RTs) to 

participate in equipped and safe practice as they use clinical innovations. 

Given the large volume of various clinical and patient related data, these 

approaches of AI and its various methods like machine or deep learning, demonstrated 

unique opportunities to outranks most statistical based existing methods. 

However, Machine Learning (ML), for example, requires massive data sets to 

train on, and these should be inclusive/unbiased, and of good quality; it needs enough 

time to allow the algorithms to learn. Another big challenge is the ability to accurately 

interpret the results generated by the algorithms and it may be also highly susceptible to 

errors, if you train an algorithm with data sets that are not representative of the possible 

elements. On the other hand, since expert opinions are usually used to train algorithms, if 

the problem or ground truth is not clearly defined, the use of machine learning is limited. 

As a result, machines may excel at replicating, automating and standardizing human 

behavior on manual chores, meanwhile the conceptual clinical challenges relating to 

definition, evaluation, and judgement remain in the realm of human intelligence and 

insight [1]. 

Recently, a survey on the clinical use of AI in radiotherapy revealed that most 

popular AI supported applications were automatic segmentation and treatment planning, 

followed by synthetic CT (sCT) generation. Traditionally, the technology was mainly 

based on a deterministic nature in contrast with the predictable nature of artificial 

intelligence (AI). In addition, the mathematics education of artificial intelligence 

technology is absent in a standard curriculum for medical physicists, and they could 

therefore feel uncomfortable with this new technology. So, it emerges very clear a 

demand for guidance on the implementation of AI in clinical practice i.e., for 

commissioning, implementation and quality assurance (QA). 

The commissioning procedure is two-fold, to train an AI algorithm/model and 

to investigate the accuracy and reproducibility of the model prior to clinical use: it can be 

divided into a training/test phase (first phase) and a validation phase (second phase) with 

some differences depending on whether the AI model has been built in house, in 

collaboration with a vendor or was commercially available. 

Using locally acquired data offers the advantage of preserving the department’s 

clinical guidelines and (imaging) protocols; well-known, not too large, high-quality 

datasets are generally preferred over very large datasets of lower quality due to the 

evolving nature of clinical protocols and guidelines. Validation of the model is 

accomplished using quantitative metrics by comparing the model output to the clinical 

data on a smaller set of data representative as possible the data on which the model will 

be applied clinically. The results of the model are then presented to clinical experts for 

revision and for eventually incorporating the cases on which the model and the expert 

disagree. If the models are built in collaboration with the vendor or are commercially 

available do typically not allow or require this phase but should then be accompanied by 

proof of FDA/CE marking and a vendor’s validation report detailing the performance of 

the model. The goal of the test phase is to obtain an independent evaluation of the final 
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performance of the model; a minimum selection of ten patients is recommended as a good 

starting point, which can be adjusted in case a large variation in the results is present. 
Optionally, other relevant endpoints such as the reduction of interobserver variation 

and/or timesaving could be evaluated in this phase as well. 

It is important to keep in mind that while AI brings consistency, systematic 

errors can remain present if undetected during the implementation phase. It is strongly 

recommended to perform a risk analysis before any model is implemented. A well-known 

method is a Failure Mode and Effect Analysis (FMEA) or Risk Analysis Matrices, which 

includes a brainstorm on the potential risks with people from all disciplines dealing with 

implementation and use of the model. It is important to note that these methods are under 

investigation and that supervision is currently the main tool. 

Radiotherapy treatment planning contains an optimization problem having many 

degrees of freedom. It typically requires advanced skills, is labor intensive and associated 

with large user variability. Developments in AI have led to applications in the field of 

treatment planning to decrease human intervention and workload, improve plan quality 

and consistency. In terms of clinical acceptability, reviewers should be able to directly 

compare DVHs, clinical dose goals and dose distributions via correlated scrolling in 

addition to dose difference maps and should score/rank the ML plans according to criteria 

as overall approval, target coverage, OAR sparing, high dose conformity, dose gradient, 

etc. Depending on the optimizer it might be necessary to perform pre-treatment QA of 

the predicted plans to assess deliverability. if AI is used for the prediction of the 

agreement between calculated and delivered dose and this agreement shows the plan is 

unlikely to pass QA, the dosimetrist or physicist may choose to reduce the plan 

complexity in the optimization process. In this way, failing plans could be potentially 

eliminated and a possible treatment delay can be avoided. 

Synthetic CT (sCT) is often used to allow for (improved) accuracy of dose 

calculations on Cone-Beam CT (CBCT) or MRI images. Synthetic CTs can be generated 

using voxel, atlas based or hybrid approaches. Thus far, the most practical and common 

approach is deformable image registration to map planning CT HU to the (daily) 

treatment image. Recently, it has been shown that CNNs (DL) provide promising methods 

for synthetic CT generation based on CBCT or MRI images. To establish a paired training 

set, one should carefully check the (voxel-wise) alignment of patients and possibly 

improve this alignment by further image processing such as deformable registration. sCTs 

should be evaluated in terms of image similarity, geometric fidelity and dosimetric 

accuracy. 

QA of linear accelerators is periodically performed to monitor longitudinal 

stability; due to developments seen in the delivery and monitoring systems, opportunities 

arise to complement with approaches such as Probabilistic Safety Assessment (PSA) or 

risk analysis to focus where AI can amplify detection levels and prediction accuracy of 

potential failure or deviation from intent. 
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1.3 Radiation therapy of anal cancer 
 

The standard of care for patients with squamous cell carcinoma of the anal canal 

is concurrent chemo-radiation (RT-CHT), which is a combination of radiotherapy, 

usually delivered with intensity modulation, and concurrent 5-fluorouracil and 

Mitomycin C [2;3]. Even with highly conformal techniques, the acute toxicity associated 

with combined modality treatment is non-negligible and may cause unplanned treatment 

breaks and reduced treatment intensity, potentially jeopardizing oncological outcomes 

[4;5]. Hematologic toxicity (HT) is a substantial clinical issue for this subset of patients, 

as it increases their risk of asthenia, bleeding, or infections and may negatively affect 

patient’s compliance to treatment [6;7]. Chemotherapy is one of the most important HT 

triggers as it induces myelosuppression, but radiotherapy, delivered to circulating blood 

cells and precursors within bone marrow (BM), also plays an important role [8]. The 

observation that the radiation dose received by BM comprised within the pelvic bones is 

a predictive factor for HT occurrence prompted researchers to implement strategies to 

selectively spare pelvic BM through the accurate identification and delineation of these 

areas [9]. This may decrease the probability of developing HT, since in the average adult 

population, pelvic bones and lumbar vertebrae make up almost 60% of the total BM. 

Although the use of the whole pelvic bones, outlined as the outer contour of bony 

structures on computed tomography (CT), is the most inclusive method with respect to 

BM identification, other methods have been developed to identify haematopoietically 

active BM (actBM). Even if a widely accepted strategy for the contouring of active BM 

volumes has yet to be defined, several methods have been proposed such as: single-

photon emission computed tomography (SPECT), 18F-fluorodeoxyglucose-labeled 

positron-emission tomography (18FDG-PET) and 3’-deoxy-3’-18F-fluorothymidine-

labeled positron-emission tomography (18FLT-PET), which all have potential advantages 

and disadvantages. A commonly used method for identifying actBM is 18FDG-PET, 

which is often prescribed to anal and cervical cancer patients during diagnosis and staging 

work up [9;10]. Nevertheless, it is considered an optional exam by international 

guidelines in the diagnostic work-out of anal cancer patients and it is therefore not 

available for all patients in daily clinical practice. Magnetic resonance (MR) has also been 

used by Andreychenko A. et al. [11] who developed a tool for the semi-automatic 

segmentation of the red BM based on water-fat MR imaging in gynecologic cancer 

patients. Although interesting, this option cannot be used extensively. Conversely, all anal 

cancer patients undergo a CT scan before receiving radiotherapy. Consequently, an 

approach based on CT images aimed at defining actBM would prove useful and could be 

used on a broader scale. 

 

1.4 Automatic segmentation in the radiation 

treatment planning process 
 

Image segmentation is an important task performed routinely in a RT clinical 

workflow with the radiation oncologist that will manually segment the Regions of interest 
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(ROIs) on RT simulation scan. The manual segmentation of these ROIs is a time-

consuming process with inconsistencies in target and organs-at-risk segmentations that 

have been reported having both inter- and interobserver segmentation variability [12;13]; 

inconsistencies lay on the inherently subjective process with decisions on which voxels 

to include or not based on prior knowledge and available imaging. The initial approach 

for automatic delineation was mainly atlas-based; it performs segmentation on a new 

image set using the knowledge of a prior segmentation based on deformable registration 

algorithms, but it still requires editing and review by an expert [14]. In particular, 

multiatlas segmentation has been shown to minimize the effects of intrasubject variability 

and improve segmentation accuracy from single atlas approaches. With many available 

contoured images, different shape or appearance of structures of interest could be used to 

train statistical shape models or statistical appearance models for auto-segmentation 

restricting the final segmentation results to anatomically plausible shapes [15]. To 

improve performance of atlas-based segmentation, hierarchical approach was used for 

selection of the best training cluster set that performs the best contour [16]. With many 

available contoured images, ML approaches can aid in segmentation by learning 

appropriate priors for structures and organs or image context and tissue appearance for 

voxel classification [17-19]. Support vector machines [20-22] and tree ensemble (i.e., 

random forests) [23-28] algorithms have shown promising results in thoracic, abdominal, 

and pelvic tumor and normal tissue segmentation. These generally employ human-

engineered features, usually derived from the image intensity histograms, from a large 

patient database as inputs to train the segmentation model. The data used to build the final 

model usually comes from multiple datasets: a training dataset is a dataset of examples 

used during the learning process and is used to fit the parameters of the supervised 

learning algorithm, for example, to determine, or learn, the optimal combinations of 

variables that will generate a good predictive model.; however it is well-understood that 

the training set performance tends to overestimate the validation set accuracy, so it is 

advantageous to use a test set to evaluate the trained model’s performance during hyper-

parameter search and model optimization. One of the most popular methods is “k-fold 

cross validation” or “leave-x-out cross validation” where the training set is divided in k 

parts and each of the n original cases has been left out exactly once (x=n/k). The resulting 

algorithm will then be tailored specifically to the training data. There are many possible 

ways to split the original dataset and this task could be dependent on data availability. A 

split providing 20% validation and 30% test from the remaining 80% has been shown to 

produce good generalization from the test to validation set accuracy [29]. Deep learning 

(DL) is part of the field of machine learning where algorithms can learn data 

representation on their own. 

  

 

1.5 Objective and Challenges 
 

Organ at risks (OARs) and target volume segmentation is an essential point for 

radiation treatment planning; however manual segmentation is a time-consuming task 

with high intra and interobserver variability both within [30] and across [31] radiotherapy 
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centers. The initial approach for automatic delineation was mainly atlas based; it performs 

segmentation on a new image set using the knowledge of a prior segmentation based on 

deformable registration algorithms, but it still requires editing and review by an expert 

[14]. Later, when more contour images are available, machine learning methods can help 

segmentation by learning appropriate prior structure and organ or image context and 

tissue appearance for voxel classification. Support vector machines and tree ensemble (ie 

random forest) algorithms have shown encouraging results in chest, abdomen and pelvic 

tumors and normal tissue segmentation. These generally employ human-engineered 

features, usually derived from the image intensity histograms, from a large patient 

database as inputs to train the segmentation model.  

 

This work has been structured in four phases: 

 

i) As first step, we investigated an identification method for active bone marrow 

(actBM) combining radiomic features extracted from pelvic CT scans with a 

Decision Tree classifier proving the feasibility of such approach on 5 patients. 

 

ii) a total of 25 patients dividing the sample between 5 patients used  

for training and 20 for validation; the selection of voxels to train the classifiers was 

basically random and the results of 4 different classifiers (Decision Tree, K-Nearest 

neighbor, Neural Network and Support Vector Machine) were analyzed. 

 

 

iii) Then, we compared the classification performances of the architectures obtained 

starting from the GA solutions with the random training set compared to those 

obtained through the training set with clustering 

 

iv) a total of 50 patients, dividing the sample between 40 patients used for training and 

10 for validation; the selection of voxel to train the classifiers was made with 

clustering through unsupervised learning algorithms and the results of 3 classifiers 

were analyzed. 

 

To our current knowledge, there are no other specific studies on actBM 

automatic identification in the literature, so the aim of this study was to improve this new 

method based on radiomic features extracted from pelvic CT scans on patients undergoing 

RT-CHT for anal cancer as inputs for Supervised learning algorithms in the field of 

machine learning task of learning a function that maps an input to an output based on 

example input-output pairs. 
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Chapter 2 

 

 

2. Materials and methods 

 
2.1 Machine Learning for automatic segmentation 

 
Different Machine learning approaches are available in the context of automatic 

segmentation; the next few paragraphs will provide a general description of those used 

for this work. 

 

2.1.1 Decision tree classifier 

 
Decision trees (DT) is a type of supervised machine learning method in which data 

is continuously split according to specific parameters. Every node corresponds to a certain 

feature, and the arcs connecting successive nodes represent certain values of that feature. 

Starting from an initial node, the various nodes are covered according to the values of the 

variables and according to the rules of separation of each node until arriving at a final 

node that matches the target class. The structure is built iteratively during the training: 

each iteration searches for the best splitting rule, that is the rule that allows you to divide 

the training set into partitions that are as pure as possible, where pure partitions are 

intended as with elements belonging to a single class. Each best slitting rule found 

corresponds to a node in the structure. The construction of the tree stops when all pure 

partitions have been obtained and there are no more variables that can be used to derive 

splitting rule. At the end of the training, the end nodes are associated to the membership 

classes; in particular, the node class is the class with greater representation within the 

partition. 

 

2.1.2 K-Nearest neighbor 

 
The K-Nearest neighbor (KNN) is a classification algorithm based on a distance 

between the various elements of the training set and the element to be classified. This 

distance can be calculated in various ways and one of the most used is the Euclidean 

distance. So, when a new element must be classified, it is necessary to calculate the 
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distance between the elements to be classified and the training set: the elements are 

ordered according to the distance and the first k elements are taken, and the class to which 

they belong will be the one most represented. So, the parameter to choose and optimize 

is the value of K. 

 

2.1.3 Neural network 
 

Artificial neural networks are computing systems vaguely, inspired by the 

biological neural networks; they receive data and train themselves to recognize pattern in 

these data, then predicts the outputs for a new set of similar data. Used for the resolution 

of problems of various kinds. It is an adaptive system, whose structure varies according 

to the elements passed during the learning phase. The neural network used in our case is 

the Feedforward Neural Network (FNN). The FNN was the first and simplest type of 

artificial neural network wherein connections between the nodes do not form a cycle, but 

the information moves in only one direction—forward—from the input nodes, through 

the hidden nodes (if any) and to the output nodes. It is designed by a series of neurons, 

connected to each other by arches having different weights. Neurons are organized into 

layers, so neurons of a given layer are connected to neurons of next layers, but they are 

not connected to other neurons of the same layer. The network is organized with: i) an 

input layer, containing a neuron for each input variable; ii) an output layer, containing a 

variable number of neurons based on the number of classes; iii) a certain number of 

hidden layers, between input and output, for processing the incoming elements; as the 

number well as the number of neurons they contain may change according to the problem.  

 
  

Figure 1. Structure of an FNN neural network 
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2.1.4 Support Vector Machine 
 
The support-vector machine (SVM) is a machine learning method for two-group 

classification problems. SVM maps training examples to points in space so as to 

maximize the width of the gap between the two categories. New examples are then 

mapped into that same space and predicted to belong to a category based on which side 

of the gap they fall. In this space, a linear decision surface is constructed with special 

properties of the decision surface that ensure high generalization ability of the SVM [32]. 

The hyperplane is constructed in such a way as to maximize the distance between the 

plane itself and the support vectors (called margin), that is the elements of the two closer 

classes to the separation plane. Creating a new space allows you to make any problem out 

of classification solvable through a linear classifier. The prediction is made at this point 

simply by observing which side each new element falls on. In SVM, unlike other 

classifiers, there are two parameters on which to perform optimization; i) the kernel 

function that is the mathematical transfer function that allows you to map elements in the 

new multi-dimensional space and thus to allow their classification. Such function can be 

linear or non-linear, depending on the problem; ii) parameter C, adjusts the wide margin 

balance and a low classification error. To have wide margins, in fact, creates a very 

precise distinction between the elements of the training set, but increases the likelihood 

of misclassification of new elements. So, to have fewer wide margins can improve the 

overall accuracy of the model. 

 

 

2.1.5 Self-Organizing maps for clustering 

With the concept of clustering, the main aim it is to categorize the data into 

clusters where objects are grouped into a particular category; for this purpose, a self-

organizing map (SOM) unsupervised artificial neural network (ANN) was trained.   Self-

organizing map (SOM) has been used for various applications and it is one of the most 

popular neural network methods for cluster analysis; its goal is to represent all input 

vectors in a high-dimensional space by prototypes in a low-dimensional space, such that 

the distance and topology are preserved as much as possible. Self-organizing maps are 

different from other artificial neural networks because they apply competitive learning 

instead of error correction learning (such as backpropagation with gradient descent), and 

in a sense, they use neighborhood functions to preserve the topological properties of the 

input space. When an input is proposed to the SOM network, the various neurons that 

make up the network enter “competition” between them, and the neuron that presents the 

most suitable characteristics is the winner to recognize that specific input. During this 

phase begin the learning process, i.e., there is a modification of the weights of the neuron 

itself which in the case of SOM networks also involves the neighborhood of the winning. 
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2.1.6 Genetic algorithm for feature selection and 

optimization of classifiers parameters 
 
Genetic algorithm is an optimization algorithm inspired by natural selection and 

biology evolution; it can solve complex and non-complex optimization problems in a 

reasonable time and it can be solved by conventional linear search algorithm. It is based 

on the development of a set of initials solutions, they will randomly regroup and try again 

to find the best solution. Genetic operators are responsible for the recombination of 

solutions, and consequently evolving various generations. The mutation produces a 

change on one or more random bits of the single solution, complementing the value (from 

0 to 1, or vice versa), in order to maintain a certain diversity of solutions and avoid that 

the individuals of the population become uniform. Each solution has a certain probability 

of change said probability of mutation (PM). The crossover instead takes place between 

two solutions, which are cut at one or more cut points, and the sub-strings come 

exchanged between them. Each solution has a certain probability of being recombined 

via crossover, called probability of crossover. Given the randomness of such algorithm, 

even starting with the same initial conditions, the final results may be different. For this 

purpose, the GA solutions were codified as binary vectors composed of 2 parts: the first 

part was used for selecting the most relevant features to be used for classification, and the 

second part was used to set the classifier parameters. After getting the numbers of true 

positives, false positives, true negatives, and false negatives, the sensitivity and 

specificity can be calculated. 

 

 
Figure 2. The four outcomes can be formulated in a 2×2 contingency table or confusion matrix, as well as 

derivations of several metrics 

. 
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and a fitness function may be derived for the initial populations: fitness is a numerical 

value that is assigned to each solution through the calculation of a fitness function. This 

numerical value evaluates the "goodness" of the solution to the optimization problem, and 

according to the type of function must be minimized or maximized. 

Feature selection is the process of selecting the most important and relevant 

features from a large number of features in a given data set. For a dataset with d input 

variables, the variable selection process will result in k variables such that k <d, where k 

is the smallest set of meaningful and relevant variables. In the Wrapper approach, the 

feature selection process is based on a specific machine learning algorithm that we are 

trying to fit a given data set. It follows a greedy search method, which evaluates all 

possible combinations of elements based on evaluation criteria. The evaluation criterion 

depends on the performance measurement regarding the type of the problem. For 

example, for the regression evaluation standard, it can be p-value, R-squared, and 

adjusted R-squared. For classification, the evaluation criteria can be accuracy, precision, 

recall rate, f1 score, etc. Finally, select the feature combination to get the best result of 

the specified machine learning algorithm. 

 

 

2.2 Patients selection  
 

A total of 5 patients affected with locally advanced squamous cell carcinoma of 

the anal canal was enrolled in the study as first step of the study (phase 1); the purpose 

was to understand the feasibility of identifying actBM from CT imaging, so we decided 

to implement a classifier for each patient. Then, we increase the sample to 25 patients 

extracting 5 patients for training set construction while the remaining 20 were employed 

to validate the method (validation set). Finally, a total of 50 patients were collected for 

the last phase of the study with 40 patients reserved to training set and the remaining ten 

for validation. In the training set we had 14 males (35%; average age 64±17 years) and 

26 females (65%; average age 63±10 years) while for the validation set we had 2 males 

(20%; average age 74±8 years) and 8 females (80%; average age 63±13 years) 

All the patients were treated with RT-CHT delivered with volumetric modulated 

arc therapy [3;4]. During the staging work-up, 18FDG-PET-CT on a Philips Gemini 

PET/CT tomography was performed. Data acquisition started 90 min after intravenous 

injection of approximately 30 MBq/kg body weight of 18 F-glucose. After a full-body 

CT scan, PET scans were acquired for 2.5 min/bed position. A dedicated fusion 

workstation (Extended Brilliance Workspace 2.0) was used for PET clinical 

interpretation. A non-contrast-enhanced CT of the pelvic region was acquired in the 

supine position with both an indexed shaped knee rest and ankle support (CIVCO Medical 

Solutions, Kalona, IA, USA), which was used for radiotherapy planning on a Philips 

‘‘BigBore’’ CT scanner (Philips Medical System, Eindhoven, NL). Pixel spacing was 

(0.93 mm, 0.93 mm, 3 mm) for CT. Using VELOCITY platform (Varian Medical 

Systems, Palo Alto, CA), planning CT was co-registered with 18 FDG-PET images on a 

rigid registration and the co-registered PET images were then resampled to match the 
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voxel dimensions of the planning CT to up-sample the lower digital resolution image to 

the higher resolution one [33].  

 

2.3 Active bone marrow identification and specific 

configuration of parameters for Machine Learning 

Bone tissue has two forms, both of which are found in every bone in the human 

body: compact bones and spongy bones. The main difference between the two forms is 

how the bone mineral is organized and how much empty space there is between the 

solidified extracellular matrix. The compact bones look very strong, and the spongy bones 

are composed of coagulated extracellular matrix arranged in a mesh or spongy shape. 

Most of most bone tissue is made of spongy bone where there is more uncompressed 

space. Bone tissue only accounts for between 10-70% of the usable volume, depending 

on how spongy it is. The rest is mainly composed of bone marrow (BM), although there 

are also blood vessels, lymphatic vessels and nerves passing through the gaps. In spongy 

bone, bone tissue is arranged into trabeculae, which are interconnected bone tissue 

columns, forming a spongy bone grid. Within a single trabecula, there are concentric 

slices, and the bone cells in the cavities are connected to each other by small tubes, similar 

to the tissue arrangement in the bone cells of compact bone. However, unlike bones, the 

trabecula has no central blood vessels or perforated tubes containing blood vessels, 

lymphatic vessels and nerves. The blood vessels and nerves of the cavernous bone pass 

through the space between the trabeculae and do not require a separate channel. Sponge 

bone is sometimes called cancellous bone or trabecular bone. The longs bones of the 

body, found in the arms, legs, hands, and feet of the body, have an additional feature 

unique to their long shape. In the diaphysis, or shaft, of each long bone, the is a central 

hollow cavity, called the medullary cavity. Having no heavy osseous tissue in the center 

of the long bones makes them lighter. The non-long bones just rely on having spongy 

bones in their interior to reduce their overall mass. The medullary cavity, live the spaces 

in spongy bone, is filled with bone marrow. 
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Figure 3. The structural features of spongy bone. 

 
Pelvic bone marrow (PBM) was delineated on planning CT as a whole and then 

divided in 3 subregions: iliac bone marrow (IBM), lower pelvis bone marrow (LPBM) 

and lumbosacral bone marrow (LSBM). [34]. The 18FDG-PET standardized uptake values 

(SUVs) within the PBM volume of all patients were corrected for body weight and 

considered [35]. ActBM was obtained by segmenting areas within PBM with SUV values 

higher than the mean SUV within the pelvic bones and then clustering them into 3 

subregions: ActIBM, ActLPBM, ActLSBM [36]. The remaining PBM was defined as 

inactive BM (inactBM) and separated into the three subregions. 

 

 
 

Figure 4. Three-dimensional view of the pelvic region with active (red) and inactive bone marrow (yellow) 

subregions (a). Three-dimensional view of the pelvic region with distribution of active and inactive bone 

marrow subdivided in 3 subregions: lumbar-sacral (light blue), iliac (green), and lower-pelvic (pink) bone 
marrow (b). 

 
The learning process was conducted for each subregion (IBM, LPBM and LSBM) for 

different classifiers. 
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2.3.1 Extraction of Radiomic Features 

 
In this work, radiomic features were extracted with home-made code in Matlab software 

version R2021a importing all RT object of the involved patients from the standard RT-

Dicom format (images and structures). The first step was to use a k-means clustering 

algorithm which aims at labelling each voxel inside the bone as spongy or compact bone; 

then, the spongy bone was divided into 5-by-5 region of interest (ROI) centered in the 

selected voxel and labelled with the portion of PBM to which it belonged (ActBM or 

InactBM). Thirty-six features are then extracted: 4 first-order statistical features (mean, 

standard deviation, skewness and kurtosis) and 32 second-order statistical features. 

Twenty-two texture features were derived from the grey-level co-occurrence 

matrices(GLCM), that counts the number of occurrences for which a pixel with a gray 

level i occurs at specific distance and in a given direction from another pixel with grey 

level j. Starting from the GLCM, we calculated the following variables: autocorrelation, 

contrast, correlation1, correlation2, cluster prominence, cluster shade, dissimilarity, 

energy, entropy, homogeneity1, homogeneity2, maximum probability, sum of squares, 

variance, sum average, sum variance, sum entropy, difference variance, difference 

entropy, information measure of correlation1, information measure of correlation2, 

inverse difference normalized, inverse difference moment normalized. Five texture 

features were extracted with the Gray Level Difference Method (GLDM), taking into 

account the difference of the intensities of two pixels at specific distance and in a given 

direction. From this analysis we extracted: contrast, angular second moment, entropy, 

mean and inverse difference moment. Finally, five texture features were computed from 

the Grey-Level Run Length Method (GLRLM), that represents the number of adjacent 

voxels with a certain grey level in a specific direction. In this case, the extracted variables 

were the following: extracted the last 5 variables: short run emphasis, long run emphasis, 

gray level distribution, run length distribution and run percentage. Since in this 

application we cannot identify a preferential texture direction, the GLCM, GLDM and 

GLRLM were evaluated for the four main directions (0°, 45°, 90°, 135°) with a distance 

of one pixel.  The methodology for the extraction of radiomic features in this work was 

IBSI compliant (phase I indicated in the study) [37]. Then, the four matrices were 

averaged to extract the texture features [38] and the features related to the ROI will be 

assigned to the central pixel of these ROIs; then the ROI is moved, and the next pixel is 

characterized. 

 

2.3.2 Training Set Construction 

 
A training matrix was built: the rows are the ROIs and the columns are the 36 

features, the three coordinates of each pixel, the label (ActBM or InactBM) plus the 

patient identification code (41 rows). 
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 For phase i) we constructed a training set for each subject considering five 

slices equally spaced across the subject’s CT sequence. For each slice we randomly 

extracted 1/5 of all valid elements (i.e., overlapping bone marrow ROIs.) Each element 

was characterized by the 36 features and a label indicating the class it belongs to: active 

or red marrow (RM) if the element overlaps an actBM region obtained from 18FDG-PET, 

inactive or yellow marrow (YM) otherwise. Then, the elements extracted from the five 

slices were pooled together to create the training set for each patient. Before constructing 

the classifier, the elements in each training set were discretized by means of the Chi2 

algorithm [39], in order to reduce the effect of noise and improve the classification 

performance [40]. The Chi2 algorithm is a supervised and bottom-up discretization 

method based on the χ2 statistic. It tests, variable by variable, if the class of the elements 

in two adjacent intervals is independent from the values that the variable assumes for 

those elements. The algorithm stops when the χ2 value for all adjacent intervals is greater 

than the χ2 value for a give significance level and the number of degrees of freedom equal 

to the total number of classes minus 1. This process is repeated with a decreased 

significance level until the consistency rate of the discretized dataset is not lower than a 

desired value. In this study, the dependency degree [41], based on the Rough Set Theory, 

was used as consistency measure. It evaluates how much the class labels of the elements 

depend on a given set of variables. In this specific case, we run the discretization 

algorithm with significance levels from 0.5 to 0.001 and we stopped it when the 

dependency degree of the discretized dataset was lower than the one obtained with the 

continuous attributes. The discrete training set was used for constructing a Decision Tree 

(DT) for the specific patient. We employed the CART algorithm for the tree construction 

and the Gini Index [42] for the identification of the best splitting rule for each node. 

          In phase ii) three different training sets were created containing IBM, LPBM and 

LSBM voxels respectively. First, we use the same 5 patients of phase i). Then, for each 

subregion, 5 slices were randomly extracted from the CT sequence and, for each slice, 

1/5 of the ROIs totally included in actBM areas were randomly inserted in the training 

set. The same number of ROIs completely overlapping inactBM areas were added, in 

order to obtain balance training sets. The final training sets were made up of 2400 ROIs 

for IBM, 2200 ROIs for LPBM, and 2500 ROIs for LSBM. Every ROI was characterized 

by the set of 36 radiomic features and labelled with the portion of PBM to which it 

belonged: active or red marrow (RM) if it overlaps an actBM area, inactive or yellow 

marrow (YM) otherwise. The results of 4 different classifiers (Decision Tree, K-Nearest 

neighbor, Neural Network and Support Vector Machine) were analyzed. 

For phase iii) we introduce the clustering and, in the application, carried out in 

this case, a network was chosen following various tests SOM of size 12 and with 

neighborhood 1. Five slices were then selected from the 40 patients with the same 

conditions used to obtain the first training set. The ROIs belonging to these slices were 

then subjected to the SOM network, which through the mechanism competition separated 

the ROIs into 12 clusters. Subsequently, we consider a number of ROIs from each cluster, 

in proportion to the number of the cluster itself, to form the training set. Once determined 

how many ROIs to extract from each cluster, these were randomly selected, up to obtain 
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10000 ROI, 5000 representing the YM and 5000 representing the RM. The remaining 

were used for the composition of the test set. For the DT there are no parameters to be 

optimized, so the coding of the solutions to evolve with the GA is very simple: each 

solution is represented by a binary string vector, formed by 36 bits, one for each 

parameter.  

In phase iv) we applied the same methodology of phase iii) using 40 patients for 

constructing training set matrix as input for three classifiers (Decision Tree, K-Nearest 

neighbor and Neural Network) 

 

2.3.3 Genetic Algorithm and Classifier optimization   
 

For each classifier, three different GAs, one for each subregion, were used to 

simultaneously select the input features and define the classifier parameters. [43,44]. An 

initial population was generated through initial solutions in binary vector form. The 

algorithm creates this population first with solutions considered all admissible. The initial 

population consists of 500 completely randomly generated solutions, with the only 

condition for the first 36 bits of at least two bits with a value of 1, or to have solutions 

that select at least two variables between possible descriptors. 500 solutions have been 

created for each type of classifiers and various repetitions of genetic algorithms always 

start from the same initial group. Each generation consists of 500 solutions. Of these 

solutions, 350 were selected and they will become the parents and on whom the genetic 

operators will apply. The method by which they were selected was the roulette wheel 

selection, in which each solution is assigned a probability of being chosen inversely 

proportional to the fitness value (the lower the fitness value, the greater the probability to 

be selected). This method of choice also allows to further explore the set of possible 

solutions, but minimally favors the maintenance during subsequent generations of 

solutions with less fitness. The GA runs for 100 iterations. However, an additional stop 

condition avoid that the GA necessarily executes 100 iterations at each repetition, saving 

computing time. It should be kept in mind, in fact, that the GA built in this way, where at 

each generation are created and evaluated the performance of 500 classifiers, the 

computational time is very high. Having an additional stop condition allows a 

considerable saving of time. As a stop condition, it was decided to interrupt the repetition 

if, for 30 consecutive iterations, there were no improvements of the solution with better 

fitness. So, every generation is taken into account of the best fit and its fitness until an 

individual solution with lower fitness for 30 consecutive times was found; then it stops 
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Figure 5. Visual representation of the 4 phases in which this work has been divided. Up to phase 3, 5 

patients were used as training and up to 20 for validation (phase 3). For the last phase (phase 4), 40 

patients were used for training and 10 for validation. 

 

 
and keeps that solution as best. For the genetic operators the following values of PC=1 e 

PM=0.5 were chosen. These mutation and crossover probability values are very high. 

This choice is due to the very high number of possible solutions existing for each 

classifier, from 236 to 242     possibilities to examine. Given the huge set to be explored, 

high probability values for genetic operators allow to have a high variability in the 

solutions of the various generations, allowing to explore a high enough number of 

solutions and avoid that the GA converges too easily to solutions apparently optimized. 

The high variability avoids convergence, but not allows the solutions found to be highly 

optimized, since any good solutions was systematically changed. Basically, in this way 

the GA explores a high number of solutions, but not greatly optimizes the good solutions 

encountered. The fitness function has equation: 

 

 
 

The lower the fitness value is better. Fitness is calculated using the values of 

accuracy, sensitivity and specificity that are obtained with the classifier from the selected 

features and the parameters encoded by the single solution. So, for each solution we 

constructed a classifier from the training set extracted from the 40 patients, so half of the 
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training set is used for the learning phase while the other half of the training set was used 

as a test set to test the performance of the classifier, for which we try to predict the class 

to which the elements of the test set belong. With the results of the predictions, it was 

possible to construct confusion matrix, from which the values of accuracy, sensitivity and 

specificity, are derived and used for fitness calculation. The fitness function is calculated 

in such a way as to evaluate more positively not only having solutions high accuracy, but, 

to a lesser extent, favors those solutions with specificity and sensitivity values similar. 

This additional evaluation ensures that the solutions found have balanced values and are 

able to correctly classify both true negatives and true positives. Solutions with low 

specificity e high sensitivity and vice versa, with the same accuracy, are penalized. In the 

segmentation of the active bone marrow, this prevents constructed classifiers from having 

a general tendency to under-segment or supra-segment. 

 

2.3.4 Voxel Classification and Post-processing 
 
Last step is to move to the bone marrow segmentation by classifying all the 

pixels belonging to the spongy bone slice by slice of the images relating to all 10 patients 

of the validation set. Before applying the individual classifiers for segmentation, an 

additional operation is required to improve its predictive capabilities. Each different 

classifier was optimized to have a different subset of features and different parameter 

values. Since the genetic algorithm has optimized the solutions in favor of segmentations 

by balancing sensitivity and specificity, combining different results, it was possible to 

improve overall accuracy by excluding any pixels that have been classified into a certain 

way from a single classifier, while pixels classified equally by both classifiers have a 

higher probability to be correctly classified and the combination of the results is called 

voting. In this work, it was decided to use a voting system with three classifiers optimized 

on three different criteria: i) classifier with lowest fitness value; ii) classifier with higher 

sensitivity value; iii) classifier with higher specificity value. For each individual slice of 

patient images 3 classifiers are built starting from the solutions found by the GA. Then 

the pixels of the slice belonging to the bone marrow are classified, in such a way as to be 

extracted 3 different masks of active bone marrow following the previous criteria. Finally 

voting is carried out with the 3 masks and the final mask is obtained. These operations 

are repeated for each slice until the segmentation of all the slices of the image, for all 

structures and classifiers. For each slice, a certain minimum number of pixels is classified 

as positive; however, if the number of pixels is less than 64, then those pixels are rejected 

and the slice is considered as not containing active bone marrow. We decided this 

threshold as a consequence of the nature of the PET image. In particular, since the 

difference in spatial resolution between PET and CT, a single pixel of the PET image 

corresponds to 64 pixels of CT image. When evaluating the performance of the 

segmentation a minimum threshold is set below such value and the contours are not 

considered to avoids any areas of smaller red marrow. To further improve the appearance 

and eliminate some artifacts often due to a bad classification of a few pixels, a 

morphological operation is performed on the active marrow mask by closing. In this way, 

the edges of the musk of the segmentation are more uniform and it may be considered as 

the automatic segmentation of the 3D images from CT. 
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2.4 Overlapping indices for the evaluation of   results 
 

Six parameters were used to evaluate the correspondence in terms of overlap, over-

segmentation and under-segmentation, between the actBM regions identified by the PET 

scanner (PETactBM) and those detected on CT sequences (CTactBM). Three parameters 

were used to compare the binary masks obtained from PETactBM and CTactBM:  

 

i) Dice index [45], which measures the total overlap between masks.  

 

𝐷𝐼𝐶𝐸 = (2*(PETactBM ⋂ CTactBM)) ⁄ (PETactBM ⋃ CTactBM) 

 

ii) Recall [45]: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = ((PETactBM ⋂ CTactBM)) ⁄ PETactBM  

 

iii)  Precision [45]:  

 

Precision = ((PETactBM ⋂ CTactBM)) ⁄ CTactBM  

 

These parameters range from 0, in case of no overlap between the two masks, to 1 in 

case of perfect match between them. Different studies have recommended a DSC of 0.7-

0.8 to be considered a good overlap [46-48]. However, DSC can provide false impression 

of high agreement and, it over-penalizes small structures but is too permissive for large 

structures. The ratio between P and R may be used to put in evidence over-segmentation 

(P<R) or under-segmentation (P>R) tendency. So, we added the remaining three 

parameters that measure the average displacement (expressed in mm) of the voxels in 

CTactBM in order to perfectly match the PETactBM. The first is the Mean Distance to 

Conformity (MDC) index, also called Mean Distance to Agreement (MDA), which 

represents the average distance that all outlying points in the volume (CTactBM) must be 

moved in order to achieve perfect conformity with the reference volume (PETactBM). 

All parameters were calculated for each of the three subregions separately, considering 

only slices with at least one voxel of actBM in that region identified by PET.  
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Chapter 3 

 
Results 

  

3.1 Results – phase 1 

 
Figure 6 shows an example of segmentation obtained using radiomics on CT (yellow 

dashed line) with the segmentation delineated from 18FDG-PET (red line). 

 

 
 

Fig. 6. Example of segmentation obtained using radiomics on CT. Green line: pelvic bone marrow segmentation. 

Red line: active bone marrow  

 
For each of the 3 subregions we processed a number of slices ranging from 30 to 44 for 

every patient. The mean and standard deviation of the three indices is reported in Table I 

for the five patients and the three subregions separately. As it emerges from the table, the 

highest indices values are obtained for LSBM and IBM subregions, where we have an 

overlap between RS and CT above 75% in 4 out of 5 patients. The subregion with the 

lowest over-segmentation is the IBM, reaching precision above 80% for all patients. For 

the LPBM, not satisfying results are achieved, as the dice index is always below 0.5. 

However, the recall for this structure is higher than 0.7 in 4 out of 5 patients, meaning 

that at least the 70% of the RS segmentation is correctly recognized by the DT on CT 

images. These differences among the three subregions might be due to the different 
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amount of each of the 3 subregions we processed a number of slices ranging from 30 to 

44 for every patient. The mean and standard deviation of the three indices are reported in 

Table 1 for the five patients and the three subregions separately. As it emerges from the 

table, the highest indices values are obtained for LSBM and IBM subregions, where we 

have an overlap between RS and CT above 75% in 4 out of 5 patients.  

 

 
Table 1. Results of the comparison between active bone marrow identification from 18FDG-PET and CT. 

 
These differences among the three subregions might be due to the different amount of 

actBM within them, with the LSBM containing almost entirely haematopoietically active 

bone marrow. Moreover, the actBM identification in the LPBM might be influenced by 

the presence of the femur. Possible improvements in this direction could be obtained by 

constructing a classifier specific for each subregion, so that the characteristics of the three 

structures can be captured more accurately. 

 

3.1.1 Discussion 

 
This Phase 1 of this work proposes an exploratory study aiming to understand if 

radiomics is able to identify haematopoietically active BM from CT imaging. This was 

the first study in this direction, as the standard strategies for active BM detection are based 

on PET and MRI. These preliminary results are very promising, above all for lumbosacral 

and iliac structures where our approach is able to correctly identify more than 75% of 

actBM. With such an approach we expect possible inaccuracies due to the use of a specific 

classifier for each subject, since the number of elements included in the training set of 

each DT was substantially lower than the number of elements to be classified in all CT 

slices.  The subsequent phases, with a larger population of patients, will be aimed 

precisely at better testing the generalization capability of our approach using the same 

feature extraction technique focused on the spatial distribution of the pixel intensities on 

the image; this allows for constructing classifiers that are robust to modifications in the 

acquisition parameters or protocol. Another aspect to be explored in the next phases will 

be certainly aimed to develop a specific classifier for each subregion, that could be applied 

for all subjects and to explore the ability of different classifiers. 
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3.2 Results – phase 2 
 

3.2.1 Solution of the genetic algorithm 

 
From the implementation of GA, for feature selection and classifier construction, 5 

solutions of each classifier for each structure have been evaluated by the fitness value, 

sensitivity and specificity. Figure 9 shows an example for structure IBM for the SVM 

classifier derived from training set. We can observe how the values for the three 

parameters under analysis first of all do not differ much between them for various 

solutions and then the minimum of the fitness value also corresponds to the maximum of 

the value of sensitivity, specificity and accuracy; this is the case of solution n.1. This 

means that the choice of the fitness formulation can be considered well balanced to 

evaluate the best solutions from that proposed by the genetic algorithm. However, for 

identifying the best classifier for the three different structures, the minimum value of 

fitness and the maximum value of sensitivity, specificity and accuracy derived from the 

various solutions of the genetic algorithm applied respectively to the training and test are 

shown in the figure 8-9. 

 

 

 
 

Figure 7. Different values of the fitness and maximum of the value of sensitivity, specificity and accuracy for 

different solutions of GA 

 

1 2 3 4 5

Fitness 0,218 0,230 0,240 0,258 0,235

Sensitivity 0,823 0,808 0,793 0,775 0,778

Specificity 0,772 0,760 0,752 0,733 0,762

Accuracy 0,798 0,784 0,773 0,754 0,770
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Figure 8. Results in terms of minimum fitness and maximum sensitivity, specificity and accuracy derived from 

training set 

 
Figure 9. Results in terms of minimum fitness and maximum sensitivity, specificity and accuracy derived from 

validation set. 

 
Figure 8 shows the classifier NN getting better values on all three considered structures 

in the validation set. However, the obtained values are not so high, setting just above 0.7 

while higher values are reported for the training set in Figure 9.  

 

3.2.2 Voting effect 

 
To further improve the performance of the classifiers, we have included the so-called 

voting as the stochastic nature of genetic optimization can lead to slightly different results. 

To evaluate the effect of such process, we can analyze the first results in terms of Dice 
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Index for segmentation on a small sample of 10 patients comparing different strategies 

including voting for all classifiers on IBM, LPBM and LSBM structures. It can be 

observed how the features and parameters of the various classifiers may be better 

optimized through the voting process; however, for LPBM structure there is no advantage 

between voting and other methods with lower agreement in terms of Dice Index respect 

to the other two analyzed structures.  

 

 
 
Figure 10. An example of a comparison between manual PET active bone marrow ROI (red) and the 

segmentation of classifier (blue) for lumbosacral bone marrow (a), iliac bone marrow (b) and lower pelvis bone 
marrow (c). 

 

3.2.3 SUV threshold 
 

So, the robustness of the method for the identification of active marrow through the 

SUV threshold was then evaluated by varying the previously described threshold by plus 

or minus 10%. In particular, just to see if there were any major changes on the LPBM 

structure. Unfortunately, it can be seen from Tables 2 and 3 that decreasing the threshold 

by 10% the results in terms of Dice agreement degrade and a general tendency to over-

segment (P / R <1) increases even more. Conversely, by increasing the threshold by 10%, 

the Dice values improve significantly, but not enough to suggest changing the threshold. 

In particular, the P / R ratio also shows that the general tendency of the classifier to over-

segment remains with average values of the P / R ratio that do not exceed the value of 

0.66. 
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Figure 11. Box plot showing distribution of Dice index of actIBM between reference CT-Pet based contours 

and radiomic features with different strategies including voting for all classifiers 

. 

 
Figure 12. Box plot showing distribution of Dice index of actLPBM between reference CT-Pet based contours 

and radiomic features with different strategies including voting for all classifiers. 
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Figure 13. Box plot showing distribution of Dice index of actLSBM between reference CT-Pet based contours 

and radiomic features with different strategies including voting for all classifiers. 

 

 

 

 
Table2. Different values for Dice Index for all classifiers related to SUV variation of 10% for LPBM structure. 
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Table3. Different values for the ratio of Precision and Recall for all classifiers related to SUV variation of 10% 

for LPBM structure. 

 

3.2.4 Results on 20 patients 

Finally, tables 3a and 3b report the values obtained on the external sample (validation 

set) of 20 patients for the 4 classifiers and for the 3 structures. The box plots of figures 

14, 15 and 16 instead show the values of Dice, MDC and the Precision/Recall ratio, again 

for all the classifiers for the three structures. 

 

a)  

b)  
Table 4. Values obtained on validation set of 20 patients with DT and KNN classifiers (a) and with NN and 

SVM classifiers (b) for the three considered structures. 
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Figure 14. Box plot showing distribution of Dice index for IBM, LPBM and LSBM structures with all classifiers 

 

 

 
Figure 15. Box plot showing distribution of Dice index for IBM, LPBM and LSBM structures with all classifiers 
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Figure 16. Box plot showing distribution of Dice index for IBM, LPBM and LSBM structures with all classifiers 

 
These results stimulated us to investigate further and in particular we evaluate the 

percentage of Active BM (Red Marrow) compared to total BM. Box plot of the figure 17 

illustrates very well how the percentage of ActBM within the LPBM structure is definitely 

lower than IBM and LPBM. Although this does not demonstrate anything particular at 

the moment, it will be resumed later, at the end of the presentation of the results of phase 

4. 

 

3.2.5 Discussion 
 

With respect to the previous phase, in this study we included 20 more subjects in our 

population, that were used for validation. Here we compared four kinds of classifier and 

we proposed one classifier for each subregion, optimized using GA in terms of features 

subset and parameters. First of all, the results show that the performances of the 4 

classifiers are similar: even analyzing results obtained on both training and validation set 

using different approaches to optimize GA (minimum fitness, maximum sensitivity, 

specificity and accuracy) there is no a classifier that performs over others within the three 

structures considered separately. The voting process helps to improve the results in terms 

of Dice index especially for IBM and LSBM, while its effect is similar to other 

approaches for LPBM. By changing the SUV threshold by ±10%, no changes are 

observed that would justify a redefinition of the threshold, therefore the identification 

methodology using the SUV threshold is substantially confirmed in terms of robustness. 
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So, the final results as in terms of Dice Index well as in terms of MDC are more or less 

as in phase 1 where, on average, they are satisfactory for IBM and LSBM subregions, but 

also in these cases there are patients with poor results. Conversely, inadequate results 

remain on the LPBM subregion with some outliers going towards acceptable values of 

Dice and MDC.  

 

 
Figure 17. Box plot showing ratio ActBM/TotalBM for IBM, LPBM and LSBM structures. 

 
There is a significant difference in the presence of percentage of active bone marrow 

between LPBM and the other two sub-regions, in particular in the LPBM there is a median 

value slightly higher than 25% while the other two sub-regions had median values of 

about 85%. 

 

3.3. Results – Phase 3 
 

Then, we proceeded with obtaining the ActBM segmentation masks following exactly 

the same voting operations of the 3 solutions and post-processing of the study carried out 

with the random training set, but with clustering. Table 5 represent the median, minimum 

e maximum value obtained on 20 patients for three classifiers on the three considered 

structures. We can observe as generally random extraction perform better in most of the 

tested parameters except for LPBM especially for KNN classifier. 
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. 

 
 

Table 5. represent the median, minimum e maximum value obtained on 20 patients for 

three classifiers on the three considered structures. We can observe as generally random 

extraction perform better in most of the tested parameters except for LPBM especially for 

KNN classifier. 
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Figure 18. Difference in favor of clustering extraction from training set data.  

 

3.3.1 Discussion 

 
The goal of clustering is to determine the internal grouping in a set of unlabeled data, 

so we want to apply this concept to the extraction of ROI from training set trying to 

evaluate any differences with respect to the first approach which, as mentioned, involved 

a random extraction of the ROIs. Unfortunately, the results did not give precise 

indications and were rather difficult to interpret. While random appears to be significantly 

better in many cases, the difference with respect to clustering is still small. On the other 

hand, for the LPBM sub-region we have a significant increase in the results in the LPBM 

subregion for the KNN classifier, reason why it was decided to maintain this potentially 

more advantageous data extraction technique especially considering that in the last phase 

the training sample will be considerably increased from 20 to 40. 

 

3.4 Results – phase 4 
 

In this chapter we will present the results of the last phase of this work, i.e., those 

relating to a total of 50 patients dividing the sample between 40 patients used for training 

and 10 for validation; the selection of voxel for training the classifiers was made with 
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clustering through unsupervised learning algorithms and the results of 3 classifiers were 

analyzed. 

 

 
Figure 19. Box plot of the Dice Index for the three considered classifiers for the 40 patients used for training set  

 
Figure 20. Box plot of the ratio Precision/Recall for the three considered classifiers for the 40 patients used for 

training set  

 

 
Figure 21. Box plot of the Dice Index for the three considered classifiers for the 10 patients used for validation 

set  

 
Figure 22. Box plot of the Dice Index for the three considered classifiers for the 10 

patients used for validation set  
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The problems relating to the LPBM structure remain from figure 19 if we look at the 

data of the training set, the medians of the Dice Index for all three classifiers are below 

those obtained for the other two structures (IBM and LSBM). If we take as a reference 

the DT classifier which may be considered the overall best performing on all three 

structures, we can observe from the Precision / Recall ratio how the median value for the 

LPBM structure was about 0.5 (over segmentation), while for the others two structures 

the median of this ratio has values slightly higher than 1. Now if we move the same 

considerations on the Dice Index from the training set to the validation set (Figures 21 

and 22), unfortunately the data worsens significantly, not only on LPBM, but also in the 

other two considered structures (IBM and LSBM); moreover, the P/R ratio does not show 

any trend of over or under contouring. Considering this unexpected worsening we started 

again from the results illustrated in figure 17 and we analyzed the same active marrow 

rate on the total marrow patient by patient and structure by structure. Figure 23 illustrates 

patient by patient the values of the Dice Index and the P/R rate with the values of the 

Active/Total BM rate for the three structures next to them. Figure 24 instead shows the 

correlation of these data structure by structure. 

 

 

 
 

Figure 23. Dice Index and the P/R ratio reported patient by patient for the DT classifier on the left part, while 

the values of the values of the Active/Total BM rate for the three structures 
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Figure 24. Correlation between the amount of Active bone marrow with both Dice Index and ratio P/R for DT 

classifier for the three structures. 

 

 

 

 

From the data it emerges that there is a strong correlation between the quantity of active 

bone marrow and the correct segmentation by the various classifiers; in particular, some 

results from figure 16 are confirmed; the LPBM structure is the one that contains the 

lower part of active bone marrow (33% LPBM vs 71% IBM and 94% LSBM). Then it is 

interesting to note that there are some patients who present this lack also for the other two 

structures as shown in figure 22. Patient 39,40,42,43 and 45 present a % of active bone 

marrow for both LSBM and IBM below 20% and the results in terms of Dice index for 

those patients were well below a threshold that may be considered acceptable. Moreover, 

when the percentage of active LPBM was at least 50% (patients 15,25,39,40), also the 

results in terms of Dice index were about 0.6 that is considered as moderate 

correspondence [11]. From figure 23, if we look at the trend of the P/R ratio, we can 

clearly see how the classifier tends to over-segment (P/R <1) when the percentage of 

active bone marrow measured on the PET is less than 60% and this is quite independent 

of the considered structure. 
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Table 6. Average and standard deviation values for all three structures of Dice Index, P/R and active and 

total marrow ratio. The Spearman’s coefficient represents the correlation of each quantity with its corresponding 

ratio between active and total marrow 

 

 
Figure 24. Visual representation of comparison between contours derived from radiomics (redline) and 

18FDG-PET (yellow line) for two patients of validation dataset.  

 

3.4.1 Discussion 
 

Combining all the previous phases, we applied what for us could have been the best 

technique on a definitive sample of 50 patients using 40 patients as training and 10 as 

validation. In the general population, anal cancer is uncommon, with age-standardized 

incidence rates mostly between 1 and 2 per 100000 per year, so the extraction of 50 

patients from a mono-institutional database was a great effort by the medical team that 

collaborated in this work. We can affirm that the size of the considered sample was 

appropriate with respect to the adopted methodology for classifiers, even if for some of 

the considered patients, the percentage of active bone marrow present in the three 

structures was found to be more dispersed among patients. 

Both LSBM and IBM have a high proportion of active bone marrow comprised within 

the entire bone structure and in general, this favors the correspondence between the 

ActBM volumes between PET and the radiomic approach, which is shown by the mean 
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dice values around 0.7 for these 2 structures for values of percentage of active bone 

marrow greater than 70%. The likelihood of finding a geometric correspondence between 

volumes is generally increased by the absolute values of the same volumes, since the 

negative effects on the overlap performance due to slight misalignments caused by tumor 

delineation and position uncertainties can be smoothened.  

The component of under-segmentation (P/R>1) observed for the radiomic approach 

when compared to PET, can be partially explained by the difference in voxel size between 

CT and PET scans. The average voxel size for our CT dataset was approximately 1 mm 

on axial images and 3 mm in the cranio-caudal direction, while the average voxel 

dimension for PET images was 4 mm. This difference may be responsible for the 

reduction in correspondence of the BM volumes as outlined by the 2 approaches, 

particularly for the edges of the volumes, in which PET-based delineation would 

consistently overestimate the edges of BM, relying on a larger-sized voxel, leading to 

under-segmentation coming from the CT-based radiomic delineation approach. This 

voxel size difference may also be responsible for the geometric uncertainties during the 

rigid co-registration process.  

Conversely, when the percentage of active bone marrow was below 50%, we can 

observe from Figure 23 the ratio P/R<1 showing a tendency to over contouring from 

radiomics respect to ground truth. As previously mentioned, the classification of the CT 

sequences was achieved using classifiers capable of identifying ActBM and InactBM 

voxels for each specific subregion; each classifier was constructed using a dataset of 5000 

voxels extracted from all of the voxels belonging to that specific subregion, using the 40 

patients enrolled in the training set. If the voxels of active bone marrow are in smaller 

areas could be less used or not used at all for constructing the dataset, thus reducing the 

ability of the classifier to correctly identify a specific area in the image. This could be 

particularly cogent for patients that present low percentage of active bone marrow.  

At the same time also the spatial resolution of PET may represent a limit when the area 

of active bone marrow is smaller, therefore only the addition of a possible further imaging 

technique such as MRI could give an important indication to see where it fits with respect 

to the consolidated technique of PET and the experimental one of CT described in this 

thesis. 

 

Chapter 4 

 
Conclusions 

 
The dose received by BM comprised within pelvic bones is a predictive factor for HT 

occurrence during RT-CHT for squamous cell carcinoma of the anal canal; therefore, 

properly identifying and delineating these regions can be considered the starting point to 
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implement targeted approaches, during both planning and delivery to accurately spare 

these structures and consequently decrease the probability to develop HT. 

To our knowledge, this is the first study attempting to identify and delineate active BM 

based on CT images only, particularly using a segmentation tool employing radiomic 

features extracted from CT images as input to Machine Learning classifiers to be 

compared to an established method based on 18FDG-PET images as ground truth. Spatial 

cross- comparison between BM regions (IBM, LPBM and LSBM) segmented with the 
18FDG-PET / CT scan and our method revealed a substantial correspondence for two out 

of three selected regions since the beginning of our work. Mean values for Dice and MDC 

may be considered satisfactory as for IBM well as for LSBM even with some patient 

underperforming. As regard to LPBM, the agreement is globally less acceptable than 

other two regions with some patients having values close to an acceptability threshold.  

As for the clinical application, we can certainly say that further investigations 

are mandatory to better understand its added value, reliability, limits, advantages and 

disadvantages. Finally, for the application to other departments, it’s necessary to test the 

robustness of this approach on several computed tomography scanners. 
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